

1 **Abstract**

2 Academic conferences play an important role in the scientific community by providing an
3 opportunity for researchers to discuss their work and to network. However, drawbacks of
4 traditional face-to-face (F2F) conferences, such as the ostensible exclusion of non-scientists,
5 the substantial environmental footprint and the large costs in terms of both time and money are
6 being increasingly recognised. As a result, alternative and complementary formats are being
7 explored. One of these is the Twitter conference (TC), in which research is presented and
8 discussed on the social media platform Twitter. Here, we use hashtag and presenter data from
9 several ornithology and ecology conferences (both TCs and F2F events) to explore the potential
10 reach of the tweets and the magnitude of the difference in greenhouse gas emissions between
11 the two conference types. We found that TCs generated greater engagement than F2F events,
12 have the potential to reach a very large audience and result in a substantial reduction in
13 emissions. Further, we argue that the format promotes presenter and audience diversity due to
14 participation being flexible and virtually cost free. While we recognise some disadvantages of
15 this format compared to F2F events, especially in relation to the social and networking aspects
16 of conferences, we envision that virtual events, such as TCs, will play an important role in the
17 future of science dissemination and outreach. By embracing such opportunities, academic
18 conferences can move towards a more inclusive and sustainable future.

19 **Introduction**

20

21 Academic conferences have long played an important role in the scientific community,
22 providing an opportunity for researchers to share and discuss new results, enhance the impact
23 metrics of their work, as well as to network and strengthen the sense of community within a

24 given field. However, the ‘traditional’ face-to-face (F2F) conference format has been criticised
25 for a number of reasons (see Sarabipour *et al.* 2020). For example, conferences often incur
26 substantial costs, both for organisers and attendees (grants and other financial aid
27 notwithstanding; Parsons 2015). For attendees, this includes not only the conference fee but
28 also travel, subsistence and accommodation. This inevitably leads to the exclusion of
29 individuals and organisations that cannot accommodate these costs (e.g. Mair *et al.* 2018). The
30 impacts are often disproportionately felt by countries and universities with fewer economic
31 resources, exacerbating existing inequalities (Walters 2018). Other barriers experienced by
32 potential attendees include discrimination and/or inaccessibility based on gender (Biggs *et al.*
33 2018, Jackson 2019, Nicolazzo & Jourian 2020), race (Hughey 2019, Miles *et al.* 2020),
34 nationality (Aguirre 2020), ethnicity (Ford *et al.* 2019, Timperley *et al.* 2020), native language
35 (McCarthy *et al.* 2004), disabilities (De Picker 2020), personality (McCarthy *et al.* 2004, Davis
36 & Warfield 2011), risk of sexual misconduct (National Academies of Sciences, Engineering,
37 and Medicine 2018, Sharoni 2018) and external responsibilities, such as caring for children or
38 other family members (Eckhaus & Davidovich 2018, Henderson & Moreau 2020).

39 In addition to excluding a large number of academics and otherwise interested
40 professionals (e.g. government, non-governmental organisations), academic conferences also
41 tend to exclude the general public. This is not necessarily intentional on the part of the
42 organisers, but likely results from limited advertising and awareness of these events beyond
43 academia, costs associated with attending such events (e.g. travel, registration,
44 accommodation) and academic content that is often not easily accessible to people not working
45 in that field. However, scientific projects are often built on a platform of public funding and,
46 increasingly, public-sourced data (i.e. ‘citizen science’; Callaghan *et al.* 2019, Fritz *et al.* 2019,
47 Phillips *et al.* 2019). Further, public opinion and awareness can be important in determining
48 support for actions such as changes to policy (Bromley-Trujillo & Poe 2020) or the success of

49 the application of the resulting policies (van Eeden *et al.* 2020). Hence, there is an increasing
50 awareness within the scientific community of the need to communicate findings back to the
51 public (Kassab 2019).

52 Finally, F2F conferences inherently require individuals to travel to the conference
53 venue. This travel comes with associated greenhouse gas emissions, which increase with the
54 amount of international participation. While these emissions only constitute a negligibly small
55 part of the global carbon budget, they can constitute a significant part of the personal and
56 institutional carbon footprint for academics (Spinellis & Louridas 2013). Further, while
57 conference travel is undoubtedly the largest source of emissions, printed programs, various
58 types of merchandise, hotel nights and the running of the venue also come with associated
59 environmental impacts (Neugebauer *et al.* 2020). This is problematic as the ecological footprint
60 associated with attending conferences may to some extent undermine the message of the
61 importance of reduced environmental impact ecologists and conservation scientists try to
62 convey to the general public (Grémillet 2008, Fox *et al.* 2009).

63 In response to the drawbacks associated with F2F conferences, alternative online
64 formats that allow cheaper, more inclusive and more environmentally friendly conferences
65 have been explored (see Bik & Goldstein 2013). These virtual conferences can be conducted
66 in a variety of formats and can, for example, include pre-recorded video presentations and
67 online Q&As (e.g. BioantTalks), a mixture of written and video presentations (e.g. Feminist
68 and Women's Studies Association virtual conference), or podcast recordings (Ractham &
69 Zhang 2006). Many F2F conferences are now also providing remote conferencing services in
70 the form of live video streams, allowing those who could not attend in person to follow online
71 (e.g. Pacific Seabird Group 2020), or organising hubs around the world where researchers can
72 gather locally to watch live-streamed content (e.g. Photonics Online Meetup).

73 In addition to customised software, a variety of online platforms, many of which are
74 free (e.g. YouTube, Wordpress, and Twitter), have the potential to support a wide range of
75 conference formats. The social networking site Twitter (<http://www.twitter.com>) is particularly
76 popular with scientists, especially in recent years (Darling *et al.* 2013, Ke *et al.* 2017). Twitter
77 is often used in conjunction with F2F conferences to network, promote presentations and
78 events, and to communicate presented research to non-participants. Twitter has a user base of
79 330 million individuals, 145 million of whom use the service daily (Twitter 2019). These users
80 publish public messages ('tweets') containing no more than 280 characters - but including
81 images, videos, animated GIFs, links, etc. - to their audience (immediate 'followers' and
82 distributed networks - the followers of their followers). Tweets can also be threaded together
83 ('threads') to produce a story or a linked presentation. The audience can then engage with these
84 tweets by 'liking' them, 'retweeting' them (which shares them with the user's own network)
85 and replying to the tweet. Crucially, Twitter users are able to assign hashtags to their tweets
86 that act as grouping parameters, which means that other users can search for a specific hashtag
87 and view all associated tweets. This has clear application to and benefits for conducting a
88 Twitter-based conference (TC; Avery-Gomm *et al.* 2016, Caravaggi & James 2017, Bliss &
89 Avery-Gomm 2018).

90 What was perhaps the world's first official TC took place in 2011 when the University
91 of Otago's postgraduate students tweeted a summary of their thesis (University of Otago 2011).
92 Since this first event, especially in recent years, there has been a large increase in the number
93 of TCs, with conference topics covering a broad range of academic fields including public
94 archaeology (#PATC1), ornithology (e.g. #WSTC1, #BOU18TC, #ISTC20), the history of
95 underwear (#UPMTC), and many more. Like most F2F conferences, TCs take place over a set
96 range of dates and follow a programme of scheduled presentations. These presentations take
97 the form of a series of tweets, usually with accompanying graphics and videos that are

98 analogous to the presentation slides or posters at F2F conferences. The 280 character-limited
99 tweet text can be considered to be a concise replacement for the words spoken at an oral
100 presentation or when presenting a poster. Tweets can also link directly to online research
101 articles, blog posts and presenter profiles. In addition to presentations, many TCs also contain
102 other features common to F2F conferences, such as plenary sessions, prizes for best
103 presentations, opportunities to socialise and network as well as the possibility for companies
104 and organisations to advertise their products and services. Within this general framework, TCs
105 take on various formats. Some TCs, such as The Royal Society of Chemistry Analytical Science
106 Twitter Poster Conference, opt for the work being presented in the format of a traditional
107 scientific poster that is uploaded to each presenter's account at a given time (Randviir *et al.*
108 2016). Others allow each presenter a set time frame in which to describe their work in a set
109 number of tweets with associated graphics (e.g. the Exercise Oncology Twitter Conference
110 #ExOncTC; Thraen-Borowski *et al.* 2020). Usually, conference-specific hashtags are used to
111 group all tweets associated with an event, often with the addition of session-specific hashtags.

112 The field of ecology in general, and ornithology in particular, has enthusiastically
113 embraced the opportunities afforded by TCs. Here, we use hashtag data from a set of ecology
114 TCs, including the World Seabird Twitter Conference (WSTC), Biotweeps Twitter Conference
115 (BTCon) and the TCs of the British Ornithologists' Union (BOUTC), as well as from a set of
116 analogous F2F conferences, to examine the reach and impact of the tweets. We also assess how
117 the potential greenhouse gas emissions associated with a TC compare with those from an F2F
118 conference, and the contribution this could make to lowering the carbon footprint of researchers
119 and organisations. Finally, we outline some additional advantages of TCs, discuss how they
120 might be further improved and the future role they can play in the context of academic
121 conferences, alongside, and to some extent in place of, the traditional F2F format.

122

123 **Methods**

124 **Analysis of hashtags**

125 Historical Twitter hashtag data for 17 conferences (eight F2F: #AOSSCO2017, #BES2017,
126 #BES2018, #BOU2018, #BOU2019, #IOCongress2018, #TWS2017, #TWS2018; nine TC:
127 #BTcon17, #BTcon18, #BOU17TC, #BOU18TC, #WSTC1, #WSTC2, #WSTC3, #WSTC4,
128 #WSTC5; Table 1), were collected by the Twitter intelligence and analytics company
129 Followthehashtag (followthehashtag.com). Historical data for each hashtag contained 21 data
130 columns, six of which – *Tweet Posted Time (UTC)*, *Tweet Content*, *Tweet Type*
131 (*tweet/retweet/reply*), *Retweets Received*, *Likes Received*, *Impressions* – were used in the
132 current study (see Supporting Online Material [SOM] Table S1.1). ‘Impressions’ is the number
133 of times a tweet shows up in other users’ feeds. The data were thresholded by conference
134 date(s) to focus on activity directly associated with the conferences themselves. The hashtag
135 data were then subjected to a suite of analyses aimed at quantifying: i) the number of unique
136 users using each hashtag; ii) engagement (i.e. interactions between users and tweets) metrics
137 for each hashtag; and (iii) connectivity between hashtags in each group of conferences, in terms
138 of shared usernames. For the full hashtag analysis methodology, see SOM 1.

139

140 **Relative carbon emissions**

141

142 To get a sense of the scale of difference in the carbon footprint, we calculated the emissions
143 that would result from all presenters in three TCs (#WSTC5, #BOU17TC, #BOU18TC)
144 travelling to a hypothetical conference venue and compared these to the emissions from the
145 tweets of the TC. These TCs were chosen as there were clear F2F event analogues (WSC2,
146 BOU 2017 and 2018 Annual Meetings) with easily accessible data on the presenters’ countries

147 of residence. The total emissions from the tweets were calculated by multiplying the total
148 number of tweets and retweets over the duration of the conference with the emissions
149 associated with a single tweet (0.02 g CO₂e; Schwartz 2010). To calculate the travel emissions,
150 it was assumed that presenters travelled in a straight line from the centroid of their country of
151 residence to a hypothetical conference venue. The hypothetical venue was always a capital and
152 was chosen so that the total travelling distance summed for all presenters was minimised. The
153 methods for calculating travel emissions followed those of Klöwer (2019) with the mode of
154 transport depending on distance (<400 km land-based, 60 g CO₂e/km/person; 400–1500 km
155 short-haul flight, 200 g CO₂e/km/person; 1500–8000 km long-haul flight, 250 g
156 CO₂e/km/person; >8000 km super long-haul flight, 300 g CO₂e/km/person). We also
157 estimated the travel emissions that would have been saved if the corresponding F2F
158 conferences (WSC2, BOU 2017 and 2018 Annual Meetings) would have been conducted as
159 TCs. The number of tweets per presenter were based on numbers from the corresponding TCs.
160 For more details, see SOM 2.

161 All analyses were conducted in R 3.5.2 (R Core Team 2018). For packages used, see SOM
162 1 and 2.

163

164 **Results**

165 **Analysis of hashtags**

166 The accounts interacting directly (i.e. tweeting, retweeting and liking tweets) with the nine TCs
167 studied represented 4937 unique users (range: 361 [#WSTC1] - 1000 [#WSTC3]; mean =
168 548.6). Hashtags associated with TCs generated a total of 99 071 active engagements (31 557
169 retweets and 67 514 likes) across 9680 original tweets, representing an engagement-per-tweet
170 ratio of 10.2:1 (Fig. 1; Table 2). There were an average of 1.3 (\pm 3.6 SD) engagements per

171 impression (the rate at which users engage with content) and an average of 2.8 (\pm 8.2)
172 engagements per post, for original tweets, only (Table 2). Network analyses showed that TCs
173 were strongly connected (Fig. 2; SOM Table S3.1), with all hashtags being paired (i.e.
174 mentioned in a tweet by the same individual user) at least once.

175 The accounts interacting directly with the eight F2F events studied represented 5810
176 unique usernames (range: 60 [#BES2017] - 2600 [#IOCCongress2018]; mean = 726.3).
177 Hashtags associated with F2F events generated a total of 119 808 active engagements (27033
178 retweets and 92 775 likes) across 13 356 original tweets, representing an engagement-per-tweet
179 ratio of 8.9:1 (Fig. 1; Table 2). There were an average of 0.8 (\pm 2.8) engagements per
180 impression (i.e. the number of times a tweet appears on a screen) and an average of 1.7 (\pm 6.5)
181 engagements per post (i.e. the percentage of people who chose to interact with content) , for
182 original tweets, only (Table 2; SOM 1). Network analyses showed that F2F events were well
183 connected (Fig. 2; SOM Table S3.1), with an average of six hashtags being paired at least once
184 (minimum = 4, maximum = 7).

185 The number of unique usernames that directly engaged with TCs was comparable to
186 the number that engaged with tweets from F2F events. However, engagement rates were higher
187 for TC tweets as compared to those associated with F2F events. Further, TCs demonstrated
188 greater connectivity between conferences. Hence, content from TCs was more likely to be
189 distributed to a wider Twitter network than that of F2F events and drew more attention from
190 the wider audience, on a more consistent basis.

191 **Relative carbon emissions**

192 Emissions associated with travelling to an F2F conference were several millions times greater
193 than those resulting from tweeting out the research (Table 3). More generally, one tweet results

194 in emissions corresponding to travelling around a third of a meter if travelling by land, or
195 around a tenth of a meter or less if travelling by air.

196 The greater ratios of travel to tweet emissions from #WSTC5 and WSC2 compared to the
197 BOU conferences are the result of the attendees being more spread out across the globe. The
198 larger ratio for WSC2 compared to that calculated for #WSTC5 is to a large extent the result
199 of assuming an optimal location for the hypothetical conference venue for #WSTC5. In
200 contrast, ratios were larger for the BOU TCs compared to the corresponding BOU F2F annual
201 meetings, which is the result of a larger proportion of international participants at the TCs.

202 **Discussion**

203 Hashtag analyses showed that the content from TCs is likely to be distributed to, and generate
204 engagement from, a wide Twitter network. This has clear benefits for the dissemination of
205 information beyond the immediate constraints of F2F conferences. For example, Côté and
206 Darling (2018) looked at both the ‘inreach’ (talking to other scientists) and ‘outreach’ (talking
207 to non-scientists) based on the Twitter followers of more than 100 ecology and evolutionary
208 biology faculty members and found that their followers were predominantly other scientists
209 (~55%). An audience of which ‘only’ 45% are scientists still represents a marked difference
210 from the composition of an F2F conference. Those with over 1000 followers showed a more
211 diverse range of followers including media, members of the public, and decision-makers. The
212 more varied audience of those scientists with more followers was, in turn, followed by more
213 people, resulting in an exponential increase in their social media outreach (e.g. Caravaggi &
214 James 2017). Tweeting, therefore, has the potential to disseminate scientific information
215 widely after initial efforts to gain followers.

216 Our network analysis also showed that TCs exhibited greater levels of cross-conference
217 hashtag use compared to the F2F events we considered, suggesting that this format may

218 promote collaboration and knowledge exchange between fields. Certainly, social media
219 platforms such as Twitter have a tendency to create ‘social media bubbles’ or ‘echo chambers’
220 where users mainly expose themselves to content conforming to their own ideas and opinions.
221 However, this seems to apply mainly to highly political topics (Barberá et al. 2015). It is
222 possible that in the case of scientific conferences, Twitter instead offers the opportunity to
223 break out of such bubbles and connect across academic fields. However, further studies
224 considering TCs on less similar fields would be required to determine if this is the case and, if
225 so, the extent of interdisciplinary connections.

226 While the present study does not attempt to formally explore qualitative differences in
227 the content of the tweets for each group of conferences, it was noted that a substantial
228 proportion of the tweets associated with a TC are generated by those presenting their research
229 and frequently contain links to online content (e.g. publications). In contrast, tweets connected
230 to F2F events may originate from commentary/observations on individual presentations (often
231 a single-tweet summary by a third-party observer), comments on the event itself, or associated
232 virtual and F2F social interactions, and rarely contain links to online content. For example,
233 Fekete & Haffner (2019) found conference location-based words, and terms associated with
234 conference attendance, such as ‘session’, ‘present’, ‘talk’, or ‘floor’ to be the most predominant
235 in tweets from the F2F Annual Meeting of the American Association of Geographers (AAG).
236 It is difficult to directly compare the content of tweets between F2F events and TCs by placing
237 individual words, devoid of context, in a potentially subjective, value-based framework.
238 However, our analysis showed that TC tweets generated greater engagement rates than tweets
239 associated with F2F events. An analysis of differential tweet content could therefore provide
240 useful pointers for how to tweak the content of tweets associated with F2F events to help
241 generate larger engagement and thus more efficient communication with the wider community.
242 Certainly, organisers of F2F events are not unaware of the potential benefits of harnessing

243 social media and the use of Twitter at F2F conferences has been studied in other fields (e.g.
244 Ross et al. 2011). In our study, the increase in uptake of Twitter at F2F events can be seen in
245 the number of tweets associated with the BES annual meetings, with 2018 being over a
246 hundredfold greater than in 2017. This increase was also associated with a substantial increase
247 in engagement metrics, both across original tweets and secondary content (i.e. likes and
248 retweets).

249 While it was not possible to explore geographic diversity as historical Twitter data does
250 not include geo-references for tweets, institute location information on presenters for the BOU
251 TCs and F2F conferences (provided by SPD) showed there to be a slightly higher proportion
252 of non-UK presenters for TCs than at F2F conferences (held in the UK). Non-UK presenters
253 made up 78% of all presenters at #BOU17TC vs 61% at #BOU2017, and 42% vs 28% at
254 #BOU18TC and #BOU2018, respectively. While such data are inherently limited as they do
255 not capture the locations of all users who interacted with the conference hashtags, it seems
256 likely that the potential geographic reach of TCs is also wider, especially given the fact that
257 TCs generate engagement from a larger audience. However, this remains an open question.

258 Social media networks can democratise science by providing free, global platforms to
259 most individuals with an internet connection, regardless of age, gender or background. It is
260 probably no coincidence that disciplines with embedded citizen or community science input,
261 such as ornithology, have also seen high take-up and engagement on social platforms, on
262 Twitter in particular. Whilst ornithologists are active across a variety of platforms including
263 Twitter, Facebook, Instagram and Weibo, it is Twitter that contributes more to the altmetrics
264 of published ornithological articles than all other sources combined (75% of the total
265 contributions) (Finch *et al.* 2017).

266 However, it is important to acknowledge that virtual conferencing is not immune from
267 bias. For example, if organisers do not adopt a double-blind approach to abstract review, they

268 run the risk of presenters being dismissed or overlooked due to subconscious assumptions
269 regarding gender, race, nationality and language. Further, language barriers represent a
270 significant issue for science publishing and communication (Amano *et al.* 2016, Márquez &
271 Porras 2020, Ramírez-Castañeda 2020), placing non-English speakers or those for whom
272 English is a Foreign Language (EFL) at a substantial disadvantage. Virtual events that do not
273 require verbal presentations can be more attractive to EFL presenters as verbal communication
274 can present a substantial obstacle (e.g. Ramírez-Castañeda 2020). Nevertheless, it is important
275 that the burden of overcoming language barriers is not placed on the participant, but on the
276 conference organisers. Some TCs have taken initial steps to address this inequity. For example,
277 BOU attempted to include Spanish and French presentations for #BOU18TC but received no
278 submissions in either language (though keynotes were translated into Spanish by a volunteer).
279 #WSTC has featured some presentations in Spanish and French and #BTCon18 attempted the
280 live translation of tweets into Spanish. The example of #BTCon18 represents an important
281 lesson in understanding platform limitations as the personal account of the translator and co-
282 organiser, Toby SantaMaria (Twitter @ItatiVCS), was temporarily limited (i.e. unable to
283 tweet) due to ‘irregular activity’ (Toby SantaMaria, pers. comm.). The creation of
284 translanguaging events where multilingual and EFL participants are enabled and supported by
285 organisers represents a crucial next step in the evolution of science communication (see
286 Marquez & Porras 2020), one which virtual events are seemingly well-placed to address (for
287 examples of the multilingual nature of Twitter, see Weerkamp *et al.* [2011], Saha & Menezes
288 [2016], Rosell-Aguilar [2018]).

289 Although we lack comparable data to enable us to compare the diversity and inclusivity
290 of F2F events and TCs, F2F events introduce some particular problems to which TCs are at
291 least partly immune. For example, Sarabiqour *et al.* (2020) highlighted the increasing problem
292 - inherently avoided by TCs - for researchers, in particular those in developing nations, in

293 obtaining visas to attend conferences in developed countries. TCs also place fewer time
294 demands on participants, offering flexible participation which fits more easily around other
295 commitments. Further, TCs are cheap to run and their simplicity keeps organisational costs
296 down. With Twitter being free to use, the main costs incurred for a TC involve the time it takes
297 to organise the event, providing technological support, and advertisement, regardless of
298 whether these services are provided pro bono. For comparison, the total costs for a US
299 researcher to attend a US-based F2F conference ranged \$1000-\$2000 whilst an international
300 event ranged \$2000-\$4000 (Sarabiqour *et al.* 2020). Such costs are prohibitive to those whose
301 research funding does not include conference attendance (usually linked to presenting the
302 funded research). In some countries this penalises early-career researchers whose grants do not
303 cover these costs. Other groups that are disproportionately disadvantaged by these high costs
304 are those researchers from countries with reduced economies, and even employees of non-
305 profit organisations in nations with strong economies - in the UK many non-profit organisations
306 are unable to apply for funding available to universities and research institutes, which includes
307 funding of conference attendance (Butchart *et al.* 2019). However, it is important to note that
308 some organisations make a profit from F2F conferences and use conferences as a means to
309 generate important income, which TCs cannot provide. Further, Twitter itself is a 'free'
310 platform but online access invariably is not, especially for those who are not based at an
311 institute or for many in developing countries where the cost of (mobile) data can be
312 disproportionately expensive. Finally, while TCs may result in greater inclusivity for many
313 groups, it may exclude others. This includes those with limited experience with Twitter, and
314 these people are likely to be unevenly distributed geographically and across age groups. Some
315 suggestions towards addressing this issue can be found below.

316 Another clear benefit of running a conference as a TC is the reduction in carbon
317 emissions. Our results showed that the difference in emissions between F2F conferences and

318 TCs is vast, with emissions from TCs being several million times lower than those associated
319 with travelling to an F2F event. Ours is a simplified comparison that ignores some additional
320 emissions from TCs, including, for example, emissions from third party servers (Schwartz
321 2010). However, emissions from F2F conferences are also likely to be underestimated as it was
322 assumed that all travel occurred in straight lines and additional emissions associated with
323 running the conference venue and accommodation for the participants were ignored. Hence,
324 absolute values presented herein should be taken as very coarse approximations only.
325 Nevertheless, it is clear that while TCs are not carbon-free, their potential to contribute to a
326 reduced carbon footprint of scientific communication and networking within a global setting is
327 considerable. Due to the highly non-random distribution of F2F conference locations,
328 emissions associated with conference travel may vary considerably depending on where a
329 researcher is based (Spinellis & Louridas 2013, Sarabiqour *et al.* 2020), which means that
330 efforts to reduce personal emissions do not hit researchers equally across the globe. A move
331 towards virtual conferences, such as TCs, means that efforts to decarbonise academia can be
332 shared more equally across the global community of researchers. This allows academics to set
333 a good example for collective, rather than individual, efforts to reduce greenhouse gas
334 emissions (Higham & Font 2020). Finally, the considerable reach of tweets that are part of TCs
335 show that it is possible to share research both with other researchers and the public without
336 travelling, supporting previous conclusions that travel should not be, and is not, an essential
337 element of academic success (Wynes *et al.* 2019). Recently, the global COVID-19 pandemic
338 resulted in national and international restrictions that prevented social gatherings and travel.
339 This resulted in organisations, both large and small, opting to switch F2F events to an online
340 format using a variety of delivery models. Within ecology, this switch saw the largest
341 ornithological conference, the North American Ornithological Conference, move from an
342 expected 1750 delegate F2F event held in Puerto Rico to a > 2800 attendee virtual event hosted

343 on Zoom. This demonstrated to the sector that complicated, parallel session events with
344 multiple session formats and social events could be held successfully as virtual events. This
345 move to online conferences in response to the pandemic is unlikely to become the norm by
346 default (at least not in the short term), but it has demonstrated that, given the right conditions,
347 changes to deeply embedded and seemingly intractable practices can happen in a global
348 emergency with remarkable speed.

349 While TCs have the potential to overcome many of the limitations of F2F conferences,
350 they are not without their own disadvantages; virtual events such as TCs are not a panacea.
351 Primary concerns surround the effectiveness of communicating and networking online, and
352 many argue that virtual formats are unlikely to replicate the F2F interactions required for
353 effective networking. This can be partly addressed by hosting social events on video
354 conferencing services alongside TCs and other virtual conferences. Many academics will have
355 gained experience in virtual socialising and networking during the COVID-19 pandemic,
356 potentially making this an increasingly attractive option. Supplementing F2F conferences with
357 virtual conferencing (so-called ‘hybrid conferences’) may also provide a solution. For example,
358 conferences could consider running multiple regional/national ‘hubs’ to facilitate some of the
359 social aspects of conferences. Regional or national pools of delegates can meet, network, and
360 attend/stream the conference (e.g. Fraser *et al.* 2017), without the large (economical and
361 environmental) costs associated with participants from all over the world travelling to a single
362 location. It should be noted that the relative importance of networking may be dependent on
363 the scope of the event; it could be a more integral and useful part of conferences that have
364 narrower scopes, in which participants are more likely to form close collaborations. This should
365 also be taken into consideration when deciding whether to run a conference as an F2F event or
366 not.

367 Further, it is estimated that 49% of the world's population still lack access to the internet
368 (Reglitz 2020) and whilst visas are not required to access online events, some countries still
369 limit access to the internet or censor its content. China, for instance, has the largest number of
370 internet users of any country but the government also enforces strict internet censorship and in
371 particular seeks to regulate access to foreign websites (the Great Firewall of China), including
372 social platforms such as Facebook, Twitter, YouTube and Google. Event organisers cannot
373 hope to solve such issues, of course. However, we urge organisers to recognise and attempt to
374 accommodate barriers to interaction or access, wherever possible. This also includes addressing
375 the possibility that for some researchers, publicly sharing their research on Twitter may
376 constitute a personal safety concern, for example if they are working on a topic that is
377 controversial in their home country.

378 Another potential limitation of TCs is the maximum size of the event. Attempting to
379 deliver a large, multiple parallel session event on a social platform as a substitute for an F2F
380 event may be overwhelming, and it would be difficult to follow along with simultaneous
381 presentations (though this can be partly mitigated by archiving material and making it
382 accessible to participants after the event). For the latest #WSTC conferences, which have
383 featured around 100 presenters or more, several participants reported that they struggled to
384 keep up with all the content. Further, the quick pace of social media may mean that attention
385 spans of participants are short and engagement levels low, so that less information is absorbed
386 as compared to when attending a talk at an F2F event. However, these issues can be at least
387 partly addressed by reducing the number of presenters to a carefully selected set and by putting
388 together a schedule with short and coherent sessions, as well as sufficient breaks.

389 Perhaps one of the biggest challenges in the uptake of virtual conferences is including
390 people who have limited experience with the chosen medium. These individuals may be both
391 less likely to hear about the event and face a larger barrier to participate, which may thus act to

392 exclude certain groups. Using more traditional forms of advertisement (e.g. mailing lists,
393 noticeboards) may be one way to attract people who normally do not spend much time on social
394 media to participate in virtual events. However, it is also important to support individuals
395 beyond the single act of reaching out to engage their attention. Organisers of virtual events
396 should provide clear written guidelines describing, for example, how to set up a Twitter
397 account, what a tweet is, how to produce a tweet-thread, how to participate in the focal TC as
398 well as tips and examples of good TC presentations. They should also have systems in place to
399 respond to questions and provide general support, for example in the form of educational
400 workshops.

401 Finally, one critical consideration is how F2F events and virtual conferences, including
402 TCs, will co-exist in the future. It is important that virtual conferences are not simply added on
403 to the expectation of attending F2F conferences, further increasing the workload of academics
404 (see discussions on ‘co-presence’ in e.g. Higham & Font 2019). Instead, virtual conferences
405 will need to partially replace F2F events. As part of this, it is important that participation in
406 virtual conferences, such as TCs, are placed on equal footing with participation in F2F events.
407 For example, presenting at a virtual conference and presenting at an F2F event, of equal size
408 and scope, need to be considered equal on a CV. Hopefully, this happens naturally as virtual
409 conferences become more and more common. As public outreach becomes an increasingly
410 important part of a researcher’s job, TCs and similar formats may become particularly well
411 regarded considering their ability to share the research with a wide audience outside the
412 scientific community. Additional public engagement could be further stimulated by increasing
413 the publicity in other, non-Twitter channels, and adapting presentation content to support
414 understanding in a wider audience (e.g. minimising the use of jargon).

415

416 **Conclusions**

417 Virtual events, such as TCs, offer low-carbon, low-cost and inclusive alternatives or, indeed,
418 supplements, to F2F conferences. Our results offer key insights into the potential role of Twitter
419 and other social media platforms in facilitating the communication of research across scientific
420 and the academic-public barriers. We therefore offer the following suggestions for future
421 organisation of TCs and F2F conferences:

- 422 1. Promotion of the conference on a broad front is key. Targeted use of email, social media
423 as well as other online and offline channels should be used for all events, to reach a
424 broad and diverse audience.
- 425 2. F2F events should continue to embrace social media and other outreach and networking
426 media as a means of generating greater engagement and reaching a wider audience.
- 427 3. Virtual events provide considerable carbon savings. Organisers should carefully
428 consider whether conducting an F2F event is warranted or whether full or partial
429 replacement with virtual participation is a viable option.
- 430 4. Providing clear guidelines and information on how the TC will work is important for
431 allowing people with limited previous experience of Twitter to participate.
- 432 5. Barriers to participation should be identified and acknowledged and steps taken to
433 improve accessibility. Organising committees should themselves be diverse,
434 representing the breadth of possible participants.

435 **Acknowledgements**

436 We thank all of those involved with the organisation and running of the TCs presented in this
437 study. We also thank Tatsuya Amano, Tom Finch, Ruedi Nager, Nina O'Hanlon and an
438 anonymous reviewer for their valuable and constructive comments on earlier drafts of the
439 manuscript. All authors conceived the presented study. AC and ABO analysed data. All

440 authors interpreted results and contributed to and edited the text. SPD personally funded the
441 purchase of all hashtag data from followthehashtag.com.

442

443

444 **References**

445 Aguirre, A. 2020. Microaggressions, Marginalization, and Stress: Issues of Identity, Place, and
446 Home for Minority Faculty in Academia. In Benuto, L., Duckworth, M., Masuda, A. &
447 O'Donohue, W. (eds) *Prejudice, Stigma, Privilege, and Oppression*. Springer. (pp. 361–371).

448 Amano, T., González-Varo, J.P. & Sutherland, W.J. 2016. Languages are still a major barrier
449 to global science. *PLoS Biol.* **14**: e2000933.

450 Avery-Gomm, S., Hammer, S. & Humphries, G. 2016. The age of the Twitter conference.
451 *Science* **352**: 1404–1405.

452 Biggs, J., Hawley, P.H. & Biernat, M. 2018. The academic conference as a chilly climate for
453 women: Effects of gender representation on experiences of sexism, coping responses, and
454 career intentions. *Sex Roles* **78**: 394–408.

455 Bik, H.M. & Goldstein, M.C. 2013. An introduction to social media for scientists. *PLoS Biol.*
456 **11**: e1001535.

457 Bliss, L. & Avery-Gomm, S. 2018. Innovative approaches to inspire science communication
458 and support engagement: The Fourth World Seabird Twitter Conference (WSTC4). *Avian Biol.*
459 *Res.* **11**: 219–220.

460 Bromley-Trujillo, R. & Poe, J. 2020. The importance of salience: public opinion and state
461 policy action on climate change. *J. Public Policy* **40**: 280–304.

462

463 Butchart, S.H.M., Clements, A. & Gibbons, D.W. 2019. Conservation charities top citation
464 charts. *Nature* **566**: 182.

465

466 Callaghan, C.T., Rowley, J.J., Cornwell, W.K., Poore, A.G. & Major, R.E. 2019. Improving
467 big citizen science data: moving beyond haphazard sampling. *PLoS biology* **17**: e3000357.

468

469 Caravaggi, A. & James, K. 2017. Conferencing in 140 characters. *Nature* **549**: 458.

470

471 Cohen, S., Hanna, P., Higham, J., Hopkins, D. & Orchiston, C. 2019. Gender discourses in
472 academic mobility. *Gend. Work Organ.* **27**: 149–165.

473

474 Côté, I.M. & Darling, E.S. 2018. Scientists on Twitter: Preaching to the choir or singing from
475 the rooftops? *FACETS* **3**: 682–694.

476 Darling, E.S., Shiffman, S., Côté, I.M. & Drew, J.A. 2013. The role of twitter in the life cycle
477 of a scientific publication. *Ideas Ecol. Evol.* **6**: 32–43.

478 Davis, D.J. & Warfield, M. 2011. The importance of networking in the academic and
479 professional experiences of racial minority students in the USA. *Educ. Res. Eval.* **17**: 97–113.

480

481 De Picker, M. 2020. Rethinking inclusion and disability activism at academic conferences:
482 strategies proposed by a PhD student with a physical disability. *Disabil. Soc.* **35**: 163–167.

483

484 Eckhaus, E. & Davidovitch, N. 2018. Impact of gender and conference size on conference
485 preferences-employing natural language processing. *Int. J. Educ. Methodol.* **4**: 45–52.

486

487 Fekete, E. & Haffner, M. 2019. Twitter and academic geography through the lens of
488 #AAG2018. *Prof Geogr.* **71**: 751-761.

489

490 Finch, T., O'Hanlon, N. & Dudley, S.P. 2017. Tweeting birds: online mentions predict future
491 citations in ornithology. *R. Soc. Open Sci.* **4**: 171371.

492

493 Ford, H.L., Brick, C., Azmitia, M., Blaufuss, K. & Dekens, P. 2019. Women from some under-
494 represented minorities are given too few talks at world's largest Earth-science conference.
495 *Nature* **576**: 32–35.

496

497 Fox, H.E., Kareiva, P., Silliman, B., Hitt, J., Lytle, D.A., Halpern, B.S., Hawkes, C.V., Lawler,
498 J., Neel, M., Olden, J.D., Schlaepfer, M.A., Smith, K. & Tallis, H. 2009. Why do we fly?
499 Ecologists' sins of omission. *Front. Ecol. Environ.* **7**: 294–296.

500

501 Fraser, H., Soanes, K., Jones, S.A. & Malishev M. 2017. The value of virtual conferencing for
502 ecology and conservation. *Conserv. Biol.* **31**: 540–546.

503

504 Fritz, S., See, L., Carlson, T., Haklay, M.M., Oliver, J.L., Fraisl, D., Mondardini, R.,
505 Brocklehurst, M., Shanley, L.A., Schade, S. & Wehn, U. 2019. Citizen science and the United
506 Nations sustainable development goals. *Nat. Sustain.* **2**: 922-930.

507

508 Grémillet, D. 2008. Paradox of flying to meetings to protect the environment. *Nature* **455**:
509 1175.

510

511 Henderson, E.F. & Moreau, M.P. 2020. Carefree conferences? Academics with caring
512 responsibilities performing mobile academic subjectivities. *Gend. Educ.* **32**: 70–85.

513

514 Higham, J. & Font, X. 2020. Decarbonising academia: confronting our climate hypocrisy. *J.*
515 *Sustain. Tour.* **28**: 1–9.

516

517 Hughey, M.W. 2019. Dispatches From Along the Veil: Stories of Racial Rejection. *Sociol.*
518 *Forum* **34**: 213–235.

519

520 Jackson, L. 2019. The smiling philosopher: Emotional labor, gender, and harassment in
521 conference spaces. *Educ. Philos. Theory* **51**: 693–701.

522 Kassab, O. 2019. Does public outreach impede research performance? Exploring the
523 ‘researcher’s dilemma’ in a sustainability research center. *Sci. Public Policy* **46**: 710–720.

524 Ke, Q., Ahn, Y.-Y., Sugimoto, C.R. 2017. A systematic identification and analysis of scientists
525 on Twitter. *PLoS ONE* **12**: e0175368.

526 Klöwer, M. 2019. The travel carbon footprint of the AGU Fall Meeting 2019.
527 <https://github.com/milankl/CarbonFootprintAGU>

528

529 Mair, J., Lockstone-Binney, L. & Whitelaw, P.A. 2018. The motives and barriers of association
530 conference attendance: Evidence from an Australasian tourism and hospitality academic
531 conference. *J. Hosp. Tour. Manag.* **34**: 58–65.

532

533 Márquez, M.C. & Porras, A.M. 2020. Science communication in multiple languages is critical

534 to its effectiveness. *Front. Commun.* **5**: 31.

535

536 McCarthy, J.F., McDonald, D.W., Soroczak, S., Nguyen, D.H. & Rashid, A.M. 2004.

537 Augmenting the social space of an academic conference. In Proceedings of the 2004 ACM

538 conference on Computer supported cooperative work (pp. 39–48).

539

540 Miles, M.L., Brockman, A.J. & Naphan-Kingery, D.E. 2020. Invalidated identities: The

541 disconfirming effects of racial microaggressions on Black doctoral students in STEM. *Journal*

542 of Research in Science Teaching. *J. Res. Sci. Teach.* **57**: 1608–1631.

543

544 National Academies of Sciences, Engineering, and Medicine 2018. Sexual harassment of

545 women: climate, culture, and consequences in academic sciences, engineering, and medicine.

546 Washington DC: National Academies Press.

547

548 Neugebauer, S., Bolz, M., Mankaa, R. & Traverso, M. 2020. How sustainable are sustainability

549 conferences? – Comprehensive Life Cycle Assessment of an international conference series in

550 Europe. *J. Clean. Prod.* **242**: 118516.

551

552 Nicolazzo, Z. & Jourian, T.J. 2020. ‘I’m looking for people who want to do disruption work’:

553 Trans* academics and power discourses in academic conferences. *Gend. Educ.* **32**: 56–69.

554

555 Parsons, E.C.M. 2015. So you think you want to run an environmental conservation meeting?

556 Advice on the slings and arrows of outrageous fortune that accompany academic conference

557 planning. *J. Environ. Stud. Sci.* **5**: 735–744.

558

559 Phillips, T.B., Ballard, H.L., Lewenstein, B.V. & Bonney, R. 2019. Engagement in science

560 through citizen science: Moving beyond data collection. *Sci. Educ.* **103**: 665–690.

561

562 Racham, P. & Zhang, X. 2006. Podcasting in academia: a new knowledge management

563 paradigm within academic settings. In Proceedings of the 2006 ACM SIGMIS CPR conference

564 on computer personnel research: Forty four years of computer personnel research:

565 achievements, challenges & the future (SIGMIS CPR '06). Association for Computing

566 Machinery, New York, NY, USA, 314–317.

567

568 Ramírez-Castañeda, V. 2020. Disadvantages in preparing and publishing scientific papers

569 caused by the dominance of the English language in science: The case of Colombian

570 researchers in biological sciences. *PLoS ONE* **15**: e0238372.

571

572 Randviir, E.P., Illingworth, S.M., Baker, M.J., Cude, M. & Banks, C.E. 2016. Twittering about

573 research: A case study of the world's first Twitter poster competition. *F1000Research* **4**: 798.

574 R Core Team. 2018. R: A language and environment for statistical computing. R Foundation

575 for Statistical Computing, Vienna, Austria. URL <https://www.R-project.org/>.

576 Reglitz, M. 2020. The human right to free internet access. *J. Appl. Philos.* **37**: 314–331.

577 Rosell-Aguilar, F. 2018. Twitter as a formal and informal language learning tool: from

578 potential to evidence. In Rosell-Aguilar, F., Beavan, T. & Fuertes Gutiérrez, M. (eds)

579 Innovative Language Teaching and Learning at University: Integrating Informal Learning into
580 Formal Language Education. Research-publishing.net. (pp. 99–106)

581 Ross, C., Terras, M., Warwick, C. & Welsh, A. 2011. Enabled backchannel: Conference
582 Twitter use by digital humanists. *J. Doc.* 67: 214–237.

583 Saha, P. and Menezes, R. 2016. Exploring the world languages in Twitter. In 2016
584 IEEE/WIC/ACM International Conference on Web Intelligence (WI) (pp. 153–160).

585 Sarabipour, S., Schwessinger, B., Mumoki, F.N., Mwakilili, A.D., Khan, A., Debat, H.J., Sáez,
586 P.J., Seah, S. & Mestrovic, T. 2020. Evaluating features of scientific conferences: A call for
587 improvements. <https://www.biorxiv.org/content/10.1101/2020.04.02.022079v1>

588 Schwartz, A. 2010. How Much Energy Does a Tweet Consume?
589 <https://www.fastcompany.com/1620676/how-much-energy-does-tweet-consume>
590

591 Sharoni, S. 2018. Speaking up in the age of #MeToo and persistent patriarchy or what can we
592 learn from an elevator incident about anti-feminist backlash. *Fem. Rev.* 120: 143–151.

593

594 Spinellis, D. & Louridas, P. 2013. The carbon footprint of conference papers. *PLoS ONE* 8:
595 e66508.

596

597 Szabados, K. 2019. Can we win the war on science? Understanding the link between political
598 populism and anti-science politics. *Populism* 2: 207–236.

599 Thraen-Borowski, K.M., Weller, S. & Fairman, C. 2020. The exercise oncology Twitter
600 conference: Disseminating research in the age of social media. *J. Clin. Exerc. Physiol.* 9: 40–
601 42.

602 Timperley, C., Sutherland, K.A., Wilson, M. & Hall, M. 2020. He moana pukepuke: navigating
603 gender and ethnic inequality in early career academics' conference attendance. *Gend. Educ.*
604 **32:** 11–26.

605 Twitter 2019. Q1 2019 Earnings Report.
606 [https://s22.q4cdn.com/826641620/files/doc_financials/2019/q1/Q1-2019-Slide-
607 Presentation.pdf](https://s22.q4cdn.com/826641620/files/doc_financials/2019/q1/Q1-2019-Slide-Presentation.pdf)

608 University of Otago 2011. <https://www.otago.ac.nz/news/news/releases/otago021048.html>

609 van Eeden, L.M., Newsome, T.M., Crowther, M.S., Dickman, C.R. & Bruskotter, J. 2020.
610 Diverse public perceptions of species' status and management align with conflicting
611 conservation frameworks. *Biol. Conserv.* **242:** 108416.

612 Walters, T. 2018. A tripartite approach to accessibility, diversity, and inclusion in academic
613 conferences. In Finkel, R., Sharp, B. & Sweeney, M. (eds) *Accessibility, Inclusion, and*
614 *Diversity in Critical Event Studies*. London: Routledge. (pp. 230–241)

615 Weerkamp, W., Carter, S. & Tsagkias, M. 2011. How people use Twitter in different languages.
616 WebSci Conference 2011. Koblenz, Germany.

617 Wynes, S., Donner, S.D., Tannason, S. & Nabors, N. 2019. Academic air travel has a limited
618 influence on professional success. *J. Cleaner Prod.* **226:** 959–967.

619 Zizka, A., Silvestro, D., Andermann, T., Azevedo, J., Duarte Ritter, C., Edler, D., Farooq, H.,
620 Herdean, A., Ariza, M., Scharn, R., Svantesson, S., Wengström, N., Zizka, V. & Antonelli, A.
621 2019. CoordinateCleaner: standardized cleaning of occurrence records from biological
622 collection databases. *Methods Ecol. Evol.* **10:** 744–751.

624 Supporting Online Material contains the following:

625 Supplementary Online Material 1: information regarding the analysis of hashtag data, including

626 Table S1.1 containing information on the structure of the hashtag data.

627 Supplementary Online Material 2: information regarding the emissions analysis.

628 Supplementary Online Material 3: Table S3.1 containing results from the network analysis.

629 **Table 1.** Selected Twitter hashtags - a means of collecting and linking related content - used
 630 by Twitter conferences (TC) and face-to-face (F2F) events.

Hashtag	Conference name	Type of conference
#AOSSCO2017	American Ornithological Society Conference 2017	F2F
#BES2017	British Ecological Society Annual Meeting 2017	F2F
#BES2018	British Ecological Society Annual Meeting 2018	F2F
#BES2019	British Ecological Society Annual Meeting 2019	F2F
#BOU2019	British Ornithologists' Union 2019 Annual Conference	F2F
#IOCongress2018	The 27th International Ornithological Congress	F2F
#TWS2017	The Wildlife Society's 2018 Annual Conference	F2F
#TWS2018	The Wildlife Society's 2019 Annual Conference	F2F
#BTcon17	The 1st Biotweeps Twitter Conference	TC
#BTcon18	The 2nd Biotweeps Twitter Conference	TC
#BOU17TC	British Ornithologists' Union Twitter Conference 2017	TC
#BOU18TC	British Ornithologists' Union Twitter Conference 2018	TC
#WSTC1	1st World Seabird Twitter Conference	TC
#WSTC2	2nd World Seabird Twitter Conference	TC
#WSTC3	3rd World Seabird Twitter Conference	TC

#WSTC4 4th World Seabird Twitter Conference TC

#WSTC5 5th World Seabird Twitter Conference TC

631

632

633

634 **Table 2.** Engagement metrics for TCs and F2F conferences. N = number of tweets; EI =
 635 engagement by impression; EP = engagement by post; a = all content, including likes and
 636 retweets; t = original tweets, only.

637

Hashtag	Date(s)	N _a	EI _a	EP _a	N _t	EI _t	EP _t
Twitter conferences							
#BOU17TC	28/11 - 29/11/17	1444	1.00 ± 2.48	1.08 ± 3.91	607	1.21 ± 2.75	2.45 ± 5.74
#BOU18TC	20/11 - 21/11/18	1236	1.98 ± 5.79	1.96 ± 10.02	256	2.26 ± 7.68	5.04 ± 19.83
#BTcon17	28/06 - 30/06/17	1137	0.64 ± 1.89	0.78 ± 3.23	502	0.80 ± 2.16	1.65 ± 4.71
#BTcon18	21/06 - 22/06/18	1324	1.61 ± 7.59	1.82 ± 14.76	279	1.66 ± 6.27	3.54 ± 14.43
#WSTC1	19/03 - 21/03/15	854	0.19 ± 0.29	0.24 ± 0.50	325	0.27 ± 0.35	0.54 ± 0.70
#WSTC2	13/04 - 14/04/16	1889	0.35 ± 0.57	0.37 ± 0.90	711	0.46 ± 0.63	0.93 ± 1.28
#WSTC3	12/04 - 14/04/17	3539	0.68 ± 1.62	0.76 ± 2.62	1357	0.91 ± 1.89	1.85 ± 3.98
#WSTC4	17/04 - 19/04/18	2457	1.18 ± 2.39	1.02 ± 3.45	800	1.39 ± 2.65	2.82 ± 5.54
#WSTC5	09/04 - 11/04/19	1923	2.41 ± 5.96	2.68 ± 10.02	642	2.91 ± 6.90	6.04 ± 15.52
Face-to-face conferences							
#AOSSCO2017	31/07 - 05/08/17	100	0.60 ± 0.71	0.61 ± 1.18	46	0.56 ± 0.67	1.11 ± 1.34
#BES2017	11/12 - 14/12/17	77	0.35 ± 0.63	0.39 ± 1.01	37	0.37 ± 0.66	0.75 ± 1.33
#BES2018	16/12 - 19/12/18	9972	1.06 ± 6.82	0.88 ± 10.71	3305	1.17 ± 7.33	2.48 ± 18.38
#BOU2018	27/03 - 29/03/18	1419	0.49 ± 1.48	0.34 ± 1.86	331	0.64 ± 1.72	1.30 ± 3.61
#BOU2019	26/03 - 28/03/19	1170	0.63 ± 1.92	0.40 ± 2.27	213	1.03 ± 2.42	2.08 ± 4.96
#IOCongress2018	19/08 - 26/08/18	8943	0.76 ± 4.16	0.53 ± 6.66	2387	0.90 ± 4.63	1.90 ± 12.79
#TWS2017	23/09 - 27/09/17	2042	0.69 ± 2.64	0.64 ± 4.09	816	0.73 ± 2.78	1.50 ± 6.29
#TWS2018	07/10 - 11/10/18	1560	1.02 ± 1.75	0.92 ± 2.57	622	1.07 ± 1.82	2.15 ± 3.68

638

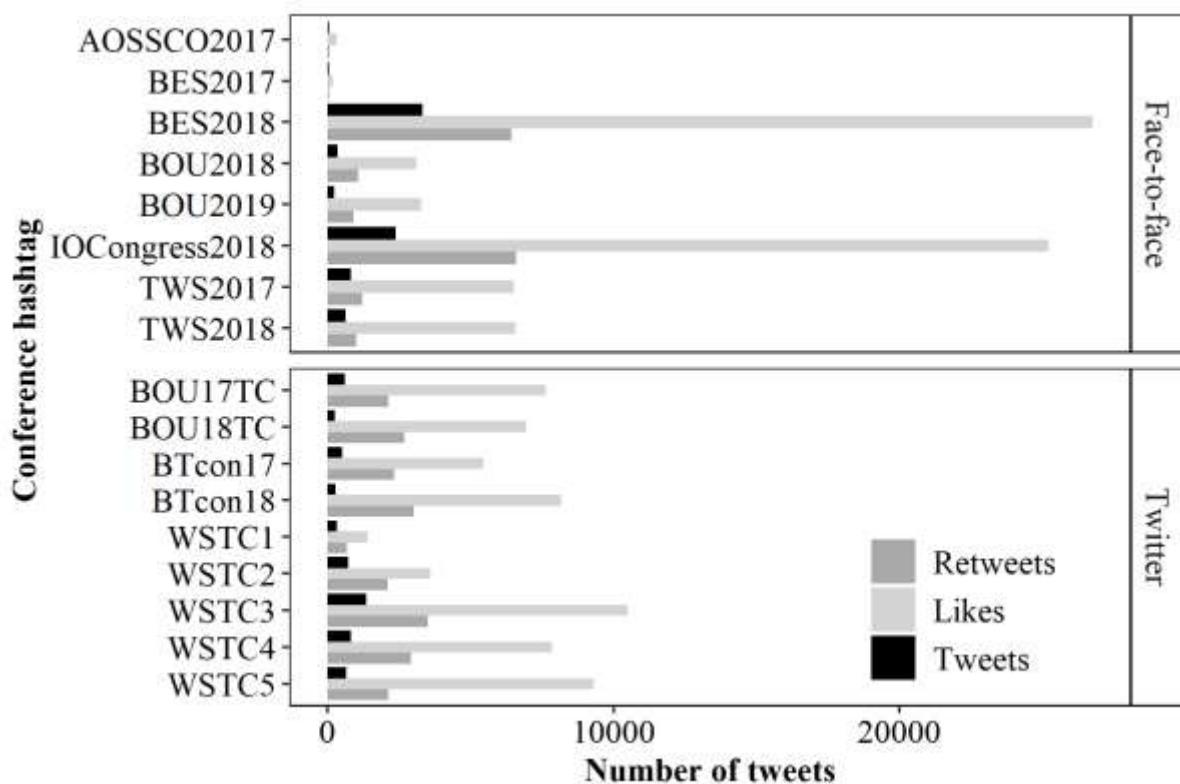
639

640

641 **Table 3.** Calculated emissions (kg CO₂e) associated with travelling to actual (for face-to-face,
642 F2F, conferences) or hypothetical (Twitter conference, TC) conference venues, emissions
643 associated with instead tweeting out research and the ratio of these sources of emissions.

644

Conference	Conference type	Travel emissions	Tweet emissions	Ratio
World Seabird Conference 2	F2F	467 477	0.15	9 858 191
British Ornithologists' Union Annual Meeting 2017	F2F	70 129	0.05	1 523 464
British Ornithologists' Union Annual Meeting 2018	F2F	40 435	0.03	1 252 524
#BOU17TC	TC	199 834	0.05	4 388 103
#BOU18TC	TC	62 927	0.03	2 105 202
#WSTC5	TC	262 396	0.03	7 650 033


645

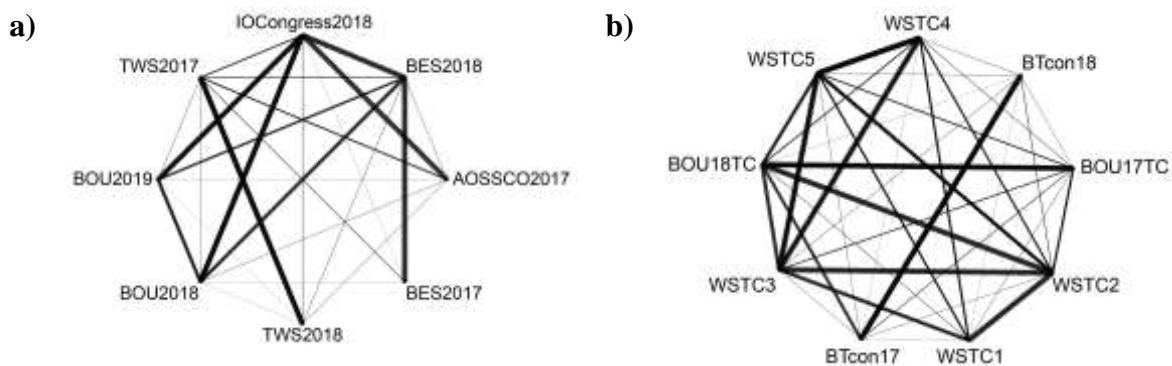
646

647

648 **Figure 1.** Total tweets (black), retweets (dark grey) and likes (light grey) for selected hashtags
649 associated with Twitter conferences and face-to-face events. Note: the number of people
650 registered varied between conferences, but could not be quantified.

651

652


653

654

655

656 **Figure 2.** Network of conference connectivity for Twitter hashtags associated with **(a)** face-to-
657 face and **(b)** Twitter conferences, based on non-unique users (i.e. usernames that interacted
658 with > one conference hashtag). Edge width indicates the relative proportion of shared
659 usernames, where thick > thin. For specific edge data, see SOM 3.

660

661

662