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25

26 Abstract

27 1. Despite widespread recognition of its great promise to aid decision-making in environmental 

28 management, the applied use of metabarcoding requires improvements to reduce the multiple 

29 errors that arise during PCR amplification, sequencing, and library generation. We present a co-

30 designed wet-lab and bioinformatic workflow for metabarcoding bulk samples that removes both 

31 false-positive (tag jumps, chimeras, erroneous sequences) and false-negative (‘dropout’) errors. 

32 However, we find that it is not possible to recover relative-abundance information from amplicon 

33 data, due to persistent species-specific biases. 

34 2. To present and validate our workflow, we created eight mock arthropod soups, all containing 

35 the same 248 arthropod morphospecies but differing in absolute and relative DNA concentrations, 

36 and we ran them under five different PCR conditions. Our pipeline includes qPCR-optimized PCR 

37 annealing temperature and cycle number, twin-tagging, multiple independent PCR replicates per 

38 sample, and negative and positive controls. In the bioinformatic portion, we introduce Begum, 

39 which is a new version of DAMe (Zepeda-Mendoza et al. 2016. BMC Res. Notes 9:255) that 

40 ignores heterogeneity spacers, allows primer mismatches when demultiplexing samples, and is 

41 more efficient. Like DAMe, Begum removes tag-jumped reads and removes sequence errors by 

42 keeping only sequences that appear in more than one PCR above a minimum copy number per 

43 PCR. The filtering thresholds are user-configurable. 

44 3.  We report that OTU dropout frequency and taxonomic amplification bias are both reduced by 

45 using a PCR annealing temperature and cycle number on the low ends of the ranges currently used 

46 for the Leray-FolDegenRev primers. We also report that tag jumps and erroneous sequences can 

47 be nearly eliminated with Begum filtering, at the cost of only a small rise in dropouts. We replicate 

48 published findings that uneven size distribution of input biomasses leads to greater dropout 

49 frequency and that OTU size is a poor predictor of species input biomass. Finally, we find no 

50 evidence for ‘tag-biased’ PCR amplification.

51 4. To aid learning, reproducibility, and the design and testing of alternative metabarcoding 

52 pipelines, we provide our Illumina and input-species sequence datasets, scripts, a spreadsheet for 

53 designing primer tags, and a tutorial. A
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54 Keywords: bulk-sample DNA metabarcoding, environmental DNA, environmental impact 

55 assessment, false negatives, false positives, Illumina high-throughput sequencing, tag bias

56

57 生物多样性汤（第二版）：更低错误率的高通量条形码流程

58 摘要：

59         1、高通量条形码在环境保护和管理相关决策研究中的适用性已获得广泛的共识，但是

60 该方法若要在更广的领域被应用，还需要进一步减少 PCR 扩增、文库构建以及测序所带来

61 的错误和偏好。本研究设计了一种针对混合生物样本的高通量条形码流程，这一流程改进

62 了实验设计和生物信息学分析，能减少结果中的假阳性（如标签错配、嵌合体、错误序列）

63 和假阴性。研究结果还显示，由于不同物种的扩增效率存在差异，基于扩增子数据的高通

64 量条形码并不能获取准确的物种定量信息。

65         2、本研究人为构建了 8 个生物多样性汤——节肢动物的混合样本，每一个汤中都含有

66 同样的 248 个节肢动物的形态种，它们的 DNA 被以不同的浓度比例混入这 8 个汤中。然后

67 这 8 个汤在 5 种不同的 PCR 条件下被扩增。本研究的高通量条形码流程采取了双胞胎标记

68 法来双向标记引物，每个样本都进行多次独立的 PCR 扩增，每一批次的 PCR 扩增都包含

69 阳性与阴性对照，并且我们使用 qPCR 来优化高通量条形码 PCR 最终使用的退火温度和循

70 环数。在生物信息学分析部分，我们采用的是 Begum（Zepeda Mendoza 等发表的 DAMe 的

71 改进版，2016. BMC Res. Notes 9:255），它在样本拆分时可以忽略修饰标签的几个碱基，

72 并允许引物序列的错配，且提高了运算速率。Begum 能去除由于标签跳动所产生的假阳性

73 序列，以及通过设置多个 PCR 重复和序列的重复出现次数来去除 PCR 和测序等产生的错

74 误序列。

75         3、本研究结果显示在使用 Leray-Fol-Degen-Rev 的引物对扩增时，采取较低的退火温

76 度和循环数能有效提高 OTU 得率，和减少扩增偏好性。本研究还发现 Begum 能过滤掉几

77 乎所有的标签跳动和错误序列。我们再次证实了样本中物种生物量的不均衡会导致结果中

78 更多的物种信息丢失，而且 OTU 的大小并不能直接用于指示物种的生物量。最后，研究结

79 果表明在优化的 PCR 条件下，并未产生明显的标签偏好现象（即由连接引物的标签不同而

80 引发的 PCR 扩增偏好）。A
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81         4、为了让更多人能学习、验证、并设计适合自己的高通量条形码流程，我们提供了本

82 研究用于构建生物多样性汤所有物种的序列、Illumina 测序数据、完整的分析命令脚本，

83 以及用于引物标签设计的表格和指南。

84 关键词：混合生物样本的高通量条形码；环境 DNA；环境影响评价；假阴性；假阳性；

85 Illumina 高通量测序；标签偏好

86

87 Introduction

88 DNA metabarcoding enables rapid and cost-effective identification of taxa within biological 

89 samples, combining amplicon sequencing with DNA taxonomy to identify multiple taxa in bulk 

90 samples of whole organisms and in environmental samples such as water, soil, and feces (Taberlet 

91 et al. 2012a; Taberlet et al. 2012b; Deiner et al. 2017). Following initial proof-of-concept studies 

92 (Fonseca et al. 2010; Hajibabaei et al. 2011; Thomsen et al. 2012; Yoccoz 2012; Yu et al. 2012; Ji 

93 et al. 2013) has come a flood of basic and applied research and even new journals and commercial 

94 service providers (Murray, Coghlan & Bunce 2015; Callahan et al. 2016; Zepeda-Mendoza et al. 

95 2016; Alberdi et al. 2018; Zizka et al. 2019). Two recent and magnificent surveys are Taberlet et 

96 al. (2018) and Piper et al. (2019). The big advantage of metabarcoding as a biodiversity survey 

97 method is that with appropriate controls and filtering, metabarcoding can estimate species 

98 compositions and richnesses from samples in which taxa are not well characterized a priori or 

99 reference databases are incomplete or lacking. However, this is also a disadvantage because we 

100 must first spend effort to design reliable and efficient metabarcoding pipelines.

101 Practitioners are thus confronted by multiple protocols that have been proposed to avoid and 

102 mitigate the many sources of error that can arise in metabarcoding (Table 1). These errors can 

103 result in false negatives (failures to detect target taxa that are in the sample, ‘dropouts’), false 

104 positives (false detections of taxa), poor quantification of biomasses, and/or incorrect assignment 

105 of taxonomies, which also results in paired false negatives and positives. As a result, despite 

106 recognition of its high promise for environmental management (Ji et al. 2013; Hering et al. 2018; 

107 Abrams et al. 2019; Bush et al. 2019; Piper et al. 2019; Cordier et al. 2020; Cordier 2020), the 

108 applied use of metabarcoding is still getting started. A comprehensive understanding of costs, the 

109 factors that govern the efficiency of target taxon recovery, the degree to which quantitative A
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110 information can be extracted, and the efficacy of methods to minimize error is needed to optimize 

111 metabarcoding pipelines  (Hering et al. 2018; Axtner et al. 2019; Piper et al. 2019).

112 Here we consider one of the two main sample types used in metabarcoding: bulk-sample DNA 

113 (the other type being environmental DNA, Bohmann et al., 2014). Bulk-sample metabarcoding, 

114 such as mass-collected invertebrates, is being studied as a way to generate multi-taxon indicators 

115 of environmental quality (Lanzén et al. 2016; Hering et al. 2018), to track ecological restoration 

116 (Cole et al. 2016; Fernandes et al. 2018; Barsoum et al. 2019; Wang et al. 2019), to detect pest 

117 species (Piper et al. 2019), and to understand the drivers of species-diversity gradients (Zhang et 

118 al. 2016). 

119 We present a co-designed wet-lab and bioinformatic pipeline that uses qPCR-optimized PCR 

120 conditions, three independent PCR replicates per sample, twin-tagging, and negative and positive 

121 controls to: (i) remove sequence-to-sample misassignment due to tag-jumping, (ii) reduce dropout 

122 frequency and taxonomic bias in amplification, and (iii) reduce false-positive frequency. 

123 As part of the pipeline, we introduce a new version of the DAMe software package (Zepeda-

124 Mendoza et al. 2016), renamed Begum (Hindi for ‘lady’), to demutiplex samples, remove tag-

125 jumped sequences, and filter out erroneous sequences (Alberdi et al. 2018). Regarding the latter, 

126 the DAMe/Begum logic is that true sequences are more likely to appear in multiple, independent 

127 PCR replicates and in multiple copies than are erroneous sequences (indels, substitutions, 

128 chimeras). Thus, erroneous sequences can be filtered out by keeping only sequences that appear in 

129 more than one (or a low number of) PCR replicate(s) at above some minimum copy number per 

130 PCR, albeit at a cost of also filtering out some true sequences. Begum improves on DAMe by 

131 ignoring heterogeneity spacers in the amplicon, allowing primer mismatches during 

132 demultiplexing, and by being more efficient. We note that this logic is less applicable to species 

133 represented by trace DNA, such as in water samples, where low concentrations of DNA template 

134 are more likely to result in a species truly appearing in only one PCR (Piaggio et al. 2014; Harper 

135 et al. 2018).

136 To test our pipeline, we created eight ‘mock’ arthropod soups, each consisting of the DNA of the 

137 same 248 arthropod taxa mixed together in the lab and differing in absolute and relative DNA 

138 concentrations, ran them under five different PCR conditions, and used Begum to filter out 

139 erroneous sequences (Fig.1). We then quantified the efficiency of species recovery from bulk 

140 arthropod samples, as measured by four metrics:  A
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141 (1) the frequency of false-negative OTUs (‘dropouts’, i.e. unrecovered input species), 

142 (2) the frequency of false-positive OTUs (sequences not from the input species), 

143 (3) the recovery of species relative-abundance information (i.e. does OTU size [number of 

144 reads] predict input genomic DNA amount per species?), and 

145 (4) taxonomic bias (are some taxa more or less likely to be recovered?). 

146 Highest efficiency is achieved by recovering all and only the input species, in their original 

147 frequencies. We show that with Begum filtering, metabarcoding efficiency is highest with a PCR 

148 cycle number and annealing temperature at the low ends of the ranges currently used in 

149 metabarcoding studies, that Begum filtering nearly eliminates false-positive OTUs, at the cost of 

150 only a small absolute rise in false-negative frequency, that greater species evenness and higher 

151 concentrations reduce dropouts (replicating Elbrecht, Peinert & Leese 2017), and that OTU sizes 

152 are not reliable estimators of species relative abundances. We also find no evidence for ‘tag bias,’ 

153 which is the hypothesis that the sample-identifying nucleotide sequences attached to PCR primers 

154 might promote annealing to some template-DNA sequences over others, exacerbating taxonomic 

155 bias in PCR (e.g. Berry et al. 2011; O'Donnell et al. 2016). All these results have important 

156 implications for using metabarcoding as a biomonitoring tool.

157 Methods

158 In S06_Extended Methods, we present an unabridged version of this Methods section. 

159 Mock soup preparation

160 Input species. – We used Malaise traps to collect arthropods in Gaoligong Mountain, Yunnan 

161 province, China. From these, we selected 282 individuals that represented different morphospecies, 

162 and from each individual, we separately extracted DNA from the leg and the body. After 

163 clustering, we ended up with 248 97%-similarity DNA barcodes, which we used as the ‘input 

164 species’ for the mock soups (S07_MTBFAS.fasta).

165 COI and genomic DNA quantification. – To create the eight mock soups with different 

166 concentration evennesses of the 248 input species, we quantified DNA concentrations of their legs 

167 and bodies, using qPCR and a reference standard-curve on the QuantStudio 12K Flex Real-Time 

168 PCR System (Life Technologies, Singapore) with Leray-FolDegenRev primers (Yu et al. 2012; 

169 Leray et al. 2013). We then diluted each species to their target DNA concentrations (Tables 2, A
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170 S03). After dilution, we also measured each species’ genomic DNA concentrations, to test 

171 whether species OTU size can predict species genomic-DNA masses, which is a proxy measure 

172 for animal biomass.

173 Creation of mock-soups. – We used 1.0 µl aliquots of the appropriately diluted leg and body DNA 

174 extracts of the 248 input species to create eight mock soups, achieving different profiles of COI-

175 marker-concentration evenness:  Hhml, hhhl, hlll, and mmmm, where H, h, m, and l represent four 

176 different concentration levels (Fig. 1, Table 2). For instance, in the Hhml soups, approximately 

177 one-fourth of the input species were added at each concentration level (H, h, m, l), whereas in the 

178 hlll soup, three-quarters of the species were diluted to the low concentration level before being 

179 added. These soups thus represent eight bulk samples with different absolute DNA concentrations 

180 (leg vs. body) and species evennesses (Hhml, Hhml, hhhl, hhhl). 

181 Primer tag design

182 For DNA metabarcoding, we also used the Leray-FolDegenRev primer set, which has been shown 

183 to result in a high recovery rate of arthropods from mixed DNA soups (Leray et al. 2013; Alberdi 

184 et al. 2018), and we used OligoTag (Coissac 2012) (Table S10) to design 100 unique tags of 7 

185 nucleotides in length in which no nucleotide is repeated more than twice, all tag pairs differ by at 

186 least 3 nucleotides, no more than 3 G and C nucleotides are present, and none ends in either G or 

187 TT (to avoid homopolymers of GGG or TTT when concatenated to the Leray-FolDegenRev 

188 primers). We added one or two ‘heterogeneity spacer’ nucleotides to the 5’ end of the forward and 

189 reverse primers (De Barba et al. 2014; Fadrosh et al. 2014), which cause sets of amplicons to be 

190 sequenced out of phase on the Illumina plate, reducing basecalling errors. The total amplicon 

191 length including spacers, tags, primers, and markers was expected to be ~382 bp.  The primer 

192 sequences are listed in Table S10.

193 PCR optimization

194 We ran test PCRs using the Leray-FolDegenRev primers with an annealing temperature (Ta) 

195 gradient of 40 to 64°C. Based on gel-band strengths, we chose an ‘optimal’ Ta of 45.5°C (clear and 

196 unique band on an electrophoresis gel) and a ‘high’ Ta value of 51.5 °C (faint band) to compare 

197 their effects on species recovery. 

198 We followed Murray, Coghlan and Bunce (2015) (see also Bohmann et al. 2018) and first ran the 

199 eight mock soups through qPCR to establish the correct dilution per soup so as to minimise PCR A
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200 inhibition, to assess extraction-negative controls, and to estimate the minimum cycle number 

201 needed to amplify the target fragment across samples. Based on the qPCR amplifications, we 

202 diluted 6 of the 8 soups by 5, 10, or 50-fold to minimize inhibition (S06_Extended Methods), and 

203 we observed that the end of the exponential phase for all eight soups was achieved at or near 25 

204 cycles, which we define here as the ‘optimal’ cycle number. To test the effect of PCR cycle 

205 number on species recovery, we also tested a ‘low’ cycle number of 21 (i.e. stopping amplification 

206 during the exponential phase), and a ‘high’ cycle number of 30 (i.e. amplifying into the plateau 

207 phase).

208 PCR amplifications of mock soups

209 We metabarcoded the mock soups under 5 different PCR conditions: 

210 A, B. Optimal Ta (45.5°C) and optimal PCR cycle number (25). A and B are technical 

211 replicates.

212 C, D. High Ta (51.5°C) and optimal PCR cycle number (25). C and D are technical replicates. 

213 E. Optimal Ta (45.5°C) and low PCR cycle number (21).

214 F. Optimal Ta (45.5°C) and high PCR cycle number (30).

215 G, H. Touchdown PCR (Leray & Knowlton 2015). 16 initial cycles:  denaturation for 10 s at 

216 95°C, annealing for 30 s at 62°C (−1°C per cycle), and extension for 60 s at 72°C, 

217 followed by 20 cycles at an annealing temperature of 46°C.  G and H are technical 

218 replicates.

219 Following the Begum strategy, for each of the PCR conditions, each mock soup was PCR-

220 amplified three times, each time with a different tag sequence on a different plate (Fig. 1). The 

221 same tag sequence was attached to the forward and reverse primers of a given PCR, which we call 

222 ‘twin-tagging’ (e.g. F1-R1, F2-R2,…), to allow detection and removal of tag-jumped sequences, 

223 which produce non-twinned tags (e.g. F1-R2, F2-R3,…). This lets us remove tag-jumped 

224 sequences, which assigning species to the wrong samples (Schnell, Bohmann & Gilbert 2015). In 

225 each PCR plate, we also included one positive control (with four insect species), three extraction-

226 negative controls, and a row of PCR negative controls. PCR and tag setups are in Table S09. 
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227 Ilumina high-throughput sequencing 

228 Sequencing libraries were created with the NEXTflex Rapid DNA-Seq Kit for Illumina (Bioo 

229 Scientific Corp., Austin, USA), following manufacturer instructions. In total, we generated 24 

230 sequencing libraries (= 8 PCR conditions (A-H)  3 PCR replicates/condition) (Fig. 1), of which 

231 18 were sequenced in one run of Illumina’s V3 300 PE kit on a MiSeq at the Southwest 

232 Biodiversity Institute, Regional Instrument Center in Kunming. The 6 libraries from PCR 

233 conditions G and H were sequenced on a different run with the same kit type. 

234 Data processing

235 We removed adapter sequences, trimmed low-quality nucleotides, and merged read-pairs with 

236 default parameters in fastp 0.20.1 (Chen et al. 2018). To allow fair comparion across PCR 

237 conditions, we subsampled 350,000 reads from each of the 24 libraries to achieve the same depth. 

238 Begum is available at https://github.com/shyamsg/Begum (accessed 13 Nov 2020). First, we used 

239 Begum’s sort.py (-pm 2 -tm 1) to demultiplex sequences by primers and tags, add the sample 

240 information to header lines, and strip the spacer, tag, and primer sequences. Sort.py reports the 

241 number of sequences that have novel tag combinations, representing tag-jumping events (mean 

242 3.87%). We then used Begum’s filter.py to remove sequences < 300 bp and to filter out false-

243 positive (erroneous) sequences (PCR and sequencing errors, chimeras, low-level contamination). 

244 We filtered at twelve levels of stringency: ≥1-3 PCRs  ≥1-4 copies per PCR. For instance,  ≥1 

245 PCR and ≥1 copy represents no filtering, as this allows even single sequences that appear in only 

246 one PCR (i.e. 0_0_1, 0_1_0, or 1_0_0), and ≥2 PCRs and ≥4 copies represents moderately 

247 stringent filtering, as it allows only sequences that appear in at least 2 PCRs with at least 4 copies 

248 each (e.g. 32_4_0 but not 32_2_0). 

249 We used vsearch 2.15.0 (Rognes et al. 2016) to remove de novo chimeras (--uchime_denovo) 

250 and to produce a fasta file of representative sequences for 97% similarity Operational Taxonomic 

251 Units (OTUs, --cluster_size) and a sample  OTU table (--otutabout). We assigned high-

252 level taxonomies to the OTUs using vsearch (--sintax) on the MIDORI COI database (Leray et 

253 al. 2018) and only retained the OTUs assigned to Arthropoda with probability ≥ 0.80. In R 4.0.0 

254 (R Core Team, 2018), we set all cells in the OTU tables that contained only one read to 0 and 

255 removed the control samples. 
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256 Metabarcoding efficiency

257 False-negative and false-positive frequencies. – For each of the eight mock-soups (Table 2), eight 

258 PCRs (A-H), and 12 Begum filtering stringencies (Tables 3, S05), we used vsearch 

259 (--usearch_global) to match the OTUs against the 248 input species and the four positive-

260 control species (S07_MTBFAS.fasta), and we removed any OTUs in the mock soups that matched 

261 a positive-control species. False negatives (dropouts) are defined as any of the 248 input species 

262 that failed to be matched by one or more OTUs at ≥ 97% similarity, and false positives are defined 

263 as OTUs that matched no input species at ≥97% similarity. For clarity, we only display results 

264 from the mmmm_body soups; results from all soups can be accessed in the DataDryad archive (Yu 

265 et al. 2021). 

266 Input DNA concentration and evenness and PCR conditions. – We used non-metric 

267 multidimensional scaling (NMDS) (metaMDS(distance=”jaccard”, binary=FALSE)) in 

268 {vegan} 2.5-6 (Oksanen et al. 2017) to visualise differences in OTU composition across the eight 

269 mock-soups per PCR condition (Fig. 1, Table 2). We evaluated the effects of species evenness on 

270 species recovery by using a linear mixed-effects model to regress the number of recovered input 

271 species on each mock soup’s Shannon diversity (Table 2), 

272 lme4::lmer(OTUs~Evenness+(1|PCR) (Bates et al. 2015). Finally, we evaluated the 

273 information content of OTU size (number of reads) by linearly regressing input genomic DNA 

274 concentration on OTU size.

275 Taxonomic bias. – To visualize the effects of PCR conditions on taxonomic amplification bias, we 

276 used {metacoder} 0.3.4 (Foster, Sharpton & Grunwald 2017) to pairwise-compare the 

277 compositions of the mmmm_body soup under different PCR conditions. 

278 Tag-bias test

279 We took advantage of the paired technical replicates in PCRs A&B, C&D, and G&H (Table 3) to 

280 test for tag bias. For instance, we used the same eight tags in PCRs A1/B1, A2/B2, and A3/B3, 

281 and these three pairs should therefore return very similar communities. In contrast, the 12 non-

282 matching pairs (e.g. A1/B2, A2/B1, A3/B1) used different tags and, if there is tag bias, should 

283 return differing communities. For each set of PCR replicates (A&B, C&D, G&H), we generated 

284 NMDS ordinations and used vegan::protest to calculate the mean Procrustes correlation 

285 coefficients for the same-tag (n = 3) and different-tag pairs (n = 12). A
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286 Results

287 The 18 libraries containing PCR sets A-F yielded 7,139,290 total paired-end reads, mean 396,627, 

288 and the 6 libraries of PCR sets G&H yielded 6,356,655 paired-end reads, mean 1,059,442. Each 

289 sample (e.g. Hhml_body in PCR_A) was sequenced in three libraries (Figs. 1, S5) and thus was 

290 represented by a mean of 132,209 reads (=396,627 mean reads per library X 3 PCRs / 9 samples 

291 per library, since each library contains 8 mock soups + 1 positive control.) in PCR sets A-F and a 

292 mean of 353,147 reads in PCR sets G and H. 

293 Effects of PCR condition and Begum filtering

294 Optimal and near-optimal PCR conditions (PCRs A, B, E) achieved lower false-negative (dropout) 

295 frequencies than did non-optimal PCRs (high Ta, high cycle number, or Touchdown) (PCRs C, D, 

296 F, G, H) (Table 3, S05). 

297 With no Begum filtering (≥1 PCR & ≥1 copy), false-positive OTUs were abundant, approaching 

298 the number of true OTUs (101-187 false-positive OTUs versus 248 true OTUs) (Table 3, S05). 

299 Applying Begum filtering at different stringency levels reduced the number of false-positive 

300 sequences by 3 to 90 times. The cost of filtering was a greater loss of true OTUs but only by a 

301 small absolute amount in the optimal PCRs (A, B, E), rising from a dropout frequency of ~2% in 

302 the nonfiltered case to ~4-6% under all but the two most stringent filtering levels, where dropout 

303 frequencies were 5-11% (≥3 PCRs & ≥3 or 4 copies/PCR). In contrast, in the non-optimal PCRs 

304 (C, D, F, G, H), Begum filtering caused dropout frequencies to rise to much higher levels (5- 55%). 

305 In short, it is possible to combine wet-lab and bioinformatic protocols to reduce both false-positive 

306 and false-negative errors.

307 Effects of input-DNA absolute and relative concentrations on OTU recovery

308 Altering the relative (Hhml, hhhl, hlll, and mmmm) and absolute (body, leg) input DNA 

309 concentrations created quantitative compositional differences in the OTU tables, as shown by 

310 NMDS ordination (Fig. 2). Soup hlll, with the most uneven distribution of input DNA 

311 concentrations (Table 2), recovered the fewest OTUs (Fig. 2). The same effect was seen by 

312 regressing the number of recovered OTUs on species evenness (Fig. S01). 

313 As expected, OTU size does a poor job of recovering information on input DNA amount per 

314 species (Fig. S02). Although there are positive relationships between OTU size and DNA 

315 concentrations, the slope of the relationship differs depending on species relative abundances A
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316 (Hhml vs. hhhl vs. hlll) and source tissues (leg vs. body), which reflects the action of multiple 

317 species-specific biases along the metabarcoding pipeline (McLaren, Willis & Callahan 2019). This 

318 interaction effect precludes the fitting of a robust model that relates OTU size to DNA 

319 concentration, since species-frequency and source-tissue information cannot be known a priori. 

320 Taxonomic amplification bias

321 Optimal PCR conditions (PCRs A, B, E) produce larger OTUs than do non-optimal PCR 

322 conditions (PCRs C, D, F, G, H), especially for Hymenoptera, Araneae, and Hemiptera (Fig. 4). 

323 These are the taxa that are at higher risk of failing to be detected by the Leray-FolDegenRev 

324 primers under sub-optimal PCR conditions. 

325 Tag-bias test

326 We found no evidence for tag bias in PCR amplification. For instance, under optimal PCR 

327 conditions (A & B), pairs using the same tags (A1/B1, A2/B2, A3/B3) and pairs using different 

328 tags (e.g. A1/B2, A2/B1, A3/B2, …) both generated almost identical NMDS ordinations (Fig. 3). 

329 Under non-optimal PCRs, we still found no evidence for tag bias, even though at higher annealing 

330 temperatures, some tag sequences might be more likely to aid primer annealing (Fig. S03, S04). 

331 Note that we did not correct the p-values for three tests, underlining the lack of evidence for tag 

332 bias.

333 Discussion

334 In this study, we tested our pipeline with eight mock soups that differed in their absolute and 

335 relative DNA concentrations of 248 arthropod taxa (Table 2, Fig. 2). We metabarcoded the soups 

336 under five different PCR conditions that varied annealing temperatures (Ta) and PCR cycles 

337 (Table 3), and we used Begum to filter the OTUs under different stringencies (Fig. 1, Table 3). We 

338 define high efficiency in metabarcoding as recovering most of a sample’s compositional and 

339 quantitative information, which in turn means that both false-negative and false-positive 

340 frequencies are low, that OTU sizes predict species relative abundances, and that any dropouts are 

341 spread evenly over the taxonomic range of the target taxon (here, Arthropoda). This pipeline can 

342 of course be applied to other taxa, with appropriate adjustments to primer design, length limits, 

343 taxonomic reference database, and controls. 
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344 Our results show that metabarcoding efficiency can be made high for the recovery of species 

345 presence-absence, but efficiency is low for the recovery of quantitative information. Efficiency 

346 increases when the annealing temperature and PCR cycle number are at the low ends of ranges 

347 currently reported in the literature for this primer pair (Table 3, Fig. 4). We recovered Elbrecht et 

348 al.’s (2017) finding that efficiency is higher when species evenness is higher (Fig. 2, S01), and we 

349 found that OTU sizes are a poor predictor of input genomic DNA, which confirms the 

350 conventional wisdom that OTU size is a poor predictor of species relative abundances (Fig. S02) 

351 (McLaren, Willis & Callahan 2019). Finally, we found no evidence for tag bias during PCR (Figs. 

352 3, S03, S04). 

353 Co-designed wet-lab and bioinformatic methods to remove errors

354 The Begum workflow co-designs the wet-lab and bioinformatic components (Fig. 1) (Zepeda-

355 Mendoza et al. 2016) to minimise multiple sources of error (Table 1). Aside from the use of qPCR 

356 to optimise PCR conditions, the wet-lab and bioinformatic components are designed to work 

357 together. Twin-tagging allows removal of tag jumps, which result in sample misassignments. 

358 Multiple, independent PCRs per sample allow removal of false-positive sequences caused by PCR 

359 and sequencing error and by low-level contamination, at the cost of only a small absolute rise in 

360 false-negative error (Tables 3, S05). qPCR optimization reduces false negatives caused by PCR 

361 runaway, PCR inhibition, and annealing failure (Tables 3, S05; Fig. 4). Moderate dilution appears 

362 to be a better solution for inhibition than is increasing cycle number, since the latter increases 

363 dropouts (Tables 3, S05). qPCR also allows extraction blanks to be screened for contamination. 

364 Size sorting (Elbrecht, Peinert & Leese 2017) should reduce false negatives caused by PCR 

365 runaway, and the lower recovery of input species in the leg-only soups (Fig. 2) argues that large 

366 insects should be represented by their heads, not their legs, for DNA extraction. 

367 Begum filtering and complex positive controls

368 Increasing the stringency of Begum filtering reduces false-positive sequences at the cost of 

369 increasing false-negatives (dropouts), although fortunately, this trade-off is weakened under 

370 optimal PCR conditions (Tables 3. S05). The choice of a filtering stringency level for a given 

371 study should be informed by complex positive-control samples and should take into account the 

372 study’s aims. If the aim is to detect a particular taxon, like an invasive pest, it is better to set 

373 stringency low to minimise dropout, whereas if the aim is to generate data for an occupancy model, 

374 it is better to set stringency high to minimise false positives. Positive controls should be made of A
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375 diverse taxa not from the study area (Creedy, Ng & Vogler 2019) and span a range of 

376 concentrations. Alternatively, a suite of synthetic DNA sequences with appropriate primer binding 

377 regions could be used. 

378 In metabarcoding pipelines, it is common to apply heuristic filters to remove false-positive 

379 sequences. For instance, small OTUs are commonly removed (http://evomics.org/wp-

380 content/uploads/2016/01/phyloseq-Lab-01-Answers.html, accessed 11 Nov 2020). We did not do 

381 this because we wanted to isolate the effect of Begum filtering (and in fact we found that doing so 

382 slightly reduced species recovery). We did set to zero all cells in our OTU tables that contained 

383 only one read, and the only effect was to greatly reduce the number of false-positive sequences in 

384 the case when Begum filtering was not applied. Once any level of Begum filtering had been 

385 applied, those 1-read cells also disappeared (D. Yu, data not shown). Another common correction 

386 is to use the R package {lulu} (Frøslev et al. 2017) to combine ‘parent’ and ‘child’ OTUs that had 

387 failed to cluster. In this study, we could not do this because all input species had been included in 

388 all eight soups, which means that OTU co-occurrence could not be used to identify parent-child 

389 pairings. 

390 Future work

391 Begum uses occurrence in multiple, independent PCRs to identify and remove erroneous 

392 sequences. This contrasts with solutions such as DADA2 (Callahan et al. 2016) and UNOISE2 

393 (Edgar 2016) that use only sequence-quality data to remove erroneous sequences. Unique 

394 molecular identifiers (UMIs) are also a promising method for the removal of erroneous sequences 

395 (Fields et al. 2019). It should be possible to combine some of these methods in the future. 

396 A second area of research is to improve the recovery of quantitative information. Spike-ins and 

397 UMIs can be part of the solution (Smets 2016; Hoshino & Inagaki 2017; Deagle et al. 2018; Tkacz, 

398 Hortala & Poole 2018; Ji et al. 2020), but they can only correct for sample-to-sample stochasticity 

399 (‘row noise’) and differences in total DNA mass across samples. Such corrections allow the 

400 tracking of within-species change across samples, which means tracking how each individual 

401 species changes in abundance along a time series or environmental gradient. However, spike-ins 

402 and UMIs cannot be used to estimate species relative abundances within a sample, because spike-

403 ins do not remove species biases in DNA-extraction and primer-binding efficiencies. Thus, we 

404 caution against the uncritical use of metabarcoding to identify major and minor diet components A
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405 (e.g. Deagle et al. 2019).  Fortunately, methods for estimating species relative abundances are 

406 being developed (Lang et al. 2019; Peel et al. 2019; Williamson, Hughes & Willis 2019).
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Table 1. Four classes of metabarcoding errors and their causes. Not included are software bugs, general laboratory and field errors like 

mislabeling, sampling biases, or inadequate sequencing depth.

Main Errors Possible causes References

Sample contamination in the field or lab Champlot et al. 2010; De Barba et al. 2014

PCR errors (substitutions, indels, chimeric sequences) Deagle et al. 2018

Sequencing errors Eren et al. 2013

Incorrect assignment of sequences to samples (‘tag jumping’)
Esling, Lejzerowicz & Pawlowski 2015; Schnell, Bohmann 

& Gilbert 2015

Intraspecific variability across the marker leading to multiple 

OTUs from the same species
Virgilio et al. 2010; Bohmann et al. 2018

Incorrect classification of an OTU as a prey item when it was 

in fact consumed by another prey species in the same gut 
Hardy et al. 2017

False positives (OTU sequences in 

the final dataset that are not from 

target taxa)

Numts (nuclear copies of mitochondrial genes) Bensasson et al. 2001

Fragmented DNA leading to failure to PCR amplify Ziesemer et al. 2015

Primer bias (interspecific variability across the marker) Clarke et al. 2014; Pinol et al. 2015; Alberdi et al. 2018

PCR inhibition Murray, Coghlan & Bunce 2015

PCR stochasticity Pinol et al. 2015

False negatives (‘Drop-outs,’ failure 

to detect target taxa that are in the 

sample) 
PCR runaway (loss of diversity caused by some sequences 

outcompeting others during PCR)
Polz & Cavanaugh 1998
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Predator and collector DNA dominating the PCR product and 

causing target taxa (e.g. diet items) to fail to amplify
Deagle, Kirkwood & Jarman 2009; Shehzad et al. 2012

Too many PCR cycles and/or too high annealing 

temperature, leading to loss of sequences with low starting 

DNA

Pinol et al. 2015

PCR stochasticity Deagle et al. 2014

Primer bias Pinol et al. 2015; Pinol, Senar & Symondson 2019
Poor quantification of target 

species abundances or biomasses
Polymerase bias Nichols et al. 2018

PCR inhibition

Too many cycles in the metabarcoding PCR
Murray, Coghlan & Bunce 2015

Intra-specific variability across the marker leading to 

multiple OTUs with different taxonomic assignments

Taxonomic assignment errors (a 

class of error that can result in false 

positives or negatives, depending on 

its nature)
Incomplete reference databases

Clarke et al. 2014
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Fig. 1. Schematic of study. A. Twin-tagged primers with heterogeneity spacers (above) and final amplicon structure (below). B. Each mock soup 

(e.g. Hhml-leg) was PCR-amplified three times (1, 2, 3) under a given PCR condition (A-H). Each of the three PCRs per soup used a different twin 

tag, following the Begum strategy. There were eight mock soups (Hhml/hhhl/hlll/mmmm X body/leg), where H, h, m, and l indicate different DNA 

concentrations (details in Figure 2). PCR replicates 1 from each of the eight mock soups were pooled into the first amplicon pool (solid red lines), 

PCR replicates 2 were pooled into the second amplicon pool (black dashes), and PCR replicates 3 were pooled into the third amplicon pool (blue 

dashes). The entire setup in B was repeated eight times for the eight PCR experiments (A-H), which thus generated (3 X 8 =) 24 sequencing libraries. 

C. Key steps of the Begum bioinformatic pipeline. For clarity, primers and heterogeneity spacers not shown. The complete PCR setup schematic, 

including positive and negative controls, is in S09. 

(see uploaded PDF)
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Table 2. The eight mock soups, each containing the same 248 arthropod OTUs but differing in absolute (Body/Leg) and relative (Hhml, hhhl, 

hlll, and mmmm) DNA concentrations. Numbers in the table are the numbers of OTUs in each concentration category (H, h, m, l). Thus, the 

Hhml_body soup contains 50 species with a DNA concentration between 50-200 ng/µl, each added as an aliquot of 1 µl, and so on. The evenness of 

DNA concentrations in each mock soup is summarized by the Shannon index. Higher values indicate a more even distribution. A few species 

provided only a low level of DNA concentration but were included in the mmmm soup as such. 

Number of OTUs in each concentration category

High (H) high (h) medium (m） low (l)

DNA extraction 

from arthropod 

body part 

DNA 

concentration 

evenness 50-200 ng/μl 10-48 ng/μl 1-8 ng/μl 0.001-0.1 ng/μl

Total number of 

OTUs 
Shannon index

Hhml 50 75 62 61 248 4.56

hhhl 0 187 0 61 248 5.17

hlll 0 61 0 187 248 4.08
Body

mmmm 0 0 247 1 248 5.39

High (H) high (h) medium (m） low (l)DNA 

concentration 

evenness 
5-60 ng/μl 0.1-3.0 ng/μl 0.009-0.09 ng/μl 0.0001-0.008 ng/μl

Total number of 

OTUs
Shannon index

Hhml 69 63 63 53 248 4.21
Legs

hhhl 0 195 0 53 248 5.04
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hlll 0 71 0 177 248 4.13

mmmm 0 0 238 10 248 5.32

A
cc

ep
te

d 
A

rt
ic

le



This article is protected by copyright. All rights reserved

Fig. 2.  Non-metric multidimensional scaling (NMDS) ordination of eight mock soups, which differ in absolute (Body/Leg) and relative (Hhml, 

hhhl, hlll, and mmmm) DNA concentrations of the input species (Table 2). Shown here is the output from the PCR A condition: optimum 

annealing temperature Ta (45.5 C) and cycle number (25), at Begum filtering stringency ≥2 PCRs, ≥4 copies/PCR (Table 3). Point size is scaled to the 

number of recovered OTUs. Species recovery is lower in samples with more uneven species frequencies (e.g. hlll) and, to a lesser extent, lower 

absolute DNA input (leg). 

(see uploaded PDF)
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Table 3. Species-recovery success by three Begum filtering stringency levels and five PCR conditions, using the mmmm_body soup. Recovered 

species are OTUs that match one of the 248 reference species at ≥97% similarity. False negatives (dropouts) are defined as reference species that fail 

to be matched by any OTU at ≥97% similarity. False-positive sequences are defined as OTUs that fail to match any reference species at ≥97% 

similarity. Begum filtering strongly reduces false-positive frequencies (dark- to light-orange cells) at the cost of a small rise in dropout frequency 

(light- to darker-blue cells), especially for optimal PCR conditions (PCRs A, B, E). With non-optimal PCR conditions (PCRs C, D, F, G, H), the 

trade-off is stronger; filtering to reduce false positives strongly increases dropouts (the blue cells are darker on the right hand side of the table). See 

Effects of PCR condition and Begum filtering for more details. Table S05 shows the same information for all twelve Begum stringency levels. 

Begum filtering parameters

Optimum Ta 

+ optimum cycle 

number 

(45.5°C, 25)

Optimum Ta 

+ low cycle 

number 

(45.5°C, 21)

High Ta + optimum 

cycle number 

(51.5°C, 25) 

Optimum Ta 

+ high cycle 

number 

(45.5°C, 30)

Touchdown PCR 

(62-46°C, 

16+20 cycles)

Present in ≥1 PCR replicate with ≥1 copies per PCR (i.e. no filtering) A B E C D F G H

Recovered species: OTUs matched to Refs (≥97% similarity) 241 243 243 240 239 241 236 235

False-negative sequences (dropouts) 7 5 5 8 9 7 12 13

% False negatives (dropouts) 3% 2% 2% 3% 4% 3% 5% 5%
False-positive sequences 165 161 181 186 132 179 99 124

% False positives 67% 65% 73% 75% 53% 72% 40% 50%
Present in ≥2 PCR replicates with ≥4 copies per PCR A B E C D F G H

Recovered species: OTUs matched to Refs (≥97% similarity) 234 229 232 217 204 203 161 171

False-negative sequences (dropouts) 14 19 16 31 44 45 87 77

% False negatives (dropouts) 6% 8% 7% 13% 18% 18% 35% 31%
False-positive sequences 5 5 7 3 2 3 3 4
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% False positives 2% 2% 3% 1% 1% 1% 1% 2%
Present in ≥3 PCR replicates with ≥3 copies per PCR A B E C D F G H

Recovered species: OTUs matched to Refs (≥97% similarity) 231 228 235 198 192 183 126 136

False-negative sequences (dropouts) 17 20 13 50 56 65 122 112

% False negatives (dropouts) 7% 8% 5% 20% 23% 26% 49% 45%
False-positive sequences 4 4 6 2 2 3 2 1

% False positives 2% 2% 2% 1% 1% 1% 1% 0%
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629 Fig. 3. Test for tag bias in the mock soups amplified at optimum annealing temperature Ta 

630 (45.5 °C) and optimum cycle number (25) (PCRs A and B). All pairwise Procrustes 

631 correlations of PCRs A and B. The top row (box) displays the three same-tag pairwise correlations. 

632 The other rows display the 12 different-tag pairwise correlations. If there is tag bias during PCR, 

633 the top row should show a greater degree of similarity. However, mean correlations are not 

634 significantly different between same-tag and different-tag ordinations (Mean of same-tag 

635 correlations: 0.99 ± 0.007 SD, n = 3. Mean of different-tag correlations:  0.98 ± 0.009 SD, n = 12. 

636 p=0.046, df=3.9, Welch’s t-test). In Supplementary Information, we show the results for the high 

637 Ta (PCRs C & D) and Touchdown treatments (PCRs G & H). 

638

639

640 (see uploaded PDF)

A
cc

ep
te

d 
A

rt
ic

le



This article is protected by copyright. All rights reserved

641 Fig. 4. Taxonomic amplification bias of non-optimal PCR conditions. Pairwise-comparison 

642 heat trees of PCRs E, C, F, & G versus the optimal PCR A (Table 3). Green branches indicate that 

643 PCR A (right side) produced relatively larger OTUs in those taxa. Brown branches indicate that 

644 PCR A produced smaller OTUs. Grey branches indicate similar OTU sizes. There are, on balance, 

645 more dark green branches than dark brown branches in the three heat trees that compare PCRs C, 

646 F, and G (sub-optimal) with PCR A (optimal), and the green branches are concentrated in the 

647 Araneae, Hymenoptera, and Lepidoptera, suggesting that these are the taxa at higher risk of failing 

648 to be detected by Leray-FolDegenRev primers under sub-optimal PCR conditions. Shown here are 

649 the mmmmbody soups, at Begum filtering stringency ≥2 PCRs, ≥4 copies per PCR.

650

651 (see uploaded PDF)
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Fig. 1 Schematic of study. A. Twin-tagged primers with heterogeneity spacers (above) and final amplicon structure (below). B. Each 

mock soup (e.g. Hhml-leg) was PCR-amplified three times (1, 2, 3) under a given PCR condition (A-H). Each of the three PCRs per 

soup used a different twin tag, following the Begum strategy. There were eight mock soups (Hhml/hhhl/hlll/mmmm X body/leg), 

where H, h, m, and l indicate different DNA concentrations (details in Figure 2). PCR replicates 1 from each of the eight mock soups 

were pooled into the first amplicon pool (solid red lines), PCR replicates 2 were pooled into the second amplicon pool (black dashes), 

and PCR replicates 3 were pooled into the third amplicon pool (blue dashes). The entire setup in B was repeated eight times for the 

eight PCR experiments (A-H), which thus generated (3 X 8 =) 24 sequencing libraries. C. Key steps of the Begum bioinformatic 

pipeline. For clarity, primers and heterogeneity spacers not shown. The complete PCR setup schematic, including positive and 

negative controls, is in S09.  
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Fig. 2.  Non-metric multidimensional scaling (NMDS) ordination of eight mock soups, which differ in absolute (Body/Leg) and relative (Hhml, 

hhhl, hlll, and mmmm) DNA concentrations of the input species (Table 2). Shown here is the output from the PCR A condition: optimum annealing 

temperature Ta (45.5 C) and cycle number (25), at Begum filtering stringency ≥2 PCRs, ≥4 copies/PCR (Table 3). Point size is scaled to the number of 

recovered OTUs. Species recovery is lower in samples with more uneven species frequencies (e.g. hlll) and, to a lesser extent, lower absolute DNA 

input (leg).  
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Fig. 3. Test for tag bias in the mock soups amplified at optimum annealing temperature Ta (45.5 °C) and 

optimum cycle number (25) (PCRs A and B). All pairwise Procrustes correlations of PCRs A and B. The top 

row (box) displays the three same-tag pairwise correlations. The other rows display the 12 different-tag pairwise 

correlations. If there is tag bias during PCR, the top row should show a greater degree of similarity. However, 

mean correlations are not significantly different between same-tag and different-tag ordinations (Mean of same-

tag correlations: 0.99 ± 0.007 SD, n = 3. Mean of different-tag correlations:  0.98 ± 0.009 SD, n = 12. p=0.046, 

df=3.9, Welch’s t-test). In Supplementary Information, we show the results for the high Ta (PCRs C & D) and 

Touchdown treatments (PCRs G & H).  
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 Fig. 4. Taxonomic 

amplification bias of non-

optimal PCR conditions. 

Pairwise-comparison heat trees 

of PCRs E, C, F, & G versus 

PCR A (Table 3). Green 

branches indicate that PCR A 

(right side) produced relatively 

larger OTUs in those taxa. 

Brown branches indicate that 

PCR A produced smaller OTUs. 

Grey branches indicate similar 

OTU sizes. There are, on 

balance, more dark green 

branches than dark brown 

branches in the three heat trees 

that compare PCRs C, F, and G 

(sub-optimal) with PCR A 

(optimal), and the green 

branches are concentrated in the 

Araneae, Hymenoptera, and 

Lepidoptera, suggesting that 

these are the taxa at higher risk 

of failing to be detected by 

Leray-FolDegenRev primers 

under sub-optimal PCR 

conditions. Shown here are the 

mmmmbody soups, at Begum 

filtering stringency ≥2 PCRs, 

≥4 copies per PCR. 
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