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Abstract

CrossMark

Longitudinal electromagnetic fields generally become comparable with the usually dominant
transverse components in strongly focused, non-paraxial beams. For paraxial optical vortex
modes it is highlighted here how their angular momentum properties produce longitudinal fields
that in general must be accounted for. First-order longitudinal components of quantized
Laguerre—Gaussian modes are derived and numerically studied with respect to the paraxial
parameter, highlighting light-matter and spin-orbit interactions that stem from the longitudinal
fields of paraxial beams in free space. New restrictions are cast on the validity of neglecting
longitudinal fields for paraxial optical vortices interacting with atoms, molecules and other

nanostructures.

Keywords: optical vortices, structured light, paraxial optics, optical orbital angular momentum,

spin—orbit interaction of light, quantum electrodynamics

(Some figures may appear in colour only in the online journal)

1. Introduction

The idealized plane-wave solutions to the Maxwell and
Helmbholtz equations are more often than not utilised to
provide a theoretical understanding of light—matter interac-
tions [1]. Beyond the strictly transverse plane-wave solutions,
the Helmholtz wave equation also permits ‘laser beam’ solu-
tions, such as the ubiquitous Gaussian. Unlike the exact plane-
wave solution, however, these are approximate beam-like
solutions, and the ensuing solutions to the Maxwell equations
are also only approximate. A key property of such solutions,
however, is that they are not strictly transverse in free space,
and the electric and magnetic fields generally have non-zero
components parallel to the direction of propagation [2]: viz
longitudinal fields.
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In their seminal study, Lax et al [3] highlighted how the
paraxial solutions to the scalar wave equation consist of a
purely transverse zeroth-order field and smaller, first-order,
longitudinal components whose magnitude for Gaussian-
type beams depends on the paraxial factor (kwo)_l where
k=2m/)\ is the wave number and wy the beam waist (at
the focal point). Therefore, the importance of longitudinal
fields for general laser modes is correlated to the degree of
focusing, where strongly focused beams exhibit larger longit-
udinal components in their electromagnetic fields. For very
strongly confined fields the legitimate separation of polariz-
ation and spatial degrees of freedom in scalar beams breaks
down, and vector solutions to the wave equation that involve
non-separable combinations of spatial and polarization modes
are necessary [4-6]. The important role and application of
longitudinal fields in vector beams has been well-established
[7, 8].

A realisation that has led to a highly active area of mod-
ern optics is that longitudinal components to the total fields
are not simply just quantitative corrections to the zeroth-
order transverse fields but can exhibit highly distinct proper-
ties that influence propagation characteristics of the light or the
ensuing interactions with matter. Focused circularly-polarized

© 2021 The Author(s). Published by IOP Publishing Ltd  Printed in the UK
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Gaussian beams for example can induce orbital motion of
trapped particles due to the spin-to-orbital angular momentum
(OAM) conversion [9, 10]. Longitudinal fields are also
responsible for the spin Hall and orbital Hall phenomena in
paraxial fields [11-13].

Twisted light beams or optical vortices are an extremely
well-studied type of structured laser light due to their rich
angular momentum properties. For paraxial vortex modes,
the individual photons can exhibit a spin angular momentum
(SAM) oh, where 0 = +1, and OAM ¢h, where ¢ € Z, per
photon. The widespread study and application of optical vor-
tices is summarised in the following articles [14—16]. Most
studies have been concerned with the angular momentum
properties of non-paraxial and longitudinal fields of twisted
light, such as spin-orbit interactions of light (SOI) and the
transfer to particles to cause mechanical motion [17-19]. The
application of twisted light in spectroscopic applications is a
burgeoning area of research [16]. The potentially unique role
that longitudinal fields can play in these applications has previ-
ously been highlighted for highly focused Laguerre—Gaussian
(LG) beams [20, 21]. A particularly important realisation has
been that the transfer of optical OAM to an atom [22] can only
be correctly accounted for quantitatively if longitudinal fields
of the input optical vortex are accounted for [23].

Here we derive the quantum electromagnetic field mode
operators for LG beams that include first-order longitudinal
field components in addition to the zeroth-order transverse
fields. We highlight numerically that there are two distinct
factors that influence the magnitude of longitudinal fields
of optical vortices; firstly the well-known fact that a larger
degree of focusing increases the longitudinal fields through a
paraxial parameter (kwg) ™~ : weighting factor; but secondly that
the angular momenta of optical vortices significantly influ-
ences the importance of longitudinal fields, highlighting both
the quantitative and qualitative necessity of their inclusion
even for paraxial optical vortices.

2. Transverse and longitudinal fields of
Laguerre—Gaussian modes

The most simple solutions to the wave equation are plane-
waves, which subsequently become the transverse electromag-
netic field solution to Maxwell’s equations. In the Power—
Zienau—Woolley (PZW) formulation of quantum electro-
dynamics (QED) [24, 25] the electromagnetic field operators
that couple to matter are the electric displacement field ™ (r)
and magnetic field b (r). The superscript | on d* (r) is with
reference to the fact that for a neutral system V -d =0 [26],
and highlights that in the PZW formulation of QED all cou-
lombic interactions are mediated by transverse photons [27].
The electric field displacement plane-wave mode expansion
operator for circularly polarised photons is given as [27]

diy (= = & +io5)a™ k)e* —H.e|, (D)

where k is the wave vector; V2! (X +ioy) is the polarisa-
tion vector where o = %1 for left- and right-handed circularly
polarised light, respectively; a(?) (k) is the annihilation oper-
ator; (2 is the normalization constant Q = i(fickeg/2V) /2 with
V the quantization volume; and H.c. stands for the Hermitian
conjugate. The subscript x,y on dx%y (r) refers to the fact the
fields are purely transverse to the Poynting vector, which for
plane-waves in free space exactly coincides with the wave vec-
tor k.

Approximate beam-like solutions to the scalar Helmholtz
equation which have finite transverse profiles are also pos-
sible. Solutions to the paraxial wave equation, which makes
the approximation that the transverse profile changes very little
in the propagation direction (usually defined as the z axis) over
a wavelength, form an ansatz for the Helmholtz equation when
combined with a phase factor ¢/*3=“")_ Then electromagnetic
beam-like solutions to Maxwell’s equations can be found by
ensuring all of Maxwell’s laws are satisfied. Of course, one
can take solutions to the full non-paraxial wave equation, one
such case would be the Bessel beam class of optical vortices
[28, 29]. However, the most utilised of optical vortices are the
LG modes, which are solutions to the paraxial equation in cyl-
indrical coordinates. As such, longitudinal components of LG
modes are generally neglected with the justification of work-
ing within the paraxial approximation. The electric displace-
ment field mode expansion operator for LG modes in the long
Rayleigh range limit zg >> z, where 2zg = kw3, has previously
been derived [30], and is given as

Q
Z — |(® +iaﬁ)a‘g‘,p(”) (k2)
k,o,l,p \/E |:
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where fig| , (r) = %0‘ (%ﬁ’)l le 3 L) [%} is a radial distri-
bution function where C,lfl is a constant and LJ,K‘ is the associ-
ated Laguerre polynomial, and Q now includes the normalisa-
tion factorAZ; /2 for LG modes. In the terminology introduced
by Lax et al [3], (2) is a zeroth-order solution to Maxwell’s
equations, and thus completely transverse.

In the plane-wave solutions commonly used, the total field
is simply d*- (r) = diy (r). However, for any beam-like solu-
tion to the Helmholtzléquation, the zeroth-order (2) is only an
approximation, and the total field isd™- (r) = df)y (r) +zd* (r).
The most direct method to calculate the first ‘post-paraxial’
longitudinal components is using the transversality conditions
of Maxwell’s equations [19, 23]. In order to generate the
first-order longitudinal terms for d Y) we use Gauss’s Law:
V -d =0. Thus the z components d_- (r) of the field can be
determined via

Qli/o 0
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Using Cartesian to cylindrical coordinate transformations
produces the following mode expansion for a circularly polar-
ised input which now includes the additional first-order lon-
gitudinal corrections to the zeroth-order transverse field:

d-(r="> \% H(Hiay) +£ (gr — ff) ewz}

k,o,L,p

X fiogp (7) aje () (k2) 8FE0) — H.c.} . 4)

There are some interesting features of (4): For £ = 0, one of
the longitudinal terms is zero, but the other survives, highlight-
ing how even longitudinal fields of a circularly polarised Gaus-
sian beam (i.e. LGg) exhibit a vortex of charge one structure
in the z direction through the phase factor e“¢. This type of
SOl is well known to occur in freely-propagating non-paraxial
optical vortices [31], as well as non-vortex paraxial beams
[11-13]. Another SOI is evident when the incident beam does
have an LG structure and accompanying OAM. For ¢ = o
the longitudinal fields form a vortex of charge 2; whereas for
{ = —o the longitudinal field distribution exhibits a Gaussian
structure with maximum intensity along the beam axis. This
form of parallel and anti-parallel SAM and OAM projections,
respectively, has been utilised in numerous studies [32, 33].

For the vast majority of applications, the electric field is
sufficient to describe light—matter interactions. However, mag-
netic interactions can become important in the correct settings,
such as in chiral optics [34]. The magnetic field mode expan-
sion for a circularly polarised field is found using a similar
approach, but with the aid of V-5 = 0:

b(r)= Z ﬂﬁsoc H(ﬁ—io’fc)+]1€ (aaar_f> eiwz}

k,o,l,p

X fierp (r)aw|7p(ff) (k2) eilketLe) fH.c} ) (5)

The longitudinal magnetic fields are 7 /2 out of phase with
the longitudinal electric fields, a property previously recog-
nized in being able to excite chiral nanostructues with linearly-
polarized optical vortices [35, 36]. Note that it is not a neces-
sity to use circular polarisation in the mode expansions, the
method of calculating the longitudinal components can easily
account for other polarisations [37].

3. The paraxial approximation for optical vortices

The validity of the paraxial approximation has been ques-
tioned by numerous authors previously [4, 38—40], and even
with respect to optical vortices interacting with atoms [23, 41].
These works were interested in specific systems or values of
kwo. We now undertake a general analysis with respect to the
paraxial parameter and possible optical angular momentum
configurations. To do this most explicitly and readily yield
analytic results, it is best to look at LG modes where p = 0,
furthermore these are the most utilised modes in experiments.

The electric displacement field (4) takes on the following
form when p = 0 and the differentiation with respect to r is

carried out (remembering we are working within the long
Rayleigh range limit; we have also dropped the obvious
dependencies for notational clarity):

d*(r)= Z\% H(i—l—iaj’)—i—]i (f—%’—i%) em’z}

k.o,

X fie),0 ae'kette) _ H.C.] . ©6)

The magnitude of the last longitudinal term is weighted
by the factor 2r/ kw} = r/ zg, similarly to that of a Gaussian
beam. This generally small contribution (for weakly focused
beams [42]) to the longitudinal fields is independent of the
angular momentum properties of the field, and is exhibited by
any field mode which possesses a Gaussian factor.

However, there are an additional two longitudinal terms
in (6) that depend on the angular momentum properties of
the beam. First there is the contribution dependent on the
factor |¢|/ kr which is the absolute value of the skew angle of
the Poynting vector at a given location [43]. If the light also
posesses SAM, there is the additional skew-angle-like term
dependent on {0 / kr, which thus includes the mixing of heli-
city and topological charge values. The skew-angle-like term
signififes a SOI of light in freely-propagating circularly polar-
ised optical vortices in free-space, a phenomenon highlighted
some time ago [44] but has seemingly received relatively little
attention.

The intensity distributions as a function of beam waist of a
variety of LG modes where the first-order longitudinal fields
have been included with the generally used zeroth-order trans-
verse fields is given in figures 1 and 2.

The range of beam waists used in figures 1 and 2 correspond
to A < wp < 2, i.e. within the paraxial range [21, 38]. Just
as it is well-established that longitudinal fields cannot be neg-
lected when unstructured (non-OAM) light is strongly focused
because terms dependent on factors like 2r / kw} become
important, figure 1 shows that certain contributions to longit-
udinal fields for paraxial optical vortices cannot likewise be
neglected.

The importance of these fields are still bound to specific
scenarios due to the dependence on the radial distribution
function, beam waist, optical angular momentum, and in com-
parison to the zeroth-order transverse fields are weighted by
the wavelength (inverse wave number).

Whilst it is true that these terms do indeed become larger
the more focused the beam is, figures 1(b) and (c) clearly high-
lights how they manifest even in LG modes for a wide range of
kwy, most clearly obvious in the so-called ‘vortex core’ which
evidently is not truly empty for a range of parameters. Further-
more, if the twisted light is also circularly polarised the differ-
ences become more significant than if ¢ = 0, and in the case of
anti-parallel SAM and OAM neglecting the longitudinal fields
fails for the whole range of values of kwy (figure 1(c)). As
figure 2 shows, for higher values of |¢| the on-axis intensity dis-
tribution vanishes for paraxial beams (section 5), and the total
field intensity distribution much more resembles the transverse
only components. It is clear that the paraxial approximation



J. Opt. 23 (2021) 075401

K A Forbes et al
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r(um)

r(um)

Figure 1. Intensity distributions for an LG beam with |¢| = 1 for a
changing beam waist (dashed boxes highlight the most prominent
differences) (a) the intensity contains only the transverse field
components (b) the total intensity including longitudinal
contributions for o = 0. (c) Total intensity for antiparallel OAM and
SAM and (d) Total intensity for parallel OAM and SAM. The range
of beam waists used in figures 1 and 2 correspond to A < wo < 2.

(neglecting the longitudinal components of the fields) most
significantly fails for { = +1,0 =0and { = £1,0 = F1.

4. Application: single-photon absorption

The previous section shows us longitudinal fields are import-
ant to account for in spectroscopies as the highly position-
dependent intensity structure will need to be properly accoun-
ted for, particularly for high-precision measurements with
optical vortices.

Single-photon absorption is the simplest optical process
and is therefore an appropriate initial case to investigate the
role of longitudinal fields in light-matter interactions. We may
calculate the matrix element (or quantum amplitude) Mg, of
single-photon absorption in the electric dipole approximation
using standard time-dependent perturbation methods, with
My given by: (F|Hin|l) = (F| — ey ' p-d* (r)|I), where the
initial state vector |I) = |n(k,0,£,p); Eo) consists of n photons
in the LG mode (k, o, ¢,p) and the material in the ground state

)

|2
- 1.0

- 0.9

WOIA

0.8

0.7

0.6

0.5

0.4

0.3

Wo /A

0.2

0.1

0.0

r(um) r(um)

Figure 2. Intensity distributions for an LG beam with |¢| =2 for a
changing beam waist (a)—(d) correspond to the same conditions as
those in figure 1, the range of kwy is also the same.

Ey; the final state is given by |F) =|(n—1)(k,0,¢,p);E,),
where the mode has lost a photon and the material now exists
in the excited state denoted by «; p is the electric-dipole trans-
ition moment operator.

Using the mode expansion for the electric displacement
field operator (4), the matrix element is

O im0 (0 Lo\, ios] . a0 itkere

Mg = — : — [ = — = )ze"° alqi(ket-Le)
FI 2 {el + NAC Zi€ fuite ,
(7

where we now use suffix notation for tensor quantities and
eMR =271/2(% +iop), is the polarisation vector for circularly
polarised light. As is standard [27], the matrix element is inser-
ted into the Fermi rule to yield the rate I' of single-photon
absorption as:

1
Lo M = 5 [elRel e

+ klr (orff’ — £f*) 2 (jcos ¢ — ;sin )

2% (*250’77/+('f/)2+(€f)2)} ulgoﬁ]{lo,

+ 2k2r?
(8)
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where the intensity of the input beam is = nhc’k/A7 V. The
prime superscripts in (8) denote partial differentiation with
respect to r. The first term in square brackets in (8) is the stand-
ard rate of absorption via the purely transverse zeroth-order
electric field, and it is therefore evident through the multi-
tude of additional terms that accounting for longitudinal fields
offer numerous additional optical interactions and qualitative
corrections to the zeroth-order fields. The terms dependent
on ¢ stem from the interferences between the transverse and
longitudinal fields, and if a full beam-profile integration over
¢ is carried out (i.e. g — ¢y + 27) these effects vanish. To
render these observable the signals stemming from individual
nanostructures or sub-domains must be resolved. The final
terms are all purely longitudinal in nature, and their import-
ance is determined by the factors discussed in the previous
section.

The rate of absorption given by (8) specifically corresponds
to a nanostructure with a fixed orientation with respect to the
input optical axis. It is clear that that the zeroth-order trans-
verse fields can excite electric dipole transitions which must
have allowed components in x, y-directions, whereas excitation
through the pure longitudinal terms excite transitions which
must exhibit components along the direction of propaga-
tion z. A similar scheme was used to map the fluorescence
of molecules with specific orientations in order to precisely
determine the structure of electromagnetic fields for vector
vortex beams [45]. It is also worthwhile noting that individual
contributions to the total rate depend on o, i.e. the handedness
of the input circular polarization; the sign of /, i.e. the handed-
ness of the optical vortex; and the product of the two 0. Gen-
erally materials, such as molecular matter, need to be chiral in
order to exhibit differential effects with respect to the sign of
o (optical activity) through higher-order magnetic dipole and
electric quadrupole interferences with the electric dipole trans-
itions, and are thus usually weak effects [46]. The rate (8) tells
us that in principle it is possible that photon absorption through
purely electric-dipole transitions can yield a small differential
rate for optical vortices with different helical wavefront and
polarisation handedness. These differential rates that depend
on the optical handedness here are comparable to standard
optical activity of circularly polarised light, but in comparison
to these traditional chiroptical interactions that probe the local
helicity of light, the phenomena here are clearly spatial effects
related to a radially varying and optical angular momentum-
dependent intensity structure [47].

Orientational averaging of the particles with respect to the
beam axis is done using standard methods [48], namely for a
second rank tensor (y1;f1;) = 36,10 - 5

I
x ——
6eoc

o 1, P .
() g (= gt + ™+ st ) I ©

The total averaged rate (9) and its individual compon-
ents are plotted in figures 3-5. It is interesting to note how
an orientational average of the individual material particles
also leads to the interference terms averaging to zero. Clearly

1.0 -
1.0
0.8
0.8
0.6 0.6
= 0.4
= 0.4 0.2
— 0.0
0.0 o
1.0 1.0
0.8 0.8
0.6
0.6 7 0.4
E 0.4 o 0.2
0.0
0.2 + 0 1
X (um)
0.0 \/
I£l=1,0=-|¢
0.2 4 T T T T T
1.0 -
[£]=1,0=|f
0.8 1.0
0.8
0.6 — 0.6
= 0.4
0.4 o 02
85l 0.0
= 0 1
X (um)
0.0
T T T T T T
0.0 0.5 1.0 1.5 2.0 2.5
r(um)
—— total (¢ =0) —— long «r?
—— trans «r? —— long «r*
long o r® - -~ total (¢ =m/2)

Figure 3. 1D Plots of the total and individual contributions to the
rate of single-photon absorption (equation (9)) with 2D inset plot
corresponding to total rate (p = 0,wo = A). (a) Corresponds to
linearly-polarised light in the x direction.

the different material transition moment orientational depend-
ences of (8) to the transverse and longitudinal fields are also
lost. The SOI term dependent on o still survives, so that even
randomly oriented particles will still exhibit a small differ-
ence in the rate of absorption depending on the polarisation
and wavefront handedness—this is most clear by comparing
figures 3(b) and (c) for a given position r (though note how
the light must possess both SAM and OAM in this case). The
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Figure 4. 1D Plots of the total and individual contributions to the
rate of single-photon absorption (equation (9)) with 2D inset plot
corresponding to total rate (p = 0,wo = 3\/2). (a) Corresponds to
linearly-polarised light in the x direction.

average rate of absorption of an x-polarised input beam which
corresponds to part (a) of figures 3-5 is calculated to be

.

T
() o 6epc

1 2 52 012
[ﬁ +13 [(cos%)f’ + e a0y
For linearly polarised light there is a longitudinal contri-
bution to the rate of absorption dependent on ¢ which is spa-
tially elongated along the direction of input polarisation. It is

Wo = 2A
1.0 1
(@) f|=1,0=0
1.0
0.8 -
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[y 0.4
0.4 b
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Figure 5. 1D Plots of the total and individual contributions to the
rate of single-photon absorption (equation (9)) with 2D inset plot
corresponding to total rate (p = 0,wp = 2X). (a) Corresponds to
linearly-polarised light in the x direction.

clear to see that the rate of absorption has an acute depend-
ence on radial position, but also the total rate is altered by
the longitudinal fields even for beams propagating within the
paraxial regime. The results displayed in figure 3 corresponds
to wo = A; figures 4 and 5 highlight the same rate but for
wo =3X/2 and wy = 2, respectively. It is highly relevant to
note that Quinteiro et al [23] highlighted how longitudinal
fields in the specific case of parallel and anti-parallel SAM and
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OAM had a significant influence on atomic electric quadrupole
transitions even when wy & 3.7\ for an atom trapped at r =~ 0
(see our figures 1(c) and 3(b), 4(b) and 5(b)). Because longit-
udinal fields stem from the gradients of the transverse fields, it
is not surprising that electric quadrupole interactions are par-
ticularly sensitive to them as they themselves are driven by
electric field gradients. Clearly for such high-precision meas-
urements dealing with trapped particles, in atomic optics in
particular, longitudinal fields of optical vortices must be taken
account of for a wide range of kwy.

5. Discussion and conclusion

LG modes are solutions to the paraxial wave equation, and
therefore must strictly be bound to any approximations associ-
ated with it. Detailed conditions of where the paraxial approx-
imation fails for general laser modes can be found in [38, 39].
If one wishes to rigorously account quantitatively for the lon-
gitudinal fields of very strongly-focused wy < A beams, then
either (a) the non-paraxial solutions should be utilised [28, 29],
(b) a systematic expansion in the paraxial parameter in the
spirit of previous studies [3, 49, 50] or (c) explicilt inclusion of
the focusing approach with high NA [18, 32, 51-53] should be
adopted. In relation to this it is worth mentioning some recent
work highlighting a class of paraxial beam which exhibit large
longitudinal components but under paraxial focusing condi-
tions [54, 55]. The first-order nature of the longitudinal fields
this work has concentrated on means their contributions are
completely valid within the paraxial regime.

It is worth discussing a subtle point about the method
of deriving the electric displacement (4) and magnetic (5)
fields which were derived using the divergenceless nature
of electric and magnetic fields in free space. The mag-
netic field could have been derived using Faraday’s law
V x et (r) = —0b (r) /0t which yields the fields as in (5) plus
second-order corrections to the transverse field which essen-
tially stem from 0> / 07* variations of the amplitude. Simil-
arly the Maxwell-Ampere law would give second-order trans-
verse corrections to the transverse electric displacement field.
Working within the paraxial approximation §* / 92> < k0/ 9z
these terms have been neglected here due to the fact they only
become important in situations where a paraxial description
of the field would be inaccurate. It has been highlighted how
for highly focused vortex beams these second-order transverse
fields exhibit unique features for |¢| =2 [21, 32]. Similarly, it
is worth making the point that restricting our results to within
the Rayleigh range is legitimate for LG modes as the z depend-
ence of the full, non-Rayleigh range LG mode function only
leads to longitudinal and transverse fields which are higher-
order in the paraxial parameter (i.e. second-, third-, and so on
post-paraxial approximations), and thus are actually beyond
the validity of the paraxial wave equation and so their inclu-
sion is not supported here either.

The field of twisted light and optical OAM has largely been
concerned with applications in mechanical nanomanipulation,
communications, and quantum information studies—only in
the last few years have the unique properties of twisted

beams been implemented in atomic and molecular optics and
spectroscopy. Here we have highlighted how in such studies,
longitudinal fields of paraxial optical vortices must be accoun-
ted for in general. In particular our analysis shows that devi-
ation from the purely zeroth-order transverse field descrip-
tion most appreciably occurs for optical vortex modes with
¢==41,0 =71 or [¢{|=1,0 =0 and values of wy around a
few integer multiples of the wavelength. The most striking dif-
ferences in these cases occur for nanostructures placed close to
the so-called vortex singularity. Nanostructures with specific
orientation with respect to the optical axis have more poten-
tial to exhibit larger and more interesting effects with the lon-
gitudinal fields than systems of randomly oriented structures.
Unlike the strongly focused case wy < A where the total longit-
udinal components can dominate the transverse fields, here it
has been shown that for paraxial optical vortices the inclusion
of first-order longitudinal fields is still important both qualitat-
ively and quantitatively, as they introduce novel optical inter-
actions with matter as well as alter the electromagnetic fields
and corresponding position-dependent intensity structure.
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