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Relevance of Longitudinal Fields of Paraxial Optical Vortices 
 

Kayn A. Forbes*, Dale Green, Garth A. Jones

School of Chemistry, University of East Anglia, Norwich NR4 7TJ, United Kingdom  

                       Longitudinal electromagnetic fields generally become comparable with the usually dominant transverse 

components in strongly focused, non-paraxial beams. For paraxial optical vortex modes it is highlighted 

here how their angular momentum properties produce longitudinal fields that in general must be accounted 

for. First-order longitudinal components of quantized Laguerre-Gaussian modes are derived and 

numerically studied with respect to the paraxial parameter, highlighting light-matter and spin-orbit 

interactions that stem from the longitudinal fields of paraxial beams in free space. New restrictions are cast 

on the validity of neglecting longitudinal fields for paraxial optical vortices interacting with atoms, 

molecules and other nanostructures. 

* k.forbes@uea.ac.uk 

Introduction – The idealized plane-wave solutions to the 

Maxwell and Helmholtz equations are more often than not 

utilised to provide a theoretical understanding of light-matter 

interactions [1]. Beyond the strictly transverse plane-wave 

solutions, the Helmholtz wave equation also permits ‘laser 

beam’ solutions, such as the ubiquitous Gaussian. Unlike the 

exact plane-wave solution, however, these are approximate 

beam-like solutions, and the ensuing solutions to the Maxwell 

equations are also only approximate. A key property of such 

solutions, however, is that they are not strictly transverse in free 

space, and the electric and magnetic fields generally have non-

zero components parallel to the direction of propagation  [2]: 

viz longitudinal fields. 

In their seminal study, Lax et al [3] highlighted how the 

paraxial solutions to the scalar wave equation consist of a purely 

transverse zeroth-order field and smaller, first-order, 

longitudinal components whose magnitude for Gaussian-type 

beams depends on the paraxial factor ( )
1

0

−
kw  where 2 =k  

is the wave number  and 
0w  the beam waist (at the focal point).  

Therefore, the importance of longitudinal fields for general 

laser modes is correlated to the degree of focusing, where 

strongly focused beams exhibit larger longitudinal components 

in their electromagnetic fields. For very strongly confined fields 

the legitimate separation of polarization and spatial degrees of 

freedom in scalar beams breaks down, and vector solutions to 

the wave equation that involve non-separable combinations of 

spatial and polarization modes are necessary [4–6]. The 

important role and application of longitudinal fields in vector 

beams has been well-established  [7,8]. 

A realisation that has led to a highly active area of modern 

optics is that longitudinal components to the total fields are not 

simply just quantitative corrections to the zeroth-order 

transverse fields but can exhibit highly distinct properties that 

influence propagation characteristics of the light or the ensuing 

interactions with matter. Focused circularly-polarized Gaussian 

beams for example can induce orbital motion of trapped 

particles due to the spin-to-orbital angular momentum 

conversion [9,10]. Longitudinal fields are also responsible for 

the spin Hall and orbital Hall phenomena in paraxial fields  [11–

13]. 

Twisted light beams or optical vortices are an extremely well-

studied type of structured laser light due to their rich angular 

momentum properties. For paraxial vortex modes, the 

individual photons can exhibit a spin angular momentum 

(SAM)  , where 1 =  , and orbital angular momentum 

(OAM) , where  ,  per photon. The widespread study 

and application of optical vortices is summarised in the 

following articles [14–16]. Most studies have been concerned 

with the angular momentum properties of non-paraxial and 

longitudinal fields of twisted light, such as spin-orbit 

interactions of light (SOI) and the transfer to particles to cause 

mechanical motion  [17–19]. The application of twisted light in 

spectroscopic applications is a burgeoning area of 

research  [16]. The potentially unique role that longitudinal 

fields can play in these applications has previously been 

highlighted for highly focused Laguerre-Gaussian (LG) 

beams [20,21]. A particularly important realisation has been 

that the transfer of optical OAM to an atom [22] can only be 

correctly accounted for quantitatively if longitudinal fields of 

the input optical vortex are accounted for [23].  

Here we derive the quantum electromagnetic field mode 

operators for LG beams that include first-order longitudinal 

field components in addition to the zeroth-order transverse 

fields. We highlight numerically that there are two distinct 

factors that influence the magnitude of longitudinal fields of 

optical vortices; firstly the well-known fact that a larger degree 

of focusing increases the longitudinal fields through a paraxial 

parameter ( )
1

0

−
kw weighting factor; but secondly that the 

angular momenta of optical vortices significantly influences the 

importance of longitudinal fields, highlighting both the 

quantitative and qualitative necessity of their inclusion even for 

paraxial optical vortices.    

Transverse and Longitudinal Fields of Laguerre-Gaussian 

modes The most simple solutions to the wave equation are 

plane-waves, which subsequently become the transverse 
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electromagnetic field solution to Maxwell’s equations. In the 

Power-Zienau-Woolley (PZW) formulation of quantum 

electrodynamics (QED) [24,25] the electromagnetic field 

operators that couple to matter are the electric displacement 

field ( )⊥
d r  and magnetic field ( )b r . The superscript ⊥  on 

( )⊥
d r  is with reference to the fact that for a neutral system 

0 =d  [26], and highlights that in the PZW formulation of 

QED all coulombic interactions are mediated by transverse 

photons [27]. The electric field displacement plane-wave mode 

expansion operator for circularly polarised photons is given 

as  [27] 

( ) ( ) ( ) ( ),

,

ˆ ˆ e . . ,
2





⊥ 
 = + −
  i

x y i a H ck r

k

d r x y k  

(1)

 

where k  is the wave vector; ( )
1

ˆ ˆ2 
−

+ ix y  is the polarisation 

vector where 1 =   for left- and right-handed circularly-

polarised light, respectively; 
( ) ( )

a k  is the annihilation 

operator;   is the normalization constant ( )
1 2

0 2 = i ck V  

with V  the quantization volume; and H.c. stands for the 

Hermitian conjugate. The subscript x,y on ( ),

⊥

x yd r  refers  to the 

fact the fields are purely transverse to the Poynting vector, 

which for plane-waves in free space exactly coincides with the 

wave vector k.  

Approximate beam-like solutions to the scalar Helmholtz 

equation which have finite transverse profiles are also possible. 

Solutions to the paraxial wave equation, which makes the 

approximation that the transverse profile changes very little in 

the propagation direction (usually defined as the z axis) over a 

wavelength, form an ansatz for the Helmholtz equation when 

combined with a phase factor ( )
e

−i kz t
.  Then electromagnetic 

beam-like solutions to Maxwell’s equations can be found by 

ensuring all of Maxwell’s laws are satisfied. Of course, one can 

take solutions to the full non-paraxial wave equation, one such 

case would be the Bessel beam class of optical vortices [28,29]. 

However, the most utilised of optical vortices are the Laguerre-

Gaussian modes, which are solutions to the paraxial equation in 

cylindrical coordinates. As such, longitudinal components of 

LG modes are generally neglected with the justification of 

working within the paraxial approximation. The electric 

displacement field mode expansion operator for LG modes in 

the long Rayleigh range limit 
Rz z , where 2

02 =Rz kw , has 

previously been derived [30], and is given as 

( ) ( ) ( ) ( ) ( ) ( )
, , ,

, , ,

ˆ ˆ ˆ e . . ,
2

 




+⊥ 

 = + −
 

i kz

x y p p
k p

i a k f r H cd r x y z

(2) 

where ( )

2

2
0

2

, 2

0 0 0

2 2
e
−   

=     
  

r

p w

pp

C r r
f r L

w w w
 is a radial 

distribution function where pC  is a constant and pL  is the 

associated Laguerre polynomial, and   now includes the 

normalisation factor 
3 2

,

−

pA   for LG modes. In the terminology 

introduced by Lax et al.  [3], (2) is a zeroth-order solution to 

Maxwell’s equations, and thus completely transverse.  

In the plane-wave solutions commonly used, the total field is 

simply ( ) ( ),

⊥ ⊥= x yr d rd . However, for any beam-like solution 

to the Helmholtz equation, the zeroth-order (2) is only an 

approximation, and the total field is ( ) ( ) ( ),
ˆ⊥ ⊥ ⊥= +x y zd rr d rd z

. The most direct method to calculate the first ‘post-paraxial’ 

longitudinal components is using the transversality conditions 

of Maxwell’s equations [19,23]. In order to generate the first-

order longitudinal terms for ( )⊥
rd  we use Gauss’s Law:

0= d . Thus the z components ( )⊥

zd r  of the field can be 

determined via  

( )

( ) ( ) ( ) ( )

,

, ,
, , ,

d

ˆ e . . .
2

 





⊥ ⊥

+

=

    
+ −  

   





x y

i kz

p p
k p

z

i
i f r a k H c

k x y

 d r

z
 (3) 

 

Using Cartesian to cylindrical coordinate transformations 

produces the following mode expansion for a circularly 

polarised input which now includes the additional first-order 

longitudinal corrections to the zeroth-order transverse field: 

 

( ) ( )

( ) ( ) ( ) ( )

, , ,

, ,

ˆ ˆ ˆe
2

ˆ e . .





 


⊥

+

   
= + + −  

  

 −


 i

k p

i kz

p p

i
i

k r r

f r a k H c

d r x y z

z

  

(4)

 

 

There are some interesting features of (4): For 0= , one of the 

longitudinal terms is zero, but the other survives, highlighting 

how even longitudinal fields of a circularly polarised Gaussian 

beam (i.e 0

0LG ) exhibit a vortex of charge one structure in the 

z direction through the phase factor e i . This type of SOI is 

well known to occur in freely-propagating non-paraxial optical 

vortices [31], as well as non-vortex paraxial beams [11–13]. 

Another SOI is evident when the incident beam does have an 

LG structure and accompanying OAM. For =  the 

longitudinal fields form a vortex of charge 2; whereas for 

= −  the longitudinal field distribution exhibits a Gaussian 

structure with maximum intensity along the beam axis. This 

form of parallel and anti-parallel SAM and OAM projections, 

respectively, has been utilised in numerous studies [32,33].  

For the vast majority of applications, the electric field is 

sufficient to describe light-matter interactions. However, 

magnetic interactions can become important in the correct 

settings, such as in chiral optics [34]. The magnetic field mode 

expansion for a circularly polarised field is found using a 

similar approach, but with the aid of 0 = b :   
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( ) ( )

( ) ( ) ( ) ( )

, , , 0

, ,

1
ˆ ˆ ˆe

2

ˆ e . .





 

 


+

   
= − + −     

 −


 i

k p

i kz

p p

i
k r rc

f r a k H c

b r y x z

z

 (5) 

 

The longitudinal magnetic fields are / 2  out of phase with the 

longitudinal electric fields, a property previously recognized in 

being able to excite chiral nanostructues with linearly-polarized 

optical vortices  [35,36]. Note that it is not a necessity to use  

circular polarisation in the mode expansions, the method of 

calculating the longitudinal components can easily account for 

other polarisations  [37].  

The Paraxial Approximation for Optical Vortices The validity 

of the paraxial approximation has been questioned by numerous 

authors previously [4,38–40], and even with respect to optical 

vortices interacting with atoms [23,41]. These works were 

interested in specific systems or values of 
0kw . We now 

undertake a general analysis with respect to the paraxial 

parameter and possible optical angular momentum 

configurations. To do this most explicitly and readily yield 

analytic results, it is best to look at LG modes where 0=p , 

furthermore these are the most utilised modes in experiments.  

The electric displacement field (4) takes on the following form 

when 0=p  and the differentiation with respect to r is carried 

out (remembering we are working within the long Rayleigh 

range limit; we have also dropped the obvious dependencies for 

notational clarity): 

( ) ( )

( )

2
, , 0

,0

2
ˆ ˆ ˆe

2

e . .








⊥

+

    
= + + − −   

   

 −


 i

k

i kz

i r
i

k r r w

f a H c

d r x y z
 (6) 

 

The magnitude of the last longitudinal term is weighted by the 

factor 2

02 = Rr kw r z , similarly to that of a Gaussian beam. 

This generally small contribution (for weakly-focused 

beams [42]) to the longitudinal fields is independent of the 

angular momentum properties of the field, and is exhibited by 

any field mode which possesses a Gaussian factor.  

However, there are an additional two longitudinal terms in (6) 

that depend on the angular momentum properties of the beam. 

First there is the contribution dependent on the factor kr  

which is the absolute value of the skew angle of the Poynting 

vector at a given location [43]. If the light also posesses SAM, 

there is the additional skew-angle-like term dependent on 

 kr , which thus includes the mixing of helicity and 

topological charge values. The skew-angle-like term signififes 

a SOI of light in freely-propagating circularly polarised optical 

vortices in free-space, a phenomenon highlighted some time 

ago [44] but has seemingly received relatively little attention. 

The intensity distributions as a function of beam waist of a 

variety of LG modes where the first-order longitudinal fields 

have been included with the generally used zeroth-order 

transverse fields is given in Figure 1 and Figure 2.  

 

Figure 1: Intensity distributions for an LG beam with 1=  for a changing 

beam waist (dashed boxes highlight the most prominent differences) a) the 

intensity contains only the transverse field components b) the total intensity 

including longitudinal contributions for 0 =  c) Total intensity for 

antiparallel OAM and SAM and d) Total intensity for parallel OAM and 

SAM. The range of beam waists used in Figure 1 and 2 correspond to 

0 2  w . 

The range of beam waists used in Figure 1 and 2 correspond to 

0 2  w , i.e. within the paraxial range [21,38]. Just as it is 

well-established that longitudinal fields cannot be neglected 

when unstructured (non-OAM) light is strongly focused 

because terms dependent on factors like 2

02r kw become 

important, Figure 1 shows that certain contributions to 

longitudinal fields for paraxial optical vortices cannot likewise 

be neglected. 

The importance of these fields are still bound to specific 

scenarios due to the dependence on the radial distribution 

function, beam waist, optical angular momentum, and in 

comparison to the zeroth-order transverse fields are weighted 

by the wavelength (inverse wave number). 
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Figure 2: Intensity distributions for an LG beam with 2=  for a changing 

beam waist (a)-d) correspond to the same conditions as those in Figure 1, the 

range of 
0kw  is also the same. 

Whilst it is true that these terms do indeed become larger the 

more focused the beam is, Figure 1b and 1c clearly highlights 

how they manifest even in LG modes for a wide range of 
0kw ,  

most clearly obvious in the so-called ‘vortex core’ which 

evidently is not truly empty for a range of parameters. 

Furthermore, if the twisted light is also circularly polarised the 

differences become more significant than if 0 = , and in the 

case of anti-parallel SAM and OAM neglecting the longitudinal 

fields fails for the whole range of values of 
0kw (Figure 1c). As 

Figure 2 shows, for higher values of  the on-axis intensity 

distribution vanishes for paraxial beams (see Discussion), and 

the total field intensity distribution much more resembles the 

transverse only components. It is clear that the paraxial 

approximation (neglecting the longitudinal components of the 

fields) most significantly fails for 1, 0=  =  and 

1, 1=  = .   

Application: Single-photon absorption. The previous section 

shows us longitudinal fields are important to account for in 

spectroscopies as the highly-position-dependent intensity 

structure will need to be properly accounted for, particularly for 

high-precision measurements with optical vortices.  

Single-photon absorption is the simplest optical process and is 

therefore an appropriate initial case to investigate the role of 

longitudinal fields in light-matter interactions. We may 

calculate the matrix element (or quantum amplitude) 
FIM  of 

single-photon absorption in the electric dipole approximation 

using standard time-dependent perturbation methods, with 
FIM  

given by: ( )1

int 0
− ⊥= − F H I F Id r , where the initial 

state vector ( ) 0, , , ;=I n k p E  consists of  n photons in 

the LG mode ( ), , ,k p and the material in the ground state
0E

; the final state is given by ( )( )1 , , , ; = −F n k p E , where 

the mode has lost a photon and the material now exists in the 

excited state denoted by  ;   is the electric-dipole transition 

moment operator.  

Using the mode expansion for the electric displacement field 

operator (4), the matrix element is  

 

( )L/R 0

0

ˆ e e ,
2

 




+    
= − + −  

  

i kzi

FI i i i

n i
M e z f

r rk
 (7) 

 

where we now use suffix notation for tensor quantities and 

( )L/R 1/2 ˆ ˆ2 −= +i i
e x i y  is the polarisation vector for circularly 

polarised light. As is standard [27], the matrix element is 

inserted into the Fermi rule to yield the rate   of single-photon 

absorption as: 

( ) ( )

( ) ( )( )

2 L/R L/R 2

0

2

2 2 0 0

2 2

2

1
ˆ ˆˆ cos sin

ˆ ˆ
2 ,

2

 



  

  

  = 

+ − −

 − + +


FI i j

i j j

i j

i j

I
M e e f

c

rff f z y x
kr

z z
rff rf f

k r
+

  (8) 

 

where the intensity of the input beam is 
2 2

,= pI n c k A V . The 

prime superscripts in (8) denote partial differentiation with 

respect to r. The first term in square brackets in (8) is the 

standard rate of absorption via the purely transverse zeroth-

order electric field, and it is therefore evident through the 

multitude of additional terms that accounting for longitudinal 

fields offer numerous additional optical interactions and 

qualitative corrections to the zeroth-order fields. The terms 

dependent on   stem from the interferences between the 

transverse and longitudinal fields, and if a full beam-profile 

integration over   is carried out (i.e. 
0 0 2  → + )  these 

effects vanish. To render these observable the signals stemming 

from individual nanostructures or sub-domains must be 

resolved. The final terms are all purely longitudinal in nature, 

and their importance is determined by the factors discussed in 

the previous section.  
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The rate of absorption given by (8) specifically corresponds to 

a nanostructure with a fixed orientation with respect to the input 

optical axis. It is clear that that the zeroth-order transverse fields 

can excite electric dipole transitions which must have allowed 

components in x,y-directions, whereas excitation through the 

pure longitudinal terms excite transitions which must exhibit 

components along the direction of propagation z. A similar 

scheme was used to map the fluorescence of molecules with 

specific orientations in order to precisely determine the 

structure of electromagnetic fields for vector vortex 

beams  [45]. It is also worthwhile noting that individual 

contributions to the total rate depend on  , i.e. the handedness 

of the input circular polarization; the sign of , i.e. the 

handedness of the optical vortex; and the product of the two 

. Generally materials, such as molecular matter, need to be 

chiral in order to exhibit differential effects with respect to the 

sign of   (optical activity) through higher-order magnetic 

dipole and electric quadrupole interferences with the electric 

dipole transitions, and are thus usually weak effects  [46]. The 

rate (8) tells us that in principle it is possible that photon 

absorption through purely electric-dipole transitions can yield a 

small differential rate for optical vortices with different helical 

wavefront and polarisation handedness. These differential rates 

that depend on the optical handedness here are comparable to 

standard optical activity of circularly polarised light, but in 

comparison to these traditional chiroptical interactions that 

probe the local helicity of light, the phenomena here are clearly 

spatial effects related to a radially varying and optical angular 

momentum-dependent intensity structure [47].  

Orientational averaging of the particles with respect to the beam 

axis is done using standard methods [48], namely for a second 

rank tensor 0 01

3

   = i j ij  : 

2
2

2 2 2 0

2 2 2 2

0

1
.

6 2 2





 
   − + + 

 

I
f ff f f

c k r k k r
  

(9)

 

The total averaged rate (9) and its individual components are 

plotted in Figures 3-5. It is interesting to note how an 

orientational average of the individual material particles also 

leads to the interference terms averaging to zero. Clearly the 

different material transition moment orientational dependences 

of (8) to the transverse and longitudinal fields are also lost. The 

SOI term dependent on   still survives, so that even randomly 

oriented particles will still exhibit a small difference in the rate 

of absorption depending on the polarisation and wavefront 

handedness – this is most clear by comparing Figure 3b and c 

for a given position r (though note how the light must possess 

both SAM and OAM in this case). The average rate of 

absorption of an x̂ - polarised input beam which corresponds to 

part (a) of Figures3-5 is calculated to be 

( )
2

2
2 2 2 2 0

2 2
0

1
cos

6

I
f f f

c k r




  
  + +  

   

  (10) 

For linearly polarised light there is a longitudinal contribution 

to the rate of absorption dependent on   which is spatially 

elongated along the direction of input polarisation. It is clear to 

see that the rate of absorption has an acute dependence on radial 

position, but also the total rate is altered by the longitudinal 

fields even for beams propagating within the paraxial regime. 

The results displayed in Figure 3 corresponds to 
0 =w ;  

Figures 4 and 5 highlight the same rate but for 
0 3 2=w  and 

0 2=w , respectively. It is highly relevant to note that 

Quinteiro et al. [23] highlighted how longitudinal fields in the 

specific case of parallel and anti-parallel SAM and OAM had a 

significant influence on atomic electric quadrupole transitions 

even when 
0 3.7w for an atom trapped at 0r  (see our 

Figure 1c and 3b, 4b and 5b). Because longitudinal fields stem 

from the gradients of the transverse fields, it is not surprising 

that electric quadrupole interactions are particularly sensitive to 

them as they themselves are driven by electric field gradients. 

Clearly for such high-precision measurements dealing with 

trapped particles, in atomic optics in particular, longitudinal 

fields of optical vortices must be taken account of for a wide 

range of 
0kw . 
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Figure 3: 1D Plots of the total and individual contributions to the rate of 

single-photon absorption (Eq.(9)) with 2D inset plot corresponding to total 

rate  ( )00, = =p w . (a) corresponds to linearly-polarised light in the x 

direction. 

 

 

Figure 4: 1D Plots of the total and individual contributions to the rate of 

single-photon absorption (Eq.(9)) with 2D inset plot corresponding to total 

rate ( )00, 3 2= =p w . (a) corresponds to linearly-polarised light in the 

x direction. 
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Figure 5: 1D Plots of the total and individual contributions to the rate of 

single-photon absorption (Eq.(9)) with 2D inset plot corresponding to total 

rate ( )00, 2= =p w . (a) corresponds to linearly-polarised light in the x 

direction. 

Discussion and Conclusion LG modes are solutions to the 

paraxial wave equation, and therefore must strictly be bound to 

any approximations associated with it. Detailed conditions of 

where the paraxial approximation fails for general laser modes 

can be found in  [38,39]. If one wishes to rigorously account 

quantitatively for the longitudinal fields of very strongly-

focused 
0 w  beams, then either (a) the non-paraxial 

solutions should be utilised [28,29], (b) a systematic expansion 

in the paraxial parameter in the spirit of previous 

studies [3,49,50] or (c) explicilt inclusion of the focusing 

approach with high NA  [18,32,51–53] should be adopted. In 

relation to this it is worth mentioning some recent work 

highlighting a class of paraxial beam which exhibit large 

longitudinal components but under paraxial focusing 

conditions  [54,55]. The first-order nature of the longitudinal 

fields this work has concentrated on means their contributions 

are completely valid within the paraxial regime. 

It is worth discussing a subtle point about the method of 

deriving the electric displacement (4) and magnetic (5) fields 

which were derived using the divergenceless nature of electric 

and magnetic fields in free space. The magnetic field could have 

been derived using Faraday’s law ( ) ( )⊥ = − te r b r  

which yields the fields as in (5) plus second-order corrections 

to the transverse field which essentially stem from 2 2 z  

variations of the amplitude. Similarly the Maxwell-Ampere 

Law would give second-order transverse corrections to the 

transverse electric displacement field. Working within the 

paraxial approximation 2 2   z k z  these terms have been 

neglected here due to the fact they only become important in 

situations where a paraxial description of the field would be 

inaccurate. It has been highlighted how for highly-focused 

vortex beams these second-order transverse fields exhibit 

unique features for 2=  [21,32]. Similarly, it is worth 

making the point that restricting our results to within the 

Rayleigh range is legitimate for LG modes as the z dependence 

of the full, non-Rayleigh range LG mode function only leads to 

longitudinal and transverse fields which are higher-order in the 

paraxial parameter (i.e. second-, third-, and so on post-paraxial 

approximations), and thus are actually beyond the validity of 

the paraxial wave equation and so their inclusion is not 

supported here either.  

The field of twisted light and optical OAM has largely been 

concerned with applications in mechanical nanomanipulation, 

communications, and quantum information studies – only in the 

last few years have the unique properties of twisted beams been 

implemented in atomic and molecular optics and spectroscopy. 

Here we have highlighted how in such studies, longitudinal 

fields of paraxial optical vortices must be accounted for in 

general. In particular our analysis shows that deviation from the 

purely zeroth-order transverse field description most 

appreciably occurs for optical vortex modes with 

1, 1=  =  or 1, 0= =  and values of  
0w  around a few 

integer multiples of the wavelength. The most striking 

differences in these cases occur for nanostructures placed close 

to the so-called vortex singularity. Nanostructures with specific 

orientation with respect to the optical axis have more potential 

to exhibit larger and more interesting effects with the 

longitudinal fields than systems of randomly oriented 

structures. Unlike the strongly focused case 
0 w  where the 

total longitudinal components can dominate the transverse 

fields, here it has been shown that for paraxial optical vortices 

the inclusion of first-order longitudinal fields is still important 

both qualitatively and quantitatively, as they introduce novel 

optical interactions with matter as well as alter the 

electromagnetic fields and corresponding position-dependent 

intensity structure.  

K.A.F. thanks the Leverhulme Trust for funding through a 

Leverhulme Early Career Fellowship ECF-2019-398.  
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