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Abstract

Motivation: The analysis of longitudinal datasets and construction of gene regulatory networks provide
a valuable means to disentangle the complexity of microRNA-mRNA interactions. However, there are no
computational tools that can integrate, conduct functional analysis and generate detailed networks from
longitudinal microRNA-mRNA datasets.

Results: We present TimiRGeN, an R package that uses time point based differential expression results to
identify miRNA-mRNA interactions influencing signalling pathways of interest. miRNA-mRNA interactions
can be visualised in R or exported to PathVisio or Cytoscape. The output can be used for hypothesis
generation and directing in vitro or further in silico work such as gene regulatory network construction.
Availability and implementation: TimiRGeN is available for download on Bioconductor
(https://bioconductor.org/packages/TimiRGeN) and requires R v4.0.2 or newer and BiocManager

v3.12 or newer.
Contact: k.patel5@ncl.ac.uk, daryl.shanley@ncl.ac.uk

Supplementary information: Supplementary data is available at Bioinformatics online.

1 Introduction

microRNAs (miRNAs) are single-stranded functional RNAs, around 16-
22 nucleotides long which target specific mRNAs for degradation or
translational repression; thus affecting protein levels (Selbach et al., 2008).
Targeting is achieved by complementary binding between the 3'UTR of
the target mRNA and a 7-8 nucleotide sequence found on the 5'UTR
of the miRNA, known as the seed sequence (Bartel., 2004). There is
increased clinical interest in miRNAs for several reasons: 1) miRNAs can
be tested in animal models to understand human diseases and conditions.
An example is miR-140-5p which is up-regulated during chondrogenesis
and down-regulated during osteoarthritis (Barter et al., 2015; Miyaki et al.,
2010). 2) miRNAs can be secreted via exosomes into surrounding blood,
extracellular matrix and urine (Leidinger et al., 2013; Chaturvedi et al.,
2015; Chen et al., 2017). Their presence in body fluids provides valuable
non-invasive biomarkers to assess the state of difficult to access tissues
such as tumours, brain and bone. 3) Lastly, miRNAs have potential
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as therapeutic agents as they modulate expression of specific mRNAs
(Schwarzenbach et al., 2014).

However, in the laboratory, miRNAs are difficult to study, primarily
because a single miRNA can regulate many mRNAs and a single mRNA
can be regulated by multiple miRNAs. miRNA-mRNA interactome
studies report over 18,000 interactions in HEK293 cells and over 34,000
interactions in human hepatoma cells (Helwak et al., 2013; Moore et al.,
2015). A complementary strategy is to use a computational approach. The
analysis of longitudinal miRNA-mRNA expression data, construction of
Gene Regulatory Networks (GRNs) and subsequent dynamic modelling,
is a particularly useful means to gain a better understanding of miRNA-
mRNA interactions (Qin et al., 2015; Proctor et al., 2017; Ooi et al., 2018).
GRNs are useful tools for integrating mutli-omic data on mechanistic
schematics. Yet, currently there is no computational tool that can handle
longitudinal miRNA-mRNA datasets and reduce the volume of data to an
extent where GRN construction is possible. This is presented in Table 1.
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Table 1. miRNA-mRNA integration tools

Tool name Availability Time Functanalysis  Reduction Updated
anamiR Bioc X v:Kegg React,+ v 2018
DREM?2 Install v v:GO X 2020
MAGIA2 Online X v :DAVID v 2012
miARMa-seq  Install v v:GO,Kegg X 2019
miRComb SF v v:GO,Kegg v 2020
miRIntegrator Bioc X v:Kegg,React v 2016
miRNet Online X v:GO,Kegg X 2021
miRTarVis+  Online X X v 2020
Sigterms SF X v:GO v 2009
SpidermiR Bioc X X v 2020
ToppMiR Online X v:GO v 2021

Table 1. Comparison of miRNA-mRNA integration tools: Several tools are
avaialble as R packages that can be downloaded from Bioc (Bioconductor) or
SF (SourceForge). Other tools can be installed locally or are available online.
Some tools are capable of handling time series datasets. Several can perform
funct (functional) analysis, usually utilising GO, Kegg, React (Reactome),
DAVID or others (+) and a few tools can reduce the volume of data. Also
shown is when each tool was last updated.

Many existing tools (Table 1) have particular strengths, but none
satisfy the criteria necessary to bridge longitudinal multi-omic data and
GRN creation. anamiR, miRIntegrator, MAGIA2, Sigterms and SpidermiR
have substantial miRNA-mRNA integration capabilities but cannot handle
longitudinal datasets (Wang et al., 2019; Diaz et al., 2017; Bisognin
et al., 2012; Creighton et al., 2008; Cava et al., 2017). Web-based tools
such as miRNet, miRTarVis+ and ToppmiR have excellent visualisation
capabilities but also cannot analyse longitudinal datasets (Fan and Xia.,
2018;L’Yietal.,2017; Wu et al., 2014). DREM?2 and miARMa-seq handle
longitudinal datasets, but do not reduce the volume of data enough for
GRN generation (Schulz et al., 2012; Andres et al., 2016). miRComb can
use longitudinal data to generate miRNA-mRNA interactions networks,
but the networks lack detail on upstream or downstream information,
making the output insufficient for GRN generation (Vila-Casadesus et al.,
2016). Furthermore, several tools have not been actively maintained so
their usability may be diminished.

There is clearly a need for a tool that can integrate, functionally
analyse and generate detailed networks from longitudinal miRNA-
mRNA datasets, which can then be used to identify GRNs. Here, we
present the R/ Bioconductor package TimiRGeN, which uses differential
expression (DE) data as input to generate small miRNA-mRNA interaction
networks. Results from 7imiRGeN can be exported to Cytoscape or
PathVisio for further bioinformatic analysis (Smoot et al., 2011; Kutmon
et al., 2015). The TimiRGeN package thereby provides a much-needed
means to generate hypotheses from longitudinal multi-omic datasets. To
demonstrate the capabilities of the package several datasets were analysed
(see methods), including a comprehensive RNAseq time series miRNA-
mRNA folic acid (FA) induced mouse kidney injury dataset (Fig.1)
(Craciun et al., 2016; Pellegrini et al., 2016).

2 Methods

FA data from GSE61328 (miRNA) and GSE65267 (mRNA) were
downloaded using the fastgc-dump function from SRA toolkit and fastq files
were checked with FastQC (Leinonen et al., 2010; Andrews et al., 2010).
Cutadapt removed adapter sequences from miRNA fastq files, and then
the trimmed fastq files were processed with mir2deep (mapper, quantifier
and miRDeep?2 functions) to produce mature miRNA data which could be

imported into R (Martin et al., 2011; Friedlander et al., 2012). Salmon
quant aligned and quantified the mRNA fastq files, and tximport imported
the output of Salmon into R (Patro et al.,2017; Soneson et al.,2015). Mouse
transcriptome GRCm38.cdna.all was indexed for miRNA processing with
Bowtie build and mRNA processing with Salmon index (Langmead et al.,
2010; Cunningham et al., 2019). In R, limma was used for DE analysis.
(Ritchie et al., 2015). The makeContrasts function performed time point
based DE. The zero time point was contrasted against each subsequent
time point (1, 2, 3, 7 and 14 days after folic acid injection). Results were
analysed with the 7imiRGeN R package. For the FA kidney injury dataset,
the combined mode of analysis found the "Lung fibrosis" WikiPathway
(WP3632) to be consistently enriched during days 3, 7 and 14 of the time
course. The "Lung fibrosis" pathway was analysed for potential miRNA-
mRNA interactions. Twenty interactions were kept because they were
found in at least two databases and had Pearson correlations lower than
-0.5. Results were exported to create a dynamic miRNA integrated Lung
fibrosis signalling pathway in PathVisio. CellDesigner was then used to
create a SBML formatted GRN (Funahashi et al., 2008). A second mouse
kidney injury dataset generated by Unilateral Ureter Obstruction (UUO)
was downloaded from GSE118340 (miRNA) and GSE118339 (mRNA)
(Pavkovic et al.,2017). UUO and FA datasets were processed and analysed
using the same methods. A ten time point longitudinal miRNA-mRNA
breast cancer dataset was downloaded and processed as is described in
the supplementary data. This dataset underwent two separate analysis
with TimiRGeN. Once where DESeq2 was used for pairwise DE and a
second time where DESeq2 performed whole time course DE with the
LRT method (Baran-Gale et al., 2016; Love et al., 2014). A microarray
hypoxia dataset was downloaded from GSE47534 and also put through
TimiRGeN analysis (Camps et al., 2014). The [umi and AgiMicroRna
packages were used for processing and limma for pairwise DE (Du et al.,
2008; Lopez-Romero et al., 2011). Microarray platforms GPL6884 and
GPLS8227 were downloaded and gene IDs extracted to create a list of probes
for enrichment analysis. Scripts and data for reproducibility are linked to
in the supplementary data.

3 Results
3.1 Time point and microRNA specific analysis

Pairwise miRNA and mRNA DE data (Log2FC and adjusted P values)
from each time point can be used as input for 7imiRGeN. The tool works
on RNAseq and microarray data, and it has two modes of analysis. The
combined mode analyses miRNA and mRNA data from the same time
point together, and here each gene from a time point can be filtered
for significance independent of all other time points. The separate mode
analyses miRNA and mRNA data independent of each other. Separate
mode analysis allows for a miRNA or mRNA from a time point to be
filtered for significance independent of all other time points and gene
types (miRNA or mRNA). TimiRGeN uses WikiPathways for functional
analysis, and most are curated by either entrez gene IDs or ensemble gene
IDs so TimiRGeN provides both for the user. Neither of these annotation
types can distinguish between -3p or -5p miRNAs, thus 7imiRGeN also
provides adjusted IDs, in case a miRNA-mRNA interaction network is
generated with both the -3p and -5p versions of a miRNA.

3.2 Filtering data with time based functional analysis

TimiRGeN offers two functional analysis methods: time dependent
pathway enrichment and temporal pathway clustering analysis. Both use
the rWikiPathways package an API for the WikiPathways database to find
signalling pathways of interest (Slenter et al., 2018).
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Fig. 1. Pipeline of the TimiRGeN R package: The FA miRNA-mRNA data are input and filtered for significantly expressed genes for each time point. From here, one of two methods
can be used to find WikiPathways of interest. A) time dependent pathway enrichment to find enriched pathways at each time point. The enriched pathways are ranked in descending order
of adjusted P values on bar plots. Results from day1 and day 14 are shown. Or B) temporal clustering where global trends of the pathways over time are clustered. Two clusters are shown
here. Each line is a pathway and the colour represents how well a pathway fits into a cluster. Ranking from highest to lowest are: red, orange, yellow. miRNA-mRNA interactions within
a selected signalling pathway can be predicted by filtration of miRNA-mRNA pairs using databases and correlation. C) Filtered miRNA-mRNA pairs can be viewed in R. Nodes are pink
for miRNAs or blue for nRNAs and edges are colour coded by correlation over time. D) Behaviour of genes within the miRNA-mRNA interaction network can be viewed across the time
course and genes which pass a threshold (>1.5 in this example) are highlighted. E) The genes can also be hierarchically clustered to identify trends. F) Expression changes within the clusters
can be plotted. These line plots include a grey line (data points) and a red line (smooth spline). G) A selected miRNA-mRNA pair (mmu-miR-181c-5p and Plau) can be analysed using
cross-correlation analysis. H) The selected mRNA (red) and miRNA (blue) can also be displayed over the time course. The data is scaled and interpolated over a spline and the correlation
is displayed. I) Regression analysis can be performed on a selected miRNA or mRNA. Plau was selected, so its expression over time is predicted based on the chosen miRNAs that target it.
In this example mmu-miR-181c-5p is selected to predict the behaviour of Plau. Expression values of Plau are displayed as red dots and the predicted expression of Plau is displayed as a
dashed blue line. R? and Pvalue are shown. J) Regression can also be performed between a miRNA-mRNA pair. The OR (odds-ratio) between the two time series can be calculated, along
with the 95% CI (confidence intervals). Correlation, R?, Pvalue, OR and CI are rounded to 2 decimal places. Network data can be exported to PathVisio or Cytoscape
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S Fig. 2. miRNAs influencing anti-fibrosis factor Tnfa and pro-fibrosis factor Igfl: This
/miR27a3p GRN shows how FA may be down-regulating let-7c-5p, let-7e-5p, let-7g-5p, miR-18a-5p,
O—os/ Tofa b0 miR-26b-5p, miR-29a-3p, miR-29¢-3p, miR-365-3p and miR-98-5p, which are all predicted

to target pro-fibrosis factor Igf1. Also this GRN indicates how FA may up-regulate miR-27a-3p,

which is predicted to target anti-fibrosis factor Tnfa. Reduction of Tnfa will increasing levels
of pro-fibrosis factor Tgfb.
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3.2.1 Time dependent pathway enrichment method
Overrepresentation analysis from clusterProfiler is applied to time series
data (Yu et al., 2012). Hypergeometric tests are performed to contrast the
number of genes found in common between each time point (after filtering
for significantly differentially expressed genes) and each species specific
WikiPathway. This produces a list of enriched pathways for each time
point (Fig.1A). Alternatively, if the separate mode of analysis is applied,
enrichment analysis is performed for each time point per gene type. The
background/ universe used to perform overrepresentation analysis can be
adjusted by the user e.g. probes in a microarray or all known genes within
a cell type.

3.2.2 Temporal pathway clustering method

Temporal pathway clustering (Fig.1B) utilises Mfuzz (Kumar et al., 2007).
Supervised soft clusters are created based on temporal patterns which
stem from the number of genes found in each time point (after filtering
for significance) and each species specific WikiPathway. This will show
global trends within the dataset. Pathways are assigned fitness scores for
each cluster, from 0-1, and these can be filtered to find highly correlating
pathways in clusters of interest. If the separate mode is used, temporal
pathway clustering is performed for each gene type individually.

3.3 Filter miRNA-mRNA interactions from a signalling
pathway of interest

After a signalling pathway has been selected for further analysis, the
TimiRGeN pipeline will extract each mRNA that is found in common
between the selected pathway and the input mRNA data. Each of these
mRNAs are assumed to be potential targets of every miRNA in the
input data. This results in a miRNA-mRNA interaction matrix which
can be used to filter out miRNA-mRNA interactions that are not likely
to occur by using correlations and miRNA-mRNA interaction databases
TargetScan, miRDB and miRTarBase (Agarwal et al., 2015; Chen et al.,
2020; Huang et al., 2020). Correlations are calculated for changes
over time (Log2fc or average expression) between a given miRNA and
a given mRNA. The default method is Pearson, but users can also
select between Spearman or Kendall. Since miRNAs negatively regulate
mRNAs, highly negative correlation values from miRNA-mRNA pairs
could be used to identify miRNA-mRNA interactions that are likely
regulate the selected pathway. Users can define a correlation threshold to
filter for miRNA-mRNA interactions. The default setting for maximum
correlation is -0.5. Three miRNA target databases are also usable
to filter for miRNA-mRNA interactions. This includes two predictive
target databases (TargetScan and miRDB) and one functional database
(miRTarBase) which has had all functional support labelled as "weak"
removed. Predictive databases TargetScan and miRDB were selected
because, although they have differences in their prediction methods,
they share usage of 3’UTR-seed site complementarity and seed site
conservation to predict miRNA-mRNA interactions (Peterson et al., 2014).
Comparisons between different miRNA-mRNA prediction methods find
that 3°’UTR-seed site complementarity identify the most true positive
miRNA-mRNA interactions (Maziere et al., 2007; Zhang and Verbeek.,
2010). Interactions found or not found in the three databases will be
represented as 1 or O respectively. Users have the option to choose which
combination of databases they wish to mine information from and they
can choose the number of databases which an interaction needs to be
mined from to be filtered. The default setting for the minimum number
of databases needed to filter a miRNA-mRNA interaction is 1. Once
correlation and databases have been used to filter for miRNA-mRNA
interactions which may be affecting the signalling pathway of interest, they
can be displayed in an internal R network (Fig.1C). Resulting genes found
in the miRNA-mRNA interaction network can be viewed over the time

course. Here genes that pass a user defined threshold can be highlighted
(Fig.1D). The genes can also be sorted into hierarchical clusters shown by
a dendrogram, from which clusters can be plotted to show the behaviour of
the genes (Fig.1E-F). A heatmap which is compatible with the dendrogram
can also be generated (S Fig.1).

3.4 Longitudinal miRNA-mRNA pair analysis

The TimiRGeN R package has a suite of longitudinal analysis approaches
for analysing predicted miRNA-mRNA interacting pairs. This includes
several correlation and regression based methods which are commonly
used to analyse longitudinal datasets (Ding and Bar-Joseph., 2020). Cross-
correlation analysis is a useful method to determine similarity between two
time series (Fig.1G). If the time series is of sufficient length, the metric can
be used to identify delays and further filter for miRNA-mRNA interacting
pairs with interesting dynamics (Jung et al., 2011; Lakshmipathy ez al.,
2007). miRNA-mRNA pairs can also be plotted in a time series line plot.
This plot can be scaled and interpolated over a spline (Fig.1H). Two types
of regression analysis can also be performed. Firstly, a linear model is
generated from a selected gene (mMRNA or miRNA) and any number
of its predicted binding partners. The combination of miRNA-mRNA
interactions are left for the user to define. The longitudinal behaviour
of the selected gene is predicted based on the binding partners used in
the linear model. The predicted simulation and the gene data are plotted
along with the R? value and Pvalue (Fig.1I). This type of regression
prediction is useful in cases where a mRNA is targetted by multiple
miRNAs or if a miRNA targets multiple mRNAs. Next, a linear model can
be created from a single miRNA-mRNA pair. The odds-ratio is calculated
from the regression coefficient. This measures the likelihood of one gene
influencing the behaviour of another gene and has previously been used
as a metric to determine miRNA-mRNA relationships (Jayaswal et al.,
2009). 95% confidence intervals are calculated which give a range where
there is a 95% certainty of the mean of the data being within the range
(Fig.1J) (Szumilas., 2010). Selecting a miRNA-mRNA pair to investigate
can be made easier by plotting a heatmap which orders the interacting pairs
by descending correlation (S Fig.2). Statistics generated from correlation
and regression analyses may be overestimations if too few time points are
found within the input data. Thus the tool will generate an error if fewer
than three time points are detected and warnings if fewer than five time
points are detected.

3.5 Output of the TimiRGeN package and exportation of
data from R

TimiRGeN is an open-ended tool that exports to networking software
PathVisio and Cytoscape for further in silico analysis. The TimiRGeN R
package produces two data files for upload onto PathVisio. A file which
includes a single result type, e.g. Log2FC, from each time point and
gene IDs. This can be uploaded into PathVisio to show how the genes
in a signalling pathway of interest change over the time course. Also a
file which contains all filtered miRNAs can be uploaded into PathVisio.
The second file requires the user to install the MAPPbuilder app in
PathVisio (Kutmon et al., 2015). With this, changes over time in a miRNA
integrated signalling network of interest can be visualised to show how the
miRNAs may be influencing the signalling pathway. This type of display is
ideal for bottom-up GRN construction (S Fig.3). Filtered miRNA-mRNA
interactions can also be exported to Cytoscape for improved visualisation
and alternative analysis via Cytoscape apps (Smoot et al., 2011). The
enhanced graphics of Cyfoscape are especially useful to visualise large
numbers of miRNA-mRNA interactions (S Fig.4).
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3.6 Data from non pairwise DE

The FA kidney injury dataset had pairwise DE performed using the
zero time point as the denominator. This type of pairwise analysis is
recommended for time series datasets with <8 time points, however longer
time series datasets may be more suitable for DE without using the pairwise
approach e.g. over a cubic spline, maSigPro or the LRT method with
DESeq?2 (Conesa et al., 2006; Spies et al., 2019). In these cases, users are
recommended to filter out significantly differentially expressed genes from
averaged count or expression data, and to use this as input for 7imiRGeN.
Pathway enrichment can be used to identify the most enriched pathways
from the whole time course or temporal clustering can first cluster genes
based on temporal behaviour. From here, genes can be sorted based on
clusters, and then pathway enrichment can be used to identify enriched
pathways from each temporal cluster. An alternative pipeline is shown in
S Fig.5 and this is explained in section 5 of the vignette.

3.7 Datasets with multiple interventions

More complex datasets may include interventions other than time. In these
cases, TimiRGeN should be used for each individual time series and then
the results can be contrasted between different interventions. This requires
the same signalling pathway to explored in each time series. As an example,
the "Lung fibrosis" pathway was analysed in the FA and UUO datasets. A
pipeline is shown in S Fig.6 and section 6 of the vignette provides detail.

3.8 Hypothesis generation with TimiRGeN

To demonstrate the tools ability to generate biologically relevant
hypotheses, the FA mouse kidney injury dataset was analysed with
TimiRGeN (Fig.1). Findings from the analysis were used to hypothesise
how of FA can induce fibrosis. A GRN was constructed to formalise
the hypotheses (Fig.2). Investigation of these results can be used to
ratify the miRNA-mRNA interactions predicted by 7imiRGeN and make a
stronger case for experimental validation. FA injection is known to cause
acute injury conditions in the kidneys, resulting in a reversible chronic
kidney disease (CKD) like condition (Craciun et al., 2016; Pellegrini
et al., 2016). During the 14 day time course, a number of different
processes occur, such as inflammatory response, scar tissue forming,
wound healing, cytokine activity (Leask and Abraham., 2004). TimiRGeN
analysis highlights several of these processes and GRNs were generated
to represent how miRNAs may be influencing fibrosis factors (Fig.2) and
scar tissue forming by collagen synthesis (S Fig.7-S Fig.10). The GRN
presented in Fig.2 indicates that Igf] acts as a miRNA sponge. Many of
the presented miRNA-/gf] interactions have been reported, including miR-
18a, miR-98, miR-365 and miR-26b (Liu et al.,2017; Hu et al., 2013; Sun
etal.,2019; Liu et al., 2016). let-7c-5p has been reported to target Igf1, and
TimiRGeN predicted other let-7 family genes let-7e-5p and let-7g-5p also
target /gf] (Liu et al., 2018). Finally, miR29 family members are predicted
to target /gf1, and research indicates that Igf7 is a miR-29 family sponge
(Gao et al., 2016). It is unknown why /gfI may be a miRNA sponge, but
Igf1 is known to induce collagen production, which contributes to kidney
fibrosis and CKD (Hung et al., 2013). Exploration of Igfl as a miRNA
sponge in kidney injury conditions could be beneficial for therapeutics for
CKD. Overall, this case study highlights that the 7imiRGeN R package can
be used to identify biologically relevant miRNA-mRNA interactions from
potentially tens-of-thousands of possible miRNA-mRNA interactions. The
ability to reduce the volume of big multi-omic data is an important feature
of TimiRGeN and one which could lead to making miRNA research easier
and faster for users. Further analysis on a breast cancer dataset is also
found in the supplementary data (S Fig.11-S Fig.16).

4 Conclusion

As recognised in Bar-Jones er al (2012), generation of complex
transcriptomic datasets will continue, so computational biologists will
need more sophisticated and up-to-date software to analyse these datasets
(Bar-Joseph et al., 2012). We have presented a novel R/Bioconductor
package which aims to help researchers find direction when working with
large longitudinal multi-omic datasets. Overall, 7imiRGeN is a useful new
tool which could become a part of miRNA-mRNA data analysis pipelines.

Supplementary data

Supplementary data contains additional work. 1) Extra figures not shown
in Fig.1. 2) Alternative pipelines for non pairwise DE analysis and
multivariate datasets. 3) Alternative analysis of the FA kidney injury
dataset. 4) A complete workflow for a breast cancer study. Including
identification of a suitable dataset, processing and performing analysis
with 7imiRGeN to generate a GRN which identifies miRNAs that influence
TGF-beta driven tumour fibrosis. 5) Links to TimiRGeN R scripts for
reproducibility, vignette and a download link are also found in this file.
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