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Abstract

Markov chain models are a commonly used statistical technique to generate realis-

tic sequences of precipitation, but the choice ofmodel order can strongly affect their

performance. Although it is widely accepted that a first-order Markov chain repro-

duces precipitation occurrence in temperate latitudes quite well, it is also well

known that first-order models have several shortcomings. These include a limited

memory of rare events and inaccurately reproducing the distribution of dry-spell

lengths, and their performance outside of temperate regions is less well understood.

We present, therefore, the first assessment of model-order optimization which is

both global in extent and which uses four evaluation methods: the Bayesian infor-

mation criterion (BIC) and each model-order's ability to reproduce wet- and dry-

spell lengths, and the interannual variability of precipitation occurrence. As well as

a global analysis, we also assessed Markov chain performance and model-order

selection separately within five climate regimes based on the Köppen classification

system: tropical, dry, temperate, continental and polar. These metrics were used to

determine the best performing model-order to generate realistic time series of pre-

cipitation across the five different climate regimes.We find that the choice of model

order is most sensitive to the performancemetric and less dependent on the climate

regime. Across all regimes, we show that a first-order model performs best when

evaluated with BIC and for generating realistic wet-spell distributions across all cli-

mate regimes except tropical, where third order performs best. We also find that a

third-order model reproduces observed dry-spell distributions the best and second

order commonly reproduces the interannual variability of precipitation occurrence

across all regimes except tropical, where third order once again performs best. Our

findings highlight the benefits of a flexible and tailored approach to the choice of

Markov chain order for constructing precipitation series.
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1 | INTRODUCTION

Stochastic weather generators are a technique used to
produce synthetic rainfall time series with high spatial
and temporal resolutions. Computationally inexpensive
tools, they can be used to produce long time series for use
in hydrological and agricultural risk assessments when
the record length or quality of representative observa-
tional data are inadequate. For example, measurement
time series are often too short to robustly estimate the
probability of extreme events, such as long wet- or dry-
spells. Stochastic weather generators were initially devel-
oped to address these issues (Semenov et al., 1998),
though they have since been applied to a broader range
of problems (e.g., perturbing their parameters so they
produce synthetic time series under future climates
(Eames et al., 2011)) and to other climate variables.

Precipitation is one of the most important variables
for assessing risks affecting crop growth and the hydro-
logical cycle. Precipitation is also often considered as the
primary variable when stochastically modelling other
weather variables (e.g., solar radiation, maximum and
minimum temperatures) which can be conditioned on
the precipitation status (Richardson, 1981). It is impor-
tant that impact and risk assessors have access to the
most accurate high-resolution models (Dubrovský, 1997),
as generated data is often used in place of insufficient
observed records as an input to hydrological, ecological,
and agronomic studies (Larsen and Pense, 1982). There-
fore, it is particularly important to ensure accurate
modelling of daily precipitation.

Markov chains are a commonly used stochastic
approach to modelling daily precipitation. Simulated
occurrence of rain is conditional on the previous day(s)'
precipitation status. The order of a Markov chain model
refers to the number of previous days considered, that
is, a first-order model conditions precipitation status on
the status of one previous day. Several of the widely
used Markov-type weather generators (e.g., WGEN
(Richardson and Wright, 1984), SIMMETEO (Soltani
and Hoogenboom, 2003a), and AAFC WG (Qian
et al., 2005)) use the same model order regardless of
geographical location. Furthermore, many of these
weather generators have been designed, implemented
and tested for climates local to where they were pro-
duced, meaning they may not be optimal at generating
realistic rainfall time series in different climates
(Semenov et al., 1998). Despite the common use of
first-order models in climate and hydrological impact
studies, their limited memory of extremes has been
criticized (Semenov and Barrow, 1997), and though it is
accepted that different sites require different orders,
first-orders remain prevalent (Lennartsson et al., 2008).

However, the stochastic dependence on previous days'
precipitation is dependent on particular meteorological
drivers (Chin, 1977), with first-order models commonly
misrepresenting important meteorological properties
(Ailliot et al., 2015).

Although Markov-chain models are the focus of this
study, there are several other methods used to stochastically
model precipitation occurrence, including Markov renewal
processes (MRPs) (Foufoula-Georgiou, 1987) and series-
based approaches (e.g., LARS-WG (Qian et al., 2005)). Both
methods use observed wet or dry-spell lengths to generate
synthetic precipitation time series differently to Markov-
chain models. In MRP models, the probability of pre-
cipitation depends on the number of days since the last
precipitation event, whereas series-based weather gen-
erators draw lengths of wet and dry spells from semi-
empirical distributions (Semenov et al., 1998).

Akaike (Tong, 1975) and Bayesian information criteria
(BIC; Schwarz, 1978) are commonly used to select model
order, balancing the model fit with the number of parame-
ters. There have been several local or regional studies which
have assessed the best model order, including across the
United States (Schoof and Pryor, 2008), Costa Rica
(Harrison and Waylen, 2000), England (Gates and
Tong, 1976), Sweden (Lennartsson et al., 2008), Canada,
Israel, India and Nigeria (Jimoh and Webster, 1996) using
information criteria and other methods, including spell
length analysis (Figure 1). Although many of these studies
reiterate that a first-order model is adequate, seasonal and
spatial variations in model-order choice were identified in
all of them. Further studies critique this first-order assump-
tion (Gates and Tong, 1976) and the use of an information
criterion as the sole method of model-order selection
(Hosseini et al., 2011).

Further evidence suggests that using a first-order
model, regardless of location, may not always reproduce
observed weather accurately. Low-order models are
known to underestimate interannual and inter-seasonal
precipitation variances (suffering from overdispersion
(Katz and Parlange, 1998)), despite often being chosen by
information criteria (Harrison and Waylen, 2000). Higher
order models may more accurately reproduce variances
in weather, though the risk of overfitting becomes more
prominent.

A common use of precipitation generators is to esti-
mate the probabilities of extreme events, such as long
wet or dry spells, due to their ability to simulate
long time series (Liao et al., 2004). Although information
criteria are the most common methods used to assess
model-order performance, they do not test the ability
to accurately reproduce the distribution of wet- and
dry-spell lengths, despite their importance for many
applications. It is known (Lennartsson et al., 2008) that
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first-order models often do not reproduce dry spells
accurately even though they are favoured by informa-
tion criteria. This inability is an established issue with
many Markov-type weather generators (Semenov and
Barrow, 2002). Wet spells are important for hydrologi-
cal modelling, impacting flood risk and soil erosion, while
knowledge of dry-spell behaviour impacts agricultural and
environmental planning, preparation for drought and irri-
gation infrastructure (Ochola and Kerkides, 2003). There-
fore, a method to assess the ability of different model
orders to reproduce observed wet- and dry-spell distribu-
tions is needed.

This study extends the existing knowledge base in
several respects that are important for providing better
guidance to users and developers of Markov chain
weather generators. First, we undertake an assessment
of preferential model order using multiple metrics of
model performance. Alongside the BIC, we also quan-
tify the ability of different model orders to reproduce
observed distributions of wet- and dry-spell length, and
the interannual variability (IAV) of precipitation
occurrence. In each case, we consider the relative per-
formance of models with orders 0, 1, 2 and 3. Higher
orders are not considered in this study due to their
increased risk of overfitting and greater computational
demand, reducing usability. Second, we undertake a
global assessment using more than 44,000 weather sta-
tions across most land areas. Third, using the global
assessment, we consider whether the choice of model
order is systematically dependent on the climate
regime of each location.

Climate patterns can be classified into regimes
according to several different characteristics, such as
annual precipitation, interannual temperature and

precipitation variances, cloud cover and so forth (Belda
et al., 2014). Here, we use the Köppen climate classifi-
cation which is one such classification in widespread
use (Köppen, 1900), using monthly temperatures and
precipitation to identify different climatic regimes
across the world (Figure 2).

2 | DATA

We used daily precipitation data from the Global Historical
Climatology Network Daily (GHCN Daily) to fit Markov
chain properties and evaluate the models. GHCN-D quality
control procedures flag potentially inaccurate or inconsis-
tent records, estimated to affect approximately 0.3% of the
data. Flagged data was removed, and only weather stations
with at least 20 cumulative years of daily precipitation
remaining (Soltani and Hoogenboom, 2003b) were used,
resulting in a total of 44,071 stations. Historical records
were capped at their most recent 30 years, to reduce any
artefacts that may arise from using records of different
lengths.

Each weather station was allocated a climate classifi-
cation, determined by the centre of the Köppen grid cell
which the longitude and latitude of the weather station
was closest to. Locations are allocated to one of five over-
arching classes: tropical, dry, temperate, continental or
polar. Within each class, regimes can be subcategorized
further based on climatic behaviour. Our study applied
each evaluation method to observed data in each over-
arching regime to determine the most appropriate model
order for each climatic zone. Köppen classification data
was taken from Chen and Chen (2013) on a
0.5� × 0.5� grid.

FIGURE 1 Global locations of

previous Markov chain model-order

assessments used to inform this

study [Colour figure can be viewed

at wileyonlinelibrary.com]
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FIGURE 2 The Köppen climate classification according to Chen and Chen (2013). There are some differences in terminology used for

each class; in the current study, we denote class C as “temperate” and class D as “continental.” Figure from Chen and Chen (2013) [Colour

figure can be viewed at wileyonlinelibrary.com]

FIGURE 3 All available

weather stations meeting the

outlined criteria and their associated

overarching climate classification

[Colour figure can be viewed at

wileyonlinelibrary.com]
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It is clear from Figure 3 that there is not global cover-
age, and that some locations, such as the United States
and most of Europe, have a significantly higher density
of weather stations than others (such as Africa and South
America). Nevertheless, even the least sampled class—
polar—has over 400 stations with at least 20 years of
observed data.

3 | METHODS

3.1 | Markov model fitting

A two-state Markov chain-gamma model was used to
simulate the occurrence and amount of precipitation,
with two states referring to a day being either wet or dry.
A day was described as “wet” if precipitation was above
0.1 mm. This method of stochastic modelling is loosely
based on the weather generator WGEN (Richardson and
Wright, 1984). The probability of a wet day is conditional
on the historical precipitation status. A kth-order
Markov-chain refers to the number of conditional k pre-
vious days. For the widely used first-order, two-state
model, the transition probabilities are:

pij=
nij

P1

m=0
nim

ð1Þ

where i and j can represent wet (1) or dry (0) days. For
example, p01 is the probability of a wet day following a
dry day, and n01 the number of wet days following dry
days (calculated from a historical dataset). This process
can be extended to other orders:

pi=
ni

P1

m=0
nm

pijq=
nijq

P1

m=0
nijm

pijql=
nijql

P1

m=0
nijqm

ð2Þ

for orders 0, 2 and 3, respectively. The number of transi-
tion probabilities calculated therefore increases exponen-
tially and can be generalized to 2k+ 1 (where k is model
order). Transition probabilities were calculated for each
month at each weather station, resulting in 12(2k+ 1)

transition probabilities for each station and each model
order. However, the number of independent transition
probabilities is half this number, that is, 12(2k), because
p1 = 1− p0.

It is a common assumption that precipitation amount
is conditionally independent of precipitation occurrence
(Richardson, 1981). Upon generating a wet day, a ran-
dom precipitation amount is independently taken from
the corresponding month's two-parameter gamma distri-
bution. For each month, shape (α) and scale (β) parame-
ters were calculated from wet-day only data for each
station. Thom estimators (Thom, 1958) were used for cal-
culating the shape,

α=
1+ 1+ 4D

3

� �1
2

4D
ð3Þ

and the scale,

β=
�x
α

ð4Þ

parameters, with sample statistic

D= ln �xð Þ− 1
n

Xn

i=1

ln xið Þ ð5Þ

where x refers to amounts of precipitation and n the
number of wet days. This method is used in place of
moment estimators, which are considered “inefficient”
compared with the Thom estimators that make better use
of the information in a dataset (Wilks, 1995).

3.2 | Markov model evaluation

Information criteria are methods that can be used to
determine how suitable different order Markov chains
are for modelling precipitation occurrence, based on cal-
culations of log-likelihood functions from the transition
probabilities (Schoof and Pryor, 2008). Here, we chose
the Bayesian information criterion (BIC) over the Akaike
information criterion (AIC) because Katz (1981) showed
that AIC estimators can be inconsistent, and also BIC is
less prone to asymptotic bias and more widely used in
recent literature (Harrison and Waylen, 2000; Schoof and
Pryor, 2008). This method seeks to find the best model
containing the fewest parameters (i.e., minimal k). For a
two-state Markov chain model of order k, BIC values are
given by
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BIC kð Þ=−2Lk+2k ln Nð Þ½ � ð6Þ

where Lk is the log-likelihood function and N is the num-
ber of days in the historical record used to calculate the
transition probabilities. Lk is calculated from the esti-
mated transition probabilities using the functions given
by Schoof and Pryor (2008) for each model order. The
model order that minimizes BIC is chosen as the best
order.

As there are 12 sets of transition probabilities for each
station, 12 BIC values for each model order were deter-
mined and compared enabling an evaluation of annual
and seasonal model-order dependence. The mode of the
model orders that minimize BIC across each of
the 12 months was taken as the annual model order. Sea-
sonal model-order choices were also studied, using the
mode of the model orders that minimize BIC across June,
July, August (JJA) and December, January, February
(DJF).

In addition to BIC, three other assessment criteria are
considered, providing additional information on model
suitability that cannot be gained by BIC alone. Each
order's ability to reproduce the distribution of wet and
dry spell lengths was also compared. A wet spell was
defined as a period of wet days preceded and followed by
a dry day (and vice versa for a dry spell). For each model
order, 50 years of precipitation data were generated and
the length of every wet and dry spell in the generated
data determined.

Kernel density estimation (KDE) can be used to deter-
mine a non-parametric probability density function of a
random variable (Guidom, 2015). KDE was used here to
estimate probability density distributions (Rajagopalan

et al., 1997) for wet- and dry-spell lengths (see Figure 4
for an example). Upon determining distributions for each
model-order, the root-mean-squared-difference between
the observed distribution and the distributions produced
by each Markov chain was calculated. A bandwidth of
2 days was used for KDE and a test across the climate
regimes indicated that the results are not sensitive to this
choice. In addition to comparing the full spell length
KDE distributions, we also evaluate the performance of
each model order at reproducing four percentiles (75, 90,
95 and 99th) in the tail of the distributions. These percen-
tiles are calculated directly from the underlying spell
length data, rather than from the KDE distributions to
avoid any dependence on the choice of KDE bandwidth.

Finally, each models' ability to reproduce the IAV of
precipitation occurrence was tested. Once again, 50 years
of daily precipitation occurrence was generated. The total
number of wet days in each season or year was recorded,
and the SD of theses 50 values (number of wet days per
season/year over the 50-year period) was calculated. The
model order producing the smallest absolute difference
between the generated and observed SD was deemed to
perform best.

FIGURE 4 Probability density distribution of the length of dry spells (left) and wet spells (right) produced by different model orders

over a 50-year period at a weather station in Highcroft, Tasmania (GHCN-D station ID ASN00094028) [Colour figure can be viewed at

wileyonlinelibrary.com]

TABLE 1 Number of weather stations and corresponding grid

cells in each climate regime

Regime No. stations No. cells

Tropical 4,140 173

Dry 8,555 139

Temperate 20,389 192

Continental 10,552 229

Polar 435 104

TOTAL 44,071 837
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4 | RESULTS AND DISCUSSION

The methods outlined in Section 3 were applied to 44,071
weather stations that met criteria detailed in Section 2.
Results from these weather stations were aggregated into
837 5� latitude by 5� longitude cells (Table 1) to reduce
biasing area-average results to locations with dense sta-
tion coverage (e.g., United States, Figure 3). This also
increased the weighting of locations with sparse data cov-
erage, for example, across Africa and South America. The
climate regime of a grid-cell was allocated by taking
the modal classification from each individual station in
the cell. This methodology was also applied to obtain an
overall model-order for each grid-cell and each method
of analysis used.

4.1 | Bayesian information criterion

The BIC was the first method used to analyse model-
order performance. The BIC optimization most often
selected a first-order model to minimize BIC across all
regimes (Table 2), in agreement with previous literature
(Schoof and Pryor, 2008) but extending this finding to
more regions, regimes and seasons. Although a first-order
model may be allocated overall to each regime, there are
clear behavioural differences between the zones. For
tropical and dry regimes, a sizable minority of cells show
zeroth- or second-order dependence. A sizable minority
of temperate cells (17.1%) are minimized by a second-
order model; however, unlike tropical and dry regimes,
there are very few cells minimized by zeroth-order
model. Conversely, first-order models almost universally
minimize BIC for continental and polar cells (99.2 and
91.8%, respectively).

These differences in behaviour may arise from spa-
tial variation (Figure 5). The majority of the northern
hemisphere extra-tropics are best represented by a
first-order model. There is much more variation across

the southern hemisphere and the tropics, where zeroth-
and second-order models are much more prevalent. For
example, Chilean and Peruvian cells do not show first-
order dependence, but zeroth or second. Central African
cells also show zeroth-order dependence, whereas Main-
land Southeast Asia has many cells with second-order
dependence.

Central Africa primarily has tropical humid cli-
mates (fully humid, monsoon or with dry winters: Af,
Am and Aw, respectively) alongside hot dry steppe
and desert climates to the north (BSh and BWh,
respectively—Figure 2). Cells in tropical humid (Af)
regions were found to show both first- and second-order
dependence in equal measures (42.4%). Although dry
desert (BWh) cells showed overall preference for first-order
models (49.0%), a significant minority (32.7%) showed
zero-order dependence. These differences in climatic zone
account for some of the spatial variation noted in Figure 5.
Cold arid dry steppe (BSk) cells are most often found in the
northern hemisphere and show differences in behaviour to
the overarching regime (dry). BIC was minimized by a
first-order model in 91% of BSk cells—almost 30% more
than the total dry group. The BSk cells without first-order
dependence mostly occur in the South American steppe
and instead show mostly second-order dependence. Sub-
regimes across temperate, continental and polar regimes
performed similarly to their aggregated behaviour.

Several geographical regions have no usable GHCN-D
data as indicated by an absence of cells in their location.
These regions include Northern and South-West Africa,
Maritime Southeast Asia and the Middle East. These
locations are often tropical and dry and are located
around the equator or southern hemisphere. This is a
limitation with using in situ observed data and has the
potential to affect overall model-order preferences.

The same overall picture emerges when model orders
with the best BIC are considered on a seasonal basis
(Table 2), i.e., that first-order models are selected most
often in all Köppen regimes but zeroth-order models are

TABLE 2 Gridded comparison of Markov model-order choices for each of the Köppen climate regimes based on each model order's

ability to minimize BIC. Values shown are the % of grid cells within each climate regime where the mode of individual stations' best model-

order is equal to 0, 1, 2 or 3

0 1 2 3

Regime Annual DJF JJA Annual DJF JJA Annual DJF JJA Annual DJF JJA

Tropical 11.8 17.4 18.5 56.2 52.2 52.8 30.3 27.5 24.7 1.7 2.8 3.9

Dry 18.2 16.1 24.5 63.6 67.8 55.9 17.5 15.4 19.6 0.7 0.7 0.0

Temp. 2.2 4.4 5.5 80.7 80.1 77.9 17.1 15.5 16.6 0.0 0.0 0.0

Cont. 0.4 0.0 0.4 99.2 99.2 98.7 0.4 0.8 0.8 0.0 0.0 0.0

Polar 4.1 3.1 4.1 91.8 84.5 86.6 3.1 11.3 8.2 1.0 1.0 1.0
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a notable minority in tropical and dry regimes and
second-order models are a notable minority in tropical,
dry and temperate regimes. Nevertheless, some seasonal
differences are apparent and can be seen in the model
orders for DJF subtracted from JJA (Figure 6). While the
same model order is selected by BIC across most of the
northern hemisphere in both seasons, it is once again
cells in the tropics and southern hemisphere that experi-
ence the most variation. This variation is shown predomi-
nantly in tropical and dry regions

once again (Table 2), although these fluctuations are
minor. Dry climates exhibit the most noticeable seasonal
fluctuation, with first-order minimizing BIC in 67.8%
cases in DJF but only 55.9% in JJA. This is reflected in
the increased number of zeroth-order cells in JJA.

4.2 | Spell-length analysis

Although first-order models most commonly minimize
BIC across all climate regimes, this is not always the case
when other metrics are used to assess model-order
performance.

Across all regimes except tropical, a first-order model
most commonly outperforms others at reproducing the dis-
tribution of wet-spell lengths (Table 3). First-order models
outperform the other models for wet-spell length at a large
majority (89.9%) of continental regime grid cells, whereas
sizeable minorities of grid cells are best represented by
third-order models across dry, temperate and polar regimes
(24.5, 33.7 and 26.8%, respectively). In the tropical regime,
by contrast, third-order models most often perform the best,
followed by the second- and then first-order models. Across
all regimes, zero-order models rarely or never reproduce
wet-spell length distributions best.

Though third-order models only outperform other
orders for wet-spell lengths in tropical regimes, they are
dominant as the best order for reproducing dry-spell
length distributions (Table 3) across all regimes. This
supports the work of Lennartsson et al. (2008), who
found that higher order models better reproduce the dis-
tribution of very long dry spells in Sweden. There is less
spatial variation of optimal model order for dry spells
than with BIC and wet spells, reiterated by the high per-
centage (at least 78% across each regime) of cells being
best represented by a third-order Markov chain (Table 3).

FIGURE 5 Model-order

choices for each 5� × 5� grid cell,

with colour representing model-

order choice as determined by

Bayesian information criterion

[Colour figure can be viewed at

wileyonlinelibrary.com]

FIGURE 6 Model-order choice

for JJA (BIC) minus the model-order

choice for DJF (BIC) [Colour figure

can be viewed at

wileyonlinelibrary.com]

6230 WILSON KEMSLEY ET AL.

http://wileyonlinelibrary.com
http://wileyonlinelibrary.com


For tropical and dry climates, there is a monotonic
increase in preference for a model as the model's order
increases (hence with the lowest percentages for zeroth-
order models). For the other climate regimes, more than
88% of grid cells have third-order models as the best per-
forming for dry spells, and first-order models are the next
most frequent.

The ability of each model order to reproduce per-
centiles of the dry-spell length distributions was also

studied. Percentage differences between the observed
and generated dry-spell length 75th, 90th, 95th and
99th percentiles were calculated for each station, with
the median percentage difference across grid cells
given in Table 4. Medians were taken across regimes
as opposed to means to reduce the influence of
outliers.

While each model order underestimates the 99th per-
centile of observed dry spells, there is a large

TABLE 3 Gridded comparison of Markov model-order choices for each of the Köppen climate regimes based on each model's ability to

reproduce the IAV of precipitation occurrence (labelled IAV) and distributions of wet-spell length and dry-spell length. Values shown are

the % of grid cells within each climate regime where the mode of individual stations' best model-order is equal to 0, 1, 2 or 3

0 1 2 3

Regime Wet Dry IAV Wet Dry IAV Wet Dry IAV Wet Dry IAV

Tropical 5.1 0.0 1.7 21.3 6.3 7.9 25.8 8.6 41.0 47.8 85.1 49.4

Dry 0.0 1.4 0.0 67.8 9.2 11.2 7.7 10.6 62.9 24.5 78.7 25.2

Temp. 1.1 1.1 0.0 58.6 6.7 13.3 6.6 3.9 58.6 33.7 88.2 28.2

Cont. 0.0 0.4 0.0 89.9 5.2 25.6 0.0 0.0 52.9 10.1 94.4 21.4

Polar 0.0 2.2 1.0 69.1 4.4 17.5 4.1 1.1 54.6 26.8 92.2 26.8

TABLE 4 The gridded median percentage difference between observed and generated dry-spell length percentiles for each of the

Köppen climate regimes and each model order

Percentile

Model order 75th 90th 95th 99th

Tropical 0 −6.5 −20.0 −25.3 −38.5

1 14.5 2.4 −4.0 −19.9

2 0.0 0.0 −4.6 −15.2

3 3.8 8.3 1.2 −8.0

Dry 0 −20.5 −29.3 −34.2 −38.3

1 5.8 −5.8 −13.1 −24.0

2 −15.3 −16.3 −20.1 −23.6

3 5.0 −2.8 −9.3 −17.7

Temperate 0 −26.4 −32.4 −36.3 −39.3

1 4.8 −1.6 −6.7 −16.2

2 −25.0 −18.1 −16.5 −18.4

3 3.5 0.3 −0.8 −6.0

Continental 0 −25.0 −32.5 −35.4 −39.9

1 3.0 −3.4 −7.9 −13.7

2 −25.0 −17.9 −16.7 −17.0

3 3.0 0.4 −1.0 −5.4

Polar 0 −25.0 −33.3 −38.5 −46.7

1 4.1 −2.1 −8.2 −18.2

2 −25.0 −16.7 −18.0 −20.7

3 0.0 0.0 0.0 −7.7
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improvement from zeroth order to third. Second- and
first-order models tend to underestimate by a similar per-
centage, with third orders having as little as a 5.4%
underestimation in continental regimes. This supports
the work of Lennartsson et al. (2008), suggesting that
lower order models do not accurately reproduce the dis-
tribution of very long dry spells. The largest median bias
in these extreme (99th percentile) dry spells occurs in the
dry Köppen regime, but even here the bias is much less
when considering something slightly less extreme
(e.g., 95th percentile) providing that a third-order model
is used. In all regimes, there is again a large improvement
in reproducing the 95th percentile from zeroth to third
order, though in this case second-order models tend to
have larger median biases than first order. This is particu-
larly noticeable in temperate, continental, and polar
regimes. Third-order models continue to have the
smallest percentage differences at the 75th and 90th per-
centiles except for the tropical regime where the second-
order model performs best.

The dominant patterns in the results are: (a) at the
75th percentile, first- and third-order models slightly
overestimate dry-spell lengths whereas the other two
orders underestimate them; (b) the median bias in dry-

spell lengths mostly decreases monotonically as the per-
centile increases, ending in the underestimation of the
99th percentile spell lengths by all model orders and
(c) with few exceptions the biases are smallest for the
third-order model, though the first-order model performs
nearly as well for the 75th and 90th percentiles in most
regimes.

Spatial variations are once again important for
model-order performance at reproducing both wet- and
dry-spell length distributions (Figure 7), though not as
prominently as seen earlier with BIC. The northern
hemisphere extratropics are again almost universally
best described by the same model-order (first for wet
spells, third for dry spells). However, unlike BIC and
dry spells, there is notable variation across Europe
in model-order performance for wet spells (where
third order appears prominent in the northwest, but
first order elsewhere). This variation in model order
across Europe contributes to third-order models out-
performing other orders across a sizable minority of sta-
tions in temperate regimes (33.7%). However, it is
across the tropics and southern hemisphere where most
variation is present, primarily in tropical and dry
regimes. Despite third- and first- order models

FIGURE 7 Gridded model-

order choices using spell length

distribution analysis for (a) wet

spells and (b) dry spells [Colour

figure can be viewed at

wileyonlinelibrary.com]
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representing wet spells best in tropical and dry regimes,
respectively, a majority of tropical grid cells are repre-
sented best by an order other than third and a sizable
minority (32.2%) of dry regime grid cells are represen-
ted by a model order other than first. While third-order
models almost entirely outperform others across Brazil,
Northern Australia and India, there is much more vari-
ation across Central Africa, despite being in the same
regime (tropical).

The wet-spell distribution across the Aw (tropical
with dry winters) regime (Figure 2), present across much
of Brazil and Central Africa, is reproduced best by a
third-order model in 61.1% of cells. This is higher than
the overall 47.8% of tropical grid cells represented by a
third-order model. Dry, hot-arid steppe (BSh) regions,
present to the north of Central Africa, and across
Australia and India, also often show third-order depen-
dence (51.4%) despite first-order models most commonly
outperforming others in dry regime grid cells. Sub-
regimes for temperate, continental and polar climates fol-
low similar patterns to their aggregated classifications for
both wet- and dry-spell distributions.

For both wet- and dry-spell distributions, there is
notably less variation in model-order performance across
continental regimes than other classifications. It is impor-
tant to note that continental climates (category D, termed
“Snow,” in Figure 2) are almost exclusively present in the
northern hemisphere extra-tropics, with each other
regime present across the tropics and in the southern
hemisphere. This potentially explains the greater varia-
tion in the other regimes.

The difference between model-order performance at
reproducing wet-spell and dry-spell distributions was
studied (Figure 8) by subtracting the model-order choice
for wet-spell distributions from the choice for dry-spell
distributions. For example, should a grid cell be best rep-
resented by a third-order model for dry spells and a first-
order model for wet spells, the difference is +2. A

difference of +2 is widespread across most of the north-
ern hemisphere. This is as expected, with first-order
models commonly outperforming all others for wet spells
and third order for dry spells. It is important to note that
for many locations, including Brazil, Central America,
North Australia, India, Europe and Central Africa, the
same model-order performs best for both wet and dry
spells (a difference of 0, Figure 8).

4.3 | Interannual variability of
precipitation occurrence

In this section, we evaluate the performance of the
models at generating year-to-year variability in the num-
ber of wet days (i.e., precipitation occurrence). In all
regimes, second-order models most commonly reproduce
the IAV of annual precipitation occurrence best, with the
exception of tropical regime cells, where third order most
commonly outperforms others (Table 3). In all regimes
(except tropical), the IAV of precipitation occurrence in
at least 50% of cells is represented best by a second-order
model. Although third-order models perform best in trop-
ical regimes (49.4%), the number of cells represented best
by a second-order models follows closely (41%). As with
BIC and spell-length analysis, zeroth-order models rarely
(or never) outperform others.

There are some notable differences in model-order
performance at reproducing the IAV of precipitation
occurrence for individual seasons across the regimes.
Much like the IAV of annual occurrence, second-order
models most commonly outperform others, with zeroth
order rarely performing best (though with larger minori-
ties than the annual occurrence). For all seasons in tropi-
cal regimes, third-order models consistently outperform
others. While a small minority of cells are best represen-
ted by a first-order model annually (25.6% maximum,
found in continental regimes), in JJA, first-order models

FIGURE 8 Model-order choice

for dry spells minus the model-order

choice for wet spells [Colour figure

can be viewed at

wileyonlinelibrary.com]
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outperform third-order models in both continental and
polar regimes (by 27 and 34.1%, respectively).

There is less coherence in the spatial pattern of
model-order choice for reproducing the IAV of annual
precipitation occurrence (not shown here) compared
with BIC and spell-length analysis (Figures 5 and 7). Nev-
ertheless, the individual seasons do have coherent pat-
terns in the best-performing model order (Figure 9), but
these patterns are somewhat opposite between seasons
resulting in some cancellation of coherent patterns for
the annual results. There is a stark contrast in the perfor-
mance of third-order models at reproducing the IAV of
seasonal occurrence between DJF and JJA across the con-
tinental regime. In DJF, third-order models outperform
others in 54.4% of continental cells, whereas in JJA this
drops to only 6.8%. This is reflected in Figure 9. In JJA
and MAM, much of the northern hemisphere is represen-
ted best by second- and first-order models, whereas in
DJF and SON, many of these cells in are instead repre-
sented by a third-order model. These cells are mostly con-
tinental and temperate. The reverse is true for South
America, where third orders are prevalent in JJA and
MAM and second orders in DJF and SON. In JJA, third-
order models outperform all others in both tropical and
dry regimes (48.3 and 47.1%, respectively), with a sizable
minority of second-order cells. However, in DJF, third-
order models perform best in only 27.5% of cells, with an
increased percentage of second-order cells (49.3%).

Further seasonal differences can be noted across
Australia, India and southern Africa.

It is widely known that a common limitation of Mar-
kov chain models is in their underestimation of the
observed IAV (Wilks, 2010). Here, we find that all model
orders tend to underestimate the observed variability,
with zeroth-order models consistently underestimating
more than higher order models. For each model order,
this underestimation is similar across all regimes and
tends to decrease as model order increases. However, the
improvement stops at second order, and here we find lit-
tle difference between second and third orders. This
agrees with previous findings that lower order models
may be more prone to overdispersion (Katz and
Parlange, 1998). The IAV of precipitation occurrence
tended to be underestimated by a greater percentage by

FIGURE 9 Model-order choices for each 5� × 5� grid cell, with colour representing model-order choice as determined by interannual

variability of seasonal precipitation occurrence for (a) March, April, May (MAM), (b) June, July, August (JJA), (c) September, October,

November (SON) and (d) December, January, February (DJF) [Colour figure can be viewed at wileyonlinelibrary.com]

TABLE 5 Model orders for each metric with highest

percentage of grid cells reproducing the observed data the best

BIC Wet spell Dry spell IAV

Tropical 1 3 3 3

Dry 1 1 3 2

Temperate 1 1 3 2

Continental 1 1 3 2

Polar 1 1 3 2
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all model orders in locations that had higher observed
variability (China, South America, Pacific Islands) and
less so in areas with lower observed variability (Australia,
India, West United States).

5 | SUMMARY

It is apparent that although each metric highlights differ-
ent behaviour across the regimes, with stark variation
between tropical/dry and continental regimes, the model
order with the highest percentage of grid cells is the same
across all regimes except tropical.

The model order with the highest percentage of grid
cells in each regime can be said to perform best (Table 5).
BIC and dry-spell length analysis each favour a single
model order globally, despite behavioural differences in
each regime. For wet spells, each regime favours a first-
order model, except tropical prescribing third order. The
BIC was satisfied by a first-order model across all
regimes. A third-order model performs best at rep-
roducing dry spells across all climate regimes (especially
for the higher percentiles of the dry-spell length distribu-
tion), while second order reproduces the IAV of precipi-
tation occurrence best in all regimes except tropical (once
again prescribing third order).

Spatial variation was noted using each method of
analysis. Much of the northern hemisphere contains cells
with a high percentage following the overall metric's
model order prescription, regardless of their climate clas-
sification. It is across the tropics and southern hemi-
sphere (South America, Central Africa and Mainland
Southeast Asia) that shows the most variation from the
model order for each method of analysis. These locations
are often categorized into tropical and dry climates.

There are several other points of note. While a third-
order model best reproduces observed dry-spell distribu-
tions, first-order models are chosen as second best across
76.9% of cells. At the 95th and 99th percentile, while
third-order models underestimate the observed percen-
tiles the least, first order performs similarly at the lower
percentiles. Third- and first-order models perform second
best at reproducing wet-spell distributions across 40.0
and 54.4% of cells, respectively. Third-order models also
require the calculation of eight independent transition
probabilities (per month) while a first-order model calcu-
lates only two, thus the higher order model requires more
computing power and, most importantly, increases the
possibility of over-fitting a model. Although second-order
models most commonly outperform others at rep-
roducing the IAV of precipitation occurrence, first- and
third-order models represent a sizable minority of sta-
tions in all regimes. It is important to note that while

using a higher order model reduces the underestimation
of IAV, all orders underestimate it, with little difference
between second- and third-order models.

There is a noticeable dip in how frequently second-
order models perform best at reproducing wet- and dry-
spell distributions (Table 3). Here, unlike BIC (Table 2),
model-order performance is not penalized for the number
of parameters used. A potential cause of this dip could be
that the percentage of third-order models is boosted by
also being representative of the performance of model
orders higher than three, which are not considered here.
For example, when reproducing wet-spell distributions,
there may be decaying performance across higher model
orders which, in this study, might be encapsulated by the
percentage of third-order grid cells.

However, there are limitations due to data coverage
across much of northern and south west Africa, the Mid-
dle East, Indonesia and the Philippines (Figures 5–9).
Much of this domain falls into tropical and dry regimes,
potentially impacting the overall model-order choice of
these climate types. Aggregating data into grid cells also
loses some of the detail from sub-categorizing the
weather stations. In this analysis, continental regimes are
almost completely represented by Dfb and Dfc climates
(i.e., those with continental humid climates; Figure 2),
with 78.6% of continental cells falling into one of these
sub-categories. There is no representation of Dsa or Dsd
(continental with dry summers) climates using the
gridded approach at 5� resolution. Thus, the overall
model-order choice for continental climates may not be
representative of all sub-categories within the regime. A
similar issue is noted across temperate and polar regimes.
Only one grid-cell represents Csc and Cwc cells (climates
with temperate, cool summers with dry summers and
winters, respectively), while over half of the temperate
cells represent Cfa and Cfc (temperate, fully humid
climates).

6 | CONCLUSION

The ability of four Markov chain weather generator
models to generate realistic daily precipitation time series
was assessed by four different methods across 44,071
weather stations globally. Each weather station was allo-
cated a regime based on Köppen's climate classification
system (Chen and Chen, 2013): tropical, dry, temperate,
continental or polar. To extend previous results, the per-
formance of the different order models was assessed
using four metrics: the widely used BIC, and the less
commonly considered abilities to reproduce observed
wet- and dry-spell lengths and the IAV in precipitation
occurrence.
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Analysis was undertaken for each weather station,
and then performance was aggregated on a grid-cell basis
to avoid the assessment being dominated by densely
observed regions. Model performance measures were
aggregated into 837 5� × 5� cells based on the longitudes
and latitudes of the weather stations. Depending on
which metric was used, different model orders performed
the best. First-order models most frequently minimized
BIC and best reproduced observed wet-spell distributions
across each regime except tropical. While this agrees with
other preceding local or regional studies, including across
the United States (Schoof and Pryor, 2008), Nigeria
(Jimoh and Webster, 1996) and Costa Rica (Harrison and
Waylen, 2000), this finding has now been demonstrated
on a near-global scale, and included a range of different
climate regimes. Unlike other regimes, third-order
models best reproduced observed wet-spell distributions
across tropical regime locations. Third-order models also
best reproduced dry-spell distributions across all regimes,
strengthening previous evidence that a low-order model
may not accurately reproduce extreme dry periods
(Lennartsson et al., 2008). This is strengthened further by
the ability of third-order models to reproduce most suc-
cessfully the observed 99th percentile (and, in most cases,
the 95th percentile) of dry-spell length distributions.
Second-order models most commonly reproduced the
IAV in precipitation occurrence best in each regime, once
again with the exception of tropical regimes where third
orders perform best.

Although the most frequently selected model order
remained the same across different climate regimes
for each metric (except for tropical regimes), interest-
ing variations within and between regimes were
found. Tropical and dry regimes showed the most
deviation from overall behaviour. Third-order models
reproduced both wet- and dry-spell distributions best
across Brazil, India, North Australia and Europe,
regardless of the climatic region. Central Africa, Main-
land Southeast Asia and western South America also
showed notable geographical variation of model-order
performance for each metric. The behaviour of climate
classification sub-categories often reflected the aggre-
gated performance but there were some exceptions
primarily across dry and tropical zones. However,
many sub-categories were not present or were only
represented by a few grid cells in this study, resulting
in temperate and continental regimes being more rep-
resentative of some sub-categories than others. This
leads to the notion that analysis of model order selec-
tion may be more beneficial on a finer spatial scale,
that is, sub-continental, or with greater inclusion of
other sub-categories. This may better reflect the noted
spatial variance.

This study will inform future work on developing a
global stochastic weather generator to synthesize daily
time series of a suite of climatic variables, including max-
imum daily temperature and cloud cover. There are sev-
eral ways in which these results can be applied to
industry and future research. As weather variables pro-
duced by a stochastic generator are frequently used as
input into hydrological and agricultural models, our
results show that it would be beneficial to use different
model orders to generate precipitation data depending on
the purpose of the model. For example, studies focussing
on extended dry periods may favour third-order models
due to their superior ability to reproduce the upper tail of
the dry-spell distribution, whereas a first-order model
acts as a good, computationally efficient “all-rounder” for
other studies. Tropical climates are an exception, where
third-order models reproduce distributions of both wet
and dry spells and the IAV of precipitation occurrence
best overall. This study can also inform users on the most
appropriate model-order to use based on the location of a
specific region. For example, generating realistic wet-
spell distributions across Europe requires different model
orders to those favoured in the eastern United States,
despite both regions falling into the temperate classifica-
tion (Figures 2 and 7a).
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