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ABSTRACT 

 

Markov chain models are a commonly used statistical technique to generate realistic 

sequences of precipitation, but the choice of model order can strongly affect their performance. 

Although it is widely accepted that a first-order Markov chain reproduces precipitation 

occurrence in temperate latitudes quite well, it is also well known that first-order models have 

several shortcomings. These include a limited memory of rare events and inaccurately 

reproducing the distribution of dry-spell lengths, and their performance outside of temperate 

regions is less well understood. We present, therefore, the first assessment of model-order 

optimisation which is both global in extent and which uses four evaluation methods: the 

Bayesian Information Criterion (BIC) and each model-order’s ability to reproduce wet- and 

dry-spell lengths, and the interannual variability of precipitation occurrence. As well as a global 

analysis, we also assessed Markov chain performance and model-order selection separately 

within five climate regimes based on the Köppen classification system: tropical, dry, temperate, 

continental and polar. These metrics were used to determine the best performing model-order 

to generate realistic time series of precipitation across the five different climate regimes. We 

find that the choice of model order is most sensitive to the performance metric and less 

dependent on the climate regime. Across all regimes, we show that a first-order model performs 

best when evaluated with BIC and for generating realistic wet-spell distributions across all 

climate regimes except tropical, where third order performs best. We also find that a third-

order model reproduces observed dry-spell distributions the best and second order commonly 

reproduces the interannual variability of precipitation occurrence across all regimes except 

tropical, where third order once again performs best. Our findings highlight the benefits of a 

flexible and tailored approach to the choice of Markov chain order for constructing 

precipitation series.  
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1. INTRODUCTION 

 

Stochastic weather generators are a technique used to produce synthetic rainfall time series 

with high spatial and temporal resolutions. Computationally inexpensive tools, they can be 

used to produce long time series for use in hydrological and agricultural risk assessments when 

the record length or quality of representative observational data are inadequate. For example, 

measurement time series are often too short to robustly estimate the probability of extreme 

events, such as long wet- or dry-spells. Stochastic weather generators were initially developed 

to address these issues (Semenov, Brooks, et al. 1998), though they have since been applied to 

a broader range of problems (e.g. perturbing their parameters so they produce synthetic time 

series under future climates (Eames, Kershaw and Coley 2011)) and to other climate variables. 

Precipitation is one of the most important variables for assessing risks affecting crop growth 

and the hydrological cycle. Precipitation is also often considered as the primary variable when 

stochastically modelling other weather variables (e.g. solar radiation, maximum and minimum 

temperatures) which can be conditioned on the precipitation status (Richardson 1981). It is 

important that impact and risk assessors have access to the most accurate high-resolution 

models (Dubrovský 1997), as generated data is often used in place of insufficient observed 

records as an input to hydrological, ecological and agronomic studies (Larsen and Pense 1982). 

Therefore, it is particularly important to ensure accurate modelling of daily precipitation. 

Markov chains are a commonly used stochastic approach to modelling daily precipitation. 

Simulated occurrence of rain is conditional on the previous day(s)’ precipitation status. The 

order of a Markov chain model refers to the number of previous days considered, i.e. a first-

order model conditions precipitation status on the status of one previous day. Several of the 

widely used Markov-type weather generators (for example WGEN (Richardson and Wright 

1984), SIMMETEO (Soltani and Hoogenboom, 2003a) and AAFC WG (Qian, Hayhoe and 

Gameda 2005)) use the same model order regardless of geographical location. Furthermore, 

many of these weather generators have been designed, implemented and tested for climates 

local to where they were produced, meaning they may not be optimal at generating realistic 

rainfall time series in different climates (Semenov, Brooks, et al. 1998). Despite the common 

use of first-order models in climate and hydrological impact studies, their limited memory of 

extremes has been criticised (Semenov and Barrow 1997), and though it is accepted that 

different sites require different orders, first-orders remain prevalent (Lennartsson, Bexevani 

and Chen 2008). However, the stochastic dependence on previous days’ precipitation is 



 
 

dependent on particular meteorological drivers (Chin 1977), with first-order models commonly 

misrepresenting important meteorological properties (Ailliot, et al. 2015).  

Although Markov-chain models are the focus of this study, there are several other methods 

used to stochastically model precipitation occurrence, including Markov renewal processes 

(MRP) (Foufoula-Georgiou 1987) and series-based approaches (e.g. LARS-WG (Qian, 

Hayhoe and Gameda 2005)). Both methods use observed wet or dry-spell lengths to generate 

synthetic precipitation time series differently to Markov-chain models. In MRP models, the 

probability of precipitation depends on the number of days since the last precipitation event, 

whereas series-based weather generators draw lengths of wet and dry spells from semi-

empirical distributions (Semenov, Brooks, et al. 1998).   

 

[Insert Figure 1] 

 

Akaike (Tong 1975) and Bayesian Information Criteria (Schwarz 1978) are commonly used 

to select model order, balancing the model fit with the number of parameters. There have been 

several local or regional studies which have assessed the best model-order, including across 

the USA (Schoof and Pryor 2008), Costa Rica (Harrison and Waylen 2000), England (Gates 

and Tong 1976), Sweden (Lennartsson, Bexevani and Chen 2008), Canada, Israel,  India and 

Nigeria (Jimoh and Webster 1996) using Information Criteria and other methods, including 

spell length analysis (Figure 1). Although many of these studies reiterate that a first-order 

model is adequate, seasonal and spatial variations in model-order choice were identified in all 

of them. Further studies critique this first-order assumption (Gates and Tong 1976) and the use 

of an Information Criterion as the sole method of model-order selection (Hosseini, Le and 

Zidek 2011).   

Further evidence suggests that using a first-order model, regardless of location, may not 

always reproduce observed weather accurately. Low order models are known to underestimate 

interannual and inter-seasonal precipitation variances (suffering from overdispersion (Katz and 

Parlange 1998)), despite often being chosen by Information Criteria (Harrison and Waylen 

2000). Higher-order models may more accurately reproduce variances in weather, though the 

risk of overfitting becomes more prominent.  

A common use of precipitation generators is to estimate the probabilities of extreme events, 

such as long wet or dry spells, due to their ability to simulate long time series (Liao, Qiang and 

Chen 2004). Although Information Criteria are the most common methods used to assess 

model-order performance, they do not test the ability to accurately reproduce the distribution 



 
 

of wet- and dry-spell lengths, despite their importance for many applications. It is known 

(Lennartsson, Bexevani and Chen 2008) that first-order models often do not reproduce dry 

spells accurately even though they are favoured by Information Criteria. This inability is an 

established issue with many Markov-type weather generators (Semenov and Barrow 2002).  

Wet spells are important for hydrological modelling, impacting flood risk and soil erosion, 

whilst knowledge of dry-spell behaviour impacts agricultural and environmental planning, 

preparation for drought and irrigation infrastructure (Ochola and Kerkides 2003). Therefore, a 

method to assess the ability of different model orders to reproduce observed wet- and dry-spell 

distributions is needed.  

This study extends the existing knowledge base in several respects that are important for 

providing better guidance to users and developers of Markov chain weather generators. First, 

we undertake an assessment of preferential model order using multiple metrics of model 

performance. Alongside the Bayesian Information Criteria (BIC), we also quantify the ability 

of different model orders to reproduce observed distributions of wet- and dry-spell length, and 

the interannual variability (IAV) of precipitation occurrence. In each case, we consider the 

relative performance of models with orders 0, 1, 2 and 3. Higher orders are not considered in 

this study due to their increased risk of overfitting and greater computational demand, reducing 

usability. Second, we undertake a global assessment using more than 44,000 weather stations 

across most land areas. Third, using the global assessment, we consider whether the choice of 

model order is systematically dependent on the climate regime of each location. 

Climate patterns can be classified into regimes according to several different 

characteristics, such as annual precipitation, interannual temperature and precipitation 

variances, cloud cover etc. (Belda, et al. 2014). Here we use the Köppen climate classification 

which is one such classification in widespread use (Köppen 1900), using monthly temperatures 

and precipitation to identify different climatic regimes across the world (Figure 2). 

 

[Insert Figure 2] 

 

2. DATA 

 

We used daily precipitation data from the Global Historical Climatology Network Daily 

(GHCN Daily) to fit Markov chain properties and evaluate the models. GHCN-D quality 

control procedures flag potentially inaccurate or inconsistent records, estimated to affect 

approximately 0.3% of the data. Flagged data was removed, and only weather stations with at 



 
 

least 20 cumulative years of daily precipitation remaining (Soltani and Hoogenboom 2003b) 

were used, resulting in a total of 44071 stations. Historical records were capped at their most 

recent 30 years, to reduce any artefacts that may arise from using records of different lengths.  

Each weather station was allocated a climate classification, determined by the centre of the 

Köppen grid cell which the longitude and latitude of the weather station was closest to. 

Locations are allocated to one of five overarching classes: tropical, dry, temperate, continental 

or polar. Within each class, regimes can be subcategorized further based on climatic behaviour. 

Our study applied each evaluation method to observed data in each overarching regime to 

determine the most appropriate model order for each climatic zone. Köppen classification data 

was taken from Chen and Chen (2013) on a 0.5°x0.5° grid.  

 

[Insert Figure 3] 

 

It is clear from Figure 3 that there is not global coverage, and that some locations, such as 

the USA and most of Europe, have a significantly higher density of weather stations than others 

(such as Africa and South America). Nevertheless, even the least sampled class – polar – has 

over 400 stations with at least 20 years of observed data. 

 

3. METHOD 

 

3.1 MARKOV MODEL FITTING 

 

A 2-state Markov chain-gamma model was used to simulate the occurrence and amount of 

precipitation, with 2-states referring to a day being either wet or dry. A day was described as 

“wet” if precipitation was above 0.1mm. This method of stochastic modelling is loosely based 

on the weather generator WGEN (Richardson and Wright 1984). The probability of a wet day 

is conditional on the historical precipitation status. A 𝑘𝑘-th order Markov-chain refers to the 

number of conditional 𝑘𝑘 previous days. For the widely used first-order, 2-state model, the 

transition probabilities are: 

 

𝑝𝑝𝑖𝑖𝑖𝑖 =
𝑛𝑛𝑖𝑖𝑖𝑖

∑ 𝑛𝑛𝑖𝑖𝑖𝑖1
𝑖𝑖=0

 

 

(1) 



 
 

where 𝑖𝑖 and 𝑗𝑗 can represent wet (1) or dry (0) days. For example, 𝑝𝑝01 is the probability of a 

wet day following a dry day, and 𝑛𝑛01 the number of wet days following dry days (calculated 

from a historical dataset). This process can be extended to other orders:  

𝑝𝑝𝑖𝑖 =
𝑛𝑛𝑖𝑖

∑ 𝑛𝑛𝑖𝑖1
𝑖𝑖=0

 

𝑝𝑝𝑖𝑖𝑖𝑖𝑖𝑖 =
𝑛𝑛𝑖𝑖𝑖𝑖𝑖𝑖

∑ 𝑛𝑛𝑖𝑖𝑖𝑖𝑖𝑖1
𝑖𝑖=0

 

𝑝𝑝𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 =
𝑛𝑛𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖

∑ 𝑛𝑛𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖1
𝑖𝑖=0

 

 

for orders 0, 2 and 3 respectively. The number of transition probabilities calculated therefore 

increases exponentially and can be generalised to 2𝑘𝑘+1 (where 𝑘𝑘 is model order). Transition 

probabilities were calculated for each month at each weather station, resulting in 12(2𝑘𝑘+1) 

transition probabilities for each station and each model order. However, the number of 

independent transition probabilities is half this number, i.e. 12(2𝑘𝑘), because 𝑝𝑝1 = 1 − 𝑝𝑝0. 

 It is a common assumption that precipitation amount is conditionally independent of 

precipitation occurrence (Richardson, 1981). Upon generating a wet day, a random 

precipitation amount is independently taken from the corresponding month’s two-parameter 

gamma distribution. For each month, shape (𝛼𝛼) and scale (𝛽𝛽) parameters were calculated from 

wet-day only data for each station. Thom estimators (Thom 1958) were used for calculating 

the shape, 

𝛼𝛼 =
1 + �1 + 4𝐷𝐷

3 �
1
2

4𝐷𝐷
 

and the scale, 

𝛽𝛽 =
�̅�𝑥
𝛼𝛼

 

parameters, with sample statistic 

𝐷𝐷 = ln(�̅�𝑥) −
1
𝑛𝑛
� ln (𝑥𝑥𝑖𝑖)
𝑛𝑛

𝑖𝑖=1

 

where 𝑥𝑥 refers to amounts of precipitation and 𝑛𝑛 the number of wet days. This method is used 

in place of moment estimators, which are considered “inefficient” compared with the Thom 

estimators that make better use of the information in a dataset (Wilks 1995).  

 

3.2 MARKOV MODEL EVALUATION 

(2) 

(3) 

(4) 

(5) 



 
 

 

Information Criteria are methods that can be used to determine how suitable different order 

Markov chains are for modelling precipitation occurrence, based on calculations of log-

likelihood functions from the transition probabilities (Schoof and Pryor 2008). Here, we chose 

the Bayesian Information Criterion (BIC) over the Akaike Information Criterion (AIC) because 

Katz (1981) showed that AIC estimators can be inconsistent, and also BIC is less prone to 

asymptotic bias and more widely used in recent literature (Schoof and Pryor 2008, Harrison 

and Waylen 2000). This method seeks to find the best model containing the fewest parameters 

(i.e. minimal 𝑘𝑘). For a 2-state Markov chain model of order 𝑘𝑘, BIC values are given by 

 

𝐵𝐵𝐵𝐵𝐵𝐵(𝑘𝑘) =  −2𝐿𝐿𝑘𝑘 + 2𝑘𝑘[ln(𝑁𝑁)] 

 

where 𝐿𝐿𝑘𝑘 is the log-likelihood function and 𝑁𝑁 is the number of days in the historical record 

used to calculate the transition probabilities.  𝐿𝐿𝑘𝑘  is calculated from the estimated transition 

probabilities using the functions given by Schoof and Pryor (2008) for each model order. The 

model order that minimises BIC is chosen as the best order. 

As there are 12 sets of transition probabilities for each station, 12 BIC values for each 

model order were determined and compared enabling an evaluation of annual and seasonal 

model-order dependence. The mode of the model orders that minimise BIC across each of the 

12 months was taken as the annual model order. Seasonal model-order choices were also 

studied, using the mode of the model orders that minimise BIC across June, July, August (JJA) 

and December, January, February (DJF).  

In addition to BIC, three other assessment criteria are considered, providing additional 

information on model suitability that cannot be gained by BIC alone. Each order’s ability to 

reproduce the distribution of wet and dry spell lengths was also compared. A wet spell was 

defined as a period of wet days preceded and followed by a dry day (and vice versa for a dry 

spell). For each model order, 50 years of precipitation data were generated and the length of 

every wet and dry spell in the generated data determined. 

Kernel density estimation (KDE) can be used to determine a non-parametric probability 

density function of a random variable (Guidom 2015). KDE was used here to estimate 

probability density distributions (Rajagopalan, Lall and Tarboton 1997) for wet- and dry-spell 

lengths (see Figure 4 for an example). Upon determining distributions for each model-order, 

the root-mean-squared-difference (RMSD) between the observed distribution and the 

(6) 



 
 

distributions produced by each Markov chain was calculated. A bandwidth of 2 days was used 

for KDE and a test across the climate regimes indicated that the results are not sensitive to this 

choice. In addition to comparing the full spell length KDE distributions, we also evaluate the 

performance of each model order at reproducing four percentiles (75, 90, 95 and 99th) in the 

tail of the distributions. These percentiles are calculated directly from the underlying spell 

length data, rather than from the KDE distributions to avoid any dependence on the choice of 

KDE bandwidth.  

[Insert Figure 4] 

 

 Finally, each models’ ability to reproduce the IAV of precipitation occurrence was 

tested. Once again, 50 years of daily precipitation occurrence was generated. The total number 

of wet days in each season or year was recorded, and the standard deviation of theses 50 values 

(number of wet days per season/year over the 50-year period) was calculated. The model order 

producing the smallest absolute difference between the generated and observed standard 

deviation was deemed to perform best.  

 

4. RESULTS AND DISCUSSION 

 

The methods outlined in section 3 were applied to 44071 weather stations that met 

criteria detailed in section 2. Results from these weather stations were aggregated into 837 5° 

latitude by 5° longitude cells (Table 1) to reduce biasing area-average results to locations with 

dense station coverage (e.g. USA, Figure 3). This also increased the weighting of locations 

with sparse data coverage, for example across Africa and South America. The climate regime 

of a grid-cell was allocated by taking the modal classification from each individual station in 

the cell. This methodology was also applied to obtain an overall model-order for each grid-cell 

and each method of analysis used.  

 

[Insert Table 1] 

 

4.1 BAYESIAN INFORMATION CRITERION 

 

The Bayesian Information Criterion was the first method used to analyse model-order 

performance. The BIC optimisation most often selected a first-order model to minimise BIC 



 
 

across all regimes (Table 2), in agreement with previous literature (Schoof and Pryor 2008) but 

extending this finding to more regions, regimes and seasons. Although a first-order model may 

be allocated overall to each regime, there are clear behavioural differences between the zones. 

For tropical and dry regimes, a sizable minority of cells show zeroth- or second-order 

dependence. A sizable minority of temperate cells (17.1%) are minimised by a second-order 

model, however unlike tropical and dry regimes, there are very few cells minimised by zeroth-

order model. Conversely, first-order models almost universally minimise BIC for continental 

and polar cells (99.2% and 91.8% respectively). 

 

[Insert Table 2] 

[Insert Figure 5] 

 

These differences in behaviour may arise from spatial variation (Figure 5). The majority 

of the northern hemisphere extra-tropics are best represented by a first-order model. There is 

much more variation across the southern hemisphere and the tropics, where zeroth- and second-

order models are much more prevalent. For example, Chilean and Peruvian cells do not show 

first-order dependence, but zeroth or second. Central African cells also show zeroth-order 

dependence, whereas Mainland Southeast Asia has many cells with second-order dependence. 

 Central Africa primarily has tropical humid climates (fully humid, monsoon or with 

dry winters: Af, Am and Aw, respectively) alongside hot dry steppe and desert climates to the 

north (BSh and BWh respectively – Figure 2). Cells in tropical humid (Af) regions were found 

to show both first- and second-order dependence in equal measures (42.4%).  Although dry 

desert (BWh) cells showed overall preference for first-order models (49.0%), a significant 

minority (32.7%) showed zero-order dependence. These differences in climatic zone account 

for some of the spatial variation noted in Figure 5. Cold arid dry steppe (BSk) cells are most 

often found in the northern hemisphere and show differences in behaviour to the overarching 

regime (dry). BIC was minimised by a first-order model in 91% of BSk cells – almost 30% 

more than the total dry group. The BSk cells without first-order dependence mostly occur in 

the South American steppe and instead show mostly second-order dependence. Sub-regimes 

across temperate, continental and polar regimes performed similarly to their aggregated 

behaviour. 

Several geographical regions have no usable GHCN-D data as indicated by an absence 

of cells in their location. These regions include Northern and South-West Africa, Maritime 

Southeast Asia, and the Middle East. These locations are often tropical and dry and are located 



 
 

around the equator or southern hemisphere. This is a limitation with using in situ observed data 

and has the potential to affect overall model-order preferences.  

 

[Insert Figure 6] 

 

The same overall picture emerges when model orders with the best BIC are considered 

on a seasonal basis (Table 2), i.e. that first-order models are selected most often in all Köppen 

regimes but zeroth-order models are a notable minority in tropical and dry regimes and second-

order models are a notable minority in tropical, dry and temperate regimes. Nevertheless, some 

seasonal differences are apparent and can be seen in the model-orders for DJF subtracted from 

JJA (Figure 6). Whilst the same model order is selected by BIC across most of the northern 

hemisphere in both seasons, it is once again cells in the tropics and southern hemisphere that 

experience the most variation. This variation is shown predominantly in tropical and dry 

regions once again (Table 2), although these fluctuations are minor.  Dry climates exhibit the 

most noticeable seasonal fluctuation, with first-order minimising BIC in 67.8% cases in DJF 

but only 55.9% in JJA. This is reflected in the increased number of zeroth-order cells in JJA.  

 

4.2 SPELL-LENGTH ANALYSIS 

 

Although first-order models most commonly minimise BIC across all climate regimes, 

this is not always the case when other metrics are used to assess model-order performance. 

 

[Insert Table 3] 

 

Across all regimes except tropical, a first-order model most commonly outperforms 

others at reproducing the distribution of wet-spell lengths (Table 3). First-order models 

outperform the other models for wet-spell length at a large majority (89.9%) of continental 

regime grid cells, whereas sizeable minorities of grid cells are best represented by third-order 

models across dry, temperate and polar regimes (24.5%, 33.7% and 26.8% respectively). In the 

tropical regime, by contrast, third-order models most often perform the best, followed by the 

second and then first -order models. Across all regimes, zero-order models rarely or never 

reproduce wet-spell length distributions best. 

Though third-order models only outperform other orders for wet-spell lengths in 

tropical regimes, they are dominant as the best order for reproducing dry-spell length 



 
 

distributions (Table 3) across all regimes. This supports the work of Lennartson et. al. (2008), 

who found that higher order models better reproduce the distribution of very long dry spells in 

Sweden. There is less spatial variation of optimal model order for dry spells than with BIC and 

wet spells, reiterated by the high percentage (at least 78% across each regime) of cells being 

best represented by a 3rd order Markov chain (Table 3). For tropical and dry climates, there is 

a monotonic increase in preference for a model as the model’s order increases (hence with the 

lowest percentages for zeroth-order models). For the other climate regimes, more than 88% of 

grid cells have third-order models as the best performing for dry spells, and first-order models 

are the next most frequent. 

[Insert Table 4] 

 

The ability of each model order to reproduce percentiles of the dry-spell length 

distributions was also studied. Percentage differences between the observed and generated dry-

spell length 75th, 90th, 95th and 99th percentiles were calculated for each station, with the median 

percentage difference across grid cells given in Table 4. Medians were taken across regimes as 

opposed to means to reduce the influence of outliers.  

 Whilst each model order underestimates the 99th percentile of observed dry spells, there 

is a large improvement from zeroth order to third. Second- and first-order models tend to 

underestimate by a similar percentage, with third orders having as little as a 5.4% 

underestimation in continental regimes. This supports the work of Lennartson et. al. (2008), 

suggesting that lower order models do not accurately reproduce the distribution of very long 

dry spells. The largest median bias in these extreme (99th percentile) dry spells occurs in the 

dry Köppen regime, but even here the bias is much less when considering something slightly 

less extreme (e.g. 95th percentile) providing that a third order model is used. In all regimes, 

there is again a large improvement in reproducing the 95th percentile from zeroth to third order, 

though in this case second-order models tend to have larger median biases than first order. This 

is particularly noticeable in temperate, continental, and polar regimes. Third-order models 

continue to have the smallest percentage differences at the 75th and 90th percentiles except for 

the tropical regime where the second-order model performs best. 

 The dominant patterns in the results are: (1) at the 75th percentile,  first and third order 

models slightly overestimate dry-spell lengths whereas the other two orders underestimate 

them; (2) the median bias in dry-spell lengths mostly decreases monotonically as the percentile 

increases, ending in the underestimation of the 99th percentile spell lengths by all model orders 



 
 

and (3) with few exceptions the biases are smallest for the third-order model, though the first-

order model performs nearly as well for the 75th and 90th percentiles in most regimes.  

 

[Insert Figure 7] 

Spatial variations are once again important for model-order performance at reproducing 

both wet- and dry-spell length distributions (Figure 7), though not as prominently as seen 

earlier with BIC. The northern hemisphere extratropics are again almost universally best 

described by the same model-order (first for wet spells, third for dry spells). However, unlike 

BIC and dry spells, there is notable variation across Europe in model-order performance for 

wet spells (where third order appears prominent in the north west, but first order elsewhere). 

This variation in model order across Europe contributes to third-order models outperforming 

other orders across a sizable minority of stations in temperate regimes (33.7%). However, it is 

across the tropics and southern hemisphere where most variation is present, primarily in 

tropical and dry regimes. Despite third- and first- order models representing wet spells best in 

tropical and dry regimes respectively, a majority of tropical grid cells are represented best by 

an order other than third and a sizable minority (32.2%) of dry regime grid cells are represented 

by a model order other than first. While third-order models almost entirely outperform others 

across Brazil, Northern Australia and India, there is much more variation across Central Africa, 

despite being in the same regime (tropical). 

The wet-spell distribution across the Aw (tropical with dry winters) regime (Figure 2), 

present across much of Brazil and Central Africa, is reproduced best by a third-order model in 

61.1% of cells. This is higher than the overall 47.8% of tropical grid cells represented by a 

third-order model. Dry, hot-arid steppe (BSh) regions, present to the north of Central Africa, 

and across Australia and India, also often show third-order dependence (51.4%) despite first-

order models most commonly outperforming others in dry regime grid cells. Sub-regimes for 

temperate, continental and polar climates follow similar patterns to their aggregated 

classifications for both wet- and dry-spell distributions. 

For both wet- and dry-spell distributions, there is notably less variation in model-order 

performance across continental regimes than other classifications. It is important to note that 

continental climates (category D, termed “Snow”, in Figure 2) are almost exclusively present 

in the northern hemisphere extra-tropics, with each other regime present across the tropics and 

in the southern hemisphere. This potentially explains the greater variation in the other regimes.  

 



 
 

[Insert Figure 8] 

 

The difference between model-order performance at reproducing wet-spell and dry-

spell distributions was studied (Figure 8) by subtracting the model-order choice for wet-spell 

distributions from the choice for dry-spell distributions. For example, should a grid cell be best 

represented by a third-order model for dry spells and a first-order model for wet spells, the 

difference is +2. A difference of +2 is widespread across most of the northern hemisphere. This 

is as expected, with first-order models commonly outperforming all others for wet spells and 

third order for dry spells. It is important to note that for many locations, including Brazil, 

Central America, North Australia, India, Europe and Central Africa, the same model-order 

performs best for both wet and dry spells (a difference of 0, Figure 8).  

 

4.4 INTERANNUAL VARIABILITY OF PRECIPITATION OCCURRENCE 

 

In this section we evaluate the performance of the models at generating year-to-year 

variability in the number of wet days (i.e. precipitation occurrence). In all regimes, second-

order models most commonly reproduce the IAV of annual precipitation occurrence best, with 

the exception of tropical regime cells, where third order most commonly outperforms others 

(Table 3). In all regimes (except tropical), the IAV of precipitation occurrence in at least 50% 

of cells is represented best by a second order model.  Although third-order models perform best 

in tropical regimes (49.4%), the number of cells represented best by a second-order models 

follows closely (41%). As with BIC and spell-length analysis, zeroth-order models rarely (or 

never) outperform others.  

[Insert Figure 9] 

There are some notable differences in model-order performance at reproducing the 

interannual variability of precipitation occurrence for individual seasons across the regimes. 

Much like the IAV of annual occurrence, second-order models most commonly outperform 

others, with zeroth order rarely performing best (though with larger minorities than the annual 

occurrence). For all seasons in tropical regimes, third-order models consistently outperform 

others. While a small minority of cells are best represented by a first-order model annually 

(25.6% maximum, found in continental regimes), in JJA, first-order models outperform third-

order models in both continental and polar regimes (by 27% and 34.1% respectively). 



 
 

There is less coherence in the spatial pattern of model-order choice for reproducing the 

IAV of annual precipitation occurrence (not shown here) compared with BIC and spell-length 

analysis (Fig. 5 and 7). Nevertheless, the individual seasons do have coherent patterns in the 

best-performing model order (Fig. 9), but these patterns are somewhat opposite between 

seasons resulting in some cancellation of coherent patterns for the annual results. There is a 

stark contrast in the performance of third-order models at reproducing the IAV of seasonal 

occurrence between DJF and JJA across the continental regime. In DJF, third-order models 

outperform others in 54.4% of continental cells, whereas in JJA this drops to only 6.8%. This 

is reflected in Figure 9. In JJA and MAM much of the northern hemisphere is represented best 

by second- and first-order models, whereas in DJF and SON, many of these cells in are instead 

represented by a third-order model. These cells are mostly continental and temperate. The 

reverse is true for South America, where third orders are prevalent in JJA and MAM and second 

orders in DJF and SON. In JJA, third-order models outperform all others in both tropical and 

dry regimes (48.3 % and 47.1% respectively), with a sizable minority of second-order cells. 

However, in DJF, third-order models perform best in only 27.5% of cells, with an increased 

percentage of second-order cells (49.3%).  Further seasonal differences can be noted across 

Australia, India and southern Africa. 

It is widely known that a common limitation of Markov chain models is in their 

underestimation of the observed IAV (D. S. Wilks 2010). Here, we find that all model orders 

tend to underestimate the observed variability, with zeroth-order models consistently 

underestimating more than higher-order models. For each model order, this underestimation is 

similar across all regimes and tends to decrease as model order increases. However, the 

improvement stops at second order, and here we find little difference between second and third 

orders. This agrees with previous findings that lower order models may be more prone to 

overdispersion (Katz and Parlange 1998). The IAV of precipitation occurrence tended to be 

underestimated by a greater percentage by all model orders in locations that had higher 

observed variability (China, South America, Pacific Islands) and less so in areas with lower 

observed variability (Australia, India, West USA). 

 

4.5 SUMMARY 

 



 
 

It is apparent that although each metric highlights different behaviour across the 

regimes, with stark variation between tropical/dry and continental regimes, the model order 

with the highest percentage of grid cells is the same across all regimes except tropical.  

 

[Insert Table 5] 

 

The model order with the highest percentage of grid cells in each regime can be said to 

perform best (Table 5). Bayesian Information Criterion and dry-spell length analysis each 

favour a single model order globally, despite behavioural differences in each regime. For wet 

spells, each regime favours a first-order model, except tropical prescribing third order. The 

Bayesian Information Criterion was satisfied by a first-order model across all regimes. A third-

order model performs best at reproducing dry spells across all climate regimes (especially for 

the higher percentiles of the dry-spell length distribution), while second order reproduces the 

IAV of precipitation occurrence best in all regimes except tropical (once again prescribing third 

order).  

Spatial variation was noted using each method of analysis. Much of the northern 

hemisphere contain cells with a high percentage following the overall metric’s model order 

prescription, regardless of their climate classification. It is across the tropics and southern 

hemisphere (South America, Central Africa and Mainland Southeast Asia) that shows the most 

variation from the model order for each method of analysis. These locations are often 

categorised into tropical and dry climates.   

There are several other points of note. Whilst a third-order model best reproduces observed 

dry-spell distributions, first-order models are chosen as second best across 76.9% of cells. At 

the 95th and 99th percentile, while third-order models underestimate the observed percentiles 

the least, first order performs similarly at the lower percentiles. Third- and first-order models 

perform second best at reproducing wet-spell distributions across 40.0% and 54.4% of cells 

respectively. Third-order models also require the calculation of eight independent transition 

probabilities (per month) while a first-order model calculates only two, thus the higher order 

model requires more computing power and, most importantly, increases the possibility of over-

fitting a model. Although second-order models most commonly outperform others at 

reproducing the IAV of precipitation occurrence, first- and third-order models represent a 

sizable minority of stations in all regimes. It is important to note that while using a higher order 



 
 

model reduces the underestimation of IAV, all orders underestimate it, with little difference 

between second- and third-order models.   

There is a noticeable dip in how frequently second-order models perform best at 

reproducing wet- and dry-spell distributions (Table 3). Here, unlike BIC (Table 2), model-order 

performance is not penalised for the number of parameters used. A potential cause of this dip 

could be that the percentage of third-order models is boosted by also being representative of 

the performance of model orders higher than three, which are not considered here. For example, 

when reproducing wet-spell distributions, there may be decaying performance across higher 

model orders which, in this study, might be encapsulated by the percentage of third-order grid 

cells.  

However, there are limitations due to data coverage across much of northern and south west 

Africa, the Middle East, Indonesia and the Philippines (Figures 5 to 9). Much of this domain 

falls into tropical and dry regimes, potentially impacting the overall model-order choice of 

these climate types. Aggregating data into grid cells also loses some of the detail from sub-

categorising the weather stations. In this analysis, continental regimes are almost completely 

represented by Dfb and Dfc climates (i.e. those with continental humid climates; Figure 2), 

with 78.6% of continental cells falling into one of these sub-categories. There is no 

representation of Dsa or Dsd (continental with dry summers) climates using the gridded 

approach at 5° resolution. Thus, the overall model-order choice for continental climates may 

not be representative of all sub-categories within the regime. A similar issue is noted across 

temperate and polar regimes. Only one grid-cell represents Csc and Cwc cells (climates with 

temperate, cool summers with dry summers and winters respectively), whilst over half of the 

temperate cells represent Cfa and Cfc (temperate, fully humid climates). 

 

5. CONCLUSION 

 

The ability of four Markov chain weather generator models to generate realistic daily 

precipitation time series was assessed by four different methods across 44071 weather stations 

globally. Each weather station was allocated a regime based on Köppen’s climate classification 

system (Chen and Chen 2013): tropical, dry, temperate, continental or polar. To extend 

previous results, the performance of the different order models was assessed using four metrics: 

the widely used Bayesian Information Criterion, and the less commonly considered abilities to 

reproduce observed wet- and dry-spell lengths and the IAV in precipitation occurrence. 



 
 

Analysis was undertaken for each weather station, and then performance was aggregated 

on a grid-cell basis to avoid the assessment being dominated by densely observed regions. 

Model performance measures were aggregated into 837 5°x5° cells based on the longitudes 

and latitudes of the weather stations. Depending on which metric was used, different model-

orders performed the best. First-order models most frequently minimised BIC and best 

reproduced observed wet-spell distributions across each regime except tropical. Whilst this 

agrees with other preceding local or regional studies, including across the USA (Schoof and 

Pryor 2008), Nigeria (Jimoh and Webster 1996) and Costa Rica (Harrison and Waylen 2000), 

this finding has now been demonstrated on a near-global scale, and included a range of different 

climate regimes. Unlike other regimes, third-order models best reproduced observed wet-spell 

distributions across tropical regime locations. Third-order models also best reproduced dry-

spell distributions across all regimes, strengthening previous evidence that a low-order model 

may not accurately reproduce extreme dry periods (Lennartsson, Bexevani and Chen 2008). 

This is strengthened further by the ability of third-order models to reproduce most successfully 

the observed 99th percentile (and, in most cases, the 95th percentile) of dry-spell length 

distributions. Second-order models most commonly reproduced the IAV in precipitation 

occurrence best in each regime, once again with the exception of tropical regimes where third 

orders perform best. 

Although the most frequently selected model order remained the same across different 

climate regimes for each metric (except for tropical regimes), interesting variations within and 

between regimes were found. Tropical and dry regimes showed the most deviation from overall 

behaviour. Third-order models reproduced both wet- and dry-spell distributions best across 

Brazil, India, North Australia and Europe, regardless of the climatic region. Central Africa, 

Mainland Southeast Asia and western South America also showed notable geographical 

variation of model-order performance for each metric. The behaviour of climate classification 

sub-categories often reflected the aggregated performance but there were some exceptions 

primarily across dry and tropical zones. However, many sub-categories were not present or 

were only represented by a few grid cells in this study, resulting in temperate and continental 

regimes being more representative of some sub-categories than others. This leads to the notion 

that analysis of model order selection may be more beneficial on a finer spatial scale, i.e. sub-

continental, or with greater inclusion of other sub-categories. This may better reflect the noted 

spatial variance.  



 
 

This study will inform future work on developing a global stochastic weather generator to 

synthesise daily time series of a suite of climatic variables, including maximum daily 

temperature and cloud cover. There are several ways in which these results can be applied to 

industry and future research. As weather variables produced by a stochastic generator are 

frequently used as input into hydrological and agricultural models, our results show that it 

would be beneficial to use different model-orders to generate precipitation data depending on 

the purpose of the model. For example, studies focussing on extended dry periods may favour 

third-order models due to their superior ability to reproduce the upper tail of the dry-spell 

distribution, whereas a first-order model acts as a good, computationally efficient “all-rounder” 

for other studies. Tropical climates are an exception, where third-order models reproduce 

distributions of both wet and dry spells and the IAV of precipitation occurrence best overall. 

This study can also inform users on the most appropriate model-order to use based on the 

location of a specific region. For example, generating realistic wet-spell distributions across 

Europe requires different model-orders to those favoured in the eastern USA, despite both 

regions falling into the temperate classification (Figures 2 and 7a).       
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Figure 1 - Global locations of previous Markov chain model-order assessments used to inform this 

study. 

 



 
Figure 2 - The Köppen climate classification according to Chen and Chen (2013). There are some 
differences in terminology used for each class; in the current study, we denote class C as “temperate” 

and class D as “continental”. Figure from Chen and Chen (2013). 
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Figure 3 - All available weather stations meeting the outlined criteria and their associated overarchingclimate classification.



Figure 4 - Probability density distribution of the length of dry spells (left) and wet spells (right) 
produced by different model orders over a 50-year period at a weather station in Highcroft, Tasmania 
(GHCN-D station ID ASN00094028). 



 

 
Figure 5 - Model-order choices for each 5ox5o grid cell, with colour representing model-order choice 

as determined by Bayesian Information Criterion. 

 



 

Figure 6 - Model-order choice for JJA (BIC) minus the model-order choice for DJF (BIC).  

 



 

 
Figure 6 - Model-order choice for JJA (BIC) minus the model-order choice for DJF (BIC).  

 

Figure 7 - Gridded model-order choices using spell length distribution analysis for a) wet spells, b) 
dry spells. 



 

 
Figure 8 - Model-order choice for dry spells minus the model-order choice for wet spells. 



 

b) 

d) c) 

a) 

Figure 9 - Model-order choices for each 5°x5° grid cell, with colour representing model-order choice as determined by 
interannual variability of seasonal precipitation occurrence for a) March, April, May (MAM), b) June, July, August 
(JJA), c) September, October, November (SON), and d) December, January, February (DJF). 



Table 1 - Number of weather stations and corresponding grid cells in each climate regime. 

REGIME NO. OF 

STATIONS 

NO. OF 

CELLS 

Tropical 4140 173 

Dry 8555 139 

Temperate 20389 192 

Continental 10552 229 

Polar 435 104 

TOTAL 44071 837 

 

Table 2 - Gridded comparison of Markov model-order choices for each of the Köppen climate 

regimes based on each model order’s ability to minimise BIC. Values shown are the % of grid cells 

within each climate regime where the mode of individual stations’ best model-order is equal to 0, 1, 2 

or 3. 

  0   1   2   3  

REGIME Annual DJF JJA Annual DJF JJA Annual DJF JJA Annual DJF JJA 

Tropical 11.8 17.4 18.5 56.2 52.2 52.8 30.3 27.5 24.7 1.7 2.8 3.9 

Dry 18.2 16.1 24.5 63.6 67.8 55.9 17.5 15.4 19.6 0.7 0.7 0.0 

Temp. 2.2 4.4 5.5 80.7 80.1 77.9 17.1 15.5 16.6 0.0 0.0 0.0 

Cont. 0.4 0.0 0.4 99.2 99.2 98.7 0.4 0.8 0.8 0.0 0.0 0.0 

Polar 4.1 3.1 4.1 91.8 84.5 86.6 3.1 11.3 8.2 1.0 1.0 1.0 

             

 

Table 3 - Gridded comparison of Markov model-order choices for each of the Köppen climate 

regimes based on each model's ability to reproduce the interannual variability of precipitation 

occurrence (labelled IAV) and distributions of wet-spell length and dry-spell length. Values shown 

are the % of grid cells within each climate regime where the mode of individual stations’ best model-

order is equal to 0, 1, 2 or 3.  

  0    1   2   3  

REGIME Wet Dry IAV Wet Dry IAV Wet Dry IV Wet Dry IAV 

Tropical 5.1 0.0 1.7 21.3 6.3 7.9 25.8 8.6 41.0 47.8 85.1 49.4 

Dry 0.0 1.4 0.0 67.8 9.2 11.2 7.7 10.6 62.9 24.5 78.7 25.2 

Temp. 1.1 1.1 0.0 58.6 6.7 13.3 6.6 3.9 58.6 33.7 88.2 28.2 

Cont. 0.0 0.4 0.0 89.9 5.2 25.6 0.0 0.0 52.9 10.1 94.4 21.4 

Polar 0.0 2.2 1.0 69.1 4.4 17.5 4.1 1.1 54.6 26.8 92.2 26.8 

 

Table 4 – The gridded median percentage difference between observed and generated dry-spell length 

percentiles for each of the Köppen climate regimes and each model order.  

    PERCENTILE 

  MODEL 

ORDER 

75
th

 90
th

 95
th

 99
th

 

 TROPICAL 0 -6.5 -20.0 -25.3 -38.5 
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1 14.5 2.4 -4.0 -19.9 

2 0.0 0.0 -4.6 -15.2 

3 3.8 8.3 1.2 -8.0 

 DRY 0 -20.5 -29.3 -34.2 -38.3 

1 5.8 -5.8 -13.1 -24.0 

2 -15.3 -16.3 -20.1 -23.6 

3 5.0 -2.8 -9.3 -17.7 

 TEMPERATE 0 -26.4 -32.4 -36.3 -39.3 

1 4.8 -1.6 -6.7 -16.2 

2 -25.0 -18.1 -16.5 -18.4 

3 3.5 0.3 -0.8 -6.0 

 CONTINENTAL 0 -25.0 -32.5 -35.4 -39.9 

1 3.0 -3.4 -7.9 -13.7 

2 -25.0 -17.9 -16.7 -17.0 

3 3.0 0.4 -1.0 -5.4 

 POLAR 0 -25.0 -33.3 -38.5 -46.7 

1 4.1 -2.1 -8.2 -18.2 

2 -25.0 -16.7 -18.0 -20.7 

3 0.0 0.0 0.0 -7.7 

 

Table 5 – Model-orders for each metric with highest percentage of grid cells reproducing the observed 

data the best. 

 BIC WET 

SPELL 

DRY 

SPELL 

IAV 

TROPICAL 1 3 3 3 

DRY 1 1 3 2 

TEMPERATE 1 1 3 2 

CONTINENTAL 1 1 3 2 

POLAR 1 1 3 2 
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