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This paper proposes a robust system for detecting North Atlantic right whales by us-
ing deep learning methods to denoise noisy recordings. Passive acoustic recordings of right
whale vocalisations are subject to noise contamination from many sources such as shipping
and offshore activities. When such data is applied to uncompensated classifiers, their
accuracy falls substantially. To build robustness into the detection process, two separate
approaches that have proved successful for image denoising are considered. Specifically a
denoising convolutional neural network (DNCNN) and a denoising autoencoder (DAE), each
of which is applied to spectrogram representations of the noisy audio signal, are developed.
Performance is improved further by matching the classifier training to include the vestigial
signal that remains in clean estimates after the denoising process. Evaluations are performed
first by adding white, tanker, trawler and shot noises at SNRs from -10dB to +5dB to clean
recordings to simulate noisy conditions. Experiments show that denoising gives substantial
improvements to accuracy and particularly when using the vestigial-trained classifier. A
final test applies the proposed methods to previously unseen noisy right whale recordings
and finds that denoising is able to improve performance over the baseline clean trained
model in this new noise environment.
©2021 Acoustical Society of America. [https://doi.org(DOI number)]
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I. INTRODUCTION

The aim of this work is to develop robust methods of
detecting marine mammals from passive acoustic moni-
toring (PAM) devices in challenging environments. Be-
ing able to reliably detect marine mammals is important
for population monitoring and for mitigation as many
species are endangered and protected by environmental
laws. Specifically, we consider the challenge of detecting
North Atlantic right whales (Eubalaena glacialis) in situ-
ations where they may be approaching potentially harm-
ful and noisy offshore activities. This is of particular
interest, as they are one of the world’s most endangered
marine mammal species and at risk of extinction with as
few as 350 individuals remaining (Pace III et al., 2017).
Entanglement in fishing gear and ship strike are the most
common lethal causes in North Atlantic right whales
(Corkeron et al., 2018; Davies and Brillant, 2019) and
offshore industries, such as oil and gas exploration and
offshore construction, pose additional risks (Leiter et al.,
2019). Detecting the animals’ presence before they are in
close proximity to large vessels or enter a mitigation zone
can both protect animals and avoid costly shutdowns of
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offshore operations. Traditional methods for detecting
marine mammals at sea use human observers on-board
ships, but more recently long-term archival recorders
(Davis et al., 2014), gliders (Baumgartner et al., 2013)
and autonomous surface vehicles (ASVs) have been used
as they offer a cheaper solution that can operate in zero
visibility conditions, and in the case of autonomous ve-
hicles, can provide real- or near real-time data (Verfuss
et al., 2019). Human experts may listen to these audio
recordings and use spectrogram analysis to identify oc-
currences but this is time consuming and expensive. Au-
tomating the detection process and providing a robust
solution to detecting North Atlantic right whales is the
aim of this work.

A number of machine learning techniques have been
applied to cetacean detection from audio data. Vector
quantisation and dynamic time warping have been effec-
tive in detecting blue and fin whales from frequency con-
tours extracted from spectrograms (Mouy et al., 2009).
Hidden Markov models (HMMs) have also been used
to recognise low frequency whale sounds using spectro-
gram features (Mellinger and Clark, 2000). Comparisons
have also been made between between artificial neural
networks (ANNs) and spectrogram correlation for right
whale detection (Mellinger, 2004). With the advent of
deep learning, a number of approaches have been ap-
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plied to cetacean detection. Representing audio record-
ings as a two-dimensional spectrogram has led to con-
volution neural network (CNN) approaches for detection
(Ibrahim et al., 2018). A recent study comparing various
time-series classification and deep learning methods to
right whale detection found that those using CNNs had
highest accuracy (Vickers et al., 2019a). Further stud-
ies have also reported on the success of using CNNs for
right whale detection when compared to other classifi-
cation models such as recurrent neural networks (Shiu
et al., 2020; Smirnov, 2013; Vickers et al., 2019b).

An important consideration when developing auto-
matic detectors is the likelihood that right whale record-
ings will be corrupted by noise from various sources
at differing signal-to-noise ratios (SNRs), depending on
the distance of the right whale and noise source from
the receiving hydrophone. Noise presents a challenge
to most classification problems, from speech recognition
to image identification (Liu et al., 2020; Seltzer et al.,
2013), and consequently many different compensation
techniques have been proposed. These can broadly be
categorised into those that attempt to match the un-
derlying model to the characteristics of the noisy input
data and those that remove noise before classification (Lu
et al., 2013; Nazaré et al., 2018).

In this work we consider both of these strategies
for improving robustness within the framework of right
whale detection and we also show that combining them
gives further improvement. Our classifier is based on pre-
vious work which established that transforming the audio
into a spectrogram representation, to consider it as an im-
age, and inputting this into a CNN outperformed a range
of other machine learning approaches (Vickers et al.,
2019b). To improve the robustness of this model, we con-
sider both augmented training methods and denoising of
the spectrograms prior to classification. Two different
approaches for denoising spectrogram representations of
the audio signal are considered and compared. These are
the denoising autoencoder (DAE) and the denoising CNN
(DNCNN) (Gondara, 2016; Grais and Plumbley, 2017;
Zhang et al., 2017). These are chosen as they have both
been shown to be highly successful when applied to image
denoising and yet represent very different architectures.
The DAE builds on the structure of autoencoders and
comprises a series of encoding layers leading to a com-
pressed bottleneck representation of the input data fol-
lowed by a series of decoding layers to return the input to
its original size. Within a DAE, the learning aims to map
noisy input features into a clean output representation
(Gondara, 2016; Grais and Plumbley, 2017). DAEs have
been highly successful in tasks such as image denoising
and audio separation (Gondara, 2016; Grais and Plumb-
ley, 2017) and consequently are a good candidate to ap-
ply to spectrogram denoising of right whale recordings.
The DNCNN exploits and combines some of the most
effective architectures that have been proposed for im-
age recognition and denoising. This includes using deep
architectures that are effective at increasing the learn-
ing capacity and flexibility of the model (He et al., 2016;

Krizhevsky et al., 2012; Simonyan and Zisserman, 2015).
To improve the learning of such deep models, residual
learning frameworks have been shown to be more effec-
tive than attempting to learn a direct mapping (He et al.,
2016; Zhang et al., 2017). Batch normalisation is also
commonly applied and through the scaling and shifting
applied at each layer, any internal covariate shift can be
mitigated (Glorot and Bengio, 2010; Ioffe and Szegedy,
2015). Based on these factors, the approach taken for
spectrogram denoising is based on a DNCNN framework
that employs residual learning (Zhang et al., 2017). Our
evaluation of the two denoising methods found them to
leave remains of the contaminating noise and to intro-
duce artefacts into the denoised spectrograms. To better
match these denoised signals to the classifier, we create
training augmented data that contains this signal, which
we term vestigial noise, and retrain the classifier.

The remainder of the paper is organised as follows.
Section II gives a brief introduction to right whale calls
and typical sources of marine noise that contaminate
recordings. Section III introduces the CNN-based right
whale detector and explains how data augmentation can
be applied to make the model more generic. The denois-
ing CNN (DNCNN) is explained in Section IV and how
it is applied to spectrogram enhancement. Section V dis-
cusses the framework for using denoising autoencoders
(DAEs) to denoise spectrograms. The experimental set-
up is explained in Section VI and results and analysis
from a set of evaluations presented in Section VII.

II. ACOUSTIC CHARACTERISTICS OF RIGHT WHALES

IN MARINE ENVIRONMENTS

Right whales are one of the world’s most endangered
marine mammals and are at risk of extinction with as few
as 350 individuals remaining (Pace III et al., 2017). Right
whales emit a range of vocalisations with common sounds
being upcall tones and gunshot sounds and it is these two
call types that we focus on in this work (Clark, 1983).
Upcalls begin with a frequency of approximately 60Hz
that rises to around 250Hz and typically last for about
one second, although these calls are not always consistent
and vary in duration and frequency (Pylypenko, 2015).
Upcalls most likely play a role as a social contact call
between individuals and are produced by both sexes and
different age classes and are therefore most commonly
used for passive acoustic detection of the species (Clark
et al., 2007; Parks et al., 2011). The gunshot sounds are
very different to upcalls and are characterised as an im-
pulsive broadband-like signal, primarily produced dur-
ing mating (Parks et al., 2012). Due to their different
behavioural function their relative frequency in different
right whale habitats can vary (Van Parijs et al., 2009).
Figure 1 shows example spectrograms of an upcall and
gunshot vocalisation. Both of these vocalisation types
can be difficult to hear in noisy conditions, and to vi-
sualise in spectrograms, as low frequency regions are of-
ten masked by marine noise such as from passing ships,
drilling and piling activities, seismic exploration or inter-
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ference from other marine mammals, such as humpback
whale song (Gillespie, 2004). In many cases, anthro-
pogenic and environmental noises overlap in frequency
with right whale calls, which makes detection difficult.

To represent different anthropogenic conditions in
this work, we consider four types of noise as typical con-
taminants of right whale recordings, namely tanker noise,
trawler noise, shot noise (representative of sounds pro-
duced by activities such as piling and seismic exploration)
and white noise. These noise types are described in Sec-
tion VI A and example spectrograms shown in Figure 4.
For evaluation, noises are added artificially to the whale
recordings at signal-to-noise ratios (SNRs) from -10dB to
+5dB to simulate recordings at different ranges from the
receiving hydrophone.
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FIG. 1. Two example spectrograms showing a right whale up-

call (left) and a gunshot (right). Upcalls are characterised

as a tone starting at around 60Hz and ending around 250Hz,

with a duration of one second. Gunshots have less structure

and are characterised as bursts of broadband noise.

III. CNN RIGHT WHALE CLASSIFIER

The CNN right whale classifier is based on our ear-
lier work that investigated a range of deep learning tech-
niques (Vickers et al., 2019a). Specifically, we compared
time-series classification, RNNs and CNNs and found
highest accuracy was achieved with an architecture that
first extracted spectrogram features from the audio and
input those into a CNN-based classifier.

A. Feature extraction

The requirement of feature extraction is to trans-
form an input audio signal into a representation that is
more effective for identifying whale sounds. Although
many different approaches to audio feature extraction
have been developed (for example MFCCs, PLP, filter-
bank (Milner, 2002)) we chose a straightforward power
spectral-based representation. Our reasoning is that we

wish to allow the subsequent CNN to learn the most ap-
propriate feature representation and not to make any as-
sumptions beforehand such as introducing a non-linear
frequency scaling.

Feature extraction uses a sliding window to convert
short-duration frames of the input audio signal into a
sequence of log power spectral vectors, xt. Specifically,
an N -point frame of time-domain samples is extracted
from the audio, a Hamming window applied and a Fourier
transform computed. The upper N/2 frequency points
are discarded and the remaining complex points trans-
formed to power and then logged. Analysis windows are
advanced by S samples to compute each new spectral
vector. Normalisation is applied to the elements of the
log spectral vectors such that they are in the range 0 to
1. Spectral vectors are grouped in two-second blocks and
used to create the spectrogram feature that is input into
the CNN. Preliminary testing established that best per-
formance is achieved with N=256 and S=32 which at a
sampling frequency of fs=1kHz, corresponds to a frame
width of 256ms and a frame advance of 32ms, resulting
in spectrogram features, X, of size 55× 128.

B. CNN classifier

The classifier, C(X), developed for this work com-
prises first a CNN encoder that maps input spectrogram
features, X, into a new space and contains convolutional
layers that are each followed by max pooling layers. This
outputs into a series of dense layers that perform clas-
sification. Preliminary testing established that best per-
formance is attained using three convolutional layers and
two dense layers (Vickers et al., 2019a). Each convolu-
tional layer uses 3×3 filter kernels with 32, 64, 128 filters
in each subsequent layer. The max pooling layers use a
pool size of 2 × 2 and have rectified linear unit (ReLU)
non-linear activation functions applied to their outputs
(Nair and Hinton, 2010). At the edges of the input, zero-
padding is applied to convolutional layers to maintain
the size of the output. After the last max pooling layer
a dropout of 0.5 is applied.

The two dense layers use 200 and 50 nodes respec-
tively, with a ReLU activation function. The final dense
layer uses a softmax activation function to output the
probability of each class. Training used an Adam opti-
miser with a learning rate of 0.001 and categorical cross-
entropy as the loss function (Kingma and Ba, 2014).
Training took place over 200 epochs and was repeated
10 times for each test. The model that achieved highest
validation accuracy was used for testing and reported ac-
curacies were calculated as an average over all 10 tests. In
the subsequent tests that are reported in Section VII, the
standard deviation across 10 repetitions was very small
(less than 0.5%) and no outliers were observed within
each test.

For the whale data used in this work, three classes
are defined - {upcall, gunshot, no whale} - and the clas-
sifier is trained using target labels for each training data
sample. A baseline classifier is trained using noise-free
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training data, see Section VI A for details on the data.
The evaluations also consider variants of the classifier
that have been trained using data augmentation meth-
ods. Specifically, the noise-free training data is contam-
inated with noise and the classifier re-trained. This is
used to create classifiers that are trained on the specific
noise condition under test or more generic classifiers that
are trained across a range of noise conditions. These are
defined in Section VI B.

IV. DENOISING CONVOLUTIONAL NEURAL NETWORK

This section explains how denoising convolutional
neural networks (DNCNNs) are applied to enhance spec-
trogram representations of noisy audio. The DNCNN’s
architecture is explained first and then adjustments to
the classifier to maximise accuracy.

A. DNCNN architecture

Residual learning has been shown highly effective for
image denoising in scenarios such as additive white noise
to deblocking the distortion introduced by JPEG com-
pression (Zhang et al., 2017). This success is based on
the assumption that for an image contaminated by noise,
it is easier to learn a mapping to the noise (i.e. residual)
than it is to learn a mapping to the clean image. We
make the same assumption for the problem of denoising
spectrograms that have been extracted from audio con-
taminated by noise. Specifically, learning the mapping to
the noise spectrogram (or residual) is easier than learn-
ing the mapping to the clean spectrogram. For spectro-
gram features extracted from noisy audio, the additivity
of clean audio and noise is not necessarily linear and de-
pends on whether spectral amplitudes are linear or have
been log transformed. We consider both scenarios.

Considering first spectrogram features that are ex-
tracted from noisy audio as described in Section III A
without the log operation being applied to their ampli-
tudes. The noisy spectrogram, Y, can be assumed equal
the sum of the clean and noise spectrograms (ignoring
cross-spectral terms), X and D, as

Y = X + D (1)

When this is reformulated into a residual learning frame-
work, rather finding a direct mapping from the noisy
spectrogram to the clean spectrogram, i.e. F(Y) = X, a
residual mapping, RLIN (Y) = D, is instead learnt. This
makes a prediction of the noise spectrogram (i.e. resid-
ual) and when subtracted from the noisy spectrogram

gives an estimate of the clean spectrogram, X̂, as

X̂ = Y −RLIN (Y) (2)

The alternative spectrogram feature is represented
by log spectral amplitudes, which is common practice for
audio processing applications. In this case the noisy log
spectrogram, log(Y), is expressed as,

log(Y) = log(X + D) (3)

The residual (log(Y) − log(X)) in this representation is
obtained by expanding the log operation in Eqn. (3) to

log(Y) = log

(
X

(
1 +

D

X

))
= log(X) + log

(
1 +

D

X

) (4)

and so the residual mapping, RLOG(Y), is

RLOG(Y) = log(Y)− log(X) = log

(
1 +

D

X

)
(5)

This residual is significantly different to that using linear
spectral amplitudes and no longer comprises just a noise
component. Instead, it is a combination of the noise and
clean spectrogram components.

With these two formulations for the residual, two
slightly different architectures for denoising the spectro-
gram features are required and shown in Figure 2. Both
ultimately provide estimates of the clean log spectrum
for the CNN classifier described in Section III B. To per-
form the residual mapping we base our architecture on
the approach developed for image denoising and use a
model with 17 convolutional layers (Zhang et al., 2017).
The first layer has 64 filters and outputs these into a
ReLU activation function (Nair and Hinton, 2010). The
next 15 convolutional layers also use 64 filters but now
incorporate batch normalisation before outputting into a
ReLU activation function (Glorot and Bengio, 2010; Ioffe
and Szegedy, 2015). The final layer excludes the batch
normalisation and ReLU operations and outputs a pre-
diction of the residual, or noise, spectrogram. No pooling
layers are used, so deeper models have a wider receptive
field. With 17 layers, this corresponds to a receptive field
of 35× 35. For the spectrogram features this equates to
a receptive field of 1.27 seconds and bandwidth of 137Hz
which is broadly the duration of a whale vocalisation and
the frequency range of an upcall.

The DNCNN is trained using pairs of spectrogram
features with a noise-free version forming the training
target and a noisy version as the input. Noisy spec-
trograms for training are produced by adding the de-
sired noise type at the required SNR to the noise-free
time-domain signals and extracting spectrogram fea-
tures. Mean squared error is used as the loss function
between the clean and predicted spectrogram features,
along with the Adam optimiser. Training was performed
over 50 epochs.

The classifier, C(), in Section III B requires as its
input an estimate of the clean log spectrum. For the
DNCNN formulation that takes as input log spectrogram
features, RLOG(), the residual output is subtracted from
the log noisy spectrogram to give the clean log spectro-

gram estimate, ̂log(X), that is input into the classifier,

̂log(X) = log(Y)−RLOG(log(Y)) (6)

For the DNCNN using linear spectrogram features,
RLIN (), the residual output is subtracted from the linear
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noisy spectrogram to give the estimate of the clean linear
spectrogram and this is then logged before being input
into the classifier,

log(X̂) = log (Y −RLIN (Y)) (7)

FIG. 2. The left figure shows the denoising CNN (DNCNN)

architecture applied to linear spectrogram amplitudes, and the

right figure the DNCNN architecture applied to log spectrogram

amplitudes. All CNN layers use filter sizes of 3 × 3.

B. Classifier training

The aim of denoising is to estimate a noise-free spec-
trogram for input into the CNN classifier, C(). The exper-
imental evaluation in Section VII A shows that when this
classifier is trained on noise-free data and then tested in
noise-free conditions it achieves high accuracy. Expect-
ing this clean-trained classifier to attain high accuracy
when the input data has been denoised assumes that the
denoising process is able to remove all of the noise and
to introduce no artefacts of its own. However, it is likely
that the denoising process will leave some noise and also
introduce artefacts to the denoised spectrograms. We
term these unwanted components as a vestigial spectro-
gram, V (we use the term ‘vestigial’ to avoid confusion
with ‘residual’, which is used within the DNCNN). To
address this mismatch a new classifier, CDNCNN (), is
trained on data containing this vestigial error component
resulting from the DNCNN denoising process. Training
the CNN classifier, C(), was explained in Section III B
and used noise-free training data. To create the vestigial
trained classifier, the set of noise-free training data is
contaminated by noise and passed through the DNCNN

to create a training set of denoised spectrogram features
that will contain this vestigial signal. The new classi-
fier, CDNCNN (), is then trained from this data. In this
framework the training data can be contaminated by a
single noise type and SNR, or from more generic data,
depending on the test conditions. This is investigated in
Section VII B.

V. DENOISING AUTOENCODER

The denoising autoencoder (DAE) approach to en-
hancing spectrogram representations of noisy audio is
presented in this section. The DAE architecture is ex-
plained first before describing how the classifier is re-
trained to optimise performance.

A. DAE architecture

The denoising autoencoder, A(Y), takes noise-
contaminated spectrogram features and predicts an esti-
mate of the noise-free spectrogram that is input into the
classifier, C(). The DAE is illustrated in Figure 3 and
first encodes the input spectrogram features using three
convolutional layers each with 32 filters. Each layer is fol-
lowed by a ReLU activation function and a max pooling
layer to compress the output (Nair and Hinton, 2010).
The max pooling layers use a pool size of 2 × 2. The
compressed representation of the spectrogram is then de-
coded back to its original size using three more convolu-
tional layers which also use 32 filters. Each convolutional
layer is followed by a ReLU activation function and an
upsampling operation that expands the size of the image
by a factor of two in each dimension.

Similar to the DNCNN, the DAE is trained with
pairs of spectrogram features with a noise-free version
as the training target and a noisy version as the input.
Binary cross-entropy is used as the loss function between
the clean and predicted spectrogram features, along with
the Adam optimiser. Training was performed over 100
epochs. A series of preliminary tests established that us-
ing three convolutional layers each for the encoder and
decoder, with 32 filters, gave best performance.

B. Classifier training

Two methods for training the classifier used with
the DAE are considered, as was done with the DNCNN
in Section IV B. One option is to apply the DAE de-
noised spectrogram features directly into the CNN clas-
sifier trained using clean audio, C(). However, as was
considered for the DNCNN, it is likely that the predicted
spectrogram features will contain a vestigial signal that
retains some of the original noise and contains artefacts
from the DAE denoising process. Consequently, a second
classifier is trained, CDAE(), using data created by pass-
ing noisy training data through the DAE to create a new
set of spectrogram features that comprise the clean signal
and a vestigial component from the DAE denoising.
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FIG. 3. Denoising autoencoder (DAE) architecture for de-

noising log spectrogram features and inputting these into the

CNN classifier. All CNN layers use filter sizes of 3 × 3.

VI. EXPERIMENTAL SETUP

This section introduces the whale data and noise con-
ditions that the evaluation is based upon. The different
system configurations under evaluation are then defined
in terms of their method of denoising and training.

A. Datasets

The right whale recordings used for evaluating the
classifiers and denoising methods were taken from the
DCLDE 2013 workshop and were collected in the Gerry
E. Studds Stellwagen Bank National Marine Sanctuary
from the Massachusetts Bay area of the north-eastern
coast of the US1. These were collected using marine au-
tonomous recording units (MARUs) deployed in arrays
of between 6 and 10 devices. For this dataset, the out-
put of just one channel is taken, converted to 16 bits per
sample and sampled at 2kHz. The audio recordings are
subsequently arranged as two-second segments that ei-
ther contain a right whale sound or do not, and have been
annotated by human experts using data from all channels
to maximise accuracy. Two different whale vocalisations
are heard, upcalls and gunshots, which gives a three-class
classification problem - {upcall, gunshot, no whale}. The
recordings are relatively noise-free, as spectrograms in
Figure 1 show, but they do contain some low amplitude
noise. For the purposes of the evaluation in this work, we
consider them as ‘clean’ and subsequently add noise to
simulate noisy audio. The DCLDE 2013 workshop pro-
tocol supplied four days of recordings for use in training
and a further three days for testing. However, labels for
the test data are not available so we divided the four days
supplied for training into non-overlapping training, vali-
dation and test sets, using a split of 70:15:15, which gives

sizes of 2,784, 600 and 600, respectively. Each set con-
tains an equal proportion of segments from each of the
three classes and samples are taken randomly from the
original corpus. Given the low frequency of right whale
calls the audio was downsampled to 1 kHz, as previous
work showed this introduces no loss in accuracy (Vick-
ers et al., 2019a). Our code for extracting the training,
validation and test sets from the data available in the
DCLDE 2013 workshop is available from GitHub2.
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FIG. 4. Spectrograms showing two-second examples of white

noise, trawler noise, tanker noise and shot noise that are used

in the evaluations in Section VII.

Four noise types are considered for the evaluation -
tanker noise, trawler noise, shot noise and white noise.
Spectrogram examples of each of these noise types are
shown in Figure 4. Tanker and trawler noises are cho-
sen as shipping is a common source of marine noise that
introduces horizontal bands in the spectrograms arising
from harmonics of rotating machinery within the ship
as well as low frequency noise. These noises were ob-
tained from data that had been collected by the NOAA
Northeast Fisheries Science Center from a passive acous-
tic monitoring project in the Stellwagen Bank National
Marine Sanctuary. Shot noise is representative of sounds
produced by activities such as piling and seismic explo-
ration and is characterised by vertical structure in the
spectrogram. The shot noise examples were taken from
the ‘gun’ samples in the NOISEX-92 database (Varga
and Steeneken, 1993). This noise is impulsive but was
arranged so that each two-second recording contained
at least one example of the shot noise. Finally, white
noise is included as a more general noise type that af-
fects all time and frequency regions within the spectro-
gram, and this was generated artificially. To create the
noisy audio segments, noise is added to every two-second
recording (upcall, gunshot and no whale) in the time-
domain (waveform-domain) at SNRs of +5dB, 0dB, -
5dB and -10dB. This set of SNRs is chosen to cover a
range of reception conditions that represent signals re-
ceived from right whales at both close and long range
distances. For recordings that contain a whale vocalisa-
tion, the noise samples are scaled such that when added
to the whale recording, their subsequent power achieves
the target SNR. To create the noisy ‘no whale’ recordings,
two-second segments with no whale vocalisation present
are extracted from the original recordings at a time 5 sec-
onds after an upcall or gunshot has occurred. To these
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‘no whale’ segments, noise samples are added and scaled
so that they have the same noise power as that in the
preceding segment which contained a whale sound. This
ensures that the actual power of the noise remains con-
sistent across each pair of whale and ‘no whale’ exam-
ples. The procedure is illustrated in Figure 5. It should
be noted that within a specific SNR and noise type, the
noise examples that are added to the whale/no-whale ex-
amples are not duplicated, so each two-second segment is
contaminated with unique noise examples. Further, there
is no sharing of noise examples used across the training,
validation and test sets.

FIG. 5. Method of adding noise to the two-second whale and

‘no whale’ segments to create noisy examples at the target

SNR. ‘No whale’ examples are extracted 5 seconds after a

whale vocalisation to give consistency in terms of the power

of the noise examples that are added.

A final, unseen, test condition is introduced for
the final stage of evaluation and uses whale recordings
collected from a different marine environment. These
recordings are naturally more noisy and were taken from
the Cornell NRW Buoys data, recorded in the area of
Cape Cod (Spaulding et al., 2009). For testing, a total
of 2,142 two-second recordings are used, with 1,071 con-
taining an upcall and a further 1,071 having no whale
sound. This dataset has no gunshot examples.

B. System configurations

The aim of the experiments presented in Section VII
is to investigate how the proposed denoising methods per-
form in different noise conditions and to explore the ef-
fectiveness of the various configurations. Specifically, the
experiments aim to:

• Examine the effectiveness of augmenting clean
training data with noisy examples when testing in
noisy conditions

• Compare classification accuracy when using train-
ing data augmentation against the explicit denois-
ing methods of the DAE and DNCNN

• Determine, when using denoising, whether the clas-
sifier is best trained on clean or vestigial data

• Consider how classification accuracy is affected
when the noise condition in testing is unseen in
training

To address these aims, a number of different classifier
and denoising configurations are investigated. These are
shown in Table I and divided into three sets:

1. Those using data augmentation for classifier train-
ing with no explicit denoising

2. Those applying DAE denoising

3. Those applying DNCNN denoising

For each method in Table I, the columns show the de-
noising method (i.e. none, DAE or DNCNN), the train-
ing data used for denoising (if applied) and the train-
ing data used to create the classifier. The final column
shows the mean classification accuracy, measured across
all noise types and SNRs, and summarises the results in
Section VII.

From Table I, the first four configurations use no ex-
plicit denoising and instead differ in how the classifier
is trained with regard to the test condition. Method
CLEAN is the baseline classifier and trained on only clean
(noise-free) training data. The classifiers used in config-
uration MATCH are trained on data that matches the
specific noise type and SNR that is subsequently used in
testing. This requires a set of 16 matched models that
are used individually in each specific noise condition. The
GENERIC classifier is trained on data contaminated with
all four noises types at all four SNRs. This gives the most
generic model for classification. The UNSEEN classifier
is similar, however the specific noise type under test is
excluded from the training data so that the test noise
condition is unseen during classifier training.

The next four methods in Table I all use the DAE
for denoising prior to classification. The naming con-
vention for these methods follows the structure DAE-
<denoising training data>-<classifier training data>.
Method DAE-MATCH-CLEAN uses the DAE autoen-
coder that is trained on data matched to the specific
noise test condition and the classifier is trained on clean
data (i.e. method CLEAN). The denoising in method
DAE-MATCH-VES is identical but the classifier is now
trained on the vestigial data (Section IV B). Method
DAE-GENERIC-VES uses a DAE trained across all four
noise types and four SNRs and uses a vestigial-trained
classifier. Finally, method DAE-UNSEEN-VES is simi-
lar except the DAE is trained on all noise types with the
exception of the specific noise under test, i.e. on three
noise types at the four SNRs.

The four final denoising methods in Table I use
the DNCNN and have naming conventions as DNCNN-
<denoising training data>-<classifier training data>.
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These four methods follow the same structure as those
shown for the DAE.

VII. EXPERIMENTAL RESULTS

The aim of these experiments is to explore the effec-
tiveness of the various denoising methods under different
noise type and SNR conditions. The first experiment
uses no explicit denoising and examines the effect that
augmenting clean training data with varying quantities
of noise data, both seen and unseen in relation to the
test conditions, has on accuracy. The second set of tests
compares the effectiveness of the DAE and DNCNN de-
noising methods and examines whether higher accuracy
is attained when using clean-trained or vestigial-trained
classifiers. The third set of tests again compares the DAE
and DNCNN denoising methods but now examines accu-
racy when the noise in testing is unseen during model
training. A fourth experiment moves testing to the un-
seen Cape Cod dataset and compares classification accu-
racy using augmentation and denoising. A final section
compares processing times for the denoising methods.

A. Augmented model training
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FIG. 6. Right whale classification accuracies in the four dif-

ferent noise types at SNRs from -10dB to +5dB. The models

are trained using different augmentation strategies with no ex-

plicit denoising, with the exception of the LSA method.

This first set of tests does not use any denoising and
instead examines the accuracy of the CNN classifier intro-
duced in Section III using different training data augmen-
tation scenarios. The evaluation is performed across all
four noise types and SNRs with classification accuracies
shown in Figure 6. Each noise condition is evaluated us-
ing four different classification models - trained on clean
data (CLEAN), trained on data matched to the specific
test condition (MATCH), trained on all four noise types
and SNRs (GENERIC) and trained on three noise condi-
tions excluding the noise type under test (UNSEEN). To
benchmark the effectiveness of these methods against an
existing method of noise reduction, a log spectral am-
plitude (LSA) estimator was also evaluated, given its
success in denoising audio signals (Cohen, 2002). Using
the implementation in (Loizou, 2013), the noisy exam-
ples were denoised and the resulting time-domain sam-
ples then input into the CNN of Section III for spectro-
gram extraction and classification. Classification accura-
cies are shown as method LSA in Figure 6.

In noise-free conditions the CLEAN system attains
an accuracy of 94.1% but falls as SNRs reduce and in gen-
eral has lowest performance. Testing using the matched
model (MATCH) removes the mismatch between training
and test conditions and improves accuracy substantially.
However, this does require the model to be trained under
the same noise conditions as seen in testing. Augment-
ing the training data to contain all noise types and SNRs
(GENERIC) gives accuracy close to MATCH and occa-
sionally attains higher performance which we attribute
to the broad coverage of the training data. However,
removing from the training data the noisy examples cor-
responding to the noise type under test, to give method
UNSEEN, reduces accuracy considerably to be compa-
rable with the CLEAN model. For the LSA method of
denoising, performance is similar to that obtained using
the CLEAN model, although in shot noise the perfor-
mance is substantially worse. Examining spectrograms
of the LSA denoised signals shows the noise to have been
suppressed to a certain extent, but to now also contain
short duration artefacts. We believe these lead to con-
fusion with whale vocalisations in the classifier, particu-
larly with upcalls, hence the inability of LSA to improve
accuracy beyond the CLEAN model.

B. Denoising autoencoder and denoising CNN performance

The second set of experiments compares the perfor-
mance of the denoising autoencoder (DAE) and denois-
ing CNN (DNCNN), described in Sections IV and V.
These tests also examine how best to train the classi-
fier, on either clean data or vestigial data. Specifically,
classification accuracy is measured across all four noise
types and SNRs using both the DAE and the DNCNN
denoising methods trained on data matched to the spe-
cific noise type and SNR under test. Methods DAE-
MATCH-CLEAN and DNCNN-MATCH-CLEAN output
their denoised spectrogram features into a CNN classifier
trained on clean data, while methods DAE-MATCH-VES
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Name Denoising method Denoising training data Classifier training data Mean accuracy

CLEAN None NA Clean data 72.98%

MATCH None NA Specific noise type and SNR under
test

83.26%

GENERIC None NA All noise types at all SNRs 82.24%

UNSEEN None NA All noise types at all SNRs except
the noise under test

72.81%

DAE-MATCH-CLEAN DAE Noise type and SNR under test Clean data 82.80%

DAE-MATCH-VES DAE Noise type and SNR under test Vestigial noisy data 85.18%

DAE-GENERIC-VES DAE All noise types at all SNRs Vestigial noisy data 83.52%

DAE-UNSEEN-VES DAE All noise types at all SNRs except
the noise type under test

Vestigial noisy data 73.45%

DNCNN-MATCH-CLEAN DNCNN Noise type and SNR under test Clean data 79.57%

DNCNN-MATCH-VES DNCNN Noise type and SNR under test Vestigial noisy data 84.71%

DNCNN-GENERIC-VES DNCNN All noise types at all SNRs Vestigial noisy data 81.45%

DNCNN-UNSEEN-VES DNCNN All noise types at all SNRs except
the noise type under test

Vestigial noisy data 72.85%

TABLE I. Definitions of the various system configurations under evaluation in terms of the denoising method and its training

data, and the classifier training data. The first four methods use no explicit denoising, while the remaining methods use various

configurations of either the denoising autoencoder (DAE) or the denoising CNN (DNCNN). The final column shows the mean

classification accuracy of each method, taken across all noise types and SNRs from Section VII.
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FIG. 7. Right whale detection accuracies when applying the

denoising autoencoder (DAE) and denoising CNN (DNCNN)

to the four noise types at SNRs from -10dB to +5dB.

and DNCNN-MATCH-VES output into a CNN classifier
trained on vestigial data after noise removal. Table I
shows specific configuration details on these systems. For
comparison, the performance of the clean trained CNN
model (CLEAN) and matched CNN models (MATCH)
are included with classification accuracies shown in Fig-
ure 7. As a preliminary test for the DNCNN, we com-
pared the accuracy of the system using log spectrogram
denoising, RLOG(), with that using linear spectrogram
denoising,RLIN (), introduced in Section IV A and shown

in Figure 2. This established that using log spectrogram
features for denoising achieved higher classification ac-
curacy (for example a 3% increase in white noise at an
SNR of 0dB), which we attribute to the better condi-
tioned spectral values the log provides, making learning
the residual function more effective. For clarity, we now
report only DNCNN results using the log spectrogram
feature as input.

Figure 7 shows that the two denoising methods us-
ing the vestigial trained classifier (DAE-MATCH-VES
and DNCNN-MATCH-VES) attain best performance
and their accuracy is almost equal in all noise conditions.
When these two denoising approaches are applied to the
clean-trained classifier their performance reduces. This
suggests that the denoising methods are not able to re-
move the contaminating noise completely. However, clas-
sifying the output spectrograms using a classifier trained
on the vestigial noise is able to recover performance. The
results also suggest that the DAE is better able to re-
move noise and minimise distortion as its mean perfor-
mance using the clean-trained classifier is higher than the
DNCNN with the clean classifier as shown in Table I.

To illustrate the denoising ability of the DAE and
DNCNN, the top row of Figure 8 shows a single upcall
example that has been contaminated by each of the four
noise types at an SNR of -5dB. For comparison, the orig-
inal noise-free upcall is shown in Figure 1. The bot-
tom two rows show spectrograms resulting from denois-
ing with the DAE and DNCNN, and all spectrograms
are shown using the same amplitude scale. These show
that slightly more vestigial components remains after the
DNCNN which may explain its lower performance com-
pared to the DAE in Table I.

As a final investigation, the confusions between the
three classes (upcall(U), gunshot(G) and no whale(NW))
are examined across the four noise types. Tables II and
III show confusions in white noise and shot noise at an
SNR of 0dB with no denoising (i.e. CLEAN). Confusions
in tanker and trawler noises were very similar to those in
white noise and so are not shown. In white noise, gun-
shots are classified more accurately than upcalls, while in
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FIG. 8. First row shows spectrograms of a single upcall (as

displayed in Figure 1) that has been contaminated by white,

trawler, tanker and shot noises at an SNR of -5dB. The second

and third rows show the corresponding denoised spectrograms

as produced by the DAE and DNCNN methods. The colourbar

shows an amplitude range of 0 to 1 as these spectrograms are

output from the denoising methods that are themselves trained

on spectrograms with normalised energies, as discussed in Sec-

tion III A.

shot noise, upcalls are classified more accurately. This we
attribute to the shot noise having more similar character-
istics to gunshot vocalisations and so introducing more
confusion. Tables IV and V show confusion matrices for
the same two scenarios but now with denoising applied
(specifically DAE-MATCH-CLEAN). In white noise, the
primary effect of denoising is to reduce the percentage
of no whale instances that are misclassified as either up-
calls or gunshots, which represents a reduction in false
alarms. This also happens when denoising in shot noise,
but in addition, denoising also reduces the large number
of gunshots that were misclassified as upcalls and are now
classified correctly.

C. Denoising in unseen noise conditions

The previous tests were carried out where the de-
noising method was matched to the noise condition un-
der test. In this section, the denoising training is no
longer matched to the noise condition under test and
instead is trained on different noise type and SNR con-
ditions. Specifically, two scenarios are considered. First,
where the denoiser is trained on all four noises and four

TABLE II. Confusion ma-

trix for no denoising in

white noise at 0dB SNR.

U G NW

U 76% 6% 18%

G 1% 89% 10%

NW 9% 9% 82%

TABLE III. Confusion ma-

trix for no denoising in shot

noise at 0dB SNR.

U G NW

U 58% 3% 39%

G 33% 51% 16%

NW 37% 21% 52%

TABLE IV. Confusion ma-

trix for DAE denoising in

white noise at 0dB SNR.

U G NW

U 75% 2% 23%

G 0% 89% 11%

NW 4% 1% 95%

TABLE V. Confusion ma-

trix for DAE denoising in

shot noise at 0dB SNR.

U G NW

U 84% 0% 16%

G 0% 81% 19%

NW 24% 1% 75%

SNRs (DAE-GENERIC-VES and DNCNN-GENERIC-
VES) and secondly where training is on the three noise
types that are not under test, which gives an unseen test
condition (DAE-UNSEEN-VES and DNCNN-UNSEEN-
VES). Given its superior performance in the previous
section, all tests use the classifier trained on vestigial
data rather than the clean-trained model. For com-
parison, results with no denoising are also shown and
include the clean-trained model (CLEAN), the generic
model (GENERIC) and unseen model (UNSEEN), as de-
fined in Table I, with results shown in Figure 9. Meth-
ods that include training across all noise types and
SNRs (GENERIC, DAE-GENERIC-VES and DNCNN-
GENERIC-VES) achieve highest accuracies across all
test conditions. This is attributed to the models hav-
ing been trained on noise data that has similar char-
acteristics to the specific test condition, whether it
be in the denoising process (DAE-GENERIC-VES and
DNCNN-GENERIC-VES) or in the classification stage
(GENERIC). Moving to the unseen noise situations,
where training does not include examples of the specific
noise type under test, this leads to a reduction in ac-
curacy for all systems (UNSEEN, DAE-UNSEEN-VES
and DNCNN-UNSEEN-VES). Testing in white noise and
shot noise, accuracy falls substantially below that of the
equivalent systems trained on all noise types (i.e. the
GENERIC systems), while for tanker and trawler noises
the reduction in performance is much less. This we
attribute to the similarity between tanker and trawler
noises which allows the methods to learn at least some
characteristics of the unseen noise and thereby perform
better than the clean-trained model.

D. Performance in new unseen conditions

The evaluation of denoising methods in the previ-
ous sections used simulated noisy conditions by mixing
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FIG. 9. Right whale detection accuracies using denoising au-

toencoders and denoising CNNs in the four noises at SNRs

from -10dB to +5dB. Results are shown with the denoising

methods trained generically on all noise types or on noises

not used in testing.

clean audio with different noise types at varying SNRs.
This is well suited for controlled evaluations of perfor-
mance. We now consider an alternative scenario where
the performance of whale detection on real noisy data is
investigated. For this evaluation, data is taken from the
Cape Cod corpus which was described in Section VI A
and collected from a marine environment different from
the Stellwagen corpus. Spectrogram analysis and listen-
ing to recordings has revealed them to contain signif-
icant amounts of different noise types which therefore
represent a genuine unseen condition. To illustrate the
recordings from Cape Cod, Figure 11a shows twelve ex-
ample spectrograms of upcalls, arranged as a 2× 6 grid.
This shows that continuous broadband noise is present in
most recordings as well as shorter duration impulses and
some tonal noise, depending on the particular example.

Based on the evaluation in Section VII C on unseen
noise conditions, the performance on the Cape Cod data
is now evaluated using the CLEAN, GENERIC, DAE-
GENERIC-VES and DNCNN-GENERIC-VES configu-
rations. Instead of measuring classification accuracy, as
has been done previously, these tests consider the task of
whale detection (i.e. detecting whether a whale is present
or not in a recording). For a practical whale detection
system, knowing its precision and recall performance is
more useful than classification accuracy. Consequently,

we evaluate using these metrics with results shown for
the four systems as precision-recall curves in Figure 10.
It should be noted that the number of ‘whale’ and ‘no
whale’ examples are equal. The DAE-GENERIC-VES,
DNCNN-GENERIC-VES and GENERIC systems have
similar precision-recall profiles. These all outperform the
CLEAN system, particularly at higher levels of recall,
where their precision is substantially better. This is in-
vestigated further in Figures 11b and 11c which show
denoised spectrograms from the DAE and DNCNN sys-
tems that correspond to the noisy examples in Figure
11a. Both denoising methods are effective at removing
much of the noise present in the original spectrograms
of Figure 11a, and both do leave a vestigial signal. This
reinforces the benefit of using a classifier trained on the
vestigial signal rather than on clean data.

To compare with the DCLDE data, we also measured
classification accuracy for the four methods and found
that DAE-GENERIC-VES was best with 84.3%, followed
by DNCNN-GENERIC-VES at 83.8%. The GENERIC
system attained 81.7% and CLEAN 79.5%. From Ta-
ble I, the DAE-GENERIC-VES method also outperforms
DNCNN-GENERIC-VES, and both improve over the
CLEAN model.
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FIG. 10. Precision-recall curves for the CLEAN, GENERIC,

DAE-GENERIC-VES and DNCNN-GENERIC-VES models

that are trained on Stellwagen data and tested on unseen

recordings from Cape Cod.

E. Classification processing times

An important consideration when deploying a prac-
tical right whale detection system is the processing time
required to make a decision. This is examined by measur-
ing the time taken from receiving a two-second block of
audio to making a classification decision, which includes
computing the spectrogram, denoising (where applied)
and classification. Times were computed by averaging
across the entire test set of recordings. The tests were
performed on an Intel Quad Core i7 2.8GHz CPU which
is a more realistic test than using a GPU, as was used in
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a) CAPE COD

b) DAE-GENERIC-VES

c) DNCNN-GENERIC-VES

FIG. 11. a) Spectrograms of twelve example upcalls taken from

Cape Cod recordings, b) the resulting spectograms of the same

upcalls after DAE-GENERIC-VES denoising, c) the resulting

spectrograms after DNCNN-GENERIC-VES denoising.

training. Three systems were evaluated: CLEAN, DAE-
GENERIC-VES and DNCNN-GENERIC-VES, with the
total time taken to process each two-second block bro-
ken down into the spectrogram extraction, denoising and
classification times and shown in Table VI. This shows
that all methods can process a two-second recording well
within real-time constraints. The slowest method was the
DNCNN-GENERIC-VES, where the majority of process-
ing is taken by the denoising CNN although this is still
capable of operating at 35-times real-time. The DAE-
GENERIC-VES method of denoising was substantially
faster, primarily due to the DAE denoising method op-
erating eight times faster than the DNCNN denoising,
which we attribute to it having fewer layers. Spectro-
gram extraction is the fastest of all stages, requiring just
0.72ms. In a practical deployment, these very fast classi-
fication times would allow a single CPU to process mul-
tiple channels of hydrophone array data simultaneously
in real-time, 205 channels for the DAE and 35 channels
for the DNCNN, ignoring multiplexing overheads.

VIII. CONCLUSION

This work has considered the problem of developing
a robust system to detect right whales in differing noise
conditions. Having the ability to deploy such an auto-
mated system, whether it be on buoys, ASVs or gliders,

Method Spectrogram Denoising Classification Total (ms)

CLEAN 0.72 - 2.63 3.35

DAE 0.72 6.40 2.63 9.75

DNCNN 0.72 53.02 2.63 56.37

TABLE VI. Mean processing times (in ms) for the spectro-

gram extraction, denoising and classification operations for

the CLEAN, DAE and DNCNN methods when applied to a

two-second audio recording.

that can achieve high levels of detection in real-time is
vital to the long term future of right whales (Baumgart-
ner et al., 2020). Without applying any noise compensa-
tion, the CNN classifier was affected adversely in all four
noise types with performance reducing from 94% in clean
conditions to as low as 42% in severe conditions. Using
augmentation to provide the classifier with data more
representative of the noises under test improved perfor-
mance. The DAE and DNCNN methods of denoising
were to be able to improve accuracy further and this was
more effective when the classifier was retrained on data
containing the vestigial signal left after the denoising pro-
cess. This indicates that denoising is not fully effective,
and observations of spectrograms confirmed that arte-
facts do remain. However, matching the classifier to these
artefacts through augmented vestigial training increases
performance considerably. When compared to the con-
ventional LSA method of denoising, this was found not
to be able to increase accuracy above the clean-trained
model and we attribute this in part to the method intro-
ducing artefacts that are confusable with whale vocalisa-
tions. This supports the benefit of applying denoising in
the spectrogram domain.

When denoising was applied to unseen noise con-
ditions, the accuracy of both methods reduced but re-
mained higher than with no denoising. The evaluation
also showed that if the unseen noise had similar attributes
to the training data, such as training on one kind of
shipping noise and testing on another, then higher per-
formance was achieved. This suggests that if a repre-
sentative collection of noises is used within training then
good accuracy across a wide range of conditions is achiev-
able. Furthermore, only a single model is required in this
situation rather than a set of models matched to each
noise condition. When the denoising methods were ap-
plied to a completely unseen noise condition the DAE im-
proved performance substantially over the baseline clas-
sifier. The DNCNN performed almost as well and this
was a trend observed throughout the evaluations - see
Table I for a summary. Analysis of spectrograms pro-
duced from both denoising methods showed that clean
predictions from the DNCNN were slightly more noisy
while the DAE was able to remove the majority of noise
as well as introduce fewer artefacts. This is beneficial
not only for improving automated classification but also
for human annotators, where having access to denoised
spectrograms makes identification of whale sounds easier.
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Measurement of processing times revealed the DAE to
operate at 205 times real-time compared to 35 times real-
time for the DNCNN. The faster operation and higher
classification accuracy achieved by the DAE suggest this
is a better choice for denoising within the framework of
robust detection of right whales.
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