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A B S T R A C T   

The aim of the work presented here was to develop a system that can automatically identify attacks of dizziness occurring in patients suffering from positional 
vertigo, which occurs when sufferers move their head into certain positions. We used our novel medical device, CAVA, to record eye- and head-movement data 
continually for up to 30 days in patients diagnosed with a disorder called Benign Paroxysmal Positional Vertigo. Building upon our previous work, we describe a 
novel ensemble of five 2D Convolutional Neural Networks, using composite recognition features, including eye-movement data and three-channel accelerometer 
data. We achieve an F1 score of 0.63 across an 11-fold cross-fold validation experiment, demonstrating that the system can detect a few seconds of motion provoked 
dizziness from within over a 100 h of normal eye-movement data. We show that the system outperforms our previous 1D Neural Network approach, and that our 
ensemble classifier is superior to each of the individual networks it contains. We also demonstrate that our composite recognition features provide improved per
formance over results obtained using the individual data sources independently.   

1. Introduction 

Positional vertigo is a condition whereby patients will experience a 
subjective sensation of spinning when moving their head into certain 
positions [1]. Benign Paroxysmal Positional Vertigo (BPPV) is one such 
cause of positional vertigo and the most common cause of dizziness [2]. 
The cause of dizziness in patients with BPPV lies within the semi-circular 
canals of the inner-ear. It is generally accepted that particles from the 
otolithic membrane become loose within the endolymphatic fluid and 
move freely in response to gravity. When patients move their head, these 
particles are excited within the affected canal, and the conflicting sen
sory information leads to a sensation of vertigo [1]. Typically, patients 
will report dizziness upon lying down, looking up, or turning over in 
bed; these triggers are consistent with the most common form of BPPV, 
known as posterior canalithiasis, in which the loose particles are present 
within the posterior canal [3]. 

The diagnosis of BPPV is relatively straightforward compared to 
other causes of dizziness [4]. The clinician will perform a Dix-Hallpike 
test, which is a simple yet optimal head manoeuvre designed to elicit 
a vertigo response in patients with BPPV (Fig. 1). By laying the patient 
back in this manner, in either a left- or right-sided test, the clinician can 
identify which ear is affected and subsequently administer treatment. 
The clinician is able to confirm the presence of vertigo by observing the 

patient’s eyes during the test, which will show a characteristic jerking 
and twisting motion known as nystagmus. The Dix-Hallpike test is a very 
reliable way to diagnose BPPV. However, the nystagmus response can 
fatigue over time and the test can be performed improperly, which can 
stop it from being diagnosed correctly [5]. Other causes of dizziness can 
be more difficult to diagnose as there are no conclusive tests to establish 
the presence of nystagmus for vertigo that cannot be induced in a clin
ical setting [6]. As a result, clinicians often rely on the self-reporting of 
symptoms by patients [7]. 

For these reasons, we have developed the Continuous Ambulatory 
Vestibular Assessment (CAVA) device to provide an objective record of a 
patient’s dizziness over the course of a month. This is achieved by 
continuously recording eye- and head-movements by way of a small 
medical device worn on the face (Fig. 2). At the end of 30 days, the data 
captured by the device is analysed by computer algorithms for signs of 
nystagmus. A clinician would then review the system’s findings before 
considering appropriate treatment options. We have previously evalu
ated this device in healthy volunteers with artificially induced 
nystagmus [8,9], and more recently, have demonstrated that it can 
detect pathological nystagmus resulting from Ménière’s disease and 
vestibular migraine [10–13]. The aim of the work in this article is to 
develop and evaluate a system for detecting periods of nystagmus pro
duced by patients with positional vertigo. 
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Our first work in this area focussed on detecting artificially induced 
nystagmus using an ensemble of conventional machine learning tech
niques including support vector machines, ensemble classifiers and de
cision trees [9]. We achieved good results for this task, but these 
approaches were less successful when we later applied them to detecting 
pathological nystagmus produced by Ménière’s disease. Instead, we 
successfully applied 1D Convolutional Neural Networks (CNNs) to this 
task, motivated by the successful application of similar network archi
tectures to other event classification tasks. 

The nystagmus produced by Ménière’s disease is different to the 
nystagmus produced by BPPV. Whilst nystagmus produced by Ménière’s 
disease can persist for several hours [16], BPPV produces vertigo which 
typically lasts for less than a minute, often for only a few seconds [17]. 
Whereas nystagmus during a Ménière’s attack predominantly involves 
the eyes moving from side-to-side, BPPV gives rise to nystagmus which is 
mostly present in the vertical plane [18]. The eye-movement signals 
captured by the CAVA device are also visibly extremely different, with 
nystagmus produced by Ménière’s disease leading to ‘jerk’ nystagmus 
which has a distinctive sawtooth appearance [19], and with BPPV 
nystagmus appearing more oscillatory. As BPPV nystagmus is induced 
by movement of the head, this also raises the question of how to 
incorporate and combine the device’s eye-movement and accelerometer 
data into the detection system, which was not necessary in our previous 
work. These are the novel challenges addressed by the work presented 
here. 

There are several examples of work related to this topic, although 
none which are directly comparable. Most studies have focussed on 
analysing nystagmus from Videonystagmography data, which uses 
cameras to record eye-movement [20,21]. By contrast, the CAVA system 
uses a technology similar to Electronystagmography, in which the 
electrophysiological signal generated by the eyeballs is recorded instead 
[22]. In [20], 1D CNNs were trained to discriminate between diseased 
and normal eye-movement signals, although this was not undertaken 

using continuous eye-movement data, and we are unsure as to the pre
cise configuration of the experiments described. 2D CNNs have also been 
applied successfully to cardiac event detection and sleep stage classifi
cation [14,15]. Although we do not present the results here, we have 
also undertaken preliminary experiments using long short-term memory 
networks and a variety of networks with different depths and configu
rations, none of which have outperformed the system described in this 
manuscript. In [21], peaks in the velocity signal of the eye-movements 
were used to identify fast phases of nystagmus. We have found such 
approaches to be effective when applied to isolated periods of jerk 
nystagmus, but not very fast or specific when applied to larger quantities 
of data or signals without prominent fast and slow phases, such as those 
examined here. 

We are currently undertaking a clinical investigation of the CAVA 
device involving patients suffering from pathological dizziness, such as 
individuals with Ménière’s disease, vestibular migraine and BPPV. We 
are in the first training phase of this investigation, in which patients are 
recruited to provide training and development data for our computer 
algorithms. This will be followed by a second phase in which patient 
data will be used as part of a blinded analysis. During the trial, patients 
are required to wear the CAVA device in the community, for 23 h a day, 
for 30 days. Thus, patients wear the device during their normal daily 
activities and crucially during any dizzy attacks they experience. The 
data used in the experiments described here are from trial participants 
with BPPV and also from healthy volunteers. 

We have developed novel 2D CNNs capable of detecting short pe
riods of motion-provoked dizziness, and this article describes this system 
in full, and presents an evaluation of its performance. The remainder of 
this article is organised as follows: In Section 2.1, we provide further 
details of the CAVA device. Then, in Section 2.2, we describe the dataset 
used in the experiments described here. The experimental tasks used to 
evaluate our system are given in Section 2.3. Section 2.4 describes the 
nystagmus detection system we’ve developed. The results of our ex
periments are given in Section 3, followed by a discussion in Section 4. 
The article concludes in Section 5. 

2. Methods 

2.1. The CAVA device 

The CAVA device is intended to be worn on the face for up to a 
month. It continuously records horizontal and vertical eye-movement 
data, as well as the accelerative forces experienced by the head, in 
three-axes. Recording of eye-movements is achieved by way of five 
electrode pads which capture the electrical potential generated by the 
eyeballs (Fig. 2). This technology is similar to electrooculography 
(EOG), which has been used in clinical settings for decades to monitor 
eye-movements during balance assessments [23]. The CAVA device uses 
this technology instead of more contemporary video technology as 
cameras are bulky, have a larger power requirement and have impli
cations for privacy. A further and significant reason for using EOG rather 
than video is that cameras cannot record eye-movements when the eyes 

Fig. 1. The Dix-Hallpike manoeuvre for diagnosing BPPV. (1) The patient sits 
on a raised couch and faces 45◦ away from the sagittal plane of their body. The 
patient faces left or right, depending on which ear is suspected of being affected 
by BPPV. (2) The clinician will then quickly move the patient back, maintaining 
the 45-degree tilt of the head, supporting the head as it hangs off the edge of the 
couch. Ordinarily, the patient would be instructed to keep their eyes open to 
allow the clinician to observe any resulting nystagmus. 

Fig. 2. The CAVA device as worn on the face. The device includes an event marker button for the patient to highlight events of interest to the clinician, and in 
conjunction with the device’s status LED, also provides a way for the patient to check the status of the device. 
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are closed, and patients with dizziness are known to close their eyes 
during an attack, and attacks can start during sleep [24]. For more in
formation about the CAVA device, please refer to our previous work 
[8–10]. 

2.2. The dataset 

The data used in these experiments were captured using the CAVA 
device. The device independently captures horizontal and vertical eye- 
movement data at a sampling rate of approximately 42 Hz. 3-axis ac
celeration is sampled at approximately 20 Hz. Different combinations of 
these five sources of data are used in the experiments described here. 
The data comes from five subjects (Table 1). Subjects 1, 2 and 3 were 
healthy volunteers who wore the device for short periods to collect data 
to assist with algorithm development. Subjects 4 and 5 were participants 
enrolled onto our ongoing clinical investigation and who were diag
nosed with BPPV. The data from Subjects 1, 2 and 3 provided a negative 
control for our experiments. These healthy volunteers underwent 
several Dix-Hallpike tests but, as they were healthy, they did not display 
nystagmus. These subjects performed both left-and right-sided tests. 

Subjects 4 and 5 were enrolled onto our ongoing clinical investiga
tion, and wore the CAVA device for 30 days. Both subjects had been 
diagnosed with right lateral canalithiasis, meaning that they experi
enced vertigo when lying back with their head facing to the right. Data 
from Subject 4 was captured during their consenting visit for the trial, 
during which a clinician administered several right Dix-Hallpike head 
manoeuvres. Subject 5’s data consisted of nystagmus captured during 
their consenting visit and also during the participant’s 30-day trial. 
Hence, the majority of the data available for use in our experiments was 
provided by Subject 5. The nystagmus captured during the trial arose 
from the participant crudely and unintentionally reproducing the Dix- 
Hallpike manoeuvre, by moving their head into similar positions over 
the course of their normal daily activities. 

The ground-truth labels for each subject’s data were marked manu
ally, at a sample-level. Each sample was assigned one of three possible 
labels: 0, 1 or 2. A label of ‘0’ meant that no nystagmus was present in 
the sample, ‘1’ meant that nystagmus was present, and ‘2’ meant that 
nystagmus was not present but the participant had placed themselves 
into a supine position by way of a Dix-Hallpike test. The motivation for 
labelling three classes was to assist our algorithms to discriminate be
tween genuine examples of positional nystagmus and head movements 
in the absence of nystagmus. Labelling a positive example of nystagmus 
required three sources of confirmation: Firstly, if the nystagmus 
occurred outside of a clinical setting (i.e. while the patient was ‘on 
trial’), then the patient had to have activated the CAVA device’s event 

marker to mark the attack onset. The patient also had to have noted the 
approximate time of the event in their trial diary. Finally, upon manual 
inspection, a labeller had to positively identify nystagmus at the time 
indicated by the event marker. In cases where the nystagmus occurred in 
a clinical setting, in place of the diary, the patient’s eyes were physically 
observed to verify the presence of nystagmus. The precise sample-level 
labelling would likely vary depending on the individual labelling the 
data, and such variation reflects the subjectivity of the labelling process. 
However, we believe that this approach is sufficiently accurate for our 
purposes, to enable the presence of nystagmus to be confirmed. 

2.3. The experiments 

To evaluate the performance of our detection system, we used cross- 
fold validation with 11 folds (Table 2). In this approach, each fold is 
tested in turn, with the remaining 10 folds used as training data. Folds 
#1 to #3 evaluate negative control data as well as subject-independent 
test data. Folds #4 to #11 evaluate test data which comes solely from 
Subject 5. Much of this subject’s data is long-term data obtained during 
their 30-day trial period, reflecting the way that the CAVA system will be 
formally evaluated at the end of our ongoing investigation. Using this 
testing framework, we conducted four separate experiments: (i) The first 
experiment was designed to determine baseline performance. We 
compared the performance of our new 2D CNN to the 1D CNN archi
tecture used in our previous work. (ii and iii) We sought to determine the 
contribution to system performance of the eye-movement and acceler
ometer data. This was achieved by undertaking two separate experi
ments, one using eye-movement alone and another using accelerometer 
data alone. (iv) The final experiment was to evaluate the performance of 
our 2D CNN approach, including the benefits offered by our ensemble 
approach to classification. The network architectures used in these 
different experiments were broadly the same (see Section 2.4.4), except 
for the experiments using fewer data sources, for which the kernel sizes 
had to be reduced to reflect the dimensionality of the data. 

2.4. The detection system 

The system used in these experiments is a development of our pre
vious work [10]. Fig. 3 shows the arrangement of this system and the 
following sub-sections describe the function of the modules within it. 

2.4.1. Pre-processing 
Electrooculography recordings of eye-movement data commonly 

display signal drift, whereby the baseline of the signal moves through 
time. To remove this drift from our horizontal and vertical eye- 
movement data, we applied a second order Butterworth high-pass fil
ter, with a cut-off frequency of 0.25 Hz. The accelerometer data was not 
filtered. As the CAVA device captures eye-movement and accelerometer 
data at different sampling rates, we linearly interpolated the acceler
ometer data to match the eye-movement data, allowing the vectors to be 

Table 1 
Details of data files used in our experiment. Each file has a separate ID, and 
contains data from one or more subjects. Also shown are the total durations of 
nystagmus and non-nystagmus data within each file, and whether or not that file 
contains negative Dix-Hallpike tests.  

File 
ID 

Subj. 
ID 

Non-nystagmus 
(hh:mm:ss) 

Nystagmus (hh: 
mm:ss) 

Contains neg. Dix- 
Hallpikes 

1 1, 2 00:16:28 00:00:00 Yes 
2 3 01:48:39 00:00:00 Yes 
3 3 24:01:15 00:00:00 Yes 
4 4 00:23:18 00:00:25 No 
5 5 24:01:15 00:00:30 No 
6 5 00:08:18 00:00:19 No 
7 5 00:23:32 00:00:11 No 
8 5 00:28:16 00:00:31 No 
9 5 24:01:03 00:00:10 No 
10 5 24:00:10 00:00:19 No 
11 5 24:00:45 00:00:08 No 
12 5 24:01:00 00:00:13 No 
13 5 24:00:39 00:00:13 No  

Total 171:34:38 00:02:59   

Table 2 
The data used for each fold of the cross-fold validation experiments. The IDs 
refer to the files listed in Table 1.  

Fold # Training file IDs Testing file IDs Testing subj. IDs 

1 3, 4, 6, 7, 8, 9, 10, 11, 12, 13 1, 2, 5 1, 2, 3, 5 
2 4, 5, 6, 7, 8, 9, 10, 11, 12, 13 3 3 
3 3, 5, 6, 7, 8, 9, 10, 11, 12, 13 4 4 
4 3, 4, 5, 7, 8, 9, 10, 11, 12, 13 6 5 
5 3, 4, 5, 6, 8, 9, 10, 11, 12, 13 7 5 
6 3, 4, 5, 6, 7, 9, 10, 11, 12, 13 8 5 
7 3, 4, 5, 6, 7, 8, 10, 11, 12, 13 9 5 
8 3, 4, 5, 6, 7, 8, 9, 11, 12, 13 10 5 
9 3, 4, 5, 6, 7, 8, 9, 10, 12, 13 11 5 
10 3, 4, 5, 6, 7, 8, 9, 10, 11, 13 12 5 
11 3, 4, 5, 6, 7, 8, 9, 10, 11, 12 13 5  
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stacked into a matrix (Section 2.4.3). 

2.4.2. Windowing 
A sliding window with a duration of 400 samples and a 75% overlap 

was used to convert the individual samples into separate frames of data, 
each representing 9.6 s of data. For training, the ground-truth label for 
each frame was determined by the majority label of the samples within 
it. During testing, a frame was considered as a positive example of 
‘nystagmus’ if any of its constituent samples contained nystagmus. The 
reason for this difference was to ensure that only unambiguous examples 
of nystagmus were used for training the networks, whilst all examples of 
nystagmus were considered at testing. We opted for a window duration 
of 400 samples, based upon the findings from our previous work [10]. 

2.4.3. Data stacking and feature extraction 
There are five separate data sources available, and they are used in 

different combinations depending on the specific experiment under
taken. The first two sources are the eye-movement data, corresponding 
to the horizontal and vertical eye-movements. The last three sources are 
the accelerometer data channels. For this data, and consistent with our 
previous work, we use the eye-movement signal velocity instead of the 
original time-series signal. This is achieved by way of a simple differ
encing between adjacent samples. Although signal drift is largely 
removed by the high-pass filtering described in Section 2.4.1, using 
signal velocity also helps in this regard and makes the nystagmus more 
consistent between examples. Calculating the velocity reduces the signal 
length by one sample, and so an extra sample with a value of 0 was 
appended to the beginning of each vector. The five sources were then 
stacked to produce a feature matrix with 400 columns and 5 rows. Each 
row of this feature matrix was normalised to be a unit vector. 

2.4.4. Neural network architecture 
Fig. 4 shows the 2D CNN architecture used in our experiments. It is a 

development of the architecture we used in our previous work involving 
1D CNNs [10]. This network differs in that it uses 2D instead of 1D 
convolution and the classification layer is configured for a three-class 
problem, rather than for two classes. The networks were trained using 
an Adam’s optimiser, a learning rate of 0.001 and a batch size of 20. 
Categorical cross-entropy was the selected loss function and accuracy 
was the performance metric. On an Nvidia 1080 Ti GPU, each network 
took approximately 13 h to train to 30 epochs. 

The 1D CNNs used in our previous work were shown to be well suited 
to classification of nystagmus occurring almost entirely in the horizontal 
plane. Unlike our previous work, here there are a total of five separate 
data channels offering potentially discriminative information (two for 
eye-movement and three for accelerometer data). There are broadly two 
approaches to incorporating this additional information into a neural 
network architecture. The first is to treat each data source as a separate 
data channel. This is the approach we use here to provide baseline 
performance using a 1D CNN. We also use a novel approach, which is to 
stack the separate data sources into a 2D feature matrix and to use a 2D 

CNN architecture. 2D CNNs are typically applied to image recognition 
tasks, or image analogues, such as signal detection using spectrograms. 
Here, by creating a composite feature matrix, we effectively create an 
image which is 400 pixels in length by 5 pixels deep. Our intention is 
that the 2D CNN may then learn complex relationships between the 
different data sources in different parts of the ‘image’, in much the same 
way that they are considered to do in tasks such as scene identification. 

2.4.5. Ensemble of CNNs 
Each time a neural network is trained, it is seeded with a random 

value and the resulting network and its discriminative performance 
differs as a result. It has been shown that combining the outputs of 
multiple machine learning techniques can result in superior classifica
tion performance [25]. 

Here, we adopted an ensemble of five CNNs in all of the experiments 
undertaken. Each CNN provides its classification for each frame of data 
tested and the majority decision of the CNNs determines the final clas
sification assigned to that frame (Fig. 5). Using an odd number of CNNs 
avoids the possibility of a tie between the classifiers. Five CNNs provide 
a good balance between diverse classifier outputs, and the computa
tional time required to train and test the networks – Training five net
works takes approximately three days on an Nvidia 1080 Ti. Each 
network is trained using labelled training data, according to the training 
and testing folds described in Table 2. 

Table 1 shows that there is a large imbalance between the quantities 
of training data for the three classes considered here, with only 3 min of 
nystagmus data and over 171 h of non-nystagmus data. Failing to 
address a class imbalance such as this can result in poorly trained net
works which classify everything as belonging to one class. Following our 
previous work, in which we showed oversampling to be an effective 
technique for addressing class data imbalances [10], here we applied 
Synthetic Minority Over-Sampling Technique (SMOTE) to our training 
data [26]. In summary, this technique operates by synthesising new 
examples of the minority class (or classes) such that the quantity of 
training data is equal for each class. This is achieved by interpolating the 
feature space between neighbouring data points. After applying this step 
to the training data, each of the three classes contained the same number 
of frames as the largest class (i.e. class ‘0’, non-nystagmus). Note that 
this technique is not applied to the testing data. 

2.4.6. Classification 
Each frame was classified as one of three possible classes: 0 (non- 

nystagmus), 1 (nystagmus) and 2 (non-nystagmus, but with the partic
ipant in a supine position during a Dix-Hallpike test). Any frame clas
sified as class 2 was reassigned to class 0, as the purpose of this class was 
only to aid the networks in discriminating between nystagmus and 
normal eye-movements. As with our previous work, the output from the 
classification stage was filtered using a sieve filter, to smooth the clas
sification output. This filter operates by removing (or ‘opening’) short 
runs of positive classifications and by filling in (or ‘closing’) short runs of 
negative classifications [27]. 

Fig. 3. Block diagram of nystagmus detection system. Input recognition features are combined into either a 2D matrix or multi-channel 1D vector.  
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3. Results 

The results obtained by our baseline 1D CNN approach were 
extremely poor, caused by a low true positive detection rate of just 9% 
(see Exp. #1 in Table 3). The result for this experiment was even worse 
when including the sieve filter step, which removes short duration 
classifications. Similar results were produced by our new 2D CNN ar
chitecture when using only horizontal and vertical eye-movement ve
locity data as the recognition features (Exp. #2). Using the three-axis 
accelerometer data as the recognition features for the 2D CNN gave 
improved performance, with a sensitivity of 40%, but also with an 11- 

fold higher rate of false positive detections (Exp. #3). The highest per
formance was obtained using a 2D CNN architecture with recognition 
features containing both eye and head-movement data (Exp. #4). 

Table 4 shows the results for the five separate 2D CNNs used within 
the ensemble classifier which gave the results for Exp. #4 in Table 3. The 
performance across the five networks was fairly consistent, but with 
some variation in terms of true positive and false positive detections. 
Network #4 produced the lowest F1 score of 0.22, while Network #5 
gave an F1 score of 0.61. The F1 scores for each of the individual net
works were lower than for the ensemble classifier. 

In Table 5 we present the performance for the individual folds of Exp. 
#4, shown in Table 3. Folds #1 and #2 included data from subjects 
undergoing Dix-Hallpike tests producing a negative result (i.e. non- 
nystagmus). Only one of nearly sixty negative Dix-Hallpike tests were 
misidentified as containing nystagmus. Fold #3 shows the result of 
testing data from a subject who had no other data available for use as 
training data. This subject-independent result showed a very high F1 
score 0.76. Folds #7 to #11 tested very long data files from subject 5, 
each containing a day’s worth of data. An F1 score of 0.89 was achieved 
for these folds, demonstrating a very high degree of discrimination for 
nystagmus captured during the subject’s normal everyday activities. The 
F1-score for fold #8 was 0.00, as no positive classifications were made. 
Upon reviewing the classifications made in this fold, we found that a 
single true positive detection had been filtered out during the post- 
processing step, as it was very short in duration. The data from folds 
#4 to #6 were shorter in overall duration as they related to data 
captured during Dix-Hallpike tests administered by a clinician. The re
sults for these folds were consistent with the results obtained using this 
subject’s 30-day trial data. 

4. Discussion 

The results for our 2D CNN architecture using a combination of eye- 
movement velocity and accelerometer data provided the best classifi
cation performance across all experiments undertaken. These results 
showed that this system is capable of detecting relatively short durations 
of nystagmus, in the order of a few seconds, and from within many hours 
of ‘normal’ data. 

The best results were achieved using feature vectors containing both 
eye-movement and accelerometer data, compared to results obtained 
using either data source independently. This accords with intuition, as 
either signal alone would not provide sufficient information to confirm 
the presence of motion-provoked nystagmus. Accelerometer data would 
only reveal the position of the head, rather than the presence of 

Fig. 4. The 2D Convolutional Neural Network architecture used in our exper
iments. ‘X’ denotes input samples. 

Fig. 5. An illustration of how each network output is combined by the 
ensemble classifier. Networks NN1 to NN5 produce a classification for frames f1 
to fN. Positive classifications shown in yellow. The Ensemble output is deter
mined by the majority vote for each frame. In this example, NN1’s positive 
classification of f1 does not propagate through to the Ensemble output. By 
contrast, four networks have classified f4 as a positive example of nystagmus, 
and therefore this class wins by majority vote and is present in the 
Ensemble output. 
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nystagmus, potentially leading to misclassifications every time the pa
tient entered a supine position. This is confirmed by the relatively high 
number of false positive detections produced by this experiment 
(Table 3, Exp. #3). Eye-movement data alone gives lower performance, 
as the nystagmus signals are not distinctive enough by themselves to 
accurately be distinguished from other, normal eye-movements. It is 
only when nystagmus eye-movements are identified alongside supine 
head positioning that networks are able to accurately identify positional 
nystagmus. 

The results in Table 5 vary across the testing folds, reflecting the 
variability of the signals of interest and the difficulty of the problem we 
are addressing. The target nystagmus signals usually occupy just a few 
seconds from within many days of normal eye-movements. In total, 
nystagmus accounts for about 0.03% of the total data used here. It can 
also be very challenging to identify the target signals when they are 
produced by imperfect vertigo attacks producing even shorter duration 
nystagmus, or when impacted by motion artefacts. The result for fold #8 
in Table 5 is one such example, showing a very poor detection rate due to 
a vertigo attack with a very short duration. Likewise, it is also chal
lenging to avoid false positive detections from within many hours of 
normal, yet highly variable eye-movements. Considering these points, 
the results presented actually reflect a remarkably high degree of ac
curacy. Additionally, practically speaking, a clinician would be 

interested in the detection of vertigo events rather than in the precise 
quantification of the nystagmus duration. This is because the treatment 
for BPPV is non-invasive and virtually risk-free, therefore favouring 
diagnostic sensitivity over specificity. Here, nystagmus was detected in 9 
out of 10 testing folds containing nystagmus, demonstrating a high de
gree of sensitivity. 

When comparing the performance of our baseline 1D CNN archi
tecture to the 2D CNN, we found that the 1D CNN provided exception
ally poor performance. This result was in contrast to our previous work, 
where we had successfully applied 1D CNNs to the detection of hori
zontal jerk nystagmus. We suspect that this difference in performance 
has arisen from the way that the convolution filters are applied to the 
data sources in these networks. Although both the 1D and 2D CNNs were 
trained using a combination of eye-movement and accelerometer fea
tures, for the 1D network they were arranged as separate data channels, 
whereas for the 2D network we stacked the features in order to permit a 
2D convolution of the data. It is likely that the 1D network failed to learn 
the relationship between the eye- and head-movement data. This 
explanation is supported by our experiments using the data sources 
independently, which showed that a 2D CNN using eye-movement data 
alone provided similar performance to a 1D CNN using all available 
channels of data. 

It was reassuring to see that examples of negative Dix-Hallpike ma
noeuvres were almost entirely classified as negative examples of 
nystagmus. This result provides further confidence that the system is not 
simply learning the head-movements associated with laying backwards 
or undergoing a Dix-Hallpike test. We were also keen to ensure that the 
system was not simply discriminating the identity of the individuals 
undergoing the Dix-Hallpike test, and so testing fold #1 included 
negative tests from subjects who were tested in a subject-independent 
manner (i.e. no data from these subjects was used in the training 
data). No false positive detections were made for these subjects, 
although six false positive frames were detected overall in this fold, from 
Subject 3’s data. 

5. Conclusion 

In this article, we have shown that nystagmus produced as a result of 
positional vertigo may be automatically identified within the long-term 

Table 3 
Results of a frame-level classification task for four different CNN configurations: A 1D CNN, and three experiments using a 2D CNN. All experimental results were 
obtained using a five-network ensemble and the same processes as described in Section 2. The 1D CNN experiment did not use the sieve filter step, as its inclusion 
removed all true positive detections. When calculating mean and standard error of F1 scores, we assumed a score of 1.00 for fold #2 in cases where no false positive 
detections were made, as the fold contains no examples of nystagmus.  

Experiment # tp tn fp fn Sensitivity (%) Specificity (%) F1  Mean (SE) F1  

1D CNN baseline: velocity & accelerometer features 
1 13 222261 272 128 9 100 0.06 0.21 (0.09) 
2D CNN: eye-movement features 
2 0 222483 50 141 0 100 0.00 0.09 (0.09) 
2D CNN: accelerometer features 
3 56 221963 570 85 40 100 0.15 0.26 (0.08) 
2D CNN: velocity &accelerometer features 
4 73 222515 18 68 52 100 0.63 0.63 (0.09) 

tp = true positive, tn = true negative, fp = false positive, fn = false negative. 

Table 4 
Frame-level results for the individual networks used in the ensemble configuration to produce the results shown for Exp. #4 in Table 3.  

Network # tp tn fp fn Sensitivity (%) Specificity (%) F1  Mean (SE) F1  

1 51 222457 76 90 36 100 0.38 0.42 (0.11) 
2 50 222491 42 91 35 100 0.43 0.37 (0.11) 
3 66 222469 64 75 47 100 0.49 0.50 (0.09) 
4 64 222146 387 77 45 100 0.22 0.40 (0.09) 
5 75 222502 31 66 53 100 0.61 0.63 (0.09) 

tp = true positive, tn = true negative, fp = false positive, fn = false negative. 

Table 5 
Results for the individual folds summarised in the results for Exp. #4 in Table 3.  

Fold # tp tn fp fn Sens. (%) Spec. (%) F1  

1 3 39343 6 21 12 100 0.18 
2 0 1096 0 0 - 100 - 
3 16 563 3 7 70 99 0.76 
4 6 196 0 10 38 100 0.55 
5 5 577 3 4 56 99 0.59 
6 18 693 0 5 78 100 0.88 
7 8 35017 2 0 100 100 0.89 
8 0 35996 0 12 0 100 0.00 
9 3 36010 2 4 43 100 0.50 
10 6 35016 2 3 67 100 0.71 
11 8 36008 0 2 80 100 0.89 

tp = true positive, tn = true negative, fp = false positive, fn = false negative. 
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eye-movement data captured by the CAVA device. We have found that 
2D CNNs offer superior performance in this regard, and that a combi
nation of eye-movement and head-movement data are required to reli
ably distinguish nystagmus eye-movements from the vast range of 
normal eye-movements produced during a 24-hour period. The 
nystagmus signals detected were markedly different from the jerk 
nystagmus which was the focus of our previous work. While these stark 
differences might help to discriminate between the conditions them
selves, the characteristics of BPPV nystagmus posed a greater challenge 
for this detection task due to its short duration and signal variability. 
Despite this, our 2D CNNs were able to learn the distinctive features of 
BPPV nystagmus and to identify it with a good degree of confidence. 

The 2D CNN ensemble approach to detection was shown to offer 
improved performance over a single network configuration. We also 
found that stacking our input features to create a composite 2D feature 
matrix gave vastly superior results to using a 1D multi-channel archi
tecture. While this approach may not be best suited to all detection tasks, 
and other configurations of 1D network may offer improved perfor
mance, this finding shows that similar techniques can provide very 
different results depending on how they are configured. 

We tested some data in a subject-independent manner. The results 
obtained suggested that our findings may generalise to a larger popu
lation of unseen patients. While the performance of the detection system 
is very promising, our experiments were conducted using a relatively 
small dataset of data captured from two symptomatic patients and three 
healthy volunteers. Were more training data to be available, the per
formance of our algorithms would likely improve. In order to demon
strate the true clinical applicability of these techniques, we would have 
to replicate these findings on a much larger dataset, containing many 
more subjects. By the end of our ongoing clinical investigation, we will 
have collected such a dataset and will be able to further evaluate these 
techniques and the methods we have published previously. That new 
data will also provide a platform for further development of our algo
rithms, and the results presented here will serve as a good baseline on 
which we hope to improve. 

Currently, the system can detect periods of nystagmus, which is 
clinically useful in terms of confirming that a patient is experiencing true 
rotatory vertigo. The characteristics of the nystagmus detected could 
also assist clinicians to identify the organ system responsible for a pa
tient’s vertigo. With respect to positional vertigo, the data captured by 
the CAVA device is sufficiently different from that of conditions such as 
Ménière’s disease that we have had to develop separate algorithms to 
detect the nystagmus from these conditions. There are also other, less- 
common forms of positional vertigo, such as Central Positional 
Nystagmus (CPN) [28]. Although we have not tested patients with CPN 
here, down-beating nystagmus is more commonly associated with CPN, 
whereas the most common BPPV nystagmus is characterised by an 
up-beating component [29]. Of course, patients can have coexistent 
conditions and there is a degree of overlap between the presentation of 
different diseases. For these reasons, a clinician would be expected to 
review the output of the CAVA system in the context of a patient’s other 
signs and test results. Following the successful completion of our current 
investigation, our next objective is to further develop the CAVA system 
to be able to diagnose the condition responsible for a patient’s 
nystagmus. Our ultimate aim is to fully develop and deploy this system 
into routine medical care, to improve the speed and accuracy of diag
nosing patients with suspected vertigo. 
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