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ABSTRACT  26 

China has recently announced a reform of forestry policy, with a major goal being to 27 

transform from plantation to heterogeneous forests, which have higher resistance to pests and 28 

disease and house more biodiversity. One driver of reform is increased intensity and frequency 29 

of pest-induced tree-dieback events. To inform management, we ask what effects these events 30 

have on insect biodiversity in Pinus yunnanensis monocultures in Yunnan province, the 31 

province with one of the highest proportions of forest cover in China. We sampled aerial insect 32 

(mostly insect) biodiversity along gradients of Pinus yunnanensis dieback severity using 33 

Malaise traps and used metabarcoding to characterise the insect community. We used MS-34 

GDM (‘multi-site generalized dissimilarity modelling of zeta diversity’), zeta-decline analysis, 35 

and iNEXT (‘Interpolation and extrapolation for species diversity’) to assess community 36 

change as functions of forest-structure covariates. Metabarcoding of Malaise-trapped insects 37 

reveals that bark-beetle induced forest dieback does not result in detectable differences in 38 

species diversity but does result in compositional change, with the biggest turnover occurring 39 

between 0%-infested-0%-open-canopy forests and 20%-infested-20%-open-canopy forests. 40 

Zeta-decline analysis found that the insect community in low-infestation forests is 41 

characterized by a stochastic assembly, while in high-infestation forests, the community 42 

structure is consistent with niche assembly. Our results thus suggest that bark-beetle dieback 43 

mimics natural forest-gap dynamics, consistent with the interpretation of bark beetles as a 44 

keystone species in European conifer forests, where it has been proposed that forest 45 

heterogeneity can be created efficiently by allowing natural disturbances, including bark-beetle 46 

outbreaks, to proceed naturally, without being mitigated by deadwood removal and dense 47 

replanting. In Yunnan’s situation, and given predicted increases in bark-beetle dieback severity 48 

and frequency, this strategy should probably be supplemented with anthropogenic treatments, 49 

such as deadwood enhancement and planting of multiple tree species, to accelerate the 50 

succession of plantations into heterogeneous forests. 51 

KEYWORDS: DNA metabarcoding, biodiversity, climate change, bark beetle outbreak, zeta 52 

diversity, Pinus yunnanensis  53 
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1. INTRODUCTION 54 

The largest reforestation programmes in the world are China’s Natural Forest Protection 55 

Program (NFPP) and Grain for Green Program (GFGP), which were implemented after 56 

widespread flooding in 1998 (Liu et al., 2008; Vina et al., 2016; Xu et al., 2006; Yin et al., 57 

2009). The NFPP protects native forests in the upstream watersheds of the Yangtze and Yellow 58 

rivers (Liu et al., 2008; Ren et al., 2015), and the GFGP controls soil erosion by paying farmers 59 

to plant trees on sloping land that had been used for food production (Delang & Yuan, 2015; 60 

Liu et al., 2008; Ma et al., 2017; Xu et al., 2006; Zhai et al., 2014). The GFGP reforested 9.06 61 

million ha of cropland between 1999 and 2014, and not surprisingly, the GFGP has primarily 62 

established low-diversity tree plantations (‘plantations’ hereafter), rather than restoring native 63 

forest (Hua et al., 2018, 2016; Zhai et al., 2014).  64 

Studies have previously shown that these plantations support lower levels of bird, bee, 65 

and general insect diversity than do native forests in the same locations (Hua et al., 2016; Wang 66 

et al., 2019). These findings complement those of Cao et al. (2019), who recently calculated 67 

that plantations in China return a lower net value of ecosystem services relative to native forests, 68 

even after counting income from timber sales. Plantations require a high initial outlay for tree 69 

planting, some non-native tree species like Eucalyptus require more water input than do native 70 

tree species, and more management effort is required to protect plantations from pest attack 71 

(Brockerhoff et al., 2013). In contrast, income from timber sales is low. Thus, to better protect 72 

and restore terrestrial biodiversity, studies have recommended that reforestation policy in 73 

China should prioritize the conservation and restoration of native forest over plantations (Hua 74 

et al., 2016; Wang et al., 2019). 75 

These initial results in China are consistent with those from a larger body of research on 76 

forest biodiversity and ecosystem functioning in Central Europe, where professional 77 

silviculture has long promoted plantations, which have now grown to be dominated by dense 78 

tree stands with few canopy gaps and low volumes of deadwood (Doerfler et al., 2018; Thorn 79 

et al., 2018, 2019). Such forests support a low diversity of plants and animals, especially of 80 

saproxylic species (Thorn et al., 2018, 2019) and are more vulnerable to large-scale bark-beetle 81 
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(Curculionidae, Scolytinae) outbreaks because the forests are even-aged and thus grow to 82 

provide an extensive and continuous cover of the large trees that are ideal hosts for bark beetles 83 

(Seidl et al., 2016).  84 

Bark-beetle outbreaks are now a primary killer of coniferous forest in central Europe 85 

(Thorn et al., 2019), as well as North America (Robertson et al., 2009) and China (Gan, 2015; 86 

He & Zhang, 2004). Moreover, climate change is increasing the frequency of bark-beetle 87 

outbreaks (Carroll et al., 2004; Esper et al., 2007; Sambaraju et al., 2012; Seidl et al., 2017). 88 

For instance, more frequent and severe droughts and high temperatures impede pines from 89 

producing enough toxic resin to disable attacking beetles (Erbilgin et al., 2017; Kichas et al., 90 

2020; Raffa & Berryman, 1983), and consequently, bark-beetle populations can more easily 91 

grow to outbreak levels (Cullingham et al., 2011).  92 

Bark-beetle outbreaks leave many standing dead trees, leading to an overall increase in 93 

deadwood amount and stand structural heterogenity (Swanson et al., 2011). Forest managers 94 

often carry out salvage logging by removing infected trees in order to stop the expansion of the 95 

beetles (Stadelmann et al., 2013) and to recover the economic value of wood (Lindenmayer et 96 

al., 2008). The removal of infected trees has a negative impact not only on bark beetles but also 97 

on other species associated with dead wood (Thorn et al., 2018) but can have positive effects 98 

by on species that are normally associated with open areas (Rost & Clavero, 2012). 99 

Our study region of Yunnan province, southwestern China, has one of the highest 100 

proportions of forest cover in China (Ren et al., 2015; SFA, 2016), and Pinus yunnanensis 101 

plantations account for 28.2% of this forest cover (YNFA, 2018), 80% of which is monoculture 102 

(Cai et al., 2006). Most of the Pinus yunnanensis forest has grown up on land where primary 103 

evergreen broadleaved forests had been destroyed (Deng et al., 2014). The provincial forestry 104 

bureau carries out salvage logging by cutting and removing ‘snags’ (upright dead trees) to 105 

control local outbreaks of three species of pine shoot beetles of genus Tomicus (Coleoptera: 106 

Curculionidae: Scolytinae) (Gan, 2015; Kirkendall et al., 2008; Lu & Zhang, 2000; Lu et al., 107 

2014; Wang et al., 2015). In addition, locals remove logs for firewood, leading to very low 108 

volumes of dead wood in Pinus yunanesis plantations, despite massive shoot beetle outbreaks 109 
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affecting over 200,000 ha of pine plantations in Yunnan (Ji et al., 2007; Lieutier et al., 2003). 110 

This combination in Yunnan of GFGP-financed plantation dominance, Tomicus outbreaks, and 111 

salvage logging results in conifer forests similar to those in Central Europe: structurally simple, 112 

even-aged tree cover that, despite cut-and-removal of infested trees, remains vulnerable to 113 

bark-beetle outbreaks (Cai et al., 2006) and supports low levels of native biodiversity compared 114 

to native forest.  115 

However, China announced its intention to implement a new forest restoration plan in 116 

2019 (Xinhua News Agency, 2019), with a major policy goal being to transform plantations 117 

into heterogeneous forests that have higher resistance to pests and disease.  118 

In this study, we used Malaise traps to sample aerial insect biodiversity (dominated by 119 

Diptera and Hymenoptera) along gradients of Pinus yunnanensis dieback severity. The initial 120 

goal of our study was to study the ecological impact of bark-beetle-induced dieback on flying 121 

insect diversity. In particular, we were interested in whether patterns of forest insect diversity 122 

in Yunnan plantations are similar to those in Central Europe, where impacts of tree-dieback on 123 

habitat structure and salvage logging have been extensively studied (Doerfler et al., 2018; 124 

Hilmers et al., 2018; Müller et al., 2010; Seibold et al., 2016a, 2016b, 2018; Thorn et al., 2018). 125 

If similar, then this increases our confidence in applying lessons learned there to Yunnan and 126 

neighboring provinces (e.g. the efficacy of deadwood enrichment as a means of promoting 127 

saproxylic taxa; Doerfler et al., 2018; Seibold et al., 2016a, 2016b). Secondly, given China’s 128 

recent forest-policy reform announcement, our results serve as a baseline survey of aerial insect 129 

biodiversity in Yunnan’s Pinus yunnanensis plantations, to allow comparison with future 130 

forests in which, we presume, China will promote, or at least allow, the accumulation of greater 131 

structural and age heterogeneity and more deadwood. 132 

We characterized the Malaise-trap samples using DNA metabarcoding, which combines 133 

DNA barcoding with high-throughput DNA sequencing to generate large sample X species 134 

tables that can be used to test the effects of candidate environmental variables on biodiversity. 135 

We did not specifically collect saproxylic taxa because the current cut-and-remove policy 136 

means that there are no Pinus yunnanensis forests in Yunnan with high volumes of deadwood 137 
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to act as a contrast. Metabarcoding has been tested against morphologically identified samples 138 

and been shown to be a reliable and efficient method of characterizing the species compositions 139 

of bulk samples of insects and invertebrates generally (Aylagas et al., 2018; Cordier et al., 2017; 140 

Edwards et al., 2014; Ji et al., 2013; Lejzerowicz et al., 2015; Pawlowski et al., 2016; Wang et 141 

al., 2019; Yu et al., 2012). Accessible explanations of metabarcoding are available in Bush et 142 

al. (2017), Ji et al. (2013), Piper et al. (2019), Yang et al. (2020), and Zinger et al. (2019).  143 

2. METHODS 144 

2.1. Field sampling and environmental variables 145 

Following the distribution of Pinus yunnanensis in Yunnan province, southwest China, 146 

we sampled in five counties across the elevational range of optimal growth (1800–3000 m, 147 

Table 1) (Deng et al., 2013). In each county, we sampled in six P. yunnanensis-dominated 148 

forest stands of at least 1 Ha extent along a gradient of bark-beetle-induced dieback severity: 149 

two sites each in low, medium, and high severity (Figure 1) (sampling locations and elevations 150 

in Table S1). Severity was judged by local forestry officials, who are charged with responding 151 

to bark-beetle outbreaks, using a method defined in 2006 by the then-State Administration of 152 

Forestry (now National Forestry and Grassland Administration) (SFA 2006). All sampling 153 

plots are reported to have been attacked the first time in the 1980s (Zhao & Långstrӧm, 2012). 154 

Our goal with this initial blocking was only to maximize coverage of the local gradient of 155 

dieback severity. 156 
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Figure 1. Map of study area, Yunnan province, southwest China. Blue insets are the five 157 

sampled counties. Green squares indicate Pinus yunnanensis forest distribution. Coloured 158 

circles indicate sampling sites, stratified by severity of bark-beetle outbreak, as judged 159 

subjectively by local forestry officials. 160 

We set out and retrieved Malaise traps during 4-14 July 2016, placing two traps 10 m 161 

apart in each forest site (pairs were pooled at DNA extraction before downstream processing) 162 

for a total of 60 samples (5 counties X 6 sites/county X 2 traps/site). We used absolute ethanol 163 

as the killing and preserving agent, and the traps were left out for seven days each. For 164 

efficiency, we set out all traps in one county and then moved the next day to another county. 165 

Retrieval followed the same schedule, and we replaced the ethanol in each trap with fresh 166 

ethanol for transport at ambient temperature to our laboratory, where samples were stored at -167 

80 ºC until DNA extraction. In addition, in each of the 30 sampling sites, we centered a 30 X 168 

30 m quadrat over the Malaise traps and measured six environmental covariates: elevation, 169 

mean tree height, diameter at breast height (DBH), percentage canopy openness, mean 170 

Sampled county

Distribution of 
Pinus yunnanensis

Local outbreak severity

Low
Medium
High
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infestation rate (the percentage of trees with one or more bark beetle emergence holes on all 171 

four cardinal sides), and stump number (details in Table 1).  172 

Table 1. Environmental covariates and definitions 173 

Environmental 

covariates 
Definitions Range(of means) 

Elevation Recorded by GPS at the plot center. 1757-3052 m 

Height Mean height of 40 trees in the quadrat, where the trees 

are the first 10 trees north, south, east, and west of the 

quadrat centre.  

4.61-13.00 m 

DBH Mean diameter at breast height of 40 trees in the quadrat, 

using the same trees used for the height measurement.  
7.9-23.6 cm 

Canopy openness Mean proportion of sky visible in the quadrat, measured 

by spherical densiometer (Paletto & Tosi, 2009). 

Measurements were taken at quadrat centre and each 

corner, and averaged. 

0.01-0.68 

Infestation rate The percentage of trees that are infested. Trees with one 

or more bark beetle emergence holes on the north, south, 

east, and west sides of their trunks were scored as 

infected, using the same trees used for the height 

measurement. 

0-0.79 

Stumps The total number of tree stumps in the quadrat.  0-22 

2.2. DNA extraction and PCRs 174 

Before DNA extraction, the storage ethanol was decanted, and the sample was air-dried 175 

on single-use filter papers. To reduce PCR dominance by large-biomass individuals (Elbrecht 176 

et al., 2017), we used two legs from all individuals larger than a housefly and whole bodies of 177 

everything smaller. Tissue was digested using a modified non-destructive protocol from Gilbert 178 

et al. (2007) and Nielsen et al. (2019) in one 50-ml falcon tube per sample, followed by DNA 179 

extraction with the DNEasy Blood & Tissue Kit (Qiagen GmbH, Germany). After extraction, 180 

we pooled the DNA from the paired Malaise traps, leaving us with 30 samples, one per site. 181 
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We used mlCOIintF–Fol-degen-rev primers (Leray et al., 2013; Yu et al., 2012), which 182 

amplify a 313-bp fragment of the COI barcode, and we followed the DAMe metabarcoding 183 

protocol (Alberdi et al., 2018; Bohmann et al., 2018; Zepeda-Mendoza et al., 2016), which is 184 

a co-designed wet-lab and bioinformatic pipeline that combines qPCR-optimized PCR 185 

conditions, multiple, independent PCR replicates per sample, twin-tagging, and negative and 186 

positive controls to (i) remove sequence-to-sample misassignment due to tag-jumping (Schnell 187 

et al., 2015), (ii) reduce sequence dropout and taxonomic bias in amplification, and (iii) reduce 188 

erroneous sequences. Twin-tagging means that the same tag is used on both the forward and 189 

reverse primers in a reaction (F1-R1, F2-R2,…), and multiple, independent PCR replicates per 190 

sample means that a different twin tag is used for each of the six PCRs per sample, which lets 191 

them be distinguished in bioinformatic processing. The DAMe logic is that tag-jump events 192 

can be filtered out by removing reads carrying non-twinned tags (e.g. F1-F2, F3-F5) and that 193 

nearly all erroneous sequences (indels, substitutions, chimeras) can be filtered out by removing 194 

sequences that appear in only one (or a low number of) PCR replicate(s) at a low copy number, 195 

while true sequences are more likely to appear in multiple PCRs at higher copy numbers. 196 

Extensive testing with a recently updated version of DAMe (now called Begum) using mock 197 

samples finds that erroneous sequences can be nearly eliminated at the cost of only a small rise 198 

in drop-outs, and a detailed explanation of the protocol can be found there (Yang et al., 2020). 199 

We used qPCR on a subset of samples to optimize PCR annealing temperature, cycle 200 

number, and initial DNA template concentration, as recommended by Murray et al. (2015) and 201 

Bohmann et al. (2018). Afterwards, for each sample, we ran 6 independent PCRs with 6 202 

different twin-tags, under the following qPCR-optimised conditions: initial denaturation 95 °C	203 

for 5 min, followed by 27 cycles of 95 °C	for 10s, 45.5 °C	for 45s, 72 °C	for 1 min, and finishing 204 

at 72 °C	for 10 mins. All PCRs were performed in 20 µl reactions containing 0.6 U Ex Taq HS 205 

DNA polymerase, 1 × Ex Taq Buffer (Mg2+ plus), 0.2 mM dNTP Mixture (TaKaRa, 206 

Biotechnology Co. Ltd, Dalian, China), 0.4 µM of each primer, 1 µl DMSO, 0.1 µg/µl BSA 207 

(Bovine Serum Albumin Solution, TaKaRa Biotechnology Co. Ltd, Dalian, China), and 2 µl 208 

genomic DNA. We visualized the PCR products on 2% agarose gels. The PCR plate also 209 
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included three extraction blanks and a row of PCR blanks. Finally, we included a positive 210 

control containing seven insect species from France. The 30 samples were combined into six, 211 

approximately equimolar pools for bead purification (Agencourt AMPure XP kit, Beckman 212 

Coulter, Inc., USA) and subsequent library preparation using the NEXTflex Rapid DNA-Seq 213 

Kit for Illumina (Bioo Scientific Corp., Austin, USA). The six libraries were sequenced on the 214 

Illumina MiSeq platform (300PE) at the Southwest Biodiversity Institute Regional Instrument 215 

Center in Kunming. 216 

2.3. Bioinformatic processing 217 

Raw MiSeq data were first trimmed for remnant Illumina adapters with AdapterRemoval 218 

2.2.0 (Schubert et al., 2016), followed by Schirmer et al.’s (2015) recommended pipeline: we 219 

trimmed low-quality ends using sickle 1.33 (Joshi & Fass, 2011), denoised reads using the 220 

BayesHammer module in SPAdes 3.10.1 (Nikolenko et al., 2013), and merged read pairs using 221 

PandaSeq 2.11 (Masella et al., 2012). In all cases, we used default parameters.  222 

Sequence were demultiplexed to sample and filtered for tag-jumps using a modified 223 

version of DAMe that ignores heterogeneity spacers in the primers 224 

(github.com/shyamsg/DAMe, accessed 10 October 2020). We then filtered out putatively 225 

erroneous sequences by keeping only those that appeared in >2 of the 6 PCRs per sample, at a 226 

minimum copy number of 30 per PCR, which is the stringency level that minimized false 227 

negatives and maximized true positives in the positive control. We further filtered by removing 228 

sequences ≤300 bp length and using the de novo chimera search function in vsearch 2.4.3 229 

(Rognes et al., 2016). After filtering, sequences were clustered into 97% similarity Operational 230 

Taxonomic Units (OTUs) using SUMACLUST 1.0.20 (Mercier et al., 2013), from which we 231 

created a Sample X OTU table, and we used the R package ‘lulu’ 0.1.0 (Frøslev et al., 2017) 232 

with default parameters to combine likely ‘parent’ and ‘child’ OTUs that had failed to cluster. 233 

Finally, we assigned taxonomies to the remaining OTUs with the RDP Classifier function 234 

(Wang et al., 2007) on the Midori metazoan mitochondrial gene website (Leray et al., 2018). 235 

OTUs assigned to Arthropoda with <80% probability were removed. No OTUs remained in 236 
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the extraction-blank and PCR negative controls, and the positive control and samples shared 237 

no OTUs. We also tried assigning taxonomies on BOLD (Ratnasingham & Hebert, 2007), but 238 

only a few OTUs received hits, due to a lack of samples from this region.  239 

2.4. Statistical analyses  240 

All statistical analyses were carried out in R 3.6.3. Read numbers per OTU per sample 241 

were transformed to presence/absence (1/0). We first used the ‘boral’ 1.6.1 R package (Hui, 242 

2016) to cluster sites by community composition. Boral is a Bayesian, model-based ordination 243 

method that allows the selection of an appropriate error distribution. We used a binomial error 244 

distribution and no row effect to fit the model since we were using presence/absence data. For 245 

the same reason, we used ‘mvabund’ 3.12.3 (Wang et al., 2012) to test for the effects of 246 

environmental covariates on community composition. 247 

Because the boral ordination showed that the dominant driver of change in community 248 

composition is geographic distance, which is not surprising given the large spatial extent of our 249 

sampling (Figure 1), we followed up with Multi-Site Generalized Dissimilarity Modelling 250 

(MS-GDM), using the ‘zetadiv’ 1.2.0 package (Latombe et al., 2017). Classical GDMs try to 251 

identify the dominant drivers of change in community composition by using a combination of 252 

pairwise (i.e. between-two-sites) differences in geographic distance and in environmental-253 

covariate values to explain pairwise differences in community composition (Ferrier et al., 254 

2007). However, pairwise differences in composition (e.g. 1-Jaccard) are dominated by the 255 

contributions of the many species that are present in just two samples (i.e. rare species), 256 

resulting in GDMs that more heavily weight the variables that explain turnover in rare species, 257 

such as geographic distance.  258 

To identify the environmental variables that are more important for explaining the 259 

distributions of widespread species (i.e. those present in multiple samples), Latombe et al. 260 

(2017) combined GDMs with the concept of zeta diversity (Hui & McGeoch, 2014) to create 261 

MS-GDMs. Zeta diversity is a generalization of pairwise beta diversity and is the mean number 262 

of species shared by i number of sites, where i is known as the zeta order. Zeta diversity order 263 

4, for instance, is the mean number of species shared by 4 sites (in a dataset of 100 sites, there 264 
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are ~3.9 million combinations of 4 sites). Zeta diversities can be converted to multi-site 265 

equivalents of the pairwise Jaccard dissimilarity and used as response variables in an MS-GDM 266 

(Latombe et al., 2017, 2019), with the six environmental covariates as candidate predictors 267 

(Table 1), rescaled between 0 and 1. We also used zeta diversity to ask if the insect communities 268 

in low- and high-infestation forests show evidence for different assembly mechanisms, by 269 

using the ‘zetadiv’ package to calculate zeta diversity decline and species retention rates for 270 

low- and for high-infestation forests. Finally, we partitioned variation in zeta diversity into 271 

environmental, distance, indistinguishable, and unexplained components.  272 

To compare alpha diversity across infestation levels (Species richness, Shannon and 273 

Simpson diversities), we used the sample-based rarefaction-extrapolation approach in the 274 

‘iNEXT’ 2.0.12 package (Hsieh et al., 2016). Significant differences in estimated alpha 275 

diversity were judged by non-overlapping confidence intervals, which is considered slightly 276 

conservative (MacGregor-Fors & Payton, 2013). In case we had oversplit some biological 277 

species into multiple OTUs, leading to artefactual differences in species richness, we also 278 

carried out a phylogenetic-diversity (PD) analysis because a single species split into multiple 279 

OTUs should cluster on a phylogenetic tree and thus contribute less to PD than two OTUs from 280 

two different biological species. Our protocol followed that of Wang et al. (2019), in which we 281 

aligned the OTU sequences, built a maximum-likelihood (ML) phylogenetic tree (details in 282 

S2), and estimated PD with the ‘iNextPD’ 0.3.2 package (Hsieh & Chao, 2017). We omitted 283 

two OTUs because they produced long branches. 284 

3. RESULTS 285 

3.1. Bioinformatic processing and taxonomic composition 286 

The six libraries yielded 11,128,217 paired-end reads. After removing a very large number 287 

of tag-jumped, paired-end reads (7,526,449), followed by DAMe filtering (retaining 1,217,449 288 

sequences in ≥2 of the 6 PCRs per sample at ≥ 30 copies per PCR), and removal of chimeras 289 

and OTUs not assigned to Arthropoda, we ended up with 1,107,100 reads, clustered into 880 290 

97% OTUs, for downstream analysis. Mean reads per OTU was 1,258 (Range = 66–54,775; 291 

SD = 2930), and mean reads per sample was 36,903 (n = 30; range 3,881–72,575; SD = 292 
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17,396). These 880 OTUs were assigned to 35.8% Diptera, 21.7% Lepidoptera, 19.1% 293 

Hymenoptera, 9.7% Coleoptera, 7% Hemiptera, and 6.7% other orders.  294 

Read depth varied across samples (Figure S3A), and we found a positive correlation 295 

between read depth and species richness (Pearson, p<0.001). Thus, to test the robustness of our 296 

results, we removed eight samples that had < 25,000 reads, which removed the positive 297 

correlation (Pearson, p = 0.68, Figure S3B), reran the analyses below (3.2-3.5) and, as we report 298 

below and in Supplementary Information (S4, S6, S9, S10), found essentially the same results. 299 

We report the full-dataset results in Main Text.  300 

3.2. Boral ordination 301 

Boral ordination (Figure 2) clustered the 30 sites by the five counties in which we sampled 302 

(Figure 1) and arranged the clusters by elevation (latent variable 1) and tree-infestation rate 303 

(latent variable 2). Mvabund analysis confirmed the same effects (Table 2) and found no 304 

evidence for an interaction effect. Boral results without low-read-depth samples in Figure S4.  305 
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Figure 2. ‘Boral’ ordination of beta diversity by disturbance type. Color codes for 306 

outbreak severity as in Figure 1. Symbols (and surrounding ovals) indicate the five counties, 307 

and points represent samples. Latent variable 1 predicts elevation (2296.43-169.31*LV1, R2 308 

= 88.0%, df = 28, p = 4.42e-15), and latent variable 2 predicts tree-infestation rate (0.31-309 

0.07*LV2, R2 = 31.5%, df = 28, p = 0.0007). Boral residuals in Figure S5. 310 

Table 2. Mvabund analysis. Testing for the effects of Elevation, Infestation rate, and their 311 

interaction on community composition. 312 

 313 

3.3. Multi-Site Generalized Dissimilarity Modelling 314 

We carried out MS-GDM to identify the main drivers of change in community 315 

composition after controlling for geographical distance. Initially, we ran the model with five 316 

environmental covariates from Table 1 (omitting elevation), plus geographic distances between 317 

sites, because geographic distance and elevation are correlated. At zeta order 2 (equivalent to 318 

the Jaccard index, which is pairwise and thus dominated by rare species), distance is the 319 

dominant driver of compositional turnover, followed by the local environmental variables 320 

canopy openness and DBH (Figure 3A, Order2). Distance is largely linear in its effects, 321 

meaning that changes in community composition occur along the full range of distance, as rare 322 

species turnover from site to site and county to county. In contrast, for canopy openness, most 323 

compositional turnover occurs in the first 20% of its range, in the transition from closed to 324 

partially open-canopy forest, and for DBH, most change occurs in the last 20% of its range, in 325 

the transition to sites with the largest trees. MS-GDM with low-read-depth samples removed 326 

in Figure S6. 327 

  Res.Df Df.diff Score Pr(>score) 

Intercept 29    

Elevation 28 1 100.1 0.001 

Infestation rate 27 1 136.8 0.044 

Elevation:Infestation rate 26 1 131.1 0.935 
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By definition, as zeta order rises, common species increasingly dominate the analysis, and 328 

starting at zeta order 4 (Figure 3A, Order4), the distance variable starts to be less important 329 

than the local variables of infestation rate and canopy openness, which both exert their effects 330 

primarily in the first ~20% of their ranges. That is, most of the compositional change occurs in 331 

the transition from 0%-infested-0%-open-canopy forests to 20%-infested-20%-open-canopy 332 

forests. At higher zeta orders, distance explains even less of the change in composition, except 333 

at very large distances, since common species are by definition more widespread. 334 

We then re-ran the MS-GDM with elevation included, which returned similar results: as 335 

zeta order increases, the five environmental covariates other than elevation (Table 1) explain 336 

an increasingly larger proportion of total variation, while distance and elevation become less 337 

important (Figure S7). 338 
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Figure 3. Multi Site Generalised Dissimilarity Modelling (MS-GDM) analysis. A. Contributions of five environmental covariates and 339 

distance to explaining zeta diversity and B. and variation partitioning. Environmental covariates were rescaled between 0 and 1. The vertical 340 

axes indicate the relative contributions of each environmental variable, at each zeta order. Geographic distance is most important at low zeta 341 

orders, which are dominated by rare species, and as zeta order increases (increasing the importance of common species), canopy openness and 342 

then infestation rate become increasingly more important, with most of the compositional change occurring in the first 20% of change in those 343 

two covariates. Overall when zeta order >4, environmental covariates explain more compositional change than distance.344 
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3.4. Zeta diversity decline and retention ratios 345 

Another application of zeta diversity is to infer the relative roles of niche partitioning and 346 

stochastic assembly in community assembly (McGeoch et al., 2019). Zeta diversity declines as 347 

zeta order increases, since fewer and fewer species are shared amongst more and more sites. 348 

Steeper rates of decline indicate greater numbers of rarer species over more common species. 349 

Here, we asked how infestation affects community assembly over the infestation-rate gradient. 350 

To simplify the comparison, we divided the sites roughly evenly into ‘low’ (≤ 0.25, n = 14) 351 

and ‘high’ (>0.25, n = 16) infestation-rate categories (Figures 4, S8), and test the goodness of  352 

zeta-diversity decline functional forms using the Akaike information criterion (AIC).   353 

In the low-infestation forests, zeta-diversity decline is both steeper and better fit by an 354 

exponential function (points are equally spaced with increasing zeta order) than by a power-355 

law (points get closer with increasing order) function (-7.54AIC_exp<10.67AIC_pl) (Figure 4A). 356 

This is consistent with low-infestation forests being characterized by a stochastic assembly 357 

process. In the extreme form, there is no niche partitioning; all the species have equal 358 

probability of occurring at any given site despite environmental variation across sites, and 359 

across-species variation in occupancy and turnover arises only stochastically, due to, for 360 

instance, random dispersal governing establishment (Hui & McGeoch 2014; McGeoch et al. 361 

2019). Consistent with this, the zeta-ratio analysis shows fewer common species and generally 362 

low retention of species when a new site is sampled (McGeoch et al. 2019, Figure 4B).  363 

In contrast, in the high-infestation forests, zeta-diversity decline is relatively shallower 364 

and better fit by power-law function (8.52AIC_exp>0.80AIC_pl) (Figure 4A), which obtains when 365 

the probability that a species occurs in a newly sampled site increases with that species’ overall 366 

occupancy, which in turn is consistent with community assembly being driven by niche 367 

differentiation. Each OTU has a species-specific probability of occurring at a site due to 368 

environmental conditions at that site (Hui & McGeoch 2014, McGeoch et al. 2019). The zeta-369 

ratio analysis shows that species in the high-infestation forests generally have higher 370 

occupancy, even beyond order 6 (Figure 4B), which is the number of sites per county (Figure 371 

2) and which thus shows that high-infestation forests share species across large geographic 372 
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distances, apparently because of shared environmental conditions (Figure 3A). (See Figure S9 373 

for the same analysis with low-read-depth samples removed). 374 

Figure 4. Community assembly mechanism. A. Comparison of zeta diversity decline 375 

and B. retention rate between low- and high-infestation forests. Zeta orders 1 to 11 are 376 

shown, as zeta diversity equals zero for orders >11. High-infestation sites A. are 377 

characterized by a power-law decline and B. share more common species, consistent with a 378 

niche-differentiated community. Low-infestation sites A. are characterized by an exponential 379 

zeta-diversity decline and B. share fewer common species, consistent with a stochastic 380 

community-assembly process. 381 

3.5. Alpha diversity  382 

The iNEXT and iNextPD analyses found no evidence for a difference in species or 383 

phylogenetic diversity between low- and high-infestation forests (Figure 5, iNEXT analyses 384 

with low-read-depth samples removed in Figure S10).  385 



 

19 

Figure 5. Alpha diversity analysis by A. iNEXT and B. iNextPD. Sample-size-based rarefaction (solid lines) and extrapolation (dashed 386 

lines) sampling curves for three measures of A. species diversity and B. phylogenetic diversity in low-infestation and high-infestation forests. 387 

Shaded areas represent 95% confidence intervals. Symbols indicate sample size per forest type. Overlapping confidence intervals indicate no 388 

evidence for difference between forest types. 389 

 390 
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4. DISCUSSION 391 

Metabarcoding of Malaise-trapped insects reveals that bark-beetle induced forest dieback 392 

does not result in detectable differences in species richness or phylogenetic diversity (Figure 393 

5) but does result in compositional change (Figures 2, 3). For rarer species, MS-GDM and boral 394 

ordination explain this turnover with distance and elevation (Figures 2, 3), which are correlated 395 

in our sampling design (Figure 1). For more common species, local-forest environmental 396 

variables explain relatively more of the compositional differences, with the biggest 397 

compositional change occurring between 0%-infested-0%-open-canopy forests and 20%-398 

infested-20%-open-canopy forests (Figures 3, S7). Bark-beetle dieback thus appears to affect 399 

the larger insect community (at least the portion that can be sampled by Malaise traps) by 400 

mimicking the transition between closed-canopy forest and structurally heterogeneous forest. 401 

That said, at higher zeta orders, just over half of compositional variation across sites remains 402 

unexplained (Figure 3). 403 

The zeta-decline analysis found that low-infestation sites showed evidence of stochastic 404 

assembly, while high-infestation forest sites showed evidence of niche partitioning as the 405 

dominant community assembly mechanism (Figure 4). This suggests that the species which 406 

colonize the higher-infestation-rate (and higher-energy-availability) sites are adapted to these 407 

conditions. This result is also consistent with the conclusion that bark-beetle dieback mimics 408 

natural forest-gap dynamics.  409 

Interestingly, Müller et al. (2010) have also reported that saproxylic beetle composition 410 

changes nonlinearly with canopy openness (measured as LiDAR penetration), with rapid 411 

compositional change occurring from closed canopy up to 23% penetration (11-49% 95% CI), 412 

after which composition changes slowly. Our results are thus remarkably similar (Figure 3, S7), 413 

despite differences in geography, dominant tree species, and focal taxa, and we speculate that 414 

the driving mechanism is the effect of light availability on understorey vegetation and 415 

microclimate. Seibold et al. (2016a) have also reported that canopy openness is a major driver 416 

of species assemblage composition of non-saproxylic epigeal arthropods after intensive 417 

logging (see also Bishop et al., 2009; Bouget et al., 2013; Franc et al., 2007). Unfortunately, 418 
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unlike Müller et al. (2010), we were unable to measure the biodiversity effects of deadwood 419 

volume (and thus, the effect of deadwood removal), given that, to our knowledge, there are no 420 

Pinus yunnanensis sites in Yunnan with high amounts of deadwood to contrast with low-421 

deadwood-volume sites. If possible, there would be value in running deadwood enrichment 422 

experiments in Yunnan, in order to test the prediction that saproxylic animal and fungal species 423 

will benefit (Doerfler et al., 2018; Seibold et al., 2015, 2018). With that important omission, 424 

our results in Yunnan seem consistent with Thorn et al.’s (2020) diagnosis of biodiversity 425 

decline in European forests, which they attribute to the loss of tree species diversity and the 426 

loss of age and structural heterogeneity, which together provide microhabitats for light-427 

demanding plant and insect species. Species, age, and structural heterogeneity also likely 428 

contribute to resilience against large-scale bark-beetle outbreaks (Seidl et al., 2016). On the 429 

other hand, Trzcinski & Reid (2008) argue that deadwood removal could be effective at 430 

preventing the long-distance spread of bark-beetle outbreaks.  431 

Given China’s recent announcement that afforestation and reforestation efforts should 432 

now aim to create heterogeneous forests that are higher in biodiversity and more resilient to 433 

disease and pests, what is the best way to achieve this? Part of the solution is to allow natural 434 

disturbances to create forest structural and age heterogeneity, which in turn will benefit light-435 

demanding plants and animals and also provide deadwood volume for saproxylic taxa (Thorn 436 

et al., 2020). These natural disturbances include windstorms, bark-beetle outbreaks, and 437 

drought-induced diebacks, as long as dead trees are not subsequently removed and open areas 438 

not replanted with plantation trees (Thorn et al., 2020). In particular, bark beetles can be seen 439 

as a keystone species (Müller et al., 2008), with their attacks on weak and old trees accelerating 440 

the succession of monoculture forests into heterogeneous forests (Cai et al., 2006; Yue et al., 441 

2011). However, extreme climate events are predicted to increase, resulting in a greater rate 442 

and severity of natural disturbances (Allen et al., 2010, 2015; Thom et al., 2017; Thom & Seidl, 443 

2016), including an expansion of bark beetles to higher latitudes and elevations (Bentz et al., 444 

2010; Hlásny et al., 2011), which raises the short-term costs of allowing bark beetle outbreaks 445 

to proceed unimpeded. Thus, in many areas, anthropogenic treatments could be implemented 446 
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to accelerate the succession of plantation forests into heterogeneous forests (Baeten et al., 2019; 447 

Felipe-Lucia et al., 2018; Schall et al., 2018; Yue et al., 2011), especially given that Pinus 448 

yunnanensis covers large areas of poor soil, where tree growth is generally slow and seed 449 

sources of other tree species distant.  450 

Methodological considerations. – The combination of metabarcoding and Malaise traps, 451 

which preferentially capture species-rich Hymenoptera and Diptera, naturally produces 452 

datasets with a large proportion of low-prevalence species. In consequence, we used zeta 453 

diversity and MS-GDM to analyse community subsets of increasingly more common species, 454 

which showed that local environmental covariates were more important for explaining species 455 

distributions at higher orders (Figure 3). Zeta-decline analysis showed that high-infestation and 456 

low-infestation sites differed in their community assembly mechanisms (Figure 4). In short, 457 

removal of the lowest-prevalence species made clearer the effects of forest structure on 458 

community composition. In contrast, we failed to find any differences in alpha diversity across 459 

low- and high-infestation forests, even for the measures that clearly reached an asymptote: 460 

Simpson diversity, Phylogenetic entropy, and Rao’s quadratic entropy (Figure 5). That said, 461 

our study is underpowered for comparing alpha diversities, and we draw only a tentative 462 

conclusion on this front. Finally, to test robustness, we reran all analyses after removing the 463 

eight lowest-read-depth samples, which removed the correlation between read-depth and 464 

species richness, and we recovered the same results (S4, S6, S9, S10).  465 

Another aspect of metabarcoding is that it can be applied to samples from locations where 466 

taxonomic coverage is poor, such as arthropods from Southwest China. The resulting OTU 467 

dataset, identified only to higher taxonomic ranks, can be used to visualise biodiversity patterns. 468 

However, with limited taxonomic information, we are unable to carry out functional (trait-469 

based) analyses to try to explain why particular taxa are favoured or disfavoured under different 470 

silvicultural regimes (e.g. Cours et al., 2020; Thorn et al., 2018). We also note that our dataset 471 

represents only a single time point, while temporal turnover of forest arthropod communities 472 

appears to be high (Barsoum et al., 2019). However, we have shown elsewhere (Zhang et al., 473 

2016) that metabarcoding sample sets taken in rainy season and in dry season are equally able 474 
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to differentiate forest disturbance gradients, and we have shown in two large studies that 475 

Malaise-trapped invertebrates show similar responses to several other methods and taxa in their 476 

responses to forest structure and disturbance (Ji et al., 2013, Edwards et al., 2014). Thorn et al. 477 

(2018) also found taxonomic congruence in biodiversity response to salvage logging. In the 478 

future, one partial way around the lack of taxonomic information for functional inference is to 479 

apply joint species distribution modelling to DNA-based time series datasets to infer the 480 

relative contributions of environmental covariates and species interactions to changes in 481 

species abundances (Abrego et al., 2021).  482 

Conclusion. – Long-term monitoring will be necessary for tracking the biodiversity 483 

consequences of conversion from simple to heterogeneous forests and for comparing different 484 

anthropogenic treatments. Studies in China, the UK, and Borneo have shown that DNA 485 

metabarcoding is an efficient and standardizable tool for measuring how animal biodiversity 486 

in forests varies as a function of management and inherent condition (Barsoum et al., 2019; 487 

Edwards et al., 2014; Hua et al., 2016; Ji et al., 2013, 2020; Wang et al., 2019; Yang et al., 488 

2014; Yang et al., 2016; Zhang et al., 2016). We also think that there is considerable scope for 489 

using remotely sensed measures (multispectral and LiDAR) to efficiently generate 490 

environmental covariates for the large-scale mapping and monitoring of pest outbreaks like 491 

bark beetles in particular Ji et al. (2007) and Wang et al. (2015) and terrestrial biodiversity in 492 

general (Bush et al., 2017).  493 
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Table S1. Sampling sites and elevations. 

Site Elevation (m) Longitude Latitude 

lah1 2719 100° 3'13.08"E  26°52'25.63"N 

lah2 2682 100° 3'19.70"E  26°52'7.15"N 

lal1 2578 100° 5'46.44"E  26°49'22.79"N 

lal2 2640 100° 5'15.78"E  26°50'13.90"N 

lam1 2769 100° 2'48.38"E  26°51'44.03"N 

lam2 2673 100° 2'39.97"E  26°51'19.45"N 

luh1 2792 100°45'22.37"E  27°44'4.44"N 

luh2 2758 100°44'39.00"E  27°44'15.41"N 

lul1 3052 100°48'22.72"E 27°39'23.82"N 

lul2 2980 100°47'42.07"E  27°39'22.08"N 

lum1 2770 100°44'36.66"E  27°44'16.89"N 

lum2 2761 100°46'3.87"E  27°44'42.32"N 

puh1 2196 100°55'2.25"E  25°19'1.63"N 

puh2 2318 100°54'18.51"E  25°18'20.51"N 

pul1 2101 100°53'13.66"E  25°22'59.68"N 

pul2 2192 100°52'45.36"E  25°22'6.92"N 

pum1 2132 100°54'7.89"E  25°21'14.56"N 

pum2 2173 100°52'21.61"E  25°19'43.28"N 

toh1 2019 102°45'2.58"E  24° 6'14.94"N 

toh2 2017 102°45'7.29"E  24° 6'23.23"N 

tol1 1905 102°38'28.14"E  24° 8'14.78"N 

tol2 1886 102°38'32.20"E  24° 8'9.39"N 

tom1 2043 102°44'54.25"E  24° 6'4.46"N 

tom2 2020 102°44'59.78"E  24° 6'8.84"N 

yuh1 1808 102°34'24.84"E  24°18'36.22"N 

yuh2 1800 102°34'16.76"E  24°18'26.81"N 

yul1 1757 102°35'43.85"E  24°20'45.53"N 

yul2 1768 102°35'47.46"E  24°20'35.40"N 

yum1 1779 102°34'28.70"E  24°19'10.84"N 

yum2 1805 102°34'37.47"E  24°18'46.23"N 



S2. Phylogenetic tree construction for iNextPD 

We used RAxML 8.0.0 (Stamatakis, 2014) to build a maximum-likelihood (ML) tree with an 

alignment of the OTU-representative sequences (used MAFFT alignment function in 

Geneious 11.0.3 with default parameters). The ML tree used a general time-reversible (GTR) 

model of nucleotide substitution and a gamma model of rate heterogeneity estimating the 

proportion of invariable sites (-m GTRGAMMAI). The algorithm used a rapid bootstrap 

analysis and searched for the best-scoring ML tree (-f a), with -N 1,000 times bootstrap 

and -p 12,345 as the parsimony random seed. Two OTU sequences were removed because 

produced very long branches in the ML tree.  

 



Figure S3. Histogram of sample read depth, and the relationship between read depth and 

species richness. There is no correlation between read depth and species richness after 

removal of eight samples that had < 25,000 reads (Pearson, sample size = 22, p = 0.68). 



Figure S4. ‘Boral’ ordination of beta diversity by disturbance type after removal of eight 

low-read-depth samples. Color codes for outbreak severity as in Figure 1 (main text), and 

points represent samples. 

 

−4

−2

0

2

4

−5.0 −2.5 0.0 2.5
Latent variable 1

La
te

nt
 v

ar
ia

bl
e 

2

Gov_Type
High

Low

Medium

site
Hongtaqu

Ninglang

Tonghai

Xiangyun

Yulong

Ninglang

Yulong

Xiangyun

Hongtaqu

Tonghai



Figure S5. Residual plots of the Boral model fit in Fig. 2. 
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Figure S6. Multi-Site Generalised Dissimilarity Modelling (MS-GDM) analysis after removal of eight low-read-depth samples. A. Contributions 

of five environmental covariates and distance to explaining zeta diversity and B. variation partitioning. Environmental covariates were rescaled 

between 0 and 1. The vertical axes indicate the relative contributions of each environmental variable, at each order. Geographic distance is most 

important at low zeta orders, canopy openness and then infestation rate become increasingly more important. Overall, with zeta order >4, 

environmental covariates explain more compositional change than does distance. 



Figure S7. A. Multi-Site Generalized Dissimilarity Modeling (MS-GDM) with all six environmental covariates including elevation and B. 

variation partitioning. Canopy openness and infestation rate become relatively more important for explaining compositional change at zeta 

orders ≥4. Unlike the model without elevation (Figure 3), distance alone explains little variance at low zeta orders, while the category of 

indistinguishable (non-separable distance & environment) increases correspondingly, indicating that elevation and distance are correlated. 
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Figure S8. Histogram of infestation rates. Sites are categorized into ‘low’ (infestation rate ≤ 

0.25, n = 14) and ‘high’ (>0.25, n = 16) infestation rate, used in Figs. 4 and 5. 
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Figure S9. Comparison of zeta diversity decline (left) and retention rate (right) between low- 

and high-infestation forests after removal of eight low-read-depth samples. Zeta orders 1 to 7 

are shown, as zeta diversity equals zero for orders >7. High-infestation sites are characterized 

by (left) a power-law decline and (right) share more common species, consistent with a 

niche-differentiated community. Low-infestation sites are characterized by (left) an 

exponential zeta decline and (right) share relatively fewer common species, consistent with a 

stochastic community-assembly process. 
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Figure S10. Alpha diversity analysis after removal of eight low-read-depth samples. A. 

iNEXT and B. iNextPD. Sample-size-based rarefaction (solid lines) and extrapolation 

(dashed lines) sampling curves for three measures of A. species diversity and B. phylogenetic 

diversity in low-infestation and high-infestation forests. Shaded areas represent 95% 

confidence intervals. Symbols indicate sample size per forest type. Overlapping confidence 

intervals indicate no evidence for difference between forest types. Sites are categorized into 

‘low’ (infestation rate ≤ 0.25, n = 11) and ‘high’ (>0.25, n = 11) infestation. 


