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Abstract

In this thesis we consider finiteness properties of infinite semigroups and infinite

monoids. In particular we investigate finite presentations which have the property

finite derivation type (FDT) or the property that they admit a presentation

by a finite complete rewriting system (FCRS). We ask the question of whether

these properties are inherited between a semigroup (or monoid) and particular

substructures like subsemigroups (or submonoids).

We first investigate completely simple semigroups (which are isomorphic to Rees

matrix semigroups) that have a single R-class or a single L-class. We prove

that the maximal subgroups admit a presentation by a FCRS if and only if the

semigroup admits a presentation by a FCRS with respect to a sparse generating

set. Next we move on to our second stream of research and consider the property

that a presentation has FDT. We study unitary subsemigroups with finite strict

boundary (a condition given in terms of the Cayley graph) and prove that such

subsemigroups inherit the property of FDT.

We prove that every finitely generated subsemigroup of the Bicyclic monoid

admits a presentation by a FCRS. Finally we investigate FDT and FCRS for

finitely generated submonoids of Plactic monoids, proving that these properties

are satisfied in several cases. We make use of the fact that the Plactic monoid is

known for having elements which correspond to semistandard tableau.
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Introduction

1.1 Related research and motivation

The areas of research included in this document relate to general finiteness

properties of infinite semigroups. A finiteness property is one which holds for all

finite semigroups and so we look to see where this is also true for an infinite

semigroup. So for example, being finite is a finiteness property, since every finite

semigroup has this property. Other important finiteness conditions include the

properties of being finitely generated or finitely presented. It is a fact that not

all infinite semigroups are finitely presented or indeed generated. Research has

been carried out to determine whether these two properties are shared between

a semigroup and substructures of the semigroup, often for particular types of

semigroup. Of interest is whether a property is inherited by a substructure and

whether it is passed up from the substructure to the parent semigroup.

In general if S is a semigroup and T is a subsemigroup of S then the finiteness

properties that hold in S will not necessarily be inherited by T . Similarly T

may satisfy finiteness properties that S does not. So it is natural to ask under

what conditions will properties be passed from S to T or vice versa. For

example, if S is a group and T is a subgroup of finite index, then there are

many interesting theorems in the literature which show that S and T must then

share many finiteness properties. For example, the properties of finiteness,

being finitely generated, finite presentability, having a soluble word problem,
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periodicity, local finiteness, and residual finiteness are all known to be preserved

by taking finite index subgroups and under taking finite index extensions, we

refer the reader to [35]. For semigroups the analogous results have been proved

in the case that S \ T is finite (so called, large subsemigroups), see the following

papers for some examples [48] [53] [54].

In general, more results have been proved by showing that properties are passed

up to the semigroup in certain situations. It is generally accepted that proofs in

the opposite direction passing from S to T are much harder. For example, it is

an open question for groups whether the property of admitting a finite complete

presentation is preserved under taking finite index subgroups, see [44], and it is

an open question whether the property of finite derivation type is inherited by

large subsemigroups, see [40].

Much work has been carried out by N. Rus̆kuc for example [48] on large

subsemigroups where it is proved that if T is a large subsemigroup of S (i.e.

S \ T is finite), then S is finitely generated (respectively presented) if and only

if T is. In the same paper this is also proved for the property of being residually

finite. In another paper [46] he proves that a regular monoid with finitely many

left and right ideals is finitely presented if and only if all its maximal subgroups

are finitely presented.

Rees matrix semigroups were introduced by D. Rees in his paper [45], published

in 1940. They were also implicit in a paper [52] by A. Suschkewitsch published in

1928. Rees matrix semigroups have become a widely used semigroup construction

with many applications relating to regular semigroups, see [41] for a survey. We

will make use of the Rees theorem which states that a semigroup is completely

simple if and only if it is isomorphic to a Rees matrix semigroup M[A; I,Λ;P ]

where A is a group. J.M. Howie and N. Rus̆kuc looked at constructions and

presentations for monoids in [26] and in one result they derive a presentation for

the Rees matrix semigroup S = M0[A; I,Λ;P ] where A is a monoid. H. Ayik

and N. Rus̆kuc looked at generators and relations of Rees matrix semigroups in
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[1]. They prove that under certain extra (finiteness) conditions a Rees matrix

semigroup M[S; I, J ;P ] is finitely generated (finitely presented) if and only if S

is finitely generated (finitely presented). Of particular interest is a recent paper

[40] by A. Malheiro where he proves that a finitely presented completely simple

semigroupM[G; I,Λ;P ] has finite derivation type (FDT) if and only if the group

G has finite derivation type.

C.M. Campbell, E.F. Robertson, N. Ruškuc and R.M. Thomas worked together

on several papers including one on subsemigroups of finitely presented

semigroups in [6]. This paper contains a summary of results and problems open

at that time for both general semigroups and free semigroups with respect to

various finiteness properties (finite generation, finite presentation, finite index)

and substructures (subsemigroups, ideals and one-sided ideals). They include

useful examples of where such properties are not inherited. In another paper [7]

the same collaboration look at finite presentation and ideals, proving that an

ideal of a finitely presented semigroup is not necessarily finitely presented, even

if it is finitely generated as a semigroup.

A key paper when considering the properties finite generation and finite

presentation is [5], titled Reidemeister-Scheier type rewriting for semigroups by

C.M. Campbell, E.F. Robertson, N. Ruškuc and R.M. Thomas. Given a finitely

generated and presented semigroup, this method determines a presentation for

a subsemigroup that is generated by a given finite set of generators. The

resulting presentation is an infinite one but under some circumstances it can be

bounded to a finite set. This method is a semigroup analogue of that by

Reidemeister-Shreier which is for groups, see [36] for further details.

More recently R.D. Gray and N. Rus̆kuc looked specifically at generators and

relations for subsemigroups via boundaries in Cayley graphs [21]. The main result

they prove is that given a finitely presented semigroup S and a subsemigroup T

of S with T having a finite boundary in S, then T is finitely presented. Here

the boundary of T in S is a certain subset of T obtained by looking at directed
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edges in the Cayley graph of S that begin outside T and terminate in T . This

result generalises the corresponding theorems for large subsemigroups from [48].

A related result is given in [16] where R.D. Gray considered a specific form

of subsemigroup, namely where a semigroup is left (respectively right) unitary

with strict right (respectively left) boundary. He proves that such subsemigroups

are finitely generated (respectively finitely presented) if the semigroup is finitely

generated (respectively finitely presented).

Research in this thesis looks at the property of a presentation for a semigroup

being a finite complete presentation also known as a finite complete rewriting

system (FCRS) and whether this property is inherited by its substructures, for

example subsemigroups. The property of a presentation being a FCRS is of

interest as it identifies semigroups where the word problem can be solved. Briefly,

the word problem is as follows. Let S be a semigroup generated by a finite set A.

The word problem asks whether there is an algorithm which takes any two words

u, v over A and decides whether or not u = v in S. In general the word problem

is not decidable, even for finitely presented semigroups. If, however, a semigroup

admits a presentation by a finite complete rewriting system, then it may be shown

that the word problem for the semigroup is decidable. In terms of words within

a semigroup, we are looking to see if they can be rewritten to the same word

under the given rewrite rules. This property is of interest in the development

of theoretical computer languages and algorithms where it has played a major

role in their development, see [3, Introduction]. The property of being complete

(also known as convergent) leads to the idea of “effective computability” and the

ability to solve the word problem in linear time.

In a recent paper [54], K.B. Wong and P.C. Wong prove that the property FCRS

is passed down from a semigroup S to a subsemigroup T , providing S \T is finite

i.e. T is a large subsemigroup of S. As part of their proof they establish a method

for finding a presentation for the subsemigroup and providing certain properties

hold, then the presentation is complete. Their result complements work by J.

Wang [53] which proves inheritance in the opposite direction when S \T is finite.
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Recently, homotopical methods have been used to study semigroups. In

particular, C.C. Squier developed a homotopy theory for monoids. He

constructed a derivation graph from a presentation for a semigroup and defined

equivalence relations on the closed paths which he called homotopy relations

and a set of closed paths called a homotopy base. A presentation is said to have

finite derivation type (FDT) if it has a finite homotopy base. In fact, he showed

that FDT is a property which is true for a semigroup, irrespective of the

particular presentation. See Chapter 4 below for formal definitions of these

notions.

More recent work [51] by C.C. Squier, F. Otto and Y.Kobayashi on finiteness

conditions for rewriting systems, looks at the link between FRCS and FDT.

They show that if a presentation for a semigroup is a FCRS then that implies the

semigroup has FDT. Thus, proving or disproving that a semigroup has FDT can

be a useful step on the way to considering whether it has a FCRS. In addition Y.

Kobayashi shows in his paper [29] that every one-relator monoid has FDT; it is

not known whether they also have a FCRS. A useful survey can be found in [43]

by F. Otto and Y. Kobayashi which contains more background information and

a summary with respect to the properties of FCRS, finite derivation type (FDT)

and homological finiteness conditions (FPn).

More recently R.D. Gray and A. Malheiro considered finite derivation type and

inheritance between the semigroup and its subgroups, see [19]. They proved that

if S is a regular monoid with finitely many left and right ideals, then S has FDT

if and only if every maximal subgroup of S has FDT. In related work, in [18] it

is shown that if S is a regular semigroup with finitely many left and right ideals,

and if all maximal subgroups of S have a FCRS, then S also has a FCRS. The

converse remains an open problem and is part of the motivation for the work we

do in Chapter 3 below.

The first published description of the bicyclic monoid was given by E. Lyapin in

1953. A. H. Clifford and G. Preston claim that whilst working with D. Rees it
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was independently discovered at some point before 1943. In [10] it is referred to

as the simplest member of an extensive class of semigroups known as the bisimple

inverse semigroups with identity element. As such it is a very useful semigroup

in the theory of simple semigroups. Two papers [13] and [14] by L. Descalço

and N. Rus̆kuc prove some interesting properties of subsemigroups of the bicyclic

monoid. In [13] they prove that any subsemigroup of the bicyclic monoid falls into

one of five different forms. They go on to prove in [14] that all finitely generated

subsemigroups are finitely presented. These two papers motivate the research

into finitely presented subsemigroups of the bicyclic monoid that we undertake

in this thesis, see Chapter 5 below.

The plactic monoid originated from work by C. Schensted [49] in 1961 and by

D.E. Knuth [28] in 1970. It has been used in connection with problems in

representation theory, algebraic combinatorics and theory of quantum groups.

We refer the reader to [15] [31] [33] [32] [8] for further information. Various

papers have proved that the plactic monoid has alternative presentations which

also have the property of being a FCRS. In [4] A.J. Cain, R.D. Gray and A.

Malheiro prove that for all n ≥ 1 the plactic monoid Pn admits a finite complete

presentation. The complete presentation they obtain is given with respect to a

particular finite generating set which they call column generators. In earlier

work [30] Kubat and Okniński use the Knuth-Bendix completion procedure [3,

Section 2.4] to prove that the plactic monoid P3 admits a finite complete

presentation with respect to the natural degree-lexicographic ordering over the

usual generating set {1, 2, 3}. They also prove that the same approach does not

work for Pn where n is greater than three. These papers motivate the work we

do below in Chapter 6 where we investigate the properties FCRS and FDT for

submonoids of plactic monoids.
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1.2 Summary of results

Research in this thesis broadly divides into two streams. The first concerns

finite complete rewriting systems (FCRS) where the main focus has been on

investigating conditions under which this property is passed from a semigroup to

a subsemigroup and vice versa. The second stream concerns analogous questions

for a related finiteness property called finite derivation type (FDT).

Chapter 2 contains basic definitions, including those for semigroups, presentations

and rewriting systems. Various useful lemmas, theorems and techniques are also

stated for reference in subsequent chapters. Where definitions are specific to a

single chapter they are stated within that chapter, rather than in Chapter 2.

In Chapter 3 we consider inheritance of the property of being a FCRS by maximal

subgroups of certain forms of Rees matrix semigroups. Given a semigroup with

finitely many left and right ideals we would like to prove that FCRS is inherited

by the maximal subgroups of the semigroup. We investigate completely simple

semigroups and the special case where the semigroup S has a single R-class or

a single L-class and prove results with respect to a specific form of generating

set for S called a sparse generating set (see Definition 3.3.2). The main result in

Chapter 3 is:

Theorem 1.2.1. Let S =M[G; I,Λ;P ] be a Rees matrix semigroup where G is

a group and one of two conditions is true:

(i) I = {1} and Λ = {1, 2, . . . , n};

(ii) I = {1, . . . ,m} and Λ = {1}.

Then the group G admits a presentation by a finite complete rewriting system if

and only if S admits a presentation by a finite complete rewriting system with

respect to some sparse generating set.

In Chapter 4 we investigate properties of a certain type of subsemigroup, in

particular, unitary subsemigroups with finite strict boundaries. We begin with
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some basic definitions relating to various forms of boundaries. Then we define

specific properties where a subsemigroup is left (respectively right) unitary with

finite strict right (respectively left) boundary in S. Given this property, we look

to build on an existing result in [16] by R.D. Gray which proves that such

subsemigroups are finitely presented, providing the semigroup is finitely

presented. Interestingly, there is a link with Chapter 3 as the subgroups in

Theorem 1.2.1 part (i) above, are in fact left unitary with finite strict right

boundary, with part (ii) being the dual.

Motivated by the above results we consider the property of finite derivation type

(FDT), which has close connections to FCRS and forms the second stream of

research in this thesis. Definitions and descriptions for FDT are included in

Chapter 4. We consider the property of FDT being inherited by left unitary

subsemigroups with finite strict right boundary in S. The main result in Chapter

4 is:

Theorem 1.2.2. Let S be a finitely presented semigroup with T a subsemigroup

of S. Suppose S has finite derivation type. Then:

(i) if T is left unitary and has finite strict right boundary in S then T also has

finite derivation type;

(ii) if T is right unitary and has finite strict left boundary in S then T also has

finite derivation type.

In Chapter 5 we return to the property of a presentation being a FCRS and

consider a widely studied monoid, namely the bicyclic monoid. The bicyclic

monoid admits a presentation which is a FCRS and so we consider substructures

of this monoid with respect to the inheritance of being a FCRS. To this end,

of particular interest are the results obtained in the two papers [13] and [14]

by L. Descalço and N. Rus̆kuc where they prove some interesting properties of

subsemigroups of the bicyclic monoid. This chapter includes an introduction to

the bicyclic monoid and the necessary results from these two papers. Building

on this work we prove the main result in Chapter 5:
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Theorem 1.2.3. Let B, defined by the presentation 〈b, c | bc = 1〉, be the bicyclic

monoid. Then every finitely generated subsemigroup of B admits a presentation

by a finite complete semigroup rewriting system.

In Chapter 6 we consider the inheritance of the property of being a FCRS, this

time with respect to substructures of the plactic monoid (referred to as Pn). As

with the bicyclic monoid, the plactic monoid admits a finite complete

presentation. Definitions and a classic presentation for the plactic monoid are

included, together with an introduction to the construct called a Young tableau

which proves useful when working with this monoid. In contrast to the bicyclic

monoid, there is currently no classification of the submonoids of the plactic

monoid. Therefore, research in this chapter considers various submonoids as

generated by generating sets of specific forms. Initial results in this chapter

relate to the isomorphism of certain submonoids with the plactic monoid and

with other specific submonoids, as follows:

Theorem 1.2.4. Let Pn be the plactic monoid generated by A = {1, 2, . . . , n}

where n ∈ N. Let S be the submonoid of Pn generated by Aq = {1q, 2q, . . . , nq}

for some fixed q ∈ N. Then S is isomorphic to Pn.

Theorem 1.2.5. Let Pn be the plactic monoid generated by A = {1, 2, . . . , n}

where n ∈ N. Let S be the submonoid of Pn generated by As = {1s1 , 2s2 , . . . , nsn}

for s1, s2, . . . , sn ∈ N and set q = gcd {s1, s2, . . . , sn}. Let T be the submonoid

generated by At = {1t1 , 2t2 , . . . , ntn} where tx = sx/q for all x ∈ {1, 2, . . . , n}.

Then S is isomorphic to T .

In the next part of Chapter 6 we consider the more general case of monoids with

a homogeneous presentation and certain forms of submonoid, again with respect

to being a FCRS. A presentation is homogeneous if for every defining relation

u = v, the words u and v have the same length as each other. This work is

motivated by the fact that the plactic monoid has a homogeneous presentation.

This research uses a result in the paper [37] by A. Malheiro where certain monoids

can be generated by a code (which is a subset of the free monoid), and if they
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conform to specific conditions, then a presentation can be constructed which is a

finite complete rewriting system. The results proved in this section include the

main result plus a couple of applications:

Theorem 1.2.6. Let M be the monoid defined by the homogeneous presentation

〈A |R〉 where A is a finite alphabet and R is a finite set of relations. Fix j ∈ N

and let E be the submonoid of M which consists of all elements of M which have

a length divisible by j.

Suppose the presentation 〈A |R〉 is a finite complete rewriting system. Then there

exists a presentation for E which is a finite complete rewriting system.

Corollary 1.2.7. Let P3 be the plactic monoid of rank 3 defined by the ordered

alphabet A = {1, 2, 3} and let

R = {(332, 323), (322, 232), (331, 313), (311, 131), (221, 212), (211, 121),

(231, 213), (312, 132), (3212, 2321), (32131, 31321), (32321, 32132)}.

Then P3 is defined by the presentation 〈A |R〉. Fix j ∈ N and let Ej be the

submonoid of P3 containing only elements of P3 of length divisible by j.

Then there exists a presentation for Ej which is a finite complete rewriting system.

We also prove the following result which generalises Theorem 1.2.6.

Theorem 1.2.8. Let M be a monoid defined by a finite homogeneous presentation

〈A |R〉. Let ψ : M → (N,+) be the surjective homomorphism induced by the

mapping w 7→ |w| for w ∈ A∗. Let T be a finitely generated submonoid of (N,+).

Then

(i) N = Tψ−1 is a finitely presented submonoid of M .

(ii) Moreover, if (A,R) is a finite complete rewriting system then N = Tψ−1

admits a presentation by a finite complete rewriting system.
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The remainder of Chapter 6 focuses on the plactic monoid P2 and submonids

generated by sets of the form {1, 2i} and {1i, 2} where i ∈ N. Again we

investigate whether these submonoids admit a presentation which is a finite

complete rewriting system. Note that a previous result in this chapter, namely

Theorem 1.2.5, can then be applied to widen the application of the following

theorems to include generating sets of the form {1q, 2qi} and {1qi, 2q}. The

main result is:

Theorem 1.2.9. Let A = {1, 2} and R = {(221, 212), (211, 121)}. Then the

plactic monoid P2 is defined by the presentation 〈A |R〉.

Fix i ∈ N with i ≥ 1 and let E be the submonoid of P2 generated by X = {1, 2i}.

Set B = {a, b} and let Q be the subset of B∗ ×B∗ consisting of all the following

pairs:

(i) (bba, bab),

(ii) (bai+1, abai),

(iii) {(baj−1ba, bajb) : 2 ≤ j ≤ i}.

Then (B,Q) is a finite complete rewriting system defining the monoid E where a

and b correspond to the generators 1 and 2i, respectively.

Finally in Chapter 6, we look to generalise these results to submonoids generated

by the set {1i, 2j} where i < j and they are co-prime. We obtain a result for the

specific generating set {12, 23}, which is included below. A partial conjecture for

the submonoid generated by {1i, 2j} can be found at the end of Chapter 6.

Theorem 1.2.10. Let A = {1, 2} and R = {(221, 212), (211, 121)}. Then the

plactic monoid P2 is defined by the presentation 〈A |R〉.

Let F1 be the submonoid of P2 generated by Y1 = {12, 23}. Set B = {a, b} and let

Q be the subset of B∗ ×B∗ consisting of all the following pairs:

(i) (baaa, abaa),

(ii) (bba, bab),

(iii) (baabaa, ababaa),

(iv) (bababa, babaab).
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Then (B,Q) is a finite complete rewriting system defining the monoid F1 where

a and b correspond to the generators 12 and 23, respectively.



2

Preliminaries

2.1 Introduction to semigroups and notation

There are many good publications which provide an introduction to semigroup

theory and string rewriting systems. The following are recommended and have

been used to source many of the details in this section: [25], [10], [11], [23], [3],

[24, §12].

2.2 Semigroups

A semigroup S is a set of elements closed under a binary operation which has

the additional property of associativity. That is (a · b) · c = a · (b · c) for all

a, b, c ∈ S. Unlike a group, there is no requirement for an identity element or for

each element to have an inverse. If an identity element exists then the semigroup

is a monoid. A subsemigroup T of S is defined as a subset of S which is closed

under the binary operation for S.

If a semigroup S contains an element 1 with the property that, for all x in S,

x1 = 1x = x, we say that 1 is an identity element (or just an identity) of S, and

that S is a semigroup with identity or (more usually) a monoid. A semigroup

S has at most one identity element. If a semigroup has no identity then we

can adjoin an identity to create a monoid such that for a semigroup S then S1

denotes the monoid where S1 = S ∪ {1} and 1 is the identity, and we define
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1x = x1 = x for all x in S and 11 = 1. We can also adjoin a zero to create S0

where S0 = S ∪ {0} and we have 0a = a0 = 00 = 0 for all a ∈ S.

An element a in a monoid M is right invertible and called a right unit if there

exists an element s ∈ M such that as = 1. An element b ∈ M is left invertible

and called a left unit if there exists an element t ∈ M such that ta = 1. An

element u ∈ M is invertible and called a unit if there exists an element v ∈ M

such that uv = vu = 1. The set of units of a monoid M is a submonoid and is

denoted U(M). An element e ∈ S is an idempotent if ee = e.

A right congruence on a semigroup S is an equivalence relation ρ that is preserved

under multiplication on the right. In other words, for all a, s, t ∈ S we have

(s, t) ∈ ρ⇒ (sa, ta) ∈ ρ.

A left congruence on a semigroup S is an equivalence relation ρ that is preserved

under multiplication on the left. Hence for all a, s, t ∈ S we have (s, t) ∈ ρ ⇒

(as, at) ∈ ρ. A relation that is both a left and right congruence is called a (two-

sided) congruence. If ρ is a congruence on S then we can use a/ρ to denote the

congruence class of a and define a (well-defined) binary operation on the quotient

set S/ρ by (a/ρ)(b/ρ) = (ab/ρ).

A subsemigroup T of a semigroup S is called a right ideal if it satisfies TS ⊆ T .

Dually, T is called a left ideal if ST ⊆ T and a (two-sided) ideal if it is both a left

and right ideal. An ideal I of S is called a proper ideal if I 6= S. Note that any

left, right or (two-sided) ideal is automatically a subsemigroup. A (left, right or

two-sided) ideal I of a semigroup S is said to be minimal if it contains no other

(left, right or two-sided) ideals of S.

An element a of a semigroup S is called regular if there exists x ∈ S such that

axa = a. A semigroup S is called a regular semigroup if all its elements are

regular. Note that all groups are regular semigroups.

A map φ : S → T where S and T are semigroups is called a homomorphism if
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for all x, y ∈ S we have (xy)φ = (xφ)(yφ).

• An epimorphism is a surjective homomorphism (also sometimes called an

onto homomorphism).

• A monomorphism is an injective homomorphism (also sometimes called a

1:1 homomorphism).

• An isomorphism is a bijective homomorphism (i.e. both onto and 1:1).

• Two semigroups S and T are said to be isomorphic if there exists an

isomorphism f : S → T ; this is denoted S ∼= T .

Definition 2.2.1. [23, Chapter 1, Section 2]

The operation S × S → S on a semigroup is usually written like multiplication

i.e. (x, y) 7→ xy. The opposite operation op on S is defined by x op y = yx and

the resulting semigroup is the opposite or dual semigroup Sop.

Definition 2.2.2. Let (S, ·) and (T, ◦) be semigroups, then they are

anti-isomorphic if there exists some φ : S → T such that (x · y)φ = (yφ) ◦ (xφ).

In other words, there exists an isomorphism from S to the opposite of T .

2.3 Presentations

First let us consider the generators for a semigroup. Let S be a semigroup and

let A be a non-empty set which generates S. This means that A is a subset of

S such that every element of S can be written as a product of elements from

A. If A can be chosen to be finite then S is finitely generated. Then A+ is the

free semigroup on A under the operation of concatenation and it consists of all

the possible non-empty words which are combinations of the letters from A. An

element w of A+ is called a word over A. The number of letters in a word is

called the length of the word and written as |w|. For example, let w ∈ A+ with

w = a1a2 . . . an and a1, a2, . . . , an ∈ A, then |w| = n. We define A∗ as the free

monoid on A with A∗ = A+ ∪ {ε}, where ε is the empty word.
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Let A be a non-empty set which we call an alphabet. A semigroup presentation

is an ordered pair 〈A |R〉 where R is a set of relations such that R ⊆ A+ × A+.

Relations in the set R can be written as (u, v) ∈ R with u, v ∈ A+. The expression

(u, v) which we often alternatively write as (u = v) indicates that the word u

can be replaced by the word v wherever it appears within a word (this will be

explained more formally below).

It is implicit that the letters in an alphabet (as described above) are also elements

in the semigroup which they generate. In the case of the free semigroup A+ our

presentation has no defining relations and instead of writing 〈A | 〉 or 〈A〉 we write

A+. Similarly for the free monoid A∗.

Let A = {a1, . . . , am} and R = {u1 = v1, . . . , un = vn} then we write

〈a1, . . . , am | u1 = v1, . . . , un = vn〉 for 〈A |R〉. At this point the presentation is

merely a set of symbols. The semigroup defined by the presentation 〈A |R〉 is

A+/η where η is the smallest congruence on A+ containing R. Now we can say

that a semigroup S is defined by the presentation 〈A |R〉 providing S is

isomorphic to A+/η, then we write S ∼= A+/η. We say that the relations R

invoke a congruence on the words and generally in this document we will use η

to denote the smallest congruence on S containing R. Given any two words

u, v ∈ A+ we write u ≡ v if they are equal as words, and write u = v if they

represent the same element of S i.e. if u/η = v/η.

Let 〈A |R〉 be a semigroup presentation, and let w1, w2 ∈ A+ be any words.

We say that w2 is obtained from w1 by an application of a relation from R if

w1 ≡ αuβ and w2 ≡ αvβ, where α, β ∈ A∗ and (u, v) ∈ R or (v, u) ∈ R. We say

that the relation w1 = w2 is a consequence of R if w1 and w2 are identical words

or if there is a sequence w1 = γ1, γ2, . . . , γm = w2 in which each γk+1 is obtained

from γk by an application of a relation from R. Two words w1 and w2 in A+

are η related if and only if one can transform w1 into w2 by a finite number of

applications of the defining relations R.

Under this notation the elements of S are in one to one correspondence with the
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congruence classes of A+ under η. This means that each word in A+ represents

an element in S and each element in S can be represented by one or more words

in A+.

Given any w ∈ A+ we say that w/η ∈ S is the element of S represented by the

word w. For any subset Y ⊆ S we set

L(A, Y ) = {w ∈ A+ : w/η ∈ Y }

to be the set of all words in A+ that represent an element of Y .

Example 2.3.1. Let S ∼= 〈A |R〉 where A = {a} and R = {(aaa = a)} then

there is an infinite set of words which represent elements in S but only a finite

set of elements. In fact there are only two elements, one which is represented

by the set of words {am : m ≥ 1 and an odd number } and the other which is

represented by the set of words {an : n ≥ 0 and an even number }.

Theorem 2.3.2. Let S be a semigroup, let A be a non-empty set and let f :

A→ S be any mapping. Then there exists a unique homomorphism φ : A+ → S

such that af = aφ for all a ∈ A. If imf is a generating set of S, then imφ

is S. Therefore, every finitely generated semigroup is a homomorphic image of

a finitely generated free semigroup. In fact, every semigroup is isomorphic to a

quotient of a free semigroup.

Theorem 2.3.2 will be applied in the rewriting method described in Section 2.9

and also in Chapter 3.

We say that 〈A |R〉 is a finite presentation if both A and R are finite. If a

semigroup S is isomorphic to the semigroup defined by some finite presentation

then S is said to be finitely presented.

Two presentations 〈A |R〉 and 〈A |Q〉, on the same alphabet, are called equivalent

if they generate the same congruence. Let ρ be the smallest congruence on A+

containing Q. Two presentations 〈A |R〉 and 〈B |Q〉 are said to be isomorphic
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to each other if the semigroups A+/η and B+/ρ are isomorphic.

2.4 Rewriting systems

Let S be the semigroup defined by the semigroup presentation 〈A |R〉 then there

exists a semigroup rewriting system which defines S which we denote by (A,R).

Here a semigroup rewriting system is a pair (A,R), where A is a non-empty set

called an alphabet, and R ⊆ A+×A+, called the set of rewriting rules. A rewriting

system may also be referred to as a string rewriting system.

In the terminology of rewriting systems, if (A,R) is a rewriting system then we

say that R is a rewriting system over A. Then R comprises a set of rewriting rules

where the elements of R are represented as (u, v) or u→R v with (u, v) ∈ A+×A+.

Let (u, v) ∈ R be a rewriting rule in R and w1, w2 be words in A+, with α, β ∈ A∗

such that w1 ≡ αuβ and w2 ≡ αvβ. Then we say that w1 is rewritten as (or

reduced to) w2 by a one-step reduction induced by R which is denoted w1 →R w2.

When the set of rewrite rulesR is obvious by the context then we simplify notation

and write w1 → w2.

We use
∗→R to denote the reflexive transitive closure of →R. In other words,

let u
∗→R v, then we have a finite sequence of words w0, w1, . . . , wn such that

u ≡ w0 →R w1 →R . . . →R wn ≡ v. Note u
∗→R v implies a finite sequence of

zero, one or many rewrite steps. Whereas u
+→R v has a similar meaning but

implies a finite sequence of at least one rewrite step.

Similarly
∗↔R denotes the reflexive symmetric transitive closure of →R. In this

case , if u
∗←→R v, then we have a finite sequence of words w0, w1, . . . , wn such

that u ≡ w0 ↔R w1 ↔R . . .↔R wn ≡ v, where u↔R v if and only if u→R v or

v →R u. Note u
∗←→R v implies a finite sequence of zero, one or many rewrite

steps. If we now consider the semigroup S, it can be shown that
∗↔R is an

equivalence relation on A+ and it partitions A+ into congruence classes, in fact

the semigroup S defined by the presentation 〈A |R〉 is the quotient semigroup
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A+/
∗↔R.

Sometimes it is convenient to use the notation r = (r+1, r−1) for a rewrite rule r ∈

R. Then we say that r+1 →R r−1 is a positive elementary transformation. This

process of replacing a subword r+1 by a word r−1 is called a single step reduction.

We assume throughout the thesis that if (r+1, r−1) ∈ R then (r−1, r+1) 6∈ R. If

x, y ∈ A+ and x
∗→ y, then x is an ancestor of y and y is a descendant of x.

So if we have a semigroup S defined by the semigroup rewriting system (A,R)

then S ∼= A+/
∗↔R and the elements of S are the congruence classes induced by

∗↔R. Using the words in A+ we can represent the elements of S by saying that

for w ∈ A+ then [w]R ∈ S where [w]R denotes the congruence class of w modulo

∗↔R.

In string rewriting systems the symbol
∗↔R is also called the Thue congruence

on A+. As for semigroup presentations, the symbol η will be used to denote the

smallest congruence on A+ which contains the relations R. Thus, the following

expressions are equivalent and all show that the two words u and v represent

the same element of S : u = v, u =R v, [u]R = [v]R, u
∗←→R v, u/η = v/η,

u/
∗←→R = v/

∗←→R. Note that none of these expressions imply u ≡ v.

It is worth noting that there is very little difference between the definitions of

a semigroup presentation and that for a rewriting system. When considering

rewriting systems the emphasis is often on the words and the orientation of

rewrite rules is important i.e. u →R v where u, v ∈ A+. Whereas for semigroup

presentations the orientation of the relations is not important and we would have

u = v instead of u↔R v.

Two string rewriting systems (A,R) and (A,Q) on the same alphabet are called

equivalent if they generate the same Thue congruence, that is
∗↔R =

∗↔Q. Two

string rewriting systems (A,R) and (B,Q) are said to be isomorphic if the

semigroups A+/
∗↔R and B+/

∗↔Q are isomorphic to each other.

Let IRR(R) be the set of all words in A+ that cannot be reduced by a rule in
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R. That is if w ∈ IRR(R) then there does not exist a u where w = A∗uA∗ and

u ∈ Left(R) where Left(R) = {u ∈ A+ : u → v ∈ R}. Then if w ∈ IRR(R)

we say that w is an irreducible word and it is not hard to see that we have

IRR(R) = A+\A∗ Left(R)A∗.

2.5 Semigroup vs monoid for presentations and

rewriting systems

So far in this chapter we have been concerned with semigroup presentations

when referring to the presentation 〈A |R〉. We can make a similar definition with

respect to a monoid. A monoid presentation is a pair 〈A |R〉 where A is a non-

empty alphabet and R is a subset of A∗ × A∗. The monoid presentation 〈A |R〉

defines the monoid A∗/η where η is the smallest congruence on A∗ containing R.

Just as for semigroup presentations, for any two words u and v we have u/η = v/η

if and only if we can transform u into v by a finite number of applications of the

defining relations. Where the context is clear the phrase monoid presentation

and semigroup presentation may be simplified to presentation.

As we can see, the two types of presentation are closely related. For example,

every semigroup presentation is a monoid presentation as well. If S is the

semigroup defined by 〈A |R〉, then the monoid defined by 〈A |R〉 is S with an

identity adjoined to it. If 〈A |R〉 is the presentation for the semigroup S and if

S possesses an identity ε ∈ A+, then 〈A |R, ε = 1〉 is a monoid presentation for

S. If M is the monoid defined by the monoid presentation 〈B |G〉, then M can

be defined as a semigroup by
〈
B, ε |G′, ε2 = ε, εb = bε = b(b ∈ B)

〉
, where G′ is

obtained from G by replacing every relation of the form w = 1 by the relation

w = ε. The following lemma will be used in later chapters.

Lemma 2.5.1. Let M be the monoid defined by the monoid presentation 〈A |R〉.

Then there exists a semigroup presentation which defines M . Moreover, if the

monoid presentation is finite, then the semigroup presentation is finite.
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Proof. Let A′ = A∪ {1} and R′ = R∪ {(1a, a), (a1, a), (11, 1) : a ∈ A} where 1 is

the identity element. Then it can easily be seen that 〈A′ |R′〉 is the semigroup

presentation for the monoid M . The rest follows from the definitions of A′ and

R′.

Previously in this section we have defined a semigroup rewriting system but

we can make a similar definition with respect to a monoid rewriting system.

A monoid rewriting system is a pair (A,R), where A is a non-empty alphabet

and R ⊆ A∗×A∗ is a set of rewriting rules. The monoid rewriting system (A,R)

defines the monoidM whereM ∼= A∗/
∗←→R. Where the context is clear the phrase

monoid rewriting system and semigroup rewriting system may be simplified to

rewriting system.

Example 2.5.2. The bicyclic monoid is expressed as B ∼= 〈b, c | bc = 1〉. Let η

be the smallest congruence on {b, c}∗ containing (bc, 1), so B ∼= {b, c}∗/η. It may

be shown that each η-class contains exactly one word of the form cmbn where

m,n ≥ 0, and hence the elements of B are represented by this set of words. In

terms of words, we could have an infinite number of words which represent the

same element. For example cb = bccb = bcbccb = bbccbccb and so on.

Research in this thesis is with respect to both semigroups and monoids. Chapters

3,4 and 5 contain results mostly for semigroups whereas Chapter 6 concentrates

on monoids. The context will be made clear at the start of each chapter and

within definitions; any differences will be highlighted where relevant.

2.6 Finite complete rewriting systems (FCRS)

Since most of the literature which we make reference to in this subsection is

with respect to monoid rewriting systems we will use the convention that the

terms rewriting system and string rewriting system will be referring to monoid

rewriting system and monoid string rewriting system respectively. Note that there
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are analogous results with respect to semigroup rewriting systems and semigroup

string rewriting systems.

A rewriting system (A,R) is called noetherian if there is no infinite sequence

w1, w2 . . . of words in A+ such that w1 → w2 → . . . for all wi → wi+1, i > 0. This

means that in a noetherian rewriting system any sequence of reducing a word by

rewrite rules will eventually terminate at an irreducible word.

Definition 2.6.1. [3, Theorem 2.2.1] Let A be a finite alphabet and > a binary

relation on A∗.

(a) The relation > is a strict partial ordering if it is irreflexive, anti-symmetric

and transitive.

(b) > is a linear ordering if it is a strict partial ordering and if, for all x, y ∈ A∗,

either x > y, or x = y, or y > x holds.

(c) The relation > is admissible if, for all u, v, x, y ∈ A∗, u > v implies

xuy > xvy.

Definition 2.6.2. [3, Theorem 2.2.2] Let A = {a1, . . . , an}. The following gives

some examples of admissible partial orderings on A∗.

(a) Define x > y as follows: x > y if |x| > |y|. Then > is the length ordering

on A∗.

(b) Let w : A → N be a mapping that associates a positive integer (a weight)

with each letter. Define the weight ordering >w induced by w as follows:

for x and y in A, x >w y if (x)w > (y)w. Here w is extended to a mapping

from A∗ into N by taking (ε)w := 0 and defining by induction (xa)w :=

(x)w+(a)w for all x ∈ A∗, a ∈ A. Note that the length ordering is a weight

ordering.

(c) The lexicographical ordering >lex on A∗ is defined as follows:

x >lex y if there is a non-empty string z such that x = yz, or x = uaiv and

y = uajz for some u, v, z ∈ A∗, and i, j ∈ {1, . . . , n} satisfying i > j.
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(d) The length-lexicographical ordering >ll is a combination of the length

ordering and the lexicographical ordering. Also often referred to as

shortlex ordering >sh :

x >sh y if |x| > |y| or ( |x| = |y| and x >lex y ).

Definition 2.6.3. [3, Theorem 2.2.3] Let > be a strict partial ordering on A∗. It

is called well-founded if there is no infinite chain of the form x0 > x1 > x2 > . . ..

If > is linear and well-founded, then it is called well-ordering.

Any weight ordering is well-founded. Since there are only finitely many strings

of any given length, the shortlex ordering (also known as length-lexicographical

ordering) is a well-ordering. However, if A contains more than one letter, then

the lexicographical ordering >lex is not well-founded.

Example 2.6.4. Let Y = {x1 < x2 < x3}. Then with <sh denoting the shortlex

order on words we have x1x2x3 <sh x1x3x2 and x1x2 <sh x1x1x2. Note that

in contrast we have x1x1x2 <lex x1x2. Indeed, lexicographical ordering is not

well-founded since

x1x2 >lex x1x1x2 >lex x1x1x1x2 >lex . . .

Example 2.6.5. [2, Chapter 2] Examples of well-founded orderings.

(i) Natural numbers with greater than, expressed as (N, >).

(ii) Let (M1, >1) and (M2, >2) be well-founded orderings. Then let their

lexicographic combination > = (>1, >2)lex on M1 ×M2 be defined as

(a1, a2) > (b1, b2) ⇔ a1 >1 b1, or else a1 = b1 and a2 >2 b2

(analogously for more than two orderings). This again yields a well-founded

ordering.

This leads us to the following useful lemma.

Lemma 2.6.6. [2, Chapter 2] (Mi, >i) is well-founded for i = 1, 2 if and only if

(M1 ×M2, >) with > = (>1, >2)lex is well-founded.
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Theorem 2.6.7. [3, Theorem 2.2.4] Let R be a string rewriting system on A.

Then the following two statements are equivalent:

(a) the reduction relation →R is noetherian;

(b) there exists an admissible well-founded strict partial ordering > on A∗ such

that u > v holds for each rule (u, v) ∈ R.

A rewriting system is called confluent if, for any words w,w1, w2 ∈ A+ with

w
∗→ w1 and w

∗→ w2, there exists a word w0 ∈ A+ such that w1
∗→ w0 and

w2
∗→ w0. The system is called locally confluent if, for any words w,w1, w2 ∈ A+

with w → w1 and w → w2, there exists a word w0 ∈ A+ such that w1
∗→ w0 and

w2
∗→ w0.

The following theorem and lemma will be referenced in later chapters.

Theorem 2.6.8. [42, Newman’s Lemma] [3, Theorem 1.1.13] Let S = (A,R) be

a string rewriting system which is noetherian. Then S is confluent if and only if

S is locally confluent.

Lemma 2.6.9. [24, Lemma 12.17] Let (A,R) be a string rewriting system. The

system R is locally confluent if and only if the following conditions are satisfied

for all pairs of rules (u1, t1), (u2, t2) ∈ R.

(i) If u1 ≡ rs and u2 ≡ st with r, s, t ∈ A∗ and s 6≡ ε (the empty word), then

there exists w ∈ A∗ with t1t→∗ w and rt2 →∗ w.

(ii) If u1 ≡ rst and u2 ≡ s with r, s, t ∈ A∗ and s 6≡ ε (the empty word), then

there exists w ∈ A∗ with t1 →∗ w and rt2t→∗ w.

A pair of rules satisfying either of the two conditions in the above lemma is called

a critical pair. If R is noetherian and one of these conditions fail (so R is not

locally confluent), we end up with two distinct strings, say w1 and w2, that are

irreducible and equivalent under
∗←→. If all critical pairs in R satisfy conditions

(i) and (ii) above then we say that the critical pairs resolve.

Next we define what is required for a rewriting system given by the presentation
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〈A |R〉 to be complete. We say that R is a complete rewriting system over A if

R is both noetherian and confluent. From the results above we deduce:

Lemma 2.6.10. [24, Lemma 12.15] Suppose that R is noetherian and locally

confluent, then R is noetherian and confluent: that is, R is complete.

Let 〈A |R〉 be a presentation which defines the semigroup S with A and R finite

and R complete, then (A,R) is a finite complete semigroup rewriting system. We

can then say that (A,R) is a finite complete rewriting system which represents

the semigroup S and that 〈A |R〉 is a presentation which has the property of being

a finite complete rewriting system. We use FCRS as shorthand for a presentation

which has the property of being a finite complete rewriting system. Also, we may

say that 〈A |R〉 is a complete presentation if (A,R) is complete or that 〈A |R〉

is a finite complete presentation if (A,R) is finite and complete. Most commonly

in this thesis we will use the phrase 〈A |R〉 is a presentation which is a finite

complete rewriting system to mean that the rewriting system (A,R) is finite and

complete.

The property of being a finite complete rewriting system is specific to the

presentation given. If two presentations describe the same semigroup and one is

a finite complete rewriting system, then it does not imply that the second

presentation is also a finite complete rewriting system, see below for an

example. This is in contrast to some properties and it is this fact which makes it

difficult to prove inheritance when considering a substructure of the semigroup.
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Examples:

• Let S ∼= 〈A |R〉 =
〈
a | (a3 → a)

〉
. Then R is a length reducing system

which is a FCRS.

• Let S ∼= 〈A |R〉 = 〈a, b | (ba→ ab)〉 is the free commutative monoid of rank

2. This is also a FCRS.

• An example of a semigroup which is finite and complete with respect to

one rewriting system but not for another can be found in the paper [27]. In

fact, in [27] they prove even more than this, as follows:

Let S ∼= 〈a, b | aba→ bab〉 which the paper proves is not a FCRS. To see this

we consider the word ababa which can be reduced in two different ways. If

we apply the rewrite rule to the first aba in the word we get babba and if we

choose the second occurrence we get abbab. Now both these words cannot

be reduced further and all three words are equal under the presentation.

This means that we do not have a confluent system and thus not a FCRS.

In [27] it is shown that S does not have any FCRS with respect to the

generating set {a, b}. However, by adding a further symbol and extending

the relations, then the same semigroup can be presented as

S ∼= 〈a, b, c | ab→ c, ca→ bc, bcb→ cc, ccb→ acc〉 which is proved to be a

FCRS.

Definition 2.6.11. [3, Definition 1.1.5] Let (A,R) be a string rewriting system.

For x, y ∈ A+, if x
∗←→ y and y is irreducible, then y is a normal form for x.

Theorem 2.6.12. [14, Proposition 4.1] Let S be a semigroup generated by a set

A, let R ⊆ A+ × A+ and let L ⊆ A+ be a set of unique normal forms for S. If

the following conditions hold:

(i) S satisfies all the relations from R ; and

(ii) any word w ∈ A+ can be transformed to the corresponding unique normal

form in L by applying relations from R ;
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then 〈A |R〉 is a presentation for S.

Theorem 2.6.13. [3, Theorem 1.1.12] Let (A,R) be a rewriting system for the

semigroup S. If (A,R) is complete, then for every w ∈ A∗, [w]R has a unique

normal form.

Remark: Lemma 2.6.13 relates to the word problem. The word problem for

a presentation 〈A |R〉, asks whether there is an algorithm that given any two

words u, v over the alphabet A can decide whether or not u = v in the monoid

defined by this presentation. That is, whether u can be transformed into v by

applying the defining relations. In general there are finitely presented semigroups

for which there is no algorithm to solve the word problem. However, if 〈A |R〉

is a presentation which is a finite complete rewriting system then there is an

algorithm to solve the word problem. Indeed, using the fact that the rewriting

system is complete it follows that applying the rewrite rules to u and v we can

rewrite each of them to their unique irreducible forms, call these ū and v̄, then

u = v in the monoid if and only if ū ≡ v̄ i.e. the irreducible words are identically

equal as words. This lemma implies that we have a rewriting system in which

the word problem can be solved.

Lemma 2.6.14. Let (Z,R) be a finite noetherian rewriting system. Then the

following are equivalent:

(i) (Z,R) is confluent;

(ii) (Z,R) is locally-confluent;

(iii) every
∗↔R-class contains exactly one irreducible word.

Proof. The proof is given for each part:

(ii) ⇒ (i) If (Z,R) is noetherian and locally confluent then it is also confluent by

Theorem 2.6.8.

(i) ⇒ (ii) If (Z,R) is noetherian and confluent then it is clearly locally-confluent

since confluence clearly implies local confluence.
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(ii) ⇒ (iii) If (Z,R) is noetherian and locally-confluent then it is complete by

Lemma 2.6.10. If (Z,R) is complete then by Theorem 2.6.13 it follows that part

(iii) is true.

(iii) ⇒ (ii) Suppose that (iii) holds and let x, u, v ∈ Z+ such that x →R u and

x →R v. As (Z,R) is noetherian then u
∗−→R u′ and v

∗−→R v′ for some u′, v′ ∈

IRR(R). Then (iii) implies u′ ≡ v′ and therefore (Z,R) is locally-confluent.

Definition 2.6.15. A rewriting system is said to be normalised if for every

u→ v ∈ R we have v ∈ IRR(R) and there does not exist a u′ ∈ A+ with u→ u′

by any other rule in R \ (u→ v).

Note that complete string rewriting systems that are also normalised are called

canonical.

Lemma 2.6.16. [3, Algorithm 2.2.12] Let (A,R′) be a finite complete rewriting

system. Then there is a finite complete rewriting system (A,R) which is equivalent

to (A,R′) such that R is normalised.

It is a key fact that when we apply Lemma 2.6.16, this normalising procedure

does not change the generating set.

Lemma 2.6.17. Let (A,R) be a finite complete rewriting system. Let

w ∈ IRR(R), u ∈ A+, w1, w2 ∈ A∗, then

(i) Any subword u of w is also irreducible i.e. whenever w ≡ w1uw2 then

u ∈ IRR(R).

(ii) For any proper subword u of w we cannot have u
∗←→R w.

Proof. (i) Suppose for a contradiction w ≡ w1uw2, w ∈ IRR(R) and u 6∈ IRR(R).

Then we have u →R v ∈ R and hence w1uw2 →R w1vw2. This implies w ≡

w1uw2 6∈ IRR(R), a contradiction.

(ii) Let w ≡ w1uw2 with u 6≡ w. Suppose for a contradiction we have u
∗←→R w

which means that u and w represent the same element i.e. u/η = w/η. As
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w ∈ IRR(R) and u 6≡ w and we have a finite complete rewriting system, then

there exists a sequence of rewrite rules such that u
+→R w. But this means that

u 6∈ IRR(R) which contradicts (i).

We now list some results which show that many of the properties discussed above

are shared between S and T if T is a subsemigroup of S that differs from S by

only finitely many elements. There are several expressions which all convey this

situation, namely

(i) T has finite Rees index in S;

(ii) S is a small extension of T ;

(iii) T is a large subsemigroup of S;

(iv) S \ T is finite.

We choose to use the last expression in the following theorems and corollary.

Theorem 2.6.18. [48, Theorem 1.3] Let S be a semigroup and T be a

subsemigroup of S such that S \ T is finite. Then S is finitely presented if and

only if T is finitely presented.

Theorem 2.6.19. [53, Theorem 1] Let S be a monoid and T be a submonoid of

S such that S \ T is finite. If T can be presented by a finite complete rewriting

system, then so can S.

Theorem 2.6.20. [54, Theorem 1.1] Let S be a semigroup and T be a

subsemigroup of S such that S \ T is finite. If S has a finite complete rewriting

system, then so does T .

Corollary 2.6.21. [54, Corollary 1.2] Let S be a semigroup and T be a

subsemigroup of S such that S \ T is finite. Then S has a finite complete

rewriting system if and only if T does.

Although we may be considering a monoid and a submonoid in terms of the

property FCRS, we can translate any result to that for semigroups and

subsemigroups by appealing to a result in the paper [17] which follows.
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Theorem 2.6.22. [17, Theorem 1.1] Let S be a monoid. Then S is defined by

a finite complete semigroup presentation if and only if it is defined by a finite

complete monoid presentation.

2.7 Green’s relations

A general method for analysing the structure of a semigroup is to look at its

Green’s relations (introduced in 1951 by J.A. Green as described in [22] ). Let S

be a semigroup, then two elements s, t ∈ S are said to be L-related (denoted aLb)

if they generate the same left ideal i.e. S1s = S1t. In other words, there exist

a, b ∈ S1 such that as = t and bt = s. The relation L is an equivalence relation

on S and a right congruence. Similarly, two elements are said to be R-related

(denoted sRt) if they generate the same right ideal i.e. sS1 = tS1. In other

words, there exist a, b ∈ S1 such that sa = t and tb = s. The relation R is an

equivalence relation on S and a left congruence.

When two elements are in the same L-class and the same R-class, they are said to

be H-related. The smallest equivalence containing both L and R is called the D-

relation. It can be shown that L and R commute and we have D = L◦R = R◦L.

Two elements are J -related if S1aS1 = S1bS1. See [25] for further details and

proofs.

It is useful to look at the structure of the D-classes in a semigroup. Also, each

individual D-class has its own structure. To visualise the structure of a D-class

a grid like diagram is usually drawn with each R-class, L-class and H-class

represented by a row, column or square intersection respectively. This is usually

referred to as an egg box diagram, see Figure 2.7.1 below. It is possible for the

egg box diagram to contain a single row or a single column of cells, or even to

contain only one cell. Also, it may well be an infinite egg box.
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H11

Hiλ

Figure 2.7.1: An egg box diagram for a single D-class

2.8 Tietze transformations

In Section 2.3 we defined the notions of two presentations being equivalent or

being isomorphic. Another useful tool is that of changing a presentation by

making Tietze transformations. These are simple changes to the generating set or

to the set of relations. In this way a new presentation can be created which defines

the same semigroup. We say that u = v is a consequence of the presentation

〈A |R〉 if u
∗←→R v.

Let 〈A |R〉 be the presentation for a semigroup S. These changes are called

elementary Tietze transformations and are as follows:

T1 Adding a new relation u = v to 〈A |R〉, provided that u = v is a consequence

of 〈A |R〉.

T2 Deleting a relation u = v ∈ R from 〈A |R〉, provided that u = v is a

consequence of 〈A |R \ {(u = v)}〉.

T3 Adding a new generating symbol b and a new relation b = w for any non-

empty word w ∈ A+.

T4 If 〈A |R〉 possesses a relation of the form b = w, where b ∈ A and w ∈

(A \ {b})+, then deleting b from the list of generating symbols, deleting the

relation b = w, and replacing all remaining appearances of b by w.

Theorem 2.8.1. [47, Proposition 2.5] Two finite presentations define the same
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semigroup (i.e. they are isomorphic) if and only if one can be obtained from

the other by a finite number of applications of elementary Tietze transformations

(T1), (T2), (T3), (T4).

We can also say:

Theorem 2.8.2. Two finite presentations 〈A |R〉 and 〈A |Q〉 are equivalent if

and only if 〈A |R〉 can be obtained from 〈A |Q〉 by a finite number of applications

of elementary Tietze transformations (T1) and (T2).

2.9 Reidemeister-Schreier type rewriting for

semigroups

The method outlined in this section was published as part of a research article [5]

by C.M. Campbell, E.F. Robertson, N. Ruškuc and R.M. Thomas. The approach

is used in chapters of this thesis and this section provides an overview. The

following material is taken from [5].

In group theory the theorems of Reidemeister and Schreier give a method for

determining a presentation for a subgroup H when given a presentation for the

group G. One consequence is that, if the group presentation is finite and H has

finite index in G, then H is itself finitely presented. (Note that the index of H in

G is the number of cosets of H in G.) The research was interested in developing

an analogous theory for semigroups with a corresponding situation where there

exists a (two-sided) ideal I in a semigroup S such that the Rees quotient S/I

is finite (equivalently, such that the complement S \ I is finite). A constructive

method was determined for finding a presentation for a semigroup T of S.

If S is a semigroup defined by a presentation 〈A |R〉, and we are finding a

presentation 〈B |R1〉 for a subsemigroup T which is specified by giving a set of

words X which generate T , and each letter of B corresponds to one of the

words from this generating set X. Then we have a mapping from B to A+,
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which naturally extends to a homomorphism from B+ to A+. The critical idea

here is that of a rewriting mapping φ which, given a word in A+ which

represents an element of T , rewrites it into a corresponding word in B+. We

will define these ideas more formally next.

A general rewriting theorem

Let S be the semigroup defined by a presentation 〈A |R〉, where A is an alphabet

and R ⊆ A+ × A+, and let T be the subsemigroup of S generated by a set

X = {ξi | i ∈ I}, where ξi are words from A+. In this section we are looking for

a general presentation for T in terms of the generators X.

First we introduce a new alphabet B = {bi | i ∈ I} in 1:1 correspondence with

the set X, and a homomorphism ψ : B+ → A+ induced by

(bi)ψ = ξi, i ∈ I. (2.9.1)

It is obvious that Imψ, when represented as a subset of S, is actually T .

Intuitively, ψ interprets each word in B+ as an element of T ; sometimes we will

call ψ the interpretation mapping. A rewriting mapping is a mapping

φ : L(A, T )→ B+ (2.9.2)

with the property that (
(wφ)ψ

)
= w in S. (2.9.3)

Intuitively, φ rewrites every element of T as a product of the given generators

for T . It is not hard to prove that a rewriting mapping always exists. There will

typically be many choices for the rewriting mapping. A key part of using this

method effectively is to make a good choice of rewriting mapping. We can now

state the result giving a presentation for T .

Theorem 2.9.1. [5, Theorem 2.1] Let S be the semigroup defined by a
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presentation 〈A |R〉, and let T be the subsemigroup of S generated by

X = {ξi | i ∈ I} ⊆ A+. Introduce a new alphabet B = {bi | i ∈ I}, and let ψ and

φ be the interpretation mapping and a rewriting mapping. Then T is defined by

the generators B and the relations

bi = (ξi)φ, i ∈ I, (2.9.4)

(w1w2)φ = (w1)φ(w2)φ, (2.9.5)

(w3uw4)φ = (w3vw4)φ, (2.9.6)

where w1, w2 ∈ L(A, T ), u = v is a relation from R, and w3, w4 ∈ A∗ are any

words such that w3uw4 ∈ L(A, T ).

Remark: The main disadvantage of the presentation (2.9.4), (2.9.5), (2.9.6) is that

it is always infinite since typically w1, w2, w3 and w4 will range over infinitely

many different words, giving rise to infinitely many distinct relations in (2.9.5)

and (2.9.6), and that it crucially depends on the mapping φ which has not been

constructively defined. The significance of the theorem is that it gives us a

general recipe for finding presentations for semigroups in various special cases.

When applying this result we first find a generating set for the subsemigroup

in question, then define a specific rewriting mapping, and then seek a smaller

set (ideally finite) of relations which imply all the relations (2.9.4), (2.9.5) and

(2.9.6).



3

Rees matrix semigroups

3.1 Introduction

In this chapter we will consider finiteness properties of specific Rees matrix

semigroups and their substructures. In particular, we will look at completely

simple semigroups which are isomorphic to Rees matrix semigroups of the form

S = M[G; I,Λ;P ] where G is a group and the indexes I and Λ are finite (see

Theorem 3.2.6). In this case the substructure we consider is the group

H-classes, also known as maximal subgroups. In this chapter we will be

interested in problems of the following kind.

Statement [48, Remark and open problem 4.5]:

Let S be a regular semigroup with finitely many R-classes and L-classes. Let P

be a property of semigroups. Then S has property P if and only if all maximal

subgroups of S have property P .

The case when P is the property of being “finitely generated” and “finitely

presented” have been proved in [46, Proposition 4.2] and the property “has

finite derivation type” (see Chapter 4 for more details) in [38, Theorem 2]. The

case when P is the property “admits a presentation by a finite complete

rewriting system”, is proved true in one direction in [18, Corollary 4] for the

case where S has the property if every maximal subgroup of S has the property.

We are interested in proving the converse for this last property, “admits a
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presentation by a finite complete rewriting system”, in one special case. In this

chapter we will consider this question in the case where S is a completely simple

semigroup. We will prove a partial converse result for a particular class of Rees

matrix semigroups with an additional condition on the generating set called

being sparse (see Definition 3.3.2 below). The general case remains open. The

main result in this chapter is as follows:

Theorem 3.1.1. Let S =M[G; I,Λ;P ] be a Rees matrix semigroup where G is

a group and one of two conditions is true:

(i) I = {1} and Λ = {1, 2, . . . , n};

(ii) I = {1, . . . ,m} and Λ = {1}.

Then the group G admits a presentation by a finite complete rewriting system if

and only if S admits a presentation by a finite complete rewriting system with

respect to some sparse generating set.

Before going on to prove this result we first recall some background results and

definitions.

3.2 Background and definitions

Definition 3.2.1. [25, Section 3] A semigroup is called simple if it has no proper

ideals.

Theorem 3.2.2. [25, Corollary 3.1.2] A semigroup S is simple if and only if

SaS = S for all a in S, that is, if and only if for every a, b in S there exist x, y

in S such that xay = b.

Corollary 3.2.3. Let S be a simple semigroup. Then S has a single J -class.

Proof. The proof is immediate from the definition of a simple semigroup.

Example 3.2.4. Every group G is a simple semigroup. To see this we take

arbitrary a, b ∈ G and we have baa−1 = b as per Theorem 3.2.2.
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A (left, right, two-sided) ideal I of a semigroup S is said to be minimal if it

contains no other (left, right, two-sided) ideals of S.

Definition 3.2.5. A semigroup S is said to be completely simple if it is simple

and if it possesses minimal left and right ideals.

Theorem 3.2.6. [25, Theorem 3.3.1] Let G be a group, let I, Λ be non-empty

sets and let P = (pλi) be a Λ× I matrix with entries in G. Let S = (I ×G× Λ)

and define a multiplication on S by

(i, a, λ)(j, b, µ) = (i, apλjb, µ).

Then S is a completely simple semigroup.

Conversely, every completely simple semigroup is isomorphic to a semigroup

constructed in this way. We denote the semigroup S = (I × G × Λ) with the

given multiplication by M[G; I,Λ;P ].

A matrix P is normal if every entry in the first row and the first column of P is

equal to the identity of the group G.

Theorem 3.2.7. [25, Theorem 3.4.2] If S is a completely simple semigroup then

S is isomorphic to a Rees matrix semigroup M[G; I,Λ;P ] in which the matrix P

is normal.

Theorem 3.2.8. [25, Theorem 2.2.5] If H is an H-class in a semigroup S then

either H2 ∩H = ∅ or H2 = H and H is a subgroup of S.

Proposition 3.2.9. [25, Proposition 2.3.6] If H and K are two group H-classes

in the same regular D-class, then H and K are isomorphic.

The maximal subgroups of a semigroup S coincide with the group H-classes.
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3.3 Definitions and notation for new research

In this section we establish the specific criteria for the Rees matrix semigroup

S = M[G; I,Λ;P ] which we will go on to consider. Note that we are working

with a semigroup S and therefore with semigroup presentations and semigroup

rewriting systems.

Let S = M[G; I,Λ;P ] as in Theorem 3.2.6. Furthermore, let us suppose that

I = {1, . . . ,m} and Λ = {1, . . . , n} both finite. By Theorem 3.2.7 we will assume

throughout that the matrix P is normal so that every entry in the first row and

the first column is equal to the identity of G.

The semigroup S has a single D-class, m R-classes and n L-classes. We will use

the following notation to describe this structure. Let Ri, i ∈ I be the R-class

of S and let Lλ, λ ∈ Λ be the L-class of S. The H-classes are the intersections

of the L- and R-classes. Let Hiλ, i ∈ I, λ ∈ Λ denote the H-class which is the

intersection of Ri and Lλ. Thus if an element s ∈ S belongs to R2 and L3 then

it follows that s ∈ H23. If s ∈ S, then we also use the notation Rs, Ls and Hs

to represent the element’s R-class, L-class and H-class respectively. For a Rees

matrix semigroup where S = M[G; I,Λ;P ] with G being a group, each H-class

is a group H-class and will contain a single idempotent element. We denote the

idempotent in the H-class Hiλ by eiλ. Recall that for an idempotent eiλeiλ = eiλ.

TheH-class Hiλ will consist of the triples (i, g, λ) where g ∈ G. Every idempotent

e ∈ S is a left identity for its R-class Re and a right identity for its L-class Le.

So for eiλ, s ∈ Hij and t ∈ Hkλ then eiλs = s and teiλ = t.

For further details on Green’s relations and their notation see [25].

In order to progress this line of study it was necessary to add further conditions

and it was decided to assume that the generating set for the semigroup was of a

specific form which we will call a sparse generating set. First we identify a set of

elements in S which generate the semigroup.
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Lemma 3.3.1. Let S =M[G; I,Λ;P ] with G, I, Λ and P as defined above. Let

GA be a finite semigroup generating set for the group G. Let

Q = {(1, g, 1) : g ∈ GA} which is a semigroup generating set for H11;

Y = {(1, 1G, λ) : λ ∈ Λ \ {1}} be the set of idempotents, one from each H1λ;

Z = {(i, 1G, 1) : i ∈ I \ {1}} be the set of idempotents, one from each Hi1.

Then (Q ∪ Y ∪ Z) is a finite generating set for S.

Proof. Let s = (j, h, µ) be an arbitrary element in S such that j ∈ I, µ ∈ Λ and

h ∈ G. There exists an element (1, h, 1) in 〈Q〉 since (1, h, 1) is in H11 and Q

generates H11. Then

s = (j, 1G, 1)(1, h, 1)(1, 1G, µ)

= (j, h, 1)(1, 1G, µ)

= (j, h, µ).

Therefore (Q ∪ Y ∪ Z) is a finite generating set for S.

We call a generating set of the form given in Lemma 3.3.1 a sparse generating

set. To be more precise:

Definition 3.3.2. Let S =M[G; I,Λ;P ] be a Rees matrix semigroup. We call

a subset X of S a sparse generating set for S if 〈X〉 = S and the following

conditions are satisfied:

(i) 〈X ∩H11〉 = H11;

(ii) X \H11 is the set of all idempotents in the R-class of H11 and the L-class

of H11, excluding the idempotent in H11.

It follows from Lemma 3.3.1 that every Rees matrix semigroup admits a sparse

generating set. It follows that every Rees matrix semigroup admits a
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presentation with respect to a sparse generating set. Moreover, if S is finitely

generated then S admits a finite sparse generating set, and if S is finitely

presented then S admits a finite presentation with respect to a sparse

generating set. If such a presentation exists and the associated rewriting system

is also complete, then we say S admits a presentation which is a finite complete

rewriting system with respect to a sparse generating set. We shall use the

following notation and conventions when considering a presentation for S with

respect to a sparse generating set (as mentioned above, such a presentation

must exist).

Notation 3.3.3. A presentation for S with respect to a sparse generating set

will be written as 〈A ∪ B ∪ C | R〉 where A, B, C are pairwise disjoint sets and

where

(i) A is the set of letters which correspond to the elements in the set Q;

(ii) B is the set of letters which correspond to the elements in the set Y ;

(iii) C is the set of letters which correspond to the elements in the set Z;

all defined such that there is a bijection between the letters of each alphabet and

the elements in the corresponding set. We call A ∪ B ∪ C the sparse generating

set for S.

Let R ⊆ (A ∪B ∪ C)+ × (A ∪B ∪ C)+ be a set of relations such that

(A ∪ B ∪ C)+/
∗←→R is isomorphic to S. Let η be the smallest congruence on

(A ∪B ∪ C)+ which contains R. We shall use the notation

(a) A = {ag : g ∈ GA} where ag/η corresponds to qg = (1, g, 1) ∈ Q.

(b) B = {bλ : λ ∈ Λ \ {1}} where bλ/η corresponds to e1λ = (1, 1G, λ) ∈ Y .

(c) C = {ci : i ∈ I \ {1}} where ci/η corresponds to ei1 = (i, 1G, 1) ∈ Z.
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3.4 New research regarding the special case of a single

R-class

Let us consider the special case for S = M[G; I,Λ;P ] where I = {1}, Λ =

{1, 2, . . . , n} with G and P as defined in Section 3.3. Our aim is to prove Theorem

3.1.1 part (i), Theorem 3.1.1 part (ii) then follows by a dual argument.

First we look to prove Theorem 3.1.1 (i) in the (⇐) direction.

Therefore our initial assumption is that the semigroup S admits a presentation

which is a finite complete rewriting system with respect to a sparse generating

set. As I = {1} we make some adjustments to the definitions made in Section 3.3

which will simplify the notation and will apply for the remainder of this section.

First we specify our sparse generating set for this special case. Let the sets A

and B be as defined in Section 3.3. The set C is empty and can be ignored. We

call A ∪ B the sparse generating set for the semigroup S as per Definition 3.3.2

and Notation 3.3.3.

Let R ⊆ (A ∪ B)+ × (A ∪ B)+ be a set of relations such that (A ∪ B)+/
∗←→R is

isomorphic to S and the rewriting system (A ∪ B,R) is complete. Furthermore,

by Lemma 2.6.16 without loss of generality we can, and will, assume that this

rewriting system is normalised, in the sense of Definition 2.6.15. Let η be the

smallest congruence on (A ∪B)+ which contains R. Simplifying the notation

(a) A = {ag : g ∈ GA} where ag/η corresponds to qg = (1, g, 1) ∈ Q.

(b) B = {bλ : λ ∈ Λ \ {1}} where bλ/η corresponds to eλ = (1, 1G, λ) ∈ Y .

The following diagram, Figure 3.4.1, illustrates the semigroup S using an egg box

diagram. Examples of elements are illustrated within their respective H-classes

together with the different notations with respect to the Rees matrix triples and

the semigroup presentation 〈A ∪B |R〉.



Chapter 3: Rees matrix semigroups 55

ag/η ∈ A/η

(agah)/η (1, gh, 1)

qg = (1, g, 1)

bλ/η ∈ B/η

qgeλ = (1, g, λ)

eλ = (1, 1G, λ)

H11 H1λ H1n

Figure 3.4.1: The D-class structure for the special case of a single R-class

Now we consider the semigroup presentation 〈A ∪B |R〉 and the associated

semigroup rewriting system (A ∪ B,R) which define S. We aim to prove that

the group G admits a presentation which is a finite complete rewriting system.

The group H-class H11 is a subgroup of S which is isomorphic to the group G.

This is true by the definition of the Rees matrix semigroup S and of Q which

generates H11, see Lemma 3.3.1. In addition, we have defined the set A which

corresponds to the elements of Q and therefore A/η is a finite generating set for

H11. Let

RH = {(u, v) ∈ R : u, v ∈ A+}.

We claim that 〈A |RH〉 is a semigroup presentation which is a finite complete

rewriting system for the subsemigroup H11 of S and hence also for the group G.

First we prove that 〈A |RH〉 is a finite presentation which defines H11 and then

that the rewriting system (A,R) is complete.

Next we include some useful lemmas. The first of which characterises the H-class

of an element w/η where w ∈ (A∪B)+, in terms of the last letter of the word w.

Lemma 3.4.1. Let w ≡ x1x2 . . . xp ∈ (A ∪ B)+ be an arbitrary word where

xd ∈ (A ∪B) for d ∈ {1, . . . , p}. Then

(i) w/η ∈ H11 if and only if xp ∈ A, and

(ii) w/η ∈ H1λ for some λ ∈ {2, 3, . . . , n} if and only if xp ≡ bλ ∈ B.

Proof. The proof for parts (i) and (ii) follows from the definition of
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multiplication for elements of Rees matrix semigroups (Theorem 3.2.6) together

with the correspondence established in Lemma 3.3.1 and Notation 3.3.3

between the sets A, B and the sets Q, Y . The proof for part (i) follows in

detail. A similar proof can be constructed for part (ii).

Part (i) (⇒). Let w/η ∈ H11 and we aim to show that xp ∈ A. For a

contradiction, assume xp ≡ bλ ∈ B with λ 6= 1, so we have w ≡ x1x2 . . . bλ and

let w ≡ w′bλ. But then w represents the element

w/η = (w′/η)(bλ/η) = (w′/η)eλ which must be in the same H-class as eλ ∈ H1λ,

a contradiction. To see this, recall how multiplication of elements works in S.

Let (w′/η) = (1, g, µ), g ∈ G, µ ∈ Λ and we have eλ = (1, 1G, λ). Then

w/η = (w′/η)eλ = (1, g, µ)(1, 1G, λ) = (1, g, λ) and so eλ and w/η must be in the

same H-class, which is H1λ, and therefore a contradiction. So we must have

xp ∈ A.

Part (i) (⇐). Let xp ≡ a1 ∈ A and we aim to show w/η ∈ H11. Now w ≡

x1x2 . . . a1 and let w ≡ w′a1 which gives us w/η = (w′/η)(a1/η). We again

look at multiplication of elements in S. Let (w′/η) = (1, g, µ), g ∈ G, µ ∈

Λ, and let (a1/η) = (1, h, 1), h ∈ GA as a1 ∈ A and (a1/η) ∈ H11. Then

w/η = (w′/η)(a1/η) = (1, g, µ)(1, h, 1) = (1, gh, 1) which is an element of H11 as

required.

Lemma 3.4.2. If w ∈ IRR(R) ∩ L(A ∪B,H11) then w ∈ A+.

Proof. Suppose, for a proof by contradiction, that w /∈ A+. Let w ≡ w1bw2 with

b ∈ B, w1 ∈ (A∪B)∗, w2 ∈ A+ (by Lemma 3.4.1 (i)), such that b is the rightmost

occurrence of a letter from B in w. Then let a be the first letter of the word w2

so that w2 ≡ aw′2 where w′2 ∈ A∗. So we have

w ≡ w1baw
′
2.

Then (ba)/η = (b/η)(a/η) = eλ(a/η) where λ ∈ {2, . . . , n} and eλ is an

idempotent. As eλ is an idempotent it is a left identity for its R-class and



Chapter 3: Rees matrix semigroups 57

therefore (ba)/η = eλ(a/η) = a/η. Since w is irreducible (by definition of this

lemma) then by Lemma 2.6.17 (i) all of its subwords are irreducible. Since w is

irreducible and ba is a subword of w it follows that ba is an irreducible word. So

ba is irreducible and a
∗←→R ba. But since a is a subword of ba and ba is

irreducible this contradicts Lemma 2.6.17 (ii).

Lemma 3.4.3. For any rewrite rule u→ v from R, if u ∈ A+ then v ∈ A+.

Proof. If u ∈ A+, then u ∈ H11 by Lemma 3.4.1 (i). As u = v in the semigroup

S it follows that v ∈ H11. Since we have v ∈ IRR(R), it follows that v ∈

IRR(R) ∩ L(A ∪B,H11) and so by Lemma 3.4.2, v ∈ A+.

Lemma 3.4.4. Let 〈A |RH〉 be the presentation defined above. Then 〈A |RH〉

is a finite presentation for H11.

Proof. The proof uses the properties of the rewriting systems (A,RH) and (A,R).

By definition of our sparse generating set (Lemma 3.3.1) we have shown that A/η

generates H11. Let w1, w
′

be words in L(A,H11) such that w′ ∈ IRR(R) and

w1
∗−→R w′. We aim to show that w1

∗−→RH
w′. Note that w′ ∈ A+ by Lemma

3.4.2. Let w1 →R w2 →R . . . →R wk ≡ w′ and we first consider w1 →R w2. As

w1 ∈ A+ then w2 ∈ A+ by Lemma 3.4.3. This follows as all the subwords of

w1 are in A+ and as such can only be rewritten to subwords in w2 that are also

in A+. Therefore the rewrite rule which takes w1 to w2 must be in the subset

RH and so we also have w1 →RH
w2. So for each rewrite step wi →R wi+1 with

i ∈ {1, . . . , k − 1} we will have a corresponding rewrite rule in RH and therefore

the rewrite step wi →RH
wi+1 exists in the rewriting system (A,RH). In fact

each word wj with j ∈ {1, . . . , k} is in A+. It follows that for any two words

u, v ∈ L(A,H11) we have u
∗←→R v if and only if u

∗←→RH
v. Together with the

fact that A/η generates H11 if follows from this that 〈A |RH〉 is a presentation

for H11. Finally, as R is finite, then RH is finite. Hence 〈A |RH〉 is a finite

semigroup presentation for H11.
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Lemma 3.4.5. Let (A,RH) be the rewriting system as defined above. Then it is

locally confluent and noetherian and thus complete.

Proof. First we consider the property of local confluence. Let w,w1, w2 ∈ A+

such that w →RH
w1 and w →RH

w2 with w1 6≡ w2. Then as RH ⊆ R and

R is locally confluent, there exists w′ ∈ (A ∪ B)+ such that w →RH
w1

∗−→R w′

and w →RH
w2

∗−→R w′. Consider the rewriting path w →RH
w1

∗−→R w′ and by

Lemma 3.4.3, all the words in the rewrite path must belong to A+. Also, for

each rewrite rule (ui, vi) ∈ R that is applied we have ui, vi ∈ A+ and therefore

(ui, vi) ∈ RH . It follows that w →RH
w1

∗−→RH
w′ and similarly w →RH

w2
∗−→RH

w′. Thus RH over A+ is locally confluent.

It is a fact that subsystems of noetherian rewriting systems are noetherian. To

see this refer to Theorem 2.6.7. If R is noetherian, Theorem 2.6.7 (b) is true, but

then by definition, Theorem 2.6.7 (b) is true for any subset of R and therefore

any subset of R is also noetherian. Hence RH is noetherian.

Thus, by Lemma 2.6.10, the rewriting system (A,RH) is complete.

Returning to the proof of Theorem 3.1.1 (i) (⇐).

Proof of Theorem 3.1.1 (i) (⇐). By Lemma 3.4.4 the finite semigroup

presentation 〈A |RH〉 defines the subsemigroup H11. By Lemma 3.4.5 the

associated rewriting system (A,RH) is complete. By definition of the Rees

matrix semigroup S, the subsemigroup H11 is isomorphic to the group G.

Therefore, 〈A |RH〉 is a semigroup presentation which is a finite complete

rewriting system and which defines the group G.

Secondly we look to prove Theorem 3.1.1 (i) in the (⇒) direction.

Therefore our initial assumption is that the group G admits a presentation

which is a finite complete rewriting system. Let G be defined by the semigroup

presentation 〈A |R〉 which is a finite complete rewriting system. Let
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S = M[G; I,Λ;P ] be as defined in this Section 3.4. Then, by the definition of

S, the subgroup H11 is isomorphic to G and therefore 〈A |R〉 is a presentation

for H11 which is a finite complete rewriting system.

Next we define a proposed sparse generating set for S, with reference to Definition

3.3.2. Let the sets Q and Y be as defined in Lemma 3.3.1. We make a small

change to the notation in the definition of Q as the set A is now our semigroup

generating set for the group G. Therefore we have:

Q = {(1, g, 1) : g ∈ A} which is a semigroup generating set for H11.

In addition, using Notation 3.3.3, let

(i) A be the set of letters which correspond to the elements in the set Q and

(ii) B be the set of letters which correspond to the elements in the set Y .

Note that we are using the set A from the presentation 〈A |R〉 which we also

used to define Q such that 〈Q〉 = H11. Again, we simplify notation and let

eλ = (1, 1g, λ) ∈ Y .

Let z ∈ A+ be a fixed word which represents the identity element of the group

G. Let RS ⊆ (A ∪B)+ × (A ∪B)+ be the set of relations defined as:

RS = R ∪ {(bλx, x) : bλ ∈ B, x ∈ (A ∪B)}

∪ {(zbλ, bλ) : bλ ∈ B} ∪ {(bλz, z) : bλ ∈ B}.

Let η be the smallest congruence on (A ∪B)+ which contains RS .

Lemma 3.4.6. Let 〈A ∪B |RS〉 be the presentation as defined above. Then

〈A ∪B |RS〉 is a presentation which defines the semigroup S and which is a

finite complete rewriting system with respect to the sparse generating set A ∪B.

Proof. It is immediate from the definitions that 〈A ∪B |RS〉 is a finite

presentation. It follows from Theorem 6.2 in [26] that 〈A ∪B |RS〉 is a

presentation defining S. It then follows from the proof of Theorem 3 and
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Corollary 4 in [18] that 〈A ∪B |RS〉 is a presentation which is a finite complete

rewriting system.

Returning to the proof of Theorem 3.1.1 (i) (⇒).

Proof of Theorem 3.1.1 (i) (⇒). By Lemma 3.4.6 the presentation 〈A ∪B |RS〉

is a semigroup presentation for S which is a finite complete rewriting system with

respect to the sparse generating set A ∪B.

This completes the proof of Theorem 3.1.1 part (i).

3.5 New research regarding the special case of a single

L-class

Let us consider the special case for S = M[G; I,Λ;P ] where I = {1, 2, . . . ,m},

Λ = {1} with G and P as defined in Section 3.3. Our aim is to prove Theorem

3.1.1 part (ii). We first establish some basic definitions for this section.

As Λ = {1} we make some adjustments to the definitions made in Section 3.3

which will simplify the notation and will apply for the remainder of this section.

Lemma 3.5.1. Let S =M[G; I,Λ;P ] be as defined in this section. Let the sets

Q and Z be as defined in Lemma 3.3.1. Then Q∪Z is a finite generating set for

S.

Proof. The proof is contained within the proof of Lemma 3.3.1.

Next we specify our sparse generating set for this special case. Let the sets A

and C be as defined in Section 3.3. The set B is empty and can be ignored. We

call A ∪C the sparse generating set for the semigroup S as defined in Definition

3.3.2.
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Returning to the proof of Theorem 3.1.1 (ii)

Proof of Theorem 3.1.1 (ii). Given the above definitions that relate to the set up

for this special case and as a consequence of the symmetry of the Rees matrix

structure, our proof is the dual of the proofs in Section 3.4.

3.6 Potential future work

3.6.1 Generalisation to Rees matrix semigroups over monoids

Conjecture 3.6.1. Let S =M[M ; I,Λ;P ] be a Rees matrix semigroup where M

is a monoid, the matrix P is normal and one of two conditions is true:

(i) I = {1} and Λ = {1, 2, . . . , n};

(ii) I = {1, . . . ,m} and Λ = {1}.

Then the monoid M admits a presentation by a finite complete rewriting system

if and only if S admits a presentation by a finite complete rewriting system with

respect to some sparse generating set.

In this instance a sparse generating set (A∪B) or (A∪C) is defined in a similar

manner to Lemma 3.3.1 but with MA a semigroup generating set for the monoid

M and other corresponding changes.

This result can be proved in much the same way as in Theorem 3.1.1 largely

because the proofs for that theorem do not use the group property of inverse

elements within G. One assumption has been added, namely that the matrix P

is normal as this is not necessarily true in the monoid case.

In summary, the properties of the semigroup S that were assumed in order to

prove Theorem 3.1.1 are as follows:

(i) That the rewriting system (A,R) is normalised. This remains true for the

monoid case.
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(ii) That the sparse generating set as defined could exist and would be sufficient

to generate the semigroup. This remains true for the monoid case.

(iii) That the subgroup H11 is isomorphic to G. In the case of the monoid

we do not have the same Green’s structure with H-classes isomorphic to G.

Instead, the substructure we consider within the semigroup S is a submonoid

which will be isomorphic to M . This submonoid must exist by definition of

the Rees matrix structure of triples i.e. it is the submonoid generated by

the set of elements {(1,m, 1) : m ∈ MA} where MA is a finite generating

set for the monoid M .

(iv) Each idempotent eiλ in Y and Z would be unique for each group of triples

with (1,m, λ) and (i,m, 1) respectively, and would have the properties as

used in the proof for Theorem 3.1.1. The relevant properties being that the

idempotent is a left identity for e1λ ∈ Y or a right identity for ei1 ∈ Z.

In addition it would be necessary to check and possibly amend Theorem 3 and

Corollary 4 in [18] to be applicable in the monoid case for the (⇒) direction.

Note that Theorem 6.2 in [26] covers the monoid case.

3.6.2 Finitely many R- and L-classes

Extending Theorem 3.1.1 to the case

(iii) I = {1, . . . ,m} and Λ = {1, . . . , n}.

The proof in the (⇐) direction (passing from G to S) does hold in this more

general case, since it follows from the proof of Theorem 3 in [18].

For the other direction (⇒) of the proof, initial investigations suggest that a

proof will be possible with the additional condition that the semigroup S admits

a presentation by a finite complete rewriting system which is strongly minimal

(see following definition).

Definition 3.6.2. Let (A,R) be a rewriting system for a semigroup S which is
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complete. We say that the complete rewriting system R is minimal if, for each

(l, r) ∈ R, r is irreducible with respect to R and l is irreducible with respect to

R−{(l, r)}. We say that R is strongly minimal if it is minimal and each element

of A is irreducible. See [12] for more details.

3.6.3 Sparse generating set

(i) It may be possible to remove the condition attached to Theorem 3.1.1 that we

have a sparse generating set. This could be a natural property which is intrinsic to

the problem. Alternatively, it may be possible to develop a method of finding this

specific form of generating set, given the other properties and without affecting

the fact that a presentation is complete.

(ii) Alternatively, the sparse generating set could be changed to select any element

from the group H-classes (that are not H11), rather than an idempotent.

(iii) In the case where the Rees matrix semigroup does not naturally have a

normalised matrix P , as it does for completely simple semigroups, then we could

consider a more general constraint on P or even no constraint.
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Finite derivation type and unitary

subsemigroups with strict boundaries

4.1 Introduction

In this chapter we will investigate properties of a certain type of subsemigroup.

Namely, we will consider subsemigroups which are left (respectively right) unitary

with finite strict right (respectively left) boundary. In [16, Theorem 8.10] it was

proved that such subsemigroups inherit from the semigroup the property of being

finitely generated and finitely presented. A natural question in line with the

theme of this research would be to ask whether the subsemigroup can also inherit

the property of having a finite complete rewriting system. This problem remains

out of reach. However, there is a related property of a semigroup having finite

derivation type (FDT), which will be defined later in this chapter. A natural

related question is whether FDT is inherited. The main result of this chapter

will be to give a positive answer to this question. The main result of this chapter

is:

Theorem 4.1.1. Let S be a finitely presented semigroup with T a subsemigroup

of S. Suppose S has finite derivation type. Then:

(i) if T is left unitary and has finite strict right boundary in S then T also has

finite derivation type;

(ii) if T is right unitary and has finite strict left boundary in S then T also has

finite derivation type.
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Before we proceed with the proof of this theorem we will first need to define the

terms in the statement of the result. In addition, we will outline some results

from [16] which will be needed for the proof of Theorem 4.1.1.

Note that in this chapter we are working with semigroups and subsemigroups.

Therefore the presentations given are semigroup presentations and the rewriting

systems are semigroup rewriting systems throughout the chapter, unless stated

otherwise. In addition we are following the same conventions as those used in

[20].

4.2 Introduction to boundary definitions and

notation

The following definitions are taken from [16, Chapters 7 and 8] where more details

can be found. Let S be a semigroup generated by a finite set A and defined by

the semigroup presentation 〈A |R〉. Let T be a subsemigroup of S. Let η be the

smallest congruence on A+ which contains R. This notation S, 〈A |R〉, T and η

will remain in force throughout this chapter.

At this point it is useful to recall the definition of L(A, T ). For any subset of S,

say (as in this case) the subset T , we set

L(A, T ) = {w ∈ A+ : w/η ∈ T}

to be the set of all words in A+ that represent elements of T in S. So we can see

that L(A, T ) is a subset of A+ and in particular it can never contain the empty

word.

The right boundary of T in S with respect to A is the set of elements of T that

can be obtained by starting with an element in the complement S \ T and right

multiplying by a single generator from A, together with the elements of A that

belong to T . In terms of the right Cayley graph of S, the boundary of T includes



Chapter 4: Finite derivation type and unitary subsemigroups with strict
boundaries 66

the terminal vertices of directed edges that start in S \ T and end in T . In more

detail, let s ∈ S \ T and sa1 ∈ T with a1 ∈ A. Then sa1 is an element in the

right boundary of T in S. If a belongs to both A and T then we also say that a

belongs to the right boundary of T in S. The left boundary definition is dual but

with the left and right perspectives reversed. In other words, let s ∈ S \ T and

a2s ∈ T with a2 ∈ A. Then a2s is an element in the left boundary of S.

Definition 4.2.1. We use S1 to denote S with an identity adjoined (even if it

already has one), U to denote the complement S \ T and U1 to denote S1 \ T .

We use Br(A, T ), Bl(A, T ) and B(A, T ) to denote the right, left and two-sided

boundaries respectively, of T in S. Then we have:

Bl(A, T ) = AU1 ∩ T = {au : u ∈ U1, a ∈ A} ∩ T

Br(A, T ) = U1A ∩ T = {ua : u ∈ U1, a ∈ A} ∩ T

B(A, T ) = Bl(A, T ) ∪ Br(A, T ).

We say T has finite boundary in S if for some finite generating set A of S the

boundary B(A, T ) is finite.

Clearly the sets defined above depend on the choice of generating set A. However,

the finiteness (or otherwise) of these sets is independent of the choice of generating

set (see Lemma 4.2.2). Thus we may speak of T being a subsemigroup with finite

(left, right or two-sided) boundary without reference to the generating set for S.

Lemma 4.2.2. [16, Proposition 7.3] Let S be a finitely generated semigroup, let

T be a subsemigroup of S and let A and B be two finite generating sets for S.

Then Br(A, T ) is finite if and only if Br(B, T ) is finite. Also, Bl(A, T ) is finite

if and only if Bl(B, T ) is finite.

Definition 4.2.3. We call w ∈ A+ a strict left boundary word of T in S with

respect to A if w ∈ L(A, T ) and no proper suffix of w belongs to L(A, T ).

Similarly, we call w a strict right boundary word of T in S with respect to A if

w ∈ L(A, T ) and no proper prefix of w belongs to L(A, T ). We denote the set of
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strict right and left boundary words, by SWBr(A, T ) and SWBl(A, T )

respectively.

Definition 4.2.4. The strict left boundary of T in S with respect to A is

SBl(A, T ) = SWBl(A, T )/η and the strict right boundary of T in S with respect

to A is SBr(A, T ) = SWBr(A, T )/η. Also, the strict two-sided boundary is

defined as SB(A, T ) = SBl(A, T ) ∪ SBr(A, T ).

Note that SBl(A, T ) ⊆ Bl(A, T ) and SBr(A, T ) ⊆ Br(A, T ). We say that the

strict left, right or two-sided boundary of T in S is finite if for some finite

generating set A of S, the sets SBl(A, T ), SBr(A, T ), SB(A, T ) are respectively

finite. The question of whether the strict right, left and two-sided boundaries

are finite, depends on the choice of generating set. This is illustrated in the

following example.

Example 4.2.5. The following is an example from [16, Example 8.3].

We use Z2 to denote the set {0, 1} with the operation of addition modulo 2,

which is the cyclic group of order 2 written additively. Let S = Z ⊕ Z2 which

is generated, as a semigroup, by A = {(1, 0), (−1, 0), (0, 1)} and also by the set

B = {(1, 1), (−1, 1), (0, 1)}. Let T = Z⊕{0}, which is a subsemigroup of S. Then

we claim that SB(A, T ) is infinite while SB(B, T ) is finite.

For all b1, b2 ∈ B we have b1 + b2 ∈ T and so the strict (left, right and two-sided)

boundaries all equal {(0, 0), (−2, 0), (2, 0), (1, 0), (−1, 0)}.

To see that SB(A, T ) is infinite note that:

(0, 1) +
(
(1, 0) + (1, 0) + . . .+ (1, 0)

)︸ ︷︷ ︸
m - times

+(0, 1) = (m, 0)

belongs to SB(A, T ) for all m ∈ N, since for all k

(0, 1) + (1, 0) + (1, 0) + . . .+ (1, 0)︸ ︷︷ ︸
k - times

= (k, 1) /∈ T.
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4.3 Introduction to unitary subsemigroups with strict

boundaries

Definition 4.3.1. [25, Page 63 Exercise 20] Let T be a subsemigroup of the

semigroup S. Then T is right unitary if

∀s ∈ S, ∀t ∈ T, st ∈ T ⇔ s ∈ T ;

and left unitary if

∀s ∈ S, ∀t ∈ T, ts ∈ T ⇔ s ∈ T ;

and unitary if it is both left and right unitary.

Example 4.3.2. Two examples of such subsemigroups:

(a) Subgroups of groups are always left and right unitary subsemigroups.

(b) Let M be a monoid and let G be the group of units of M . Then G is both a

left and right unitary semigroup of M .

These conditions on a semigroup and its subsemigroup relate closely to the

questions considered in Chapter 3 with respect to Rees matrix semigroups. If

we recall the case of a Rees matrix semigroup S which has a single R-class and

finitely many L-classes where we consider a subgroup H which is isomorphic to

a group H-class, namely H11. Then, with respect to the sparse generating set

(see Chapter 3), the subgroup H has a finite strict right boundary in S. In

addition, the subgroup H is a left unitary subsemigroup. So we have an

example of a subgroup which is a left unitary subsemigroup and has a finite

strict right boundary. Similarly, recall the dual case where we have a Rees

matrix semigroup S which has a single L-class and finitely many R-classes

where we consider a subgroup H which is isomorphic to a group H-class. Here

we have an example of a subgroup H which is a right unitary subsemigroup and

has a finite strict left boundary (with respect to the sparse generating set) in S.

This leads to a related open question regarding the inheritance of being a finite
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complete rewriting system in the case of a subsemigroup which is left (resp. right)

unitary and has a finite strict right (resp. left) boundary. This links to the Rees

matrix semigroup open question (see Section 3.1) regarding the inheritance of

being a finite complete rewriting system by a subsemigroup (i.e. an H-class).

4.4 Introduction to Finite Derivation Type (FDT)

4.4.1 Introduction

The property of having finite derivation type was introduced for monoids by C.C.

Squier, F. Otto and Y. Kobayashi in [51]. It is a finiteness condition which is

satisfied by every monoid which has a FCRS.

The properties of having finite derivation type (FDT) and being a finite

complete rewriting system (FCRS) are closely related for a semigroup. If a

finitely presented semigroup has a FCRS, then that semigroup also has FDT.

Furthermore, the property FDT is independent of the choice of presentation for

the semigroup. In contrast, the property of being a FCRS is dependent on the

choice of presentation, which is one of the things which makes it a difficult

property to work with. So considering the question of whether a semigroup has

FDT can be helpful in understanding whether it may or may not have a FCRS.

Specifically, if it can be proven that a finitely presented semigroup does not

have FDT, then there does not exist a presentation for the semigroup that is a

FCRS. This is a result of the following theorems:

Theorem 4.4.1. [51, Theorem 4.3] If two finite presentations P1 and P2 define

the same monoid (i.e. they are Tietze equivalent) then P1 has FDT if and only

if P2 has FDT.

Theorem 4.4.2. [51, Theorem 5.3] Let M be a finitely presented monoid. If M

admits a presentation by a finite complete rewriting system then M has FDT.

Clearly, the above theorems are specific to monoids and monoid presentations.
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However, the following theorem and definition enable us to use corresponding

theorems which are with respect to semigroups and semigroup presentations.

Theorem 4.4.3. [38, Theorem 3] Let P1 and P2 be finite semigroup presentations

defining the same semigroup. The presentation P1 has FDT if and only if P2 also

has FDT.

Definition 4.4.4. [19, Definition 4] A finitely presented semigroup S has finite

derivation type if some (and hence any by [51, Theorem 4.3] and [38, Theorem

3]) finite presentation for S has finite derivation type.

4.4.2 Definitions

The following definitions are courtesy of [19] and [20] where more detail may be

found.

Let P = 〈A |R〉 be a presentation for the semigroup S. The derivation graph

associated with P is an infinite graph Γ = Γ(P) = (V,E, ι, τ,−1 ) with vertex set

V = A+, and edge set E consisting of the following collection of 4-tuples:

{(w1, r, ε, w2) : w1, w2 ∈ A∗, r = (r+1, r−1) ∈ R, ε ∈ {+1,−1}}.

The functions ι, τ : E → V associate with each edge E = (w1, r, ε, w2) (with

r = (r+1, r−1) ∈ R) its initial and terminal vertices ιE ≡ w1rεw2 and τE ≡

w1r−εw2, respectively. The mapping −1 : E → E associates with each edge

E = (w1, r, ε, w2) an inverse edge E−1 = (w1, r,−ε, w2).

A path is a sequence of edges P = E1 ◦ E2 ◦ . . . ◦ En where τEi ≡ ιEi+1 for

i = 1, . . . , n− 1. Here P is a path from ιE1 to τEn and we extend the mappings

ι and τ to paths by defining ιP ≡ ιE1 and τP ≡ τEn. The length of a path is

the number of edges in the path. In the previous example, the length of P is

n. The width of a path is the maximum length of the vertex words in the edges

of the path i.e. max (|ιEi|, |τEn|) with i ∈ {1, . . . , n}. The inverse of a path

P = E1 ◦ E2 ◦ . . . ◦ En is the path P−1 = E−1
n ◦ E−1

n−1 ◦ . . . ◦ E
−1
1 , which is a path
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from τP to ιP. A closed path is a path P satisfying ιP ≡ τP. For two paths P

and Q with τP ≡ ιQ the composition P ◦Q is defined. To unclutter the notation

we will omit the symbol ◦ when composing paths, writing simply PQ in place of

P ◦Q.

We denote the set of paths in Γ by P (Γ), where for each vertex w ∈ V we include

a path 1w with no edges, called the empty path at w. We call a path P positive

if it is either empty or it contains only edges of the form (w1, r,+1, w2). We use

P+(Γ) to denote the set of all positive paths in Γ. Dually we have the notion of a

negative path, and P−(Γ) denotes the set of all negative paths. The free monoid

A∗ acts on both sides of the set of edges E of Γ, where if E = (w1, r, ε, w2) and

x, y ∈ A∗ we have:

x · E · y = (xw1, r, ε, w2y).

This extends naturally to a two-sided action of A∗ on P (Γ) where for a path

P = E1 ◦ E2 ◦ . . . ◦ En we define

x · P · y = (x · E1 · y) ◦ (x · E2 · y) ◦ . . . ◦ (x · En · y).

The edge E = (w1, r, ε, w2) can be represented geometrically by an object called

a picture as follows:

w1

w1

rε

r−ε

w2

w2

These are also called atomic pictures and are always directed downwards in the

sense that ιE is the word read along the top of the picture and τE is the word

read along the bottom. The rectangle in the centre of the picture is called a

transistor and corresponds to the relation r from the presentation, while the line

segments in the diagram are called wires (or strings) with each wire labelled by

a unique letter from the free monoid A∗. The monoid picture for the inverse E−1
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of an edge is obtained by taking the vertical mirror image of the picture of E.

By ”stacking” such pictures one on top of the other, and adjoining corresponding

wires, we obtain pictures for arbitrary paths of the graph Γ(P). A picture of a

path P with ιP ≡ τP is called closed or spherical.

For every r ∈ R and ε = ±1 define Aεr = (1, r, ε, 1). Note that here we are using

1 to represent the empty word as ε is used to define whether the edge is positive

or negative. We call such edges elementary. As we have an elementary edge

for each relation in R then every edge of Γ(P) can be written uniquely in the

form α · A · β where α, β ∈ A∗ and A is elementary. Furthermore, as an edge in

Γ(P) corresponds to a single application of a rewriting rule, then for an arbitrary

path P, ιP and τP represent the same element of the semigroup defined by the

presentation. Thus Γ(P) is called the derivation graph of the presentation. It

follows that there is a one-to-one correspondence between the elements of the

semigroup S and the connected components of the derivation graph Γ(P).

If P and Q are paths such that ιP ≡ ιQ and τP ≡ τQ then we say that P and

Q are parallel, and write P ‖ Q. We use ‖ to denote the subset of P (Γ) × P (Γ)

which comprises all pairs of parallel paths.

For any two edges E1,E2 in the graph we define the following path (which is

illustrated in Figure 4.4.1 below):

[E1,E2] = (E1 · ιE2) ◦ (τE1 · E2) ◦ (E−1
1 · τE2) ◦ (ιE1 · E−1

2 ).

Note that it is an immediate consequence of this definition that:

α · [E1,E2] · β = [α · E1,E2 · β] with α, β ∈ A∗.
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E1

E2

E−1
1

E−1
2

r

r−1

s

s−1

Figure 4.4.1: Path for [E1,E2]

The following definition was introduced in [51, Definition 3.2] and has been

updated to match the notation used in this chapter.

An equivalence relation ∼ on P (Γ) is called a homotopy relation if it is contained

in ‖ and satisfies the following conditions:

(H1) If E1 and E2 are edges of Γ, then

(E1 · ιE2)(τE1 · E2) ∼ (ιE1 · E2)(E1 · τE2)

(H2) For any P,Q ∈ P (Γ) and x, y ∈ A∗

P ∼ Q⇒ x · P · y ∼ x ·Q · y.

(H3) For any P,Q,R,S ∈ P (Γ) with τR ≡ ιP ≡ ιQ and ιS ≡ τP ≡ τQ

P ∼ Q⇒ RPS ∼ RQS.



Chapter 4: Finite derivation type and unitary subsemigroups with strict
boundaries 74

(H4) If P ∈ P (Γ) then PP−1 ∼ 1ιP, where 1ιP denotes the empty path at the

vertex ιP.

The collection of all homotopy relations is closed under arbitrary intersection

and ‖ is a homotopy relation. Therefore, for any subset C of ‖ there is a unique

smallest homotopy relation ∼C on P (Γ) containing C. We call this the homotopy

relation generated by C. A subset C of ‖ that generates ‖ is called a homotopy

base for Γ.

A presentation P = 〈A |R〉 has finite derivation type (or FDT for short) if there

is a finite homotopy base for Γ = Γ(P ). A finitely presented semigroup S has

finite derivation type if some finite presentation for S has finite derivation type.

It can be shown using (H1) to (H4) that a set B of parallel paths is a homotopy

base if and only if the set {(P ◦ Q−1, 1ιP) : (P,Q) ∈ B} is. Hence we say that a

set C of closed paths is a homotopy base if {(P, 1ιP) : P ∈ C}is a homotopy base.

So a homotopy base X for Γ = Γ(P ) may be given either as a subset of ‖, so that

X is a set of ‖ paths, or may be given as a set of closed paths. Sometimes X is

referred to as a homotopy base of a presentation P , rather than the graph Γ(P ).

Also, when it is clear from context, as a homotopy base of a semigroup.

When considering FDT for monoids, it makes no difference whether we work with

semigroup presentations or with monoid presentations. Note that in this chapter

we will work with semigroup presentations.

4.5 An existing proof for presentations of unitary

subsemigroups with strict boundaries

The new research in this chapter builds on the results contained in [16, Chapter

8]. Specific theorems from this work and the presentations defined in order to

prove them, provide a starting point for the proof of the main new result in this

chapter. As such they are reproduced here with relevant details.
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In addition to stating some definitions and results from [16, Chapter 8], we will

also include proofs of a few of the results (taken from [16]). In each case we have

included these proofs here because later in the chapter when our new results on

FDT are included, the proof will use similar (but more complicated) ideas. So

by including these proofs from [16] we hope that it will make the generalisations

that come later in the chapter easier for the reader to follow.

The main theorem which is of interest is as follows:

Theorem 4.5.1. [16, Theorem 8.10] Let S be a finitely presented semigroup with

T a subsemigroup of S. Then:

(i) if T is left unitary and has finite strict right boundary in S then T is finitely

presented;

(ii) if T is right unitary and has finite strict left boundary in S then T is finitely

presented.

The proof of this theorem uses the Reidemeister-Schreier type rewriting process

and Theorem 2.9.1, see Subsection 2.9 for more details. We will look at the proof

for part (i). Note that the definitions in this section will apply for the remainder

of this chapter unless specified to the contrary.

Let 〈A |R〉 be a finite presentation for the semigroup S and T be a left unitary

subsemigroup of S with finite strict right boundary. Let η be the smallest

congruence on A+ containing R.

First a suitable finite generating set for the subsemigroup T is required. The

following theorem and corollary assist with this. Note that the proof of this

theorem contains a method of reading an element which belongs to L(A, T ) from

left to right and decomposing the word into principal factors. This process will

be used later.

Theorem 4.5.2. [16, Theorem 8.7] Let S be a semigroup generated by the finite

set A. Let T be a left unitary subsemigroup of S. Then 〈SBr(A, T )〉 = T .
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Proof. Let t be an arbitrary element in T and write t = a1a2 . . . an where each ai

is in A. Then we read the element from left to right, that is we consider a1 then

a1a2 and so on. We are looking to find the shortest non-empty prefix of t which is

in T . This will decompose the element a1a2 . . . an into uv where u is on the strict

right boundary of T and v is in T since uv is in T , and T is left unitary. Then we

continue the process by reading the element v from left to right. In this way we

decompose the element into principal factors which all belong to the strict right

boundary of T in S. Hence we can see that SBr(A, T ) generates T .

Corollary 4.5.3. [16, Corollary 8.8] Let S be a finitely generated semigroup and

let T be a subsemigroup of S. Then:

(i) if T is left unitary and has a finite strict right boundary in S then T is

finitely generated;

(ii) if T is right unitary and has a finite strict left boundary in S then T is

finitely generated.

It is not a general fact that subsemigroups with finite strict boundaries are finitely

generated. It is the additional condition that the subsemigroup is left (or right)

unitary which makes the right (or left) strict boundary a finite generating set.

Recall that SBr(A, T ) is a set of elements in T . We now look to find a unique

set of words to represent each of these elements and so create a generating set

of words. Define θ : A+ → S where if w ∈ A+ then wθ 7→ (w/η). So the

homomorphism θ maps words in A+ to the element in S that they represent.

We choose and fix a transversal R of the η-classes of L(A, T ) with the following

property:

• For every w ∈ R, if w/η ∈ SBr(A, T ) then w ∈ SWBr(A, T )

i.e. representatives of strict right boundary elements are always chosen to be
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strict right boundary words. For every w ∈ L(A, T ) define w̄ = (w/η) ∩ R, the

fixed chosen word in R that equals w in S.

Let

Y = {v : v ∈ R ∩ L(A,SBr(A, T ))}

which is a set of strict right boundary words which represent each element in the

strict right boundary SBr(A, T ) of T in S. Hence Y is a finite generating set for

T , by Theorem 4.5.2 and as SBr(A, T ) is finite (by definition of T ).

Next we define a new alphabetB in one to one correspondence with the generating

words in the generating set Y as follows:

B = {bv : v ∈ R ∩ L(A,SBr(A, T ))}.

By taking words from R we have a finite generating set in terms of words whereas

SWBr(A, T ) could be an infinite set of words. Now we can define a representation

mapping, let ψ : B+ → A+ be the unique homomorphism which maps bv 7→ v.

In addition we define a rewriting mapping φ : L(A, T )→ B+ so that we can map

all of the words in L(A, T ) to the new alphabet B. Let w ∈ L(A, T ) and set

w ≡ αβ where α is the shortest non-empty prefix of w that belongs to L(A, T ).

The key fact that simplifies our inspection of w is that T is left unitary and by

that definition we know that β ∈ L(A, T ). So we can work along our word w

from left to right, taking subsets of letters (or even single letters) that represent

elements in T . So now we can define φ inductively as follows:

wφ = (αβ)φ =


bᾱ if β is the empty word

bᾱ(βφ) otherwise.

We use ᾱ, rather than α, so that we have a mapping to a unique word in the same

η-class, representing the same element in T as α. This then matches our finite

generating set Y and so our mapped word wφ is composed from our alphabet B.
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Note that if w ∈ L(A, T ) then (wφ)ψ = w in S but (wφ)ψ 6≡ w so we do not

get back to the identical word but to a word composed of our unique fixed right

boundary words and which represents the same element.

Now we are in a position to use Theorem 2.9.1 and say that the subsemigroup T

is defined by the presentation with generators B and relations

bv = vφ (4.5.1)

(w1w2)φ = (w1φ)(w2φ) (4.5.2)

(w3xw4)φ = (w3yw4)φ (4.5.3)

where v ∈ R∩L(A,SBr(A, T )), w1, w2 ∈ L(A, T ), w3, w4 ∈ A∗, (x = y) ∈ R and

w3xw4 ∈ L(A, T ).

As we have seen before, this gives us an infinite set of relations and so we now look

for a finite subset which is equivalent. Firstly, we can see that all of the relations

(4.5.1) are trivial, that is they each have the form bv ≡ vφ, as per Lemma 4.5.4

below.

Lemma 4.5.4. The relations (4.5.1) are trivial i.e. bv ≡ vφ.

Proof. Let v ∈ R ∩ L(A,SBr(A, T )).

Now v ∈ L(A,SBr(A, T )) ⇒ v/η ∈ SBr(A, T ).

Now v ∈ R and v/η ∈ SBr(A, T ) ⇒ v ∈ SWBr(A, T ) by definition of R.

Since the shortest non-empty prefix of v that is in L(A, T ) is v itself (by definition

of SWBr(A, T )) it follows that, by definition of φ, we have (v)φ ≡ bv̄.

But v ∈ R ⇒ v̄ ≡ v hence (v)φ ≡ bv̄ ≡ bv.

Next we aim to show that relations (4.5.2) are also all trivial.

Lemma 4.5.5. [16, Lemma 8.11] Let w ∈ L(A, T ). Then w may be written
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uniquely as w ≡ α1 . . . αk where k ≥ 1 and αi ∈ SWBr(A, T ) for all i. Moreover,

this decomposition satisfies:

wφ ≡ (α1 . . . αk)φ ≡ (α1φ) . . . (αkφ) ≡ bᾱ1 . . . bᾱk
.

Also, given w1, w2 ∈ L(A, T ), where w1 and w2 decompose as α1 . . . αk and

β1 . . . βl respectively, we have:

(w1w2)φ ≡ (α1 . . . αkβ1 . . . βl)φ ≡ bᾱ1 . . . bᾱk
bβ̄1 . . . bβ̄l ≡ (w1φ)(w2φ).

Proof. Summarising the original proof.

See the proof of Theorem 4.5.2 for details of decomposition into principal factors

αi and then the first statement follows from the definition of φ. For the second

part it follows that αi ∈ SBr(A, T ) and βi ∈ SBr(A, T ) for all i. Then from the

definition of φ we have:

(α1 . . . αkβ1 . . . βl)φ ≡ (α1φ) . . . (αkφ)(β1φ) . . . (βlφ).

Now we claim the following is a presentation for T (which leaves the lemma that

follows to be proved):

Theorem 4.5.6. [16, Theorem 8.12] Let S be a finitely generated semigroup

defined by a presentation 〈A |R〉 with A finite. Let T be a left unitary semigroup

of S with finite strict boundary. Then with the above notation, 〈B | U〉 is a

presentation for T where

U = { (u, v) ∈ B+ ×B+ : uψ = vψ in S and |uv| ≤ max{|αβ| : (α = β) ∈ R} }.

In particular, if R is finite then T is finitely presented.

So the previous theorem says that if 〈A |R〉 is a finite presentation for S, then
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we obtain a finite presentation for T by taking a presentation 〈B | U〉 where the

generators B correspond to the elements of the strict right boundary of T in S,

and U consists of all the relations that hold in T between the generators B, where

the length of the relation is not longer than the maximum of the lengths of the

relations that appear in R.

Lemma 4.5.7. [16, Lemma 8.13] The relations (wαv)φ = (wβv)φ where w, v ∈

A∗, (α = β) ∈ R and wαv ∈ L(A, T ) are consequences of U .

In summary, the condition that the subsemigroup is left unitary means that

decomposition of words from left to right behaves in a more predictable and

helpful way. This is essential to the proofs and works together with there being

a finite strict right boundary.

The dual result can be proved by decomposing words into principal factors from

right to left rather than from left to right.

4.6 New research relating FDT and unitary

subsemigroups with strict boundaries

In this section we will prove the main result in this chapter, which is:

Theorem 4.1.1. Let S be a finitely presented semigroup with T a subsemigroup

of S. Suppose S has finite derivation type. Then:

(i) if T is left unitary and has finite strict right boundary in S then T also has

finite derivation type;

(ii) if T is right unitary and has finite strict left boundary in S then T also has

finite derivation type.
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4.6.1 Defining basic conditions

Let S be a finitely presented semigroup with presentation 〈A |R〉. Let T be a

left unitary subsemigroup of S with finite strict right boundary in S with respect

to A. Denote the presentation which defines S as P = 〈A |R〉. Suppose that the

semigroup S has finite derivation type which, by Theorem 4.4.3, means that the

presentation P has finite derivation type.

In the previous subsection Theorem 4.5.6 gives a presentation for T . In this

subsection we will take that same presentation for T , using the same notation,

and we will construct a homotopy base for T with respect to that presentation.

To that end, we first recall some definitions from the previous Section 4.5.

Let η and θ : A+ → S be as defined in Section 4.5. So the strict right boundary

of T is equal to SBr(A, T ) = SWBr(A, T )θ ⊆ T ⊆ S. Recall the transversal R

of the η-classes of L(A, T ) and that if w ∈ L(A, T ) we have w̄ = (w/η) ∩ R, the

fixed chosen word in R that equals w in S, all as per Section 4.5. Note that the

representatives of strict right boundary elements in the transversal R are always

chosen to be strict right boundary words.

Let the finite generating set Y and the new alphabet B be as defined in Section

4.5. Let φ : L(A, T )→ B+ and ψ : B+ → A+ be the rewriting and representation

mappings defined in Section 4.5. We start with the following lemma which is a

consequence of the definitions of φ and ψ.

Lemma 4.6.1. For every w ∈ B+ we have (wψ)φ ≡ w.

Proof. Let w ≡ bv1bv2 . . . bvm be an arbitrary word in B+. Then by definition of

ψ we have wψ ≡ v1v2 . . . vm ∈ L(A, T ). Recall v1, . . . , vm ∈ Y , the generating set

for T , and that these are strict right boundary words, chosen to uniquely represent

the elements in the strict right boundary SBr(A, T ) of T in S. See Section 4.6.1

for the precise definition of the finite generating set Y for the subsemigroup T

and the homomorphism φ. Now consider (wψ)φ and recall that by the proof
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of Theorem 4.5.2 every t ∈ L(A, T ) has a unique decomposition into words that

belong to the strict right boundary of T . So when we decompose wψ ≡ v1v2 . . . vm

the principal factors will be v1, v2, . . . , vm ∈ Y . Then by applying φ to get (wψ)φ

we will have bv̄i ≡ bvi for every i ∈ {1, . . . ,m}. So now we have

(wψ)φ ≡ (bv1bv2 . . . bvm)ψφ ≡ (v1v2 . . . vm)φ ≡ bv1bv2 . . . bvm ≡ w.

Let the set of relations U in B+×B+ be as defined in Theorem 4.5.6. Recall that

by Theorem 4.5.6 the semigroup T is defined by the finite presentation 〈B | U〉.

Recall that by Theorem 4.4.3, if FDT is a property for one presentation it is true

for all presentations for the same semigroup. Thus we can now look to prove that

the presentation Q = 〈B | U〉 has property finite derivation type.

4.6.2 Outline of the proof of Theorem 4.1.1

In Section 4.5 an infinite presentation is created for T with a finite generating

set and an infinite set of defining relations and then it is proved that there is a

finite subset of the defining relations of which all the other defining relations are

a consequence. Similarly for FDT we will create an infinite homotopy base before

finding a finite subset which will give us a finite homotopy base for T and thus

prove that T has FDT. We will make use of the fact that words in T decompose

into principal factors in a certain way which will simplify the special cases that

need to be considered. The proof will be given for a left unitary subsemigroup

with finite strict right boundary in S. The proof for a right unitary subsemigroup

with finite strict left boundary is the dual of this with left and right reversed.

The sections below include definitions and lemmas to enable the following steps

in the proof to be completed:

(i) Extend φ and ψ to map between a certain subset of the vertices of the
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derivation graph for Γ(P), namely the set L(A, T ), and the derivation graph

Γ(Q) by defining maps for edges and paths. Note that vertices map as for

words and for φ we are only mapping from the words in L(A, T ) which is a

strict subset of A+.

(ii) Define an infinite homotopy base for Γ(Q) using general results as used in

[19, Lemma 9].

(iii) Identify a finite subset of the infinite homotopy base as defined in (ii).

(iv) Prove that all paths in our infinite homotopy base are a consequence of

those in the finite set (iii).

4.6.3 Extending the definitions of φ and ψ to derivation graphs

In this section we will extend the definitions for φ and ψ so that we can map

between a certain subset of the edges and paths of the derivation graph Γ(P)

for the semigroup presentation 〈A |R〉 and the edges and paths of the derivation

graph Γ(Q) for the subsemigroup presentation 〈B | U〉.

At this point it is useful to recall the domains and ranges of the mappings φ and

ψ. The function ψ maps B+ to A+. However, φ does not map A+ to B+ as φ

is only defined on certain words, specifically φ maps L(A, T ) to B+. So φ maps

a certain subset of the vertices of Γ(P) (namely the set L(A, T )) to the vertices

in Γ(Q). Therefore when we extend φ to edges and paths the definition will only

extend to those edges and paths in Γ(P) that begin in L(A, T ).

Now we look to extend this idea as we think of the derivation graphs for Γ(P) and

Γ(Q). Here the words are vertices and we have edges between words. Recall that

the edges represent a single application of a relation to a string of letters. The

free monoid A∗ acts on Γ(P) and the free monoid B∗ acts on Γ(Q), extending any

edge on the left and or the right by multiplication (which in our case is defined

as concatenation). This means that each relation from the presentation is one

of the edges but can itself be embedded in a much longer word, and with other
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relations, to make up many more edges. A path within the graph represents a

sequence of single applications of relations to a word.

Definition 4.6.2. Let E ∈ Γ(P) be an arbitrary edge with ιE ∈ L(A, T ) and

E = (w1, r, ε, w2) with w1, w2 ∈ A∗ and r ∈ R. Let ιE ≡ w1rεw2 ≡ w′1w
′′
1rεw

′
2w
′′
2

where w′1, w
′′
1 , w

′
2, w

′′
2 ∈ A∗ and satisfying the following properties:

(a) w′1 is the longest prefix of w1 in L(A, T );

(b) w1rεw
′
2 is the shortest prefix of w1rεw2 which is in L(A, T ) and has w1rε as

a prefix.

Then we define

Eφ = (w′1φ, (w
′′
1r+1w

′
2)φ = (w′′1r−1w

′
2)φ, ε, w′′2φ).

Remark:

When we recall the definition of φ we can see that it is defined on words that

belong to L(A, T ). Here we give an explanation of how φ is applied to the edge

E in Definition 4.6.2 above, in particular we show that w′1, w′′1r+1w
′
2, w′′1r−1w

′
2

and w′′2 all belong to L(A, T ). The explanation below is for positive edges, so we

assume ε = +1, similar arguments apply for negative edges where ε = −1.

(1) w′1 belongs to L(A, T ) by part (a) in the definition.

(2) w′′1r+1w
′
2 belongs to L(A, T ) since w′1 ∈ L(A, T ) and w1r+1w

′
2 ∈ L(A, T ) by

part (b), so since T is a left unitary subsemigroup and w1r+1w
′
2 ≡ w′1w′′1r+1w

′
2 it

follows that w′′1r+1w
′
2 ∈ L(A, T ).

(3) w′′1r−1w
′
2 belongs to L(A, T ) since w′′1r+1w

′
2 ∈ L(A, T ) by part (2) and

w′′1r−1w
′
2 = w′′1r+1w

′
2 in T .

(4) w′′2 belongs to L(A, T ) as follows. By assumption ιE ∈ L(A, T ) and ιE ≡

w1r+1w2. Since w1r+1w
′
2 ∈ L(A, T ) and w1r+1w

′
2w
′′
2 ≡ w1r+1w2 is in L(A, T ) and

T is a left unitary semigroup, it follows that w′′2 belongs to L(A, T ) as required.
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Lemma 4.6.3. Let E ∈ Γ(P) be an arbitrary edge with ιE ∈ L(A, T ) and E =

(w1, r, ε, w2). Decompose w1 ≡ w′1w
′′
1 and w2 ≡ w′2w

′′
2 as in Definition 4.6.2.

Then

(i) (ιE)φ, (τE)φ ∈ B+, (ιE)φ ≡ ι(Eφ) and τ(Eφ) ≡ (τE)φ;

(ii) (w′′1r+1w
′
2)φ = (w′′1r−1w

′
2)φ ∈ U in the presentation 〈B | U〉;

(iii) Eφ is an edge in the derivation graph Γ(Q);

(iv) Eφ = w′1φ · E1φ · w′′2φ where E1 = (1, (w′′1r+1w
′
2) = (w′′1r−1w

′
2), ε, 1) ∈ Γ(P)

and ιE1 ∈ L(A, T );

(v) E−1φ = (Eφ)−1 in Γ(Q).

Proof. We shall prove the result for positive edges, so we assume ε = +1. The

proof for negative edges then follows from this together with the definitions. The

proof is given for each part as follows:

(i) By Definition 4.6.2 and φ we have ι(Eφ) ≡ (w′1φ)
(
(w′′1r+1w

′
2)φ
)
(w′′2φ) and

(ιE)φ ≡ (w1r+1w2)φ. If we apply φ as in Definition 4.6.2 and decompose

(w1r+1w2), then by Lemma 4.5.5 we have w1r+1w2 ≡ w′1w
′′
1r+1w

′
2w
′′
2

where w′1, w′′1r+1w
′
2 and w′′2 are all in L(A, T ). Hence, (ιE)φ ≡

(w1r+1w2)φ ≡ (w′1w
′′
1r+1w

′
2w
′′
2)φ ≡ (w′1φ)

(
(w′′1r+1w

′
2)φ
)
(w′′2φ) ≡ ι(Eφ).

Therefore, ι(Eφ) ≡ (ιE)φ ∈ B+. Similarly for τ(Eφ) and (τE)φ.

(ii) We claim that, when w′′1r+1w
′
2 is decomposed into principal factors (see

Lemma 4.5.5 and the proof of Theorem 4.5.2) each of these factors must

contain at least one letter from r+1, thus |(w′′1r+1w
′
2)φ| ≤ |r+1|.

To prove the claim, consider decomposing w′′1r+1w
′
2 into principal factors

as in Lemma 4.5.5 and the proof of Theorem 4.5.2. We obtain w′′1r+1w
′
2 ≡

α1α2 . . . αk where each αi belongs to SWBr(A, T ). Now since w′1 is the

longest prefix of w1 in L(A, T ) it follows that w′′1 cannot have a non-empty

prefix in L(A, T ), hence α1 must contain w′′1 as a proper prefix. Also, if αk
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were a suffix of w′2 then w′1α1α2 . . . αk−1 would be a prefix of w1r+1w2 which

is in L(A, T ) and contains w1r+1 as a prefix. But this would contradict the

fact that w1r+1w
′
2 is the shortest such prefix of w1r+1w2. Hence αk must

contain w′2 as a proper suffix. It follows that each αi must contain at least

one letter of r+1, proving the claim.

A similar argument applies to (w′′1r−1w
′
2)φ and we have |(w′′1r−1w

′
2)φ| ≤

|r−1|. Therefore |(w′′1r+1w
′
2w
′′
1r−1w

′
2)φ| ≤ |r+1r−1| where (r+1, r−1) ∈ R

and so by Theorem 4.5.6 (w′′1r+1w
′
2)φ = (w′′1r−1w

′
2)φ ∈ U .

(iii) By Definition 4.6.2, Eφ = (w′1φ, (w
′′
1r+1w

′
2)φ = (w′′1r−1w

′
2)φ,+1, w′′2φ). By

the definition of φ both w′1φ and w′′2φ are in B∗. Note that both w′1 and

w′′2 could be the empty word. By part (ii) (w′′1r+1w
′
2)φ = (w′′1r−1w

′
2)φ ∈ U .

Thus Eφ is an edge in the graph Γ(Q).

(iv) Follows from the definition of an edge in Section 4.4 and part (ii).

(v) We prove the result for the case that E is a positive edge, the other case

being similar. So we have E = (w1, r,+1, w2) and E−1 = (w1, r,−1, w2)

where ιE ≡ τE−1 ≡ w1r+1w2 and τE ≡ ιE−1 ≡ w1r−1w2. By assumption

w1r+1w2 ∈ L(A, T ), which is equivalent to w1r−1w2 ∈ L(A, T ) since

w1r+1w2 = w1r−1w2 in the semigroup. We want to prove that

(Eφ)−1 = E−1φ.

By definition Eφ =
(
w′1φ, (w

′′
1r+1w

′
2)φ = (w′′1r−1w

′
2)φ,+1, w′′2φ

)
where

(a) w′1 is the longest prefix of w1 in L(A, T );

(b) w1r+1w
′
2 is the shortest prefix of w1r+1w2 which is in L(A, T ) and has

w1r+1 as a prefix.

Hence it follows that (Eφ)−1 =
(
w′1φ, (w

′′
1r+1w

′
2)φ = (w′′1r−1w

′
2)φ,−1, w′′2φ

)
.

Now consider E−1φ. Since ιE−1 ≡ w1r−1w2 it follows from Definition 4.6.2

that E−1φ =
(
u′1φ, (u

′′
1r+1u

′
2)φ = (u′′1r−1u

′
2)φ,−1, u′′2φ

)
where

(a) u′1 is the longest prefix of w1 in L(A, T );
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(b) w1r−1u
′
2 is the shortest prefix of w1r−1w2 which is in L(A, T ) and has

w1r−1 as a prefix.

It is immediate from the definition that u′1 ≡ w′1 and hence u′′1 ≡ w′′1 .

Furthermore, since w1r+1 = w1r−1 in the semigroup S it follows that for any

prefix v of w2 we have w1r+1v = w1r−1v and hence w1r+1v ∈ L(A, T ) ⇔

w1r−1v ∈ L(A, T ). It follows from this that w′2 ≡ u′2 and hence w′′2 ≡ u′′2.

This completes the proof that (Eφ)−1 = E−1φ.

Definition 4.6.4. Let P be an arbitrary path in Γ(P) with P = E1 . . .Ek, k ≥ 1

and ιP ∈ L(A, T ). Then we define

Pφ = (E1φ) . . . (Ekφ).

We claim that if P is a path in Γ(P) with ιP in L(A, T ) then Pφ is a path in

Γ(Q). We shall prove this in the next lemma. In the following two lemmas we

also record some other important facts about the behaviour of the function φ

when applied to such paths.

Lemma 4.6.5. Let P be an arbitrary path in Γ(P) with P = E1 . . .Ek, k ≥ 1 and

ιP ∈ L(A, T ). Then

(i) τ(Eiφ) ≡ ι(Ei+1φ) for all i ∈ {1, . . . , k − 1};

(ii) (ιP)φ ≡ ι(Pφ) and (τP)φ ≡ τ(Pφ);

(iii) Pφ is a path in Γ(Q);

(iv) P−1φ = (E−1
k . . .E−1

1 )φ = (Ek)−1φ . . . (E1)−1φ = (Pφ)−1.

Proof. The proof is given for each part as follows:

(i) In the path P ∈ Γ(P) we have, by the definition of paths in Section 4.4,

τEi ≡ ιEi+1 for all i ∈ {1, . . . , k − 1}. It then immediately follows that
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(τEi)φ ≡ (ιEi+1)φ in Γ(Q). From Lemma 4.6.3 part (i) we then have

τ(Eiφ) ≡ (τEi)φ ≡ (ιEi+1)φ ≡ ι(Ei+1φ) as required.

(ii) We have ιP ≡ ιE1 by the definition of paths in Section 4.4 which gives

(ιP)φ ≡ (ιE1)φ. Also (ιE1)φ ≡ ι(E1φ) by Lemma 4.6.3 part (i). So now

(ιP)φ ≡ ι(E1φ) ≡ ι(Pφ), the last equality by the definition of φ and paths.

Similarly (τP)φ ≡ (τEk)φ ≡ τ(Ekφ) ≡ τ(Pφ) in Γ(Q).

(iii) By Lemma 4.6.3 for every edge Ei in the path P we have Eiφ is an edge in

Γ(Q). Together with Lemma 4.6.5 part (i) it then follows that Pφ is a path

in Γ(Q).

(iv) We have

P−1φ = (E1 . . .Ek)−1φ

= (E−1
k . . .E−1

1 )φ [ by the definition of paths ]

= (E−1
k φ) . . . (E−1

1 φ) [ by the definition of φ ]

= (Ekφ)−1 . . . (E1φ)−1 [ by Lemma 4.6.3 (v) ]

= (E1φ . . .Ekφ)−1 [ by the definition of paths ]

= (Pφ)−1.

Lemma 4.6.6. Let P be a path in Γ(P) with ιP ∈ L(A, T ) and let w1, w2 ∈

L(A, T ). Then

(w1 · P · w2)φ = w1φ · Pφ · w2φ.

Proof. Write P = E1E2 . . .Ek where Ei ∈ E(Γ(P)) for 1 ≤ i ≤ k. Since ιP ∈

L(A, T ) it follows that ιEi ∈ L(A, T ) for all 1 ≤ i ≤ k. Then by definition of φ

on edges, and since w1, w2 ∈ L(A, T ) it follows that

(w1 · Ei · w2)φ = w1φ · (Eiφ) · w2φ
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for all i ∈ {1, 2, . . . , k}. Hence

(w1 · P · w2)φ = [(w1 · E1 · w2) ◦ (w1 · E2 · w2) ◦ . . . ◦ (w1 · Ek · w2)]φ

= [(w1 · E1 · w2)φ] ◦ . . . ◦ [(w1 · Ek · w2)φ]

= [w1φ · (E1φ) · w2φ] ◦ . . . ◦ [w1φ · (Ekφ) · w2φ]

= w1φ · (Pφ) · w2φ,

as required.

Recall that we use P (Γ(P)) to denote the set of all paths in Γ(P), and similarly

P (Γ(Q)) for the set of paths in Γ(Q). Also recall that if w ∈ A+ then 1w denotes

the empty path at w in Γ(P), and similarly for 1u with u ∈ B+. Recall that

P = 〈A |R〉 and Q = 〈B | U〉. The next definition extends ψ to a mapping which

sends paths in Γ(Q) to paths in Γ(P).

Definition 4.6.7. We extend ψ : B+ → A+ to a mapping, also denoted ψ, where

ψ : P (Γ(Q))→ P (Γ(P)).

To do this, firstly for any word w ∈ B+ we define 1wψ = 1wψ. Next, for each

u ∈ U let Eu = {1, u,+1, 1), which is an edge in Γ(Q). Then for every u ∈ U

let Euψ be a fixed path in Γ(P) from u+1ψ to u−1ψ. Such a path exists since

u+1ψ and u−1ψ represent the same element of S. Then for an arbitrary edge

E = (w1, u, ε, w2) of Γ(Q) we define

Eψ = (w1ψ) ·
(
(Eu)ψ

)ε · (w2ψ).

Then for any path P = E1E2 . . .Ek in Γ(Q) we define

Pψ = (E1ψ)(E2ψ) . . . (Ekψ).

The following lemma is an immediate consequence of Definition 4.6.7, so we omit
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the proof.

Lemma 4.6.8. Let P ∈ P (Γ(Q)) be a path in Γ(Q). Then

(i) Pψ is a path in Γ(P) with ι(Pψ) ≡ (ιP)ψ and τ(Pψ) ≡ (τP)ψ;

(ii) (P−1)ψ = (Pψ)−1.

The key lemma we need to prove next is the following.

Lemma 4.6.9. For every edge E = (w1, u, ε, w2) ∈ E(Γ(Q)) we have

Eψφ = w1 · (Euψφ)ε · w2 where Eu = (1, u,+1, 1).

Proof. We prove the result in the case ε = +1, the other case being similar.

We have

Eψφ

= [(w1ψ) · (Euψ) · (w2ψ)]φ (by definition of Eψ)

= (w1ψφ) · (Euψφ) · (w2ψφ)

(by Lemma 4.6.6, since w1ψ,w2ψ ∈ L(A, T ) and ι(Euψ) ≡ (ιEu)ψ ∈ L(A, T ))

= w1 · (Euψφ) · w2 (since w1ψφ ≡ w1 and w2ψφ ≡ w2 by Lemma 4.6.1).

4.6.4 Create an infinite homotopy base for the derivation graph

Γ(Q)

Next we define an infinite homotopy base for the derivation graph Γ(Q) of the

presentation Q = 〈B | U〉.

Another thing we need in order to write down an infinite homotopy base for Γ(Q)

is, for each w ∈ B+, to choose and fix a path Λw in Γ(Q) with initial vertex w

and terminal vertex wψφ. Since by Lemma 4.6.1 we in fact have w ≡ wψφ for all

w ∈ B+ we can and will simply define Λw to be the empty path 1w at w for all

w ∈ B+. So for the remainder of this section for all w ∈ B+ we use Λw to denote

the empty path in Γ(Q) at w. While this might seem superfluous (nothing would
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change below if all occurrences of Λw were deleted) it will make it easier for us

to make reference to general results from the literature about homotopy bases,

where Λ notation is used.

Since the semigroup S has FDT, there exists a finite homotopy base for Γ(P).

Let X be a finite homotopy base for the presentation P = 〈A |R〉 which defines

the semigroup S, where X is a set of closed paths. Let Z denote the following

infinite set of closed paths for the graph Γ(Q):

(4) EΛτE
(
(Eψ)φ

)−1
Λ−1
ιE , for E in Γ(Q);

(5) ([E1,E2])φ, for E1,E2 in Γ(P) such that ιE1ιE2 ∈ L(A, T ), where [E1,E2]

is the path (E1 · ιE2)(τE1 · E2)(E1 · τE2)−1(ιE1 · E2)−1;

(6) (w1 · P · w2)φ, for P ∈ X and w1, w2 ∈ A∗ such that w1(ιP)w2 ∈ L(A, T ).

Lemma 4.6.10. Let Z be the set of closed paths as defined above. Then Z is

an infinite homotopy base for the presentation 〈B | U〉 which defines the

subsemigroup T .

Proof. Using a standard argument (see [19, Lemma 9]) it may be shown that the

set of closed paths Z is an infinite homotopy base for Γ(Q). This follows from a

more general result in [39].

The key now is to define a finite set of closed paths for which the closed paths

of types (4), (5) and (6) are a consequence. Then we will have proved that Γ(Q)

has a finite homotopy base and thus has FDT.

4.6.5 Create a finite homotopy base for the derivation graph Γ(Q)

We will consider each of the path types (4), (5) and (6) in turn.

Type (4) paths.
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We consider the infinite set of closed paths of type (4) where for any

E ∈ E(Γ(Q)) we take the closed path EΛτE((Eψ)φ)−1Λ−1
ιE . The following

Diagram 4.6.1 illustrates a general case for a type (4) path. Note that in our

case we have chosen Λw to be the empty path 1w for all w ∈ B+.

Λ−1
ιE ΛτE

E

((Eψ)φ)−1

Figure 4.6.1: A general diagram for Type (4) paths.

Lemma 4.6.11. Let

W = { Eu(Euψφ)−1 : u ∈ U,Eu = (1, u,+1, 1) }.

Then for every edge E in Γ(Q) we have

E ΛτE (Eψφ)−1 Λ−1
ιE ∼W 1ιE.

Proof. Since by definition ΛτE and ΛιE are both empty paths, this is equivalent

to proving that E ∼W Eψφ. Write E = (w1, u, ε, w2). Then by Lemma 4.6.9 we

have:

Eψφ = w1 · (Euψφ)ε · w2 where Eu = (1, u,+1, 1).

By definition we have E = w1 · Eεu · w2.

By definition of W we have

Eu ∼W Euψφ and hence also E−1
u ∼W (Euψφ)−1.

Therefore

E = w1 · Eεu · w2 ∼W w1 · (Euψφ)ε · w2 = Eψφ,

and this completes the proof of the lemma.
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Remark: Since the set of all relations U in the presentation Q = 〈B | U〉 is finite,

it follows that W defined in Lemma 4.6.11 is a finite set of closed paths in Γ(Q).

Type (5) paths.

We consider the infinite set of type (5) paths ([E1,E2])φ, for E1,E2 in Γ(P) such

that ιE1ιE2 ∈ L(A, T ), where

[E1,E2] is the closed path (E1 · ιE2)(τE1 · E2)(E1 · τE2)−1(ιE1 · E2)−1.

First we make some useful definitions.

Definition 4.6.12. Let E1 = (w1, r, ε, w2) and E2 = (u1, s, δ, u2) where ε, δ ∈

{−1,+1} such that ιE1ιE2 ∈ L(A, T ) with w1, w2, u1, u2 ∈ A∗ and r, s ∈ R. We

say that a word v ∈ A+ splits [E1,E2] if

(a) v ∈ L(A, T ) and

(b) v contains w1r+ as a prefix and v is a prefix of w1r+w2u1.

We say that [E1,E2] splits if there is such a word v which splits it.

Now we can look at the infinite set of paths ([E1,E2])φ and there are two cases

to consider,

Case 1: [E1,E2] splits (this is illustrated in Figure 4.6.2 below) and

Case 2: [E1,E2] does not split (this is illustrated in Figure 4.6.3 below).

First we consider Case 1.

Case 1: [E1,E2] splits.

In the following Figure 4.6.2 we illustrate Case 1 with the split. In particular,

the split is within the word w2 which means that w3 ≡ w′2 and u3 ≡ w′′2u1 in the

proof. The split could equally occur within the word u1 or immediately at the

start or end of the words w2 and u1. The notation used in the diagram matches

the notation used in the proof of Lemma 4.6.13 below.



Chapter 4: Finite derivation type and unitary subsemigroups with strict
boundaries 94

w1

w′1 w′′1

v1 v2

r+1 w′2 w′′2 u1 s+1
u2

u′2 u′′2

r

r−1

s

s−1

Figure 4.6.2: Type (5) paths Case 1 with split (shown by a solid red line).

In the following Lemma 4.6.13, and throughout this section, we use the notation

∼ to denote ∼∅ i.e. when we write P ∼ Q it means that P and Q are ∼ -related

modulo the empty set.

Lemma 4.6.13. Let E1,E2 be edges in Γ(P) with w ≡ ιE1ιE2 ∈ L(A, T ). If

[E1,E2] splits then [E1,E2]φ ∼ 1wφ in Γ(Q).

Proof. We prove the result in the case that E1 and E2 are positive edges. The

other cases can be dealt with using the same argument. Let E1 = (w1, r,+1, w2)

and E2 = (u1, s,+1, u2) with w1, w2, u1, u2 ∈ A∗ and r, s ∈ R. Let the word

v1 split [E1,E2] such that w ≡ v1v2 where v1 ≡ w1r+w3 and v2 ≡ u3s+u2 with

w3, u3 ∈ A∗. Note that v1, v2 ∈ L(A, T ).
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Next we can rewrite [E1,E2] to reflect the split. Let E′1 = (w1, r,+1, w3) and

E′2 = (u3, s,+1, u2) then [E1,E2] = [E′1,E′2] and hence [E1,E2]φ = [E′1,E′2]φ. It is

important to note that ιE′1, τE′1, ιE′2 and τE′2 all belong to L(A, T ). Since ιE′1,

τE′1, ιE′2 and τE′2 all belong to L(A, T ), it follows that

[E′1,E′2]φ

= [ (E′1 · ιE′2)(τE′1 · E′2)(E′1 · τE′2)−1(ιE′1 · E′2)−1 ]φ

(by definition of the path [E′1,E′2]),

= [(E′1 · ιE′2)φ] [(τE′1 · E′2)φ] [(E′1 · τE′2)−1φ] [(ιE′1 · E′2)−1φ]

(by Definition 4.6.4),

= [(E′1φ) · (ιE′2φ)] [(τE′1φ) · (E′2φ)] [(E′1φ)−1 · (τE′2φ)] [(ιE′1φ) · (E′2φ)−1]

(by Lemma 4.6.6),

= [(E′1φ) · ι(E′2φ)] [τ(E′1φ) · (E′2φ)] [(E′1φ)−1 · τ(E′2φ)] [ι(E′1φ) · (E′2φ)−1]

(by Lemmas 4.6.5 (ii) and 4.6.3 (i)),

= [E′1φ,E′2φ] ∼ 1wφ

(since E′1φ ∈ E(Γ(Q)) and E′2φ ∈ E(Γ(Q))).

Hence we have [E1,E2]φ = [E′1,E′2]φ = [E′1φ,E′2φ] ∼ 1wφ.

This completes the proof.

Case 2: [E1,E2] does not split.

In the following Figure 4.6.3 we illustrate Case 2. In particular, we have

illustrated the case where we have a decomposition of the word

w′′1r+1w2u1s+1u
′
2 into the maximum number of possible principal factors (which

in some instances are individual letters), each of which belong to L(A, T ). See

Lemma 4.5.5 and the proof of Theorem 4.5.2 for details of decomposition into

principal factors. So we have w′′1r+1w2u1s+1u
′
2 ≡ α1α2α3α4α5α6 where α1, α2,

α3, α4, α5 and α6 all belong to L(A, T ). Note that the words w′′1 and u′2 contain

no prefix that belong to L(A, T ) by definition of the edges E1 and E2. The
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notation used in the diagram matches the notation used in the proofs of Lemma

4.6.14 and Lemma 4.6.15 below.

w1

w′1 w′′1

w′1 α1 α2 α3 α4 α5 α6 u′′2

r+1 w2 u1 s+1
u2

u′2 u′′2

r

r−1

s

s−1

Figure 4.6.3: Type (5) paths Case 2 no split

Lemma 4.6.14. Let E1,E2 be edges in Γ(P) with w = ιE1ιE2 ∈ L(A, T ). If

[E1,E2] does not split then there are edges F1,F2 ∈ Γ(P) and words w′1, u
′′
2 ∈ A∗

such that:

(i) w′1, u
′′
2 ∈ L(A, T ) and ιF1ιF2 ∈ L(A, T );

(ii) [E1,E2]φ = (w′1φ) · [F1,F2]φ · (u′′2φ);

(iii) the lengths of the words (ιF1ιF2)φ, (τF1ιF2)φ, (τF1τF2)φ, (ιF1τF2)φ are

each bounded above by 2×max{|α| : (α = β) ∈ R or (β = α) ∈ R}.

Proof. We prove the result in the case that E1 and E2 are both positive edges.
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The other cases may be dealt with using the same argument. The proof is given

for each item as follows:

(i) Let E1 = (w1, r,+1, w2) and E2 = (u1, s,+1, u2) where w1, w2, u1, u2 ∈ A∗

and r, s ∈ R. Let w′1 be the longest prefix of w1 which is in L(A, T ).

Let w1r+1w2u1s+1u
′
2 be the shortest prefix of w1r+1w2u1s+1u2 which is

in L(A, T ) and has w1r+1w2u1s+1 as a prefix. Write w1 ≡ w′1w
′′
1 and

w2 ≡ w′2w
′′
2 . Since T is left unitary, it follows that u′′2 ∈ L(A, T ). We then

define F1 = (w′′1 , r,+1, w2) and F2 = (u1, s,+1, u′2) which are edges in Γ(P).

Then ιF1ιF2 ≡ w′′1r+1w2u1s+1u
′
2 ∈ L(A, T ) since T is left unitary, and both

w′1 and w′1w
′′
1r+1w2u1s+1u

′
2 belong to L(A, T ).

(ii) From part (i) and the definition of paths we have [E1,E2] = w′1 · [F1,F2] ·u′′2.

Hence, applying Lemma 4.6.6 to every edge in the path we obtain:

[E1,E2]φ = (w′1φ) · [F1,F2]φ · (u′′2φ).

(iii) By the definitions in part (i) and of paths we have the following four vertex

words in the path [F1,F2]:

ιF1ιF2 ≡ w′′1r+1w2u1s+1u
′
2, τF1ιF2 ≡ w′′1r−1w2u1s+1u

′
2,

τF1τF2 ≡ w′′1r−1w2u1s−1u
′
2, ιF1τF2 ≡ w′′1r+1w2u1s−1u

′
2.

As [E1,E2] does not split, it is immediate from the definitions that [F1,F2]

does not split. Decompose ιF1ιF2 into principal factors

ιF1ιF2 ≡ α1α2 . . . αk ≡ w′′1r+1w2u1s+1u
′
2 as in the statement of Lemma

4.5.5. We claim that every word αi (1 ≤ i ≤ k) contains at least one of the

letters from the subword r+1 or one of the letters from the subword s+1.

Indeed, α1 contains at least one letter of r+1 since w′′1 has no prefix in

L(A, T ) by definition of w′1. Also, αk contains at least one letter of s+1 by

definition of u′2. Finally, no αj can be a subword of w2u1 in the above

decomposition since that would imply a split of [F1,F2] at the word
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α1α2 . . . αj ∈ L(A, T ), contradicting the fact that [F1,F2] does not split.

This proves the claim.

This is illustrated below in Figure 4.6.4 and hence |(ιF1ιF2)φ| = k ≤ |r+1|+

|s+1| ≤ 2 × max{|α| : (α = β) ∈ R or (β = α) ∈ R}. Exactly the same

argument applies to the other three words τF1ιF2, τF1τF2 and ιF1τF2,

which completes the proof of (iii).

w′′1 r+1 w2 u1 s+1 u′2

α1 α2 α3 αj αj+1 αj+2 αk. . . . . .

Figure 4.6.4: The decomposition of ιF1ιF2 into principal factors in the proof of
Lemma 4.6.14 part (iii).

The following lemma summarises the situation for type (5) paths.

Lemma 4.6.15. Let

N = { [F1,F2]φ : F1,F2 ∈ E(Γ(P), ιF1ιF2 ∈ L(A, T )) and

max ( |(ιF1ιF2)φ|, |(ιF1τF2)φ|, |(τF1ιF2)φ|, |(τF1τF2)φ| )

≤ 2×max ( |α| : (α = β) ∈ R or (β = α) ∈ R ) }.

Then N is a finite set of closed paths in Γ(Q) such that for any pair of edges

E1,E2 ∈ E(Γ(P)) with ιE1ιE2 ∈ L(A, T ) we have

[E1,E2]φ ∼N 1(ιE1ιE2)φ.

Proof. If [E1,E2] splits then [E1,E2]φ ∼ 1(ιE1ιE2)φ by Lemma 4.6.13,

and if [E1,E2] does not split then [E1,E2]φ ∼N 1(ιE1ιE2)φ by Lemma 4.6.14.

So in both cases [E1,E2]φ ∼N 1(ιE1ιE2)φ as required.
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Type (6) paths.

We consider the infinite set of closed paths of type (6) where (w1 · P · w2)φ, for

P ∈ X and w1, w2 ∈ A∗ such that w1(ιP)w2 ∈ L(A, T ). This is illustrated in the

following Figure 4.6.5. The notation used in the diagram matches the notation

used in the proof of Lemma 4.6.16.

w1

w′1 w′′1

ιP

w′1 w′′1ιPw′2 w′′2

P

w2

w′2 w′′2

Figure 4.6.5: Type (6) paths

Lemma 4.6.16. Let m = max { |ιP| : P ∈ X } and then define

K = {(α · P · β)φ : α, β ∈ A∗,P ∈ X, αιPβ ∈ L(A, T ) and | (ι(α · P · β))φ | ≤ m}.

Then K is a finite set of closed paths in Γ(Q) such that for all w1, w2 ∈ A∗ and

P ∈ X such that w1ιPw2 ∈ L(A, T ) we have

(w1 · P · w2)φ ∼K 1vφ where v ≡ w1(ιP)w2.

Proof. To see that the set K is finite note that if (α·P·β)φ ∈ K then ι[(α·P·β)φ] ≡

[ι(α ·P · β)]φ so by assumption |ι[(α ·P · β)φ]| ≤ m, hence there are finitely many

possibilities for the initial vertex of (α ·P · β)φ. Also, by definition of φ on paths,

(α · P · β)φ is a path with the same number of edges as the path P. But P ∈ X,

which is a finite set of closed paths in Γ(P). Hence there is a global bound on
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the number of edges in the path (α · P · β)φ. Specifically, the length of the path

(α ·P ·β)φ is no greater than the maximum of the lengths of the paths in X. This

shows that for every path (α ·P ·β)φ in K there are finitely many possibilities for

the initial vertex of this path, and the length of this path is bounded above by

the maximum length of the paths in X. Since U is finite, every vertex in Γ(Q) is

only adjacent to finitely many other vertices. Combining these observations we

conclude that K is finite.

For the second part let w1, w2 ∈ A∗ and P ∈ X such that w1(ιP)w2 ∈ L(A, T ).

Write w1(ιP)w2 ≡ w′1w′′1(ιP)w′2w
′′
2 where w′1 is the longest prefix of w1 which is in

L(A, T ), and w1(ιP)w′2 is the shortest prefix of w1(ιP)w2 which has w1(ιP) as a

prefix and is in L(A, T ). Since T is left unitary it follows that w′′2 ∈ L(A, T ) and

w′′1(ιP)w′2 ∈ L(A, T ). It follows from these definitions that when we decompose

w′′1(ιP)w′2 into principal factors w′′1(ιP)w′2 ≡ α1α2 . . . αk as in the statement of

Lemma 4.5.5, each of these factors αi must contain at least one letter from the

subword ιP. Hence |(w′′1(ιP)w′2)φ| ≤ |ιP| ≤ m since P ∈ X. It follows that

(w′′1 · P · w′2)φ ∈ K. Finally, applying Lemma 4.6.6 we have

(w1 · P · w2)φ = (w′1φ) · [(w′′1 · P · w′2)φ] · (w′′2φ) ∼K 1vφ

where v ≡ w1(ιP)w2, as required.

Summary for paths of types (4), (5) and (6):

Lemma 4.6.17. Let W be the finite set of closed paths as defined in Lemma

4.6.11. Let N be the finite set of closed paths as defined in Lemma 4.6.15. Let

K be the finite set of closed paths as defined in Lemma 4.6.16.

Then the homotopy relation generated by W ∪ N ∪K is a finite homotopy base

for Γ(Q).

Proof. By Lemma 4.6.10 Z is an infinite homotopy base for Γ(Q). By Lemmas
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4.6.11, 4.6.15 and 4.6.16 it follows that for every path P ∈ Z we have

P ∼W∪N∪K 1ιP in Γ(Q).

It follows that W ∪N ∪K is a finite homotopy base for Γ(Q).

4.6.6 Proof of Theorem 4.1.1

Proof of Theorem 4.1.1. By Lemma 4.6.17 W ∪N ∪K is a finite homotopy base

for Γ(Q) and the presentation 〈B |Q〉 which defines the subsemigroup T . Thus

if the semigroup S has finite derivation type, then the subsemigroup T also has

finite derivation type.

This concludes the proof for a left unitary subsemigroup with finite strict right

boundary. The proof for a right unitary subsemigroup T with finite strict left

boundary is dual.

4.7 Applications of new FDT theorem

4.7.1 Completely simple semigroups

One possible application is to the Rees matrix semigroups which are isomorphic

to completely simple semigroups, particularly those with the conditions we have

looked at in the previous chapter. That is, where S =M[G; I,Λ;P ], G is a group,

I and Λ are finite, P contains entries equal to 1G and we have a sparse generating

set. See Section 3.3 in Chapter 3 for further information on the notation and

definitions.

Corollary 4.7.1. Let S =M[G; I,Λ;P ] be a Rees matrix semigroup where G is

a group, S is defined by a finite presentation with respect to a sparse generating

set and one of two conditions is true:

(i) I = {1} and Λ = {1, 2, . . . , n};
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(ii) I = {1, . . . ,m} and Λ = {1}.

If S has finite derivation type then G also has finite derivation type.

Proof. We give an outline proof.

Part (i): The subgroup H11 is isomorphic to the group G. If we consider the

elements of S as expressed in the triples (i, g, λ) where i ∈ I, λ ∈ Λ and g ∈ G,

then it can easily be proved that the subgroup H11 is a left unitary subsemigroup

of S with finite strict right boundary. The result then follows from Theorem

4.1.1.

Part (ii): In this case it can be proved that the subgroup H11 is a right unitary

subsemigroup of S with finite strict left boundary. The result then follows.

Note that the above application already follows from an existing more general

result which was proved in [38, Theorem 2].

4.7.2 Completely 0-simple semigroups

Another possible application is to the Rees matrix semigroups which are

isomorphic to completely 0-simple semigroups. First we define a Rees matrix

semigroup which is isomorphic to a completely 0-simple semigroup.

Definition 4.7.2. [25, Lemma 3.2.2] Let G be a group with identity element e,

and let I, Λ be non-empty sets. Let P = (pλj) be a Λ× I matrix with entries in

the 0-group G0 (= G ∪ {0}), and suppose that P is regular, in the sense that no

row or column of P consists entirely of zeros. Formally,

(∀j ∈ I)(∃λ ∈ Λ) pλj 6= 0 and (∀λ ∈ Λ)(∃j ∈ I) pλj 6= 0.
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Let S = (I ×G× Λ) ∪ {0}, and define a composition on S by

(i, a, λ)(j, b, µ) =


(i, apλjb, µ) if pλj 6= 0,

0 if pλj = 0,

(i, a, λ)0 = 0(i, a, λ) = 00 = 0.

Then S is a completely 0-simple semigroup.

The result that can be deduced using our new Theorem 4.1.1 is as follows:

Theorem 4.7.3. Let S be a completely 0-simple semigroup with finitely many

R- and L-classes. Let G be the unique non-zero maximal subgroup of S. If S has

finite derivation type then G has finite derivation type.

Proof. This theorem can be proved in exactly the same way as [16, Theorem

8.30], combined with applying Theorem 4.1.1.

In summary, let G be a maximal subsemigroup of S. Let T be the union of the

group H-classes that intersect the R-class of G. Then it can be proved that the

subsemigroup T is right unitary in S and has finite strict left boundary in S. It

can also be proved that the subsemigroup G is left unitary in T and has finite

strict right boundary in T .

Note that the above application already follows from an existing more general

result which was proved in [38, Theorem 2].

4.8 Potential Future work

4.8.1 Special presentations

As mentioned earlier, Y. Kobayashi shows in his paper [29] that every one-relator

monoid has FDT. However, there is an interesting problem relating to special
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monoids which provides a potential application of Theorem 4.1.1. This is an

application that I would like to prove if I had more time. It concerns monoids with

what is known as a special presentation, namely M = 〈A | w1 = 1, . . . , wk = 1〉,

which prove to have an interesting structure.

Fact: Let M be the monoid defined by the presentation 〈A | w1 = 1, . . . , wk = 1〉

and let U(M) be the group of units of M . Then U(M) is a left unitary

subsemigroup of M with a finite strict right boundary.

This fact is not obvious but can be proved using results from the paper [55] by

L. Zhang. Once this fact is proved, then by applying Theorem 4.1.1 it should be

possible to obtain the following new result:

Conjecture 4.8.1. Let M be the monoid defined by the presentation

〈A | w1 = 1, w2 = 1, . . . , wk = 1〉 for some fixed k ∈ N. Let U(M) be the group of

units of M . Then M has FDT if and only if U(M) has FDT.

Plan of the proof:

(⇐) Adapt the argument from the above paper of Y. Kobayashi. (Note that in

this paper it is observed that for a one-relator monoid, the group of units U(M)

of M has FDT since it is a one-relator group.)

(⇒) As described above, prove that U(M) is a left unitary submonoid with strict

right boundary in M . The result follows by application of Theorem 4.1.1.

4.8.2 Open questions

(i) The paper [54], discussed in the Introduction, considered the property of being

a finite complete rewriting system and proved that this was inherited by large

subsemigroups. It is natural to look at the question of whether this property

can be inherited by subsemigroups with weaker finiteness conditions. In this

chapter we have seen that FDT can be inherited by left (resp. right) unitary

subsemigroups with finite strict right (resp. left) boundary. It may be possible to
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extend this result to subsemigroups with finite left, right or two-sided boundaries.

Ultimately, it may be possible to prove that having a FCRS is also inherited by

one or both of these types of subsemigroup. At the moment these questions

remain open.

(ii) Let S be a regular semigroup defined by a finite complete rewriting system.

Let H be a subgroup with finitely many H-classes in its R-class. Here we are

looking at a particular R-class and then a specific one of its H-classes. We would

like to prove that H is defined by a FCRS but an alternative would be to prove

that it has FDT.

4.8.3 Properties beyond FDT

It might be interesting to investigate whether it might be possible to prove

analogues of results proved for FDT in this thesis, for other important finiteness

properties related to string rewriting systems, see [43].



5

Bicyclic monoid and finitely presented

subsemigroups

5.1 Introduction to the bicyclic monoid

In this chapter we will investigate properties of finitely generated subsemigroups

of the bicyclic monoid. The bicyclic monoid B is defined by the presentation

〈b, c | bc = 1〉. The first published description of the bicyclic monoid was given by

Evgeny Lyapin in 1953. A.H. Clifford and G. Preston claim that whilst working

with D. Rees it was independently discovered at some point before 1943. In [10]

it is referred to as the simplest member of an extensive class of semigroups known

as the bisimple inverse semigroups with identity element. As such it is a very

useful semigroup in the theory of simple semigroups.

Two papers [13] and [14] by L. Descalço and N. Rus̆kuc proved some interesting

properties of subsemigroups of the bicyclic monoid. In [14] it is proved that every

finitely generated subsemigroup of B is finitely presented. This leads us naturally

to ask two further questions that are the theme of this research:

• Does every finitely generated subsemigroup of the bicyclic monoid have

finite derivation type?

• Does every finitely generated subsemigroup of the bicyclic monoid have a

presentation which admits a finite complete rewriting system?
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We show that the answer to both of these is positive, that is, every finitely

generated subsemigroup of B admits a presentation by a finite complete

semigroup rewriting system (see Theorem 5.2.1) and consequently also has FDT

(see Corollary 5.3.1).

Before proving this theorem we first need to recall some background results on

the bicyclic monoid and from the two papers [13] and [14].

5.1.1 Background and definitions

The bicyclic monoid B is defined by the presentation 〈b, c | bc = 1〉.

Definition 5.1.1. The natural set of normal forms for B is {cibj : i, j ≥ 0}. In

fact it is easy to see that 〈b, c | bc = 1〉 is a FCRS and these are the irreducible

words with respect to this system. Throughout we use these normal forms to

make reference to elements of the bicyclic monoid. The elements of B multiply

in the following way:

cibjckbl =


ci−j+kbl if j ≤ k

cibj−k+l if j > k.

The bicyclic monoid can be expressed diagrammatically as an infinite square grid,

see Figure 5.1.1 below and [25, Equation 1.6.3]. Each square is an element in the

monoid and is represented by a word in normal form. This is in fact the egg box

picture of the D-class of 1 in B [25, Exercise 2]. For more on the bicyclic monoid

see [25].
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0 1 2 3

0 1 b b2 b3

1 c cb cb2 cb3

2 c2 c2b c2b2 c2b3

3 c3 c3b c3b2 c3b3

Figure 5.1.1: Bicyclic monoid

5.1.2 Results from previous papers

Next we reproduce those definitions and results from the two papers [13] and

[14] which are necessary in order to understand the new results obtained later in

this chapter. Of particular note are [13, Theorem 3.1], [14, Theorem 2.1] and [14,

Theorem 4.3]. All three theorems are reproduced later for reference. The authors

of [13, 14] prove that any subsemigroup of the bicyclic monoid falls into one of five

different forms. They go on to prove that all finitely generated subsemigroups are

finitely presented. Given the reliance on results from [13] and [14], this chapter

is best read with both of these papers to hand.

Define the function ̂ : B → B by cibj 7→ ĉibj = cjbi. Geometrically ̂ is a

reflection with respect to the diagonal where D = {cibi : i ≥ 0} is the diagonal.

Algebraically this function is an anti-isomorphism of B i.e. for x, y ∈ B then

x̂y = ŷx̂. Recall that an anti-isomorphism between structured sets A and B is

an isomorphism from A to the opposite of B, see Definitions 2.2.2 and 2.2.1.

Define the following subsets of elements of the bicyclic monoid. Let q, p, i, j ∈ N0,

then

D = {cibi : i ≥ 0} is the diagonal,

Lp = {cibj : 0 ≤ j < p ; i ≥ 0} is the left strip (determined by p),

Tq,p = {cibj : q ≤ i ≤ j < p} is a triangle.
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Note that if q = p then the triangle is an empty set. For i,m ≥ 0 and d > 0 with

I ⊆ {0, . . . ,m− 1} we define the lines:

Λi = {cibj : j ≥ 0},

Λi,m,d = {cibj : d | (j − i), j ≥ m},

ΛI,m,d =
⋃
i∈I

Λi,m,d = {cibj : i ∈ I, d | (j − i), j ≥ m}.

For p ≥ 0, d > 0, r ∈ [d] = {0, . . . , d− 1} and P ⊆ [d] we define the squares:

Σp = {cibj : i, j ≥ p},

Σp,d,r = {cp+r+ud bp+r+vd : u, v ≥ 0},

Σp,d,P =
⋃
r∈P

Σp,d,r = {cp+r+ud bp+r+vd : r ∈ P, u, v ≥ 0}.

Theorem 5.1.2. [13, Theorem 3.1] Let S be a subsemigroup of the bicyclic

monoid. Then one of the following conditions holds:

1. The subsemigroup is a subset of the diagonal; S ⊆ D.

2. The subsemigroup is a union of a subset of a triangle, a subset of the

diagonal above the triangle, a square below the triangle and some lines

belonging to a strip determined by the square and the triangle, or the

reflection of this union with respect to the diagonal. Formally there exist

q, p ∈ N0 with q ≤ p, d ∈ N, I ⊆ {q, . . . , p − 1} with q ∈ I,

P ⊆ {0, . . . , d− 1} with 0 ∈ P , FD ⊆ D ∩ Lq, F ⊆ Tq,p such that S is one

of the following forms:

(i) S = FD ∪ F ∪ ΛI,p,d ∪ Σp,d,P ;

(ii) S = FD ∪ F̂ ∪ Λ̂I,p,d ∪ Σp,d,P .

3. There exist d ∈ N, I ⊆ N0, FD ⊆ D ∩ Lmin(I) and sets Si ⊆ Λi,i,d (i ∈ I)

such that S is one of the following forms:

(i) S = FD ∪
⋃
i∈I

Si ;
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(ii) S = FD ∪
⋃
i∈I

Ŝi ;

where each Si has the form

Si = Fi ∪ Λi,mi,d

for some mi ∈ N0 and some finite set Fi, and

I = I0 ∪ {r + ud : r ∈ R, u ∈ N0, r + ud ≥ N}

for some (possibly empty) R ⊆ {0, . . . , d−1}, some N ∈ N0 and some finite

set I0 ⊆ {0, . . . , N − 1}.

Arising from this theorem there are different kinds of subsemigroups which the

authors give names to. We list each of these, and identify them with the

corresponding part in Theorem 5.1.2 , as follows:

Part 1: We will continue to call this a subset of the diagonal.

Part 2: This corresponds to subsemigroups having elements both above and

below the diagonal; we call them two-sided subsemigroups. We observe that a

subsemigroup defined by 2.(ii) is symmetric to the corresponding subsemigroup

given by 2.(i) with respect to the diagonal, and so we can use the anti-isomorphism

̂ to obtain one from the other.

Part 3: We call upper subsemigroups those having all elements above the diagonal

and lower subsemigroups those having all elements below the diagonal. Part

3. corresponds to upper and lower subsemigroups. Again, 3.(i) and 3.(ii) give

subsemigroups symmetric with respect to the diagonal.

Every subsemigroup has one of these forms, on the other hand it is not true that

for every choice of parameters there exists a corresponding subsemigroup. In

fact the authors of [13] state that they do not have a nice set of conditions that

would tell us which choices of parameters yield subsemigroups, and which do not
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(although some restrictions are implicitly present).

It may assist the reader to reference pictorial examples of the various

subsemigroups of B. For a two-sided subsemigroup see [13, Figure 5] and [14,

Figure 2]. For an upper subsemigroup see [13, Figure 6] and also see [14, Figure

3] for both an upper and lower subsemigroup. We replicate one such example

below.

Figure 5.1.2 is taken from [14, Figure 2] and is an example of a two-sided

subsemigroup of B, defined by d = 3, FD = {cb}, F = {c4b7}, I = {4, 5, 7, 8},

p = 10, P = {0, 1}.

0 1 2 3 4 5 6 7 8 9
0

1

2

3

4

5

6

7

8

9

Figure 5.1.2: Bicyclic monoid two-sided semigroup

Lemma 5.1.3. [13, Lemma 4.7] For any p ∈ N0, d ∈ N and I ⊆ {0, . . . , p− 1},

the set ΛI,p,d is a subsemigroup.

Lemma 5.1.4. [13, Lemma 4.8] Let p ∈ N0, d ∈ N, ∅ 6= I ⊆ {0, . . . , p − 1},
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∅ 6= P ⊆ {0, . . . , d − 1} and q = min{I}. The set H = Σp,d,P ∪ ΛI,p,d is a

subsemigroup if and only if

I ′ = {p+ r − ud : r ∈ P, u ∈ N0, p+ r − ud ≥ q} ⊆ I.

Theorem 5.1.5. [14, Theorem 2.1] Let S be a subsemigroup of the bicyclic

monoid. Then S is finitely generated if and only if one of the following

conditions holds:

(i) S is a finite diagonal subsemigroup,

(ii) S is a two-sided subsemigroup,

(iii) S is an upper subsemigroup and the set {i ∈ N0 : Li ∩ S 6= ∅} is finite,

(iv) S is a lower subsemigroup and the set {i ∈ N0 : L̂i ∩ S 6= ∅} is finite.

Recall Lp = {cibj : 0 ≤ j ≤ p, i ≥ 0} is the left strip determined by p ≥ 0. This

in effect means that there is a finite (non-zero) number of elements within the

union of the diagonal and the triangle for cases (iii) and (iv).

Theorem 5.1.6. [14, Theorem 4.3] All finitely generated subsemigroups of the

bicyclic monoid are finitely presented.

Note that the proof for Theorem 5.1.6 makes use of Lemmas 5.1.3 and 5.1.4

together with Theorem 2.6.18 where the finite small extension is comprised of

FD ∪F for each subsemigroup. A similar approach will be used in the new result

in respect of proving we have a finite complete rewriting system.

The next two theorems include useful definitions and facts that are proved within

[13] and [14] and are relevant to the new results that we prove later in this chapter.

The following results give explicit finite presentations for certain subsemigroups

of B, and the sets of normal forms for these subsemigroups with respect to these

presentations.
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Theorem 5.1.7. [14, Proofs of Theorem 4.3, Lemma 4.4(ii), Lemma 3.3(iii)]

Let p, q ∈ N0 with p > q, d ∈ N and let I ⊆ {q, . . . , p−1}, P ⊆ {0, . . . , d−1} such

that 0 ∈ P . Furthermore, suppose that T = ΛI,p,d ∪ Σp,d,P is a subsemigroup of

the bicyclic monoid.

Let Z = Λ∪{x, y}∪Γ where Λ = {λi; i ∈ I} and Γ = {γr; r ∈ P} be an alphabet.

Let f be a surjective homomorphism from Z+ to the subsemigroup T such that

f : Z+ → T, λi 7→ cibi+uid, γr 7→ cp+rbp+r, x 7→ cpbp+d, y 7→ cp+dbp

where i+ uid = min{i+ ud : i+ ud ≥ p} for i ∈ I.

Let R be the following set of relations in Z+ × Z+:

(2) x = γ0x,

(3) yγ0 = y,

(4) λiλj = λix
uj (i, j ∈ I),

(5) xλi = x1+ui (i ∈ I),

(6) yλi = yxui (i ∈ I),

(7) γrλi = γrx
ui (r ∈ P, i ∈ I),

(8) xy = γ0,

(9) λiy = λj (i ∈ I, ui > 1, j = p+ d− uid),

(10) λiy = γ0 (i ∈ I, ui = 1),

(11) γry = y (r ∈ P ),

(12) xγr = x (r ∈ P ),

(13) λiγr = λi (i ∈ I, r ∈ P, i+ uid ≥ p+ r),

(14) λiγr = λj (i ∈ I, r ∈ P, i+ uid < p+ r, j = p+ r − uid),
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(15) γrγt = γr (r, t ∈ P and r ≥ t),

(16) γrγt = γt (r, t ∈ P and r < t).

Then 〈Z |R〉 is a finite semigroup presentation for T and the map f induces a

well-defined isomorphism from the semigroup defined by 〈Z |R〉 to T such that

L =
⋃
i∈I

(
{λixu : u ≥ 0}

)
∪
⋃
r∈P

(
{yvγrxu : u, v ≥ 0}

)

is a set of unique normal forms for T .

Proof. See [14, Proof of Theorem 4.3], [14, Proof of Lemma 4.4(ii)] and also as a

consequence of parts of [14, Proof of Lemma 3.3(iii)].

Theorem 5.1.8. [14, Proofs of Theorem 4.3, Lemma 4.4(i), Lemma 3.3(i)]

Let p,m ∈ N0 with p ≤ m, d ∈ N and the set I ⊆ {0, . . . , p − 1}. Furthermore,

suppose that T = ΛI,m,d is a subsemigroup of the bicyclic monoid.

Let i+ uid = min{i+ ud : i+ ud ≥ m} for i ∈ I. Fixing i0 ∈ I and u = ui0 we

define the alphabet

Λ =
⋃
i∈I
{λ(i, 0), . . . , λ(i, u− 1)}

and the surjective homomorphism

f : Λ+ → Λi,m,d, λ(i, j) 7→ cibi+(ui+j)d.

Let R be the following set of relations in Λ+ × Λ+

λ(i, j)λ(k, l) = λ(i, r)λ(i0, 0)q

where j + uk + l = qu+ r, 0 ≤ r < u, (i, k ∈ I; j, l ∈ {0, . . . , u− 1}).

Then 〈Λ |R〉 is a finite semigroup presentation for T and the map f induces a
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well-defined isomorphism from the semigroup defined by 〈Λ |R〉 to T such that

L =
⋃
i∈I

( u−1⋃
j=0

{λ(i, j)λ(i0, 0)n : n ≥ 0}
)

is a set of unique normal forms for T .

Proof. See [14, Proof of Lemma 4.3], [14, Proof of Lemma 4.4(i)] and also as a

consequence of parts of [14, Proof of Lemma 3.3(i)].

5.2 New research regarding subsemigroups of the

bicyclic monoid and the property FCRS

5.2.1 Statement of new theorem

In this section we prove:

Theorem 5.2.1. Let B, defined by the presentation 〈b, c | bc = 1〉, be the bicyclic

monoid. Then every finitely generated subsemigroup of B admits a presentation

by a finite complete semigroup rewriting system.

Remark:

Throughout this chapter, for consistency with the two papers [14] and [13], we

will be working with subsemigroups of the bicyclic monoid. We will refer to

presentations and rewriting systems for semigroups as, for example 〈Z |R〉 and

(Z,R) respectively. This means that we will be working with an alphabet Z,

words in Z+ and relations R ⊆ Z+ × Z+. In theorems, for extra clarity, we

will be specific and call these semigroup presentations and semigroup rewriting

systems. We could have chosen to work in terms of submonoids, rather than

subsemigroups. Note that there is no major difference between these two classes

in the sense that for every finitely generated subsemigroup S of B, if S is not a

monoid then S ∪ {1} is a finitely generated submonoid of B. In fact the result
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in this section could easily be adapted to prove that every finitely generated

submonoid of B admits a finite complete monoid rewriting system.

5.2.2 Outline of proof

We prove Theorem 5.2.1 by considering each of the five different forms of finitely

generated subsemigroups of the bicyclic monoid B as defined in Theorems 5.1.2

and 5.1.5. For our purposes we identify them as follows:

(a) A finite subset of the diagonal, which we identify as S1 ⊆ D.

(b) A two-sided subsemigroup and its reflection in the diagonal, identified as

S2 = FD∪F ∪ ΛI,p,d ∪ Σp,d,P and S3 = FD∪F̂ ∪ Λ̂I,p,d ∪ Σp,d,P respectively.

Without loss of generality we need only consider one of these in detail and

we choose S2.

(c) An upper or lower subsemigroup, which we identify as S4 = FD ∪F ∪ΛI,p,d

and S5 = FD ∪ F̂ ∪ Λ̂I,p,d respectively. Without loss of generality we need

only consider one of these in detail and we choose S4.

The proof builds on the presentations defined in Theorems 5.1.7 and 5.1.8. For

each form of subsemigroup we define a presentation which is a finite complete

rewriting system. The anti-isomorphism property of subsemigroups S3 and S5

(with S2 and S4 respectively) is used for their proofs. By Theorem 5.1.5 we will

have considered all forms of finitely generated subsemigroups and so the proof

will be complete.

5.2.3 Finite subset of the diagonal of B

Lemma 5.2.2. Let S1 be a subsemigroup of the bicyclic monoid which is a

finite subset of the diagonal as defined above in this section. Then S1 admits a

presentation which is a finite complete rewriting system.
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Proof. It is known that a finite semigroup admits a finite presentation which is a

finite complete rewriting system, see [24, Section 12.3, Page 423]. As S1 is finite,

the result follows.

5.2.4 Two-sided subsemigroup of B

Let S2 = FD ∪ F ∪ ΛI,p,d ∪ Σp,d,P be a two-sided subsemigroup of the bicyclic

monoid B as defined in Theorem 5.1.2 and Lemma 5.1.4. Note that the sets FD

and F are finite and that ΛI,p,d ∪ Σp,d,P is a subsemigroup by Lemma 5.1.4. Let

U2 := S2 \ (FD ∪ F ) = ΛI,p,d ∪ Σp,d,P .

Let Z be an alphabet and f the mapping f : Z+ → U2, both as defined in

Theorem 5.1.7. Define the following set of string rewriting rules R′ in Z+ × Z+:

(2)′ γ0x→ x,

(3)′ yγ0 → y,

(4)′ λiλj → λix
uj (i, j ∈ I),

(5)′ xλi → x1+ui (i ∈ I),

(6)′ yλi → yxui (i ∈ I),

(7)′ γrλi → γrx
ui (r ∈ P, i ∈ I),

(8)′ xy → γ0,

(9)′ λiy → λj (i ∈ I, ui > 1, j = p+ d− uid),

(10)′ λiy → γ0 (i ∈ I, ui = 1),

(11)′ γry → y (r ∈ P ),

(12)′ xγr → x (r ∈ P ),
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(13)′ λiγr → λi (i ∈ I, r ∈ P, i+ uid ≥ p+ r),

(14)′ λiγr → λj (i ∈ I, r ∈ P, i+ uid < p+ r, j = p+ r − uid),

(15)′ γrγt → γr (r, t ∈ P and r ≥ t),

(16)′ γrγt → γt (r, t ∈ P and r < t).

Note that the rules R′ are the relations from R but expressed in terms of a rewrite

rule i.e. they have a direction for rewriting. The direction has been chosen to

enable the string rewriting system to have the noetherian property, which we will

prove later. For our purposes we cannot use the set of normal forms defined as

L in Theorem 5.1.7, instead we define the following set L′ ⊆ Z+, which we will

prove is the set of unique normal forms for the presentation 〈Z |R′〉. Let

L′ =
⋃
i∈I

(
{λixu : u ≥ 0}

)
∪

⋃
r∈P\{0}

(
{yvγrxu : u, v ≥ 0}

)
∪{yvxu : u, v ≥ 0}∪{γ0}.

The definitions and notation above relating to S2, U2, f, Z,R
′, L′ will stay in

force for the remainder of Subsection 5.2.4. The rest of this subsection will be

devoted to proving that (Z,R′) is a complete semigroup rewriting system

defining the subsemigroup U2 and L′ is the set of irreducible words with respect

to this presentation. As a consequence we will conclude with a proof that there

exists a finite semigroup presentation for S2 which is a finite complete

semigroup rewriting system.

Lemma 5.2.3. The subsemigroup U2 is defined by the finite presentation 〈Z |R′〉.

Proof. By Theorem 5.1.7, 〈Z |R〉 is a finite presentation for the semigroup U2.

It can be seen that the congruence classes induced on Z+ by
∗↔R and

∗↔R′ are

the same since R and R′ are equal when considered as unordered sets of defining

relations. Therefore 〈Z |R′〉 is a finite presentation for U2.

Next we aim to prove that the rewriting system (Z,R′) is a finite complete

rewriting system.
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Lemma 5.2.4. The set L′ ⊆ Z+ is the set of normal forms where each word

uniquely represents an element in U2 as defined by the presentation 〈Z |R′〉.

Proof. We show that each element in U2 has a unique representative in L′ by first

establishing a bijection between the sets L′ and L. Then we prove that if l′ ∈ L′

maps to l ∈ L, then they represent the same element in B. We start by defining

subsets of L′ and L to facilitate the definition of a map between them.

Let L′ = A′ ∪B′ ∪C ′ ∪D′ where A′, B′, C ′ and D′ are disjoint subsets such that

A′ = {λixu : i ∈ I, u ≥ 0}

B′ = {yvγrxu : r ∈ P \ {0};u, v ≥ 0}

C ′ = {yvxu : u, v ≥ 0 and not both zero}

D′ = {γ0}.

Let L = A ∪B ∪ C ∪D where A,B,C and D are disjoint subsets such that

A = {λjxm : j ∈ I,m ≥ 0}

B = {ynγqxm : q ∈ P \ {0};m,n ≥ 0}

C = {ynγ0x
m : m,n ≥ 0 and not both zero}

D = {γ0}.

Define the mapping g : L′ → L where l′ ∈ L′ and

if l′ ∈ A′ then λix
u 7→ λix

u ∈ A;

if l′ ∈ B′ then yvγrx
u 7→ yvγrx

u ∈ B;

if l′ ∈ C ′ then yvxu 7→ yvγ0x
u ∈ C;

if l′ ∈ D′ then γ0 7→ γ0 ∈ D.

It can be seen that for each of the subsets of L′ and L, the mapping g is a
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bijection. As L′ = A′ ∪B′ ∪C ′ ∪D′ and L = A∪B ∪C ∪D, then g is a bijection

between the sets L′ and L. The second part of the proof will show that for every

l′ ∈ L′ we have (l′)f =
(
(l′)g

)
f in B. Again we look at each subset of L′ in turn

and use Definition 5.1.1 for multiplying the elements in B.

(a) Let l′ ≡ λixu ∈ A′ with i ∈ I and u ≥ 0

then (l′)g ≡ λixu ⇒ (l′)f ≡
(
(l′)g

)
f .

(b) Let l′ ≡ yvγrxu ∈ B′ with r ∈ P \ {0} and u, v ≥ 0

then (l′)g ≡ yvγrxu ⇒ (l′)f ≡
(
(l′)g

)
f .

(c) Let l′ ≡ yvxu ∈ C ′ with u, v ≥ 0 and not both zero

then
(
(l′)g

)
f = (yvγ0x

u)f = (cp+dbp)v (cpbp) (cpbp+d)u;

if v > 0 ⇒
(
(l′)g

)
f = (cp+dbp)v−1 (cp+dbp) (cpbp) (cpbp+d)u

⇒
(
(l′)g

)
f = (cp+dbp)v−1 (cp+dbp) (cpbp+d)u

⇒
(
(l′)g

)
f = (cp+dbp)v(cpbp+d)u = (l′)f ;

if u > 0 ⇒
(
(l′)g

)
f = (cp+dbp)v (cpbp) (cpbp+d) (cpbp+d)u−1

⇒
(
(l′)g

)
f = (cp+dbp)v (cpbp+d) (cpbp+d)u−1

⇒
(
(l′)g

)
f = (cp+dbp)v(cpbp+d)u = (l′)f.

(d) Let l′ ≡ γ0 ∈ D′

then (l′)g ≡ γ0 ⇒ (l′)f ≡
(
(l′)g

)
f .

Thus for every element l′ ∈ L′ we have (l′)f =
(
(l′)g

)
f in B i.e. elements that

map one to the other using the mapping g represent the same element in B. We

have shown that g is a bijection between the sets L′ and L. By Theorem 5.1.7, L is

a unique set of normal forms for the subsemigroup U2 defined by the presentation

〈Z |R〉. Therefore L′ is the unique set of normal forms for the subsemigroup U2

defined by the presentation 〈Z |R′〉.

Lemma 5.2.5. The set L′ is the set of irreducible words in Z+ which uniquely

represents the elements in U2 with respect to the string rewriting system (Z,R′).



Chapter 5: Bicyclic monoid and finitely presented subsemigroups 121

Proof. By Lemma 5.2.4 we have shown that the set L′ uniquely represents every

element in U2 as defined by the presentation 〈Z |R′〉. It remains to show that

L′ = IRR(R′).

We show that the words in L′ cannot be reduced (or rewritten) any further by

the string rewriting system R′. We take each subset of L′ as follows:

A′ Substrings of λix
u are λix and xx. These do not appear as the left hand

side of any of the rewrite rules in R′. Therefore this word cannot be reduced

any further.

B′ Substrings of yvγrx
u with r 6= 0, u, v ≥ 0 are yy, yγr, γrx, xx and yγrx.

These do not appear as the left hand side of any of the rewrite rules in R′.

Therefore this word cannot be reduced any further.

C ′ Substrings of yvxu with u, v ≥ 0 but not both zero are yy, yx and xx.

These do not appear as the left hand side of any of the rewrite rules in R′.

Therefore this word cannot be reduced any further.

D′ The letter γ0 does not appear as the left hand side of any of the rewrite

rules in R′. Therefore this word cannot be reduced any further.

Thus all the words in L′ are irreducible under R′ and so L′ ⊆ IRR(R′). It remains

to prove that IRR(R′) ⊆ L′ i.e. if any word, say w ∈ Z+ is irreducible then it

must be in the set L′. The proof is by induction on the length of the word w.

Induction statement

Let w ∈ Z+ be irreducible and let w1 ≡ wz where z ∈ Z such that |w1| = |w|+1.

Next apply the rewrite rules R′ to w1 such that w1
∗−→R′ w

′
1 ∈ IRR(R′), then

w′1 ∈ L′.

Base case

If |w| = 0 then w1 ∈ Z and w1 is irreducible and we have w ∈ L′.

Let w ∈ Z+ be irreducible with |w| ≥ 1 and let z ∈ Z. It follows from the
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inductive hypothesis that w′1 ∈ L′. There are now several cases to consider:

(i) Let w ≡ λi then

if w1 ≡ λiλj
(4)′−−→ λix

uj ∈ L′;

if w1 ≡ λix ∈ L′;

if w1 ≡ λiy
(10)′−−−→ γ0 ∈ L′;

if w1 ≡ λiγr
(13)′−−−→ λi ∈ L′, or w1

(14)′−−−→ λj ∈ L′.

(ii) Let w ≡ xu with u ≥ 1 then

if w1 ≡ xuλi
(5)′−−→ xu+ui ∈ L′;

if w1 ≡ xux ∈ L′;

if w1 ≡ xuy and u = 1 w1
(8)′−−→ γ0 ∈ L′, but if u > 1 w1

(12)′−−−→ xu−1 ∈ L′;

if w1 ≡ xuγr
(12)′−−−→ xu ∈ L′.

(iii) Let w ≡ λixu with u ≥ 1 then

if w1 ≡ λixuλi
(5)′−−→ λix

u+ui ∈ L′;

if w1 ≡ λixux ∈ L′;

if w1 ≡ λixuy and u = 1 w1
(8,13/14)′−−−−−−→ λi/j ∈ L′, but if u > 1 w1

(8,12)′−−−−→ λix
u−1 ∈

L′;

if w1 ≡ λixuγr
(12)′−−−→ λix

u ∈ L′.

(iv) Let w ≡ yv with v ≥ 1 then

if w1 ≡ yvλi
(6)′−−→ yvxui ∈ L′;

if w1 ≡ yvx ∈ L′;

if w1 ≡ yvy ∈ L′;

if w1 ≡ yvγr and r 6= 0 w1 ∈ L′ but if r = 0 w1
(3)′−−→ yv ∈ L′.

(v) Let w ≡ γr with r 6= 0 then

if w1 ≡ γrλi
(7)′−−→ γrx

ui ∈ L′;

if w1 ≡ γrx ∈ L′;

if w1 ≡ γry
(11)′−−−→ y ∈ L′;

if w1 ≡ γrγt and r ≥ t w1
(15)′−−−→ γr ∈ L′ but if r < t w1

(16)′−−−→ γt ∈ L′.

(vi) Let w ≡ yvγr with r 6= 0 and v ≥ 1 then
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if w1 ≡ yvγrλi
(7)′−−→ yvγrx

ui ∈ L′;

if w1 ≡ yvγrx ∈ L′;

if w1 ≡ yvγry
(11)′−−−→ yv+1 ∈ L′;

if w1 ≡ yvγrγt and r ≥ t w1
(15)′−−−→ yvγr ∈ L′ , but if r < t w1

(16)′−−−→ yvγt ∈ L′.

(vii) Let w ≡ γrxu with r 6= 0 and u ≥ 1 then

if w1 ≡ γrxuλi
(5)′−−→ γrx

u+ui ∈ L′;

if w1 ≡ γrxux ∈ L′;

if w1 ≡ γrxuy and u = 1 w1
(8,15)′−−−−→ γr ∈ L′, but if u > 1 w1

(8,12)′−−−−→ γrx
u−1 ∈ L′;

if w1 ≡ γrxuγt
(12)′−−−→ γrx

u ∈ L′.

(viii) Let w ≡ yvγrxu with r 6= 0 and u, v ≥ 1 then

if w1 ≡ yvγrxuλi
(5)′−−→ yvγrx

u+ui ∈ L′;

if w1 ≡ yvγrxux ∈ L′;

if w1 ≡ yvγrx
uy and u = 1 w1

(8,15)′−−−−→ yvγr ∈ L′, but if u > 1 w1
(8,12)′−−−−→

yvγrx
u−1 ∈ L′;

if w1 ≡ yvγrxuγt
(12)′−−−→ yvγrx

u ∈ L′.

(ix) Let w ≡ yvxu with u, v ≥ 1 then

if w1 ≡ yvxuλi
(5)′−−→ yvxu+ui ∈ L′;

if w1 ≡ yvxux ∈ L′;

if w1 ≡ yvxuy and u = 1 w1
(8,3)′−−−→ yv ∈ L′, but if u > 1 w1

(3,12)′−−−−→ yvxu−1 ∈ L′;

if w1 ≡ yvxuγr
(12)′−−−→ yvxu ∈ L′.

(x) Let w ≡ γ0 then

if w1 ≡ γ0λi
(7,2)′−−−→ xui ∈ L′;

if w1 ≡ γ0x
(2)′−−→ x ∈ L′;

if w1 ≡ γ0y
(11)′−−−→ y ∈ L′;

if w1 ≡ γ0γr
(16)′−−−→ γr ∈ L′.

We have shown that our induction statement is true for |w| = 0 and also for

|w1| = |w|+ 1 where |w| ≥ 1, therefore IRR(R′) ⊆ L′. As we have already shown

that L′ ⊆ IRR(R′), then we must have L′ = IRR(R′).
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Next we aim to prove that the rewriting system (Z,R′) is noetherian. If we look

at the rewrite rules R′ we can gain some understanding of how they act when

they are applied to words in Z+. A single application of a rewrite rule to a word

in Z+ can have the following affect:

• It can reduce the number of letters in a word which are equal to one from

the set Λ.

• It can reduce the length of the word.

• It can remove a letter which is equal to one from the set Λ and at the same

time add letters to the word. The increase in the length of the word is

determined by the value of the letter from the set Λ which is removed, say

λi ∈ Λ, and is at most the value of ui − 1 which is fixed for each i ∈ I and

bounded as 0 ≤ ui − 1 ≤ p− 1.

• It cannot introduce a new letter which is equal to one from the set Λ.

Now we define an ordering on words in Z+ before we later go on to prove that it

is a reduction ordering on Z+, induced by R′.

Definition 5.2.6. Let w ∈ Z+ be an arbitrary word. Define wΛ to be the

number of letters in the word w which are equal to one of the letters from the set

Λ. Recall that |w| is the number of letters in the word w. Let σ be the mapping

defined by

σ : Z+ → N0 × N0 where w 7→ (wΛ, |w|).

Let a, b ∈ Z+ be arbitrary words with a1, a2, b1, b2 ∈ N0, such that aσ = (a1, a2)

and bσ = (b1, b2). Then we say that b <σ a if one of the following is true:

(i) b1 < a1,

(ii) b1 = a1 and b2 < a2.

Lemma 5.2.7. The rewriting system (Z,R′) is noetherian.
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Proof. It is useful at this point to recall the requirements for a set of rewrite

rules to be noetherian. It suffices to find a reduction ordering > on Z+ which is

an admissible, well-founded partial ordering such that u > v holds for each rule

(u, v) ∈ R′. See Theorem 2.6.7, Definition 2.6.1 and Definition 2.6.3. We aim to

show that this is true for the ordering <σ, see Definition 5.2.6.

First we prove that <σ is admissible, see Definition 2.6.1. Let α, β, w2 ∈ Z∗,

w1 ∈ Z+ such that w2 <σ w1, s1 = αw1β and s2 = αw2β. Then

s1σ = (αw1β)σ = (αΛ + (w1)Λ + βΛ , |α|+ |w1|+ |β|) and

s2σ = (αw2β)σ = (αΛ + (w2)Λ + βΛ , |α|+ |w2|+ |β|).

If w2 <σ w1 with

(i) (w2)Λ < (w1)Λ then

αΛ + (w2)Λ + βΛ < αΛ + (w1)Λ + βΛ and so s2 <σ s1;

(ii) (w2)Λ = (w1)Λ and |w2| < |w1| then

αΛ + (w2)Λ + βΛ = αΛ + (w1)Λ + βΛ and

|α|+ |w2|+ |β| < |α|+ |w1|+ |β| and so s2 <σ s1.

Thus in each case s2 <σ s1 and therefore <σ is an admissible ordering.

To prove that <σ is a well-ordering (see Definition 2.6.3) we need to prove two

properties. Firstly that <σ is a strict partial ordering. Secondly that it is well-

founded i.e. there is no infinite descending chain with

. . . wh+1 <σ wh <σ . . . <σ w2 <σ w1 where wi ∈ Z+.

Let x, y, z ∈ Z+. The ordering <σ is irreflexive as x 6<σ x by definition of <σ.

If y <σ x then by definition of <σ it is not true that x <σ y, therefore <σ is

anti-symmetric. If x <σ y and y <σ z, then by definition of <σ, we have x <σ z

and therefore <σ is transitive. So by Definition (a) 2.6.1 <σ is a strict partial

ordering on Z+.

Let w ∈ Z+ and x1, x2 ∈ N0 such that wσ = (x1, x2) then <σ is an ordering
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on the Cartesian product (x1, x2) where each of x1, x2 is ordered by <sh. By

Lemma 2.6.2 the ordering <sh is well-founded, therefore by Lemma 2.6.6, <σ is

well-founded.

It remains to prove that for every (u, v) ∈ R′ we have v <σ u. We examine each

rule in turn:

(2)′ (γ0x, x) where uσ = (0, 2) and vσ = (0, 1)⇒ v <σ u.

(3)′ (yγ0, y) where uσ = (0, 2) and vσ = (0, 1)⇒ v <σ u.

(4)′ (λiλj , λix
uj ) where uσ = (2, 2) and vσ = (1, 1 + uj)⇒ v <σ u.

(5)′ (xλi, x
1+ui) where uσ = (1, 2) and vσ = (0, 1 + ui)⇒ v <σ u.

(6)′ (yλi, yx
ui) where uσ = (1, 2) and vσ = (0, 1 + ui)⇒ v <σ u.

(7)′ (γrλi, γrx
ui) where uσ = (1, 2) and vσ = (0, 1 + ui)⇒ v <σ u.

(8)′ (xy, γ0) where uσ = (0, 2) and vσ = (0, 1)⇒ v <σ u.

(9)′ (λiy, λj) where uσ = (1, 2) and vσ = (1, 1)⇒ v <σ u.

(10)′ (λiy, γ0) where uσ = (1, 2) and vσ = (0, 1)⇒ v <σ u.

(11)′ (γry, y) where uσ = (0, 2) and vσ = (0, 1)⇒ v <σ u.

(12)′ (xγr, x) where uσ = (0, 2) and vσ = (0, 1)⇒ v <σ u.

(13)′ (λiγr, λi) where uσ = (1, 2) and vσ = (1, 1)⇒ v <σ u.

(14)′ (λiγr, λj) where uσ = (1, 2) and vσ = (1, 1)⇒ v <σ u.

(15)′ (γrγt, γr) where uσ = (0, 2) and vσ = (0, 1)⇒ v <σ u.

(16)′ (γrγt, γt) where uσ = (0, 2) and vσ = (0, 1)⇒ v <σ u.

Hence for all (u, v) ∈ R′ we have v <σ u. Therefore we have defined a reduction

ordering <σ on Z+ which is compatible with R′ and so the rewriting system

(Z,R′) is noetherian.

Theorem 5.2.8. Let U2 = ΛI,p,d ∪ Σp,d,P be a subsemigroup of the bicyclic

monoid, Z an alphabet, L′ the set of words in Z+ and R′ the set of rewrite rules

in Z+ × Z+, all as defined above.

Then (Z,R′) is a finite complete semigroup rewriting system for U2.
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Proof. By Lemma 5.2.3, 〈Z |R′〉 is a finite semigroup presentation for U2. By

Lemma 5.2.7, the rewriting system (Z,R′) is noetherian. By Lemma 5.2.5, L′ is

the unique set of normal forms with L′ = IRR(R′). Then by Theorem 2.6.14 and

Lemma 2.6.10 we can say that (Z,R′) is a finite complete semigroup rewriting

system for U2.

Lemma 5.2.9. Let S2 = FD ∪ F ∪ ΛI,p,d ∪Σp,d,P be the two sided subsemigroup

of the bicyclic monoid as defined above.

Then there exists a finite presentation for S2 which is a finite complete rewriting

system.

Proof. Let U2 = ΛI,p,d∪Σp,d,P . By Theorem 5.2.8, 〈Z |R′〉 is a finite presentation

for U2 which is a finite complete rewriting system. By definition, S2\U2 = FD∪F

is a finite set. The result follows from this and Corollary 2.6.21.

5.2.5 Upper subsemigroup of B

Let S4 = FD ∪ F ∪ ΛI,p,d be an upper subsemigroup of the bicyclic monoid B

as defined in Theorem 5.1.2 and Lemma 5.1.3. Note that the sets FD and F are

finite and that ΛI,p,d is a subsemigroup by Lemma 5.1.3. Let

U4 := S4 \ FD ∪ F = ΛI,p,d.

Let Λ be an alphabet, f the homomorphism f : Λ+ → U4 and L ⊆ Λ+ the unique

set of normal forms, all as defined in Theorem 5.1.8.

Define the following set of string rewriting rules R′ in Λ+ × Λ+:

λ(i, j)λ(k, l)→ λ(i, r)λ(i0, 0)q if λ(k, l) 6≡ λ(i0, 0);

where j + uk + l = qu+ r, 0 ≤ r < u, (i, k ∈ I; j, l ∈ {0, . . . , u− 1}).
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Note that the rules R′ are the relations from R but expressed in terms of a rewrite

rule. However, we have the extra condition i.e. λ(k, l) 6≡ λ(i0, 0). This change is

in order to achieve the noetherian property for the rewrite system (Λ, R′) which

we will prove later.

The definitions and notation above relating to S4, U4, f,Λ, L,R
′ will stay in

force for the remainder of Subsection 5.2.5. The rest of this subsection will be

devoted to proving that (Λ, R′) is a complete semigroup rewriting system

defining the subsemigroup U4 and L is the set of irreducible words with respect

to this presentation. As a consequence we will conclude with a proof that there

exists a finite semigroup presentation for S4 which is a finite complete

semigroup rewriting system.

Lemma 5.2.10. The subsemigroup U4 is defined by the finite presentation

〈Λ |R′〉.

Proof. By Theorem 5.1.8, 〈Λ |R〉 is a finite presentation for ΛI,p,d = U4. We aim

to prove that 〈Λ |R′〉 is equivalent to 〈Λ |R〉.

We are considering the semigroup presentation 〈Λ |R′〉 and therefore we can

compare Λ+/
∗↔R′ with Λ+/

∗↔R in terms of their congruence classes in that

these represent the elements in the subsemigroup U4. Most relations R and

R′ are equal when considered as unordered sets of defining relations with one

exception. As such, we only have one potential difference, which is the exclusion

of λ(i, j)λ(i0, 0) = λ(i, r)λ(i0, 0)q from the set R′. So, if we have λ(i, j)λ(i0, 0)

on the left hand side under the relations R, then we can calculate what the right

hand side would be. To find r and q we use the following:

j + uk + l = qu+ r, 0 ≤ r < u and i, k ∈ I; j, l ∈ {0, . . . , u− 1}.

In this case as k = i0 we have uk = u and also l = 0 which gives us

j+u+ 0 = qu+ r. Also, we know that j, r ∈ {0, . . . , u− 1} and so we can deduce
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that as j and r are both strictly less than u then q = 1 and it follows that j = r.

So, in applying the relations in R we find that our calculations would result

in the relation λ(i, j)λ(i0, 0) → λ(i, j)λ(i0, 0), which is clearly redundant and

is the relation which we have excluded from the set R′. This means that we

have simply removed a redundant relation and therefore by Theorem 2.8.2, the

congruence classes for Λ+/
∗↔R′ and Λ+/

∗↔R are the same. Hence 〈Λ |R′〉 is a

finite presentation for U4.

Next we aim to prove that the rewriting system (Λ, R′) is a finite complete

rewriting system.

Lemma 5.2.11. The set L ⊆ Λ+ is a set where each word uniquely represents

an element in U4 as defined by the presentation 〈Λ |R′〉.

Proof. By Theorem 5.1.8 L ⊆ Λ+ is the unique set of normal forms for the

presentation 〈Λ |R〉 and therefore they represent every element in the

subsemigroup U4. In Lemma 5.2.10 it was proved that the congruence classes

Λ+/
∗↔R′ and Λ+/

∗↔R are the same. Therefore L ⊆ Λ+ is a set where each

word uniquely represents an element in U4 as defined by the presentation

〈Λ |R′〉.

Lemma 5.2.12. The set L is the set of irreducible words in Λ+ which uniquely

represents the elements in U4 with respect to the string rewriting system (Λ, R′).

Proof. By Lemma 5.2.11 we have shown that L uniquely represents every element

in U4 as defined by the presentation 〈Λ |R′〉. It remains to prove that L =

IRR(R′).

Let l be an arbitrary word in L and now we look for any substring of letters in l

that appear within the left hand side of any rewrite rule in R′. If such a substring

does not exist then the word is irreducible by the rewrite rules in R′. Possible

substrings are as follows:
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(a) λ(i, j)λ(i0, 0) which is specifically excluded from the rewrite rules as the

second letter is λ(i0, 0) and so this substring will not be rewritten.

(b) λ(i0, 0)λ(i0, 0) as above for (a).

(c) λ(i, j) there is no rewrite rule for a single letter.

(d) λ(i0, 0) there is no rewrite rule for a single letter.

Thus all the words in L are irreducible under R′ and therefore L ⊆ IRR(R′). It

remains to prove that IRR(R′) ⊆ L, that is, if any word, say w ∈ Λ+ is irreducible

then it must be in the set L. The proof is by induction on the length of the word

w.

Induction statement

Let w ∈ Λ+ be irreducible and let w1 ≡ wa where a ∈ Λ such that |w1| = |w|+ 1.

Next apply the rewrite rules R′ to w1 such that w1
∗−→R′ w

′
1 ∈ IRR(R′), then

w′1 ∈ L.

Base case

If |w| = 0 then w1 ∈ Λ and w1 is irreducible, and we have w ∈ L.

Let w ∈ Λ+ be irreducible with |w| ≥ 1 and let a ∈ Λ. It follows from the

inductive hypothesis that w′1 ∈ L′. There are now several cases to consider, note

that i0, i, k ∈ I and j, l, r, s, t ∈ {0, . . . , u− 1} :

(i) Let w1 ≡ λ(i0, 0)λ(k, l) and

if λ(k, l) ≡ λ(i0, 0) then w1 ∈ L;

if λ(k, l) 6≡ λ(i0, 0) then w1 → λ(i0, r)λ(i0, 0)q ∈ L.

(ii) Let w1 ≡ λ(i, j)λ(k, l) with λ(i, j) 6≡ λ(i0, 0) and

if λ(k, l) ≡ λ(i0, 0) then w1 ∈ L;

if λ(k, l) 6≡ λ(i0, 0) then w1 → λ(i, r)λ(i0, 0)q ∈ L.

(iii) Let w1 ≡ λ(i, j)λ(i0, 0)λ(k, l) with λ(i, j) 6≡ λ(i0, 0) and

if λ(k, l) ≡ λ(i0, 0) then w1 ∈ L;
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if λ(k, l) 6≡ λ(i0, 0) then w1 → λ(i, j)λ(i0, s)λ(i0, 0)q → λ(i, r)λ(i0, 0)q1 ∈ L.

(iv) Let w1 ≡ λ(i, j)λ(i0, 0)qλ(k, l) with λ(i, j) 6≡ λ(i0, 0), q > 1 and

if λ(k, l) ≡ λ(i0, 0) then w1 ∈ L;

if λ(k, l) 6≡ λ(i0, 0) then

w1 → λ(i, j)λ(i0, 0)q−1λ(i0, s)λ(i0, 0)q1
∗→ λ(i, r)λ(i0, 0)q

′ ∈ L.

We have shown that our induction statement is true for |w| = 0 and also for

|w1| = |w|+ 1 where |w| ≥ 1, therefore IRR(R′) ⊆ L. As we have already shown

that L ⊆ IRR(R′), then we must have L = IRR(R′).

Next we aim to prove that the rewriting system (Λ, R′) is noetherian. If we look

at the rewrite rules R′ we can gain some understanding of how they act when

they are applied to words in Λ+. A single application of a rewrite rule to a word

can have the following affect

• It can move a letter which is not equal to λ(i0, 0) left one place and at the

same time the number of letters in the word may increase, but only as a

result of the introduction of new words that are equal to λ(i0, 0).

• It can remove a letter which is not equal to λ(i0, 0) and replace it with zero,

one or many letters that are equal to λ(i0, 0).

• It cannot introduce a new letter which is not equal to λ(i0, 0).

Now we define an ordering on words in Λ+ before we later go on to prove that it

is a reduction ordering on Λ+, induced by R′.

Definition 5.2.13. Let w ∈ Λ+ be an arbitrary word. Let φ be the mapping of

words in Λ+ to a finite sequence of integers defined by

φ : Λ+ →
⋃
m∈N

(N)m with wφ 7→ (n1, n2, . . . , nm)

where each nh ∈ {n1, . . . , nm} represents the numbered position of a letter λj ∈ Λ

within the word w, where λj 6≡ λ(i0, 0) and the numbering of the position for nh
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is from left to right in the word.

For example, let w1 ≡ λ(i0, 0)λ(i, j)λ(k, l)λ(i0, 0)λ(i0, 0)λ(g, h) where we have

λ(i, j), λ(k, l), λ(g, h) 6≡ λ(i0, 0) then w1φ = (2, 3, 6).

Let a, b ∈ Λ+ such that bφ = (n1, . . . , nk) and aφ = (m1, . . . ,ml), then we say

b <φ a if one of the following is true:

(i) k < l

(ii) k = l and the smallest value for p ∈ {1, 2, . . . , k} where np 6= mp is such

that np < mp.

Here are some examples in order to clarify the above Definition 5.2.13:

(1) Let w1φ = (1, 3, 7) and w2 = (2, 10) then w2 <φ w1.

(2) Let w1φ = (2, 4, 5, 9, 12) and w2 = (2, 3, 5, 7, 20) then w2 <φ w1.

(3) Let w1φ = (1, 4) and w2 = (1, 4) then w2 6<φ w1 and w1 6<φ w2 .

Lemma 5.2.14. The rewriting system (Λ, R′) is noetherian.

Proof. We will show that <φ, as per Definition 5.2.13, is an admissible, well-

founded partial ordering on Λ+ and then go on to use this to prove that the

rewriting system (Λ, R′) is noetherian.

We prove that <φ is an admissible ordering. Let s ∈ Λ+, α, β, t ∈ Λ∗, a ≡ αsβ

and b ≡ αtβ such that t <φ s. Let αφ = (c1, . . . , cd), βφ = (e1, . . . , ef ), sφ =

(g1, . . . , gh) and tφ = (m1, . . . ,mn). By definition of <φ we have either

(i) n < h or

(ii) n = h and the smallest value for p ∈ {1, . . . , n} where mp 6= gp is such that

mp < gp.

Now we consider aφ and bφ:

aφ = (c1, . . . , cd, g1 + |α|, . . . , gh + |α|, e1 + |α|+ |s|, . . . , ef + |α|+ |s|) and

bφ = (c1, . . . , cd,m1 + |α|, . . . ,mn + |α|, e1 + |α|+ |t|, . . . , ef + |α|+ |t|).

Note that the number of terms in aφ is d+ h+ f and in bφ is d+ n+ f .
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If t <φ s and (i) n < h then when we consider the number of terms in bφ and aφ

we have d+ n+ f < d+ h+ f and so b <φ a.

If t <φ s and (ii) then when we consider the number of terms in bφ and aφ,

we have d + n + f = d + h + f and so we look at the value of the terms. By

(ii) the smallest value for p ∈ {1, . . . , n} where mp + |α| 6= gp + |α| is such that

mp + |α| < gp + |α| and so b <φ a.

Thus in each case b <φ a and therefore <φ is an admissible ordering on Λ+.

To prove that <φ is a well-ordering we need to prove two properties. Firstly that

<φ is a strict partial ordering on Λ+. Secondly that it is well-founded i.e. that

there is no infinite chain of rewriting under R′.

Let x, y, z ∈ Λ+. The ordering <φ is irreflexive as x 6<φ x by definition of <φ. If

y <φ x then by definition of <φ it is not true that x <φ y and therefore <φ is

anti-symmetric. If x <φ y and y <φ z, then by definition of <φ, we have x <φ z

and therefore <φ is transitive. So by Definition (a) 2.6.1 <φ is a strict partial

ordering on Λ+.

Let w1, w2 ∈ Λ+, w1φ = (a1, . . . , an), w2φ = (b1, . . . , bm) such that w2 <φ w1.

When considering if <φ is true, then we have two values that we use. The first

one is the number of entries within the brackets for w1φ and w2φ. This is an

ordering of the form (N0, <) which is well-founded. The second value is only

considered in the case where w1φ and w2φ have the same number of terms i.e.

n = m. Then we compare the values within the brackets i.e. each ai and bi

pair, looking for the first difference. Without loss of generality we can assume

that ai = bi for all i ∈ {1, . . . , x − 1} and that bx < ax. This is equivalent to an

ordering of the form (N0, <) which is well-founded. So we have an ordering <φ

which is essentially a (N0×N0, <k) where <k= (<,<)lex and (<,<)lex is defined

as in Example 2.6.5 (ii). Therefore by Lemma 2.6.6 <φ is well-founded.

It remains to prove that for every (s, t) ∈ R′ we have t <φ s. We consider the

possible values for sφ and tφ for each of the potential rewriting outcomes. There
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are two main cases to consider:

Case 1:

Let s ≡ λ(i0, 0)λ(k, l) with λ(k, l) 6≡ λ(i0, 0) and so t ≡ λ(i0, r)λ(i0, 0)q. We have

two sub cases, one where r = 0 and one where r 6= 0:

(i) If t ≡ λ(i0, 0)λ(i0, 0)q then tφ = () and sφ = (2), therefore t <φ s.

(ii) If t ≡ λ(i0, r)λ(i0, 0)q then tφ = (1) and sφ = (2), therefore t <φ s.

Case 2:

Let s ≡ λ(i, j)λ(k, l) where λ(i, j) 6≡ λ(i0, 0) 6≡ λ(k, l) and so t ≡ λ(i, r)λ(i0, 0)q.

We have two sub cases, one where λ(i, r) ≡ λ(i0, 0) and one where λ(i, r) 6≡

λ(i0, 0):

(i) If t ≡ λ(i0, 0)λ(i0, 0)q, then tφ = () and sφ = (1, 2), therefore t <φ s.

(ii) If t ≡ λ(i, r)λ(i0, 0)q, then tφ = (1) and sφ = (1, 2), therefore t <φ s.

To summarise, for every (s, t) ∈ R′ we have t <φ s. Now we can say that we have

defined a reduction ordering <φ on Λ+ which is compatible with R′ and therefore

the rewriting system (Λ, R′) is noetherian.

Theorem 5.2.15. Let U4 = ΛI,p,d be a subsemigroup of the bicyclic monoid, Λ

an alphabet, L the set of words in Λ+ and R′ the set of rewrite rules in Λ+×Λ+,

all as defined above.

Then (Λ, R′) is a finite complete semigroup rewriting system for U4.

Proof. By Lemma 5.2.10, 〈Λ |R′〉 is a finite presentation for U4. By Lemma

5.2.14, the rewriting system (Λ, R′) is noetherian. By Lemma 5.2.12, L is the

unique set of normal forms with L = IRR(R′). Then by Theorem 2.6.14 and

Lemma 2.6.10 we can say that (Λ, R′) is a finite complete semigroup rewriting

system for U4.

Lemma 5.2.16. Let S4 = FD∪F∪ΛI,p,d be an upper subsemigroup of the bicyclic

monoid as defined above.

Then there exists a finite presentation for S4 which is a finite complete rewriting
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system.

Proof. Let U4 = ΛI,p,d. By Theorem 5.2.15, 〈Z |R′〉 is a finite presentation for

U4 which is a finite complete rewriting system. By definition, S4 \ U4 = FD ∪ F

is a finite set. The result follows from this and Corollary 2.6.21.

5.2.6 Proof of new Theorem 5.2.1

Proof. Returning to the proof of Theorem 5.2.1.

By Theorem 5.1.2, if S is a subsemigroup of the bicyclic monoid B, then it takes

one of five different forms. By Theorem 5.1.5, there are five forms of subsemigroup

which are finitely generated. We refer the reader to previous sections and to

[13] and [14] for full definitions. We consider each of the five finitely generated

subsemigroups in turn:

(i) A finite subset of the diagonal, which we define as S1 ⊆ D. By Lemma

5.2.2, there exists a presentation for S1 which is a finite complete semigroup

rewriting system.

(ii) A two-sided subsemigroup, which is defined as S2 = FD∪F∪ ΛI,p,d ∪Σp,d,P .

By Lemma 5.2.9, there exists a presentation for S2 which is a finite complete

semigroup rewriting system.

(iii) A two-sided subsemigroup which is defined as S3 = FD∪F̂ ∪ Λ̂I,p,d ∪ Σp,d,P .

By Lemma 5.2.9 and the anti-isomorphism of S3 with S2, then there exists

a presentation for S3 which is a finite complete semigroup rewriting system.

(iv) An upper subsemigroup, which is defined as S4 = FD ∪ F ∪ ΛI,p,d. By

Lemma 5.2.16, there exists a presentation for S4 which is a finite complete

semigroup rewriting system.

(v) A lower subsemigroup, which is defined as S5 = FD ∪ F̂ ∪ Λ̂I,p,d. By

Lemma 5.2.16 and the anti-isomorphism of S5 with S4 then there exists a

presentation for S5 which is a finite complete semigroup rewriting system.
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This completes the proof of Theorem 5.2.1.

5.3 Further applications

Corollary 5.3.1. Every finitely generated subsemigroup of the bicyclic monoid

has finite derivation type.

Proof. By Theorem 5.2.1 every finitely generated subsemigroup of the bicyclic

monoid admits a presentation which is a finite complete rewriting system. Then

by Theorem 4.4.2 and Definition 4.4.4, every finitely generated subsemigroup of

the bicyclic monoid has FDT.

5.4 Potential future work

It would be interesting to identify other monoids, or classes of monoids, with

the property that all their finitely generated submonoids admit a finite complete

rewriting system (like the bicyclic monoid does). In particular, we do not yet

know whether the plactic monoid has this property.



6

Plactic monoid submonoids and

homogeneous presentations

6.1 Introduction to the plactic monoid

6.1.1 Plactic monoid definitions and notation

This section includes the relevant definitions and properties of the plactic monoid,

some of which have been reproduced from [34, Chapter 5]. Further information

and more detail can be found in this work. Also included are definitions for Young

diagrams and tableau taken from [15] and [4], where further information can be

found. Note that there can be two different conventions for a Young diagram and

here we will describe one.

The following definition of the plactic monoid uses the classic Knuth relations.

Definition 6.1.1. [34, Def 5.2.2] Let n ∈ N. Let A be the finite ordered alphabet

{1 < 2 < . . . < n}. Let R be the set of Knuth relations:

{(xzy, zxy) : x ≤ y < z} ∪ {(yxz, yzx) : x < y ≤ z} where x, y, z ∈ A.

Then the plactic monoid Pn of rank n is the monoid defined by the presentation

〈A |R〉.

In studying the plactic monoid we will use a combinatorial structure known as a

Young tableau. In order to describe this structure we first make some definitions.
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A row is a non-decreasing word in A∗ i.e. a word α ≡ α1 . . . αk, where αi ∈ A,

in which αi ≤ αi+1 for all i = 1, . . . , k − 1. Let α ≡ α1 . . . αk and β ≡ β1 . . . βl

(where αi, βi ∈ A) be rows. The row α dominates the row β, denoted α . β if

k ≤ l and αi > βi for all i = 1, . . . , k.

Any word w ∈ A∗ has a decomposition as a product of rows of maximal length

w ≡ α(1) . . . α(k), where α(1) is the longest prefix of w that is a row, then α(2) is

the longest prefix of the remaining suffix which is a row, and so on. Such a word

w is a tableau if α(i) . α(i+1) for all i = 1, . . . , k − 1. It is usual to write tableaux

in planar form with the rows placed in order of domination and left-justified i.e.

as a Young tableau, which we will see shortly.

A column is a strictly decreasing word in A∗ i.e. a word α ≡ α1 . . . αl, where

αi ∈ A, in which αi+1 < αi for all i = 1, . . . , l − 1.

A Young diagram (also called a Ferrers diagram, particularly when represented

using dots) is a finite collection of boxes, or cells, arranged in left-justified rows,

with longer rows appearing below shorter rows such that there is a weakly

increasing number of boxes in each row. Listing the number of boxes in each

row gives a partition of the integer n that is the total number of boxes.

Conversely, every partition of n corresponds to a Young diagram. For example,

the partition of 15 into 5 + 4 + 4 + 2 corresponds to the Young diagram:

We write partitions in the form λ = (λ1, λ2, . . . , λm) where λ1 ≥ λ2 ≥ . . . ≥ λm.

So the partition above would be written as (5, 4, 4, 2). A Young tableau, or simply

a tableau, of shape λ is a filling of a Young diagram of the partition λ with positive

integers such that the entries are:

(i) weakly increasing across each row;

(ii) strictly decreasing down each column.
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The above filling of a Young diagram will result in a semistandard tableau. A

standard tableau is a tableau in which the entries are numbered from 1 to n, each

occurring once. We will be working with semistandard tableau when considering

the plactic monoid. Entries of tableaux can also be taken from any alphabet

(totally ordered set), but positive integers are more usual. The following example

is a tableau of shape (5, 4, 4, 2):

7 8
4 6 7 7
2 2 3 4
1 1 1 3 5

The column-reading of a tableau is the word obtained by reading the tableau

down each column in turn, with the columns ordered left-to-right. Dually, the

row-reading of a tableau is the word obtained by reading the tableau along each

row in turn from left-to-right, with the rows ordered from top-to-bottom. Thus,

the row-reading of the above example tableau would result in the word

78 4677 2234 11135. Note that this is a tableau word (in the sense defined

above). Indeed, it is immediate from the definitions that every tableau word

gives rise to a semistandard tableau, and conversely the row reading of any

semistandard tableau is a tableau word.

The importance of tableau words is that every word in A∗ is equal in the plactic

monoid Pn to a unique tableau word (see Theorem 6.1.5 below). We use P (w)

to denote the unique tableau word such that w = P (w) in the plactic monoid.

The word P (w) can be computed from w using Schensted’s algorithm. Next we

introduce Schensted’s algorithm which is a process to determine the tableau for

any given word. Here we use it to obtain a tableau word.

Definition 6.1.2. Let P : A∗ → A∗ be the map defined by induction on word

length in the following way. We define P (ε) ≡ ε (where ε is the empty word) and

P (a) ≡ a for every letter a ∈ A. Then for any word w ∈ A∗ with |w| > 1 we

define P (w) ≡ P (P (w′)γ) where w ≡ w′γ, γ ∈ A and P (P (w′)γ) is computed by

applying Schensted’s algorithm (see Definition 6.1.3 below) to the tableau word
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P (w′) with the letter γ.

The following definition and additional paragraph of further explanation have

been taken from [4]. Let w ∈ A∗ be a tableau word and let γ ∈ A. The unique

tableau word P (wγ) can be computed via Schensted’s algorithm [34] which we

recall here:

Definition 6.1.3. [4, Algorithm 2.2] [Shensted’s algorithm]

Input: A tableau word w with rows α(1), . . . , α(k) and a letter γ ∈ A.

Output: The unique tableau word P (wγ) equal to wγ in Pn.

Method:

Case 1 If α(k)γ is a row, the result is P (wγ) ≡ α(1) . . . α(k)γ.

Case 2 If α(k)γ is not a row, the result is determined as follows: Suppose α(k) ≡

α1 . . . αl where αi ∈ A for all i ∈ {1, . . . , l} and let j be minimal such

that αj > γ. Then the result is P (wγ) = P (α(1) . . . α(k−1)αj)α
′(k) where

α′(k) ≡ α1 . . . αj−1γαj+1 . . . αl.

Notice that in Case 2, the algorithm replaces αj by γ in the lowest row and

recursively right-multiplies by αj the tableau formed by all rows except the lowest.

This is referred to as bumping αj to a higher row. When αj is bumped, it will be

inserted into the row above either in the same column or in some column further

to the left. This happens because columns are strictly decreasing from top to

bottom, so either the cell above αj contains some symbol δ greater than αj , or

αj is the topmost element of its column. In the former case, αj will be inserted

so as to replace the leftmost symbol greater than αj , which must either be to the

left of δ or δ itself, since rows are non-decreasing from left to right. In the latter

case, αj will be appended to the end of the row above and so will be placed either

in the same column or further left.
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The following example illustrates the stages of using Schensted’s algorithm and

shows how it can be applied to compute a tableau word from a given word,

starting from scratch. Note that the tableau word can be obtained by row-reading

of the Young tableau.

Example 6.1.4. Let P5 be the plactic monoid on the ordered alphabet A = {1 <

2 < . . . < 5} and w ≡ 213543 ∈ A+. Then the tableau word P (w) is computed

using Schensted’s algorithm as follows:

2
2
1

2
1 3

2
1 3 5

2 5
1 3 4

5
2 4
1 3 3

so that

P (213543) ≡ 524133.

Note that the rows of this tableau word are 5, 24 and 133.

This brings us to the important fact which relates tableaux to the plactic monoid.

Let Pn be the plactic monoid on the alphabet A = {1, 2, . . . , n} and let u, v ∈ A∗.

We introduce an equivalence relation ∼ on A∗ defined by u ∼ v if and only if

P (u) ≡ P (v).

Theorem 6.1.5. [34, Theorem 5.2.5] The equivalence ∼ coincides with the

plactic congruence. In particular, each plactic class contains exactly one tableau

word.

Consider the plactic monoid Pn, let w1, w2 ∈ A∗ represent the same element in

Pn i.e. w1 = w2. Then P (w1) ≡ P (w2). Note this also means that |w1| = |w2|

and both words contain exactly the same letters from A but in a different order.

As a further example, we can use Schensted’s algorithm to see the equality in the

Knuth relations used to define the plactic monoid see Definition 6.1.1.

Let x < y < z then

P (xzy) ≡ P (zxy) z
x y

and P (yxz) ≡ P (yzx) y
x z
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Let x < y then

P (xyx) ≡ P (yxx) y
x x

and P (yxy) ≡ P (yyx) y
x y

To illustrate how useful it is to find the tableau form of a word we take an arbitrary

word w = 132541 in the plactic monoid P5. The diagram below (Figure 6.1.1)

shows relations between certain words, all of which represent the same element

in P5. In fact the diagram is a graph showing part of a connected component of

the Squier graph. Recall we encountered these in a previous chapter.

132541

312541

315241

351241

351214

352114

325114

321514 321154

315214

135241

135214

132514

312514

312154

132154

Figure 6.1.1: Notes for the diagram. The boxes represent words in A∗, all of which
represent the same element in P5. A double headed arrow depicts an application
of a Knuth relation which can be applied in both directions between two words.
In a few cases it is possible to apply a relation to separate sub strings within the
words and this case is represented by two double headed arrows. The diagram
is not exhaustive and shows only a selection of words which could represent this
particular element.

Alternatively, by applying Schensted’s algorithm to say w1 ≡ 132541 and

w2 ≡ 312154, we can see that w1 =P5 w2.

P (w1) ≡ P (132541) 1 1 3
3
1 2

3
1 2 5

3 5
1 2 4

3
2 5
1 1 4
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and

P (w2) ≡ P (312154) 3
3
1

3
1 2

3
2
1 1

3
2
1 1 5

3
2 5
1 1 4

Similarly, if we have w3 ∈ A∗ where w3 ≡ 113254 and applying Schensted’s

algorithm we get:

P (w3) ≡ P (113254) 1 1 1 1 3
3
1 1 2

3
1 1 2 5

3 5
1 1 2 4

Hence w3 6=P5 w1, even though both words contain the same letters.

6.1.2 Introduction to plactic monoid research

In this chapter we will investigate the properties of finitely generated submonoids

of the plactic monoid Pn. In particular we shall consider the following problems.

• Is every finitely generated submonoid of the plactic monoid finitely

presented i.e. is the plactic monoid coherent?

• Does every finitely generated submonoid of the plactic monoid have FDT?

• Does every finitely generated submonoid of the plactic monoid admit a

presentation by a finite complete presentation?

Recall that previously in Chapter 5 we saw that for the bicyclic monoid B the

answer to all these questions is yes. In this chapter we obtain partial results to

the three questions above by identifying certain families of submonoids of plactic

monoids (for certain values of n) for which answers to the questions above are

yes. One thing that makes this investigation more difficult than the corresponding

result for the bicyclic monoid is that there are currently no results in the literature

which classify all forms of submonoids of plactic monoids.

In [4] Cain, Gray and Malheiro proved that for all n ≥ 1 the plactic monoid Pn
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admits a finite complete presentation. The complete presentation they obtain is

given with respect to a particular finite generating set called the column

generators. Given this result, it is natural to ask whether the finitely generated

submonoids of Pn also admit finite complete rewriting systems. In earlier work

[30] Kubat and Okniński used the Knuth-Bendix completion procedure [3,

Section 2.4] to prove that the plactic monoid P3 admits a finite complete

presentation with respect to the generating set {1, 2, 3}. They also prove that

the same approach does not work for Pn where n > 3.

6.1.3 Existing results on the plactic monoid P3

Theorem 6.1.6. [30, Theorem 1 and Corollary 2] Let B = {1, 2, 3} and let

R = {(332, 323), (322, 232), (331, 313), (311, 131), (221, 212), (211, 121), (231, 213),

(312, 132), (3212, 2321), (32131, 31321), (32321, 32132)}.

Then (B,R) is a finite complete rewriting system defining the plactic monoid P3.

Moreover, with respect to this system, the irreducible words are precisely those of

the form

(1)i(21)j(2)k(321)l(32)m(3)q or

(1)i(21)j(31)k(321)l(32)m(3)q

for non-negative integers i, j, k, l,m, q.

6.2 New research on isomorphic submonoids of the

plactic monoid

In this section we consider the plactic monoid P3 and the submonoid generated

by the set Xq = {1q, 2q, 3q} for some fixed q ∈ N, and then go on to prove two new
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general results. First let us look at an example which will motivate the results

that follow.

Example 6.2.1. Let P3 be the plactic monoid on the alphabet A = {1, 2, 3} with

w,w3 ∈ A+ and w ≡ 13221, w3 ≡ 1333232313. Then we look at their tableau

words as follows:

P (w) ≡ P (13221) ≡ 3 2 112 1 3
3
1 2

3
1 2 2

3
2
1 1 2

P (w3) ≡ P (111333222222111) ≡ 333 222 111111222 ≡ 33 23 131323

1 1 1 3 3 3
3 3 3
1 1 1 2 2 2

3 3 3
1 1 1 2 2 2 2 2 2

3 3 3
2 2 2
1 1 1 1 1 1 2 2 2

So we start to see a pattern that suggests an isomorphism between the plactic

monoid Pn and the submonoid generated by {1q, 2q, . . . , nq} for a fixed q ∈ N.

First a useful lemma that proves how the q-blocks of numbers will always stay

together when looking at the unique tableau form for an element.

Lemma 6.2.2. Let Pn be the plactic monoid generated by the alphabet

A = {1, 2, . . . , n} where n ∈ N. Let Aq = {1q, 2q, . . . , nq} with q ∈ N. Let

g : A∗ → A∗ be the homomorphism satisfying g(a) = aq for all a ∈ A. Then for

every word w ∈ A∗, if w is a tableau word then g(w) is also a tableau word.

Proof. If w is a tableau word, it is the word of some tableau t. Let tq be the

tableau obtained by replacing each a ∈ t with q occurrences of a. Then g(w) is

the word corresponding to tq and hence is a tableau word.

Lemma 6.2.3. Let Pn be the plactic monoid generated by the alphabet

A = {1, 2, . . . , n} where n ∈ N. Let S be the submonoid generated by the set

Aq = {1q, 2q, . . . , nq} and let g : A∗ → A∗ be the homomorphism satisfying
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g(a) = aq for all a ∈ A. Then, for every w ∈ A∗

P
(
g(w)

)
≡ g
(
P (w)

)
∈ A∗.

Proof. We proceed by induction on |w|.

Base case: Let w ≡ a ∈ A so |w| = 1. Then

g
(
P (a)

)
≡ g(a) ≡ aq and P

(
g(a)

)
≡ P (aq) ≡ aq.

Inductive step: Write w ≡ a1a2 . . . alγ ≡ w′γ with γ, a1, . . . , al ∈ A and |w| ≥ 2,

then g(w) ≡ aq1 . . . a
q
l γ
q and

P
(
g(w)

)
≡ P

(
g(w′) g(γ)

)
[ since g is a homomorphism ]

≡ P
(
P
(
g(w′)

)
g(γ)

)
[ by definition of P ]

≡ P
(
g
(
P (w′)

)
g(γ)

)
[ by induction ]

≡ P
(
g
(
P (w′) γ

) )
[ since g is a homomorphism ] .

Recall that we are aiming to show that P
(
g(w)

)
≡ g

(
P (w)

)
for every w ∈ A∗

and we have just shown above that P
(
g(w)

)
≡ P

(
g
(
P (w′)γ

))
. So to complete

the proof it suffices to prove that

P
(
g
(
P (w′)γ

) )
≡ g
(
P (w)

)
.

Now by definition of P we know P (w) ≡ P (w′γ) ≡ P
(
P (w′) γ

)
.

Set τ ≡ P (w′) which is a tableau word by definition of P .

Now we need to prove that

P
(
g(τγ)

)
≡ g
(
P (τγ)

)
.

So to complete the proof of the lemma we shall now prove by induction on the

number of rows that for every tableau word τ and every letter γ ∈ A = {1, . . . , n}
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we have

P
(
g(τγ)

)
≡ g
(
P (τγ)

)
.

Base case: Suppose τ has just one row. Write τ ≡ a1a2 . . . al ∈ A∗ with A =

{1, 2, . . . , n}. Since τ is a row word it satisfies a1 ≤ a2 ≤ . . . ≤ al.

If γ ≥ al then τγ is a tableau word and g(τγ) is also a tableau word by Lemma

6.2.2 and consequently

g
(
P (τγ)

)
≡ g(τγ) ≡ P

(
g(τγ)

)
.

If γ < al then with j minimal such that aj > γ then Schensted algorithm gives

P (τγ) ≡ aj(a1 . . . aj−1 γ aj+1 . . . al) so that

g
(
P (τγ)

)
≡ aqj (aq1 . . . a

q
j−1 γ

q aqj+1 . . . a
q
l ).

On the other hand, we have P
(
g(τγ)

)
≡ P (aq1 . . . a

q
l γ
q). Consider P (aq1 . . . a

q
l γ).

Note that g(τ) ≡ aq1 . . . a
q
l is a tableau word (Lemma 6.2.2). From the definition

of j above, we see that P
(
aq1 . . . a

q
l γ
)
≡ aj

(
aq1 . . . a

q
j−1 (aq−1

j γ) aqj+1 . . . a
q
l

)
.

Repeating this argument, using Schensted’s algorithm to insert each letter of

γq, we eventually obtain

P
(
g(τγ)

)
≡ P (aq1 . . . a

q
l γ
q)

≡ aqj(a
q
1 . . . a

q
j−1 γ

q aqj+1 . . . a
q
l )

≡ g
(
P (τγ)

)
, as required.

This completes the base case.

Inductive step: Let τ ≡ α(1) . . . α(k) be a tableau word with rows α(1), . . . , α(k)

and k ≥ 2, and let γ ∈ A. If α(k)γ is a row word then τγ is a tableau word, so
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P (τγ) ≡ τγ, and hence g(τγ) is also a tableau word (Lemma 6.2.2) and thus

P
(
g(τγ)

)
≡ g
(
τγ
)

≡ g
(
P (τγ)

)
, as required.

Now suppose that α(k)γ is not a row. Write τ ≡ τ ′α(k) with α(k) ≡ a1 . . . al.

So γ < al with j minimal such that aj > γ then Schensted’s algorithm gives

P (α(k)γ) ≡ aj (a1 . . . aj−1 γ aj+1 . . . al).

Now we have

g
(
P (τγ)

)
≡ g
(
P (τ ′α(k)γ)

)
≡ g
(
P (τ ′aj) α

′(k)
)

where α′(k) ≡ a1 . . . aj−1 γ aj+1 . . . al

≡ g
(
P (τ ′aj)

)
g(α′(k)) [ since g is a homomorphism ]

≡ P
(
g(τ ′aj)

)
g(α′(k)) [ by induction ]

≡ P
(
g(τ ′)aqj

)
(aq1 . . . a

q
j−1 γ

q aqj+1 . . . a
q
l )

≡ P
(
g(τ ′) P

(
g(α(k)γ)

) )
[ by the base case ]

≡ P
(
g(τ ′) g(α(k)γ)

)
[ by definition of P ]

≡ P
(
g(τγ)

)
[ since g is a homomorphism ].

This completes the proof.

Theorem 6.2.4. Let Pn be the plactic monoid generated by A = {1, 2, . . . , n}

where n ∈ N. Let S be the submonoid of Pn generated by Aq = {1q, 2q, . . . , nq}

for some fixed q ∈ N. Then S is isomorphic to Pn.

Proof. We have A = {1, 2, . . . , n} and Aq = {1q, 2q, . . . , nq}. As in Lemma 6.2.2

let g : A∗ → A∗ be the mapping defined by g(a) = aq for all a ∈ {1, 2, . . . , n}. We

claim that g induces a well-defined isomorphism between Pn and S. By Lemma

6.2.3 we know that for all words w ∈ A∗ we have P
(
g(w)

)
≡ g
(
P (w)

)
.

Let w1, w2 ∈ A∗. If w1 = w2 in Pn then P (w1) ≡ P (w2) which implies
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g
(
P (w1)

)
≡ g
(
P (w2)

)
and hence

P
(
g(w1)

)
≡ g

(
P (w1)

)
≡ g

(
P (w2)

)
≡ P

(
g(w2)

)
which implies g(w1) = g(w2) in

Pn. This proves that g induces a well-defined homomorphism ĝ from Pn to S.

Since S is generated by g({1, . . . , n}) the map ĝ is surjective. Finally, to see that

ĝ is injective, if g(w1) = g(w2) in Pn then

P
(
g(w1)

)
≡ P

(
g(w2)

)
⇒ g

(
P (w1)

)
≡ g
(
P (w2)

)
⇒ P (w1) ≡ P (w2) [ since g : A∗ → A∗ is injective ]

⇒ w1 = w2 in Pn.

This completes the proof that ĝ : Pn → S is an isomorphism.

We now aim to generalise Theorem 6.2.4. Let us begin with an illustrative

example.

Example 6.2.5. Let P3 be the plactic monoid on the alphabet A = {1, 2, 3} and

w1 ≡ 132, w2 ≡ 13322, w3 ≡ 15315210 with w1, w2, w3 ∈ A+. Then we look at

their tableau forms as follows:

P (w1) ≡ P (132) ≡ 3 12 1 1 3
3
1 2

P (w2) ≡ P (13322) ≡ 33 1223 1 1 3 3 3
3
1 2 3 3

3 3
1 2 2 3

P (w3) ≡ P (15315210) ≡ 3535 15252535

1 1 1 1 1 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3

3
1 1 1 1 1 2 3 3 3 3 3 3 3 3 3 3 3 3 3 3

3 3 3 3 3
1 1 1 1 1 2 2 2 2 2 3 3 3 3 3 3 3 3 3 3
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3 3 3 3 3 3
1 1 1 1 1 2 2 2 2 2 2 3 3 3 3 3 3 3 3 3

3 3 3 3 3 3 3 3 3 3
1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 3 3 3 3 3

So we start to see a pattern that suggests an isomorphism between the

submonoids of the plactic monoid P3 generated by the sets A2 = {1, 22, 33} and

A3 = {15, 210, 315}. Note, it can clearly be seen that there is no isomorphism

between P3 and either the submonoid generated by A2, or the submonoid

generated by A3, as there is no common divisor across the generating alphabet

A2 (or A3) when compared to A. Also, we observe that the generators 33 ∈ A2

and 315 ∈ A3 have been “split” when we look at the tableau word, meaning that

in general, if b2 ∈ A∗2 and b3 ∈ A∗3 then we can have P (b2) /∈ A∗2 and P (b3) /∈ A∗3.

However, in tableau word form the individual letters from the alphabet A

remain in blocks of five, which is a common divisor of the powers in the set A3.

In addition, if we divide the powers of all the generators in A3 by five we get the

generating set A2. This is similar to what we have seen previously in this

section.

Theorem 6.2.6. Let Pn be the plactic monoid generated by A = {1, 2, . . . , n}

where n ∈ N. Let S be the submonoid of Pn generated by As = {1s1 , 2s2 , . . . , nsn}

for s1, s2, . . . , sn ∈ N and set q = gcd{s1, s2, . . . , sn}. Let T be the submonoid

generated by At = {1t1 , 2t2 , . . . , ntn} where tx = sx/q for all x ∈ {1, 2, . . . , n}.

Then S is isomorphic to T .

Proof. This is proved in a similar way to Theorem 6.2.4. We shall just highlight

the changes needed to modify that proof.

In order to make this proof clearer to see we redefine the generating sets for the

submonoids S and T as follows:

Let T be generated by the set B = {1t1 , 2t2 , . . . , ntn}.

Let S be generated by the set Bq = {(1q)t1 , (2q)t2 , . . . , (nq)tn}.
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Let g : A∗ → A∗ be the homomorphism defined by g(a) = aq for all a ∈ A. From

Lemma 6.2.3 it follows that g(P (w)) ≡ P (g(w)) for all w ∈ A∗. Observe that g

maps B to Bq and hence maps B∗ to B∗q . Using the fact that g(P (w)) ≡ P (g(w))

for all w ∈ B∗ it can then be shown (in a similar way to the proof of Theorem

6.2.4) that g induces an isomorphism between T and S.

6.3 Monoids with homogeneous presentations

6.3.1 Introduction

The results in this section arise from investigating the properties of a different

submonoid of the plactic monoid Pn, that is the submonoid which consists of all

the elements of Pn which have a length divisible by j where j ∈ N is fixed. It is

clear from the definition of the plactic monoid that all words that represent the

same element will have the same length, therefore we can refer to the length of

an element and element length. So we consider the submonoid generated by the

set Aj = {a1a2 . . . aj : a1, a2, . . . , aj ∈ A}.

This motivates a proposed general theory regarding a particular form of

presentation for monoids, which we define below.

Definition 6.3.1. Let 〈A |R〉 be a presentation where A is an alphabet and

R = {(u1, v1), (u2, v2), . . . , (uk, vk)} and |ui| = |vi| for all i ∈ {1, 2, . . . , k}.

Then 〈A |R〉 is a homogeneous presentation.

In this section we will prove the following result.

Proposition 6.3.2. Let M be the monoid defined by the homogeneous

presentation 〈A |R〉 where A is a finite alphabet and R is a finite set of

relations in A∗ ×A∗. Fix j ∈ N and let E be the submonoid of M which consists

of all the elements of M which have a length divisible by j.
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Suppose further that the presentation 〈A |R〉 is a finite complete rewriting system.

Then there exists a presentation for E which is a finite complete rewriting system.

Recall that by Theorem 6.1.6 the plactic monoid P3 admits a finite homogeneous

presentation which is a finite complete rewriting system. As such we will be

able to apply the above proposition, in the relevant circumstances, once we have

proved it is true.

Throughout the remainder of Section 6.3 the definitions in Proposition 6.3.2 for

the monoid M and submonoid E will apply unless stated otherwise. In addition,

let η be the smallest congruence on A∗ which contains R. Thus if w ∈ A∗ is a

word, then w/η is the element which is represented by w in M .

An obvious consequence of a homogeneous presentation is that all the words

which represent the same element will have the same length as the relations do

not alter the length of the word. (The reverse is not true i.e. all words of the

same length do not necessarily represent the same element.) We can refer to the

length of an element of a monoid which is defined by a homogeneous presentation

by defining it to be the length of a word by which it is represented. This notion

of element length is well defined as it is independent of the choice of word. Next,

a useful lemma, the proof for which is obvious.

Lemma 6.3.3. Let M be a monoid defined by a finite homogeneous presentation

and E the submonoid consisting of all the elements of M whose length is divisible

by some fixed j ∈ N. Define the set of words in A∗ that are of length j:

X0 = { w ∈ A∗ : |w| = j }.

Then X0 is a finite generating set for E.
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6.3.2 Linking new research to that in Chapter 4

Next we look at some useful properties of the monoid M and its submonoid E

which links our questions to the results contained in Chapter 4. Recall the

definitions from Chapter 4 regarding left (respectively right) unitary

subsemigroups with finite strict right (respectively left) boundary.

We have been considering a proposition for a monoid with homogeneous

presentation 〈A |R〉 and our previous definitions and proofs in Chapter 4 are

for a semigroup. We shall now apply the results from Chapter 4 to deduce some

results about semigroups defined by homogeneous semigroup presentations and

their subsemigroups. Then we will explain how the corresponding results for

monoid presentations can be deduced.

Lemma 6.3.4. Let 〈B |Q〉 be a finite homogeneous semigroup presentation which

defines the semigroup S. Fix j ∈ N and let F be the subsemigroup of S which

consists of all elements of S with length divisible by j.

Then F is a left (respectively right) unitary subsemigroup of S with finite strict

right (respectively left) boundary in S with respect to B.

Proof. Let w ∈ L(B,F ) be an arbitrary word such that |w| = mj where m ∈ N.

Let w ≡ w1w2 where w1 is the shortest prefix of w such that w1 ∈ L(B,F ). Then

by definition of F we have |w1| = j. Which means that |w2| = (m − 1)j and

therefore w2 ∈ L(B,F ). Thus F is a left unitary subsemigroup of S.

Let ρ be the smallest congruence on B+ which contains Q. Let u ∈ L(B,F ) be an

arbitrary word such that u ∈ SWBr(B,F ). Then by definition, no proper prefix

of u belongs to L(B,F ). This implies that |u| = j and therefore SWBr(B,F )

is a finite set. Thus, as SBr(B,F ) = SWBr(B,F )/ρ, we can see that the strict

right boundary of F in S is finite.

Therefore F is a left unitary subsemigroup of S with finite strict right boundary

in S with respect to B. By a dual proof we can then see that F is a right unitary
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subsemigroup of S with finite strict left boundary in S with respect to B.

Now that we have established this property for the subsemigroup F , we can apply

results from Chapter 4 as follows in the next two corollaries.

Corollary 6.3.5. Let 〈B |Q〉 be a finite homogeneous semigroup presentation

which defines the semigroup S. Fix j ∈ N and let F be the subsemigroup of S

which consists of all elements of S with length divisible by j.

Then F is finitely presented.

Proof. By Lemma 6.3.4 and Theorem 4.5.1.

Corollary 6.3.6. Let 〈B |Q〉 be a finite homogeneous semigroup presentation

which defines the semigroup S. Fix j ∈ N and let F be the subsemigroup of S

which consists of all elements of S with length divisible by j.

If S has finite derivation type then F also has finite derivation type.

Proof. By Lemma 6.3.4 and Theorem 4.1.1.

Since in this section we are interested in monoids defined by homogeneous

monoid presentations (as plactic monoids are defined this way), we now observe

that all the results in this Subsection 6.3.2 also hold for homogeneous monoid

presentations. First we include some existing results which will be used in the

proof of the results for homogeneous monoid presentations.

Theorem 6.3.7. [53, Theorem 2] Let S be a small extension of T . If T has

finite derivation type (FDT), then so does S.

Recall that if T is a large subsemigroup of the semigroup S then S \ T is finite.

If T is an ideal of S which is also a large subsemigroup of S, then T is called a

large ideal of S.
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Theorem 6.3.8. [40, Theorem 1] Let S be a semigroup and let T be a large ideal

of S. If S has FDT, then so does T .

Theorem 6.3.9. [4, Theorem 3.4] There exists a finite complete rewriting system

which defines the plactic monoid Pn.

Corollary 6.3.10. [4, Corollary 3.5] Every plactic monoid has finite derivation

type.

Now we prove two new results which are for homogeneous monoid presentations

and are the monoid analogue of Corollaries 6.3.5 and 6.3.6.

Corollary 6.3.11. Let 〈A |R〉 be a finite homogeneous monoid presentation

defining a monoid M . Fix j ∈ N and let E be the submonoid of M which

consists of all elements of M with length divisible by j. Then:

(i) E is a finitely presented monoid and

(ii) if M has finite derivation type then E has finite derivation type.

Proof. Let S be the semigroup defined by 〈A |R〉, regarded as a semigroup

presentation. Since 〈A |R〉 is homogeneous it follows that the only word in A∗

that represents the identity element of M is the empty word ε (since no defining

relations from R can be applied to the empty word ε). Note that it makes sense

to view 〈A |R〉 as a semigroup presentation since being a homogeneous

presentation implies (u, v) ∈ A+ ×A+ for all relations (u, v) ∈ R. It follows that

for any two words α, β ∈ A+ we have α = β in M if and only if α = β in S. It

follows that S is isomorphic to the subsemigroup of M generated by all the

non-identity elements of M . So S ∼= M \ {1} where 1 is the identity of M . So S

is isomorphic to a subsemigroup of M with finite complement and by Lemma

2.5.1 there exists a semigroup presentation for the monoid M . But then it

follows by Theorem 2.6.18 that S is a finitely presented semigroup if and only if

M is a finitely presented monoid. It can easily be proved that S is a large ideal

of M and so by Theorem 6.3.8 if M has FDT then S has FDT.

Now let F be the subsemigroup of M generated by all elements of M with length
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divisible by j. Then F is the subsemigroup of E given by all the non-empty words,

that is, F ∼= E \ {1}. By Lemma 2.5.1 there exists a semigroup presentation for

the monoid E. Hence applying Theorem 2.6.18, E is a finitely presented monoid if

and only if F is a finitely presented semigroup, and by Lemma 6.3.7 the monoid

E has FDT if the semigroup F has FDT. Combining these observations with

Corollaries 6.3.5 and 6.3.6 we conclude:

(i) F is a finitely presented semigroup (by Corollary 6.3.5), since S is a finitely

presented semigroup and F is isomorphic to the subsemigroup of S of all elements

of length divisible by j, and hence (by Theorem 2.6.18 and Lemma 2.5.1) E is a

finitely presented monoid; and

(ii) if M has FDT then the semigroup S has FDT (by Theorem 6.3.8) which

implies the semigroup F has FDT (by Crollary 6.3.6) which implies that the

monoid E has FDT (by Lemma 6.3.7).

Now we have a result which we can apply to the plactic monoid as it has a

homogeneous presentation. We can easily apply this result to the plactic monoid

P3 but in this case we have a result which can be extended to Pn.

Corollary 6.3.12. Let Pn be the plactic monoid of rank n. Fix j ∈ N and let

E be the submonoid of Pn which consists of all the elements of Pn with length

divisible by j. Then:

(i) E is a finitely presented monoid, and

(ii) the monoid E has finite derivation type.

Proof. Part (i) follows from Corollary 6.3.11.

For part (ii), by Theorem 6.3.9, the plactic monoid Pn admits a FCRS and hence

(by Corollary 6.3.10) has FDT. Now (ii) follows from Corollary 6.3.11 (ii).

In the next section we move on to investigate whether this corollary also holds

for the property of admitting a finite complete rewriting system (FCRS).
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6.3.3 Codified submonoids

This section provides an overview of relevant results from the paper [37]. The

results will provide a process by which we can prove Proposition 6.3.2. This

proposition could also be proved using Reidemeister-Schreier type rewriting

methods (see Theorem 2.9.1), but applying the results from [37] gives a shorter,

more elegant proof. We retain the notation from earlier in this section, so

〈A |R〉 is a finite homogeneous monoid presentation defining a monoid

M ∼= A∗/η where η is the congruence of A∗ generated by R, and E is the

submonoid of M which consists of all elements of M with length divisible by j,

for some fixed j ∈ N. We first introduce some new definitions and then the

relevant result, all of which come from [37].

A subset X0 of A+ is said to be a code in the alphabet A if the submonoid of A∗

generated by X0, 〈X0〉, is free on X0. Therefore, if X0 is a code in the alphabet

A, we have 〈X0〉 ∼= X∗0 . The idea behind this concept is quite simple, we want to

think of the elements of X0 as being codified by words of the alphabet A. Hence,

the set X0 is a code if and only if there is no word in 〈X0〉 that can be decoded

in two different ways as elements of X0, see the following Example 6.3.13.

Example 6.3.13. Let A = {a, b, c} be an alphabet and define the two generating

sets X1 = {aa, ab, ba, ac, ca} and X2 = {a, ab, bc, c}.

If we take a word in 〈X1〉, say baaaca, we can see that X1 is a code as the word

can only be decoded in one way as an element in 〈X1〉, that is by reading two

letters at a time. Whether we read from the left to right or from right to left,

we will identify the same elements from X1. However, if we consider the words

in 〈X2〉 we can easily come up with an example that shows it is not a code. The

word abc can be decoded in two ways as (ab) c or a (bc), which clearly identifies

different elements in 〈X2〉.

The set of the left terms of R, that is, {r+1 ∈ A∗ | ∃r−1 ∈ A∗ : (r+1, r−1) ∈ R}

is denoted by dom(R). By im(R) we denote the set of right terms of R, that is,
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{r−1 ∈ A∗ | ∃r+1 ∈ A∗ : (r+1, r−1) ∈ R}.

Let w be a word from A+ and let X0 be a subset of A+. Then we say that w

is extensible to X0 if w is a factor of some word in 〈X0〉, that is, if there exists

words x, y ∈ A∗ such that xwy ∈ 〈X0〉.

Let w be a word that is extensible to X0. We say that a word u ∈ 〈X0〉 is a

minimal extension of w in X0 if (i) w is a factor of u, and (ii) if u ≡ x1x2wy1y2

with x1, x2wy1, y2 ∈ 〈X0〉 then x1 ≡ y2 ≡ 1, where 1 is the empty word.

Observe that an extensible word has always a minimal extension. Actually it

may have more than one minimal extension. Clearly, if w is a word in 〈X0〉 then

its unique minimal extension is w.

Next we construct a new set of rewrite rules R0 from R. Let r = (r+1, r−1) ∈ R

be such that r+1 is extensible to 〈X0〉. For each minimal extension s of r+1 in X0

we will define a new rewriting rule rs in the following way: let x, y ∈ A∗ be such

that s ≡ xr+1y; we choose rs as being the rewriting rule (s+1, s−1) where s+1 ≡ s

and s−1 is a word such that xr−1y
∗→R s−1. Note that in general xr−1y /∈ 〈X0〉

so we look to find s−1 where s−1 ∈ 〈X0〉, see [37, Page 211 Examples]. Let

R0 be the set of all rewriting rules constructed in the previous way. Notice

that dom(R0) ⊆ 〈X0〉 and that the congruence
∗↔R0 is contained in

∗↔R since

∗→R0 ⊆
∗→R.

On the sets X0 and R0, we consider the following conditions:

(A) X0 is a code;

(B) im(R0) ⊆ 〈X0〉.

Let us consider a new alphabet X̃0 = {x̃ : x ∈ X0} in one-to-one correspondence

with X0. Assuming condition (A), it is possible to extend this correspondence

to an isomorphism between the monoids 〈X0〉 and X̃∗0 . We denote by ũ an

element x̃1 . . . x̃m of X̃∗0 , where m ∈ N and xi ∈ X0. Notice that we have

ũ ≡ ˜x1 . . . xm ≡ x̃1 . . . x̃m, where u ≡ x1 . . . xm.
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Assuming (A) and (B), to each pair (r+1, r−1) ∈ R0, there corresponds a unique

pair (r̃+1, r̃−1) ∈ X̃∗0×X̃∗0 . Note that the uniqueness here follows from assumption

(A) that X0 is a code. Hence, we can define a new set of rewrite rules

R̃0 = { (r̃+1, r̃−1) | (r+1, r−1) ∈ R0 }.

Notice that if R0 is finite, so is R̃0. Now we have enough definitions from [37]

and can state the main theorem which follows:

Theorem 6.3.14. [37, Theorem 2.4] Let (A,R) be a complete rewriting system

defining the monoid M . Let X0 ⊆ A+ be such that conditions (A) and (B) hold.

Then the rewriting system (X̃0, R̃0) is complete and defines the submonoid of M

generated by X0.

Note that it is not a condition of the above theorem that dom(R) is extensible,

see [37, Page 211 Examples] for several examples.

6.3.4 New research relating to finite homogeneous presentations

In this section we return to our Proposition 6.3.2 and prove it as the following

new theorem.

Theorem 6.3.15. Let M be the monoid defined by the homogeneous presentation

〈A |R〉 where A is a finite alphabet and R is a finite set of relations in A∗ ×A∗.

Fix j ∈ N and let E be the submonoid of M which consists of all elements of M

which have a length divisible by j.

Suppose further that the presentation 〈A |R〉 is a finite complete rewriting system.

Then there exists a presentation for E which is a finite complete rewriting system.

Proof. The proof appeals to Theorem 6.3.14 and as such it suffices to prove that

conditions (A) and (B) hold and that X0 and R0 are finite. Let X0 = {w ∈ A∗ :

|w| = j}. Then by Lemma 6.3.3 〈X0〉 generates E.
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(A) X0 is a code

Let w ∈ A∗. If w ∈ 〈X0〉 then |w| = mj for some m ∈ N with m ≥ 1. Write

w ≡ α1α2 . . . αm where αi ∈ X0 for all i ∈ {1, 2, . . . ,m}. If β1β2 . . . βl ≡ w with

βi ∈ X0 for i ∈ {1, 2, . . . , l}, then β1β2 . . . βl ≡ α1α2 . . . αm. By definition of X0

we have |βi| = j = |αk| for all i ∈ {1, 2, . . . , l} and k ∈ {1, 2, . . . ,m}. It follows

that m = l and αi = βi for all i ∈ {1, 2, . . . ,m}. Hence w ≡ α1α2 . . . αm is the

unique way of writing w ∈ A∗ as a product of words from X0. Hence X0 is a

code.

(B) im(R0) ⊆ 〈X0〉

The rewrite rules R for the monoid M are homogeneous and therefore for all

(r+1, r−1) ∈ R we have |r+1| = |r−1|. Let (r+1, r−1) ∈ R. For every minimal

extension s of r+1 write s ≡ xr+1y in A∗ and define rs to be the rewriting rule

(s+1, s−1) where s+1 ≡ xr+1y and s−1 ≡ xr−1y. Note that trivially we have

xr−1y
∗−→R s−1. Hence R0 can be chosen to be equal to the set of all these

relations rs. Since R is homogeneous |xr+1y| = |xr−1y| which is a multiple of j

since xr+1y ∈ X∗0 . It follows that s−1 ≡ xr−1y ∈ 〈X0〉, for every rs in R0. Hence

condition (B) holds.

Fact: Every word w ∈ A∗ has only finitely many minimal extensions to X0.

Proof of fact: Suppose u ∈ 〈X0〉 is a minimal extension of w to X0. Write

u ≡ β1β2 . . . βm where |βi| = j for all i ∈ {1, 2, . . . ,m}. Since this extension is

minimal it follows that w is a subword of u where w contains β2β3 . . . βm−1 as a

strict subword. It follows that m ≤ |w|. Since |w| and j are fixed and A is finite,

it follows that there are only finitely many possible choices for u, completing the

proof.

Corollary: Since R is finite by assumption, applying the above fact it follows that

R0 is finite.

It remains to observe that the sets A, R, X0 are finite and R0 is finite by the

above Corollary and therefore so are X̃0 and R̃0. This completes the proof.
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Corollary 6.3.16. Let P3 be the plactic monoid of rank 3 defined by the ordered

alphabet A = {1, 2, 3} and let

R = {(332, 323), (322, 232), (331, 313), (311, 131), (221, 212), (211, 121),

(231, 213), (312, 132), (3212, 2321), (32131, 31321), (32321, 32132)}.

Then P3 is defined by the presentation 〈A |R〉. Fix j ∈ N and let Ej be the

submonoid of P3 containing only elements of P3 of length divisible by j.

Then there exists a presentation for Ej which is a finite complete rewriting system.

Proof. By Theorem 6.1.6 the presentation 〈A |R〉 defines the plactic monoid P3

and is a finite complete rewriting system.

Note that this presentation is homogeneous and so by Theorem 6.3.15 there exists

a presentation for Ej which is a finite complete rewriting system.

Remark: In Corollary 6.3.16 above we have defined the monoid Ej by saying that

it contains all the elements of P3 of length divisible by j. To be in line with the

other submonoids that we consider in this chapter, the monoid Ej can equally be

defined as the submonoid of P3 generated by the set of all tableau with exactly

j boxes. To see this is true, refer to Lemma 6.3.3.

6.3.5 Further applications

Natural numbers under addition

Theorem 6.3.17. Let M be a monoid defined by a finite homogeneous

presentation 〈A |R〉. Let ψ : M → (N,+) be the surjective homomorphism

induced by the mapping w 7→ |w| for w ∈ A∗. Let T be a finitely generated

submonoid of (N,+). Then
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(i) N = Tψ−1 is a finitely presented submonoid of M .

(ii) Moreover, if (A,R) is a finite complete rewriting system then N = Tψ−1

admits a presentation by a finite complete rewriting system.

Proof. We prove both parts together:

Part (i) and (ii)

We begin with a useful quote from a recent paper [9]:

“The subsemigroups of the free monogenic semigroup N = {1, 2, 3, . . .} are also

reasonably tame, even though they are more complicated than subgroups of Z.

Every such subsemigroup has the form A ∪ B, where A is finite, and B = {nd :

n ≥ n0} for some n0, d ∈ N; see [50].”

Define the set C = {c ∈ T : c < κ} and D = {d ∈ T : d ≥ κ} such that |C| is

finite but |D| is infinite and T = C ∪D. (In terms of the quoted result above, the

set C corresponds to the set A and the set D to the set B. We use f instead of

d, where f is the greatest common divisor of the numbers in the finite generating

set for T . We set κ = n0f where n0 is fixed as the smallest integer such that

for any x, y ∈ T where x, y ≥ n0f , then |x − y| ≡ 0 (mod f). Thus κ is the

number above which we see a predictable pattern for those numbers in the set

T i.e. the numbers in T that are higher than κ are all multiples of f .) Let the

elements in D be defined in ascending order i.e. D = {d1, d2, d3 . . .}. Then D is

a subsemigroup of T with the finite generating set XD = {d1, d2, . . . , d2d1−1}.

Now consider Tψ−1 = Cψ−1∪Dψ−1 and note that Tψ−1 \Dψ−1 is finite. Recall

that Dψ−1 comprises of all the words in A∗ that are of length l where we have

l ≥ κ and l ≡ 0 (mod f). Define F to be a submonoid of M which comprises of

all the elements of length that is divisible by f .

Given that M is defined by a finite homogeneous presentation then by Corollary

6.3.11 part (i) we can say that F is defined by a finite presentation. Given that

M admits a presentation that is a FCRS then by Theorem 6.3.15 we know that
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F also admits a presentation that is a FCRS.

Next we look at Dψ−1 which can be seen is a subsemigroup of F where |F \Dψ−1|

is finite. By Theorem 2.6.18, as F is finitely presented, then Dψ−1 is finitely

presented. Also, by Theorem 2.6.20, as F admits a presentation which is a FCRS

then Dψ−1 also admits a presentation which is a FCRS.

Finally, we have Tψ−1 = Cψ−1 ∪Dψ−1 with Dψ−1 a subsemigroup of Tψ−1 and

|Tψ−1 \Dψ−1| being finite. So by Theorem 2.6.18, as Dψ−1 is finitely presented

then Tψ−1 is finitely presented. Also, by Theorem 2.6.19, as Dψ−1 admits a

presentation that is a FCRS, then Tψ−1 also admits a presentation that is a

FCRS.

Corollary 6.3.18. Let A = {1, 2, 3} be an ordered alphabet and

R = {(332, 323), (322, 232), (331, 313), (311, 131), (221, 212), (211, 121), (231, 213),

(312, 132), (3212, 2321), (32131, 31321), (32321, 32132)}.

Then the plactic monoid P3 of rank 3 is defined by the homogeneous presentation

〈A |R〉.

Let ψ : P3 → (N,+) be the surjective homomorphism induced by the mapping

w 7→ |w| for w ∈ A∗. Let T be a finitely generated submonoid of (N,+) and let

N = Tψ−1 be a submonoid of P3. Then N admits a presentation by a finite

complete rewriting system.

Proof. By Theorem 6.1.6 P3 is defined by the finite complete rewriting system

(A,R). Theorem 6.3.17 part (ii) completes the proof.
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6.4 Introduction to new research relating to

submonoids of the plactic monoid P2

We now expand our investigation to consider other families of finitely generated

submonoids of the plactic monoid not already covered by earlier results in this

chapter. We will focus our attention on submonoids generated by powers of the

generators {1, 2, . . . , n}, that is, generating sets of the form

X = {1i1 , 1i2 , . . . , 1ir , 2j1 , 2j2 , . . . , 2js , 3k1 , 3k2 , . . . , 3kt}.

This class of submonoids already exhibit complex behaviour and are difficult to

study in general. Because of this we will restrict our attention to submonoids

of the plactic monoid P2. The submonoids considered are generated by various

finite sets, working towards generalising any results to generating sets of the form

Y = {1i, 2j} where i, j ∈ N such that i ≤ j.

We will prove that a finite presentation exists for specific submonoids of this form

where the presentation is a FCRS. This naturally gives the result that it has a

finite presentation and also FDT (by Theorem 4.4.2).

Research in the remainder of this chapter makes use of a result from the paper [30]

which we referenced earlier in Theorem 6.1.6. This theorem gives a presentation

for the plactic monoid P3 which is a finite complete rewriting system. Next we

include a corollary which follows from this theorem by restricting the presentation

to the generators {1, 2} and the relations to those that involve only 1 and 2.

Corollary 6.4.1. [30, Theorem 1 and Corollary 2]

Let B = {1, 2} and R = {(221, 212), (211, 121)}.

Then (B,R) is a finite complete rewriting system defining the plactic monoid P2.

Moreover, with respect to this system, the irreducible words are precisely those of

the form (1)i(21)j(2)k for non-negative integers i, j, k.
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6.5 Submonoid of the plactic monoid P2 generated by

the set X = {1, 2i}

6.5.1 Statement of new proposition

Proposition 6.5.1. Let A = {1, 2} and R = {(221, 212), (211, 121)}. Then the

plactic monoid P2 is defined by the presentation 〈A |R〉.

Fix i ∈ N with i > 1 and let E be the submonoid of P2 generated by X = {1, 2i}.

Set B = {a, b} and let Q be the subset of B∗ ×B∗ consisting of all the following

pairs:

(i) (bba, bab),

(ii) (bai+1, abai),

(iii) {(baj−1ba, bajb) : 2 ≤ j ≤ i}.

Then (B,Q) is a finite complete rewriting system defining the monoid E where a

and b correspond to the generators 1 and 2i, respectively.

6.5.2 Outline proof and definitions

At this point it is worth noting that the principles used in the proof for Theorem

6.3.15 do not apply in this case. Although, X is a code, the idea of the rewrite

rules being extensible does not apply and therefore condition (B) is not fulfilled.

To see this we look at the rewrite rules R = {(221, 212), (211, 121)} with the

alphabet X0 = {1, 2i}. To illustrate the problem which arises when trying to

use this theorem we set i = 3. Consider the first rewrite rule (221, 212) and

recall how we build a new set of rewrite rules, namely R0 as described in Section

6.3.3. Then a minimal extension s of r+1 to 〈X0〉 would be s ≡ xr+1y ≡ 2221 ∈

〈X0〉. However, xr−1y ≡ 2212
∗−→R 2122 6∈ 〈X0〉. Therefore im(R0) 6⊆ 〈X0〉 and

condition (B) is not fulfilled.

Full definitions will follow in this section but first we give an outline of the proof
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for Proposition 6.5.1. We define a finite presentation 〈B |Q〉 for a monoid M .

Then we prove that the associated finite rewriting system (B,Q) is complete.

Next we define mappings between the monoid defined by the presentation

〈B |Q〉 and the submonoid E of P2 generated by the set X = {1, 2i}. We prove

that all the relations Q also hold in the submonoid E. We prove that a

mapping between elements of M and E is a bijection and complete the proof of

isomorphism between the presentations for E and M . Hence there exists a

presentation for the submonoid E which is a finite complete rewriting system.

Before we proceed further we make a few definitions.

Definition 6.5.2. Let B = {a, b} be a new alphabet where we order the

generators a < b. Define a set of relations Q in B∗ × B∗, with i fixed and equal

to that in set X = {1, 2i}, consisting of all the following pairs:

(0) (bba, bab),

(1) (bai+1, abai),

(2) {(baj−1ba, bajb) : 2 ≤ j ≤ i}.

Let M be the monoid defined by the presentation 〈B |Q〉 and associated

rewriting system (B,Q).

Throughout the remainder of subsection 6.5, unless stated otherwise, we will use

the following as defined in Proposition 6.5.1 and Definition 6.5.2:

(i) the sets A, B, X, R, Q;

(ii) the integer i;

(iii) the monoids P2, M and submonoid E.

In addition, let η be the smallest congruence on A∗ which contains R and ρ be

the smallest congruence on B∗ which contains Q.

6.5.3 Proofs regarding the monoid presentation 〈B |Q〉

Lemma 6.5.3. The rewriting system (B,Q) is noetherian.
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Proof. Recall the alphabet B = {a, b} where a < b and we define a shortlex

ordering (see Definition 2.6.2) on the set of words B∗. Now consider each of the

rewrite rules in Q:

(0) (bba, bab),

(1) (bai+1, abai),

(2) {(baj−1ba, bajb) : 2 ≤ j ≤ i}.

Firstly, they are all length preserving. Secondly, for any arbitrary rewrite rule

with u, v ∈ B∗ and (u, v) ∈ Q we have u > v. This can be seen as in each rule,

a letter a is moved one position to the left, exchanging places with a letter b. So

we have a set of rules which is reducing in terms of shortlex ordering, which is an

admissible partial ordering by Definition 2.6.2 part (d). Hence by Theorem 2.6.7

the reduction relation →Q on B∗ is noetherian. Therefore the rewriting system

(B,Q) is noetherian.

Lemma 6.5.4. The rewriting system (B,Q) is locally confluent.

Proof. The test for local confluence looks for the resolution of all critical pairs of

rewrite rules, see Lemma 2.6.9. If this can be achieved then the rewriting system

is locally confluent. Recall that critical pairs of rewrite rules are where the left

hand side of two rules overlap.

We will now examine the rewrite rules in Q, looking for and resolving all possible

critical pairs. For example, all of the rewrite rules numbered (1) and in the set

(2) overlap with rule (0). We will use the rules (j) and (k) to represent rules in

the set (2). Note that j, k ∈ N are variable and we have used both where two

rules from the set (2) can overlap. However, i is fixed for the presentation and is

equal to that in the set X = {1, 2i}. Critical pairs are resolved as follows:

(a) Let t1 ≡ bbai+1, which arises from overlapping the left hand sides of (0)

and (1). Then

apply (0) t1
(0)−−→ babai,

apply (1) t1
(1)−−→ babai.
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(b) Let t2 ≡ bbaj−1ba, which arises from overlapping the left hand sides of (0)

and (2). Then

apply (0) t2
(0)−−→ babaj−2ba

(j−1)−−−→ babaj−1b,

apply (j) t2
(j)−−→ bbajb

(0)−−→ babaj−1b.

(c) Let t3 ≡ baj−1bai+1,which arises from overlapping the left hand sides of (2)

and (1). Then

apply (j) t3
(j)−−→ bajbai,

apply (1) t3
(1)−−→ baj−1abai.

(d) Let t4 ≡ baj−1bak−1ba with 2 ≤ k < j ≤ i, which arises from overlapping

the left hand sides of (2) and (2). Then

apply (j) t4
(j)−−→ bajbak−2ba then

if k = 2 bajbak−2ba ≡ bajbba (0)−−→ bajbak−1b or

if k > 2
(k−1)−−−→ bajbak−1b,

apply (k) t4
(k)−−→ baj−1bakb

(j)−−→ bajbak−1b.

(e) Let t5 ≡ bak−1baj−1ba where 2 ≤ k < j ≤ i, which arises from overlapping

the left hand sides of (2) and (2). Then

apply (k) t5
(k)−−→ bakbaj−2ba

(j−1)−−−→ bakbaj−1b,

apply (j) t5
(j)−−→ bak−1bajb

(k)−−→ bakbaj−1b.

(f) Let t6 ≡ baj−1baj−1ba where j ≤ i, which arises from overlapping the left

hand sides of (2) and (2). Then

apply first (j) t6
(j)−−→ bajbaj−2ba

(j−1)−−−→ bajbaj−1b,

apply second (j) t6
(j)−−→ baj−1bajb

(j)−−→ bajbaj−1b.

All critical pairs resolve, so the rewriting system (B,Q) is locally confluent.

Lemma 6.5.5. The presentation 〈B |Q〉 for the monoid M is a finite complete

rewriting system.

Proof. The rewriting system (B,Q) for the monoid M is noetherian and locally

confluent by Lemmas 6.5.3 and 6.5.4 respectively. So by Lemma 2.6.10 it is also
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complete. Thus (B,Q) is a finite complete rewriting system.

Lemma 6.5.6. The irreducible words with respect to the rewriting system (B,Q)

are precisely the words of the form:

(a)p(bai)r(bah)sh(b)q

with integers p, r, q ≥ 0, sh ∈ {0, 1} and 0 < h < i where i is fixed and equal to

that in the set X = {1, 2i}. Hence this set of words gives a set of normal forms

for the elements of the monoid M defined by the presentation 〈B |Q〉.

Proof. The rewriting system (B,Q) for the monoid M is noetherian and locally

confluent by Lemmas 6.5.3 and 6.5.4 respectively. Therefore by Theorem 2.6.13

each equivalence class under
∗↔Q contains a unique irreducible word, which we

will define with the above normal form. To prove that we have the correct normal

form we intend to show that it is irreducible and that every word can be reduced

to one in this form.

First we prove that the normal form is irreducible. To do this we show that it

does not contain any substring of letters which also occur as the left hand side

of a rewrite rule in the set Q. Note that none of the left hand sides of the rules

start with a letter a so we can ignore the first term (a)p as it cannot be part of

a string within a word that could be rewritten. Also, none end in a b so we can

ignore the last term (b)q for a similar reason.

Consider the second term (bai)r with r ≥ 0. If r = 1 then the string bai only

appears in the left hand side of rule (1) which is the string bai+1. So, in order

to have a string of letters which could be rewritten, then bai would have to be

followed by an a. This is not possible as it can only be followed by a b i.e. another

of this term if r > 1 or the 3rd or 4th term. Also, no part of the ai can be the

prefix to a string that occurs in a rule as none begin with an a. So the second

term cannot be part of a string within a word that could be rewritten.
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Next we look at the third term (bah)sh which varies depending on the value of h,

although if it exists it is defined as 0 < h < i with i fixed. As we have already

discounted the first and second terms as any potential prefix to a string of letters

in a rule, then we need to consider this term as a whole or as a proper prefix.

Looking at the left hand side of the rules we can see that the third term could

potentially be the prefix to any of the rules in the set numbered (2). However, to

achieve a complete matching string it would have to be followed by ba. This is

not possible as the only term that can follow is the final term (b)q. So the third

term cannot be part of a string within a word that could be rewritten.

In summary, having considered all possible combinations of terms in the proposed

normal form, there does not exist a substring of letters which match the left hand

side of a rewrite rule. Therefore, the proposed normal form is irreducible.

Next we aim to show that every word in B∗ can be reduced to a word in the

proposed normal form. In other words, if any word, say t ∈ B∗ does not contain

the left hand side string of letters from any rewrite rule (i.e. it is irreducible),

then t must be in the proposed normal form. To do this we use proof by induction

on the length of the word t.

Induction statement:

Let t ∈ B∗ be an irreducible word which is in the proposed normal form. Let

t1 ≡ th where h ∈ B = {a, b} so that |t1| = |t|+ 1. Next apply the rewrite rules

Q to t1 such that t1
∗→Q t′1 and t′1 is irreducible. Then the irreducible word t′1

will be in the proposed normal form.

Firstly, if |t| = 0 then t1 ≡ a or t1 ≡ b and both these words are in the proposed

normal form. Thus the induction statement is true for |t| = 0.

Next we look at every possible form for the word t which is in the proposed

normal form, append either an a or a b and apply the rewrite rules Q to the

resulting word. Then we check to see if our irreducible word is in the proposed

normal form. Note that the value of i is fixed as per the presentation 〈B |Q〉.
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Appending a b will clearly always result in an irreducible word that is already in

the proposed normal form. So we look at each case where we can append an a,

as follows:

(i) Let t ≡ (a)p with p > 0,

then t1 ≡ (a)pa = (a)p+1 which is in the proposed normal form.

(ii) Let t ≡ (bai)r with r > 0,

then t1 ≡ (bai)ra
(1)−−→
∗

(a)p(bai)r with p = 1 which is in the proposed

normal form.

(iii) Let t ≡ bah with 0 < h < i, then t1 ≡ baha ≡ bah+1

and if h+ 1 < i then t1 ≡ bah+1

otherwise h+ 1 = i and so t1 ≡ (bai)r with r = 1,

both of which are in the proposed normal form.

(iv) Let t ≡ (b)q with q > 0

and if q = 1 then t1 ≡ ba ≡ (bah) with h = 1

otherwise if q > 1 then t1 ≡ (b)qa
(0)−−→
∗

(bah)(b)q−1 with h = 1,

both of which are in the proposed normal form.

(v) Let t ≡ (a)p(b)q with p, q > 0 and as no rules begin with the letter a we

can look at part (iv) which gives two outcomes,

if q = 1 then t1 ≡ (a)pba ≡ (a)p(bah) with h = 1

otherwise if q > 1 then t1 ≡ (a)p(b)qa
(0)−−→
∗

(a)p(bah)(b)q−1 with h = 1,

both of which are in the proposed normal form.

(vi) Let t ≡ (a)p(bai)r with p, r > 0 and as no rewrite rule begins with the letter

a we can look at part (ii),

then t1 ≡ (a)p(bai)ra
(1)−−→
∗

(a)p+1(bai)r which is in the proposed normal

form.

(vii) Let t ≡ (a)p(bah) with p > 0 and 0 < h < i and see part (iii),

and if h+ 1 < i then t1 ≡ (a)p(bah+1),



Chapter 6: Plactic monoid submonoids and homogeneous presentations 172

otherwise h+ 1 = i and so t1 ≡ (a)p(bai)r with r = 1,

both of which are in the proposed normal form.

(viii) Let t ≡ (bai)r(b)q with r, q > 0 and see part (iv),

and if q = 1 then t1 ≡ (bai)rba ≡ (bai)r(bah) with h = 1,

otherwise if q > 1 then t1 ≡ (bai)r(b)qa
(0)−−→
∗

(bai)r(bah)(b)q−1

with h = 1,

both of which are in the proposed normal form.

(ix) Let t ≡ (bai)r(bah) with r > 0 and 0 < h < i and see part (iii),

then t1 ≡ (bai)r(bah)a ≡ (bai)rbah+1

and if h+ 1 < i then t1 ≡ (bai)r(bah+1)

otherwise h+ 1 = i and so t1 ≡ (bai)r+1,

both of which are in the proposed normal form.

(x) Let t ≡ (bah)(b)q with q > 0 and 0 < h < i and see parts (iv) and (iii),

if q = 1 then

t1 ≡ (bah)ba and now the result depends on h

so if q = 1 and h+ 1 < i then t1
(h+1)−−−→ (bah+1)(b)q

and if q = 1 and h+ 1 = i then t1
(h+1)−−−→ (bai)r(b)q with r = 1,

but if q > 1 then t1
(0)−−→
∗

(bah)ba(b)q−1 and now the result depends on h

so if q > 1 and h+ 1 < i then t1
(h+1)−−−→ (bah+1)(b)q

and if q > 1 and h+ 1 = i then t1
(h+1)−−−→ (bai)r(b)q with r = 1,

all of which are in the proposed normal form.

(xi) Let t ≡ (a)p(bai)r(bah) with p, r > 0 and 0 < h < i and as no rules begin

with the letter a we can see at part (ix) which gives two outcomes,

then t1 ≡ (a)p(bai)r(bah)a ≡ (a)p(bai)rbah+1

and if h+ 1 < i then t1 ≡ (a)p(bai)r(bah+1),

otherwise h+ 1 = i and so t1 ≡ (a)p(bai)r+1,

both of which are in the proposed normal form.

(xii) Let t ≡ (a)p(bai)r(b)q with p, r, q > 0 and as no rules begin with the letter

a we can see part (viii) which gives two outcomes,
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and if q = 1 then t1 ≡ (a)p(bai)rba ≡ (a)p(bai)r(bah) with h = 1

otherwise if q > 1 then t1 ≡ (a)p(bai)r(b)qa
(0)−−→
∗

(a)p(bai)r(bah)(b)q−1

with h = 1,

both of which are in the proposed normal form.

(xiii) Let t ≡ (a)p(bah)(b)q with p, q > 0 and 0 < h < i and we can see part (x)

which gives various outcomes,

if q = 1 then

t1 ≡ (a)p(bah)ba and now the result depends on h

so if q = 1 and h+ 1 < i then t1
(h+1)−−−→ (a)p(bah+1)(b)q

and if q = 1 and h+ 1 = i then t1
(h+1)−−−→ (a)p(bai)r(b)q with r = 1,

but if q > 1 then t1
(0)−−→
∗

(a)p(bah)ba(b)q−1 and the result depends on h

so if q > 1 and h+ 1 < i then t1
(h+1)−−−→ (a)p(bah+1)(b)q

and if q > 1 and h+ 1 = i then t1
(h+1)−−−→ (a)p(bai)r(b)q with r = 1,

all of which are in the proposed normal form.

(xiv) Let t ≡ (bai)r(bah)(b)q with p, r, q > 0 and 0 < h < i and we can see parts

(xiii) and (ix) for various outcomes depending on q and h,

if q = 1 then

t1 ≡ (bai)r(bah)ba and now the result depends on h

so if q = 1 and h+ 1 < i then t1
(h+1)−−−→ (bai)r(bah+1)(b)q

and if q = 1 and h+ 1 = i then t1
(h+1)−−−→ (bai)r+1(b)q ,

but if q > 1 then

t1 ≡ (bai)r(bah)(b)qa
(0)−−→
∗

(bai)r(bah)ba(b)q−1 and now the result depends

on h

so if q > 1 and h+ 1 < i then t1
(h+1)−−−→ (bai)r(bah+1)(b)q

and if q > 1 and h+ 1 = i then t1
(h+1)−−−→ (bai)r+1(b)q,

all of which are in the proposed normal form.

(xv) Let t ≡ (a)p(bai)r(bah)(b)q with p, r, q > 0 and 0 < h < i and as no rewrite

rules have a left hand side prefixed by an a we can see part (xiv) for various

outcomes depending on q and h,

if q = 1 and h+ 1 < i then t1
(h+1)−−−→ (a)p(bai)r(bah+1)(b)q,
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if q = 1 and h+ 1 = i then t1
(h+1)−−−→ (a)p(bai)r+1(b)q ,

if q > 1 and h+ 1 < i then

t1
(0)−−→
∗

(a)p(bai)r(bah)ba(b)q−1 (h+1)−−−→ (a)p(bai)r(bah+1)(b)q,

if q > 1 and h+ 1 = i then

t1
(0)−−→
∗

(a)p(bai)r(bah)ba(b)q−1 (h+1)−−−→ (a)p(bai)r+1(b)q,

all of which are in the proposed normal form.

In summary, for every irreducible word in the proposed normal form, if we append

a single letter from the alphabet B, we can reduce the word to an irreducible word

and that word is also in the proposed normal form. Thus the induction statement

is true for words of length |t| + 1. It has also been proved true for words where

|t| = 0. Therefore all words in B∗ can be reduced to the proposed normal form.

This completes the proof that the irreducible words with respect to the rewriting

system (B,Q) are

(a)p(bai)r(bah)sh(b)q

with integers p, r, q ≥ 0, sh ∈ {0, 1} and 0 < h < i. Hence, this set of words is a

normal form for the presentation 〈B |Q〉 for the monoid M .

6.5.4 Proofs regarding the submonoid E

In the previous section we have defined a monoid M which has presentation

〈B |Q〉 which is a finite complete rewriting system. Our aim now is to prove

that the submonoid E is isomorphic to the monoid defined by the presentation

〈B |Q〉 and hence E admits a presentation by a finite complete rewriting system,

completing the proof of Theorem 6.5.14. To do this we create mappings between

elements in M and E and prove that we have a bijection. We also prove that

all the relations in Q also hold when mapped to the submonoid E. First some

definitions and a theorem which we will make use of in the proof.

The following theorem is courtesy of the notes for a UEA course on Semigroups.
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It brings together generally known facts relating to semigroups which we can

apply to our proof of the isomorphism between the monoids M and E. Further

information can also be found in [47, Chapter 1, Section 2].

Theorem 6.5.7 (Theorem 6.5). (I) The monoid S = A∗/ρ defined by the

presentation 〈A |R〉 is generated by the classes a/ρ (a ∈ A), and these

generators satisfy all the defining relations from R.

(II) Let T be any monoid and assume that there exists a mapping f : A → T

onto a generating set of T , and let φ : A∗ → T be the unique extension of f to a

homomorphism. If the generators Af of T satisfy all the relations from R, then

the mapping ψ : S → T defined by (w/ρ)ψ = wφ is a well defined epimorphism.

In particular, T is a homomorphic image of S.

Definition 6.5.8. Define a mapping φ1 : B → E such that a 7→ 1/η and b 7→

2i/η. This extends to the unique surjective homomorphism φ : B∗ → E such

that if t, t1 ∈ B∗, t2 ∈ B and t ≡ t1t2 then tφ = (t1φ)t2φ.

Next we prove that all the relations in the monoid M also hold when mapped to

the submonoid E. This will enable us to make use of Theorem 6.5.7 part (II).

Lemma 6.5.9. If (u, v) ∈ Q is an arbitrary relation then uφ = vφ in the

submonoid E.

Proof. Let uφ = u′/η and vφ = v′/η. In order to prove that u′/η = v′/η we will

look to prove that the tableau words are the same, that is P (u′) ≡ P (v′). As the

tableau word for an element is unique we will have proved that uφ = vφ. Note

that an unconventional format has been adopted for the Young tableau diagrams

where we write 2i in one box to denote a row of i boxes each with an entry 2.

This is in order to handle the multiple occurrences of 2’s which varies depending

on the value of i. We take each relation in turn and apply Schensted’s algorithm.

(0)
(

(bba)φ, (bab)φ
)

=
(

(2i2i1)/η, (2i12i)/η
)
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We have P (2i2i1) ≡ 2 12i−12i since applying Schensted’s algorithm to the

left hand side of the relation gives:

2i 2i 2i
2

1 2i−1 2i

Alternatively, we get the same result P (2i12i) ≡ 2 12i−12i, if we apply

Schensted’s algorithm to the right hand side of the relation:

2i
2

1 2i−1

2

1 2i−1 2i

(1)
(

(bai+1)φ, (abai)φ
)

=
(

(2i1i+1)/η, (12i1i)/η
)

We have P (2i1i+1) ≡ 2i 1i1 since applying Schensted’s algorithm to the

left hand side of the relation gives:

2i
2i

1i 1

Alternatively, we get the same result P (12i1i) ≡ 2i 1i1, if we apply

Schensted’s algorithm to the right hand side of the relation:

1 1 2i
2i

1i 1

(2)
(

(baj−1ba)φ, (bajb)φ
)

=
(

(2i1j−12i1)/η, (2i1j2i)/η
)

with i ≥ j

We have P (2i1j−12i1) ≡ 2j 1j2i−j2i since applying Schensted’s algorithm

to the left hand side of the relation gives:

2i
2j−1

1j−1 2i−j+1
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2j−1

1j−1 2i−j+1 2i

2j

1j 2i−j 2i

Alternatively, we get the same result P (2i1j2i) ≡ 2j 1j2i−j2i, if we apply

Schensted’s algorithm to the right hand side of the relation:

2i
,

2j

1j 2i−j

,
2j

1j 2i−j 2i

From the tableau above we can see that in each case uφ = vφ in P2 and therefore

also in the submonoid E. Hence, all the relations Q hold in E.

Lemma 6.5.10. The mapping ψ : M → E defined by ψ : M → E such that

(t/ρ)ψ = tφ where t ∈ B∗ and so t/ρ ∈M , is a well-defined epimorphism.

Proof. This follows from Definition 6.5.8, Theorem 6.5.7 and Lemma 6.5.9.

Next we aim to prove that the mapping ψ is injective. To do this we will take two

words t1 and t2 in B∗ that are not equal in M . Taking their normal form, map

using ψ to the submonoid E and assume for a contradiction that they map to

the same element in E. So, if we first take (t1/ρ)ψ = t1φ = w1/η. Then we look

to find the normal form in P2 for w1/η by reducing w1 using the rewrite rules R

such that w1
∗→R w′1 ∈ IRR(R). We determine w′2 ∈ IRR(R) from t2 ∈ B∗ in

the same manner. Finally, we can compare w′1 with w′2 for a contradiction to our

original assumption. At this point an example may help the reader.

Example 6.5.11. Let i = 3 be fixed just for the purposes of this example and

t ∈ IRR(Q) be a specific word in the monoid M such that t ≡ (a)(ba3)2(ba2)(b).

Then write (t/ρ)ψ = tφ = w/η which means that w ≡ (1)(2313)2(2312)(23). Next

we want to reduce w using the rewrite rules in R so that we have a word in normal

form for the monoid P2 as per Corollary 6.4.1. Computing the irreducible word
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we obtain:

w ≡ (1)(2313)(2313)(2312)(23) ≡ (1)222111(222111)(22211)(222)

→ (1)221211(222111)(22211)(222)

→ (1)212211(222111)(22211)(222)

→ (1)(212121)222111(22211)(222)

∗−→ (1)(212121212121)22211(222)

∗−→ (1)(2121212121212121)(2222)

≡ 1 (21)8 24 ≡ w′ ∈ IRR(R).

Note that w ∈ X∗, w/η and w′/η ∈ E, w/η =P2 w
′/η but w′ 6∈ X∗. In order to

check whether words are mapped using ψ : M → E to the same element in E we

will check whether they map to the same element in P2, as we will see later.

Lemma 6.5.12. Let t ∈ B∗ such that t ≡ (a)p(bai)r(bah)sh(b)q ∈ IRR(Q) with

integers p, r, q ≥ 0, sh ∈ {0, 1} and 0 < h < i which is in normal form for the

presentation 〈B |Q〉. Let (t/ρ)ψ = tφ = w/η and w
∗→R w

′ ∈ IRR(R). Then

w′ ≡ (1)c(21)d(2)e where c = p, d = ir + sh(h) and e = iq + sh(i− h).

Proof. By Lemma 6.5.6 t is in normal form for the presentation 〈B |Q〉. By

definition of φ we can see that w ≡ (1)p(2i1i)r(2i1h)sh(2i)q. There are no rewrite

rules in R where the left hand side starts with the letter 1 or ends with the letter

2. So we need only consider the two middle terms. We will first look at the term

(2i1i)r, recall i > 1, and we compute the irreducible word that this term would
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equal after applying the rewrite rules R. This gives us:

2i1i ≡ 2i−2(221)1i−1 →R 2i−2(212)1i−1 ≡ 2i−2(2121)1i−2 (6.5.1)

≡ 2i−3(221)(21)1i−2 →R 2i−3(21)(221)1i−2 (6.5.2)

→R 2i−3(21)(212)1i−2 ≡ 2i−3(212121)1i−3 (6.5.3)

∗−→R (21)i ∈ IRR(R). (6.5.4)

Looking at the above sequence we can see that if i = 2 then the rewriting sequence

stops at line (6.5.1) with 2212 ∗−→R (21)2 ∈ IRR(R). Similarly, if i = 3 the

rewriting sequence stops at line (6.5.3) with 2313 ∗−→R (21)3 ∈ IRR(R). Thus we

can see that for any i > 1 the rewriting sequence stops with 2i1i
∗−→R (21)i ∈

IRR(R). Hence, if the second term is (2i1i)r the rewriting sequence gives us

(2i1i)r
∗−→R (21)ir ∈ IRR(R).

Similarly we can look at the next term (2i1h)sh with 0 < h < i and assuming

sh = 1, recall sh ∈ {0, 1} by definition (see Lemma 6.5.6). We compute the

irreducible word that this term would equal after applying the rewrite rules R.

For h > 1 this gives us:
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2i1h ≡ 2i−2(221)1h−1 →R 2i−2(212)1h−1

≡ 2i−2(2121)1h−2 ∗−→R 2i−h(21)h1h−h ≡ 2i−h(21)h

End of stage (i) which moves 1s left

≡ 2i−h−1(221)(21)h−1 →R 2i−h−1(21)(2)(21)h−1

≡ 2i−h−1(21)(221)(21)h−2 →R 2i−h−1(21)(212)(21)h−2

≡ 2i−h−1(21)2(2)(21)h−2

∗−→R 2i−h−1(21)h(2)(21)h−h ≡ 2i−h−1(21)h(2)

End of stage (ii) which moves a spare 2 right

Then repeat stage (ii), moving spare 2s right

∗−→R 2i−h−m(21)h(2)m once m = i− h we get

∗−→R (21)h(2)i−h ∈ IRR(R).

For h = 1 the rewriting sequence is 2i1 ≡ 2i−2221→ 2i−2212 ≡ 2i−h−1(21)h2
∗−→R

2i−1−m(21)h(2)m
∗−→R (21)h(2)i−h ≡ (21)2i−1 ∈ IRR(R) where 0 < m ≤ i− h.

Next we can put the rewritten terms together and see if we can apply any further

rewrite rules. We consider each combination in turn:

If w ≡ (1)p(2i)q ≡ 1p2iq ∈ IRR(R).

If w ≡ (1)p(2i1i)r(2i)q
∗−→R 1p(21)ir2iq ∈ IRR(R).

If w ≡ (1)p(2i1h)(2i)q
∗−→R 1p(21)h(2)i−h2iq ≡ 1p(21)h(2)iq+i−h ∈ IRR(R).

If w ≡ (1)p(2i1i)r(2i1h)(2i)q
∗−→R 1p(21)ir(21)h(2)i−h2iq ≡ 1p(21)ir+h(2)iq+i−h ∈

IRR(R).

Now we can complete the proof and determine w′, as follows:

w′ ≡ (1)p(21)ir(21)sh(h)(2)sh(i−h)(2)iq ≡ 1p (21)ir+sh(h) 2iq+sh(i−h),

where w′ is in IRR(R) and in normal form for P2, by Corollary 6.4.1.
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Lemma 6.5.13. The mapping ψ : M → E is a well-defined bijection.

Proof. By Lemma 6.5.10 the mapping ψ is a well-defined epimorphism, that is a

surjective homomorphism. Therefore it remains to prove that ψ is an injective

mapping. The proof will be by contradiction and we will assume that ψ is not

injective.

Let t1, t2 ∈ B∗ and our assumption (for a contradiction) is that t1/ρ 6= t2/ρ in

the monoid M but (t1/ρ)ψ = (t2/ρ)ψ in the submonoid E. Next, without loss of

generality, let t1 and t2 be in normal form as any word in B∗ can be reduced to

a normal form by Lemma 6.5.6. Let

t1 ≡ (a)p(bai)r(bah)sh(b)q and t2 ≡ (a)p
′
(bai)r

′
(bah

′
)s
′
h(b)q′

with integers p, p′, r, r′, q, q′ ≥ 0; sh and s′h ∈ {0, 1}; 0 < h < i and 0 < h′ < i.

Let (t1/ρ)ψ = t1φ = w1/η and w1
∗−→R w′1 ∈ IRR(R). Similarly we will let

(t2/ρ)ψ = t2φ = w2/η and w2
∗−→R w′2 ∈ IRR(R). By our assumption, let

w′1/η = w′2/η. As w′1 and w′2 are in normal form, this implies that w′1 ≡ w′2.

By Lemma 6.5.12 we have

w′1 ≡ 1p (21)ir+sh(h) 2iq+sh(i−h) and w′2 ≡ 1p
′

(21)ir
′+s′h(h′) 2iq

′+s′h(i−h′).

As we have w′1 ≡ w′2 it follows that we must have p = p′. When we consider

that h < i and h′ < i we must also have q = q′, r = r′ and therefore h = h′

and sh = s′h. This means that t1 ≡ t2 and t1/ρ = t2/ρ which contradicts our

assumption and so ψ is injective, which completes our proof.

6.5.5 Proof of new theorem

We begin this section by returning to our original proposition and we now have

everything in place to prove it as a new theorem.
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Theorem 6.5.14. Let A = {1, 2} and R = {(221, 212), (211, 121)}. Then the

plactic monoid P2 is defined by the presentation 〈A |R〉.

Fix i ∈ N with i > 1 and let E be the submonoid of P2 generated by X = {1, 2i}.

Set B = {a, b} and let Q be the subset of B∗ ×B∗ consisting of all the following

pairs:

(i) (bba, bab),

(ii) (bai+1, abai),

(iii) {(baj−1ba, bajb) : 2 ≤ j ≤ i}.

Then (B,Q) is a finite complete rewriting system defining the monoid E where a

and b correspond to the generators 1 and 2i, respectively.

Proof. In Lemma 6.5.5 we proved that the presentation 〈B |Q〉 defining the

monoid M is a FCRS. In Definition 6.5.8 and Lemma 6.5.10 we have defined

mappings φ : B∗ → E and ψ : M → E.

The presentation 〈B |Q〉 is generated by the classes b/ρ where b ∈ B and ψ is a

one to one mapping to the classes (b/ρ)ψ = x/η where x ∈ X, which generate

the submonoid E. By Lemma 6.5.9 all the relations in Q also hold in E. Also,

in Lemma 6.5.13 we prove that ψ is a well-founded bijective homomorphism, in

other words an isomorphism between M and E.

As the presentation 〈B |Q〉 which defines the monoid M is a FCRS and we

have an isomorphism between M and E, then the presentation 〈B |Q〉 is a finite

complete rewriting system which defines the monoid E.

Corollary 6.5.15. Let ENF be the set of words defined as follows:

(a)p(bai)r(bah)sh(b)q

with integers p, r, q ≥ 0, sh ∈ {0, 1} and 0 < h < i with a fixed i which is equal to

that in the set X = {1, 2i}.

Then ENF = IRR(Q) and is a set of normal forms for the submonoid E defined
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by the presentation 〈B |Q〉, where a and b in B correspond to the generators 1

and 2i in X, respectively.

Proof. By Theorem 6.5.14 〈B |Q〉 is a presentation which defines the monoid E.

The presentation 〈B |Q〉 has a normal form as per Lemma 6.5.6 which is the set

IRR(Q). Therefore ENF = IRR(Q) and the rest follows.

Corollary 6.5.16. Let A = {1, 2, 3} and

R = {(332, 323), (322, 232), (331, 313), (311, 131), (221, 212), (211, 121), (231, 213),

(312, 132), (3212, 2321), (32131, 31321), (32321, 32132)}.

Then the plactic monoid P3 is defined by the homogeneous presentation 〈A |R〉.

Let E be the submonoid of P3 generated by X = {k, li} for some fixed i ∈ N with

i > 1 and k, l ∈ A with k < l. Set B = {a, b} and let Q be the subset of B∗ ×B∗

consisting of all the following pairs:

(i) (bba, bab),

(ii) (bai+1, abai),

(iii) {(baj−1ba, bajb) : 2 ≤ j ≤ i}.

Then (B,Q) is a finite complete rewriting system defining the monoid E where a

and b correspond to the generators k and li, respectively.

Proof. By Theorem 6.5.14, if k = 1 and l = 2, then 〈B |Q〉 is a FCRS defining

the submonoid E. It can be shown that the proof of Theorem 6.5.14 holds for

X = {1, 3i} and X = {2, 3i}.

6.6 Submonoid of the plactic monoid P2 generated by

the set X ′ = {1i, 2}

Corollary 6.6.1. Let A = {1, 2} and R = {(221, 212), (211, 121)}. Then the

plactic monoid P2 is defined by the presentation 〈A |R〉.
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Fix i ∈ N with i > 1 and let E′ be the submonoid of P2 generated by X ′ = {1i, 2}.

Set B = {a, b} and let H be the subset of B∗ ×B∗ consisting of all the following

pairs:

(i) (baa, aba),

(ii) (bi+1a, biab),

(iii) {(babj−1a, abja) : 2 ≤ j ≤ i}.

Then (B,H) is a finite complete rewriting system defining the monoid E′ where

a and b correspond to the generators 1i and 2, respectively.

Proof. The proof is the dual of that for Theorem 6.5.14.

Corollary 6.6.2. Let E′NF be the set of words defined as follows:

(a)p(bha)sh(bia)r(b)q

with integers p, r, q ≥ 0, sh ∈ {0, 1} and 0 < h < i.

Then E′NF = IRR(H) and is a set of normal forms for the submonoid E′ defined

by the presentation 〈B |H〉, where a and b in B correspond to the generators 1i

and 2 in X ′, respectively.

Proof. The proof is the dual of that for Corollary 6.5.15.

Corollary 6.6.3. Let A = {1, 2, 3} and

R = {(332, 323), (322, 232), (331, 313), (311, 131), (221, 212), (211, 121), (231, 213),

(312, 132), (3212, 2321), (32131, 31321), (32321, 32132)}.

Then the plactic monoid P3 is defined by the homogeneous presentation 〈A |R〉.

Let E′ be the submonoid of P3 generated by X ′ = {ki, l} for some fixed i ∈ N with

i > 1 and k, l ∈ A with k < l. Set B = {a, b} and let H be the subset of B∗ ×B∗

consisting of all the following pairs:
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(i) (baa, aba),

(ii) (bi+1a, biab),

(iii) {(babj−1a, abja) : 2 ≤ j ≤ i}.

Then (B,H) is a finite complete rewriting system defining the monoid E′ where

a and b correspond to the generators ki and l, respectively.

Proof. By Corollary 6.6.1, if k = 1 and l = 2, then 〈B |H〉 is a FCRS defining

the submonoid E′. It can be shown that the proof of Corollary 6.6.1 holds for

X ′ = {1i, 3} and X ′ = {2i, 3}.

6.7 Submonoid of the plactic monoid P2 generated by

the set Y1 = {12, 23}

Research in this section continues the theme of considering submonoids of the

plactic monoid on two variables i.e. the plactic monoid P2. These submonoids

will be those generated by the finite set Y = {1i, 2j} where i, j ∈ N such that

i ≤ j. We will first look at a result for specific fixed values for i and j before

giving a partial conjecture for the submonoid generated by the set Y = {1i, 2j}.

Proposition 6.7.1. Let A = {1, 2} and R = {(221, 212), (211, 121)}. Then the

plactic monoid P2 is defined by the presentation 〈A |R〉.

Let F1 be the submonoid of P2 generated by Y1 = {12, 23}. Set B = {a, b} and let

Q be the subset of B∗ ×B∗ consisting of all the following pairs:

(i) (baaa, abaa),

(ii) (bba, bab),

(iii) (baabaa, ababaa),

(iv) (bababa, babaab).

Then (B,Q) is a finite complete rewriting system defining the monoid F1 where

a and b correspond to the generators 12 and 23, respectively.
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The proof follows the same approach as that for Theorem 6.5.14 in Subsection

6.5. Before we begin this proof we make a few definitions.

Definition 6.7.2. Let B = {a, b} be a new alphabet where we order the

generators a < b. Define a set of relations Q in B∗ × B∗ consisting of all the

following pairs:

(1) (baaa, abaa),

(2) (bba, bab),

(3) (baabaa, ababaa),

(4) (bababa, babaab).

Let M be the monoid defined by the presentation 〈B |Q〉 and associated

rewriting system (B,Q).

Throughout the remainder of subsection 6.7, unless stated otherwise, we will use

the following as defined in Proposition 6.7.1 and Definition 6.7.2:

(i) the sets A, B, Y1, R, Q;

(ii) the monoids P2, M , and the submonoid F1.

In addition, let η be the smallest congruence on A∗ which contains R and ρ be

the smallest congruence on B∗ which contains Q.

6.7.1 Proofs regarding the monoid presentation 〈B |Q〉

Lemma 6.7.3. The rewriting system (B,Q) is noetherian.

Proof. Recall the alphabet B = {a, b} where a < b and we define a shortlex

ordering on the set of words B∗. Now consider each of the rewrite rules in Q:

(1) (baaa, abaa),

(2) (bba, bab),

(3) (baabaa, ababaa),

(4) (bababa, babaab).

Firstly, they are all length preserving. Secondly, for any arbitrary rewrite rule
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with u, v ∈ B∗ and (u, v) ∈ Q we have u > v. This can be seen as in each rule,

a letter a is moved one position to the left, exchanging places with a letter b. So

we have a set of rules which is reducing in terms of shortlex ordering, which is an

admissible partial ordering by Definition 2.6.2 part (d). Hence by Theorem 2.6.7

the reduction relation →Q on B∗ is noetherian. Therefore the rewriting system

(B,Q) is noetherian.

Lemma 6.7.4. The rewriting system (B,Q) is locally confluent.

Proof. The test for local confluence looks for the resolution of all critical pairs

of rewrite rules, see Lemma 2.6.9. Recall that critical pairs of rewrite rules are

where the left hand side of two rules overlap. If this can be achieved then the

rewriting system is locally confluent.

We will now examine the rewrite rules in Q, looking for and resolving all possible

critical pairs as follows:

(a) Let t1 ≡ bbaaa, which arises from overlapping the left hand sides of (1) and

(2). Then

apply (2) t1
(2)−−→ babaa,

apply (1) t1
(1)−−→ babaa.

(b) Let t2 ≡ baabaaa, which arises from overlapping the left hand sides of (1)

and (3). Then

apply (3) t2
(3)−−→ ababaaa

(1)−−→ abaabaa,

apply (1) t2
(1)−−→ baaabaa

(1)−−→ abaabaa.

(c) Let t2 ≡ bababaaa, which arises from overlapping the left hand sides of (1)

and (4). Then

apply (4) t2
(4)−−→ babaabaa,

apply (1) t2
(1)−−→ babaabaa.

(d) Let t2 ≡ bbaabaa, which arises from overlapping the left hand sides of (2)

and (3). Then
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apply (2) t2
(2)−−→ bababaa,

apply (3) t2
(3)−−→ bababaa.

(e) Let t2 ≡ bbababa, which arises from overlapping the left hand sides of (2)

and (4). Then

apply (2) t2
(2)−−→ babbaba

(2)−−→ bababba
(2)−−→ bababab,

apply (4) t2
(4)−−→ bbabaab

(2)−−→ babbaab
(2)−−→ bababab.

(f) Let t2 ≡ bababaabaa, which arises from overlapping the left hand sides of

(4) and (3). Then

apply (4) t2
(4)−−→ babaababaa,

apply (3) t2
(3)−−→ babaababaa.

(g) Let t2 ≡ baabaabaa, which arises from overlapping the left hand sides of (3)

and (3). Then

apply (3) to the left t2
(3)−−→ ababaabaa

(3)−−→ abaababaa,

apply (3) to the right t2
(3)−−→ baaababaa

(1)−−→ abaababaa.

(h) Let t2 ≡ babababa, which arises from overlapping the left hand sides of (4)

and (4). Then

apply (4) to the left t2
(4)−−→ babaabba

(2)−−→ babaabab,

apply (4) to the right t2
(4)−−→ bababaab

(4)−−→ babaabab.

(i) Let t2 ≡ bababababa, which arises from overlapping the left hand sides of

(4) and (4). Then

apply (4) to the left t2
(4)−−→ babaabbaba

(2)−−→ babaababba
(2)−−→ babaababab,

apply (4) to the right t2
(4)−−→ babababaab

(4)−−→ babaabbaab
(2)−−→ babaababab.

All critical pairs resolve, so the rewriting system (B,Q) is locally confluent.

Lemma 6.7.5. The presentation 〈B |Q〉 for the monoid M is a finite complete

rewriting system.

Proof. The rewriting system (B,Q) for the monoid M is noetherian and locally
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confluent by Lemmas 6.7.3 and 6.7.4 respectively. So by Lemma 2.6.10 it is also

complete. Thus (B,Q) is a finite complete rewriting system.

Lemma 6.7.6. The irreducible words with respect to the rewriting system (B,Q)

are precisely the words of the form:

(a)p(baa)s3(babaa)r(ba)s2(b)q

with integers p, q, r ≥ 0, s3 ∈ {0, 1} and s2 ∈ {0, 1, 2}. Hence this set of words

gives a set of normal forms for the elements of the monoid M defined by the

presentation 〈B |Q〉.

Proof. The rewriting system (B,Q) for the monoid M is noetherian and locally

confluent by Lemmas 6.7.3 and 6.7.4 respectively. Therefore by Theorem 2.6.13

each equivalence class under
∗↔Q contains a unique irreducible word, which we

will define with the above normal form. To prove that we have the correct normal

form we intend to show that it is irreducible and that every word can be reduced

to one in this form.

First we prove that the normal form is irreducible. To do this we show that it

does not contain any substring of letters which also occur as the left hand side

of a rewrite rule in the set Q. Note that none of the left hand sides of the rules

start with a letter a so we can ignore the first term (a)p as it cannot be part of

a string within a word that could be rewritten. Also, none end in a b so we can

ignore the last term (b)q for a similar reason.

If the second term (baa)s3 exists we consider the string of letters if it is followed

by either the third or fourth term, the latter occurring once or twice. So we have

three possible strings baababaa, baaba or baababa and none contain a string of

letters from the left hand side of a rewrite rule. Next we look at possible strings

that start with the third term (babaa)r. We could have r > 1 or r = 1 followed by

the fourth term, the latter occurring once or twice. So we consider babaababaa,

babaaba and babaababa none of which contain a string of letters from the left
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hand side of a rewrite rule.

In summary, having considered all possible combinations of terms in the proposed

normal form, there does not exist a substring of letters which match the left hand

side of a rewrite rule. Therefore, the proposed normal form is irreducible.

Next we aim to show that every word in B∗ can be reduced to a word in the

proposed normal form. In other words, if any word, say t ∈ B∗ does not contain

the left hand side string of letters from any rewrite rule (i.e. it is irreducible),

then t must be in the proposed normal form. To do this we use proof by induction

on the length of the word t.

Induction statement:

Let t ∈ B∗ be an irreducible word which is in the proposed normal form. Let

t1 ≡ th where h ∈ B = {a, b} so that |t1| = |t|+ 1. Next apply the rewrite rules

Q to t1 such that t1
∗→Q t′1 and t′1 is irreducible. Then the irreducible word t′1

will be in the proposed normal form.

Firstly, if |t| = 0 then t1 ≡ a or t1 ≡ b and both these words are in the proposed

normal form. Thus the induction statement is true for |t| = 0.

Next we look at every possible form for the word t which is in the proposed

normal form, append either an a or a b and apply the rewrite rules Q to the

resulting word. Then we check to see if our irreducible word is in the proposed

normal form. Appending a b will clearly always result in an irreducible word that

is already in the proposed normal form. So we look at each case where we can

append an a, as follows:

(i) Let t ≡ (a)p with p > 0,

then t1 ≡ (a)pa = (a)p+1 which is in the proposed normal form.

(ii) Let t ≡ (baa)s3 with s3 = 1,

then t1 ≡ (baa)a
(1)−−→ (a)p(baa)s3 with p = 1 which is in the proposed

normal form.
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(iii) Let t ≡ (babaa)r with r > 0,

then t1 ≡ (babaa)ra
(1)−−→ (babaa)r−1baabaa

(3)−−→ (babaa)r−1a(babaa)

(1,3)−−−→
∗

(a)p(babaa)r with p = 1 which is in the proposed normal form.

(iv) Let t ≡ (ba)s2 with s2 > 0,

if s2 = 1 then t1 ≡ baa ≡ (baa)s3 with s3 = 1,

if s2 = 2 then t1 ≡ babaa ≡ (babaa)r with r = 1,

both of which are in the proposed normal form.

(v) Let t ≡ (b)q with q > 0,

if q = 1 then t1 ≡ ba ≡ (ba)s2 with s2 = 1,

if q = 2 then t1 ≡ bba
(2)−−→ (ba)s2(b)q−1 with s2 = 1,

if q ≥ 3 then t1 ≡ (b)q−2bba
(2)−−→ (b)q−2bab

(2)−−→
∗

(ba)s2(b)q−1 with s2 = 1,

all of which are in the proposed normal form.

(vi) Let t ≡ (a)p(baa)s3 with p > 0, s3 = 1 and see part(ii),

then t1 ≡ (a)p(baa)s3a
(1)−−→ (a)p+1(baa)s3 which is in the proposed normal

form.

(vii) Let t ≡ (a)p(babaa)r with p, r > 0 and see part(iii),

then t1 ≡ (a)p(babaa)ra
(1,3)−−−→

∗
(a)p+1(babaa)r which is in the proposed

normal form.

(viii) Let t ≡ (a)p(ba)s2 with s2 > 0 and p > 0 and see part (iv),

if s2 = 1 then t1 ≡ (a)pbaa ≡ (a)p(baa)s3 with s3 = 1,

if s2 = 2 then t1 ≡ (a)pbabaa ≡ (a)p(babaa)r with r = 1,

both of which are in the proposed normal form.

(ix) Let t ≡ (a)p(b)q with q > 0 and p > 0 and see part (v),

if q = 1 then t1 ≡ (a)pba ≡ (a)p(ba)s2 with s2 = 1,

if q = 2 then t1 ≡ (a)pbba
(2)−−→ (a)p(ba)s2(b)q−1 with s2 = 1,

if q ≥ 3 then t1 ≡ (a)p(b)q−2bba
(2)−−→ (a)p(b)q−2bab

(2)−−→
∗

(a)p(ba)s2(b)q−1

with s2 = 1, all of which are in the proposed normal form.

(x) Let t ≡ (baa)s3(babaa)r with r > 0 and s3 = 1 and see parts (iii) and (ii),
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then t1 ≡ (baa)s3(babaa)ra
(1,3)−−−→

∗
(baa)s3a(babaa)r

(1)−−→ (a)p(baa)s3(babaa)r

with p = 1 which is in the proposed normal form.

(xi) Let t ≡ (baa)s3(ba)s2 with s2 > 0 and s3 = 1,

if s2 = 1 then t1 ≡ baabaa
(3)−−→ (a)p(babaa)r with p = 1 and r = 1,

if s2 = 2 then t1 ≡ baababaa ≡ (baa)s3(babaa)r with r = 1,

both of which are in the proposed normal form.

(xii) Let t ≡ (baa)s3(b)q with q > 0, s3 = 1 and see part(v),

then t1 ≡ (baa)s3(b)qa
(2)−−→
∗

(baa)s3(ba)s2(b)q−1 with s2 = 1 which is in the

proposed normal form.

(xiii) Let t ≡ (babaa)r(ba)s2 with s2 > 0, r > 0 and see part (iii),

if s2 = 1 then t1 ≡ (babaa)rbaa
(3)−−→
∗

(baa)s3(babaa)r with s3 = 1,

if s2 = 2 then t1 ≡ (babaa)rbabaa ≡ (babaa)r+1,

both of which are in the proposed normal form.

(xiv) Let t ≡ (babaa)r(b)q with q > 0, r > 0 and see part(v),

then t1 ≡ (babaa)r(b)qa
(2)−−→
∗

(babaa)r(ba)s2(b)q−1 with s2 = 1 which is in

the proposed normal form.

(xv) Let t ≡ (ba)s2(b)q with s2 > 0, q > 0 and we see parts (iv) and (v),

if s2 = 1 then t1 ≡ ba(b)qa
(2)−−→
∗

(ba)s22(b)q−1 with s22 = 2,

if s2 = 2 then t1 ≡ baba(b)qa
(2)−−→
∗
bababa(b)q−1 (4)−−→ (babaa)r(b)q with

r = 1, both of which are in the proposed normal form.

(xvi) Let t ≡ (a)p(baa)s3(babaa)r with p, r > 0, s3 = 1 and see part (x),

then t1 ≡ (a)p(baa)s3(babaa)ra
(1,3)−−−→

∗
(a)p(baa)a(babaa)r

(1)−−→ (a)p+1(baa)s3(babaa)r which is in the proposed normal form.

(xvii) Let t ≡ (a)p(baa)s3(ba)s2 with p, s2 > 0, s3 = 1 and see part (xi),

if s2 = 1 then t1 ≡ (a)pbaabaa
(3)−−→ (a)p+1(babaa)r with r = 1,

if s2 = 2 then t1 ≡ (a)p(baa)s3babaa ≡ (a)p(baa)s3(babaa)r with r = 1,

both of which are in the proposed normal form.
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(xviii) Let t ≡ (a)p(baa)s3(b)q with p, q > 0, s3 = 1 and see part(xii),

then t1 ≡ (a)p(baa)s3(b)qa
(2)−−→
∗

(a)p(baa)s3(ba)s2(b)q−1 with s2 = 1 which

is in the proposed normal form.

(xix) Let t ≡ (a)p(babaa)r(ba)s2 with p, r, s2 > 0 and see part (xiii),

if s2 = 1 then t1 ≡ (a)p(babaa)rbaa
(1,3)−−−→

∗
(a)p(baa)s3(babaa)r with s3 = 1,

if s2 = 2 then t1 ≡ (a)p(babaa)rbabaa ≡ (a)p(babaa)r+1,

both of which are in the proposed normal form.

(xx) Let t ≡ (a)p(babaa)r(b)q with p, r, q > 0 and see part(xiv),

then t1 ≡ (a)p(babaa)r(b)qa
(2)−−→
∗

(a)p(babaa)r(ba)s2(b)q−1 with s2 = 1

which is in the proposed normal form.

(xxi) Let t ≡ (a)p(ba)s2(b)q with s2 > 0, p, q > 0 and see part (xv),

if s2 = 1 then t1 ≡ (a)pba(b)qa
(2)−−→
∗

(a)p(ba)s22(b)q−1 with s22 = 2,

if s2 = 2 then t1 ≡ (a)pbaba(b)qa
(2)−−→
∗

(a)pbababa(b)q−1

(4)−−→ (a)p(babaa)r(b)q with r = 1,

both of which are in the proposed normal form.

(xxii) Let t ≡ (baa)s3(babaa)r(ba)s2 with s2 > 0, s3, r > 0 and see part (xiii),

if s2 = 1 then t1 ≡ (baa)s3(babaa)rbaa
(3)−−→
∗

(baa)(baa)(babaa)r

(3)−−→ (a)p(babaa)r+1 with p = 1,

if s2 = 2 then t1 ≡ (baa)s3(babaa)rbabaa ≡ (baa)s3(babaa)r+1,

both of which are in the proposed normal form.

(xxiii) Let t ≡ (baa)s3(babaa)r(b)q with r, q > 0, s3 = 1 and see part (xiv),

then t1 ≡ (baa)s3(babaa)r(b)qa
(2)−−→
∗

(baa)s3(babaa)r(ba)s2(b)q−1 with

s2 = 1 which is in the proposed normal form.

(xxiv) Let t ≡ (baa)s3(ba)s2(b)q with s2, q > 0, s3 = 1 and see part (xv),

if s2 = 1 then t1 ≡ (baa)s3ba(b)qa
(2)−−→
∗

(baa)s3(ba)s22(b)q−1 with s22 = 2,

if s2 = 2 then t1 ≡ (baa)s3baba(b)qa
(2)−−→
∗

(baa)s3bababa(b)q−1

(4)−−→ (baa)s3(babaa)r(b)q with r = 1,

both of which are in the proposed normal form.
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(xxv) Let t ≡ (babaa)r(ba)s2(b)q with r, q, s2 > 0 and see part (xv),

if s2 = 1 then t1 ≡ (babaa)rba(b)qa
(2)−−→
∗

(babaa)r(ba)s22(b)q−1 with s22 = 2,

if s2 = 2 then t1 ≡ (babaa)rbaba(b)qa
(2)−−→
∗

(babaa)rbababa(b)q−1

(4)−−→ (babaa)r+1(b)q,

both of which are in the proposed normal form.

(xxvi) Let t ≡ (a)p(baa)s3(babaa)r(ba)s2 with s2 > 0, p, r > 0, s3 = 1 and see part

(xxii),

if s2 = 1 then t1 ≡ (a)p(baa)s3(babaa)rbaa
(3)−−→
∗

(a)p(baa)(baa)(babaa)r

(3)−−→ (a)p+1(babaa)r+1,

if s2 = 2 then t1 ≡ (baa)s3(babaa)rbabaa ≡ (baa)s3(babaa)r+1,

both of which are in the proposed normal form.

(xxvii) Let t ≡ (a)p(baa)s3(babaa)r(b)q with p, r, q > 0, s3 = 1 and see part (xxiv),

then t1 ≡ (a)p(baa)s3(babaa)r(b)qa
(2)−−→
∗

(a)p(baa)s3(babaa)r(ba)s2(b)q−1

with s2 = 1 which is in the proposed normal form.

(xxviii) Let t ≡ (a)p(baa)s3(ba)s2(b)q with p, q, s2 > 0, s3 = 1 and see part (xxiv),

if s2 = 1 then t1 ≡ (a)p(baa)s3ba(b)qa
(2)−−→
∗

(a)p(baa)s3(ba)s22(b)q−1 with

s22 = 2,

if s2 = 2 then t1 ≡ (a)p(baa)s3baba(b)qa
(2)−−→
∗

(a)p(baa)s3bababa(b)q−1

(4)−−→ (a)p(baa)s3(babaa)r(b)q with r = 1,

both of which are in the proposed normal form.

(xxix) Let t ≡ (a)p(babaa)r(ba)s2(b)q with r, q, p, s2 > 0 and see part (xxv),

if s2 = 1 then

t1 ≡ (a)p(babaa)rba(b)qa
(2)−−→
∗

(a)p(babaa)r(ba)s22(b)q−1 with s22 = 2,

if s2 = 2 then t1 ≡ (a)p(babaa)rbaba(b)qa
(2)−−→
∗

(a)p(babaa)rbababa(b)q−1

(4)−−→ (a)p(babaa)r+1(b)q,

both of which are in the proposed normal form.

(xxx) Let t ≡ (baa)s3(babaa)r(ba)s2(b)q with r, q, s2 > 0, s3 = 1 and see part

(xxv),

if s2 = 1 then
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t1 ≡ (baa)s3(babaa)rba(b)qa
(2)−−→
∗

(baa)s3(babaa)r(ba)s22(b)q−1 with s22 = 2,

if s2 = 2 then

t1 ≡ (baa)s3(babaa)rbaba(b)qa
(2)−−→
∗

(baa)s3(babaa)rbababa(b)q−1

(4)−−→ (baa)s3(babaa)r+1(b)q,

both of which are in the proposed normal form.

(xxxi) Let t ≡ (a)p(baa)s3(babaa)r(ba)s2(b)q with p, r, q, s2 > 0, s3 = 1 and see

part (xxx),

if s2 = 1 then t1 ≡ (a)p(baa)s3(babaa)rba(b)qa

(2)−−→
∗

(a)p(baa)s3(babaa)r(ba)s22(b)q−1 with s22 = 2,

if s2 = 2 then t1 ≡ (a)p(baa)s3(babaa)rbaba(b)qa

(2)−−→
∗

(a)p(baa)s3(babaa)rbababa(b)q−1 (4)−−→ (a)p(baa)s3(babaa)r+1(b)q,

both of which are in the proposed normal form.

In summary, for every irreducible word in the proposed normal form, if we append

a single letter from the alphabet B, we can reduce the word to an irreducible word

and that word is also in the proposed normal form. Thus the induction statement

is true for words of length |t| + 1. It has also been proved true for words where

|t| = 0. Therefore all words in B∗ can be reduced to the proposed normal form.

This completes the proof that the irreducible words with respect to the rewriting

system (B,Q) are

(a)p(baa)s3(babaa)r(ba)s2(b)q

with integers p, q, r ≥ 0, s3 ∈ {0, 1} and s2 ∈ {0, 1, 2}. Hence, this set of words is

a normal form for the presentation 〈B |Q〉 for the monoid M .

6.7.2 Proofs regarding the submonoid F1

In the previous section we have defined a monoid M which has presentation

〈B |Q〉 which is a finite complete rewriting system. Our aim now is to prove

that the submonoid F1 is isomorphic to the monoid defined by the presentation
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〈B |Q〉 and hence F1 admits a presentation by a finite complete rewriting system,

completing the proof of Theorem 6.7.12. To do this we create mappings between

elements in M and F1 and prove that we have a bijection. We also prove that

all the relations in Q also hold when mapped to the submonoid F1. First some

definitions.

Definition 6.7.7. Define a mapping φ1 : B → F1 such that a 7→ 11/η and

b 7→ 222/η. This extends to the unique surjective homomorphism φ : B∗ → F1

such that if t, t1 ∈ B∗, t2 ∈ B and t ≡ t1t2 then tφ = (t1φ)t2φ.

Lemma 6.7.8. If (u, v) ∈ Q is an arbitrary relation then uφ = vφ in the

submonoid F1.

Proof. Let uφ = u′/η and vφ = v′/η. In order to prove that u′/η = v′/η we will

look to prove that the tableau words are the same, that is P (u′) ≡ P (v′). As the

tableau word for an element is unique we will have proved that uφ = vφ. We

take each relation in turn and apply Schensted’s algorithm.

(1)
(
(baaa)φ, (abaa)φ

) (
(23121212)/η, (12231212)/η

)
We have P (23121212) ≡ 23 16 since applying Schensted’s algorithm to the

left hand side of the relation gives:

2 2
1 1 2

2 2 2
1 1 1 1

2 2 2
1 1 1 1 1 1

Alternatively, we get the same result P (12231212) ≡ 23 16, if we apply

Schensted’s algorithm to the right hand side of the relation:

1 1 2 2 2
2 2
1 1 1 1 2

2 2 2
1 1 1 1 1 1

(2)
(
(bba)φ, (bab)φ

)
=
(
(232312)/η, (231223)/η

)
We have P (232312) ≡ 22 1224 since applying Schensted’s algorithm to the
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left hand side of the relation gives:

2 2 2 2 2 2 2 2 2
2 2
1 1 2 2 2 2

Alternatively, we get the same result P (231223) ≡ 22 1224, if we apply

Schensted’s algorithm to the right hand side of the relation:

2 2 2
2 2
1 1 2

2 2
1 1 2 2 2 2

(3)
(
(baabaa)φ, (ababaa)φ

)
=
(
(231212231212)/η, (122312231212)/η

)
We have P (231212231212) ≡ 26 18 since applying Schensted’s algorithm to

the left hand side of the relation gives:

2 2
1 1 2

2 2 2
1 1 1 1

2 2 2
1 1 1 1 2 2 2

2 2 2 2 2
1 1 1 1 1 1 2

2 2 2 2 2 2
1 1 1 1 1 1 1 1

Alternatively, we get the same result P (122312231212) ≡ 26 18, if we apply

Schensted’s algorithm to the right hand side of the relation:

1 1 2 2 2
2 2
1 1 1 1 2

2 2
1 1 1 1 2 2 2 2

2 2 2 2
1 1 1 1 1 1 2 2

2 2 2 2 2 2
1 1 1 1 1 1 1 1

(4)
(
(bababa)φ, (babaab)φ

)
=
(
(231223122312)/η, (231223121223)/η

)
We have P (231223122312) ≡ 26 1623 since applying Schensted’s algorithm

to the left hand side of the relation gives:

2 2
1 1 2

2 2
1 1 2 2 2 2

2 2 2 2
1 1 1 1 2 2

2 2 2 2
1 1 1 1 2 2 2 2 2

2 2 2 2 2 2
1 1 1 1 1 1 2 2 2

Alternatively, we get the same result P (231223121223) ≡ 26 1623, if we
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apply Schensted’s algorithm to the right hand side of the relation:

2 2
1 1 2

2 2
1 1 2 2 2 2

2 2 2 2
1 1 1 1 2 2

2 2 2 2 2 2
1 1 1 1 1 1

2 2 2 2 2 2
1 1 1 1 1 1 2 2 2

From the tableau above we can see that in each case uφ = vφ in P2 and therefore

also in the submonoid F1. Hence all the relations Q hold in F1.

Lemma 6.7.9. The mapping ψ : M → F1 defined by ψ : M → F1 such that

(t/ρ)ψ = tφ where t ∈ B∗ and so t/ρ ∈M , is a well-defined epimorphism.

Proof. This follows from Definition 6.7.7, Theorem 6.5.7 and Lemma 6.7.8.

Next we aim to prove that the mapping ψ is injective and we follow the same

approach as in Subsection 6.5.

Lemma 6.7.10. Let t ∈ B∗ such that t ≡ (a)p(baa)s3(babaa)r(ba)s2(b)q in

IRR(Q) with integers p, q, r ≥ 0, s3 ∈ {0, 1} and s2 ∈ {0, 1, 2} which is a normal

form for the presentation 〈B |Q〉. Let (t/ρ)ψ = tφ = w/η and

w
∗→R w

′ ∈ IRR(R). Then

w′ ≡ (1)c(21)d(2)e where c = 2p+ s3, d = 3s3 + 6r + 2s2 and e = 3q + s2.

Proof. By Lemma 6.7.6 t is in normal form for the presentation 〈B |Q〉. We can

see that w ≡ (11)p(2221111)s3(222112221111)r(22211)s2(222)q by definition of φ.

Recall R = {(211, 121), (221, 212)}. There are no rewrite rules in R where the

left hand side starts with the letter 1 or ends with the letter 2. So we need only

consider the three middle terms.
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We first apply the rewrite rules to the term 2221111 which gives:

2221111 ≡ 2(221)111→R (221)2111→R 21(221)11→R 2121(211)

→R 21(211)(21)→R (211)(2121)→R (1)(212121)

≡ (1)(21)3 ∈ IRR(R).

Then applying the rewrite rules to 222112221111 gives:

222112221111 ≡ 2(221)12(221)111
∗−→R (221)21(221)2111

∗−→R 21(221)21(221)11

∗−→R (2121)(221)21211→R (212121)(221)211

→R (21212121)(221)1→R (21212121)2121

≡ (21)6 ∈ IRR(R).

Finally we look at the fourth term (22211)s2 where s2 ∈ {0, 1, 2}. If s2 = 1 then

applying the rewrite rules to 22211 gives:

(22211) ≡ 2(221)1→R (221)21→R 21(221)

→R (2121)2 ≡ (21)22 ∈ IRR(R).

If s2 = 2 then applying the rewire rules to 2221122211 gives:

(22211)(22211) ≡ 2(221)1(22211)→R (221)21(22211)

→R 21(221)(22211)→R (2121)2(22211)

≡ (2121)22(221)1→R (2121)2(221)21→R (2121)(221)221

→R (2121)212(221)→R (212121)(221)2→R (212121)2122

≡ (21)4(2)2 ∈ IRR(R).

Now we can put the rewritten terms together and see if we can apply any

further rewrite rules. We consider each combination in turn:
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If w ≡ (11)p(222)q ≡ 12p 23q ∈ IRR(R).

If w ≡ (11)p(2221111)(222)q ≡ 12p 1 (21)3 23q ∈ IRR(R).

If w ≡ (11)p(222112221111)r(222)q ≡ 12p (21)6r 23q ∈ IRR(R).

If w ≡ (11)p(22211)s2(222)q ≡ 12p (21)2s2 2s2 23q ∈ IRR(R).

If w ≡ (11)p(2221111)(222112221111)r(222)q ≡ 12p 1 (21)3 (21)6r 23q ∈ IRR(R).

If w ≡ (11)p(2221111)(22211)s2(222)q ≡ 12p 1 (21)3 (21)2s2 2s2 23q ∈ IRR(R).

If

w ≡ (11)p(222112221111)r(22211)s2(222)q ≡ 12p (21)6r (21)2s2 2s2 23q ∈ IRR(R).

If w ≡ (11)p(2221111)(222112221111)r(22211)s2(222)q

≡ 12p 1 (21)3 (21)6r (21)2s2 2s2 23q ∈ IRR(R).

Now we can complete the proof and determine w′, as follows:

w′ ≡
(
11
)p (

(1)(21)3
)s3 ( (21)6

)r (
(21)2s2(2)s2

) (
222
)q

≡ 1(2p+s3) (21)(3s3+6r+2s2) 2(3q+s2).

where w′ is in IRR(R) and in normal form for P2, by Corollary 6.4.1.

Lemma 6.7.11. The mapping ψ : M → F1 is a well-defined bijection.

Proof. By Lemma 6.7.9 the mapping ψ is a well-defined epimorphism that is a

surjective homomorphism. Therefore it remains to prove that ψ is an injective

mapping. The proof will be by contradiction and we will assume that ψ is not

injective.

Let t1, t2 ∈ B∗ and our assumption (for a contradiction) is that t1/ρ 6= t2/ρ in

the monoid M but (t1/ρ)ψ = (t2/ρ)ψ in the submonoid F1. Next, without loss

of generality, let t1 and t2 be in normal form as any word in B∗ can be reduced

to a normal form by Lemma 6.7.6. Let

t1 ≡ (a)p(baa)s3(babaa)r(ba)s2(b)q and t2 ≡ (a)p
′
(baa)s

′
3(babaa)r

′
(ba)s

′
2(b)q′

with integers p, p′, r, r′, q, q′ ≥ 0; s3 and s′3 ∈ {0, 1}; s2 and s′2 ∈ {0, 1, 2}.
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Let (t1/ρ)ψ = t1φ = w1/η and w1
∗−→R w′1 ∈ IRR(R). Similarly we will let

(t2/ρ)ψ = t2φ = w2/η and w2
∗−→R w′2 ∈ IRR(R). By our assumption, let

w′1/η = w′2/η. As w′1 and w′2 are in normal form, this implies that w′1 ≡ w′2.

By Lemma 6.7.10 we have

w′1 ≡ 1(2p+s3) (21)(3s3+6r+2s2) 2(3q+s2) and

w′2 ≡ 1(2p′+s′3) (21)(3s′3+6r′+2s′2) 2(3q′+s′2).

By definition s3 and s′3 are in {0, 1} and therefore we must have p = p′ and also

s3 = s′3. Similarly, by definition s2 and s′2 are in {0, 1, 2} and therefore we must

have q = q′ and also s2 = s′2. Finally, as s3 = s′3 and s2 = s′2 then we must

have r = r′. This means that t1 ≡ t2 and t1/ρ = t2/ρ which contradicts our

assumption and so ψ is injective, which completes our proof.

6.7.3 Proof of new theorem

We begin this section by returning to our original proposition and we now have

everything in place to prove it as a new theorem.

Theorem 6.7.12. Let A = {1, 2} and R = {(221, 212), (211, 121)}. Then the

plactic monoid P2 is defined by the presentation 〈A |R〉.

Let F1 be the submonoid of P2 generated by Y1 = {12, 23}. Set B = {a, b} and let

Q be the subset of B∗ ×B∗ consisting of all the following pairs:

(i) (baaa, abaa),

(ii) (bba, bab),

(iii) (baabaa, ababaa),

(iv) (bababa, babaab).

Then (B,Q) is a finite complete rewriting system defining the monoid F1 where

a and b correspond to the generators 12 and 23, respectively.
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Proof. In Lemma 6.7.5 we proved that the presentation 〈B |Q〉 defining the

monoid M is a FCRS. In Definitions 6.7.7 and Lemma 6.7.9 we have defined

mappings φ : B∗ → F1 and ψ : M → F1.

The presentation 〈B |Q〉 is generated by the classes b/ρ where b ∈ B and ψ is a

one to one mapping to the classes (b/ρ)ψ = y/η where y ∈ Y1, which generate

the submonoid F1. By Lemma 6.7.8 all the relations in Q also hold in F1. Also,

in Lemma 6.7.11 we prove that ψ is a well-founded bijective homomorphism, in

other words an isomorphism between M and F1.

As the presentation 〈B |Q〉 is a FCRS which defines the monoid M and we have

an isomorphism between M and F1, then the presentation 〈B |Q〉 is a finite

complete rewriting system which defines the monoid F1.

6.8 Submonoids of the plactic monoid P2 generated

by the set Y = {1i, 2j}

In previous subsections we have considered the submonoids generated by:

X = {1, 2i}, X ′ = {1i, 2}, Y1 = {12, 23},

and proved that they have finite presentations which are also FCRS.

In this subsection we consider the same questions for the generating set Y =

{1i, 2j} where i, j ∈ N and i < j. In order to find a presentation, the first step is

to look for a normal form, together with a set of rewrite rules. In the remainder of

this subsection results are presented for specific generating sets and a conjecture

for the generating set Y . First some specific examples.

Conjecture 6.8.1. Let A = {1, 2} and R = {(221, 212), (211, 121)}. Then the

plactic monoid P2 is defined by the presentation 〈A |R〉.

Let F2 be the submonoid of P2 generated by Y2 = {13, 28}. Set B = {a, b} and let

Q be the subset of B∗ ×B∗ consisting of all the following pairs:

(0) (bba, bab),
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(1) (baaaa, abaaa),

(2) (baaabaaabaaa, abaabaaabaaa),

(3) (baba, baab),

(4) (baabaaba, baabaaab),

(5) (baabaaabaaba, baabaaabaaab).

Then (B,Q) is a finite complete rewriting system defining the monoid F2 where

a and b correspond to the generators 13 and 28, respectively. Moreover, the

irreducible words with respect to the rewriting system (B,Q) are precisely the

words of the form:

(a)p (baaa)s8 (baabaaabaaa)r (baabaaa)s15 (baa)s6 (ba)s3 (b)q

where p, q, r ≥ 0, s8 ∈ {0, 1, 2}, s15 ∈ {0, 1}, s6 ∈ {0, 1, 2}, s3 ∈ {0, 1} and not

s6 = 2 with s3 = 1 and not s15 = 1 with s6 = 2. Hence this set of words gives a

set of normal forms for the elements of the monoid F2 defined by the presentation

〈B |Q〉.

Conjecture 6.8.2. Let A = {1, 2} and R = {(221, 212), (211, 121)}. Then the

plactic monoid P2 is defined by the presentation 〈A |R〉.

Let F3 be the submonoid of P2 generated by Y3 = {15, 212}. Then F3 admits a

presentation by a finite complete rewriting system.

Let B = {a, b} be an alphabet where a and b correspond to the generators 13 and

28, respectively. Then the set of normal forms for the elements of the monoid F3

are precisely the words of the form:

(a)p (baaa)s12 (baabaaa)s24 (baabaabaaabaabaaa)r

(baabaabaaa)s35 (baa)s10 (ba)s5 (b)q

where p, q, r ≥ 0, s12 ∈ {0, 1}, s24 ∈ {0, 1, 2}, s35 ∈ {0, 1}, s10 ∈ {0, 1, 2, 3},

s5 ∈ {0, 1}. There would also be some combinations of sn’s which would not be
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possible.

Conjecture 6.8.3. Let P2 be the plactic monoid of rank 2 generated by {1, 2}.

For i, j ∈ N let Mi,j be the submonoid of P2 generated by Y = {1i, 2j}. Then

Mi,j admits a presentation by a finite complete rewriting system.

Currently this is just a conjecture. A discussion of how we might approach

proving this conjecture is given below. By Lemma 6.2.6 and by symmetry, it

suffices to prove the result for the case i < j with i and j coprime.

Let B = {a, b} be an alphabet where a and b correspond to the generators 1i and

2j respectively. Then the conjecture is that the normal forms for the elements of

the submonoid Mi,j will have the following form:

(a)p [ left mixed terms ](lowest common multiple term)r[ right mixed terms ](b)q

where p, q, r ≥ 0. The lowest common multiple term will always be present and

consists of a single word which is a combination of the generators a and b. There

will be j occurrences of the letter a and i occurrences of the letter b and it

will look something like this,
(
b (a)x1 b (a)x2 . . . b (a)x(i−1) b(a)xi

)
with

x1, x2, . . . , xi ∈ N. This term can be identified as the term which is raised to the

power r in Conjectures 6.8.1 and 6.8.2. Looking at these examples it is clear that

the number of terms to the left and the right of this term can vary depending on

the relative values of i and j. As such it may be possible to find a method by

which to determine the sets of left mixed terms and right mixed terms.

We conjecture that a set of rewrite rules can be derived from the normal form.

It may not be possible to determine a generalised form for these, rather it will be

possible to find a method by which to determine them.
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6.9 Potential future work

6.9.1 Submonoids of P2, P3 or Pn

(i) Develop conjecture 6.8.3 and see if it is possible to define a method for finding

a presentation which is a finite complete rewriting system.

(ii) Extend current results to the plactic monoid P3 where the generating set for

the submonoid of P3 has three variables e.g. X = {1i, 2j , 3k}. Again we look to

find a presentation for the submonoid which is a finite complete rewriting system.

(iii) Further generalise the generating set to define different submonoids of the

plactic monoid P3, for example:

X = {1i1 , 1i2 , . . . , 1ir , 2j1 , 2j2 , . . . , 2js , 3k1 , 3k2 , . . . , 3kt}.

(iv) Let Pn be the plactic monoid generated by the set A = {1, 2, . . . , n}. Let M

be the submonoid of Pn generated by the set X = {w1, w2} where w1, w2 ∈ A∗. Is

the submonoid M finitely presented and does it admit a presentation by a finite

complete rewriting system?

6.9.2 Open questions

(i) Is it possible to classify all finitely generated submonoids of the plactic monoid

Pn for various values of n ∈ N?

(ii) Are all finitely generated submonoids of the plactic monoid Pn finitely

presented, have finite derivation type or admit a presentation by a finite

complete rewriting system?
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