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Abstract

The integration of optimization methodologies with computational

simulations plays a profound role in the product design. Such integration,

however, faces multiple challenges arising from computation-intensive

simulations, unknown function properties (i.e., black-box functions), complex

constraints, and high-dimensionality of problems. To address these

challenges, metamodel-based methods which apply metamodels as a cheaper

alternative to costly analysis tools prove to be a practical way in design

optimization and have gained continuous development. In this thesis, an

intrinsically linear function (ILF) assisted and trust region based

optimization method (IATRO) is proposed first for solving low-dimensional

constrained black-box problems. Then, the economical sampling strategy

(ESS), modified trust region strategy and self-adaptive normalization

strategy (SANS) are developed to enhance the overall optimization

capability. Moreover, as the radial basis function (RBF) interpolation is

found to better approximate both objective and constraint functions than

ILF, a RBF-assisted optimization framework is established by the

combination of the balanced trust region strategy (BTRS), global intelligence

selection strategy (GIS) and early termination strategy (ETS). Following

that, the fast computation strategy (FCS) and successive refinement strategy

(SRS) are proposed for solving large-scale constrained black-box problems

and the final optimization framework is called as RATRLO (radial basis

function assisted and trust region based large-scale optimization framework).

By testing a set of well-known benchmark problems including 22

G-problems, 4 engineering design problems and 1 high-dimensional

automotive problem, RATRLO shows remarkable advantages in achieving

high-quality results with very few function evaluations and slight parameter

tuning. Compared with various state-of-the-art algorithms, RATRLO can be

considered one of the best global optimizers for solving constrained

optimization problems. Further more, RATRLO provides a valuable insight

into the development of algorithms for efficient large-scale optimization.
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1

Introduction

1.1 Background

People optimize. Investors aim to find an optimal product that avoids

excessive risk while achieving highest returns. Doctors are committed to

improving medical skills in order to ease the body and financial burden of

patients. Engineers adjust parameters for the purpose of perfecting the

performance of their designs.

Nature optimizes. The micro and nanoscopic architectures on the surface of

lotus leaves minimizes the droplet’s adhesion to that surface, which makes

lotus clean and elegant. Bees build honeycombs with hexagon cells that have

maximum volume with minimum cost to support reproduction. Closed

physical systems tend to reach equilibrium states with the minimum internal

energy.

In manufacturing industries, optimization is such an important tool for

addressing the global competitions to produce better and cheaper products.

As shown in Fig 1.1, a typical process of design optimization includes three

stages.

The first stage is the modelling stage, in which the variables, objectives and

constraints are determined. The variables are the certain characteristics of

the design such as the temperature, the length, or the volume of the design.

In some way, the variables are often restricted or constrained. The objective

or the constraint is a quantitative measure of the performance of the design

under study. It could be the cost, the fluid behavior, the mechanical

property or any quantity or combination of quantities that can be

represented by a single number. Usually in engineering, the objective or the

constraint value is related to the complex physical phenomena of the system

and is evaluated by numerical simulations such as finite element method

1
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Figure 1.1: Schematic of design optimization in engineering

(FEM) or finite difference method (FDM). Generally, both the objective and

the constraints are dependent on the variables and the goal is to find a set of

variables that optimize the objective while satisfying the constraints.

Once the model has been formulated, an optimization algorithm can be applied

to find the solution. As well documented in ‘no free lunch’ theorem [1], there

is no universal optimization algorithm but rather an algorithm that is tailored

to a particular type of optimization problem. It is important to choose an

appropriate optimization algorithm as it determines directly if the solution of

the problem can be found at all.

After a solution has been found by the algorithm, the designer must

recognize whether the solution is indeed the optimum of the problem by

checking some optimality conditions [2]. And if the optimality conditions are

not satisfied, they may provide useful information on how the current

solution can be improved and suggest ways in which the model can be

refined or corrected. As a result, the optimization problem is solved again

and the aforementioned process repeats.

2
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In general, there are three major challenges in the real-world design

optimization process. First, the numerical simulation in the modelling stage

is usually a ‘black box’, i.e., the explicit mathematical expressions of the

objective and constraint functions are unavailable, along with their

corresponding derivatives. Hence, gradient-based optimization algorithms

such as the sequential quadratic programming (SQP) and interior-point

method [2] are hardly to be used. Instead, derivative-free algorithms [3] and

metaheuristic algorithms (MA) such as genetic algorithms (GA) [4], particle

swarm optimization (PSO) [5] and ant colony optimization [6] are developed

for optimizing this kind of black-box problems. Nevertheless, the enormous

computational overhead of complex high-fidelity engineering simulations [7]

makes it impractical to depend exclusively on simulations for design

optimization. In [8], it is reported that it takes Ford Motor Company about

36-160 hrs to run one crash simulation. Therefore, a good optimization

algorithm should solve expensive optimization problems within a severely

limited number of evaluations. Last but not the least, another challenge in

addressing expensive black-box optimization problems, is the limitations

imposed by the existing constraints, restricting the valid solutions to a

smaller subset of the design space.

Hence, it is meaningful and valuable for scientists to develop an efficient

optimization framework for solving expensive constrained black-box

optimization problems.

1.2 Related work

In the past three decades, in order to apply optimization algorithms in solving

problems involving black-box simulations, metamodel (also called surrogate

model) methods have aroused broad attention. Generally, a metamodel is an

approximation of a detailed simulation model, i.e., a model of a model [9].

Mathematically speaking, a metamodels is an analytical description created

based on a dataset of input and the corresponding output from a detailed

simulation model. The mathematical description could vary depending on the

intended use or the underlying physics that the model should capture. With a

metamodel, various optimization methods can then be applied to search for the

optimum, which is therefore referred as metamodel-based design optimization

(MBDO) or surrogate-assisted design optimization (SADO) [9, 10].

From in-depth review on MBDO by Barthelemy et al. [11], Haftka et al. [12]

and Wang et al. [13], the benefits of MBDO can be summarized as follows:

3
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1. It is easier to connect the expensive and proprietary simulation codes.

2. Parallel computation is simpler to be implemented as it involves running

the same simulation code at various design points.

3. Usually, numerical noise existed in simulation can be well filtered by

constructing specific metamodels.

4. The metamodel can reveal the hidden properties of the black-box

simulation and helps researchers to determine the promising design

space where new high-fidelity experiments should be run.

5. If a global metamodel can be built, it renders a view of the entire design

space which makes it easier to analyze the simulation process.

Because of the practicability of MBDO, new developments have been

continuously coming forth in the literature. On the whole, these

developments can be classified into three major categories.

One category is the advancement in design of experiments (DOE). The

theories of DOE originate from planning physical experiments. Classic

experimental designs focus on controlling the random error in physical

experiments so that the results can have minimum influence in the approval

or disapproval of a hypothesis. Therefore, the classic DOE tends to scatter

the sampling points around boundaries of the search space and leaves a few

at the center of the search space. Widely used classic kinds of DOE comprise

factorial or fractional factorial, central composite, Box-Behnken, alphabetical

optimal, and Plackett-Burman designs, see Myers et al. [14]. However,

computer experiments involve mainly the systematic error rather than the

random error in physical experiments. There seems to be a consensus among

scientists that a proper experimental design for deterministic computer

analyses should be space-filling, which aims to fill the complete design space

rather than to concentrate on the boundary [13, 15, 16]. Popular space-filling

designs include Latin hypercube designs (LHS) [17], minmax and maxmin

designs [18], Hammersley sequence sampling [19], uniform designs [20] and

orthogonal arrays [21]. See [22] for more details about these designs. In [23],

the authors stated that the Latin hypercube design is only uniform in 1-D

projection while the other methods tend to be more uniform in the entire

space. In general, the accuracy of a metamodel can be improved by

increasing the number of sampling points. But for low-order polynomial

metamodels this is only valid up to a certain limit. Thereafter, increasing the

number of points is not beneficial to the approximation accuracy.

4
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Another category is the progress in metamodel building. Up to now,

commonly used and studied metamodels include polynomial regression (PR)

[24], radial basis function (RBF) [25], Kriging [26], multivariate adaptive

regression splines (MARS) [27], artificial neural networks (ANN) [28] and

support vector regression (SVR) [29]. Comparative studies have been made

over the past years. For example, Jin et al. [15] investigated and compared

PR, Kriging, MARS and RBF models. The authors claimed that the RBF

metamodel outperforms others in most instances, especially in shortage of

computational resource (the sample size is small). As the growth of fitting

sets, the performance of Kriging and MARS models will gain improvement.

In addition, Kriging is sensitive to the noise but PR performs well in this

situation. In a comparison with PR, Kriging, MARS and RBF metamodels,

Clarke et al. [29] found that SVR had the superior performance in regard to

accuracy and robustness with the manually optimized Gaussian kernel

function. In contrast, Kim et al. [30] compared moving least squares method

(MLS), Kriging, RBF and SVR metamodels and concluded that Kriging and

MLS build more accurate metamodels than RBF and SVR models.

Therefore, it is unreasonable to draw any decisive conclusions on the

superiority of any of the mentioned metamodels. The quality of a metamodel

can vary considerably depending on how many design variables are involved,

what types of the fitting functions are, and how well the predefined

parameters are tuned.

Last but not the least, various searching schemes have been developed with

support of metamodels.

One popular approach in MBDO is to embed the metamodels in the

framework of metaheuristic algorithms (MA). Generally, Kriging models and

RBF models are widely used to accelerate the convergence of MA in two

ways. First, metamodels are applied to prescreen promising candidate

offspring points produced by the basic MA. For Kriging-based MA, the

prescreen criterion can be based on the expected improvement [31, 32], the

probability of improvement [33], the lower confidence bound [34] and the

multi-objective infill criterion [35]. For RBF-assisted MA, the predicted

response of surrogate is used for prescreening. This can be found in

RBF-assisted PSO algorithm [36–39], RBF-assisted GA [40], and

RBF-assisted differential evolution [41, 42]. Second, the predicted optimum

provided by the surrogate model is used to replace the current candidate

offspring point. Take the PSO framework as an example, the global best

point may be replaced by the optima obtained by the global RBF metamodel

[43–45]. Similar applications can be found in [32, 46–51]. Moreover, the
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personal historical best particle in PSO can be refined through the local

surrogate model within the vicinity of this point, which is applied in [52–54].

Similar approaches can be found in other surrogate-assisted MA [43, 55–59].

Another approach is based on the uncertainty of the surrogate model to

direct the optimization process to explore the complete design space. This

approach is mainly used in Kriging-based optimization algorithms, for

example the efficient global optimization (EGO) proposed by John et al.

[60]. Kriging not only provides an estimate of the original function

everywhere, but also a normal distribution around that value that

characterizes the uncertainty [61]. In EGO, a global Kriging metamodel is

built at first, and then, additional points are sampled that maximize the

expected improvement (EI) over the present best solution. These

‘exploration’ points improve the accuracy of the approximation around the

global optimum, which is quite effective in solving low-dimensional problems

[62]. Krause et al. [63] proposed another uncertainty-based criterion, which

is to maximize the surrogate prediction minus a multiple of the prediction

variance. Moreover, another way of utilizing the surrogate prediction and its

prediction variance is to maximize the expected posterior information gain

about the global maximizer, which is referred as entropy based search

strategies [64–66].

Without using an uncertainty structure, there are methods that use other

approaches to balance exploitation and exploration. Regis et al. [67]

proposed a distance-based searching strategy, where the optimum of the

surrogate is obtained under the condition that it is at a given minimum

distance from any of the previous simulation points. The value of this

distance parameter controls the behavior of the optimization process, i.e.,

whether the process is exploring (large value) or exploiting (small value) the

design space. Wang et al. [68] developed the mode-pursuing sampling

approach (MPS), which samples points preferentially where the surrogate has

low values using a probability function. A region elimination strategy was

presented by Younis et al. [69], which explores the design space by removing

the less promising and previously searched regions. The promising regions

are identified by dividing the design space into many subspaces and carrying

out search in each one of these subspaces. Similar schemes can be found in

[70–74]. Another popular searching scheme is the trust region or move limit

strategy where the surrogate model is constructed in successive regions of

interest, centering on the optimum obtained in the last iteration. During the

optimization process, the quality of the approximation increases as the trust

region becomes much smaller and meaningful. This strategy was applied in
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the framework with the moving least squares regression metamodel [75, 76]

and the intrinsically linear function regression metamodel [77–80].

Although the above-mentioned algorithms can obtain good results on

black-box problems with boundary constraints, most of them have difficulty

dealing with nonlinear constrained optimization problems. As stated by

Haftka et al. [61] and Muller et al. [81], the state of the art about

constrained optimization is less advanced. The main challenge lies in the

definition of a general convergent scheme that seeks a feasible and optimized

solution under a reasonable number of function evaluations. The hurdles

become even more distinct as the number of constraints increases or when

discontinuous responses are presented [82]. Generally, there are four

widely-used approaches for constraint handling [83–89]:

(i) unconstrained optimization using a penalty function (penalizing the

fitness value of infeasible solutions),

(ii) feasible solution preference methods,

(iii) Repair algorithms to generate feasible solutions from infeasible ones,

(iv) multi-objective optimization, where the constraint functions are defined

as additional objectives.

The penalty-based approach (i) which lumps all constraint functions into one

penalty function is the most frequently used approach due to its

easy-implementation [44, 90, 91]. But the main drawback is that the

information of the individual constraint is lost and additional parameters

need to be fitted for penalty terms [92]. It has difficulty solving a problem in

which the optimum lies in the boundary between feasible and infeasible

regions or when the feasible region is disjoint [93]. In feasible solution

preference methods (ii) [94–97], too little information from infeasible

solutions is involved in the optimization process, which increases the risk of

the optimization process getting stuck in local optima. And by investigating

several repairing algorithms (iii) in [98–101], it can be concluded that

defining a general scheme to reduce the constraint violation can be as

complex as solving the problem itself. Recent studies about treating the

constraints as one or more objective functions to be optimized (iv) can be

found in [31, 87, 102, 103]. Since additional parameters might be included to

weigh these objectives, the optimization performance of these methods is

more or less unstable.

Besides, relatively few algorithms can handle expensive constrained

black-box optimization problems under severely limited budget. Take the

well-known G-problem or G-function benchmark, which was introduced by

7



Chapter 1: Introduction 8

Michalewicz [83] and Floudas [104] as an example, the number of function

evaluations (NFEs) required for lots of algorithms is not realistic. Probably

hundreds of thousands of function evaluations were required in algorithms

such as SAFF [105], COPSO [106], ISR [107], ATIMES [108], SMES [97],

ECHT-EP2 [109], HCOEA [110], αSimplex [111], HCS–LSAL [112], LCA

[113] and more. Some algorithms manage to use fewer function evaluations

to solve G-problems. For example, Zahara and Kao [100] tested G04, G08,

G12 and they can be solved within 20000 evaluations. Regis [114] proposed

the ConstrLMSRS that uses RBF surrogate to model objective and

constraint functions separately. ConstrLMSRS was able to quickly obtain

feasible solutions of 9 problems (G02 to G10) but a feasible starting point

should be given to start the optimization process. In addition, Regis [115]

developed COBRA, an efficient solver which still makes use of RBF

interpolation to approximate objective and constraint functions but the new

iterate is selected according to the violation of constraints within some small

margin. Good results were achieved on 13 G-problems (G01, G03, G05, G06,

G07, G08, G09, G10, G13, G16, G18, G19, G24) when the starting points

were infeasible. But the objective and constraint functions of three problems

(G03, G05, G13) had to be manually rescaled to avoid difficulty in fitting

RBF surrogates. For the purpose of enhancing the performance of COBRA,

Bagheri et al. [116] presented a SACOBRA – self-adjusted version of

COBRA. SACOBRA is very efficient that 8 G-problems (G01, G03, G04,

G05, G06, G07, G08, G11) can be solved within 500 function evaluations.

But the obtained solutions were not optimal enough. Jiao et al. [87]

introduced a self-adaptive selection strategy into the evolutionary algorithm

which combines feasibility with multi-objective problem techniques. 22

G-problems were tested and some of them (G05, G06, G08, G11, G12, G18)

can be solved very efficiently in less than 1000 evaluations, but others require

5000-100000 evaluations to be solved. Dong [74] proposed a Kriging-based

constrained global optimization algorithm SCGOSR with space reduction

strategy. In SCGOSR, new added samples are selected from optimal

solutions obtained by the multi-start solver. Five problems (G04, G06, G07,

G08 and G09) can be well optimized by SCGOSR within hundreds of

function evaluations but the obtained solutions were just around the global

optimum. Similarly in KCGO developed by Li et al. [117], near-optimal

solutions of seven problems (G04, G06, G07, G08, G09, G10 and G12) can

be found within 200 function evaluations. Liu et al. [118] proposed the

eDIRECT-C algorithm which employs an adaptive metamodeling strategy to

build appropriate metamodel types for objective and constraints respectively.

Thirteen G-problems (G01 to G13) were tested and nine of them (except

G02, G05, G09 and G13) can be successfully solved within 1000 function
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evaluations. Besides, the design space of G08 and G12 have to be manually

reset because of the shortcomings in the sampling strategy.

Moreover, few strategies have been developed to aim for solving expensive,

high-dimensional (more than a hundred decision variables) and severely

constrained problems. There seems to be a critical lack of research on

large-scale problems in MBDO, and many questions are not answered or

even addressed [13]. A well-known case of the large-scale problem is the

MOPTA08 automotive application with 124 decision variables and 68

black-box inequality constraints [119]. The pioneer work in [119] revealed the

huge difficulty in solving this problem by testing various algorithms on this

problem. The optimization progress was either extremely slow or fast enough

but no feasible solutions can be found. Recently, good results have been

obtained by ConstrLMSRS [114], COBRA [115] and SACOBRA [116]. And

among them, the SACOBRA algorithm can be viewed as the state of the art

in solving this problem but it is not so competitive in solving

low-dimensional problems.

Therefore, it is meaningful and valuable to develop an efficient optimization

framework for solving expensive constrained black-box optimization problems.

Specifically, the objectives of the research consist of three aspects. First, it is

critical to develop a balanced search scheme which could not only explore the

global design space but also exploits the specific design space for the global

optimum of the problem. Second, it is meaningful to determine which type of

the metamodel should be used during the search to replace the costly black-

box model. Finally, it is highly desired to make full use of each function

evaluation for the purpose of reducing the computation cost. Also note that

these aspects are not independent and should be considered together in the

development of the optimization framework.

1.3 Thesis outline

In this thesis, the important concepts and fundamentals of metamodel-based

optimization are explained and discussed in Chapter 2. In Chapter 3, the

development process of IATRO (intrinsically linear function assisted and

trust region based optimization method) is demonstrated in details. 26

benchmark problems are tested and the results are compared with the

solutions obtained by various metaheuristic algorithms and metamodel-based

algorithms. Based on IATRO, several new strategies including the

economical sampling strategy (ESS), the self-adaptive normalization strategy

9
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(SANS) and the modified trust region strategy (MTRS) are developed to

enhance the overall optimization performance. The enhanced IATRO is

called EIATRO and the details are described in Chapter 4. To further

improve the performance of EIATRO, the radial basis function (RBF)

interpolation is employed to build the metamodels instead of the intrinsically

linear approximation. Chapter 5 presents this new optimization framework

entitled RATRO (radial basis function assisted and trust region based

optimization framework) with integration of the balanced trust region

strategy (BTRS), the global intelligence selection (GIS) strategy and the

early termination strategy (ETS). After this chapter, a large-scale

optimization framework RATRLO (radial basis function assisted and trust

region based large-scale optimization framework) is proposed in Chapter 6.

RATRLO aims at solving large-scale optimization problems but also works

excellently in optimizing low-dimensional problems. The main developments

in RATRLO include the fast computation strategy (FCS) and the successive

refinement strategy (SRS). And the final optimization results on one

large-scale optimization problem (the MOPTA08 problem [119]) and 26

low-dimensional problems are also discussed. Finally, the thesis is ended

with discussions regarding the proposed optimization framework, conclusions

and an outlook of further needs.

10



2

Basics

2.1 Mathematical formulation of constrained black-

box optimization (CBO) problems

Mathematically speaking, optimization is the minimization or maximization

of a function subject to constraints on its variables. In this thesis, we use the

following notation:

• x is the vector of d variables (x1, x2, ..., xd);

• f(x) is the objective function, a (scalar) function of x that we want to

maximize or minimize;

• gj(x)(j = 1, ...,m) are m constraint functions, which are (scalar)

functions that the unknown vector x must satisfy.

• Q is the design space in the range of [A,B], where Ai (i = 1, ..., d) and

Bi (i = 1, ..., d) are the given lower and upper bounds on the design

variable xi;

Using this notation, the constrained black-box optimization (CBO) problem

can be written as

min
x∈Q

f(x)

s.t. gj(x) ≤ 0 (j = 1, ...,m) (2.1.1)

Ai ≤ xi ≤ Bi (i = 1, ..., d)

Here, it is noteworthy that there are several assumptions for this formulation

which can be described as follows:

1. For simplicity, the equality constraint function h(x) = 0 can be

11
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Figure 2.1: Black-box simulation

converted into the inequality form |h(x)| ≤ ε where ε is a small positive

constraint tolerance (the default value is 1e − 6). In other words, one

equality constraint function will be replaced by two inequality

constraints: g(x) = h(x)− ε ≤ 0 and g(x) = −h(x)− ε ≤ 0.

2. f(x) and gj(x) (j = 1, ...,m) are deterministic black-box functions

where there is no noise involved. This is to say, there are no algebraic

expressions of both the objective and the constraint functions. A set of

design variables x ∈ Q ⊆ Rd are inputted to the black-box, e.g., a

simulation tool, and a certain set of responses F (x) ⊆ Rm+1 are the

output based on the unknown relationship between the variables and

responses. This process is illustrated in Fig 2.1 and is assumed to be

computationally expensive so that the derivative information is also

unavailable or impractical to obtain.

3. Equation 2.1.1 describes the minimization problems because maximizing

f can be easily transformed in the form of minimizing −f without loss

of generality.

4. Although the objective and constraint functions are black-box, we

assume that the values f(x) and gj(x) (j = 1, ...,m) for any input

x ∈ [A,B] can be obtained without any crash on the simulator.

2.2 Design of experiments (DOE)

As mentioned earlier, a space-filling design which distributes points everywhere

in the design space with as few gaps as possible is preferred in MBDO. Several

popular designs of experiments are introduced in this section.
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2.2.1 Minmax and maxmin distance designs

Minmax distance design

LetX = {x1,x2, ...,xn} be the n experimental design points, where each point

xi ∈ Q. Then, for any point x ∈ Q , we can find the distance to the nearest

design point as min
i
d(x,xi), where d (u,v) = (

∑n
i=1|ui − vi|s)

1/s. Here s = 1

and s = 2 means the rectangular and Euclidean distances respectively. In

the entire design space, if we define the worst point is the point farthest from

all the design points, the distance of the worst point to the nearest point in

X can be obtained by max
x∈Q

min
i
d(x,xi). Therefore, a minmax space-filling

design [18] can be obtained by minimizing this worst distance as

min
X

max
x∈Q

min
i
d(x,xi) (2.2.1)

Maxmin distance design

Another instinctive option to create a space-filling design is to scatter the

points in the entire experimental space so that they are as far apart as possible.

This can be found by maximizing the minimum distance among the points in

X as:

max
X

min
i,j
d(xi,xj) (2.2.2)

Apparently, a maxmin distance design is much easier to implement than a

minmax distance design because the minmax distance design involves

computing the distances for the whole design space while for a maxmin

distance design, we only have to take the distances among the design points

into considerations.

A 7-point minmax and maxmin distance design for two variables using the

Euclidean distance metric is shown in Fig 2.2. It can be seen clearly that for

small d, a minmax distance design tends to distribute points in the interior of

the design space while a maxmin distance design will generally result in the

points lying on the exterior of the experimental region.

2.2.2 Latin hypercube design (LHD)

In statistical sampling, a square gird that contains sample positions is a Latin

square if and only if there is only one sample in each row and each column. A
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(a) minmax distance design (b) maxmin distance design

Figure 2.2: A 7-point minmax and maxmin distance designs in a square from
[120]

Latin hypercube is the generalization of this concept to multiple dimensions.

In each axis-aligned hyperplane, each sample is unique.

For a basic Latin hypercube design of d variables, the range of each variable

[Ai, Bi] is divided into n non-overlapping intervals of equal probability. One

value from each interval is randomly selected but with regard to the probability

distribution in the interval. Then n points can be constructed to satisfy the

Latin hypercube requirements [121]. This generates an n× d sampling matrix

X, where the d columns are the levels of each variable, and the n rows describe

the specific parameter settings for each design.

Mathematically, the first step to create a basic Latin hypercube design is to

generate a matrix P with elements

Pi,j =
πj(i)− Ui,j

n
(1 ≤ i ≤ n, 1 ≤ j ≤ d) (2.2.3)

where πj(i), ..., πj(n) are random permutations of the integers 1 to n and Ui,j

is an independent uniformly distributed random variable in the range [0, 1].

Then, the actual design matrix X can be obtained by

Xi,j = F−1
xj (Pi,j) (2.2.4)

where F−1
xj represent the inverse of the cumulative distribution function for

variable j.

A 10-point basic Latin hypercube design for 2 variables is shown in Fig 2.3a

Besides, there are several variants of Latin hypercube designs based on certain

optimization criterion. The most popular approach to generate a better space-
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Figure 2.3: A 10-point basic and maxmin Latin hypercube designs for two
variables

filling Latin hypercube design is to maximize the distances between any two

points and this maxmin Latin hypercube design is shown in Fig 2.3b. For

other Latin hypercube designs, please refer to [16].

2.2.3 Hammersley design

As described by Kalagnanam [122], Hammersley design belongs to a group

called low-discrepancy sequences. The discrepancy is a measure of the

difference from a uniform distribution and could be measured in several

ways. In the following, we will give a brief mathematical formulation of

Hammersley design. For more mathematical details, readers are referred to

the literature [123].

Each nonnegative integer l can be expressed by using a prime base p:

l = a0 + a1p+ a2p
2 + ...+ arp

r (2.2.5)

where each ai is an integer in [0, p− 1]. A function ϕp of l can be defined by

ϕp(l) =
a0

p
+
a1

p2
+ ...+

ar
pr+1

(2.2.6)

For a design space of d variables, any sequence p1, p2, ...pd−1 of prime numbers

defines a sequence ϕp1 , ϕp2 , ..., ϕpd−1
of functions. Then, the l-th d-dimensional

Hammersley design is
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Figure 2.4: A 10-point Monte-Carlo and Hammersley designs for two variables

(
l

n
, ϕp1(l), ϕp2(l), ϕpd−1

(l)

)
l = 0, 1, 2, ..., n− 1 (2.2.7)

where p1 < p2 < ... < pd−1 and n is the required number of sampling points.

For specific formulations of function ϕp(l), please refer to [124].

A typical Hammersley design for two variables with comparison to the classic

Monte-Carlo design is shown in Fig 2.4.

2.3 Metamodels

As previously mentioned, a metamodel aims at approximating a detailed and

usually computation-intensive simulation model, i.e., a metamodel is a ‘model

of a model’. In optimization, lots of evaluations on simulation model are

required and each evaluation might be time-consuming, which makes a large

number of optimization algorithms impractical to use. But metamodels can

be used as surrogates for the detailed simulation model when appropriate,

which decreases the computational cost a lot and enables the use of typical

gradient-based algorithms in design optimization.

As described in Fig 2.1, a black-box simulation can be seen as a function

F : Rd 7→ Rm+1 which means that the function F maps the set of d design

variables into another set of m+ 1 responses:

y = F (x) (2.3.1)

For each response in y, a metamodel can be built to approximate this response
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as

ỹ = s(x) (2.3.2)

where s(x) is the mathematical function defining the metamodel which

approximates the observed response y as the predicted response ỹ. In

general, this approximation introduces the approximation error ε into y, i.e.

y = ỹ + ε = s(x) + ε (2.3.3)

Generally, a metamodel is built from a dataset of input xi and corresponding

response values yi = f(xi) , where i = 1, 2, ..., n and n is the number of design

points used to fit the model. Usually, these n fitting points have different

variable settings xi = (x1, x2, ..., xd)
T of the d design variables.

In the following sections, several well-known metamodels are presented and

their main characteristics as well as the basic theoretical ideas are discussed.

2.3.1 Polynomial metamodel

Polynomial metamodels, also referred to as response surface models (RSM)

are developed using regression, which is the process of fitting a model y =

s(x,β) + ε to a dataset of n variable designs xi and corresponding responses

yi.

The regression coefficients β are determined by the least squares method, i.e.,

by solving the minimization regression problem

min

n∑
i=1

ε2i = min
β

n∑
i=1

(yi − s(xi,β))2 (2.3.4)

The most popular polynomial metamodels are linear regression models where

s(x,β) is linear in β and consists of low order polynomials. For instances, the

17
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following models can be used to fit a metamodel in d design variables.

y = s(x,β) + ε = β0 +
d∑
i=1

βixi + ε (2.3.5)

y = s(x,β) + ε = β0 +

d∑
i=1

βixi +

d−1∑
i=1

d∑
i<j=2

βijxixj + ε (2.3.6)

y = s(x,β) + ε = β0 +

d∑
i=1

βixi +

d−1∑
i=1

d∑
i<j=2

βijxixj +

d∑
i=1

βiix
2
i + ε (2.3.7)

Equation 2.3.5, 2.3.6 and 2.3.7 are first-order, first-order with interaction, and

second-order polynomial models respectively. Only second-order interaction

effects, i.e., effects that involve just two variables are included in the presented

models.

In matrix notation, the process of finding the least square estimates can be

briefly described. The regression model can be written as

Y = X · β + ε (2.3.8)

where

β =


β0

β1

...

...

 ,Y =


y1

y2

...

yn

 , ε =


ε1

ε2
...

εn

 (2.3.9)

P =


1 x11 · · · x1d x11x12 · · · x1(d−1)x1d x2

11 · · · x2
1d · · ·

1 x21 · · · x2d x21x22 · · · x2(d−1)x2d x2
11 · · · x2

1d · · ·
...

...
. . .

...
...

. . .
...

...
. . .

... · · ·
1 xn1 · · · xnd xn1xn2 · · · xn(d−1)xnd x2

n1 · · · x2
nd · · ·



=


pT (x1)

pT (x2)
...

pT (xn)

 (2.3.10)

Here, Y is a vector containing n responses; β is a vector of p regression

coefficients; ε is a vector of the n errors; P is an n × p model matrix, each

row of which represents the expanded model form of variable settings and

each column of which corresponds to one regression coefficient.
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Then, by solving the minimization problem (Equation 2.3.4), the fitted

regression model can be expressed by

ỹ = P · β (2.3.11)

where

β =
(
P TP

)−1
P TY (2.3.12)

Therefore, the response of unknown point xu can be expressed as

ỹ (xu) = pT (xu)β (2.3.13)

where pT (xu) is a vector representing the expanded model form for xu, which

is similar to a row in P .

In general, low order polynomial metamodels are used to capture the global

trends of the actual model, but cannot represent a good behavior over the

entire design space in many cases. Hence, it is more promising for polynomial

metamodels to be used in iterative optimization procedures where successive

metamodels are built in a smaller and smaller region of the design space around

the proposed iterates, see more details in [16].

2.3.2 Moving least squares metamodel

Polynomial metamodels can be a good representation in small regions where

the response is not complex but introduce large errors for nonlinear and

multimodal responses. Moving least squares metamodels [75] take advantage

of these features of polynomial metamodels and a mathematical description

of of MLS metamodel can be formulated as

ỹ (x) =

p∑
i=1

pi(x)βi(x) = pT (x) · β (2.3.14)

where p is a vector of basis functions for the metamodel and β is the vector

containing corresponding coefficients. And p is the number of the coefficients

dependent on the order of approximation.

For example, a common choice for p is linear and quadratic monomials

p(x) =

[
1, x1, x2, ..., xd, x1x2, ..., xixi+1, ...,

x2
1

2
, ...,

x2
d

2

]T
(2.3.15)
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For two variables, Equation 2.3.14 becomes

ỹ(x) =

[
1, x1, x2,

x2
1

2
, x1x2,

x2
2

2

]
·



β0

β1

β2

β3

β4

β5


(2.3.16)

The coefficients βi are determined by the weighted least squares method,

minimizing the weighted error between the response from the experimental

simulation y(x) and the approximated value from the metamodel ỹ(x)

min
n∑
i=1

wiε
2
i = min

β

n∑
i=1

w(‖xi − x‖) ·
[
pT (xi − x) · β − y(xi)

]2
(2.3.17)

where n is the number of fitting design points, xi is the i − th input point

and w(‖xi − x‖) are the weighting functions. The weighting functions play

an significant role in MLS metamodels. Generally, wi ≥ 0 ensure the

continuity and locality of the approximation. It is dependent on the distance

between the design point xi and the studied point x. Moreover, the weight

wi reaches its maximum value at xi and decrease within a fixed region

around xi, called the domain of influence of xi. If the studied point x is

outside of the influence domain at xi, the weight wi vanishes. Hence,

compared to polynomial metamodels (see Section 2.3.1), the coefficients β in

MLS metamodel are dependent on the location of the studied point x in the

design space. Thus, one polynomial fit (see Equation 2.3.14) is not valid over

the complete design domain. Instead, one MLS metamodel is only valid in

the surrounding areas of x where the fit is made.

By solving the problem shown by Equation 2.3.17, the coefficients β can be

obtained as

β =
(
P TWP

)−1
P TWY (2.3.18)

where

P =


pT (x1 − x)

...

pT (xn − x)

 , Y =


y1

...

yn

 (2.3.19)

20



Chapter 2: Basics 21

W =


w(‖x1 − x‖) 0

. . .

0 w(‖xn − x‖)

 (2.3.20)

Then, the MLS metamodel for the studied point xu can be written as

ỹ(xu) = pT (xu) · β (2.3.21)

= pT (xu) ·
(
P T (xu)W (xu)P (xu)

)−1
P T (xu)W (xu)Y (2.3.22)

Note that because β is a function of xu, a new MLS model is required to

be fitted for every new point of xu. Moreover, in order to construct the

MLS metamodel, there should be enough fitting points within the domain

of influence. It can be done by changing the weight functions or adjusting

the radius of the domain of influence. Usually, the denser the design space

is scattered, the smaller the domain of influence should be, and the more

accurate the metamodel becomes.

2.3.3 Kriging metamodel

Kriging metamodel was firstly developed by Georges Matheron [125] and has

gained various improvements for tackling complex engineering optimization

problems[26, 74, 126]. The basic theory behind Kriging is that the

deterministic response y(x) of computer model can be represented as

y(x) = pT (x) · β + Z(x) (2.3.23)

where pT (x) ·β is a polynomial regression model which is similar to Equation

2.3.14 and Z(x) is the random process. This stochastic process Z(x) has mean

0, variance σ2 as

E[Z(x)] = 0 (2.3.24)

E[Z(x)Z(w)] = σ2R(θ,w,x) (2.3.25)

where θ is a correlation coefficient vector and R(θ,w,x) is a Gaussian spatial

correlation function [127], which can be described as

R(θ,w,x) =

d∏
i=1

Ri(θi, wi, xi) (2.3.26)
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Two commonly used functions are the exponential and the Gaussian

correlation functions, i.e.,

R(θ,w,x) =
d∏
i=1

e−θi|wi−xi| (2.3.27)

and

R(θ,w,x) =
d∏
i=1

e−θi|wi−xi|
2

(2.3.28)

respectively. |wi−xi| is the distance betweenw and x point in i−th dimension,

d is the number of variables, and θi is the correlation parameter for i − th
variable. In general, θi is essentially a width measure which indicates how

far the influence of a fitting point extends [128]. A low θi suggests that all

designs will have a high correlation R with similar Z(xi). In contrast, a high θi

indicates that the random process for the i− th variable Z(xi) is significantly

different among sample points. Therefore, the elements of θ provide an insight

into the importance of different variables, which is helpful for researchers to

select or scale the design variables if necessary.

In order to build a Kriging metamodel involving n sampling points, both the

polynomial coefficients β as well as the correlation coefficients θ have to be

figured out. Similar to polynomial metamodel (Section 2.3.1) and moving

least squares metamodel (Section 2.3.2), the regression coefficients β can be

obtained by solving the regression problem

Pβ ≈ Y (2.3.29)

As defined in Equation 2.3.9 and 2.3.10, P is the model matrix and Y is a

vector of the n observed responses. Hence, a general solution of β is

β =
(
P TR−1P

)−1
P TR−1Y (2.3.30)

where

R =


R(θ,x1,x1), · · · , R(θ,x1,xn)

...,
. . . ,

...

R(θ,xn,x1), · · · , R(θ,xn,xn)

 (2.3.31)

And θ can be determined by solving the nonlinear optimization problem, i.e.,

maximizing the log-likelihood function

max
θ

L(θ) = −1

2

[
n ln(σ̃2) + ln|R|

]
s.t. θi > 0, i = 1, ..., d (2.3.32)
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where |R| is the determinant of R. The estimation of the variance can be

given by

σ̃2 =
(Y − Pβ)T R−1 (Y − Pβ)

n
(2.3.33)

When β and θ are determined, the predicted response of an unknown point

xu can be calculated by

ỹ(xu) = pT (xu)β + rT (xu)R−1 (Y − Pβ) (2.3.34)

where pT (xu) is a vector containing polynomials like Equation 2.3.15, β is

the estimated regression parameters,

rT (xu) = [R(θ,xu,x1), R(θ,xu,x2), ..., R(θ,xu,xn)]T is a vector of

correlation functions between xu and n sample points, R is the matrix of

correlation functions for all sample points and Y is a vector of the

corresponding responses of fitting points.

It should be noted here that the maximization optimization problem

(Equation 2.3.32) requires large computational expense, which limits the

application of Kriging metamodel to problems of low dimensionality, with d

usually limited to around 20 [128]. But the Kriging metamodel is flexible due

to the properties of various correlation functions, which is suitable for

approximating the entire design space [9]. In addition, as in many cases we

do not have a priori knowledge of the patterns or trends in the data,

ordinary Kriging where pT (x) · β is set to be a constant are much popular in

actual engineering applications.

2.3.4 Radial basis function metamodel

Radial basis function(RBF) metamodel was first presented by Roland Hardy

[129] and has gained popularity for interpolating multi-dimensional data.

Radial basis functions can be of many forms but are always radially

symmetric because they are dependent on the radial distance from a specific

point xi as

φ(x,xi) = φ(‖x− xi‖) = φ(r) (2.3.35)

where r is the distance between the point x and xi. Commonly used RBFs

are multiquadric, Gaussian, thin plate spine and cubic as shown in Equation

2.3.36, where c is a shape parameter that affects the smoothness of the
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function.

φ(r) =



e−( rc )
2

Gaussian
√
r2 + c2 Multiquadric

r2 ln r Thin plate spline

r3 Cubic

(2.3.36)

A RBF metamodel can be written as

ỹ = s(x) =

n∑
i=1

wi · φ(‖x− xi‖) = wTφ (2.3.37)

where w is the weighting coefficients associated with each sample point xi

and φ is a vector containing the evaluations of the radial basis function for

distances between the unknown point x and different sample points xi.

Therefore, this formulation leads to an interpolation problem involving n

input points as

Y = Bw (2.3.38)

where Y is the known responses, w is the unknown coefficients and B is the

n × n symmetric interpolation matrix where Bij = φ(‖xi − xj‖). In this

way, the number of RBFs is equal to the number of sample points. Hence,

w = B−1Y if B is a symmetric positive definite matrix[128]. Note that

the shape parameter c in Gaussian and multiquadric RBFs has significant

effects on the conditioning of the problem. When c → inf, the elements of

B approach constant values and the linear system in Equation 2.3.38 is ill-

conditioned. Generally, a large value of c gives a wider affected region, i.e.,

points further away from the studied point x are able to affect the prediction

of the response s(x). On the other hand, a small value of c means that only

surrounding points of x can influence the prediction.

A Kriging metamodel can be seen as a special case of a RBF metamodel

combined with an additional low order polynomial. In fact, if the polynomial

term is 0 and θi = constant in Equation 2.3.23, a Kriging metamodel with

Gaussian correlation functions is exactly a RBF metamodel with Gaussian

basis functions.

2.4 Optimization methods

Optimization algorithms can be classified into two broad categories: local or

global optimization algorithms. A local optimization algorithm attempts to

seek a local optimum, i.e., there is no guarantee that this optimum is also
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the global one. Most local optimization algorithms are gradient-based, i.e.,

the optimization process is dependent on the gradient information to find an

optimal solution [130]. Typically, these techniques prove to be efficient, can

solve large-scale problems, and usually require little parameter tuning. On the

other hand, besides of only obtaining local optima, they are not suitable for

solving discrete optimization problems (in which at least one design variable

takes discrete values) and are probably sensitive to numerical noise.

In contrast, a global optimization algorithm focuses on finding the global or

near global optimum. There are two main categories of global optimization

methods: deterministic methods and heuristic methods [69]. Deterministic

methods behave predictable because given the same input, the algorithm will

follow the same sequence of states and output the same result in each

iteration. In general, deterministic methods can only be successfully used

when the optimization problem has certain mathematical characteristics that

usually do not exist. For more details, readers are advised to refer to [2].

The heuristic methods are typically inspired by some phenomenon from

nature, and prove to be robust and well suited for discrete optimization

problems. As described in [69], they usually do not require any derivative

information and can search large design spaces. On the other hand, they

often require many times more objective function evaluations than

deterministic methods and are poor in handling constraints [130]. Popular

heuristic optimization algorithms include genetic algorithms [4], ant colony

optimization (ACO) [6], particle swarm optimization (PSO) [5], simulated

annealing [131] and so on.

In subsequent sections, a popular gradient-based algorithm - sequential

quadratic programming (SQP) and particle swarm optimization will be

presented in details.

2.4.1 Sequential quadratic programming (SQP)

Sequential quadratic programming (SQP) is one of the most powerful

methods for engineering optimization applications. It is established on a

profound theoretical foundation and aims at providing the numerical solution

of constrained nonlinear optimization problems (NLP).
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We consider a typical NLP is formulated as

min f(x)

s.t. h(x) = 0

g(x) ≤ 0

where x ∈ Rd

(2.4.1)

where f : Rd 7→ R is the objective function, the functions h : Rd 7→ Rp and

g : Rd 7→ Rm are the equality and inequality constraints respectively.

SQP is an iterative procedure which approximates the NLP (Equation 2.4.1)

by a sequence of quadratic programming (QP) subproblems, in which the

solutions can thus be obtained easily. Specifically, the Lagrangian functional

L : Rd×p×m7→R associated with the NLP can be defined as

L(x,λ,µ) = f(x) + λTh(x) + µTg(x) (2.4.2)

where the vectors λ ∈ Rp and µ ∈ Rm+ are Lagrangian multipliers. The

solution x∗ ∈ Rd of the NLP should satisfy the Karush-Kuhn-Tucker (KKT)

conditions, i.e.,

∇f(x∗) + λ∗∇h(x∗) + µ∗∇g(x∗) = 0

h(x∗) = 0

g(x∗) ≤ 0

µ∗g(x∗) = 0

(2.4.3)

In order to solve Equation 2.4.3, a sequence of QP subproblems that reflects

the local properties of the NLP have to be constructed and solved in each

iteration step. Using Taylor series expansion, the auxiliary QP problem with

regard to the current iterate xk can be written as

min ∇f(xk)Td(x) +
1

2
d(x)TBkd(x)

s.t. h(xk) +∇h(xk)Td(x) = 0

g(xk) +∇g(xk)Td(x) ≤ 0

where d(x) = x− xk

Bk = Hf(xk)

(2.4.4)

where Hf(xk) is the Hessian of f(xk). As a result, instead of solving a

nonlinear optimization problem directly, in each iteration only a quadratic

subproblem should be solved. For more details of SQP, please refer to [2].

26



Chapter 2: Basics 27

2.4.2 Particle swarm optimization (PSO)

Particle swarm optimization (PSO) was developed by Kennedy and Eberhart

in 1995 [5], based on swarm behavior observed in nature such as fish and

bird schooling. Since then, PSO has attracted a lot of attention, and now

becoming a main representative form of swarm intelligence. PSO has been

applied to almost every area in optimization, computational intelligence, and

design/scheduling applications. There are at least two dozens of PSO variants,

as well as hybrid algorithms obtained by combining PSO with other existing

algorithms, which are also increasingly popular [132].

In PSO, each particle represents a point in the design space of the optimization

problem with an associated velocity vector. In each iteration of PSO, the

velocity vector is updated by using a linear combination of three terms:

V k+1
i = ωV k

i + αε1

(
pbestki − xki

)
+ βε2

(
gbestki − xki

)
(2.4.5)

where ω is the parameter called inertial weight, k is the iteration parameter,

i is the index of each particle, α and β are parameters called acceleration

coefficients, ε1 and ε2 are two homogeneously distributed random vectors

generated within the interval [0, 1) respectively. In the right-hand side of

Equation 2.4.5, the first term called inertia or momentum works as a

memory of the previous flight direction, preventing the particle from

changing direction thoroughly. The second term, called the cognitive

component describes the tendency of particles return to the previously found

best positions. The last term, called the social component quantifies the

group norm or standard that should be attained. In other words, each

particle tends to move toward to the current global best position gbest and

personal best known location pbest, while moving randomly in the meantime

[133]. After the velocity vector of each particle is determined, the particle i

will move from xki to xk+1
i by

xt+1
i = xti + V t+1

i (2.4.6)

In this way, particles are able to search in the entire design space until the

global best position gbest no longer improves or after a certain number of

iterations [134].

Although PSO has gained huge popularity for its easy-implementation and

easy-maintenance characteristics, its convergence in a mathematics sense is

still unknown. In addition, it has difficulties on handling complex constraints

and balancing the exploration and exploitation abilities.
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2.5 Research gaps

In summary, there is lack of research in the area of efficient constrained

black-box optimization. Direct methods which depend exclusively on

simulations for optimization are impractical in solving real-world

optimization problems due to the unbearable number of function evaluations.

Metamodel technique is a promising way for reducing the computational

overhead because it can replace the costly black-box model with simple

analytical expression. This kind of approach has been widely researched but

most of them are just applied to solve unconstrained problems. Moreover,

the strategy of selecting the sampling points for fitting metamodels is simple.

The majority of the methods randomly distribute points across the global

design space and use these points for building metamodels. It lacks

systematic theory in weighing different points which are in various

optimization conditions. Furthermore, most of the algorithms aim to

updating the global metamodel which is valid in the global design space

through a lot of approaches. But it is not a feasible strategy when the

implicit black-box model is very complex. Few researches focus on

developing the sequential approximation strategy where the metamodel is

only valid in local region because it is highly difficult to guarantee the global

search ability. Trust-region based searching scheme [135] seems a promising

sequential approximation strategy which decomposes the original

optimization problem into a sequence of approximate subproblems in a series

of trust regions. But how to move and resize the trust region to facilitate the

algorithm to converge to the global solution is difficult and this area lacks

improvement during the past ten years. Last but not the least, although

some researchers stated that their proposed methods could deal with

constrained black-box optimization problems, only low-dimensional problems

were tested and analyzed. Relatively few algorithms could handle expensive

and high-dimensional black-box optimization problems under severely

limited budget. Hence, this thesis aims to propose a versatile optimization

framework for tackling expensive, large-scale and severely constrained

black-box optimization problems with high accuracy, robustness and

efficiency.
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Intrinsically linear function assisted

and trust region based optimization

method

In this chapter, an intrinsically linear function assisted and trust region

based optimization method (IATRO) is developed for solving expensive CBO

problems. It adopts strong points of the multipoint approximation method

(MAM) developed by Toropov et al. [135]. For better understanding of the

complete development process of IATRO, a brief overview of MAM is

presented in Section 3.1. The main theories behind MAM is also the

fundamentals of IATRO, which are given from Section 3.2 to Section 3.4.

Following the framework of MAM, IATRO is a fully reimplementation of

MAM in Python with various improvements. The details are shown in

Section 3.5. Next in Section 3.6, to validate the performance of IATRO, 26

benchmark problems are tested and the results of IATRO are compared with

some good results obtained by several state-of-the-art metaheuristic

algorithms and metamodel-based algorithms. And a summary is given in

Section 3.7.

3.1 Outline of MAM

MAM is a metamodel-based optimization method that applies a sequential

strategy with domain reduction. In each iteration of MAM, only a local

metamodel valid in the current search subregion is built. Moreover, the

subregion where the fitting points are generated, called the region of interest

(also called the trust region), is reduced in size and moved within the design

space based on the trust region strategy. In this way, MAM replaces the

original optimization problem (Equation 2.1.1) by a succession of
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approximate subproblems as

min
x∈Qk

f̃k(x)

s.t. g̃kj (x) (j = 1, ...,m)

where Qk = [Ak,Bk] ⊆ Rd,

Aki ≥ Ai, Bk
i ≤ Bi (i = 1, ..., d)

(3.1.1)

where x is the vector of design variables, f̃k(x) and g̃kj (x) (j = 1, ...,m) are

approximated objective and constrained functions respectively, Qk is the

subregion in kth iteration that bounded by Ak and Bk. The solution of the

subproblem becomes the starting point for the next iteration, the trust

region is modified and the metamodel is updated until certain termination

criteria are satisfied. The main processes of MAM are shown in Fig. 3.1 and

the details are described in subsequent sections.

3.2 Design of experiments (DOE)

In order to build a metamodel, a dataset of inputs (a vector set of design

variables) and corresponding outputs (response values) are required. Design

of experiments (DOE) is applied to determine the distribution of experimental

points in the design space in order to get the best possible information from

a limited sample size. Toropov et al. [135] proposed to apply two following

strategies.

3.2.1 Maxmin stochastic sampling (MSS)

For the purpose of improving the uniformity of a stochastic sampling design,

Toropov et al. [135] proposed to impose an additional constraint (a constraint

on the minimal distance between any two points) on a random DOE, which

can be expressed by
Dist

Diag
≥ r (3.2.1)

where

Diag =

√√√√ d∑
i=1

(Bk
i −Aki )2 (3.2.2)

Dist =

√√√√ d∑
i=1

(xei − x
p
i )

2 (p = 1, ..., P ) (3.2.3)
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Inputs:
Starting point: x0

Initial trust region: Q0

Maximum iteration number: kmax
Current iteration number: k = 0

1 Design of Experiments

2 Evaluate new points inside Qk

3
Build metamodels using

intrinsically linear functions

4
Use SQP method to solve the

approximate optimization
subproblem

Suboptimal solution: xk+1

Termination criteria
satisfied?

Output:
Final optimum x∗ = xk+1

5
Resize and move the
trust region to Qk+1

Update:
Starting point: xk+1

Trust region: Qk+1

iteration number: k = k + 1

Figure 3.1: Flow chart of the Multipoint Approximation Method

In Equation 3.2.1-3.2.2, Diag represents the characteristic size of the kth trust

region (i.e. L2 distance), xe is a new sampling point to be generated, xp (p =

1, ..., P ) are P previously generated points in the kth trust region, and r is a

threshold ratio controlling the uniformity of the scattered points. r is initially

set to 0.95 and if the randomly generated sampling point xe can not satisfy

the condition (Equation 3.2.1) after a user-specified number of times, r will

be reduced iteratively using

r = r × 0.9 (3.2.4)

until the constraint (Equation 3.2.1) is satisfied. The pseudocode of this

maxmin stochastic sampling (MSS) approach is given in Alg. 1 for reference.
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Algorithm 1: Maxmin Stochastic Sampling (MSS)

Input:
• xk: Starting point in kth iteration.
• ns: The number of required sampling points.
• Ak: Lower bounds of the current search subregion.
• Bk: Upper bounds of the current search subregion.

Output:

The set of sampling points XMSS .

Function MSS(xk,ns,A
k,Bk): . Maxmin Stochastic Sampling

Put xk in the sampling pool XMSS .
Diag = ‖Ak −Bk‖2.
for i in [0, ns − 1] do

Generate a point x satisfied:
Dist
Diag ≥ r. . The initial value of r is 0.9

. Dist is the minimum distance between x and points in XMSS.

. r will be reduced after a certain number of generations.

Put x in the sampling pool XMSS .

Return XMSS

3.2.2 Extended box selection (EBS)

During the progression of the optimization procedure, a database that

contains various designs with corresponding response function values

becomes available. In order to improve the quality of approximations in the

current trust region, the extended box selection (EBS) strategy is employed

as described in Algorithm 2. The main idea behind EBS is to reutilize the

previous information, i.e., the evaluated designs in the previous iteration.

Generally, points located far from the current trust region would not bring

improvement in the quality of the resulting metamodel. Therefore, Toropov

[135] suggested that points located in the ‘neighborhood’ of the current trust

region should also be included for building the metamodel. The

‘neighborhood’ is a box surrounding the current search subregion as depicted

in Fig. 3.2. And this extended box is related to the current trust region as

Bk,ext
i −Ak,exti = ∆ext

(
Bk
i −Aki

)
(3.2.5)

where ∆ext is typically between 1.4 and 2.0.

3.3 Intrinsically linear function regression (ILFR)

The process of metamodel building in MAM can be described as an assembly

of multiple surrogates into one single metamodel using linear regression.
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Figure 3.2: Selection of response evaluations carried out during an
optimization trial. Only the designs located in the neighborhood of the current
trust region are included in the weighted least squares fitting

Algorithm 2: Extended-box Selection (EBS)

Function EBS(xk, Xall,∆ext, Nplan,A
k,Bk):

Input:
• xk: Starting point in kth iteration.
• Xall: The database of all sampling points.
• ∆ext: The relative size of the extended box.
• Nplan: The default number of required sampling points.
• Ak: Lower bounds of the current search subregion.
• Bk: Upper bounds of the current search subregion.

Output:
• next: The number of points located in the extended search subregion.
• Qext: The extended search subregion.
• XEBS : The set of points selected.

. Define the extended box Qext.

Qext : Bk,ext
i −Ak,exti = ∆ext · (Bk

i −Aki ).
. Define the counter to record how many points have been selected.

next = 0.
for xi in Xall do

if xi ∈ Qext then . Choose points located in Qext

Put xi in the pool XEBS .
next = next + 1. . Increment the counter

Return next, Qext, XEBS
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Therefore, there are two stages of metamodel building.

In the first stage, the parameters al of a individual surrogate ϕl is determined

by solving a weighted least squares problem involving n fitting points as

min
n∑
i=1

ωi [F (xi)− ϕl(xi,al)]2 (3.3.1)

where ωi denote the weighting parameters, i.e., the inequality of data

obtained at different sampling points, F is the original function needs to be

approximated. It should be noted here that in MAM, both the objective and

constraint functions will be approximated by Equation 3.3.1. The simplest

case of ϕl is the first order polynomial metamodel and more complex ones

are intrinsically linear functions (ILF) [136] that have been successfully

applied for solving various design optimization problem [78–80, 135, 137].

ILF are nonlinear but they can be led to linear ones by simple

transformations. Currently, five functions are considered in the regressor

pool {ϕl(x)} as

ϕ1(x) = a0 +
d∑
i=1

aixi

ϕ2(x) = a0 +

d∑
i=1

aix
2
i

ϕ3(x) = a0 +
d∑
i=1

ai/xi

ϕ4(x) = a0 +
d∑
i=1

ai/x
2
i

ϕ5(x) = a0

d∏
i=1

xaii

(3.3.2)

In Equation 3.3.1, Toropov [77] claimed that the selection of weighting factors

ωi should reflect (i) the quality of the objective function and (ii) the location

of a design point with respect to the border between the feasible and the

infeasible design subspace. Therefore, ωi are defined as

wi = woi · wci (3.3.3)

woi = [
f(xk)

f(xi)
]β (3.3.4)

wci =


1 for objective f(x)

[g(x) + 1]α if g(x) ≤ 0

[g(x) + 1]−α if g(x) ≥ 0

(3.3.5)
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where α, β > 0 are user defined constants, here α = 4, β = 1.5 are used; xk is

the starting point in kth iteration and xi is the ith design point in the fitting

points. With this definition, a point with a larger objective function has a

smaller weighting coefficient component woi . For a constraint function g(x), a

point which is much closer to the boundary of the feasible region of g(x), is

given a larger weighting coefficient component wci . For building a surrogate of

the objective function f(x), the weighting coefficient wi will only consider the

component woi . But for building a surrogate of the constraint function g(x),

the weighting coefficient wi will also take the constraint component wci into

consideration.

In the second stage, for each function (f(x) or g(x)), different surrogates are

assembled into one metamodel as

F̃ (x) =

nl∑
l=1

blϕl(x) (3.3.6)

where nl is the number of surrogates applied in the model bank {ϕl(x)}, and

bl is the regression coefficient corresponding to each surrogate ϕl(x), which

reflects the quality of the individual ϕl(x) on the set of validation points.

Similar to Equation 3.3.1, bl can be determined in the same manner as

min

n∑
i=1

ωi

[
F (xi)− F̃ (xi, b)

]2
(3.3.7)

It should be noted that in the process of metamodel building, the DOE is

fixed, i.e., ωi remains unchanged across the aforementioned stages.

3.4 Trust region strategy

Once the metamodels for both objective and constraint functions have been

established, the solution of the subproblem (Equation 3.1.1) can be found

by the sequential quadratic programming (SQP) method described in Section

2.4.1. Then, a new search subregion including its dimensions and locations

must be specified in the next iteration for seeking the optimum. To achieve

this goal, several indicators have been formulated to help enhance the search

capability as follows:

The first indicator is to evaluate the quality of the metamodel and focused

on the accuracy of the constraint approximations at the obtained sub-optimal
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point xk+1. This is based on the following equation:

Ek = Max

(
| g̃
(
xk+1

)
− g

(
xk+1

)
g (xk+1)

|
)

(3.4.1)

where g̃
(
xk+1

)
and g

(
xk+1

)
are normalized functions of the approximate and

true constraints at the sub-optimal point xk+1, respectively. In this way, a

single maximal error quantity between explicit approximation and implicit

simulation is defined. Then, the quality of metamodel can be labeled as ‘bad’,

‘reasonable’ or ‘good’ shown below.

Ek ⇒


≥ 0.25 · Sk ⇒ ‘Bad’

≤ 0.01 · Sk ⇒ ‘Good’

Else ⇒ ‘Reasonable’

(3.4.2)

where Sk represents the maximum ratio of the dimension length between the

present trust region and the entire design space, defined by

Sk = Max

(
Bk
i −Aki
Bi −Ai

)
(i = 1, ..., d) (3.4.3)

The second indicator is to indicate the location of the current iterate xk+1 in

the present search subregion. For each dimension, if none of the current move

limits (Ak,Bk) is active, this solution is regarded as ‘Internal’, otherwise it is

viewed as ‘External’.

The third and fourth indicator reflects the movement history for the entire

optimization process. For this purpose, the angle between the last two move

vectors is calculated. The formulation of this measure θk is given below:

θk =
xk+1 − xk
‖xk+1 − xk‖ ·

xk − xk−1

‖xk − xk−1‖ (3.4.4)

If θk > 0 holds, the movement will be denoted as ‘Forward’, while θk ≤ 0 is

denoted as moving ‘Backward’. Moreover, if θk ≤ 0.3, the convergence history

is labelled as ‘Curved’, otherwise ‘Straight’.

The fifth indicator in MAM, as a termination criterion, is the size of the

current search subregion. It can be marked as ‘Small’ or ‘Large’ according

to the quality of the metamodel determined by the first indicator. When

the approximations are ‘Bad’ and Sk ≤ 0.005, the present search subregion

is considered ‘Small’. When the approximations are ‘Reasonable’ or ‘Good’,

the trust region is denoted as ‘Small’ if Sk ≤ 0.1. However, this ‘Small’
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Table 3.1: Schematic description of trust region strategy in MAM

Approximation: ‘Bad’
‘Small’ ‘Large’

Stop: No Convergence Found
Straight Curved

Reduce (τ = 0.8) Reduce (τ = 1.5)

Approximation: ‘Reasonable’ or ‘Good’
‘Internal’ ‘External’

‘Small’ ‘Large’
Stop:

Convergence
Found

‘Close’ ‘Far’
Reduce
(τ = 4)

Reduce
(τ = 2)

‘Backward’ ‘Forward’

Reduce
(τ = 1.5)

‘Straight’ ‘Curved’
Enlarge

(τ = 0.8)
Keep

(τ = 1)

trust region is actually too big for well fitting the original functions. MAM

will either obtain an infeasible solution or obtain a solution that far from

the optimum because of the low-fidelity approximations in this ‘Small’ region.

Thus, a modification of the fifth indicator has been made in IATRO. It still

indicates the size of the current search subregion but it is not dependent on

the quality of the approximations now. The size of the trust region is deemed

as ‘Small’ if Sk ≤ ∆min where ∆min is a user-specified coefficient representing

the minimum relative size of the trust region. Otherwise if Sk > ∆min, the

trust region is marked as ‘Large’.

The sixth indicator is based on the most active constraint. It is considered to

be ‘Close’ to the boundary between the feasible and infeasible design space if

gmax(xk+1) ∈ [−0.1, 0.1], otherwise it is denoted as ‘Far’.

Both reduction and enlargement of the trust region is executed using

Bk+1
i −Ak+1

i =
1

τ

(
Bk
i −Aki

)
(i = 1, ..., d) (3.4.5)

where τ is the resizing parameter.

Table 3.1 summarizes the strategy applied for moving and resizing the trust

region based on the aforementioned indicators as well as the typical values

used for the resizing coefficient τ . Note that when the approximations are

‘Reasonable’ or ‘Good’, the location of the sub-optimal point is ‘External’ and

the movement history is ‘Curved’, the size of the search subregion in the next

iteration will not be changed, i.e., τ = 1 as depicted in Table 3.1. Moreover,

for ‘Good’ approximations, the metamodel will be reused and only the starting

point will be updated in the next iteration.
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3.5 Reconstitution of MAM in Python – IATRO

3.5.1 Reasons of the reconstitution of MAM

MAM was developed in Fortran programming environment and has gained

improvements by different researchers over 20 years. The first version of

MAM developed by Toropov [135] was written in Fortran 77 and some other

developers applied Fortran 90 as the programming format. Because of the

mixed programming styles, it is difficult to test and develop the framework.

Moreover, although the latest Fortran standards (2003, 2008, 2015) allow

programmers to write highly efficient codes with minimal efforts, it is not

compatible with the older versions used in MAM. For the purpose of further

investigating the characteristics of MAM, it is necessary to rewrite MAM in

modern programming language.

3.5.2 New development language – Python

We choose Python as the new development language of MAM, which was

developed by Guido van Rossum in the late eighties and early nineties at the

National Research Institute for Mathematics and Computer Science in the

Netherlands [138]. Stack Overflow refers to Python as the ‘fastest-growing

major programming language’ and it is reported in 2019 Stack Overflow

Developer Survey that Python has edged out Java and is the second most

loved language (behind Rust) [139]. Besides, Python is ranked third in the

TIOBE Index [140], a measure of popularity of programming languages. It

has been widely used in diverse application areas, especially in scientific and

computational applications, image processing and graphic design

applications, business and enterprise applications, game development and so

on. It is a combination of technical features that makes Python superior to

other programming languages. Some of the benefits of Python include:

1. Simple and easy to learn

Python is a high-level programming language that coding in Python

is like writing simple strict English sentences. It is easy to read and

understand as the syntax of Python is almost identical to the simplified

‘pseudo-code’, which allows programmers to concentrate on the solution

to the problem rather than the language itself.

2. Portable and extensible

Python is an open-source language and is supported by multiple
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platforms such as Windows, Linux and Mac OS. And Python is

extremely extensible because it supports cross-language operations.

Codes written in Java, C, or Fortran can be directly invoked via

certain Python programme.

3. Extensive Support Libraries

Python’s standard library [141] provides a wide range of facilities

including text processing services, string operations, web service tools,

operating system interfaces, etc. In addition, various third-party

libraries can be accessed from the Python Package Index [142], where

most of the highly used programming tasks are already well

modularized in Python libraries to enhance the productivity of

developers.

3.5.3 Development environment

Following the main strategies and ideas of MAM, IATRO is developed in

Python 3.7 on Ubuntu 18.04. The developed environment includes Numpy

1.17.3 [143, 144]; scikit-learn 0.22.1 [145]; Scipy 1.4.1 [146]; Numba 0.46.0

[147]; Spyder 4.0.1 [148] and AMD Ryzen 7 1800x eight-core CPU.

3.5.4 New modifications in IATRO

Besides of realizing all the functionalities of MAM, IATRO has the following

improvements and modifications:

1. Modularization

Each step in MAM as depicted in Fig. 3.1 has been modularized into

an identifiable, distinct component for readability, maintainability and

extensibility. Moreover, the complete algorithm of IATRO has also been

modularized, i.e. it can be invoked by other functions or programmes,

which makes it easier for benchmark testing.

2. Weighted least squares regression

In MAM, the weighted least squares problems as shown in Equation

3.3.1 and Equation 3.3.7 can not be well solved when the optimization

problem is large-scale or when the fitting points are very close to each

other. This is mainly because of the used Fortran programmed algorithm

has the efficiency problem in tackling sparse matrix equations. However,

IATRO applies the ‘linear regression’ function provided by scikit-learn
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module [145], which improves the regression performance in terms of

robustness and efficiency.

3. Sequential quadratic programming (SQP) solver

In MAM, the SQP solver is provided by the Harwell Subroutine

Library [149] which has certain bugs and seems a bit outdated as 20

years have passed. Instead, the ‘SLSQP’ method provided by the Scipy

module [146] has been in long-term maintenance and developers have

fixed several critical bugs and deficiencies reported by active users. The

implementation of this SQP solver in IATRO definitely improves the

stability and the efficiency of the optimization process.

4. Progress curve and debug report

In order to demonstrate the optimization process intuitively, a progress

graph that shows the objective value of each iterates will be plotted once

the optimization process of IATRO terminates. In addition, an adaptive

debug mode is embedded in IATRO with a corresponding neat debug

report. It will help the developers to locate the bugs and decrease time

in developing new features.

5. Clear definition of the output solution

In MAM, the final solution in the last iteration will be regarded as

the optimal solution of the optimization problem. However, it is not

guaranteed to be the best point during the optimization process. If the

optimization process progresses in the wrong direction, the final solution

will definitely be infeasible and should not be considered the best point

found by MAM. Therefore, the best solution found by the algorithm is

redefined in IATRO. By traversing the set of all evaluated points, the

best solution is determined by comparing any two points according to

the following rules [95]:

(i) Any feasible solution is preferred to any infeasible solution;

(ii) Among feasible solutions, the one having better objective function

value is preferred;

(iii) Among infeasible solutions, the one having better fitness value with

smaller constraint violation is preferred.

6. Random starting point generator

In MAM, the starting point is usually a manually specified feasible

point for avoiding the risk of the optimization process getting trapped

into infeasible regions in the initial stage. Although it is quite common

in engineering that there exists an initial design, it is actually not the

case for some highly-constrained optimization problems. Moreover, it is

tedious for benchmark testing to set different starting points manually.
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Thus, a random starting point generator is implemented in IATRO

using the random method from the Numpy module [143, 144].

7. Benchmark functionality

In order to reduce computational time and effort in testing the

optimization performance of IATRO, the benchmark functionality has

been implemented in IATRO which is formerly unsupported by MAM.

This benchmark test feature allows IATRO to execute the optimization

task a given number of times with user-specified parameters and

retrieve the optimization results automatically. Then, a statistic report

illustrating the quality of the obtained optimal solution, the

termination state of each run, the performance criteria etc. will be

generated accordingly.

8. Benchmark library

For the purpose of extensively and intensively investigating the

capabilities and the limitations of IATRO for solving constrained

black-box optimization problems, a benchmark library which includes

various well-known optimization problems has been established. The

details of the problems are shown in Appendix A.

3.6 Numerical results

In this section, the performance of IATRO for solving constrained optimization

problems are studied through benchmark testing. The obtained statistical

results are compared with the results in literature, which clearly demonstrate

the capabilities and limitations of IATRO.

3.6.1 Benchmark examples

26 well-known benchmark optimization problems are studied for testing the

optimization performance of IATRO in solving CBO problems. 22 of them

are chosen from the CEC’2006 test suite [93]. Note that the problem G20

and G22 in the test suit are not considered here because they are so heavily

constrained that no feasible solutions have been found by any algorithms

using a constraint tolerance of 1e− 6. The rest four problems are engineering

design optimization problems. The welded beam design (WBD) [102] and

the tension/compression spring design (TSD) [150] optimization problems

are constrained problems with continuous variables. But the pressure vessel

design (PVD) [150] and the speed reducer design (SRD) [104] optimization
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Table 3.2: Summary description of benchmark problems

Prob.* Optimum da mb Typec ρ (%)d

G01 -15.0000 13 9 L+Q 0.0111
G02 -0.8036 20 2 L+N 99.9971
G03 -1.0050 10 2 N 0.0000
G04 -30665.5387 5 6 Q+N 52.1230
G05 5126.4967 4 8 L+C+N 0.0000
G06 -6961.8139 2 2 C+N 0.0066
G07 24.3062 10 8 L+Q+N 0.0003
G08 -0.0958 2 2 N 0.8560
G09 680.6300 7 4 N 0.5121
G10 7049.2480 8 6 L+N 0.0010
G11 0.7500 2 2 Q+N 0.0000
G12 -1.0000 3 1 Q+N 4.7713
G13 0.0540 5 6 N 0.0000
G14 -47.7611 10 6 L+N 0.0000
G15 961.7152 3 4 Q+N 0.0204
G16 -1.9052 5 38 L+N 0.0204
G17 8876.9807 6 8 N 0.0000
G18 -0.8660 9 13 Q+N 0.0000
G19 32.6556 15 5 N 33.4761
G21 193.7869 7 11 L+N 0.0000
G23 -400.0000 9 10 L+N 0.0000
G24 -5.5080 2 2 L+N 79.6556

WBD 1.7249 4 6 L+N 2.7020
TSD 0.0127 3 4 L+N 0.7428
PVD 6059.7143 4 4 L+N+M 39.8007
SRD 2994.4711 7 11 N+M 0.0955

MOPTA08 222.2324 124 68 N 0.0000

* Problem in bold face means that the optimum satisfies a more
stringent constraint tolerance (1e−6) than the proposed value
(1e− 4) in [93]

a The number of design variables
b The number of inequality constraints
c The problem contains linear (L), quadratic (Q), cubic (C),

nonlinear (N) functions or mixed variables (M)
d The ratio between the feasible region and the entire search

space

problems are mixed continuous/discrete variable optimization problems.

Table 3.2 shows the main properties of the benchmark problems. Here, the

number of inequality constraints is different from the values listed in [93]

because in TOSRBF one equality constraints h(x) = 0 are converted into

two inequality constraints: g(x) = h(x) − ε ≤ 0 and g(x) = −h(x) − ε ≤ 0.

Note that the constraints tolerance used in IATRO is 1e − 6 which is more

stringent than lots of studies. For this reason, the global optima of problems

(G03, G05, G11, G13, G14, G15, G17, G21, G23) are different from the

proposed values in [93]. Instead, the optimal solutions of these cases found

by Aguirre [106] and Okamoto [151] are used as the known global optima.

3.6.2 Parameter settings

In order to eliminate stochastic discrepancy, 25 independent runs for each

benchmark example are carried out with fixed user parameters as listed in

42



Chapter 3: IATRO 43

Table 3.3. The value of each parameter is empirically determined after

numerous numerical experiments and is reasonable choice for solving general

CBO problems.

3.6.3 Performance criteria

To illustrate the optimization results obtained by IATRO intuitively, various

performance criteria are used as follows:

• xopt, f(xopt): xopt is the best point encountered in the optimization

process and f(xopt) is the corresponding objective value.

• Best, worst, average, median: The best, worst, average and median value

obtained as a result from all trials.

• Feasible run and feasible rate (FR): If xopt is feasible, this run is a feasible

run, otherwise it is an infeasible run. And the feasible rate (FR) is equal

to the number of feasible runs over total runs.

• Successful run and success rate (SR): Let x∗ be the global known

optimum, a run is a successful run if f(xopt)− f(x∗) ≤ 1e− 4. And the

success rate (SR) is the number of successful runs over total runs.

• ANFEs: It is used to record the average of the number of function

evaluations (NFEs) when an algorithm terminates in a feasible run. If

the algorithm fails to find a feasible solution in one run, the NFEs of

this trial is not considered in the AENFEs.

• ENFEs: It describes the capability of an algorithm to seek a solution

satisfying the success condition (f(xopt)−f(x∗) ≤ 1e−4) and defines as

ENFEs = ANFEs/SR·FR where ANFEs is the average number of function

evaluations.

Table 3.3: User parameters of IATRO with their descriptions and default
values

Parameter Description Value

x0 The initial trial solution Random
Kmax The maximum number of iterations 100
Nplan The number of required sampling points d+ 5

∆0 The relative size of the initial trust region 1.0
∆min The minimum relative size of the trust region 1e− 5
∆ext The relative size of the extended box 1.4
TOLcon The constraint tolerance 1e− 6
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• AREs: It is the average number of function evaluations required by an

algorithm to find the best solution in a feasible run. If the algorithm

fails to find a feasible solution in one run, the NFEs of this trial is not

considered in the AREs.

• EAREs: It describes the capability of an algorithm to seek the best

solution and defines as EAREs = AREs/FR.

• Termination efficiency (TE): It shows the efficiency of an algorithm to

terminate when there will be no possible improvements on the quality

of the solution. It is defined as TE = AREs/ANFEs. If an algorithm can

terminate quickly after the best solution has been found, the TR should

be close to 1.0.

• Convergence graph: The graph shows the median error between the

objective value of the sub-optimal solution in kth iteration f(xk) and the

global known optimum f(x∗) versus the median NFEs at kth iteration in

all trials. The error bars mark the 25% and 75% quartile. The red point

means that in median trials, the algorithm can not find a feasible sub-

optimal solution at the median NFEs. And if an algorithm can obtain

a feasible solution at this iteration in median runs, the point is marked

as a yellow triangle. In this case, if the solution also satisfies the success

condition (f(xk) − f(x∗) ≤ 1e − 4), it will be denoted as a green star

instead.

3.6.4 General performance

Table 3.4 shows the statistical results of the optimal objective function

values obtained by IATRO on 26 benchmark problems and Table 3.5 shows

the corresponding convergence statistics including the ANFEs, AREs, TE,

FR, SR, ENFEs and EAREs. The convergence graph of each problem is

given in Appendix B.1.

As can be seen from Table 3.4 and Table 3.5, the optimization capability of

IATRO is highly dependent on the characteristics of the given optimization

problem. The optimization results vary a lot from one problem to another.

Among all the benchmark problems, the most difficult case to IATRO is G17

because there is no feasible solutions found by IATRO through 25 independent

runs. But in 22 out of 26 problems, the FR values are all over than 96% which

means IATRO shows stability in seeking feasible solutions for these cases.

Only in three cases (G06, G10 and G21), the FR values are lower than 96%

but it is still acceptable as the FR values are no less than 70%. However, it is
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a challenging task for IATRO to find the global optima of these problems as

can be observed from the SR values. Only six problems (G03, G04, G07, G16,

WBD, SRD) can be solved successfully by IATRO with a high SR (> 84%).

In contrast, IATRO fails to find the target optima for eight problems (G02,

G06, G10, G13, G17, G19, G21 and PVD), in which the SR values are 0.

Besides, IATRO also has difficulty in solving another eight problems (G01,

G05, G08, G11, G12, G15, G23 and SPD). The SR values of these problems

range from 4% to 24%. In summary, IATRO is able to find a feasible solution

of the optimization problem but is weak in achieving the global optimum.

From the convergence graphs shown in Appendix B.1, it can be verified that

the global search ability of IATRO needs to be enhanced. In the majority

of the problems, the optimization process terminates at either an infeasible

solution or a near-optimal solution. In the meanwhile, the main characteristic

of the trust-region based optimization framework like IATRO can be observed

from these convergence graphs. Generally, the optimization process of IATRO

can be classified into three stages. In the first stage, IATRO aims to find

out the steepest descent direction where the objective function value can be

optimized. As can be seen from the typical convergence graphs of the problems

such as G17, G19, WBD, etc., the error between the objective function value

of the current iterate and the known optimum drops significantly in the first

one third of the optimization process. In the next one third of the optimization

process, the median error would show a trend of fluctuating downward which

is quite clear in problems such as G08, G09, G11, G13, G17, G18, G21, G23,

G24, TSD and PVD. The differences between the 25% and 75% quartiles are

usually large in this stage as can be seen from the error bars. In the end

of the optimization process, the objective function values of the iterates tend

towards stability. However, the feasibility of the final optimal solution is not

guaranteed. In about one fifth of the benchmark problems (G10, G17, G19,

TSD, PVD), the final solutions obtained by IATRO are not feasible in the

median run.

To summarize, the optimization capability of IATRO is dependent on the types

and characteristics of the targeted optimization problem. IATRO is able to

obtain the global optima of some problems with high stability and efficiency

but is poor in tackling other kinds of problems. In each run of the specific

benchmark example, the optimization process can vary a lot. However, if we

evaluate the optimization performance of IATRO from another perspective,

IATRO is a practical and efficient method.

Except the eight problems (G02, G06, G10, G13, G17, G19, G21 and PVD)

in which IATRO fails to find the global optima, IATRO succeeds in obtaining
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Table 3.4: Statistical results of the optimal objective function values obtained
by IATRO on 26 benchmark problems

Prob. Target Best Worst Mean Median Std.

G01 -15.0000 -15.0000 -11.4844 -13.0231 -12.6563 1.0888e+00
G02 -0.8036 -0.3812 -0.2343 -0.2939 -0.2960 4.0196e-02
G03 -1.0005 -1.0005 -0.0000 -0.9092 -1.0005 2.7098e-01
G04 -30665.5387 -30665.5396 -30665.5351 -30665.5387 -30665.5388 7.6897e-04
G05 5126.4981 5126.4981 6008.4632 5260.8809 5132.2653 2.3964e+02
G06 -6961.8139 -6961.8128 -3279.8616 -6277.3390 -6935.8967 1.2220e+03
G07 24.3062 24.3062 74.4022 26.3101 24.3062 9.8168e+00
G08 -0.0958 -0.0958 -0.0258 -0.0633 -0.0671 2.9590e-02
G09 680.6301 680.6301 1252872.5244 52888.3934 680.7164 2.5021e+05
G10 7049.2480 7049.2515 7603.9885 7129.8240 7056.6983 1.4574e+02
G11 0.7500 0.7500 0.9069 0.7737 0.7551 3.9498e-02
G12 -1.0000 -1.0000 -0.8829 -0.9514 -0.9516 3.4074e-02
G13 0.0539 0.0541 1.4532 0.7731 0.9076 3.7290e-01
G14 -47.7611 -47.7611 -47.7577 -47.7606 -47.7609 7.1784e-04
G15 961.7152 961.7152 972.1536 963.4870 962.2664 2.5307e+00
G16 -1.9052 -1.9052 -1.9052 -1.9052 -1.9052 4.6997e-08
G17 8876.9807 - - - - -
G18 -0.8660 -0.8660 -0.5000 -0.7417 -0.8633 1.4789e-01
G19 32.6556 36.2503 214.5681 73.0934 55.0921 4.4007e+01
G21 193.7869 258.6453 723.5190 331.4278 298.2287 9.6910e+01
G23 -400.0000 -400.0000 12.1157 -316.0318 -354.3011 1.1553e+02
G24 -5.5080 -5.5080 -4.0537 -4.9765 -5.1734 5.6702e-01

WBD 1.7249 1.7249 1.7249 1.7249 1.7249 1.6380e-05
SPD 0.0127 0.0127 0.0169 0.0144 0.0142 1.3275e-03
PVD 6059.7143 6059.8611 7367.6123 6344.3215 6251.7994 2.6040e+02
SRD 2994.4710 2994.4698 2994.4711 2994.4705 2994.4707 4.5645e-04

Table 3.5: Convergence statistics of IATRO on 26 benchmark problems

Prob. ANFEs AREs TE FR (%) SR (%) ENFEs EAREs

G01 216 138 0.64 100 12 1802 138
G02 1240 1237 1.00 100 0 - 1237
G03 771 705 0.91 100 84 918 705
G04 119 78 0.66 100 96 124 78
G05 349 337 0.96 96 8 4549 351
G06 314 211 0.67 72 0 - 294
G07 670 653 0.98 100 96 698 653
G08 233 148 0.63 100 24 973 148
G09 597 583 0.98 96 32 1943 607
G10 1171 649 0.55 72 0 - 902
G11 131 114 0.86 100 20 657 114
G12 250 154 0.62 100 4 6241 154
G13 249 235 0.94 96 0 - 245
G14 603 601 1.00 100 32 1886 601
G15 237 219 0.92 96 4 6181 228
G16 229 202 0.88 100 100 229 202
G17 - - - - - - -
G18 810 750 0.93 100 48 1687 750
G19 2001 1910 0.95 100 0 - 1910
G21 438 432 0.99 84 0 - 514
G23 1215 1186 0.98 100 8 15188 1186
G24 114 76 0.67 100 48 237 76

WBD 412 408 0.99 100 100 412 408
SPD 801 768 0.96 100 20 4005 768
PVD 611 243 0.40 100 0 - 243
SRD 707 556 0.79 100 100 707 556

46



Chapter 3: IATRO 47

the global optima of the rest problems definitely within certain ENFEs. Take

the problem G11 as an example, the ANFEs of a feasible run, the FR value

and the SR value is 131, 100% and 20% respectively. It means IATRO has

a twenty percent chance of solving this problem successfully, i.e., obtaining

the global optimum of this problem within 131 function evaluations. On the

other hand, the corresponding ENFEs is 657, which indicates that IATRO just

needs 657 function evaluations to find the global optimum of this problem at

one hundred percent. Therefore, from this point of view, IATRO is able to

solve 18 out of 26 problems successfully within calculated ENFEs values.

By investigating the ANFEs, AREs and TE, several problems such as G01,

G04, G06, G08, G10, G12, G24 and PVD deserve more attention. These

problems have a low TE (< 0.7), which means about 30% of the function

evaluations are wasted in the final stage. This situation is much severe in

problems G10 and PVD where more than half of the function evaluations are

regarded as useless. Definitely, the termination quality of IATRO on these

problems should be improved by either allowing IATRO to abort the

optimization process earlier or keep on searching the optimum in a larger

trust region.

3.6.5 Comparisons with state-of-the-art metaheuristic

algorithms

In this section, the results of the studied optimization problems from IATRO

are compared with the results of a number of state-of-the-art metaheuristic

algorithms which do not involve metamodels. These algorithms are

rank-iMDDE [152], LCA [113], COPSO [106], NSES [87] and Q-COM [151].

rank-iMDDE [152] is an improved constrained differential evolution (DE)

method; LCA [113] is a novel algorithm which tries to model a league

championship environment wherein artificial teams play in an artificial

league in several weeks (iterations); COPSO [106] is a variant of particle

swarm optimization method with the ability to solve constrained

optimization problems; NSES [87] is an evolutionary algorithm with a

self-adaptive selection method that applies multi-objective problem

techniques. These algorithms are chosen because of their competitive

performance in their respective metaheuristic fields. It is worth noting that

making a comparison between IATRO and these algorithms in strict

accordance with the relevant performance criteria is not practical because

the constraint tolerance and the termination criteria of the optimization

process are defined differently in these algorithms. Specifically, IATRO,
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COPSO and Q-COM are able to obtain a solution with the equality

constraints values not exceeding the constraint tolerance of 1e − 6 while

rand-iMDDE, LCA and NSES applied a less stringent tolerance of 1e − 4 on

equality constraints. As a result, the best optima obtained by these

algorithms are slightly different for optimization problems with equality

constraints which are marked in bold face in Table 3.2. Therefore, the

comparisons in terms of the obtained best objective function values of

benchmark problems are only made among IATRO, COPSO and Q-COM.

Moreover, in the aforementioned methods except IATRO, a run was

terminated if a solution having an objective value within 1e − 4 from the

known objective value is found. This requires one to know the best-known

solution of the given optimization problem, which is impractical to

sophisticated real-world applications. Thus, the results reported in their

literature can not reflect the optimization capability of solving a true

optimization problem without the knowledge of the best-known solution.

Nevertheless, the results of IATRO (in which a run is terminated either the

maximum iteration number is achieved or the search subregion is sufficiently

small) are compared with the results obtained by other approaches reported

in literature as shown in Table 3.6. Note that only the results of eighteen

problems that can be solved successfully by IATRO are compared by other

methods here and the results reported in literature are rounded to four

decimal places. And the ENFEs values are calculated accordingly following

the definition in Section 3.6.3. For the majority of these examples, all

methods could find the global optima or near-global optima as the best

objective function values listed in Table 3.6 are very similar especially for

problems only including inequality constraints. Because different constraint

tolerances were used, there are minor differences in the optimal objective

function values of problems with equality constraints obtained by these

optimizers. Compared with COPSO and Q-COM which used the same

constraint tolerance of 1e − 6, IATRO can get comparative accuracy in the

optimal solutions. The only special case is the problem G23 for which

COPSO can not find the known optimum and the ENFEs is marked as a ‘-’.

Although there are no evident differences in the solving accuracy of these

methods for these problems, the ENFEs values vary a lot from each other.

The smallest value of ENFEs of each problem obtained by these algorithms is

marked in bold face in Table 3.6. It is distinct that IATRO is the most efficient

algorithm on at least eleven problems (G01, G03, G04, G07, G09, G14, G16,

G18, WBD, SPD, SRD). For another seven problems, IATRO is less ‘inferior’

to NSES. However, as described before, the ENFEs value of NSES can just
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Table 3.6: Comparisons of IATRO, rank-iMDDE, LCA, COPSO, NSES and
Q-COM on eighteen problems that can be successfully solved by IATRO

Prob. Criteria IATRO rank-iMDDE [152] LCA [113] COPSO[106] NSES[87] Q-COM[151]

G01
Best -15.0000 -15.0000 -15.0000 -15.0000 -15.0000 -15.0000

ENFEs 1802 80483 N.A. 95397 31710 15520

G03
Best -1.0005 -1.0005 -1.0005 -1.0000 -1.0005 -1.0000

ENFEs 918 49572 N.A. 315123 19534 18618

G04
Best -30665.5396 -30665.5390 -30665.5387 -30665.5387 -30665.5386 -30665.5400

ENFEs 124 31649 N.A. 65087 5357 15066

G05
Best 5126.4981 5126.4970 5126.4967 5126.4981 5126.4967 5126.4981

ENFEs 4549 33615 N.A. 315257 1558 15117

G07
Best 24.3062 24.3062 24.3062 24.3062 24.3062 24.3062

ENFEs 698 62276 N.A. 233400 171990 15274

G08
Best -0.0958 -0.0958 -0.0958 -0.0958 -0.0958 -0.0958

ENFEs 973 2961 N.A. 6470 541 12762

G09
Best 680.6301 680.6300 680.6301 680.6301 680.6301 680.6301

ENFEs 1943 24849 N.A. 79570 9357 15407

G11
Best 0.7500 0.7499 0.7499 0.7500 0.7500 0.7500

ENFEs 657 7340 N.A. 315000 135 15015

G12
Best -1.0000 -1.0000 -1.0000 -1.0000 -1.0000 -1.0000

ENFEs 6241 3101 N.A. 6647 212 469

G14
Best -47.7611 -47.7649 -47.7649 -47.7611 -47.7649 -47.7611

ENFEs 1886 127553 N.A. 9807000 6093 16061

G15
Best 961.7152 961.7150 961.7150 961.7152 961.7150 961.7152

ENFEs 6181 19067 N.A. 315100 757 15128

G16
Best -1.9052 -1.9052 -1.9052 -1.9052 -1.9052 -1.9052

ENFEs 229 18527 N.A. 40960 8982 15364

G18
Best -0.8660 -0.8660 -0.8660 -0.8660 -0.8666 -0.8660

ENFEs 1687 60084 N.A. 185654 3353 15393

G23
Best -400.0000 -400.0551 -400.0550 -361.8566 -400.0550 -400.0002

ENFEs 15188 205337 N.A. - 9757 15458

G24
Best -5.5080 -5.5080 -5.5080 -5.5080 -5.5080 -5.5080

ENFEs 237 5490 N.A. 19157 161 15028

WBD
Best 1.7249 1.7249 1.7249 1.7249 N.A. N.A.

ENFEs 412 15000 15000 30000 N.A. N.A.

SPD
Best 0.0127 0.0127 0.0127 0.0127 N.A. N.A.

ENFEs 4005 10000 15000 30000 N.A. N.A.

SRD
Best 2994.4698 2994.4711 2994.4711 N.A. N.A. N.A.

ENFEs 707 19920 24000 N.A. N.A. N.A.
AENFEs/AENFEs of IATRO 2691/2691 = 1 43157/2691 ≈ 16 18000/1708 ≈ 11 741239/2034 ≈ 364 17966/2888 ≈ 6 14378/2888 ≈ 5

N.A.: The results are not available in literature.
-: The method can not obtain the global optimum of this problem, so the ENFEs is not a value.
AENFEs: The average ENFEs.
* ENFEs value with bold face means that it is the best result among all methods.

reflect when the optimal solution of the problem is found in the optimization

process. If there is no prior knowledge of the true optimum, NSES should

never stop within the ENFEs and it is unknown when the optimization process

terminates and how much the NFEs is. Hence, it needs further analysis to

determine whether NSES is better than IATRO in solving the problems such

as G05, G08, G11, G12, G15, G23 and G24. Nevertheless, the superiority of

IATRO in efficiency over NSES and other optimizers is apparent if the average

of the efficient number of function evaluations (AENFEs) is evaluated as shown

in the last line in Table 3.6. The AENFEs of each method is calculated and

is in comparison with the AENFEs of IATRO. IATRO generally spends 2691

function evaluations to obtain the global optimum for each problem while rank-

iMDDE requires about 43157 function evaluations, approximately 16 times

more than the evaluations required by IATRO. Similarly, IATRO just requires

a small fraction of AENFEs in general, about 1/11 as compared to LCA for

the three engineering design problems, 1/364 as compared to COPSO for 16

problems, 1/6 and 1/5 as compared to NSES and Q-COM respectively for 15
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problems.

Overall, IATRO is able to solve constrained optimization problems at the

same accuracy level as metaheuristic algorithms do but reduces the required

function evaluations by 5− 10 times as compared to metaheuristic algorithms

which do not employ metamodels.

3.6.6 Comparisons with state-of-the-art metamodel-based

algorithms

In this section, IATRO is compared with various recently proposed advanced

metamodel-based algorithms in order to evaluate its performance. These

approaches include COBRA [115], eDIRECT-C [118], SADE-kNN [153],

SACOBRA [116] and SCGOSR [74]. COBRA [115] makes use of the radial

basis function (RBF) to build metamodels of objective and constraint

functions and is the first algorithm successfully solving the well-known

large-scale optimization problem MOPTA08 [119]. eDIRECT-C [118]

adaptively selects metamodel type (Kriging, RBF and polynomial) in the

optimization process to improve the quality of approximations. Then a pure

greedy search is conducted to seek the solution. SADE-kNN [153] applied

the k-nearest-neighbors (kNN) technique to make predictions of unknown

points in a differential evolution framework. In kNN, the approximate

response of a unknown solution is a weighted average of the responses of the

k nearest solutions from a database. SACOBRA [116] is based on COBRA

[115] but capable of efficiently solving constrained problems with no

parameter tuning. SCGOSR [74] is a multi-start optimization algorithm that

select sub-optimal points from the Kriging metamodel for updating the

search. To the best of the author’s knowledge, these algorithms are adequate

for showing the strengths and weaknesses of present metamodel-based

optimization approaches.

Similar to comparing IATRO with metaheuristic algorithms, it is also not

intuitive to compare these metamodel-based algorithms directly from the

results shown in Table 3.7. Here are several reasons. First, except IATRO,

other methods applied a relaxed tolerance (1e− 4) on equality constraints. It

is uncertain if other methods are able to obtain a more accurate solution of

problems with equality constraints at this condition. Second, the

optimization statistics obtained by these algorithms are not fully detailed in

their papers. For example, in [116], the author only provided the median of

best feasible results and average number of function evaluations for each

problem studied by SACOBRA. And in [74], the range of best objective
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Table 3.7: Comparisons of IATRO, COBRA, eDIRECT-C, SADE-kNN,
SACOBRA and SCGOSRa

Prob. Criteria IATRO COBRA [115] eDIRECT-C [118] SADE-kNN [153] SACOBRA [116] SCGOSR [74]

G01 Best -15.0000 ≤ −14.85 -14.9998 -15.0000 -15.0 N.A.
EAREs 138 > 387 147 > 3722 100 N.A.

G02 Best -0.3812 N.A. -0.2480 -0.7429 -0.3466 N.A.
EAREs 1237 N.A. > 1000 N.A. 400 N.A.

G03 Best -1.0005 ≤ −0.33 -0.9989 -0.4515 -1.0 N.A.
EAREs 705 > 451 145 N.A. 300 N.A.

G04 Best -30665.5396 N.A. -30665.5385 -30665.5386 -30665.539 -31026
EAREs 78 N.A. 65 2598 200 54

G05 Best 5126.4981 ≤ 5150 5145.8149 5126.49 5126.498 N.A.
EAREs 351 13 413 > 17810 200 N.A.

G06 Best -6961.8128 ≤ −6800 -6961.8137 -6961.8138 -6961.81 -6961.8
EAREs 294 53 35 1235 100 79

G07 Best 24.3062 ≤ 25 24.3062 24.3073 24.306 24.3149
EAREs 653 199 152 N.A. 200 178

G08 Best -0.0958 ≤ −0.09 -0.095822 -0.09582 -0.0958 -0.0958
EAREs 148 30 154 292 200 52

G09 Best 680.6301 ≤ 1000 785.6795 680.638 680.761 826.30
EAREs 607 > 275 > 1000 N.A. 300 116

G10 Best 7049.2515 ≤ 8000 7049.2484 7049.249 7049.253 N.A.
EAREs 902 276 105 N.A. 300 N.A.

G11 Best 0.7500 N.A. 0.7499 0.7499 0.75 N.A.
EAREs 114 N.A. 33 > 2995 100 N.A.

G12 Best -1.0000 N.A. -1.0000 −1.0000 N.A. N.A.
EAREs 154 N.A. 52 > 386 N.A. N.A.

G13 Best 0.0541 N.A. 0.6472 0.05394 N.A. N.A.
EAREs 245 N.A. > 1000 > 43907 N.A. N.A.

G14 Best -47.7611 N.A. N.A. -47.764 N.A. N.A.
EAREs 601 N.A. N.A. > 55179 N.A. N.A.

G15 Best 961.7152 N.A. N.A. 961.7150 N.A. N.A.
EAREs 228 N.A. N.A. > 11431 N.A. N.A.

G16 Best -1.9052 ≤ −1.8 N.A. -1.9051 N.A. N.A.
EAREs 202 38 N.A. 4633 N.A. N.A.

G17 Best - N.A. N.A. 8853.53 N.A. N.A.
EAREs - N.A. N.A. > 69887 N.A. N.A.

G18 Best -0.8660 ≤ −0.8 N.A. -0.8654 N.A. N.A.
EAREs 750 > 196 N.A. > 253743 N.A. N.A.

G19 Best 36.2503 ≤ 40 N.A. 32.6632 N.A. N.A.
EAREs 1910 698 N.A. N.A. N.A. N.A.

G21 Best 258.6453 N.A. N.A. 193.7546 N.A. N.A.
EAREs 514 N.A. N.A. N.A. N.A. N.A.

G23 Best -400.0000 N.A. N.A. -400.055 N.A. N.A.
EAREs 1186 N.A. N.A. > 68852 N.A. N.A.

G24 Best -5.5080 ≤ −5 N.A. -5.5080 N.A. N.A.
EAREs 76 9 N.A. 765 N.A. N.A.

WBD Best 1.7249 ≤ 2.5 N.A. N.A. N.A. 1.7249
EAREs 408 165 N.A. N.A. N.A. 102

SPD Best 0.0126720 N.A. 0.012666 N.A. N.A. 0.01267
EAREs 768 N.A. 292 N.A. N.A. 76

PVD Best 7367.6123 N.A. N.A. N.A. N.A. N.A.
EAREs 243 N.A. N.A. N.A. N.A. N.A.

SRD Best 2994.4711 N.A. N.A. N.A. N.A. N.A.
EAREs 556 N.A. N.A. N.A. N.A. N.A.

a The best results of SACOBRA are actually the median results in its paper.

function values of optimization problems obtained by SCGOSR were

reported but lack of the standard deviations and other important statistics.

Hence, it is hard to make comparisons of these methods by an uniform

standard. Moreover, except IATRO, the termination criterion of other

methods is related to the known global optimum of the test problem.

COBRA, SCGOSR were set to terminate if a feasible solution with the

objective function value smaller than a manually-specified target value has

been found or after certain number of function evaluations. In SADE-kNN,

the success threshold was 1e − 4, i.e., if a feasible solution x of which the

error between the objective function value f(x) and the optimum f(x∗) is

smaller than this threshold, the optimization process will be terminated.

eDIRECT-C applied the relative error as a termination criterion defined by

E = |f(x)−f(x∗)
f(x∗) |. It was set to be 1e − 4 for problems only including

inequality constraints and 5e − 3 for problems with equality constraints. In
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SACOBRA, the results were given according to different success thresholds.

For problems G02, G09 and G10, the success threshold was 0.05 while for

other problems, this value was set to 0.001, which is still lager than the value

used in IATRO, SADE-kNN and eDIRECT-C. Therefore, the results

reported in their papers can not reflect the true performance of solving

constrained optimization problems without the knowledge of the known

optima. Last but not the least, most of the metamodel-based algorithms

only tested a fraction of the G-problems (G01-G13) whereas IATRO tested

them all. As shown in Table 3.2, it can be seen that the last nine G-problems

(G14-G24) are much complex than the first thirteen G-problems according to

the number of constraints or the feasible ratio. Currently, only IATRO and

SADE-kNN can be compared on the performance of solving problems from

G14 to G24. From Table 3.7, it is apparent that IATRO has huge advantages

over SADE-kNN in solving seven problems (except G17 and G21) with

respect to the required number of function evaluations. IATRO just used

several tenths of function evaluations as compared to that required in

SADE-kNN. For G17 and G21, the results of SADE-kNN were not

satisfactory. More than 69887 function evaluations were needed by

SADE-kNN to find the optimum of G17 and the EAREs of G21 were not

provided in the literature. To the best of the author’s knowledge, IATRO is

the first metamodel-based algorithm that could successfully solve problems

such as G14, G15, G16, G18 and G23 within 2000 function evaluations.

Moreover, few metamodel-based algorithms have tested the mixed

continuous/discrete variable optimization problems. COBRA and

eDIRECT-C only tested the continuous versions of PVD and SRD, so their

results are not included here. As the performance of other optimizers on

these problems is unknown, it is hard to draw a firm conclusion that IATRO

is the best among these methods from current insufficient results.

Nevertheless, from the results of intensively studied problems including the

first thirteen G-problems, WBD and SPD shown in Table 3.7, it is quite clear

that IATRO is able to obtain a solution at a higher accuracy level than other

methods. Especially for G01, G04, G09 and G13, IATRO is superior to other

methods in terms of both accuracy and efficiency. The results of COBRA are

generally not competitive except for G08, in which COBRA were able to seek

a near-global optimum within 30 function evaluations. It should be noted that

in [118], Liu claimed that eDIRECT-C was superior to COBRA according to

the results on problems from G01 to G13. From the results here, eDIRECT-C

did perform best on five problems (G06, G07, G10, G11 and G12). SADE-kNN

seems inferior to other methods because a huge number of function evaluations

were required to obtain a optimum of a problem. SACOBRA performed well
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on G03 and G05 but it is hard to say SACOBRA is better than IATRO

because the obtained solutions were lack of accuracy. SCGOSR only tested

seven problems but were good at optimizing G08, WBD and SPD. For G02,

all methods fail to obtain a global or near-global optimal solution.

In summary, it is still a question that which method is the most competitive

metamodel-based algorithm for solving these fifteen optimization problems

as each method has its strengths and none of them shows apparent

advantages over others in solving the majority of problems. But based on the

aforementioned analysis, eighteen out of twenty-six benchmark problems

have been successfully solved by IATRO with high efficiency and accuracy.

There is no doubt that IATRO is a competitive metamodel-based algorithm

for solving constrained black-box optimization problems especially within

limited budget, which provides a valuable insight into the potentials of the

trust-region based searching framework.

3.7 Conclusions

In this chapter, the framework of the multipoint approximation method

(MAM) [77] is described first. Main strategies including the design of

experiments (DOE), the metamodel building via intrinsically linear functions

(ILF) and the trust region strategy are elaborated in details. The new

contribution is IATRO (intrinsically linear function assisted and trust region

based optimization method), which is developed in the Python environment

based on the main strategies of MAM. Because MAM is written in Fortran,

it has various deficiencies and shortcomings resulted from either the outdated

programming language standard or the error-prone optimization process. In

IATRO, there are plenty of modification and new functionalities. For

example, each optimization step has been modularized; robust solvers (the

weighted least squares method and the sequential quadratic programming

method) are employed; the output solution is redefined; the random starting

point generator is applied and a benchmark library including optimization

problems of various types (linear, nonlinear, mixed variable, large-scale) is

established. By comparison with several state-of-the-art metaheuristic

algorithms on 18 benchmark problems, IATRO shows considerable benefits

in reducing the required function evaluations without degrading the accuracy

of the solution. And by comparison with several advanced metamodel-based

algorithms on 26 benchmark problems, IATRO is verified to be competitive

in the quality of the obtained solution and applicability of solving highly

constrained and mixed-variable problems. Nevertheless, there are eight
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problems (G02, G06, G10, G13, G17, G19, G21 and PVD) which can not be

successfully solved by IATRO and another eight problems (G01, G05, G08,

G11, G12, G15, G23 and SPD) which are solved with a low success rate.

Furthermore, more attention should be paid to several problems (G01, G04,

G06, G08, G10, G12, G24 and PVD), in which the termination efficiency is

not satisfactory. Therefore, new strategies and modifications should be

developed to enhance the optimization ability of IATRO.
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New strategies for the enhanced

IATRO

To reinforce the search abilities of IATRO ((intrinsically linear function

assisted and trust region based optimization method) in every aspect, several

new strategies are developed by trial and error and are implemented in the

enhanced IATRO (EIATRO), which is demonstrated in details in this

chapter. At first, in Section 4.1, an economical sampling strategy (ESS) that

aims to reduce the required number of function evaluations is proposed.

Next, Section 4.2 demonstrates a modified trust region strategy (MTRS),

which achieves a good tradeoff between exploration and exploitation. And in

Section 4.3, a self-adaptive normalization strategy (SANS) is described,

which is designed to alleviate the difficulties in optimization caused by the

objective and constraint functions of different scales. Note that each strategy

can be implemented in IATRO, resulting a new method. For example, an

ESS enhanced IATRO is named as IATRO–ESS (IE). And when all the

strategies are activated, the method is IEMS (IATRO–ESS–MTRS–SANS).

Then, the performance of the proposed strategies are studied in Section 4.4

by testing the 26 benchmark problems. Finally, a summary is given in

Section 4.5.

4.1 Economical sampling strategy (ESS)

Based on the extended box selection strategy (EBS) in IATRO (Section 3.2.2),

an economical sampling strategy (ESS) shown in Algorithm 3 is developed to

make full use of the previous information, resulting in a reduction of the total

number of required function evaluations in an optimization process. As an

intrinsically linear function (3.3.2) only has d + 1 (d is the number of design

variables) coefficients need to be determined, the minimum number of points

required to fit a metamodel is d+ 1 as well. Therefore, if several points have
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been selected by EBS in a iteration of IATRO, there is no need to generate

d+ 1 new points at all in this iteration.

Let next is the number of points existing in the extended box and NPLAN

is the number of required sampling points in each iteration (the default is

d + 5 as shown in Table 3.3), then new points should be generated only if

next < NPLAN . Otherwise, the number of new points nnew in this iteration is

controlled by

nnew = NPLAN − bηeco · nextc (4.1.1)

where ηeco is an economical factor (the default value is 50%) meaning that

in what extent the points in the extended box should be responsible for the

approximations in the current search region and the symbol b·c indicates that

the calculated value will be rounded down.

Algorithm 3: Economical sampling strategy (ESS)

Function ESS(xk, next, Nplan,A
k,Bk):

Input:
• xk: Starting point in kth iteration.
• next: The number of points located in the extended box
• Nplan: The default number of required sampling points.
• Ak: Lower bounds of the current search subregion.
• Bk: Upper bounds of the current search subregion.

Output:
• nnew: The number of new sampling points.
• Xnew: The set of new sampling points.

if next ≥ Nplan then . Points are adequate in Qext

Xnew = ∅
Return 0, Xnew

else . New points have to be generated

nnew = Nplan − bηeco · nδc
Xnew = MSS(xk, nnew,A

k,Bk) . Economical sampling

Return nnew, Xnew

4.2 Modified trust region strategy (MTRS)

As described in Section 3.4, the strategy for moving and resizing the search

subregions in IATRO is based on six indicators. Through in-depth analysis

of the optimization problems which can not be tackled by IATRO, several

inadequacies existing in the present move limit strategy have been discovered.

For example, the second indicator aims to describe the location of the obtained

sub-optimal solution xk+1 in the present trust region Qk (in kth iteration) but

it is not evaluated in a complete and comprehensive manner. Generally, a

solution vector x ∈ Rd represents a design of d design variables and each design
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variable (xi) has its global lower bound Ai and global upper bound Bi. In

addition, as a solution is located in a subregion of the global design space, each

design variable (xi) has its current lower bound Aki and current upper bound

Bk
i as well. Currently, a sub-optimal solution is viewed as ‘External’ if there

exists a design variable lying either on its current lower bound or on its current

upper bound. It does not take the global boundaries into consideration so that

it is not clear whether the design variable which is on the current bound is

also on the global bound. Moreover, this definition of ‘External’ is not precise,

especially for variables which are actually inside the current bounds because

no adjustment of the move limits on these variables is applied. Furthermore,

this kind of ambiguity also exists in the third and fourth indictor which are

used to reflect the movement history. These indicators evaluate the movement

of the design vector in the entire d-dimensional design space but neglect the

movement of an individual design variable in a one-dimensional space. Besides,

the sixth indicator, which regards a solution ‘Close’ to the border between the

feasible and infeasible regions if the maximum constraint response value is

in the range [−0.1, 0.1], usually results in a too rapid reduction of the sub-

domain. The main reason is that the range [−0.1, 0.1] is only suitable for

a minority of problems and it is almost impossible to determine a typical

range to distinguish between the feasible and infeasible regions because of the

complexity and diversity of constrained optimization problems. Due to the

aforementioned weaknesses, the move limits can only be changed isotopically,

which hinders the search region from moving in the right direction to the global

optimum. Therefore, a modified trust region strategy (MTRS) is developed

to overcome the aforementioned shortcomings and results in a good tradeoff

between exploration and exploitation abilities. The schematic description of

MTRS is given in Figure 4.1 and it is based on several indicators as well.

The first indicator is actually the fifth indicator defined in IATRO which

indicates the size of the current search subregion relative to the complete

design space. According to this indicator, this size can be denoted as ‘Large’

or ‘Small’. Normally, the optimization process will be terminated if the size

is ‘Small’.

The second indicator is used to identify the location of the each design variable

xk+1
i (i = 1, . . . , d) of the sub-optimal solution xk+1 in current bounds [Aki , B

k
i ]

and in global bounds [Ai, Bi]. If none of the current move limits ([Aki , B
k
i ])

is active, this variable xk+1
i (i = 1, . . . , d) is considered an ‘internal’ variable.

If any of the current move limits ([Aki , B
k
i ]) is active but none of the global

bounds [Ai, Bi] is active, the location of this variable is marked as ‘external’.

Otherwise if one of the global bounds [Ai, Bi] is active, the location is denoted
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Figure 4.1: Schematic description of the modified trust region strategy

as ‘boundary’.

Based on the second indicator, the third indicator indicates the location of

the sub-optimal solution xk+1 as a whole. If none of the design variables is

considered ‘external’, this solution is regarded as ‘Internal’, otherwise it is

denoted as ‘External’.

The fourth indicator illustrates the movement history of the each design

variable xk+1
i (i = 1, . . . , d). For simplicity, a measure θki (i = 1, . . . , d) is

defined as

θki = (xk+1
i − xki ) · (xki − xk−1

i ) (i = 1, . . . , d) (4.2.1)

If θki > 0, the movement of this variable in this dimension is considered

‘forward’. Otherwise, this variable is moving ‘backward’.

The fifth indicator aims to show the movement history of the sub-optimal

solution xk+1 in the design space. Therefore, the angle between the last two

move vectors is defined as

ϕk =
xk+1 − xk
|xk+1 − xk| ·

xk − xk−1

|xk − xk−1| (4.2.2)

If ϕk > 0.5, the optimization process is moving more or less in the same
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direction, so the sub-optimal solution is moving ‘Forward’. If ϕk <= 0, the

convergence history is marked as ‘Backward’. Otherwise, the next search

subregion will not be dependent on this indicator because the movement of

optimal solutions is ‘Uncertain’.

Based on the above indicators, the next search subregion Qk+1 can be

determined by new move limits Ak+1
i and Bk+1

i as

Bk+1
i −Ak+1

i = τki · (Bk
i −Aki ) (4.2.3)

where τki is the resizing coefficient. In current implementation, the subregion

can be resized nonisotropically. Both the enlargement and the reduction of

the subspace of one design variable can be applied. When the sub-optimal

solution is indeed ‘Internal’, a quite aggressive reduction is applied, i.e., all τki
is 0.5. Otherwise, τki = 1.5 is used for enlargement and τki = 1/1.5 is used for

reduction.

4.3 Self-adaptive normalization strategy (SANS)

for objective and constraint functions

Relatively few surrogate-based algorithms focus on scaling the constraint

violations to the same order of magnitude although it is a common sense

that scaled constraint and objective functions can smooth the landscape of

metamodel surface and then affect the efficiency and accuracy of the

optimization progress. Finding a proper way of scaling is not easy. One

customary approach is to carry out a pre-process before building the

metamodel. This is to say, identify the min-max range of each constraint

over the entire design space and then divide each constraint by the

determined values [116]. Although this technique does flatten the function

by avoiding the extreme value globally, it makes the optimizer even harder to

escape from the flat surface because this transformation makes the function

where is already somewhat flat surface much flatter. This kind of issue also

occurs in the logarithmic transformation proposed by Regis [115].

Based on the aforementioned limitations, a general, easy-implemented and

self-adaptive normalization strategy (SANS) is developed. In the first place,

the maximum of actual responses including both the objective and constraint
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values should be determined by

gmaxj = max(|gj(Xk)|)
fmax = max(|f(Xk)|)

(4.3.1)

where Xk is the set of fitting points which are used for metamodel building

in the kth iteration, f is the objective function and gj(x) (j = 1, . . . ,m) is the

jth constraint function. Secondly, the objective and constraint functions will

be normalized respectively according to

g′j(x) =
gj(x)

gmaxj

· δg ∈ [−δg, δg], if gmaxj > δg

f ′(x) =
f(x)

fmax
· δf ∈ [−δf , δf ], if fmax > δf

(4.3.2)

where g′j(x) and f ′(x) are the normalized constraint and objective functions

corresponding to actual functions gj(x) and f(x); δg and δf are two user-

specified parameters.

Algorithm 4: Self-adaptive normalization procedure (SANS)

Function SANS(δf , δg,f(Xk), gj(X
k) (j = 1, . . . ,m)):

Input:
• δf : Normalizing the objective function value into the range [−δf , δf ].
• δg: Normalizing the constraint function value into the range [−δg, δg].
• f(Xk): The objective function values of the fitting points.
• gj(X

k): The jth constraint function values of the fitting points.

Output:
• f ′(x): The normalized objective function
• gj(X

k) (j = 1, . . . ,m): The normalized constraint functions

fmax, gmaxj = Max(|f(Xk)|, |gj(Xk)|)
if fmax > δf then . Objective normalization

f ′(x) = f(x)
fmax · δf

else
f ′(x) = f(x)

if gmaxj > δg then . Constraint normalization

g′j(x) =
gj(x)
gmaxj

· δg
else

g′j(x) = g(x)

Return f ′(x), gj(X
k) (j = 1, . . . ,m)

In this way, the constraint and objective function will be normalized adaptively

during the entire optimization process. When the trust region Qk is large, the

responses of the points located in Qk usually differ much and then they will

be scaled to the same level accordingly. In this situation, SANS is similar with

the usual approach. However, when the trust region Qk is sufficiently small,
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normally there will be few extreme values in objective and constraint functions

in such small design space. In this situation, the conditions gmaxj > δg and

fmax > δf are usually not satisfied and then there is no need to scale the

functions. On the other hand, if the landscape of the function in such small

region is still not flat, the SANS will be activated as normal. But since the

maximum response values gmaxj and fmax generally should be smaller than

the values in the initial stage, only a minor scale is sufficient enough to be

applied to the original functions. Compared with the customary normalization

strategy, SANS avoids the risk of normalizing the functions too much and

improves the quality of approximations.

4.4 Performance study of ESS, MTRS and SANS

In order to illustrate the efficacy of the aforementioned strategies, these

strategies are integrated into the framework of IATRO. For instance, by

implementing the economical sampling strategy (ESS) into IATRO, the new

method is named as IATRO–ESS (IE). Similarly, IATRO–ESS–MTRS (IEM)

is based on IE with integration of the modified trust region strategy

(MTRS). And by applying the self-adaptive normalization strategy (SANS)

in IES, the method is called IEMS (IATRO–ESS–MTRS–SANS). 26

benchmark problems are used to test the optimization performance of these

methods and the detailed optimization results are given in Appendix from

C.1 to C.3. And the comparison results of IATRO, IE, IEM, IEMS in terms

of ANFEs, FR and SR values are given in Table 4.1.

By comparing IE with IATRO, it can be observed that the ESS usually imposes

little impact on the searching ability as the FR values and the SR values of

both methods are very similar. But the average ANFEs value of IE is 460.41,

which is only about 80% of the value obtained by IATRO. It means that

ESS could reduce the computational cost in solving expensive CBO problems

while hardly degrading the quality of the obtained solution. Thus, ESS is

recommended to be used when the computational resource is limited.

Different from ESS, MTRS improves the global search ability a lot. By

implementing MTRS into IE, the average SR value raises from 32% to 48%.

This remarkable improvement is mainly because MTRS contributes

significantly to the optimization process of seven problems (G08, G09, G14,

G15, G19, G23 and SPD). Moreover, special attention should be given to the

problem G19, for which both IATRO and IE end in failure but IEM has an

80% chance of finding the true solution. Therefore, MTRS proves to be an
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Table 4.1: Comparisons between IATRO, IATRO–ESS (IE), IATRO–ESS–
MTRS (IEM), IATRO–ESS–MTRS–SANS (IEMS)

Prob.
ANFEs FR SR

IATRO IEa IEMb IEMSc IATRO IEa IEMb IEMSc IATRO IEa IEMb IEMSc

G01 216 188 297 308 100 100 100 100 12 4 20 12
G02 1240 1187 2496 2496 100 100 100 100 0 0 0 0
G03 771 799 1448 1441 100 100 100 100 84 92 96 92
G04 119 103 136 162 100 100 100 100 96 96 100 100
G05 349 200 295 189 96 96 100 100 8 0 4 0
G06 314 103 118 90 72 80 64 100 0 4 4 100
G07 670 695 890 855 100 100 100 100 96 96 100 100
G08 233 165 142 147 100 100 100 100 24 24 44 40
G09 597 592 716 744 96 92 96 100 32 48 92 100
G10 1171 827 801 804 72 40 84 92 0 0 0 12
G11 131 115 208 172 100 100 100 100 20 12 8 40
G12 250 183 225 220 100 100 100 100 4 4 4 4
G13 249 194 275 271 96 92 100 100 0 0 0 0
G14 603 618 719 792 100 100 100 100 32 12 100 100
G15 237 134 378 180 96 80 88 92 4 4 36 8
G16 229 155 174 178 100 100 100 100 100 100 100 100
G17 - 217 327 247 0.0 8 12 100 0 4 0 4
G18 810 760 932 893 100 100 100 100 48 44 52 60
G19 2001 1889 1712 1737 100 100 100 100 0 0 80 80
G21 438 256 385 391 84 100 100 100 0 0 0 0
G23 1215 884 845 897 100 96 100 100 8 12 44 44
G24 114 72 70 70 100 100 100 100 48 72 64 52

WBD 412 195 187 164 100 100 100 100 100 100 100 100
SPD 801 501 340 333 100 100 100 100 20 16 100 100
PVD 611 433 397 386 100 100 100 100 0 0 0 8
SRD 707 507 332 326 100 100 100 100 100 88 100 100

Average 579.60 460.41 570.90 557.39 92.77 91.69 94.00 99.38 32.15 32.00 48.00 52.15

a IATRO–ESS (ηeco = 50%)
b IATRO–ESS–MTRS (ηeco = 50%)
c IATRO–ESS–MTRS–SANS (ηeco = 50%, δg = 1, δf = 10)

advantageous move limit strategy which enables the optimization process to

move in the right direction and converge to a satisfied solution stably.

Moreover, with the support of SANS, the optimization performance on G06,

G10, G11 and G17 gets further improved as can be observed from the results

of IEMS. More specifically, the other three methods can hardly solve G06 but

IEMS is able to obtain the global optimum with a hundred percent. Similarly

for G10, IEMS is the only method to find the optimal solution. And for G11,

the average SR value of IEMS achieves 40%, which is at least two times the

value obtained by other methods. Finally, G17 is a very difficult problem as

all methods can not tackle it. But among them, IEMS is the most competitive

method. The FR value of IEMS is 100% while other methods could scarcely

generate one feasible solution. Hence, SANS proves to be a practical approach,

which aims at solving non-uniform scaling problems, i.e., highly varied ranges

for different constraints.

4.5 Summary

In this chapter, several strategies have been developed to improve the

performance of IATRO (intrinsically linear function assisted and trust region

based optimization method). As shown in Table 4.1, the implementation of

economical sampling strategy (ESS), which is a new strategy, enables IATRO
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to reduce 20% of the required computational cost while scarcely degrading

the searching capability. The modified trust region strategy (MTRS) is a

modification of the trust region strategy in MAM but it is very useful as the

average SR value could increase by 50% to 48%. Moreover, the self-adaptive

normalization strategy (SANS), which is also a novel approach, brings

remarkable advantages in solving problems such as G06, G10, G11 and G17

whose values of constraint functions range across different orders of

magnitude. Finally, IATRO–ESS–MTRS–SANS (IEMS) is capable of

robustly obtaining feasible solutions of the majority of the 26 benchmark

problems and finding the global optima with a satisfied success rate (52.15%

in average). However, there are ten problems (G01, G02, G05, G10, G12,

G13, G15, G17, G21 and PVD) that can not be stably solved and requiring

further research.
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Robust radial basis function

assisted optimization framework

As stated in Section 4.5, IEMS (IATRO–ESS–MTRS–SANS) is weak in

solving ten problems including G01, G02, G05, G10, G12, G13, G15, G17,

G21 and PVD. But by observing the statistical results of the final solutions

in Table C.5, IEMS usually obtains near-optimal solutions of these problems.

This means that the optimization process of IEMS actually moves in the

right direction so the main reason of the failure in obtaining the known

optima lies in the inadequate approximations resulted by the intrinsically

linear functions. When the original functions are complex and highly

nonlinear, intrinsically linear approximations are not reliable enough in a

domain of the search subregion which is located along the boundary of the

feasible region. Therefore, based on IEMS, a radial basis function assisted

and trust region based optimization framework (RATRO) is developed for

solving constrained black-box optimization problems.

In this chapter, firstly, an overview of the RBF interpolation is given in

Section 5.1. Due to the dramatic approximation performance of RBF

metamodel, a balanced trust region strategy (BTRS) is developed to reach

its full potentials, which is demonstrated in Section 5.2. Next, In Section 5.3,

a novel design of experiments with the global intelligence is described. And

for the purpose of saving as much computational budget as possible, an early

termination strategy (ETS) is developed, which is discussed in Section 5.4.

Then, Section 5.5 gives the comparison results to demonstrate the

correctness of each strategy by testing the set of benchmark problems.

Finally, a summary of the aforementioned strategies is drawn in Section 5.6.
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5.1 Metamodel building using cubic radial basis

function interpolation (RBFI)

As described in Section 2.3.4, given n distinct points x1,x2, ...,xn ∈ Rd and

their corresponding function values f(x1), f(x2), ..., f(xn) where f(x) could

be either the objective function or the constraint function, a RBF metamodel

can be written as

s(x) =

n∑
i=1

wi · φ(‖ x− xi ‖) = wTφ (5.1.1)

where ‖ x − xi ‖ is the Euclidean distance between the studied point x and

the fitting point xi; φ represents the radial basis function. Generally, any

type of the radial basis function can be used for metamodel building but the

cubic form is preferred for its ease of implementation ([116, 154, 155]).

Moreover, Wild et al. [156] also suggested that the quality of the

approximations built by the cubic form is better than that built by other

choices in Equation 2.3.36 especially under limited budget. Although the

model accuracy might be improved by tuning the shape parameter γ when

Gaussian (φ(r) = exp(−( rγ )2)) or multiquadric (φ(r) = −
√
r2 + γ2) form is

used, the additional computational burden may be unbearable for expensive

optimization problems. In current implementation, the cubic form of radial

basis function with a polynomial tail is employed, i.e., the metamodel is in

the form as

s(x) =

n∑
i=1

wiφ (‖ x− xi ‖) + p (x) ,x ∈ Rd (5.1.2)

where p(x) is a linear polynomial in d variables with d+ 1 coefficients as

p(x) = c0 + c1 · x1 + c2 · x2 + ...+ cd · xd = cT · x (5.1.3)

As proposed in [116, 154], the polynomial tail p(x) is beneficial to the fit of

simple linear functions which otherwise have to be approximated by

superimposing many RBFs in a complicated way.

To determine the coefficients w and c, the following linear system of equations

have to be solved:[
Φn×n Pn×(d+1)

P T 0(d+1)×(d+1)

]
�

[
w(n)

c(d+1)

]
=

[
F(n)

0(d+1)

]
(5.1.4)

where Φ is an n× n square matrix containing evaluations of the RBF for the

distances between all the sampling points, i.e.,
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Φij = φ (‖ xi − xj ‖) (i, j = 1, ..., n); P ∈ Rn×(d+1) is a matrix, of which the

i-th row is [1,xTi ]; 0(d+1)×(d+1) ∈ R(d+1)×(d+1) is a zero matrix;

w(n) = [w1, . . . , wn]T ∈ Rn; c(d+1) = [c0, c1, ..., cd]
T ∈ Rd+1;

F(n) = [f(x1, f(x2), ..., f(xn)]T ∈ Rn and 0(d+1) ∈ Rd+1 is a vector of zeros.

The coefficient matrix in Eq. 5.1.4 is invertible if it has full rank, i.e, there

exits a subset of d + 1 linearly independent points among the fitting sets.

The matrix inversion can be done efficiently by using singluar value

decomposition (SVD) or similar algorithms.

5.2 Balanced trust region strategy (BTRS)

In the modified trust region strategy (MTRS) as described in Section 4.2,

the size of the search subregion will be reduced by half when the sub-optimal

solution is labeled as ‘Internal’. It is a too rapid reduction of the search

subregion which would lead to a bad convergence.

As described in Table 3.3, the proposed relative size of the initial trust region

(∆min) is 1.0, i.e., the initial trust region is exactly the entire design space.

In the first iteration, as the trust region is as large as the global space, the

obtained sub-optimal solution will be definitely viewed as ‘Internal’. So the

size of the search subregion will be reduced to half of its size according to

MTRS. And if this kind of reduction of the search subregion is applied several

times in the first several iterations, the search subregion will be too small

and is not likely to contain the global optimum. To conclude, such aggressive

reduction of the search subregion limits the exploration ability of the algorithm

and the optimization process might be trapped into a local optimum.

In addition, the potentials of the local exploitation can not be fully realized

under such aggressive reduction in MTRS. In the final iterations of the

optimization process, even if the global optimal solution is located in the

search subregion, any inappropriate shrinkage of the search subregion might

result in an incorrect solution. This issue becomes more severe if the

problem has multiple near-optimal solutions around the near-optimal

solution, for example G21. Rapid reduction of the search subregion will lead

the optimization process to converge to a near-optimal solution rather than

the true optimum.

Therefore, a balanced trust region strategy (BTRS) is developed to enhance

both the exploration ability and the exploration ability. The schematic

description of BTRS is shown in Figure 5.1. In BTRS, the third indicator
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Figure 5.1: Schematic description of BTRS

which shows the location of the sub-optimal solution xk+1 is no longer

evaluated. In this way, the solution will never be considered ‘Internal’ or

‘External’, so the search subregion will not be resized isotropically. To ensure

a robust exploration of the design space, in the first kRES (default value is 5)

iterations, the subspace of each design variable will only be shrunk by a

factor of 1.5 when this variable is located at either the global lower bound or

the global upper bound, i.e., this variable is considered ‘boundary’.

Otherwise, the size of the subspace will remain unchanged to keep the global

searching ability. And in order to achieve a moderate exploitation of the

promising region where the global optimum might be located, the subspace

of each design variable will only be shrunk by 1.5 when this variable is not

located on the global bounds and the movement history is labelled as

‘Backward’. In other conditions, the search subregion is resized following the

rules defined in MTRS.

5.3 Global intelligence selection (GIS)

In IATRO and EIATRO, the DOE comprises two parts of points. The first

part is the new points generated in the current search subregion by maxmin
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Figure 5.2: New DOE with global intelligence selection (GIS)

stochastic sampling (MSS) and the another part is the previous points that

fall in the extended box, as described in Section 3.2. Because the points

used to fit the approximate models are all located inside the extended box,

the metamodel is adequate for the exploitation in the current trust region.

And the move limit strategy such as MTRS and BTRS is responsible for

the exploration in the complete design space. To further improve the overall

optimization performance, the global intelligence selection (GIS) strategy is

developed to improve the exploration ability while not damaging the quality

of the approximations.

As shown in Algorithm 5, GIS is applied to find the points which are close to

the starting point and positioned outside of the extended box. The new DOE

with GIS can be described by Algorithm 6 and the points selected by GIS are

marked as triangles in Figure 5.2. These points are of global intelligence for

two reasons. First, as compared with the current starting point, their locations

are outside of the extended box. Second, they are selected from a set of the

nearest points to the current starting point. The number of points selected by

GIS (nGIS) is determined by the following equation:

nGIS = b(0.5 +
0.5

k
Kmax) ·Nplan − nextc (5.3.1)
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Algorithm 5: Global Intelligence Selection (GIS)

Function GIS(x0, k,Kmax, next, Qext, Nplan, Xall):
Input:

• x0: The starting point.
• k: The index of the current iteration.
• Kmax: The maximum number of iterations.
• next: The number of points located in the extended box.
• Qext: The extended box at kth iteration.
• Nplan: The default number of required sampling points.
• Xall: The database of all sampling points.

Output:
• nGIS : The number of GIS points.
• XGIS : The set of points selected by GIS.

for xi in Xall do
if xi /∈ Qext then

Disti = ‖x0 − xi‖2.

. Define the number of required GIS points

nGIS = b(0.5 + 0.5
k Kmax) ·Nplan − nextc.

. Choose nGIS points closest to x0 and outside of Qext

XGIS ⊆ RnGIS×d.
Return nGIS , XGIS

where k is the number of the current iteration; Kmax is the maximum number

of iterations; Nplan is the number of required sampling points by default;

next is the number of points located in the extended box, i.e., the points

selected by EBS; the symbol b·c means that nGIS will be rounded down during

the entire optimization process. From this definition, it can be seen that

whether GIS is activated is dependent on the number of points positioned

in the extended box (next). If there are lots of points in the extended box,

the current search subregion is usually small and the optimization process is

likely to focus on exploitation, i.e., searching a vicinity of the present starting

point. In this situation, GIS is not recommended to be employed because the

approximations with these points are adequate enough and thus adding points

outside of the extended box into fitting will ruin the approximations within the

trust region. On the other hand, when there are little points falling into the

extended box, the search subdomain usually has not been explored yet. In this

case, the less the number of points are located in the extended box, the more

the number of points are selected by GIS. Because the RBF metamodel is built

by interpolation, additional global intelligence points could refine the accuracy

of metamodel within the search subregion, resulting in efficiently moving the

trust region along the most promising direction. From Equation 5.3.1, it is

also worthwhile to note that the number of points selected by GIS will not be

more than the number of required sampling points (Nplan). Otherwise, the

quality of the approximations within the trust region can not be guaranteed.
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Algorithm 6: New design of experiments (DOE)

Function DOE(xk, k,Kmax,A
k,Bk,∆ext, Nplan, Xall):

Input:
• xk: Starting point in kth iteration.
• k: The index of the current iteration.
• Kmax: The maximum number of iterations
• Ak: Lower bounds of the current search subregion.
• Bk: Upper bounds of the current search subregion.
• ∆ext: The relative size of the extended box.
• Nplan: The default number of required sampling points.
• Xall: The database of all sampling points.

Output:
• nk: The number of points used for fitting metamodel.
• Xk: The set of fitting points in kth iteration.

if k = 0 then
. In the first iteration, only maxmin stochastic sampling (MSS, Algorithm

1) is used for DOE.

nk = Nplan

Xk = MSS(xk, Nplan,A
k,Bk)

else
. In next iterations, the extended box selection strategy (EBS, Algorithm

2), the global intelligence selection strategy (GIS, Algorithm 5) and the

economical sampling strategy (ESS, Algorithm 3) will be used for DOE.

next, Qext, Xext = EBS(xk, Xall,∆ext, Nplan,A
k,Bk)

nGIS , XGIS = GIS(xk, k,Kmax, next, Qext, Nplan, Xall)
nnew, Xnew = ESS(xk, next, Nplan,A

k,Bk)
nk = next + nGIS + nnew
Xk = Xext ∪XGIS ∪Xnew

Return nk, Xk

5.4 Early termination strategy (ETS)

Through intensive investigation of the optimization process of EIATRO,

there is a distinct drawback in termination efficiency. The only termination

criterion used in EIATRO is the size indicator (the first indicator) in MTRS.

As described in Section 3.4, let Sk represents the maximum ratio of the

dimension length between the present trust region and the entire design

space and ∆min is the user-specified minimum relative size of the trust

region, the optimization procedure will terminate if the current search

subregion is considered ‘Small’, i.e., Sk ≤ ∆min. This criterion is generally

practical for the robust optimization performance when ∆min is set to a very

small value as 1e − 5. However, it is not economical in terms of the required

number of function evaluations. Through comprehensive numerical results

obtained by EIATRO, the best solution of a problem is likely to be obtained

when the present search subdomain is relatively large. Therefore, for the

sake of efficiency, the early termination strategy (ETS) is developed to abort
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the optimization process earlier than usual if a really good solution has been

found and there seems no big margin for improvement on this solution.

In the current implementation, ETS will be activated if three conditions are

all satisfied. First, the obtained sub-optimal solution xk+1 in kth iteration

should be feasible because an infeasible solution is definitely not the global

optimum and indicates that the optimization process should continue to run.

Second, the variation of the objective function values of the last two sub-

optimal solutions defined by I = f(xk+1)− f(xk) should be positive and less

than a small value Imax (for example, 1e − 8). If this condition is satisfied,

the optimization process possibly converges to a solution so there will be little

room for reduction on the objective function value. Third, in order to avoid

premature convergence, the relative size of the current search subregion Sk

should be smaller than a proposed value of ∆min,2. From numerical tests,

∆min,2 = 0.01 is a suitable value for solving general optimization tasks.

5.5 Comparison results
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Table 5.1: Comparisons among IEMSa, RESMb, RESBc, RESBGd and RESBGEe

Prob.
SR (%) ENFEs

IEMSa RESMb RESBc RESBGd RESBGEe IEMSa RESMb RESBc RESBGd RESBGEe

G01 12 24 88 96 92 2564 1538 563 445 315
G03 92 96 100 100 100 1566 1507 1453 1241 1046
G04 100 100 100 100 100 162 179 257 262 148
G05 0 100 100 100 96 - 185 94 100 57
G06 100 100 100 100 100 90 64 63 65 40
G07 100 100 100 100 100 855 602 693 620 485
G08 40 44 24 28 28 369 254 440 374 285
G09 100 100 100 100 92 744 626 667 646 605
G10 12 12 28 80 72 7279 7886 3636 778 769
G11 40 100 100 100 100 431 122 104 106 76
G12 4 40 36 40 16 5499 350 353 334 537
G13 0 24 28 40 28 - 1561 1606 1054 1287
G14 100 100 100 100 84 792 762 853 1070 902
G15 8 92 92 80 92 2442 196 173 268 120
G16 100 100 100 100 100 178 157 165 202 152
G17 4 88 52 64 60 6184 662 1144 899 924
G18 60 52 68 52 72 1488 1326 1143 1259 698
G19 80 72 48 80 88 2171 2363 3692 2023 1646
G21 0 0 48 40 40 - - 739 952 851
G23 44 92 96 100 100 2038 285 293 294 207
G24 52 60 64 68 52 134 108 128 115 99

WBD 100 100 100 100 100 164 179 185 179 168
SPD 100 100 96 80 88 333 529 387 491 459
SRD 100 100 100 100 100 326 301 341 347 201

Average 56.17 74.83 77.83 81.87 79.17 1705.15 945.33 798.84 588.53 503.21

a IATRO–ESS–MTRS–SANS (ηeco = 50%, δg = 1, δf = 10)
b RBFI–ESS–SANS–MTRS (ηeco = 50%, δg = 1, δf = 10)
c RBFI–ESS–SANS–BTRS (ηeco = 50%, δg = 1, δf = 10, kRES = 5)
d RBFI–ESS–SANS–BTRS–GIS (ηeco = 50%, δg = 1, δf = 10, kRES = 5)
e RBFI–ESS–SANS–BTRS–GIS–ETS (ηeco = 50%, δg = 1, δf = 10, kRES = 5, Imax = 1e− 8,∆min,2 = 0.01)
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In order to investigate the efficacy of the aforementioned strategies in

improving the overall optimization performance, these strategies are

implemented in the optimization framework in sequence. For example, by

replacing the ILF metamodels by RBF interpolation models in

IATRO–ESS–MTRS–SANS (IEMS), a new method named as

RBFI–ESS–SANS–MTRS (RESM) is generated. And by replacing the

modified trust region strategy (MTRS) by the balanced trust region strategy

(BTRS) in RESM, the new method is called RBFI–ESS–SANS–BTRS

(RESB). With integration of the global intelligence selection strategy (GIS),

RESB becomes RESBG (RBFI–ESS–SANS–BTRS–GIS). And when ETS is

implemented into RESBG, the new method is called RESBGE. 26

benchmark problems are tested and the detailed optimization results are

given in Appendix C.3 to Appendix C.7. Since all methods can not solve

G02 and PVD with a satisfied success rate, the results about G02 and PVD

are not taken into consideration here to demonstrate much more clearly the

optimization performance. Table 5.1 compares IEMS, RESM, RESB,

RESBG and RESBGE in terms of the success rate (SR) values and the

efficient number of function evaluations (ENFEs) of the 24 benchmark

problems.

As can be observed from Table 5.1, it is distinct that the metamodel built

by the cubic RBF with a polynomial tail is superior to that built by ILF

in terms of the approximation quality. For almost all problems, RESM is

more likely than IEMS to find the true optima. The average SR value of

RESM is 74.83%, about 18 percentage points more than the results obtained

by IEMS (56.17%). For five problems such as G05, G12, G13, G15 and G17,

IEMS has an extremely low chance (≤ 8%) of obtaining the optimal solutions

while RESM can increase the success rate by about 10 times. And for G01,

G11 and G23, RESM almost doubles the probability of finding the optima as

compared to IEMS. Therefore, it can be concluded that the cubic RBF should

be considered the first choice to be used to build the metamodel.

Moreover, by comparing RESM and RESB, G01 and G21 are two typical cases

that can validate the superiority of BTRS over MTRS. The best, mean, worst,

and median of the optimal objective function values obtained by RESM on

G21 are 193.7878, 194.0552, 193.8408 and 193.8157 respectively, which are all

close to the true optimum (193.7869). None of the runs can find the global

optimum of G21 due to the shortage of MTRS in exploitation. But with

implementation of BTRS, about half of the runs of RESB can tackle G21. In

addition, G01 is a problem where RESM might be trapped into local optima

due to the wrong reduction of the search subregion in the initial iterations
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so the average success rate is only 24%. As BTRS enhances the exploration

ability, RESB nearly quadruples this rate to 88%. Thus, BTRS proves to be

more suitable than MTRS in solving CBO problems.

Furthermore, compared with RESB, RESBG shows distinct advantages in

solving G10 and G19 because of the implementation of GIS. For G10, RESBG

nearly trebles the SR value to 80% as compared to RESB. And the SR value

of G19 obtained by RESBG is about 2 times larger than the value obtained by

RESB. Meanwhile, GIS imposes positive effects on saving the computational

budget. The average ENFEs value of these 24 benchmark problems obtained

by RESBG is 588.53, which is only about 70% of the average ENFEs obtained

by RESB. Hence, GIS could not only improve the global searching ability but

also enhance the performance of convergency.

Finally, compared with RESBG, RESBGE is more efficient. The average SR

value of RESBGE is about 2 percentage points lower than the value obtained

by RESBG but with support of ETS, the average ENFEs value of this set

of problems decreases by approximately 14.5% to 503.21. In general, ETS

should be employed if the computational budget of the problem is severely

limited. But if the computational resource is sufficient enough or a reduction

of about 15% of the function evaluations does not make any sense, ETS is not

recommended to be applied as a result of a loss of robustness.

5.6 Summary

In this chapter, four strategies (the radial basis function interpolation

(RBFI), the balanced trust region strategy (BTRS), the global intelligence

selection strategy (GIS) and the early termination strategy (ETS)) are

developed to solve expensive constrained black-box (CBO) problems.

Specifically, RBFI is an implementation of the cubic form of the radial basis

function with a polynomial tail and others are first developed. Generally,

RBIF is far superior to the intrinsically linear approximation, so the average

SR value of RESM (RBFI–ESS–SANS–MTRS) reaches 74.83%, about 18

percentage points more than the value obtained by IEMS

(IATRO–ESS–MTRS–SANS). And the BTRS addresses the deficiencies of

MTRS in balancing exploration and exploitation. As a result, RESB shows

obvious advantages in solving G01 where the optimum is located on the

boundary of the design space and G21 where there are multiple sub-optimal

solutions around the global optimum. Furthermore, the global intelligence

selection (GIS) which chooses the points that are closest to the starting point
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Table 5.2: User parameters in RATRO with their descriptions and default
values

Parameter Description Value

x0 The initial trial solution. Random

Kmax The maximum number of iterations. 100

Nplan The number of required sampling points. d+ 5

∆0 The relative size of the initial trust region. 1.0

∆min The minimum relative size of the trust region. 1e− 5

∆ext The relative size of the extended box. 1.4

TOLcon The constraint tolerance. 1e− 6

ηeco

The economical factor used in ESS indicates in what
extent the points in the extended box should be
responsible for the approximations in the current search
subregion.

50%

[δg, δf ]
The normalization coefficients used in SANS. δg is used
for normalizing constraint functions and δf is used for
normalizing the objective function

[1.0, 10.0]

kRES

In the first kRES iterations, the subspace of a design
variable will only be shrunk when it is located on the
global bounds.

5

Imax
The tolerated variation in objective function values used
in ETS.

1e− 8

∆min,2 The tolerated relative size of the trust region used in ETS. 0.01

and outside of the current trust region into the fitting pool can not only

refine the approximations in the current search subregion but also help the

optimization process escape from the local optima. Therefore, RESBG

(RBFI–ESS–SANS–BTRS-GIS) is able to stably solve the 24 benchmark

problems (except G02 and PVD) with a success rate of 81.87% on average.

Last but not the least, RESBGE (RBFI–ESS–SANS–BTRS-GIS–ETS)

employs the early termination strategy (ETS) to reduce about 14.5% of the

function evaluations required to obtain the global optimum as compared to

RESBG. As the number of function evaluations is limited in solving

expensive CBO problems, RESBGE is considered the default method.

In conclusion, the sophisticated RBF-assisted and trust region based

optimization framework (RATRO) is presented in Algorithm 7 and the user

parameters involved in RATRO are listed in Table 5.2. Each strategy (RBFI,

ESS, SANS, BTRS, GIS or ETS) can be turned on or off for properly

addressing a specific problem. When all these strategies are activated, the

framework is exactly the RESBGE.
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Algorithm 7: Framework of RATRO
Input:

See Table 5.2.
Output:

xopt: The best point encountered through the optimization process.

for k in [0,Kmax] do
Step 1. Design of Experiments (DOE) . See Algorithm 6

nk, Xk = DOE(xk, k,Kmax,A
k,Bk,∆ext, Nplan, Xall)

Step 2. Black-box Evaluations . Calculate the true responses

Objective function evaluations: f(Xk) ⊆ Rnk .

Constraint function evaluations: gj(X
k) (j = 1, . . . ,m) ⊆ Rnk

Step 3. Self-adaptive Normalization . See Algorithm 4

f(x), gj(x) (j = 1, . . . ,m) =
SANS(δf , δg, f(Xk), gj(X

k) (j = 1, . . . ,m))

Step 4. Metamodel Building
. Build metamodel for the objective function and each constraint function

by RBF interpolation

Approximate objective function: f̃k(x).
Approximate constraint functions: g̃kj (x) (j = 1, . . . ,m).

Step 5. Solve the Approximate Subproblem
. Use SQP to solve the approximate optimization subproblem

xk+1 = SQP(f̃k(x), g̃kj (x) (j = 1, . . . ,m), Ak, Bk)

Step 6. Moving Trust Region Strategy
if Termination not satisfied then . ETS

. Update move limits by any trust region strategy, for example BTRS

(Section 5.2)

Qk+1 : [Ak+1,Bk+1]
k = k + 1 . Increment the iteration number

else
Traverse all the points.
Return xopt.
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Strategies for large-scale

optimization

In the previous chapter, RESBGE (RBFI–ESS–SANS–BTRS-GIS–ETS) is

able to solve the 24 out of the 26 benchmark problems with high efficiency

and robustness. The two exceptions are G02 and PVD. As stated in [90, 118,

157] and other references, G02 is a twenty-dimensional optimization problem

with a periodic and multimodal objective function, which makes it

impossible to be solved efficiently. Currently there are several state-of-the-art

metaheuristic algorithms ([87, 90, 106]) that can obtain the best solution of

G02 but the required number of function evaluations are usually of the order

of magnitude of 100000, which is impractical for real-world engineering

problems. Although in [151, 157] the reported function evaluations are just

tens of thousands, the proposed methods have to use finite difference method

to calculate the derivatives, which are usually unavailable for black-box

problems. Moreover, the multimodality is too difficult to model so that there

is no metamodel-based algorithm that has successfully solved this problem.

Thus, it is somewhat impossible to obtain the global optimum of G02 within

thousands of function evaluations. Considering that RESBGE have a 100%

chance of obtaining a feasible solution of G02, in which the objective

function value is usually just 50% larger than the known optimum, G02 can

be considered to be partially solved by RESBGE. In addition, although the

performance of RESBGE on PVD is poor, RESBGE can stably solve the

another mixed continuous/discrete variable problem – SRD. Since the thesis

aims at solving expensive CBO problems, how to address the mixed-variable

problems is viewed as a future task.

In this chapter, the RBF-assisted and trust region based optimization

framework (RATRO) is enhanced with fast computation strategy (FCS) and

successive refinement strategy (SRS) and the new framework is called

RATRLO (RBF-assisted and trust region based large-scale optimization

77



Chapter 6: RATRLO 78

framework). It aims at tackling large-scale CBO problems but also works

excellently in solving low-dimensional problems. In Section 6.1, a well-known

large-scale optimization problem – MOPTA08 is introduced, along with the

state of the art in solving this problem. Next, the limitations of RESBGE in

solving the MOPTA08 problem are discussed. And in Section 6.2, two

efficient computation approaches (the Numba compiler and parallel

computation) are demonstrated in details. Then, the successive refinement

strategy (SRS) for the sub-optimal solution is illustrated in Section 6.3. The

following two sections (Section 6.4 and Section 6.5) show the optimization

results of the new algorithm (RESBGEFS) in solving the MOPTA08

problem and the comparison results between RESBGEFS and other

state-of-the-art algorithms. In addition, the improvement of SRS in solving

low-dimensional benchmark problems are shown in Section 6.6. Finally,

Section 6.7 summarizes the advantages of the new optimization framework

and points out the remaining weaknesses in solving CBO problems.

6.1 A large-scale CBO problem – MOPTA08

The MOPTA08 benchmark problem proposed by Jones [119] is a substitute

for a high-dimensional real-world problem in the automotive industry. It

involves 124 decision variables and 68 inequality constraints and is

considered to be a large-scale problem in the area of expensive black-box

optimization as previous researches in this area mostly focused on dealing

with low-dimensional problems (the number of design variables are less than

15). The objective of this problem is to determine the values of the shape

variables which can minimize the mass of the vehicle subject to performance

constraints (e.g., crashworthiness, harshness, durability). Each simulation of

the real version of the MOPTA08 problem1 could take 1-3 days but the

simplified version provided by Jones which is based on the Kriging response

surfaces to the real automotive problem takes about 0.2 s in the current

experimental environment (Section 3.5.3). A feasible starting point with the

objective function value of 251.0706 is given by Jones [119] and the optimum

appears to have the objective value of 222.74. It is highly desirable to

achieve 80% of the potential reduction on the objective value to 228.0 within

1860 = 15 · d(124) function evaluations, which corresponds to approximately

one month of computational time. Moreover, it will be truly impressive if

this target can be achieved with just half of the function evaluations

(992 = 8 · 124) or the objective function value can be reduced to 225 within

1https://www.miguelanjos.com/jones-benchmark
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1860 function evaluations.

Various algorithms have been applied in [119] to solve MOPTA08, e.g., the

generalized reduced gradient method (using iSIGHT-FD), the SQP (Harwell

routine VF13), an evolution strategy, a local search algorithm with search

directions from local surface approximations (LS-OPT), and COBYLA [92],

but their performance were frustrating. The progress on the objective was

either extremely slow or fast enough but no feasible solutions can be found.

Regis’s ConstrLMSRBF [114] was the best algorithm before 2011 compared

with the Mesh Adaptive Direct Search (MADS) algorithm [158, 159] that

employs a Kriging-based surrogate model, the modified LMSRBF algorithm

[160], three well-known commercial-grade algorithms provided by Matlab

(Fmincon, pattern search and genetic algorithm) and other approaches ([60],

[161], [162]) presented at the 20th International Symposium on

Mathematical Programming (ISMP 2009) conference. As stated by Regis

[114], ConstrLMSRBF was the first optimization algorithm that can

successfully handle a large-scale, computation-intensive black-box

optimization problem. Later, Regis [115] developed COBRA, which was able

to seek a feasible solution with the objective value lower than 228 within

1300 function evaluations. And recently, Bagheri [116] proposed the

self-adjusting COBRA (SACOBRA), which can improve the already good

mean best feasible objective value of 227.3 and 226.4 obtained by COBRA

[115] and TRICEPS [163] after 1000 function evaluations respectively, to

223.3. So far, few surrogate-based algorithms have the ability to solve

high-dimensional, highly-constrained and computationally expensive

black-box optimization problems. Besides of the difficulty of modelling the

high-dimensional responses, the computational overhead of the pure

optimization process is also a big problem. As reported in [114], the average

running time (excluding time spent on the function evaluations) of the

ConstrLMSRBF on the MOPTA08 problem after 2000 function evaluations

is about 9 hours and it increases rapidly to about 40 hours after 4000

function evaluations. This kind of computational cost of the optimization

procedure is more or less unacceptable for developing and testing. Moreover,

if the actual simulation time of the problem is not so much expensive, the

time consumed on the optimization process will be unbearable.

In conclusion, there are three main issues in the area of metamodel-based

optimization for solving large-scale, highly-constrained and computationally

expensive black-box problems. First of all, besides of the massive

computational overhead used by the actual simulations, the DOE process,

metamodel building process and the searching process are time-consuming as
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well. The total execution time of the optimization process is expected to

increase exponentially with the number of design variables, which hinders

the development in the area of metamodel-based optimization for solving

large-scale CBO problems. Second, the metamodel usually can not provide

good approximations of the true response due to the large design space. As a

result, the solution of the approximate optimization problem (whether the

penalty-based approach is used or not) is far away from the solution of the

original optimization problem, resulting an unreliable optimization process.

Last but not the least, because lots of constraints are involved, it is hard to

maintain the constraint-satisfying convergence, i.e., the feasibility of

solutions during the optimization process is difficult to be guaranteed.

6.2 Fast computation strategy (FCS)

6.2.1 Numba: Just in time Compiling

As described in Section 3.5.2, all proposed algorithms are developed in the

Python environment for its simplicity, flexibility and maintainability.

However, the performance of Python is typically much slower than C,

Fortran or other comparable compiled languages because it is a dynamically

typed language which requires an interpreter at runtime. Thus, if Python

functions can run at a speed of Fortran functions, the issue of the massive

computation time of the optimization process can be tackled. At present,

different approaches have been developed to address this performance needs

such as developing a just-in-time (JIT) compiler or developing a faster

interpreter [164]. In the current implementation, the Numba compiler [147]

which is an open-source, Numpy-aware compiler to speed up the execution

time of the Python functions is applied. It uses the LLVM compiler

infrastructure to JIT compile Python syntax to machine code through its

collection of decorators.

An example of how to use Numba decorators to accelerate Python functions

is shown in Listing 1. This function (vec jacobin) is used to obtain the first

order partial derivatives of the approximate functions

(f(x), gj(x) (j = 1, . . . ,m)) at a point. The compiler directive @njit, which is

attached to the function header, will instruct Numba to operate in nopython

mode that forces the decorated function to run at native machine code

speed. Besides, three common options can be passed to the compiler for

further boosting the performance. The cache=True option instructs the

compiler to write the compiled function into a file-based cache to avoid
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import numpy as np

from numba import njit

@njit(cache=True,nogil=True,parallel=True)

def vec_jacobin(x,xs,d,n,eps,lamdas,cs):

ms = lamdas.shape[0]

jac = np.zeros((ms,d))

jac += cs

norm = np.zeros(n,)

for ik in range (n):

norm[ik] = np.linalg.norm(x-xs[ik,:])

for k in prange (ms):

for j in prange (d):

for i in prange (n):

jac[k,j] +=

lamdas[k,i]*eps**3*3*norm[i]*(x[j]-xs[i,j])↪→

return jac

Listing 1: Numba jitted function to obtain the partial derivatives of the
approximate functions at a point

Table 6.1: Times and speedups of various implementations of vec jacobin on
MOPTA08 (d = 124,m = 68)

Mode Time (s) Speedup

Numpy 1.9457 x1
@njit 1.1001e− 3 x1768

@njit(cache=True) 1.0855e− 3 x1792
@njit(cache=True, nogil=True) 1.0787e− 3 x1804

@njit(cache=True, nogil=True, parallel =True) 1.3892e− 3 x1401

compiling the function again. The nogil=True option leads Numba to release

Python’s global interpreter lock (GIL) that allows the optimized machine

code to run in parallel to take full advantage of multi-core machines. The

parallel=True option enables automatic parallelizing for those operations

known to have parallel semantics in that function, for example, the explicit

loops and array reductions.

For illustrating the excellent performance of Numba compiler, the

computational cost of vec jacobin with different Numba options on the

MOPTA08 problem is examined and analyzed. As summarized in Table 6.1,

the performance of the basis Numpy version function is compared with the

Numba version function with different options. The times recorded in Table

6.1 are the average execution time of each experiment over one hundred runs

and the computed speedups are relative to the execution time of the pure

Numpy implementation.
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It can be seen from Table 6.1 that the pure Numpy implementation takes

about 1.9457 s each time to calculate the first order partial derivatives of the

approximate functions of the MOPTA08 problem at the iterate in the SQP

procedure. If the approximate problem happens to have no feasible solutions,

usually maximum calls (1000) of this function (vec jacobin) are required for

the SQP routine to terminate and output the solution. In this case, one

iteration will take over 30 minutes. This kind of computation time will lead

to an unbearable development cycle of new strategies for solving large-scale

CBO problems. But the Numba compiler provides excellent support for

efficiently operating large arrays. For example, annotating the function

vec jacobin with the decorator @njit shows an impressive speedup of

×1768. This result reflects the huge difference in performance that can be

obtained from an interpreted code compared to a native machine code.

Numba is able to support high-performance computation by amazingly

reducing function running time from seconds to milliseconds. Moreover, the

extra option like cache=True or nogil=True can bring a little speedup

(< 10%) on the pure nopython mode. Interestingly, using parallel=True

option actually degrades the performance by 25% approximately, compared

with the pure Numba implementation (@njit). One reason is that the

overhead incurred by attempting to parallelize the operations in function

vec jacobin is significant compared to its actual running time. The input

scale for this function is not big enough to show the strength of parallelism,

considering the benchmark function used in [147] that coped with

multiplication on 1000000 × 10 matrixes. Hence, the parallel=True option is

not recommended to be passed to the Numba compiler for solving the

MOPTA08 problem but if the studied problem has more than thousands of

design variables and constraints, this Numba option should be taken into

consideration. In conclusion, the function vec jacobin with the decorator

@njit (cache=True,nogil=True) shows the best performance, yielding a

incomprehensible speedup of ×1804 compared to the pure Numpy version.

Moreover, other functions conforming to the specifications of Numba can

also be accelerated with the same decorator. Finally, the computational

overhead of the optimization process could be decreased a lot.

6.2.2 Parallel computation

If the simulation itself does not support parallelization, then a parallel

computation approach can be used for evaluating the actual objective and

constraint functions. As shown in Listing 2, this function (DOE Basic)

distributes the input data (new generated points) across processes by using
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import numpy as np

from multiprocessing import Pool

from itertools import repeat

def DOE_Basic(x1,d,m,nplan,ak,bk,Probname,flag_multiprocess):

xk = Maxmin_stochastic_sampling(ak,bk,d,nplan-1,x1)

nk = xk.shape[0]

fk = np.zeros([nk,m+1])

if flag_multiprocess == True:

pool = Pool()

fk = np.asarray(pool.starmap(Probname,zip(repeat(d,nk),

repeat(m,nk), xk)))

pool.close()

else:

for i in range (nk):

fk[i,]=Probname(d,m,xk[i,:])

return xk,fk

Listing 2: Parallel computation of function evaluations

the multiprocessing module [165] provided by the Python standard library.

Then, the function evaluation process could tak full advantage of multicore

CPU architectures. For the MOPTA08 problem, each function evaluation

will cost about 0.2 s and 129 (d + 5) new points usually take about 25.8 s to

be evaluated one by one. But with parallel execution by 8-core CPU, 129

(d + 5) new points only require about 5 seconds to obtain the corresponding

objective and constraint values. And for real-world CBO problems, one

simulation might take hours and this parallel computation technique built in

the optimization programme could reduce lots of computational time.

6.2.3 Summary of the fast computation strategy

Based on RESBGE, the new method with implementation of FCS is named

as RESBGEF (RBFI–EBS–SANS–BTRS–GIS–ETC–FCS). Through the

performance analysis tool pstats [141], the execution time of subroutines

involved in one iteration of RESBGE and RESBGEF in solving the

MOPTA08 problem is given in Table 6.2. Generally, there are four critical

procedures in terms of the computational cost: the SQP (sequential

quadratic programming) procedure for solving the approximate subproblem,

the function evaluations procedure to obtain the response values of the

MOPTA08 problem, the DOE (design of experiments) routine to generate

new points and the metamodel building process. Among them, The SQP

process is the most time-consuming procedure, which is dependent on the

complexity of the approximate subproblem. In the best case, only several

iterations are required in SQP to output a solution of the problem but in the
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Table 6.2: Time performance of one iteration in RESBGE and RESBGEF in
solving the MOPTA08 problem

Description
Time (s)

RESBGE RESBGEF

SQP 462.340 2.267
Function evaluations 24.030 5.024

DOE 5.313 0.112
Metamodel building process 1.500 1.499

Total 493.894 10.002

worst case, there might be no solution of the problem due to the

approximation error, resulting a long time search until the maximum number

of iterations (1000 by default) is achieved. And in the SQP process, the most

time-consuming part is to call function vec jacobin (Listing 1) to obtain

the partial derivatives of the functions at the iterates. As shown in Table 6.1,

one call of function vec jacobin of the Numpy version takes about 2

seconds while the Numba version only takes about milliseconds. As a result,

the average time of the SQP process (considering there are 300 iterations) in

RESBGEF only requires about 2 seconds, approximately 1/200 of the time

in RESBGE. Moreover, FCS could also reduce the runtime of the function

evaluation process and the DOE process by about five to ten times. And

finally, the total computation time of one iteration of the optimization

process could decrease from 8 minutes to about 10 seconds by FCS. Only in

this way, the framework for solving large-scale optimization problems could

be further developed.

6.3 Successive refinement strategy (SRS) for the

sub-optimal solution

As described in Section 6.1, the first obstacle in solving large-scale CBO

problem is the high computational overhead of the optimization process.

This issue has been settled by employing the fast computation strategy

(FCS). Then the remaining difficulty in solving the high-dimensional,

severely-constrained optimization problem like MOPTA08 is to ensure the

metamodel as accurate as possible and to maintain the feasibility through

the optimization process. The successive refinement strategy (SRS) is

developed to tackle this issue by refining the quality of the sub-optimal

solution in each iteration.
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As shown in Algorithm 8, SRS is an inner iterative procedure in the global

optimization process to obtain a refined solution of the approximate

optimization subproblem. The iteration number in SRS is denoted as t and

the global iteration number is labelled as k. Given the starting point xk,0 in

the first iteration in SRS (t = 0), the solution (xk,1) obtained by the SQP

solver can be considered an unrefined solution of the original approximate

subproblem. But in the next iteration, the starting point in the previous

iteration xk,t will be added into the fitting points Xk,t, leading to refined

metamodels. Then, the solution xk,t+1 of the former approximate

optimization subproblem serves as the starting point for the SQP procedure

to solve the new updated approximate subproblem. This procedure is

repeated until certain termination criteria are satisfied. And the final

solution in SRS xk,t+1 will be considered the solution in the kth iteration of

the global optimization process. In general, SRS can be seen as a simplified

metamodel-based optimization framework without the moving trust region

as compared to RESBGE. Thus, SRS is able to generate a better

sub-optimal solution through successive refinement than the solution directly

obtained through an unrefined approximate subproblem.

By setting various termination criteria, SRS can have flexible optimization

performance. Five main termination criteria are illustrated in the following

paragraph and the default parameter settings are summarized in Table 6.3.

First, SRS will terminate if the maximum number of iterations tmax is reached.

It is advised to be used in any case for avoiding going into an infinite loop. By

default, the value of tmax is d + 1 where d is the number of design variables

because it is usually sufficient enough for SRS to obtain a refined solution

through d+ 1 iterations.

Second, SRS should abort smartly if there is no need for refinement at all.

This can be judged by the variation of the objective function values of the last

two iteration points in SRS, defined by

ISRS = |f(xk,t+1)− f(xk,t)| (6.3.1)

If ISRS <= Imax,2 where Imax,2 is a small positive value such as 1e− 6, there

is little room for refining the solution so the procedure has to stop earlier than

normal. In order to make full use of computational resources, this termination

criterion is also recommended to be used for general optimization tasks.

Third, SRS could break up earlier if the solution has been well refined, i.e.,

the solution obtained by the SQP solver is feasible. In this case, this solution
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Algorithm 8: Successive refinement strategy (SRS)

Function SRS(xk,0, k,Xk,0,f(Xk,0), g(Xk,0),Ak,Bk, tmax):
Input:

• xk,0: The starting point in kth iteration in the global optimization process, i.e.,
the initial point in the first iteration in SRS procedure.

• k: The index of the current iteration.
• Xk,0: The fitting points in the current iteration.
• f(Xk,0), g(Xk,0): The corresponding objective and constraint values of the

fitting points.
• Ak,Bk: The lower and upper bounds of the search subregion.
• tmax: The maximum number of iterations in SRS. The default is d+ 1.

Output:
• xk+1: The refined solution of the approximate subproblem.

for t in [0, tmax] do
. Build/Update metamodels using the RBF interpolation

f̃k,t(x), g̃k,tj (x) (j = 1, . . . ,m) = RBF(Xk,t,f(Xk,t), g(Xk,t))
. Use SQP to solve the approximate optimization subproblem

xk,t+1 = SQP(f̃k,t(x), g̃k,tj (x) (j = 1, . . . ,m),xk,t,Ak,Bk)

if Termination criteria satisfied then
break

else
. Update the pool of fitting points

Xk,t+1 = Xk,t ∪ xk,t
f(Xk,t+1) = f(Xk,t) ∪ f(xk,t)
g(Xk,t+1) = g(Xk,t) ∪ g(xk,t)
t = t+ 1 . Increment the iteration number t

. Output the refined solution

xk+1 = xk,t+1

Return xk+1

xk,t+1 can be considered a good sub-optimal solution in the kth iteration.

Usually, this termination criterion results in a more economical optimization

process in terms of function evaluations and is suggested to be applied as well.

Fourth, if the total number of function evaluations is limited, SRS is certain

to come to an end when the maximum number of function evaluations

(NFEsmax) is achieved. Take the MOPTA08 problem as an example,

Bagheri [116] conducted numerical experiments in solving this case within

1000 function evaluations. For making clear comparisons between Bagheri’s

SACOBRA and the optimization method with SRS, this limitation should be

considered in the optimization process. Buf if the computational budget of

an optimization problem is adequate, this termination criterion will not be

triggered.

The fifth termination criterion is used to control whether the SRS should be

activated. For a problem with severely limited computational budget,

refining the quality of the solutions in the first several iterations is more or
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Table 6.3: Five termination criteria used in the successive refinement strategy
(SRS) for solving the MOPTA08 problem

Parameter Description Value

tmax The maximum number of iterations in SRS. d+ 1

Imax,2

If the variation of the objective function values of the last
two iteration points in SRS is smaller than Imax,2, SRS will
terminate.

1e− 6

SRSfeasible SRS will be stopped if the iteration point xk,t is feasible. True

NFEsmax
SRS will halt if the maximum number of function
evaluations (NFEsmax) is achieved.

1000

ηSRS
SRS will be disabled in the first ηSRS ·NFEsmax function
evaluations

0.25

Table 6.4: Specific parameters and their values in RESBGEFS for solving the
MOPTA08 problem

Parameter Description Value

x0 The initial point given by Jones [119]. f(x0) = 251.0706

Kmax The maximum number of iterations. 30

∆0 The relative size of the initial trust region. 0.1

TOLcon The constraint tolerance. 1e− 4

NFEsmax

The optimization process will terminate if
the maximum number of function evaluations
(NFEsmax) is achieved.

1000

less unworthy because they are usually far away from the true optimum.

Thus, the successive refinement procedure is suggested to be employed after

several iterations or after a number of function evaluations. Specifically, if

the maximum number of function evaluations NFEsmax has been set, SRS

will not be activated within the first quartile of the function evaluations for

better efficiency.

6.4 RESBGEFS on the MOPTA08 problem

Based on RESBGEF, the new method with the successive refinement

strategy is called RESBGEFS

(RBFI–EBS–SANS–BTRS–GIS–ETC–FCS–SRS). Since Jones [119] provided

a feasible point of the MOPTA08 problem with the objective function value

of 251.0706 and the computational budget are severely limited, an
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Figure 6.1: A typical progress curve of RESBGEFS and RESBGEF on the
MOPTA08 problem

optimization algorithm should focus on finding a local optimum around this

feasible solution rather than searching the global space. For the purpose of

carrying out the local exploitation, the relative size of the initial search

subregion in RESBGEFS is suggested to be set as ∆0 = 0.1, i.e., only one

tenth of the entire design space will be explored in the first iteration. In

addition, the optimization process is expected to be terminated after 1000

function evaluations as proposed in [119]. But because in RESBGEFS, the

number of new sampling points in each iteration is flexible (See Algorithm

6), RESBGEFS might not terminate exactly at 1000 function evaluations.

And for the reason that the points generated by maxmin stochastic sampling

(See Algorithm 1) are usually not feasible, RESBGEFS should stop before

this sampling process if the number of new required points plus the number

of previous sampled points will exceed 1000. Moreover, as described in [115,

116, 119], the MOPTA08 problem is so highly constrained that finding a

totally feasible solution (constraint values are all smaller than 0) is difficult,

1e − 4 would be a reasonable value of the constraint tolerance in this case.

Table 6.4 summarizes the specific parameter values used for solving the

MOPTA08 problem and other parameters and their values are kept the same

as shown in Table 5.2 and Table 6.3.

Figure 6.1 compares the typical progress curve of RESBGEFS and RESBGEF

on the MOPTA08 problem under the same parameter settings except the

maximum number of function evaluations NFEsmax. Since RESBGEF can

not optimize the MOPTA08 problem well, NFEsmax is set to be 1860 to

see if RESBGEF can obtain a solution after more function evaluations. The

blue dashed line indicates the optimization trajectory of an algorithm, where
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Figure 6.2: A trajectory of solutions obtained by the SQP solver in
RESBGEFS in solving the MOPTA08 problem

each point is a solution of the approximate sub-problem in the corresponding

iteration. The points which are not located on this line are the sampling points

in the entire optimization process and each point represents a design. A design

is marked as a red point if there are more than five constraints that are violated

and if it is a feasible design, it will be marked as a green star. Otherwise,

it is denoted as a yellow triangle. The horizontal light grey line means an

objective function value of 228, which is considered a good feasible objective

function value for the algorithm to aim for. It is clear from Figure 6.1 that

the MOPTA08 problem is so severely-constrained that no feasible solutions

could be found by RESBGEF within 1860 function evaluations although the

objective function values of iteration points drop quickly. As pointed out

in [115, 119], a great deal of algorithms can not maintain feasibility through

iterations and they take a long time to resolve constraints like RESBGEF. But

with SRS, four feasible iteration points are found after successive refinements,

which are marked as green stars. The solution in the last iteration (NFEs =

999) is infeasible because the refinement procedure is ended due to the fact

that the maximum number of function evaluations is achieved. It is extremely

impressive as about 90% of the potential reduction on the objective function

value to 225 can be achieved by RESBGEFS within 1000 function evaluations.

In order to further illustrate the performance of SRS, the corresponding

trajectory of points obtained by the SQP solver in the entire optimization

process (Figure 6.1a) is given in Figure 6.2a and the more specific view of the

solutions in SRS in the second iteration is shown in Figure 6.2b. As can be

seen from Figure 6.2b, there are three stages in SRS. The initial solution x1,1

of the approximate subproblem in the SRS is severely infeasible (the number
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of violated constraints is more than 5) with a quite small objective function

value. So in the first several iterations in SRS, the obtained solution moves

to the feasible region quickly with an increase of the objective function value.

Later, as the updated approximations within the trust region become more

and more adequate, the obtained solutions in SRS are less infeasible. There

is a steady decrease of the objective function value because the solution is

moving to the optimum of the approximate subproblem in the current search

subregion. In the last stage of SRS, the refined solutions are very close to the

optimum, leading to a stable trajectory of the corresponding objective

function values. But because the MOPTA08 problem is a severely

constrained and high-dimensional problem, the constructed RBF models are

too difficult to become as accurate as the original functions. As a result, it

still takes a number of iterations in the final stage of SRS to obtain a feasible

solution of the MOPTA08 problem. In conclusion, through the successive

refinement strategy, the approximations in the current search subregion

become more and more accurate and the objective function value of the

solution of the approximate subproblem increases at first, then decreases and

finally remains nearly unchanged until a feasible solution is found.

6.5 Comparisons between RESBGEFS and other

state-of-the-art algorithms in solving the

MOPTA08 problem

To further verify the performance of SRS in solving the MOPTA08 problem,

10 independent runs of RESBGEFS are carried out with the same given

starting point. Figure 6.3 shows the median objective value of the

sub-optimal solution in kth iteration versus the median NFEs at kth iteration

in ten trials. It can be seen from this figure that the last 4 iteration points

are all feasible, which proves the robustness of SRS in improving the quality

of the solution. In addition, it can be concluded that within 1000 function

evaluations, RESBGEFS is able to obtain a refined feasible solution with the

median objective function value of 225.0, which meets the desired target

proposed by Jones [119].

Compared with other state-of-the-art algorithms such as ConstrLMSRBF

[114], COBRA [115], TRB[166] and SACOBRA [116], RESBGEFS is very

competitive in optimizing the MOPTA08 problem from the results

summarized in Table 6.5. More specifically, RESBGEFS is just a little

inferior to SACOBRA but is far superior to other algorithms in solving the
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Figure 6.3: The convergence graph of RESBGEFS in solving the MOPTA08
problem: the median objective value of the sub-optimal solution in kth
iteration versus the median NFEs at kth iteration in 10 trials.

Table 6.5: Comparing different algorithms on optimizing the MOPTA08
problem within 1000 function evaluations

Algorithm Best Worst Mean Median

ConstrLMSRBF [114] > 228 N.A. N.A. N.A.
COBRA [115] 226.3 229.5 227.3 227.0

TRB[166] 225.5 227.4 226.4 226.2
SACOBRA [116] 223.0 223.8 223.3 223.3

RESBGEFS 224.5171 225.8582 224.9682 224.9683

MOPTA08 problem. SACOBRA works excellently in solving the MOPTA08

problem as it achieves 95% of the potential reduction on the objective

function value to 223.0, which is five percentage points more than the result

obtained by RESBGEFS. But its overall performance in solving constrained

optimization problems is not as good as RESBGEFS, which will be discussed

later. Besides, the average computational time of RESBGEFS on the

MOPTA08 problem after 1000 function evaluations is just about 30 minutes,

which is a small fraction of the time required by ConstrLMSRBF. Although

the computational time of other algorithms on this problem was not reported

in their papers, there is a reason to believe that RESBGEFS is more suitable

for solving large-scale optimization problems due to the Numba compiler. To

sum up, RESBGEFS shows competitive advantages in solving the

MOPTA08 problem with a limited number of function evaluations. In other

words, RESBGEFS proves to be a practical method in solving
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severely-constrained and high-dimensional CBO problems even if the

computational resources are limited. Specifically, the Numba compiler

remarkably improves the computation speed and reduces the development

time of new strategies. Furthermore, the successive refinement strategy

(SRS) is the key to obtaining a feasible solution of the high-dimensional

CBO problem with high efficiency and robustness. With further in-depth

research on when to apply and when to terminate this procedure in the

future, RESBGEFS will definitely have better performance in solving the

MOPTA08 problem and other high-dimensional problems.

6.6 RESBGEFS on low-dimensional constrained

benchmark problems

6.6.1 Optimization results of RESBGEFS on 26 benchmark

problems

Although the successive refinement strategy (SRS) is originally developed to

solve high-dimensional CBO problems like MOPTA08 to refine the sub-optimal

solution, it works excellently in solving low-dimensional CBO problems as

well. Table 6.6 shows the statistical results of the optimal objective function

values obtained by RESBGEFS (RBFI–EBS–SANS–BTRS–GIS–ETS–FCS–

SRS) on 26 low-dimensional benchmark problems and Table 6.7 gives the

corresponding convergence statistics. In all the numerical experiments, SRS

works in the default mode as described in Section 6.3 and the values of other

user parameters are kept the same as listed in Table 5.2.

Similar to other methods proposed earlier, G02 and PVD are two most difficult

problems to RESBGEFS. Although SRS does not improve the performance

in optimizing PVD (a mixed-variables optimization problem), it alleviates

the difficulty in solving G02 a lot. The best objective function value of G02

obtained by RESBGEFS is −0.7931, which is quite close to the known global

optimum −0.8036 while this value obtained by other methods (for example,

RESBGE and RESBGE) without applying SRS are larger than −0.6020. This

is a strong evidence that SRS works well especially for complex problems as

G02 is a multi-modal and twenty-dimensional problem. This problem needs

further study but to the best of the author’s knowledge, RESBGEFS is the

among the best metamodel-based algorithm in optimizing this problem.
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Table 6.6: Statistical results of the optimal objective function values obtained
by RESBGEFS on 26 benchmark problems

Prob. Target Best Worst Mean Median Std.

G01 -15.0000 -15.0000 -13.8281 -14.9531 -15.0000 2.2964e-01
G02 -0.8036 -0.7931 -0.1769 -0.4597 -0.5223 2.0145e-01
G03 -1.0005 -1.0005 -1.0005 -1.0005 -1.0005 1.3482e-06
G04 -30665.5387 -30665.5394 -30665.5387 -30665.5387 -30665.5387 1.7935e-04
G05 5126.4981 5126.4981 5126.4981 5126.4981 5126.4981 2.0614e-06
G06 -6961.8139 -6961.8139 -6961.8139 -6961.8139 -6961.8139 1.2526e-05
G07 24.3062 24.3062 24.3062 24.3062 24.3062 1.4092e-06
G08 -0.0958 -0.0958 -0.0000 -0.0518 -0.0291 3.5587e-02
G09 680.6301 680.6301 680.6305 680.6301 680.6301 1.3229e-04
G10 7049.2480 7049.2480 7098.4572 7051.2164 7049.2480 9.6430e+00
G11 0.7500 0.7500 0.7500 0.7500 0.7500 2.5893e-07
G12 -1.0000 -1.0000 -0.7649 -0.9417 -0.9694 7.0086e-02
G13 0.0539 0.0539 1.0000 0.3368 0.4389 3.0424e-01
G14 -47.7611 -47.7611 -47.7603 -47.7611 -47.7611 1.6014e-04
G15 961.7152 961.7152 961.7152 961.7152 961.7152 2.6580e-07
G16 -1.9052 -1.9052 -1.9017 -1.9048 -1.9052 1.0925e-03
G17 8876.9807 8853.5401 8929.5707 8878.3353 8868.8727 2.6931e+01
G18 -0.8660 -0.8660 -0.5000 -0.7400 -0.8660 1.5349e-01
G19 32.6556 32.6556 32.6556 32.6556 32.6556 7.3112e-07
G21 193.7869 193.7861 193.7879 193.7870 193.7870 3.1476e-04
G23 -400.0000 -400.0002 -400.0000 -400.0000 -400.0000 4.2075e-05
G24 -5.5080 -5.5080 -4.0537 -4.9459 -5.5080 6.8258e-01

WBD 1.7249 1.7249 1.7249 1.7249 1.7249 9.8695e-12
SPD 0.0127 0.0127 0.0181 0.0133 0.0127 1.6501e-03
PVD 6059.7143 6059.7143 6431.1571 6178.2636 6131.6372 9.5270e+01
SRD 2994.4710 2994.4702 2994.4711 2994.4708 2994.4710 2.9666e-04

Table 6.7: Convergence statistics of RESBGEFS on 26 benchmark problems

Prob. ANFEs AREs TE FR (%) SR (%) ENFEs EAREs

G01 300 209 0.70 100 96 313 209
G02 1537 1232 0.80 100 0 - 1232
G03 470 413 0.88 100 100 470 413
G04 93 28 0.31 100 100 93 28
G05 74 43 0.59 100 100 74 43
G06 44 24 0.54 100 100 44 24
G07 334 330 0.99 100 100 334 330
G08 84 60 0.72 100 24 350 60
G09 293 291 1.00 100 88 332 291
G10 223 194 0.87 100 96 232 194
G11 105 59 0.56 100 100 105 59
G12 86 58 0.68 100 24 357 58
G13 209 166 0.79 100 44 475 166
G14 740 711 0.96 100 88 841 711
G15 101 62 0.62 92 92 120 68
G16 80 41 0.51 100 88 91 41
G17 446 333 0.75 100 68 656 333
G18 188 156 0.83 100 52 361 156
G19 1139 1062 0.93 100 100 1139 1062
G21 319 250 0.78 100 48 664 250
G23 98 53 0.55 100 100 98 53
G24 56 23 0.41 100 56 100 23

WBD 120 99 0.83 100 100 120 99
SPD 256 223 0.87 100 88 291 223
PVD 382 78 0.20 100 4 9556 78
SRD 121 61 0.50 100 100 121 61
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6.6.2 Comparisons between RESBGEFS and RESBGE on 24

benchmark problems

To further illustrate the advantages of SRS in solving constrained CBO

problems, comparisons between RESBGEFS and RESBGE on 24 benchmark

problems (except G02 and PVD) are made as shown in Table 6.8. Because

these problems have already been stably solved by RESBGE, SRS can not

bring extremely distinct improvement on the SR values of these problems.

The average SR value of RESBGEFS is 81.33%, about 2 percentage points

more than that obtained by RESBGE. But the required number of function

evaluations for each problem is decreased dramatically due to the application

of SRS. On average, the ENFEs of RESBGEFS is 324.19, which is just

64.42% of the ENFEs obtained by RESBGE (503.21). In conclusion, SRS

could not only improve the performance in optimizing large-scale CBO

problems but also reduce the required NFEs in solving low-dimensional CBO

problems remarkably.

Table 6.8: Comparisons between RESBGEFSa and RESBGEb

Prob.
SR (%) ENFEs EAREs

RESBGEFSa RESBGEb RESBGEFSa RESBGEb RESBGEFSa RESBGEb

G01 96 92 313 315 209 177
G03 100 100 470 1046 413 1012
G04 100 100 93 148 28 62
G05 100 96 74 57 43 43
G06 100 100 44 40 24 23
G07 100 100 334 485 330 475
G08 24 28 350 285 60 54
G09 88 92 332 605 291 553
G10 96 72 232 769 194 463
G11 100 100 105 76 59 51
G12 24 16 357 537 58 68
G13 44 28 475 1287 166 333
G14 88 84 841 902 711 731
G15 92 92 120 120 68 97
G16 88 100 91 152 41 121
G17 68 60 656 924 333 523
G18 52 72 361 698 156 438
G19 100 88 1139 1646 1062 1419
G21 48 40 664 851 250 285
G23 100 100 98 207 53 138
G24 56 52 100 99 23 30

WBD 100 100 120 168 99 154
SPD 88 88 291 459 223 391
SRD 100 100 121 201 61 145

Average 81.33 79.17 324.19 503.21 206.54 324.31

a RBFI–ESS–SANS–BTRS–GIS–ETS–SRS (ηeco = 50%, δg = 1, δf = 10, kRES = 5, Imax =
1e− 8,∆min,2 = 0.01, tmax = D + 1, Imax,2 = 1e− 6)

b RBFI–ESS–SANS–BTRS–GIS–ETS (ηeco = 50%, δg = 1, δf = 10, kRES = 5, Imax = 1e −
8,∆min,2 = 0.01)
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6.6.3 Comparisons between RESBGEFS and various

metaheuristic algorithms on 24 benchmark problems

In Section 3.6.5, IATRO – the first proposed algorithm in this thesis is

compared with various metaheuristic algorithms which conduct the

optimization process by computing values of the functions directly. As

RESBGEFS has experienced lots of significant developments as compared to

the IATRO and is the final proposed algorithm in this thesis, it is necessary

to compare RESBGEFS with these direct methods again, as well as IATRO

to see how much difference has been made.

As shown in Table 6.9, the ENFEs values of RESBGEFS on 24 benchmark

problems are compared with the results obtained by others. Since the smallest

ENFEs value among all the results is marked in bold face, it is quite clear that

RESBGEFS outperforms other algorithms a lot on 23 out of the 24 problems

except on G12. But as described in Section 3.6.5, the results of NSES [87]

in Table 6.9 are the number of function evaluations when the optimization

process finds a feasible solution of which the objective function value is within

1e − 4 from the best-known optimum. They are not the true ENFEs values

when the optimization process actually converges without any prior knowledge

of the known optimum like what RESBGEFS does. Thus, the fact that the

‘ENFEs’ of NSES on G12 is smaller than the ENFEs value of RESBGEFS can

just indicate that NSES is competitive in solving G12 but does not mean that

NSES is superior to RESBGEFS in tackling this problem.

Nevertheless, from the average ENFEs value (AENFEs), the advantages of

RESBGEFS in solving these 24 benchmark problems are more distinct.

RESBGEFS, rank-iMDDE and LCA are three algorithms that are able to

solve all these problems but the AENFEs of RESBGEFS is only 324, about

1/162 and 1/933 of the value obtained by rank-iMDDE and LCA

respectively. COPSO can not solve G21 and G23 and the AENFEs value of

the 21 problems is 2260 times larger than the result of RESBGEFS. The

optimization performance of NSES is close to Q-COM and they both require

over 40 times the number of function evaluations of RESBGEFS to solve the

21 problems. For IATRO, which is the first presented algorithm in the thesis,

fails to solve 6 out of 24 problems and the AENFEs value of the rest 18

problems is about 8 times as much as the value of RESBGEFS.

In conclusion, RESBGEFS only requires several tenths to several

thousandths of the function evaluations used by the direct metaheuristic

algorithms to accomplish global optimization on low-dimensional CBO

problems. For problems that each function evaluation is time-consuming or
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Table 6.9: Comparisons among RESBGEFS, IATRO and various direct algorithms on 24
benchmark problems in terms of the efficient number of function evaluations (ENFEs)

Prob. RESBGEFS IATRO rank-iMDDE [152] LCA [113] COPSO [106] NSES [87] Q-COM [151]

G01 313 1802 80483 225000 95397 31710 15520
G03 470 918 49572 225000 315123 19534 18618
G04 93 124 31649 225000 65087 5357 15066
G05 74 4549 33615 225000 315257 1558 15117
G06 44 N.S.a 12942 225000 53410 732 15039
G07 334 698 62276 225000 233400 171990 15274
G08 350 973 2961 225000 6470 541 12762
G09 332 1943 24849 225000 79570 9357 15407
G10 232 N.S.a 92718 225000 224740 85623 15782
G11 105 657 7340 225000 315000 135 15015
G12 357 6241 3101 225000 6647 212 469
G13 475 N.S.a 38988 225000 315547 3103 16137
G14 841 1886 127553 500000 9807000 6093 16061
G15 120 6181 19067 500000 315100 757 15128
G16 91 229 18527 500000 40960 8982 15364
G17 656 N.S.a 64539 500000 412968 3203 50556
G18 361 1687 60084 500000 185654 3353 15393
G19 1139 N.S.a 181296 500000 566601 56681 15241
G21 664 N.S.a 89617 500000 N.S.a 46722 16167
G23 98 15188 205337 500000 N.S.a 9757 15458
G24 100 237 5490 500000 19157 161 15028

WBD 120 412 15000 15000 30000 N.A.b N.A.b

SPD 291 4005 10000 15000 30000 N.A.b N.A.b

SRD 121 707 19920 24000 N.A.b N.A.b N.A.b

AENFEs
AENFEs of RESBGEFS

324
324

= 1 2691
324
≈ 8 52372

324
≈ 162 302250

324
≈ 933 741239

328
≈ 2260 17966

345
≈ 52 14378

345
≈ 42

a The result is not available because the algorithm fails to solve this problem.
b The result is not available in the corresponding paper.
* The result in bold font means that it is the smallest ENFEs value among all results.
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even money-consuming, RESBGEFS is one of the best practical optimization

method.

6.6.4 Comparisons among RESBGEFS, IATRO and various

metamodel-based algorithms on 26 benchmark problems

Similar to comparing IATRO with state-of-the-art metamodel-based

algorithms in Section 3.6.6, RESBGEFS is compared with these

metamodel-based algorithms again as well as IATRO, as shown in Table 6.10

to illustrate the advantages of RESBGEFS. As pointed out in Section 3.6.6,

the results of other algorithms (COBRA, eDIRECT-C, SADE-kNN,

SACOBRA, SCGOSR) can not reflect the true performance in optimizing

CBO problems for two main reasons. First, the majority of metamodel-based

algorithms aim to obtaining an improved feasible solution rather than

finding the global optimum and the optimization statistics such as the SR

values and FR values were not reported in details in their papers. So it is

difficult to compare RESBGEFS with these algorithms in terms of ENFEs

values. Instead, the EAREs values of RESBGEFS which describes how many

function evaluations have been used to find the best solution in the

optimization process would be more appropriate for making comparisons

between RESBGEFS and other metamodel-based algorithms. Second, the

termination criterion used by other metamodel-based algorithms are related

to the known global optimum of the test problem, which is usually

unavailable in solving real-world optimization problems. Thus, only the

results of RESBGEFS as well as IATRO can be considered to demonstrate

the true performance in solving real-world CBO problems.

From Table 6.10, although RESBGEFS runs in more strict conditions, the

superiorities of RESBGEFS are distinct in all aspects. For all the test

problems, the objective function values obtained by RESBGEFS are the best

or equally best among all the results. Moreover, among the algorithms which

can obtain the best solution of a problem, RESBGEFS only requires a

smaller number of function evaluations as compared to other algorithms.

There are only five problems that RESBGEFS might not be the best

algorithm in solving them. For G01 and G14, although the EAREs values of

IATRO are the smallest, it does not mean that IATRO is better than

RESBGEFS in solving these two problems. Actually, this can just indicate

that IATRO converges faster than RESBGEFS. Considering the ENFEs

values as shown in Table 6.9, RESBGEFS is far superior to IATRO in

solving these two problems in terms of efficiency and stability. For G07, G11
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Table 6.10: Comparisons among RESBGEFS, IATRO and metamodel-based algorithms on 26 benchmark problems

Prob. Criteria RESBGEFS IATRO COBRA [115] eDIRECT-C [118] SADE-kNN [153] SACOBRAa[116] SCGOSR [74]

G01 Best -15.0000 -15.0000 ≤ −14.85 -14.9998 -15.0000 -15.0 N.A.

EAREs 209 138 > 387 147 > 3722 100 N.A.

G02 Best -0.7931 -0.3812 N.A. -0.2480 -0.7429 -0.3466 N.A.

EAREs 1232 1237 N.A. > 1000 N.A. 400 N.A.

G03 Best -1.0005 -1.0005 ≤ −0.33 -0.9989 -0.4515 -1.0 N.A.

EAREs 413 705 > 451 145 N.A. 300 N.A.

G04 Best -30665.5394 -30665.5396 N.A. -30665.5385 -30665.5386 -30665.539 -31026

EAREs 28 78 N.A. 65 2598 200 54

G05 Best 5126.4981 5126.4981 ≤ 5150 5145.8149 5126.49 5126.498 N.A.

EAREs 43 351 13 413 > 17810 200 N.A.

G06 Best -6961.8139 -6961.8128 ≤ −6800 -6961.8137 -6961.8138 -6961.81 -6961.8

EAREs 24 294 53 35 1235 100 79

G07 Best 24.3062 24.3062 ≤ 25 24.3062 24.3073 24.306 24.3149

EAREs 330 653 199 152 N.A. 200 178

G08 Best -0.0958 -0.0958 ≤ −0.09 -0.095822 -0.09582 -0.0958 -0.0958

EAREs 60 148 30 154 292 200 52

G09 Best 680.6301 680.6301 ≤ 1000 785.6795 680.638 680.761 826.30

EAREs 291 607 > 275 > 1000 N.A. 300 116

G10 Best 7049.2480 7049.2515 ≤ 8000 7049.2484 7049.249 7049.253 N.A.

EAREs 194 902 276 105 N.A. 300 N.A.

G11 Best 0.7500 0.7500 N.A. 0.7499 0.7499 0.75 N.A.

EAREs 59 114 N.A. 33 > 2995 100 N.A.

G12 Best -1.0000 -1.0000 N.A. -1.0000 -1.0000 N.A. N.A.

EAREs 58 154 N.A. 52 > 386 N.A. N.A.

G13 Best 0.0539 0.0541 N.A. 0.6472 0.05394 N.A. N.A.

EAREs 166 245 N.A. > 1000 > 43907 N.A. N.A.

G14 Best -47.7611 -47.7611 N.A. N.A. -47.764 N.A. N.A.

EAREs 711 601 N.A. N.A. > 55179 N.A. N.A.

G15 Best 961.7152 961.7152 N.A. N.A. 961.7150 N.A. N.A.

EAREs 68 228 N.A. N.A. > 11431 N.A. N.A.

G16 Best -1.9052 -1.9052 ≤ −1.8 N.A. -1.9051 N.A. N.A.

EAREs 41 202 38 N.A. 4633 N.A. N.A.

G17 Best 8853.5401 - N.A. N.A. 8853.53 N.A. N.A.

EAREs 333 - N.A. N.A. > 69887 N.A. N.A.

G18 Best -0.8660 -0.8660 ≤ −0.8 N.A. -0.8654 N.A. N.A.

EAREs 156 750 > 196 N.A. > 253743 N.A. N.A.

G19 Best 32.6556 36.2503 ≤ 40 N.A. 32.6632 N.A. N.A.

continued
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Table 6.10 – continued

Prob. Criteria RESBGEFS IATRO COBRA [115] eDIRECT-C [118] SADE-kNN [153] SACOBRAa[116] SCGOSR [74]

EAREs 1062 1910 698 N.A. N.A. N.A. N.A.

G21 Best 193.7869 258.6453 N.A. N.A. 193.7546 N.A. N.A.

EAREs 250 514 N.A. N.A. N.A. N.A. N.A.

G23 Best -400.0000 -400.0000 N.A. N.A. -400.055 N.A. N.A.

EAREs 53 1186 N.A. N.A. > 68852 N.A. N.A.

G24 Best -5.5080 -5.5080 ≤ −5 N.A. -5.5080 N.A. N.A.

EAREs 23 76 9 N.A. 765 N.A. N.A.

WBD Best 1.7249 1.7249 ≤ 2.5 N.A. N.A. N.A. 1.7249

EAREs 99 408 165 N.A. N.A. N.A. 102

SPD Best 0.012666 0.0126720 N.A. 0.012666 N.A. N.A. 0.01267

EAREs 223 768 N.A. 292 N.A. N.A. 76

PVD Best 6059.7143 7367.6123 N.A. N.A. N.A. N.A. N.A.

EAREs 78 243 N.A. N.A. N.A. N.A. N.A.

SRD Best 2994.4702 2994.4711 N.A. N.A. N.A. N.A. N.A.

EAREs 61 556 N.A. N.A. N.A. N.A. N.A.

a In the paper of SACOBRA, only median statistics are provided.
* The objective function value in bold face means that it is the best or equally best value among all the results obtained by these

algorithms. And the best EARs of the problem obtained by an algorithm will be marked in bold face only if this algorithm can

obtain the best solution.
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and G12, eDIRECT-C is slight better than RESBGEFS but it is far inferior

to RESBGEFS in solving the another 11 out of 14 test problems since it can

not obtain the corresponding global optima.

In conclusion, RESBGEFS is much better than other metamodel-based

algorithms in terms of efficiency, robustness and accuracy. Moreover, it is

currently one of the few metamodel algorithms that can efficiently converge

to a feasible solution of the CBO problem without the prior knowledge of the

global optimum.

6.7 Summary

In this chapter, the trust region based and surrogate-assisted optimization

framework (RATRO) is enhanced with the fast computation strategy (FCS)

and the successive refinement strategy (SRS) and the new optimization

framework is called RATRLO (RBF-assisted and trust region based

large-scale optimization framework). More specifically, FCS is an

implementation of the advanced fast-computation modules in the Python

environment and SRS is the novel strategy and is the key to the accuracy of

the optimal solutions. As shown in Algorithm 9, it aims at tackling

large-scale CBO problems, for example the MOPTA08 problem which has

124 design variables and 68 inequality constraints. Usually, one iteration of

RESBGE involves one DOE process, one metamodel building process by

RBF interpolation and one run of the SQP process to solve the approximate

subproblem. This can take a number of minutes (up to 30 minutes in worst

cases) but with the Numba support and the parallel computation technique,

the computational time can decrease to about 10 seconds, which enables the

development of new strategies for solving large-scale optimization problems.

And the successive refinement strategy (SRS) is the key to obtain an

improved feasible solution of the MOPTA08 problem is. As shown in

Algorithm 8, by iteratively updating the metamodels and refining the

solution of the subproblem, a good sub-optimal solution can be generated.

The experimental results of RESBGEFS on the MOPTA08 problem prove

that RESBGEFS is among the best metamodel-based algorithms in solving

this problem. And due to the remarkable less computational time of

RESBGEFS (about 30 minutes for solving the MOPTA08 after 1000

function evaluations) as compared to other algorithms (for example,

ConstrLMSRBF takes about 9 hours to solving the MOPTA08 problem after

2000 function evaluations), RESBGEFS has more potentials in further

development for solving large-scale, severely-constrained black-box
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Algorithm 9: Framework of RATRLO
Input:

See Table 5.2 and Table 6.3.
Output:

xopt: The best point encountered through the optimization process.

for k in [0,Kmax] do
Step 1. Design of Experiments (DOE) . See Algorithm 6

nk, Xk = DOE(xk, k,Kmax,A
k,Bk,∆ext, Nplan, Xall)

Step 2. Black-box Evaluations . Parallel computation

Objective function evaluations: f(Xk) ⊆ Rnk .

Constraint function evaluations: gj(X
k) (j = 1, . . . ,m) ⊆ Rnk

Step 3. Self-adaptive Normalization . See Algorithm 4

f(x), gj(x) (j = 1, . . . ,m) =
SANS(δf , δg, f(Xk), gj(X

k) (j = 1, . . . ,m))

Step 4. Successive Refinement Strategy . See Algorithm 8

xk+1 = SRS(xk, k,Xk,f(Xk), g(Xk),Ak,Bk, tmax)

Step 5. Moving Trust Region Strategy
if Termination not satisfied then

. Update move limits by any trust region strategy, for example BTRS

(Section 5.2)

Qk+1 : [Ak+1,Bk+1]
k = k + 1 . Increment the iteration number

else
Traverse all the points.
Return xopt.

optimization problems within limited computational budget.

Besides, the results of RESBGEFS on 24 low-dimensional benchmark

problems (except G02 and PVD) show that about 1/3 of the function

evaluations can be reduced as compared to the results of RESBGE due to

the high cost-effectiveness of SRS. On average, RESBGEFS only requires 324

function evaluations to absolutely obtain the global optima of these 24

problems. Compared with state-of-the-art direct algorithms and

metamodel-based algorithms, RESBGEFS is among the best if not the best

algorithm to solve these problems with high efficiency, accuracy and

robustness. Meanwhile, RESBGEFS is also one of the few metamodel-based

algorithms that possesses good global convergency, which is a valuable

contribution to the area of metamodel-based optimization.
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Concluding remarks and

recommendations

7.1 Summary of findings, discussions and

conclusions

Multidisciplinary design optimization based on computation-intensive

simulations of complex systems is becoming increasingly popular in various

engineering subjects. As each simulation could be expensive in terms of

elapsed execution time and/or computational cost, only a limited number of

simulations are allowed. This issue is particularly acute when design

optimization is considered because all optimization methods, either

nature-inspired algorithms or deterministic optimization algorithms require a

great deal of function evaluations to find an optimal design. One popular

and practical way to address this issue is to apply metamodels which

approximate the time-consuming simulations with simpler analytical models.

Then, various optimization methods can be performed on those models to

search for the optimum, which is referred as metamodel-based design

optimization (MBDO). Although MBDO has attracted widespread attention

and has been under continuous development, the state of the art about

computationally expensive constrained optimization is less advanced [61, 81].

To tackle this challenge in solving expensive constrained black-box

optimization problems, a RBF-assisted and trust region based large-scale

optimization (RATRLO) framework has been developed in this thesis.

In the first place, an intrinsically linear function assisted and trust region

based optimization framework (IATRO) has been established for solving

low-dimensional CBO (constrained black-box optimization) problems.

Generally, IATRO adopts strong points of the multipoint approximation

method (MAM) [77, 135, 167] which replaces the original complex

optimization problem by a succession of simpler mathematical sub-problems
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in a series of trust regions where each objective and constraint functions are

approximated by ILF (intrinsically linear function). The solution of an

individual sub-problem becomes the starting point in the next iteration and

then, the move limits are updated and the optimization loop is repeated

until the optimum is reached. The main contributions of IATRO developed

in Python environment include the modified weighted least squares

regression subroutine and SQP solver, the progress curve and debug report,

the improvement of the output solution, the random starting point

generator, the benchmark functionality and a collection of benchmark CBO

problems. Although the original MAM can hardly solve a complex CBO

problem, IATRO proves to be a competitive optimization method as

compared to several state-of-the-art direct metaheuristic algorithms and

metamodel-based optimization algorithms. Through numerical experiments

of 26 benchmark problems (22 G-problems, 2 continuous engineering design

problems and 2 mix-variables engineering design problems), results show

that 18 problems can be solved by IATRO within an acceptable number of

function evaluations but the another eight problems (G02, G06, G10, G13,

G17, G19, G21 and PVD) are difficult to address.

In order to enhance the optimization performance of IATRO, several

strategies have been further developed including the economical sampling

strategy (ESS), the self-adaptive normalization strategy (SANS) and the

modified trust region strategy (MTRS). More specifically, ESS enables

IATRO to reduce about 20% of the required number of function evaluations

while keeping the global searching ability; SANS brings remarkable

advantages in solving CBO problems (G01, G06, G10 and G17), in which the

values of constraint functions range across different orders of magnitude; and

MTRS leads to the optimization process more likely moving to the right

direction as the average success rate of IEM (IATRO–ESS–MTRS) in the 26

benchmark problems is 48%, while the average success rate of 36% of IE

(IATRO–ESS) can be observed. Although IEMS

(IATRO–ESS–MTRS–SANS) is capable of robustly obtaining feasible, global

solutions to most benchmark problems, there are ten problems (G01, G02,

G05, G10, G12, G13, G15, G17, G21 and PVD) that can not be solved for

the converged solutions. This requires a more powerful algorithm to be

developed.

Through in-depth research on the statistical results of the above then test

problems using IEMS, it is found that one reason for the instability of

obtaining the true optima is the inadequate approximations built by the

intrinsically linear functions (ILF). Therefore, the radial basis function
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assisted optimization framework (RATRO) has been further developed in

this research. Generally, the RBF interpolation is far superior to the

intrinsically linear approximation in terms of accuracy so that the average

success rate of RESM (RBFI–ESS–SANS–MTRS) in the 26 problems reaches

69.38%, which is 17 percentage points more than the value of IEMS

(52.15%). Six out of the ten problems which are extremely difficult to IEMS

can be solved by RESM with a success rate of over 24% and the remaining

four unsolved problems are G02, G10, G21 and PVD. In order to tackling

these problems, a number of novel strategies have been proposed. First, a

balanced moving trust region strategy (BTRS) has been developed to achieve

a good tradeoff between exploration and exploitation of the search space for

the optimal solution. With the trust region strategy (BTRS) in RESM, the

enhanced algorithm has been called RESB (RBFI–ESS–SANS–BTRS).

Results show that RESB has the capability to solve the G21 problem with a

high success rate over 48%. It is also noted that BTRS remarkably alleviates

the difficulty in optimizing the problem of G01 as the success rate nearly

quadruples from 24% to 88%. Moreover, the global intelligence selection

(GIS) has been proposed, which adds additional sampling points that are

closest to the starting point and outside the current trust region into the

fitting set. This can not only refine the approximations in the current search

subregion but also help the optimization process escape from the local

optima. Therefore, RESBG (RBFI–ESS–SANS–BTRS–GIS) is able to solve

the 24 benchmark problems (except G02 and PVD) with a success rate of

81.87% on average. Last but not the least, with the early termination

strategy (ETS) which enables the optimization process to abort

appropriately when there is little room improving the solution, RESBGE

(RBFI–ESS–SANS–BTRS–GIS–ETS) can reduce the number of function

evaluations by 14.5% to obtain the global optimum with a slight decrease in

success rate, as compared to RESBG. G02 and PVD are two remaining

unsolved problems but both RESBG and RESBGE can definitely find

near-optimal solutions. Since G02 is a twenty-dimensional optimization

problem with a periodic and multimodal objective function, currently there

is no metamodel-based algorithm that could solve it with high accuracy and

efficiency. As PVD belongs to a mixed continuous/discrete variable problem,

how to improve the performance of the algorithm to solve this problem is

considered future work.

Finally, the optimization framework of RATRO (radial basis function

assisted and trust region based optimization) are expanded to solve

large-scale optimization problems with the development of the fast

computation strategy (the Numba compiler and parallel computation

104



Chapter 7: Concluding remarks and recommendations 105

technique) and the successive refinement strategy (SRS). The MOPTA08

problem [119] which has 124 design variables and 68 inequality constraints is

used as a benchmark to test whether the RATRO has the capabilities to

solve this problem with severely limited computational budget. Most of the

surrogate-based algorithms suffer from the time-consuming optimization

process when a large number of design variables are involved. Usually one

basic optimization process of RESBGE in solving the MOPTA08 problem

including one DOE process, one metamodel building process by RBF

interpolation and one run of the SQP process to solve the approximate

subproblem, takes 5-30 minutes. With advances in the Numba compiler

which forces the Python functions to run at native machine code speed, and

the parallel computation technique to execute multiple function evaluations

simultaneously, the average computational time of this basic process can be

dropped to about 10 seconds. Besides, the SRS procedure aiming at

obtaining a sufficiently optimal solution in each iteration by successively

refining the metamodels proves to be an efficient and practical approach in

solving high-dimensional CBO problems. For the MOPTA08 problem,

RESBGEFS can achieve about 90% of the potential reduction on the

objective function value within only 1000 function evaluations, which can be

considered a state of the art. Furthermore, the SRS procedure also works

remarkably in solving low-dimensional CBO problems. Averagely,

RESBGEFS just uses 324 function evaluations that is just two thirds of the

total number required by RESBGE to obtain the global optimum of one

benchmark problem (except G02 and PVD). Moreover, RESBGEFS is far

superior to RESBGE on optimizing G02 as an optimal solution with the

objective function value −0.7931 can be found, which is very close to the

global optimum (−0.8036).

In conclusions, the main contributions include the reconstitution of

multipoint approximation method (MAM) in Python environment, the

implementation of the radial basis function interpolation (RBFI), the

utilization of the fast-computation modules (FCS), the development of the

economical sampling strategy (ESS), the self-adaptive normalization strategy

(SANS), the global intelligence selection strategy (GIS), the balanced trust

region strategy (BTRS), the early termination strategy (ETS) and the

successive refinement strategy (SRS). And the final developed optimization

framework – RATRLO (RBF-assisted and trust region based large-scale

optimization) belongs to the best metamodel-based optimization schemes for

solving complex constrained black-box problems. Regardless of whether the

optimization problem belongs to low-dimensional or high-dimensional, linear

or nonlinear, continuous or mixed and equality constrained or inequality
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constrained, RATRLO is able to find the global optimum or a satisfying

feasible solution within limited computational budget. Furthermore,

RATRLO exhibits the global convergence for the searching process of

optimal solutions and provides a useful insight into the development of

advanced optimization methods, e.g., metaheuristic technique, artificial

neural network, for solving complex constrained black-box optimization

problems with high levels of robustness, efficiency and accuracy.

7.2 Future work

Although RATRLO has gained huge success in solving constrained black-box

optimization problems, the potentials of this trust-region based searching

scheme have not yet been fully realized.

Based on the numerical results presented earlier, G02 and PVD are the two

most challenging problems. How to stably solve these kinds of problems is

part of the future work. G02 is a twenty-dimensional optimization problem

with a periodic and multimodal objective function. The key to solving this

type of problem is to force the optimization process to escape from the local

optima. As RATRLO shows advantages in converging to a local optimum

and nature-inspired algorithms are good at finding the global optimum, a

hybrid algorithm can be developed, this is to say, metaheuristic algorithms

should be investigated in the main optimization framework where RATRLO

is applied to accelerate the convergence of local search. This metaheuristic

algorithm might work well in solving problems with numerous local optima

for the global solution.

PVD and SRD are two mixed continuous/discrete variable problems.

Although RATRLO works well in solving SRD, the performance is not

sufficiently good in optimizing PVD. Results show that RESBGEFS usually

obtains a sub-optimum close to the global optimum. This is because

RESBGEFS does not deal with mixed variables well. Actually, in the DOE

process all the variables have been considered continuous values and only the

evaluation process pays attention to whether the variable is continuous or

discrete. This results in the inconsistency between the design vector

(continuous property) and the function values (evaluated by mixed

variables). Therefore, specific approaches have to be developed for properly

handling mixed variables. For example, the variables have to be clearly

classified by specific algorithms as continuous and discrete groups so that the

correct design vectors can be generated in the sampling process. The moving
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trust region strategy should be modified accordingly. It is believed that

mixed-variable problems can be accurately solved once the strategy for

searching subregions of discrete variables can be developed.

Moreover, as state-of-the-art metamodels and optimization solvers can be

easily implemented in RATRLO, it needs further research to evaluate the

impact of these advances on the performance of RATRLO. In current

implementation, the cubic RBF with a polynomial tail is good for fitting the

metamodel. Other forms of RBF and metamodels (For example, Kriging) are

worthwhile to be tested and compared. Meanwhile, as a solver can be

effective in solving a group of problems but not appropriate on many others,

another part of the future work will aim at looking for an intelligent way to

adaptively select the internal optimizer.

Last but not the least, more high-dimensional and real-world benchmarks

should be tested by the current optimization framework so that it can

provide a better insight into the existing weakness in global searching and

the development of more robust and accurate optimization framework in the

future of work. It will provide a better insight into the existing weaknesses in

global searching and support further improvements.

107



Bibliography

[1] David H. Wolpert and William G. Marcready. “No-Free-Lunch

Theorem”. In: IEEE Transactions on Evolutionary Computation 1.1

(1997), pp. 67–82.

[2] Jorge Nocedal and Stephen J. Wright. Numerical Optimization. New

York: Springer, 2006.

[3] Andrew R. Conn, Katya Scheinberg, and Luis N. Vicente.

Introduction to Derivative-Free Optimization. Philadelphia, PA:

Society for Industrial and Applied Mathematics, 2009.

[4] John H. Holland. Adaptation in Natural and Artificial Systems: An

introductory Analysis with Applications to Biology, Control and

Artificial Intelligence. Cambridge, MA, USA: MIT Press, 1975, p. 183.

[5] J Kennedy and R Eberhart. “Particle swarm optimization”. In:

Proceedings of ICNN’95 - International Conference on Neural

Networks. Vol. 4. IEEE, 1995, pp. 1942–1948.

[6] Marco Dorigo and Gianni Di Caro. “Ant Colony Optimization: A New

Meta-Heuristic”. In: Proceedings of the 1999 Congress on Evolutionary

Computation-CEC99 (Cat. No. 99TH8406). Vol. 2. Washington, DC,

1999, p. 1477.

[7] Patrick N. Koch et al. “Statistical approximations for multidisciplinary

design optimization: The problem of size”. In: Journal of Aircraft 36.1

(1999), pp. 275–286.

[8] David E Goldberg. Genetic Algorithms in Search, Optimization, and

Machine Learning. Vol. Addison-We. 1989, p. 432.

[9] TImothy W. Simpson et al. “Metamodels for Computer-Based

Engineering Design: Survey and Recommendations”. In: Engineering

with Computers 17.2 (2001), pp. 129–150.

[10] Nestor V. Queipo et al. “Surrogate-based analysis and optimization”.

In: Progress in Aerospace Sciences 41.1 (2005), pp. 1–28.

108



Bibliography 109

[11] J. -F. M. Barthelemy and R. T. Haftka. “Approximation concepts for

optimum structural design — a review”. In: Structural optimization 5.3

(1993), pp. 129–144.

[12] Raphael T. Haftka, Elaine P. Scott, and Juan R. Cruz. “Optimization

and Experiments: A Survey”. In: Applied Mechanics Reviews 51.7

(1998), pp. 435–448.

[13] G. Gary Wang and S. Shan. “Review of Metamodeling Techniques in

Support of Engineering Design Optimization”. In: Journal of

Mechanical Design 129.4 (2007), p. 370.

[14] Raymond H. Myers, Douglas C. Montgomery, and

Christine M. Anderson-Cook. Response Surface Methodology: Process

and Product Optimization Using Designed Experiments. 4th. 2016.

[15] R. Jin, W. Chen, and T. W. Simpson. “Comparative studies of

metamodelling techniques under multiple modelling criteria”. In:

Structural and Multidisciplinary Optimization 23.1 (2001), pp. 1–13.

[16] Ann-britt Ryberg, Rebecka Domeij Bäckryd, and Nilsson Larsgunnar.
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A

Benchmark library

A.1 Engineering benchmark problems

Four well-known engineering design optimization problems are included in

the library for benchmark testing. There are two continuous constrained

optimization problems: the welded beam design problem (WBD) [102] and

the tension/compression spring design problem [150]. The rest two problems

, i.e., the pressure vessel design problem [150] and the speed reducer design

problem [104] are mixed continuous/discrete variable optimization problems.

A.1.1 Welded Beam Design

As shown in Fig. A.1, the beam is welded to a rigid support and is designed for

the minimum cost, considering constraints on shear stress (τ), bending stress

(σ), buckling load (pc), and end deflection (δ). The design variables comprise

the thickness of the weld (x1), the length of the welded joint (x2), the width

of the beam (x3) and the thickness of the beam (x4). The problem can be

formulated mathematically as Equation A.1.1.

Figure A.1: Schematic view of the welded beam structure from [168]
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min f(x) = 1.10471x2
1x2 + 0.04811x3x4(14 + x2)

s.t. g1(x) = τ(x)− τmax ≤ 0

g2(x) = σ(x)− σmax ≤ 0

g3(x) = x1 − x4 ≤ 0

g4(x) = [0.10471x2
1 + 0.04811x3x4(14 + x2)]− 5 ≤ 0

g5(x) = 0.125− x1 ≤ 0

g6(x) = δ(x)− δmax ≤ 0

g7(x) = p− pc(x) ≤ 0

where P = 6000 lb, L = 14 in, E = 30× 106 psi, G = 12× 106 psi,

τmax = 13600 psi, σmax = 30000 psi, δmax = 0.25 in

τ , =
P√

2x1x2

, τ ,, =
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J
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2

)
R =

√
x2

2

4
+

(
x1 + x3

2

)2

τ (x) =

√
(τ ,)2 + 2τ ,τ ,,

x2
2R + (τ ,,)2

J = 2

{
√

2x1x2

[
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2

12
+

(
x1 + x3

2

)2
]}

σ (x) =
6PL

x4x2
3

, δ (x) =
4PL3

Ex3
3x4

pc (x) =

4.013

√
E
(
x2

3x
6
4

36

)
L2

(
1− x3

2L

√
E

4G

)
0.1 ≤ x1 ≤ 2, 0.1 ≤ x2 ≤ 10, 0.1 ≤ x3 ≤ 10, 0.1 ≤ x4 ≤ 2

(A.1.1)

A.1.2 Tension/compression spring design

As shown in Figure A.2, the design variables include the wire diameter d (x1),

the mean coil diameter D (x2), and the number of active coils N (x3). The

design objective is to minimize the weight of the spring subject to constraints

on the minimum deflection g1, shear stress g2, surge frequency g3 and the limits

on the outside diameter g4. The mathematical description of this problem is

given as follows:
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Figure A.2: Schematic view of the spring structure

min f (x) = x2
1x2 (x3 + 2)

s.t. g1 (x) = 1− x3
2x3

71785x4
1

≤ 0

g2 (x) =
4x2

2 − x2x1

12566
(
x2x3

1 − x4
1

) +
1

5108x2
1

− 1 ≤ 0

g3 (x) = 1− 140.45x1

x2
2x3

≤ 0

g4 (x) =
x2 + x1

1.5
− 1 ≤ 0

where 0.05 ≤ x1 ≤ 1; 0.25 ≤ x2 ≤ 1.3; 2 ≤ x3 ≤ 15.

(A.1.2)

A.1.3 Pressure vessel design

Figure A.3 shows a cylindrical pressure vessel capped at both ends by

hemispherical heads. According to the American society of mechanical

engineers (ASME) boiler and pressure vessel code, this vessel is designed for

a working pressure of 3000 psi and a minimum volume of 750 ft3. The

objective is to minimize the total cost which involves a welding cost, a

material cost and a forming cost. The variables include the thickness of shell

(x1), the thickness of the head (x2), the inner radius (x3), and the length of

the cylindrical section of the vessel (x4). Among them, x3 and x4 are

continuous variables but the thickness x1 and x2 can only take integer

multiples of 0.0625 inch. The mathematical expression of this problem is

given in Equation A.3.

Figure A.3: Schematic view of the pressure vessel

126



Appendix A: Benchmark library 127

min f(x) = 0.6224x1x3x4 + 1.7781x1x
2
3 + 3.1661x2

1x4 + 19.84x2
1x3

s.t. g1(x)− x1 + 0.0193x3 ≤ 0

g2(x) = −x2 + 0.00954x3 ≤ 0

g3(x) = −πx2
3x

2
4 −

4

3
πx3

3 + 129600 ≤ 0

g4(x) = x4 − 240 ≤ 0

where 1× 0.0625 ≤ x1, x2 ≤ 99× 0.0625

10.0 ≤ x3, x4 ≤ 200.0

(A.1.3)

A.1.4 Speed reducer design

A speed reducer as shown in Figure A.4 is part of the gear box of mechanical

system. The total weight of the speed reducer is to be minimized subject

to the nine constraints which include the limits on the bending stress of the

gear teeth, surface stress, transverse deflections of the shafts and stresses in

the shafts. The design variables are the face width (x1), the module of the

teeth (x2), the number of teeth on pinion (x3), the length of the first shaft

between bearings (x4), the length of the second shaft between bearings (x5),

the diameter of the first and the second shaft (x6 and x7). Among them, x3

is integer and the rest are continuous. The mathematical formulation can be

summarized in Equation A.1.4.

Figure A.4: Schematic view of the speed reducer
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min f(x) = 0.7854x1x
2
2(3.3333x2

3 + 14.9334x3 − 43.0934)

− 1.508x1(x2
6 + x2

7) + 7.4777(x3
6 + x3

7) + 0.7854(x4x
2
6 + x5x

2
7)

s.t. g1(x) =
27

x1x2
2x3
− 1 ≤ 0

g2(x) =
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x1x2
2x

2
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− 1 ≤ 0

g3(x) =
1.93x3
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x2x3x4
6

− 1 ≤ 0

g4(x) =
1.93x3

5

x2x3x4
7

− 1 ≤ 0

g5(x) =
1.0

110x3
6

√
(
745.0x4

x2x3
)2 + 16.9× 106 − 1 ≤ 0

g6(x) =
1.0

110x3
6

√
(
745.0x4

x2x3
)2 + 16.9× 106 − 1 ≤ 0

g7(x) =
x2x3

40
− 1 ≤ 0

g8(x) =
5x2

x1
− 1 ≤ 0

g9(x) =
x1

12x2
− 1 ≤ 0

g10(x) =
1.5x6 + 1.9

x4
− 1 ≤ 0

g11(x) =
1.1x7 + 1.9

x5
− 1 ≤ 0

where 2.6 ≤ x1 ≤ 3.6, 0.7 ≤ x2 ≤ 0.8, 17 ≤ x3 ≤ 28

7.3 ≤ x4 ≤ 8.3, 7.8 ≤ x5 ≤ 8.3, 2.9 ≤ x6 ≤ 3.9

5.0 ≤ x7 ≤ 5.5

(A.1.4)

A.2 G-problems

For details about G-problems, readers are referred to [93].

A.3 MOPTA08

The fortran files about the MOPTA08 problem are given in

https://www.miguelanjos.com/jones-benchmark.
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B

Convergence plots

In this chapter, the convergence graph of each benchmark problem optimized

by different methods are given below. The meaning of the plots has been

described in Section 3.6.3. For ease of understanding, the definition is repeated

here. The graph shows the median error between the objective value of the

sub-optimal solution in kth iteration f(xk) and the global known optimum

f(x∗) versus the median NFEs at kth iteration in all trials. The error bars

mark the 25% and 75% quartile. As shown in the legend plot (Figure B.1 )

The red point means that in median trials, the method can not find a feasible

sub-optimal solution at the median NFEs. And if the method can obtain a

feasible solution at this iteration in median runs, the point is marked as a

yellow triangle. In this case, if the solution also satisfies the success condition

(f(xk)− f(x∗) ≤ 1e− 4), it will be denoted as a green star instead.

B.1 IATRO convergence graphs

0 250 500 750
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f
(x
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−
f

(x
∗ )
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Infeasible f(xk)− f(x∗) > 1e− 4 f(xk)− f(x∗) ≤ 1e− 4

Figure B.1: The legend used in convergence graphs

129



Appendix B: Convergence plots 130

50 100 150

NFEs

0

1

2

3

4

f
(x

)
−
f

(x
∗ )

(a) G01

0 500 1000

NFEs

5

6

7

f
(x

)
−
f

(x
∗ )

×10−1

(b) G02

200 400 600 800

NFEs

0

1

2

3

4

f
(x

)
−
f

(x
∗ )

×10−1

(c) G03

50 100

NFEs

−2

0

2

f
(x

)
−
f

(x
∗ )

×102

(d) G04

100 200

NFEs

0.0

0.5

1.0

f
(x

)
−
f

(x
∗ )

×102

(e) G05

100 200 300

NFEs

−1.0

−0.5

0.0

f
(x

)
−
f

(x
∗ )

×103

(f) G06

Figure B.2: IATRO optimization process for G01-G06
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Figure B.3: IATRO optimization process for G07-G12
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Figure B.4: IATRO optimization process for G13-G18
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Figure B.5: IATRO optimization process for G19-G24
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Figure B.6: IATRO optimization process for engineering design problems
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C

Optimization statistics

In this chapter, the optimization statistics of an algorithm on the benchmark

problems are given in details, while in the main text maybe only the significant

parts of the statistics are used to make comparisons.

C.1 IE (IATRO–ESS)

Table C.1: Statistical results of the optimal objective function values obtained
by IATRO–ESS (ηeco = 50%)

Prob. Target Best Worst Mean Median Std.

G01 -15.0000 -15.0000 -11.2813 -13.1638 -13.8281 9.5745e-01
G02 -0.8036 -0.4376 -0.2156 -0.2890 -0.2730 6.0195e-02
G03 -1.0005 -1.0005 -0.0000 -0.9581 -1.0005 1.9592e-01
G04 -30665.5387 -30665.5397 -30665.5348 -30665.5388 -30665.5387 8.6991e-04
G05 5126.4981 5126.4987 5949.6864 5231.9149 5137.9311 2.2405e+02
G06 -6961.8139 -6961.8138 -4147.2655 -6612.6497 -6952.2640 6.9119e+02
G07 24.3062 24.3062 24.3064 24.3062 24.3062 3.8562e-05
G08 -0.0958 -0.0958 -0.0167 -0.0548 -0.0291 3.0732e-02
G09 680.6301 680.6301 815.9856 697.0905 680.6301 3.8454e+01
G10 7049.2480 7049.2500 7508.8089 7134.6669 7050.0633 1.5909e+02
G11 0.7500 0.7500 0.9408 0.8049 0.7811 5.9569e-02
G12 -1.0000 -1.0000 -0.8781 -0.9528 -0.9606 4.0602e-02
G13 0.0539 0.2071 1.3158 0.8421 0.9731 2.9405e-01
G14 -47.7611 -47.7611 -47.7547 -47.7599 -47.7603 1.4767e-03
G15 961.7152 961.7152 969.8983 963.2743 962.1370 2.1522e+00
G16 -1.9052 -1.9052 -1.9052 -1.9052 -1.9052 1.5443e-08
G17 8876.9807 8862.9014 8878.6607 8870.7810 8870.7810 7.8796e+00
G18 -0.8660 -0.8660 -0.4992 -0.7187 -0.8636 1.6330e-01
G19 32.6556 35.8172 244.7116 81.7079 69.5000 4.7990e+01
G21 193.7869 238.4943 518.3504 324.2144 292.0188 7.8826e+01
G23 -400.0000 -400.0000 -24.6838 -361.3975 -376.6007 7.2867e+01
G24 -5.5080 -5.5080 -4.0537 -5.2227 -5.5080 4.7741e-01

WBD 1.7249 1.7249 1.7249 1.7249 1.7249 1.1107e-10
SPD 0.0127 0.0127 0.0217 0.0138 0.0132 1.7638e-03
PVD 6059.7143 6082.5117 9261.4445 6534.3014 6378.9278 6.2348e+02
SRD 2994.4710 2994.4696 3000.4098 2994.7101 2994.4707 1.1635e+00
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Table C.2: Convergence statistics of IATRO–ESS (ηeco = 50%)

Prob. ANFEs AREs TE FR (%) SR (%) ENFEs EAREs

G01 188 120 0.64 100 4 4710 120
G02 1187 1181 0.99 100 0 - 1181
G03 799 725 0.91 100 92 869 725
G04 103 71 0.69 100 96 107 71
G05 200 186 0.93 96 0 - 194
G06 103 65 0.63 80 4 3209 81
G07 695 689 0.99 100 96 724 689
G08 165 126 0.76 100 24 689 126
G09 592 587 0.99 92 48 1340 638
G10 827 462 0.56 40 0 - 1156
G11 115 99 0.86 100 12 959 99
G12 183 119 0.65 100 4 4565 119
G13 194 179 0.92 92 0 - 195
G14 618 615 1.00 100 12 5148 615
G15 134 126 0.94 80 4 4200 157
G16 155 135 0.87 100 100 155 135
G17 217 125 0.58 8 4 67812 1562
G18 760 656 0.86 100 44 1726 656
G19 1889 1812 0.96 100 0 - 1812
G21 256 252 0.98 100 0 - 252
G23 884 862 0.98 96 12 7670 898
G24 72 50 0.69 100 72 100 50

WBD 195 190 0.97 100 100 195 190
SPD 501 482 0.96 100 16 3129 482
PVD 433 150 0.35 100 0 - 150
SRD 507 428 0.84 100 88 576 428
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C.2 IEM (IATRO–ESS–MTRS)

Table C.3: Statistical results of the optimal objective function values obtained
by IATRO–ESS–MTRS (ηeco = 50%)

Prob. Target Best Worst Mean Median Std.

G01 -15.0000 -15.0000 -11.2813 -13.3569 -13.8281 1.0986e+00
G02 -0.8036 -0.4805 -0.2293 -0.3434 -0.3404 7.1015e-02
G03 -1.0005 -1.0005 -0.9937 -1.0002 -1.0005 1.3280e-03
G04 -30665.5387 -30665.5398 -30665.5387 -30665.5390 -30665.5388 3.0090e-04
G05 5126.4981 5126.4981 5623.2905 5222.5940 5156.2180 1.5712e+02
G06 -6961.8139 -6961.8139 -5769.6011 -6812.1923 -6958.8701 3.2794e+02
G07 24.3062 24.3062 24.3062 24.3062 24.3062 4.6964e-07
G08 -0.0958 -0.0958 -0.0004 -0.0617 -0.0560 3.2749e-02
G09 680.6301 680.6301 1118.3159 698.8670 680.6301 8.7461e+01
G10 7049.2480 7049.2483 7805.5303 7132.6692 7049.6578 1.9119e+02
G11 0.7500 0.7500 0.9677 0.7854 0.7527 6.3679e-02
G12 -1.0000 -1.0000 -0.8594 -0.9642 -0.9694 3.6308e-02
G13 0.0539 0.0628 8.8485 1.4971 0.8292 1.8590e+00
G14 -47.7611 -47.7611 -47.7611 -47.7611 -47.7611 3.0761e-07
G15 961.7152 961.7152 968.3955 962.8212 961.7191 1.9881e+00
G16 -1.9052 -1.9052 -1.9052 -1.9052 -1.9052 4.4614e-08
G17 8876.9807 8936.9796 9210.5234 9036.6467 8962.4371 1.2339e+02
G18 -0.8660 -0.8660 -0.5000 -0.7461 -0.8660 1.3720e-01
G19 32.6556 32.6556 32.9900 32.6703 32.6556 6.5373e-02
G21 193.7869 251.3768 821.4910 378.8182 314.8038 1.5591e+02
G23 -400.0000 -400.0004 -73.6739 -365.1203 -385.5032 6.5476e+01
G24 -5.5080 -5.5080 -4.0537 -5.0583 -5.5080 6.0922e-01

WBD 1.7249 1.7249 1.7249 1.7249 1.7249 1.4667e-11
SPD 0.0127 0.0127 0.0127 0.0127 0.0127 3.4494e-09
PVD 6059.7143 6059.7314 11075.5648 6682.5129 6387.9524 1.1174e+03
SRD 2994.4710 2994.4696 2994.4710 2994.4705 2994.4707 4.1678e-04

Table C.4: Convergence statistics of IATRO–ESS–MTRS (ηeco = 50%)

Prob. ANFEs AREs TE FR (%) SR (%) ENFEs EAREs

G01 297 123 0.41 100 20 1485 123
G02 2496 2451 0.98 100 0 - 2451
G03 1448 1389 0.96 100 96 1508 1389
G04 136 93 0.68 100 100 136 93
G05 295 282 0.96 100 4 7373 282
G06 118 81 0.69 64 4 4629 127
G07 890 870 0.98 100 100 890 870
G08 142 113 0.80 100 44 322 113
G09 716 679 0.95 96 92 811 708
G10 801 582 0.73 84 0 - 693
G11 208 190 0.91 100 8 2606 190
G12 225 148 0.66 100 4 5636 148
G13 275 249 0.91 100 0 - 249
G14 719 706 0.98 100 100 719 706
G15 378 363 0.96 88 36 1192 412
G16 174 137 0.79 100 100 174 137
G17 327 253 0.77 12 0 - 2108
G18 932 824 0.88 100 52 1792 824
G19 1712 1650 0.96 100 80 2139 1650
G21 385 363 0.94 100 0 - 363
G23 845 794 0.94 100 44 1920 794
G24 70 54 0.78 100 64 109 54

WBD 187 183 0.98 100 100 187 183
SPD 340 277 0.82 100 100 340 277
PVD 397 204 0.51 100 0 - 204
SRD 332 254 0.77 100 100 332 254
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C.3 IEMS (IATRO–ESS–MTRS–SANS)

Table C.5: Statistical results of the optimal objective function values obtained
by IATRO–ESS–MTRS–SANS (ηeco = 50%, δg = 1, δf = 10)

Prob. Target Best Worst Mean Median Std.

G01 -15.0000 -15.0000 -11.2813 -13.0700 -12.6563 1.1544e+00
G02 -0.8036 -0.5753 -0.2259 -0.3616 -0.3198 9.8264e-02
G03 -1.0005 -1.0005 -0.9984 -1.0004 -1.0005 4.4961e-04
G04 -30665.5387 -30665.5394 -30665.5387 -30665.5388 -30665.5387 1.8047e-04
G05 5126.4981 5126.4982 6106.7217 5411.4481 5311.9247 2.9577e+02
G06 -6961.8139 -6961.8148 -6961.8139 -6961.8143 -6961.8142 3.2655e-04
G07 24.3062 24.3062 24.3062 24.3062 24.3062 4.4525e-07
G08 -0.0958 -0.0958 -0.0273 -0.0615 -0.0510 2.9642e-02
G09 680.6301 680.6301 680.6301 680.6301 680.6301 1.5090e-06
G10 7049.2480 7049.2480 8057.3072 7151.3674 7049.6109 2.6029e+02
G11 0.7500 0.7500 0.9845 0.7881 0.7507 7.1797e-02
G12 -1.0000 -1.0000 -0.7363 -0.9553 -0.9911 6.7420e-02
G13 0.0539 0.0669 21.0549 1.7366 0.8599 3.9943e+00
G14 -47.7611 -47.7611 -47.7610 -47.7611 -47.7611 1.8773e-05
G15 961.7152 961.7152 970.6458 963.4000 961.8930 2.5458e+00
G16 -1.9052 -1.9052 -1.9052 -1.9052 -1.9052 1.6436e-08
G17 8876.9807 8858.7901 9266.1209 8994.1785 8950.2147 1.1585e+02
G18 -0.8660 -0.8660 -0.5000 -0.7756 -0.8660 1.1926e-01
G19 32.6556 32.6556 32.6630 32.6562 32.6556 1.6800e-03
G21 193.7869 230.5979 757.2806 407.2879 340.7696 1.6124e+02
G23 -400.0000 -400.0000 -40.1192 -358.9579 -389.2441 9.1496e+01
G24 -5.5080 -5.5080 -4.0537 -4.9776 -5.5080 5.7746e-01

WBD 1.7249 1.7249 1.7249 1.7249 1.7249 1.5284e-11
SPD 0.0127 0.0127 0.0127 0.0127 0.0127 5.8806e-09
PVD 6059.7143 6059.7110 7143.4753 6255.9242 6179.6878 2.4677e+02
SRD 2994.4710 2994.4697 2994.4711 2994.4707 2994.4707 2.8055e-04

Table C.6: Convergence statistics of IATRO–ESS–MTRS–SANS (ηeco =
50%, δg = 1, δf = 10)

Prob. ANFEs AREs TE FR (%) SR (%) ENFEs EAREs

G01 308 134 0.43 100 12 2564 134
G02 2496 2472 0.99 100 0 - 2472
G03 1441 1404 0.97 100 92 1566 1404
G04 162 82 0.50 100 100 162 82
G05 189 174 0.92 100 0 - 174
G06 90 82 0.91 100 100 90 82
G07 855 833 0.97 100 100 855 833
G08 147 112 0.76 100 40 369 112
G09 744 733 0.98 100 100 744 733
G10 804 524 0.65 92 12 7279 570
G11 172 150 0.87 100 40 431 150
G12 220 140 0.64 100 4 5499 140
G13 271 253 0.93 100 0 - 253
G14 792 784 0.99 100 100 792 784
G15 180 139 0.77 92 8 2442 151
G16 178 145 0.82 100 100 178 145
G17 247 229 0.92 100 4 6184 229
G18 893 814 0.91 100 60 1488 814
G19 1737 1702 0.98 100 80 2171 1702
G21 391 350 0.89 100 0 - 350
G23 897 863 0.96 100 44 2038 863
G24 70 52 0.75 100 52 134 52

WBD 164 160 0.98 100 100 164 160
SPD 333 275 0.83 100 100 333 275
PVD 386 222 0.57 100 8 4824 222
SRD 326 256 0.78 100 100 326 256
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C.4 RESM (RBFI–ESS–SANS–MTRS)

Table C.7: Statistical results of the optimal objective function values obtained
by RBFI–ESS–SANS–MTRS (ηeco = 50%, δg = 1, δf = 10)

Prob. Target Best Worst Mean Median Std.

G01 -15.0000 -15.0000 -11.4844 -13.6406 -13.8281 9.7653e-01
G02 -0.8036 -0.7042 -0.2540 -0.3818 -0.3579 1.0785e-01
G03 -1.0005 -1.0005 -0.9997 -1.0005 -1.0005 1.6266e-04
G04 -30665.5387 -30665.5391 -30665.5387 -30665.5388 -30665.5387 1.3744e-04
G05 5126.4981 5126.4981 5126.4981 5126.4981 5126.4981 2.9308e-06
G06 -6961.8139 -6961.8139 -6961.8139 -6961.8139 -6961.8139 1.1654e-05
G07 24.3062 24.3062 24.3062 24.3062 24.3062 3.4180e-06
G08 -0.0958 -0.0958 0.0000 -0.0607 -0.0580 3.3371e-02
G09 680.6301 680.6301 680.6301 680.6301 680.6301 1.3915e-07
G10 7049.2480 7049.2480 7852.6334 7094.4576 7049.2928 1.7889e+02
G11 0.7500 0.7500 0.7500 0.7500 0.7500 3.0439e-07
G12 -1.0000 -1.0000 -0.6981 -0.9774 -0.9944 6.0681e-02
G13 0.0539 0.0539 1.0000 0.4363 0.4389 2.9314e-01
G14 -47.7611 -47.7611 -47.7611 -47.7611 -47.7611 8.2570e-06
G15 961.7152 961.7152 961.7152 961.7152 961.7152 3.7671e-07
G16 -1.9052 -1.9052 -1.9052 -1.9052 -1.9052 1.2884e-11
G17 8876.9807 8853.5411 8927.5980 8862.8537 8857.9908 1.5304e+01
G18 -0.8660 -0.8660 -0.5000 -0.7559 -0.8660 1.3760e-01
G19 32.6556 32.6556 33.8315 32.7255 32.6556 2.3853e-01
G21 193.7869 193.7878 194.0552 193.8408 193.8157 6.4651e-02
G23 -400.0000 -400.0003 -65.5630 -374.3251 -400.0000 8.7152e+01
G24 -5.5080 -5.5080 -4.0537 -4.9995 -5.5080 6.3342e-01

WBD 1.7249 1.7249 1.7249 1.7249 1.7249 1.0140e-11
SPD 0.0127 0.0127 0.0128 0.0127 0.0127 1.9130e-05
PVD 6059.7143 6059.7143 7476.9170 6233.6224 6092.6044 2.9358e+02
SRD 2994.4710 2994.4696 2994.4711 2994.4706 2994.4706 3.7832e-04

Table C.8: Convergence statistics of RBFI–ESS–SANS–MTRS (ηeco =
50%, δg = 1, δf = 10)

Prob. ANFEs AREs TE FR (%) SR (%) ENFEs EAREs

G01 369 156 0.42 100 24 1538 156
G02 2495 2473 0.99 100 0 - 2473
G03 1447 1360 0.94 100 96 1507 1360
G04 179 47 0.26 100 100 179 47
G05 185 168 0.91 100 100 185 168
G06 64 54 0.84 100 100 64 54
G07 602 573 0.95 100 100 602 573
G08 112 95 0.85 100 44 254 95
G09 626 597 0.95 100 100 626 597
G10 719 457 0.64 76 12 7886 601
G11 122 90 0.74 100 100 122 90
G12 140 114 0.81 100 40 350 114
G13 375 335 0.89 100 24 1561 335
G14 762 744 0.98 100 100 762 744
G15 166 129 0.78 92 92 196 140
G16 157 114 0.72 100 100 157 114
G17 536 464 0.87 92 88 662 505
G18 689 607 0.88 100 52 1326 607
G19 1701 1643 0.97 100 72 2363 1643
G21 543 511 0.94 88 0 - 580
G23 262 158 0.60 100 92 285 158
G24 65 44 0.68 100 60 108 44

WBD 179 149 0.83 100 100 179 149
SPD 529 518 0.98 100 100 529 518
PVD 408 216 0.53 100 8 5100 216
SRD 301 254 0.84 100 100 301 254

Average 528.23 464.22 0.80 98.00 69.38 1118.46 474.43
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C.5 RESB (RBFI–ESS–SANS–BTRS)

Table C.9: Statistical results of the optimal objective function values obtained
by RBFI–ESS–SANS–BTRS (ηeco = 50%, δg = 1, δf = 10, kRES = 5)

Prob. Target Best Worst Mean Median Std.

G01 -15.0000 -15.0000 -13.8281 -14.8594 -15.0000 3.8081e-01
G02 -0.8036 -0.5973 -0.2474 -0.4157 -0.3941 1.0927e-01
G03 -1.0005 -1.0005 -1.0005 -1.0005 -1.0005 7.7526e-06
G04 -30665.5387 -30665.5391 -30665.5387 -30665.5387 -30665.5387 1.2436e-04
G05 5126.4981 5126.4981 5126.4981 5126.4981 5126.4981 8.7666e-07
G06 -6961.8139 -6961.8140 -6961.8139 -6961.8139 -6961.8139 1.4329e-05
G07 24.3062 24.3062 24.3062 24.3062 24.3062 9.7285e-07
G08 -0.0958 -0.0958 -0.0000 -0.0447 -0.0291 3.3551e-02
G09 680.6301 680.6301 680.6301 680.6301 680.6301 1.7502e-07
G10 7049.2480 7049.2480 9329.8183 7250.3919 7049.3146 5.5033e+02
G11 0.7500 0.7500 0.7500 0.7500 0.7500 2.1611e-07
G12 -1.0000 -1.0000 -0.8406 -0.9778 -0.9944 3.6763e-02
G13 0.0539 0.0539 1.0000 0.4201 0.4389 3.0877e-01
G14 -47.7611 -47.7611 -47.7611 -47.7611 -47.7611 1.1884e-06
G15 961.7152 961.7152 961.7152 961.7152 961.7152 1.5995e-07
G16 -1.9052 -1.9052 -1.9052 -1.9052 -1.9052 2.6935e-08
G17 8876.9807 8853.5404 8927.6250 8892.6825 8872.3606 3.3841e+01
G18 -0.8660 -0.8660 -0.5000 -0.7949 -0.8660 1.1442e-01
G19 32.6556 32.6556 43.0772 33.4328 32.6557 2.4105e+00
G21 193.7869 193.7857 195.3955 193.8751 193.7875 3.1752e-01
G23 -400.0000 -400.0001 -85.4114 -387.4165 -400.0000 6.1647e+01
G24 -5.5080 -5.5080 -4.0537 -5.1712 -5.5080 5.4757e-01

WBD 1.7249 1.7249 1.7249 1.7249 1.7249 1.1119e-11
SPD 0.0127 0.0127 0.0159 0.0128 0.0127 6.3846e-04
PVD 6059.7143 6059.7136 51134.6907 8484.2266 6166.7184 9.0159e+03
SRD 2994.4710 2994.4693 2994.4710 2994.4704 2994.4704 4.4867e-04

Table C.10: Convergence statistics of RBFI–ESS–SANS–BTRS (ηeco =
50%, δg = 1, δf = 10, kRES = 5)

Prob. ANFEs AREs TE FR (%) SR (%) ENFEs EAREs

G01 495 351 0.71 100 88 563 351
G02 2496 2455 0.98 100 0 - 2455
G03 1453 1408 0.97 100 100 1453 1408
G04 257 60 0.23 100 100 257 60
G05 94 61 0.64 100 100 94 61
G06 63 37 0.58 100 100 63 37
G07 693 665 0.96 100 100 693 665
G08 106 66 0.62 100 24 440 66
G09 667 636 0.95 100 100 667 636
G10 774 547 0.71 76 28 3636 720
G11 104 48 0.46 100 100 104 48
G12 127 85 0.67 100 36 353 85
G13 432 378 0.87 96 28 1606 393
G14 853 840 0.98 100 100 853 840
G15 146 96 0.66 92 92 173 104
G16 165 104 0.63 100 100 165 104
G17 595 543 0.91 100 52 1144 543
G18 778 683 0.88 100 68 1143 683
G19 1772 1745 0.98 100 48 3692 1745
G21 355 298 0.84 100 48 739 298
G23 282 173 0.61 100 96 293 173
G24 82 26 0.31 100 64 128 26

WBD 185 138 0.74 100 100 185 138
SPD 371 347 0.93 100 96 387 347
PVD 418 221 0.53 100 12 3485 221
SRD 341 256 0.75 100 100 341 256

Average 542.40 471.76 0.74 98.62 72.31 906.29 479.33
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C.6 RESBG (RBFI–ESS–SANS–BTRS–GIS)

Table C.11: Statistical results of the optimal objective function values
obtained by RBFI–ESS–SANS–BTRS–GIS (ηeco = 50%, δg = 1, δf =
10, kRES = 5)

Prob. Target Best Worst Mean Median Std.

G01 -15.0000 -15.0000 -13.8281 -14.9531 -15.0000 2.2964e-01
G02 -0.8036 -0.5338 -0.2386 -0.3429 -0.2985 8.4126e-02
G03 -1.0005 -1.0005 -1.0005 -1.0005 -1.0005 8.4461e-07
G04 -30665.5387 -30665.5397 -30665.5387 -30665.5388 -30665.5387 2.2197e-04
G05 5126.4981 5126.4981 5126.4981 5126.4981 5126.4981 1.6441e-06
G06 -6961.8139 -6961.8139 -6961.8139 -6961.8139 -6961.8139 4.0774e-06
G07 24.3062 24.3062 24.3062 24.3062 24.3062 5.7721e-09
G08 -0.0958 -0.0958 -0.0000 -0.0533 -0.0376 3.2737e-02
G09 680.6301 680.6301 680.6301 680.6301 680.6301 1.6279e-07
G10 7049.2480 7049.2480 8016.0073 7101.9040 7049.2480 1.9816e+02
G11 0.7500 0.7500 0.7500 0.7500 0.7500 2.6457e-07
G12 -1.0000 -1.0000 -0.8028 -0.9662 -0.9864 5.4802e-02
G13 0.0539 0.0539 1.0000 0.3971 0.4389 3.4712e-01
G14 -47.7611 -47.7611 -47.7611 -47.7611 -47.7611 8.4943e-06
G15 961.7152 961.7152 967.5207 961.9916 961.7152 1.2363e+00
G16 -1.9052 -1.9052 -1.9052 -1.9052 -1.9052 1.0532e-08
G17 8876.9807 8853.5416 8927.5978 8884.4230 8868.4329 3.2911e+01
G18 -0.8660 -0.8660 -0.5000 -0.7587 -0.8660 1.2979e-01
G19 32.6556 32.6556 32.7030 32.6586 32.6556 9.9462e-03
G21 193.7869 193.7857 194.1500 193.8308 193.7879 9.4501e-02
G23 -400.0000 -400.0002 -400.0000 -400.0000 -400.0000 4.8238e-05
G24 -5.5080 -5.5080 -4.0537 -5.0436 -5.5080 6.7699e-01

WBD 1.7249 1.7249 1.7249 1.7249 1.7249 1.1061e-11
SPD 0.0127 0.0127 0.0140 0.0128 0.0127 2.5398e-04
PVD 6059.7143 6059.7144 16066.6570 6577.7310 6146.5597 1.9421e+03
SRD 2994.4710 2994.4695 2994.4711 2994.4705 2994.4706 4.1881e-04

Table C.12: Convergence statistics of RBFI–ESS–SANS–BTRS–GIS (ηeco =
50%, δg = 1, δf = 10, kRES = 5)

Prob. ANFEs AREs TE FR (%) SR (%) ENFEs EAREs

G01 427 314 0.74 100 96 445 314
G02 2087 2044 0.98 100 0 - 2044
G03 1241 1170 0.94 100 100 1241 1170
G04 262 70 0.27 100 100 262 70
G05 100 60 0.61 100 100 100 60
G06 65 25 0.38 100 100 65 25
G07 620 591 0.95 100 100 620 591
G08 105 60 0.57 100 28 374 60
G09 646 614 0.95 100 100 646 614
G10 573 450 0.79 92 80 778 489
G11 106 38 0.36 100 100 106 38
G12 134 83 0.62 100 40 334 83
G13 422 371 0.88 100 40 1054 371
G14 1070 1048 0.98 100 100 1070 1048
G15 180 104 0.57 84 80 268 123
G16 202 126 0.62 100 100 202 126
G17 575 503 0.87 100 64 899 503
G18 655 545 0.83 100 52 1259 545
G19 1619 1538 0.95 100 80 2023 1538
G21 366 327 0.89 96 40 952 340
G23 294 198 0.68 100 100 294 198
G24 78 31 0.39 100 68 115 31

WBD 179 138 0.77 100 100 179 138
SPD 393 364 0.93 100 80 491 364
PVD 425 198 0.46 100 4 10627 198
SRD 347 242 0.70 100 100 347 242

Average 506.50 432.66 0.72 98.92 75.08 990.07 435.44
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C.7 RESBGE

(RBFI–ESS–SANS–BTRS–GIS–ETS)

Table C.13: Statistical results of the optimal objective function values
obtained by RBFI–ESS–SANS–BTRS–GIS–ETS (ηeco = 50%, δg = 1, δf =
10, kRES = 5, Imax = 1e− 8,∆min,2 = 0.01)

Prob. Target Best Worst Mean Median Std.

G01 -15.0000 -15.0000 -14.6769 -14.9794 -15.0000 7.2171e-02
G02 -0.8036 -0.6020 -0.2437 -0.3963 -0.3966 1.0349e-01
G03 -1.0005 -1.0005 -1.0005 -1.0005 -1.0005 1.8212e-06
G04 -30665.5387 -30665.5393 -30665.5387 -30665.5387 -30665.5387 1.7696e-04
G05 5126.4981 5126.4981 5126.4988 5126.4981 5126.4981 1.2591e-04
G06 -6961.8139 -6961.8140 -6961.8139 -6961.8139 -6961.8139 2.5056e-05
G07 24.3062 24.3062 24.3062 24.3062 24.3062 9.0971e-07
G08 -0.0958 -0.0958 -0.0000 -0.0486 -0.0291 3.4403e-02
G09 680.6301 680.6301 680.6303 680.6301 680.6301 5.4075e-05
G10 7049.2480 7049.2480 7069.6325 7050.8757 7049.2480 5.2572e+00
G11 0.7500 0.7500 0.7500 0.7500 0.7500 2.5026e-07
G12 -1.0000 -1.0000 -0.8102 -0.9681 -0.9864 4.5660e-02
G13 0.0539 0.0539 1.0000 0.3760 0.4389 2.5044e-01
G14 -47.7611 -47.7611 -47.7602 -47.7610 -47.7611 2.3679e-04
G15 961.7152 961.7152 961.7152 961.7152 961.7152 4.3152e-06
G16 -1.9052 -1.9052 -1.9052 -1.9052 -1.9052 9.2121e-09
G17 8876.9807 8853.5419 8929.6637 8889.4008 8871.1676 3.1802e+01
G18 -0.8660 -0.8660 -0.5000 -0.7915 -0.8660 1.2794e-01
G19 32.6556 32.6556 32.6942 32.6572 32.6556 7.5597e-03
G21 193.7869 193.7859 196.2486 193.9741 193.7906 5.2647e-01
G23 -400.0000 -400.0001 -400.0000 -400.0000 -400.0000 1.9922e-05
G24 -5.5080 -5.5080 -4.0537 -4.9497 -5.5080 6.3702e-01

WBD 1.7249 1.7249 1.7249 1.7249 1.7249 1.1592e-11
SPD 0.0127 0.0127 0.0133 0.0127 0.0127 1.5706e-04
PVD 6059.7143 6059.7143 17375.4773 6660.2567 6121.7221 2.2123e+03
SRD 2994.4710 2994.4701 2994.4711 2994.4709 2994.4710 2.3245e-04

Table C.14: Convergence statistics of RBFI–ESS–SANS–BTRS–GIS–ETS
(ηeco = 50%, δg = 1, δf = 10, kRES = 5, Imax = 1e− 8,∆min,2 = 0.01)

Prob. ANFEs AREs TE FR (%) SR (%) ENFEs EAREs

G01 290 177 0.61 100 92 315 177
G02 2126 2089 0.98 100 0 - 2089
G03 1046 1012 0.97 100 100 1046 1012
G04 148 62 0.42 100 100 148 62
G05 55 43 0.78 100 96 57 43
G06 40 23 0.57 100 100 40 23
G07 485 475 0.98 100 100 485 475
G08 80 54 0.67 100 28 285 54
G09 557 553 0.99 100 92 605 553
G10 532 445 0.84 96 72 769 463
G11 76 51 0.67 100 100 76 51
G12 86 68 0.80 100 16 537 68
G13 360 333 0.92 100 28 1287 333
G14 758 731 0.96 100 84 902 731
G15 101 90 0.88 92 92 120 97
G16 152 121 0.79 100 100 152 121
G17 555 523 0.94 100 60 924 523
G18 503 438 0.87 100 72 698 438
G19 1449 1419 0.98 100 88 1646 1419
G21 327 273 0.84 96 40 851 285
G23 207 138 0.67 100 100 207 138
G24 51 30 0.58 100 52 99 30

WBD 168 154 0.92 100 100 168 154
SPD 404 391 0.97 100 88 459 391
PVD 445 209 0.47 100 8 5568 209
SRD 201 145 0.72 100 100 201 145

Average 430.76 386.27 0.80 99.38 73.38 705.78 387.72
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