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Abstract

Magnaporthe oryzae is the causal agent of rice blast disease, the most widespread and 

serious disease of cultivated rice. Live cell imaging and quantitative 4D image analysis have 

provided new insight into the mechanisms by which the fungus infects host cells and spreads 

rapidly in plant tissue. In this video review article, we apply live cell imaging approaches to 

understanding the cell and developmental biology of rice blast disease. To gain entry to host 

plants, M. oryzae develops a specialised infection structure called an appressorium, a 

unicellular dome-shaped cell which generates enormous turgor, translated into mechanical 

force to rupture the leaf cuticle. Appressorium development is induced by perception of the 

hydrophobic leaf surface and nutrient deprivation. Cargo-independent autophagy in the three-

celled conidium, controlled by cell cycle regulation, is essential for appressorium 

morphogenesis. Appressorium maturation involves turgor generation and melanin pigment 

deposition in the appressorial cell wall. Once a threshold of turgor has been reached, this 
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triggers re-polarisation which requires regulated generation of reactive oxygen species, to 

facilitate septin GTPase-dependent cytoskeletal re-organisation and re-polarisation of the 

appressorium to form a narrow, rigid penetration peg. Infection of host tissue requires a further 

morphogenetic transition to a pseudohyphal-type of growth within colonised rice cells. At the 

same time the fungus secretes an arsenal of effector proteins to suppress plant immunity. 

Many effectors are secreted into host cells directly, which involves a specific secretory 

pathway and a specialised structure called the biotrophic interfacial complex. Cell-to-cell 

spread of the fungus then requires development of a specialised structure, the 

transpressorium, that is used to traverse pit field sites, allowing the fungus to maintain host 

cell membrane integrity as new living plant cells are invaded. Thereafter, the fungus rapidly 

moves through plant tissue and host cells begin to die, as the fungus switches to necrotrophic 

growth and disease symptoms develop. These morphogenetic transitions are reviewed in the 

context of live cell imaging studies.
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Introduction

The blast fungus Magnaporthe oryzae (synonym of Pyricularia oryzae) [1] is able to infect 

more than 50 different grass species, including staple crops such as rice, millets and barley 

[2]. It is estimated that rice blast disease causes losses of around 6% of the global rice harvest 

every year [3] across all rice-growing regions of the world, but epidemics routinely cause up 

to 30% yield losses [4]. Rice blast therefore represents a severe problem in the 85 countries 

where rice is grown [5] and to 50% of the world’s population who depend on rice as their main 

source of calories [6].  

M. oryzae furthermore has the capacity to jump from one host to another. Wheat blast, 

for example, first appeared in 1985 in Brazil following a likely host jump from a grass-infecting 

isolate of the fungus [7]. Increases in global trade since that time, have allowed the disease 
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to spread, emerging in 2016 in Bangladesh, where it now threatens wheat production [8], with 

potential to spread to India, the world’s second largest wheat producer [9]), and most recently 

to Zambia [10]. When considered together with the ongoing rice blast disease pressures 

world-wide, M. oryzae represents a very significant threat to global food security. Learning 

about the basic biology of blast disease is therefore important if new disease-control strategies 

are to be developed.

The blast fungus has been extensively studied over the past three decades, facilitated 

by its genetic tractability and development of a suite of molecular genetic tools and genomic 

resources [11]. Indeed, M. oryzae is now a model system that has revealed important concepts 

associated with fungal-plant interactions [1, 11], such as the molecular basis of appressorium 

morphogenesis [12, 13] appressorium function [4, 14], secretory processes associated with 

effector proteins [15], structure-function relationships governing pathogen recognition by host 

immune receptors [16, 17] and pathogen genome organisation [18, 19].

This video article focuses on a series of investigations that have provided new insight 

into the manner in which the fungus is able to infect rice plants. We start by reviewing the 

morphogenetic changes associated with development of an appressorium on the rice leaf 

surface. We highlight cellular changes accompanying appressorium development and how 

infection-related morphogenesis is controlled by cell cycle progression. We then describe the 

manner in which M. oryzae re-models its cytoskeleton during appressorium maturation, 

leading to formation of the rigid penetration peg, which ruptures the leaf cuticle. Next, we 

outline the biology of plant infection by the rice blast fungus, revealing the extraordinary 

capacity of this pathogen to proliferate within living host tissue and overwhelm plant defences. 

The use of quantitative 4D imaging and high-resolution video microscopy has provided 

unparalleled insights into the biology of this devastating plant pathogen and allows new 

studies to take place with far greater resolution than was previously possible.
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Cell cycle control and regulated autophagy are necessary for appressorium formation 

Conidia of M. oryzae germinate rapidly on the leaf surface, forming a polarised germ tube 

within two hours of contact with a hydrophobic surface. The spore sticks tightly to the leaf 

surface by means of spore tip mucilage, released from an apical compartment upon hydration 

[20]. The germ tube usually emerges from the apical cell of the conidium, extending for a short 

distance (15-30 µm see Video 1 from 2:00), while adhering tightly to the underlying surface, 

before swelling and hooking at its tip to form a specialised infection structure, the 

appressorium (Figure 1A, B, Video 1 from 2:15 to 3:35) [21]. Appressorium differentiation 

requires S-phase to have been completed by the nucleus within the germinating conidial cell 

[22]. A single round of mitosis is then necessary to enable maturation of the appressorium [22, 

23]. As the appressorium matures, its cell wall becomes lined with a thick layer of melanin 

necessary for the development of turgor by the appressorium (Video 1, 4:00-7:50). At the 

same time, glycerol accumulates to molar concentrations to generate hydrostatic turgor due 

to rapid influx of water into the cell. The conidium undergoes an autophagy-dependent process 

leading to cell death, trafficking the contents of all three conidial cells into the appressorium 

(Video 1, conidial cell death is achieved by 10:00), which is necessary for infection [23].  

Conidial collapse has been reported to involve ferroptosis as the ultimate mechanism leading 

to cell death [24]. To investigate nuclear division, a strain of the fungus expressing a Histone 

H1: green fluorescent protein (GFP) gene fusion [23] was imaged during appressorium 

differentiation over a period of 24 hours. After the first round of mitosis (Video 2, 4:00-4:10), 

one daughter nucleus from the germinating conidial cell migrates into the incipient 

appressorium, leaving the remaining nuclei to be degraded by autophagy-mediated conidial 

cell death. (Figure 1C, Figure 2A, B), as shown in Video 2 (conidial nuclei degraded by 13:45) 

[23, 25]. During appressorium maturation, the nucleus in the appressorium then arrests in G1 

before progression through S-phase, which is  a necessary pre-requisite to re-polarisation [26, 

27]. Mutants impaired in melanin accumulation do not mature or trigger the S-phase 

checkpoint. A turgor-dependent cell cycle checkpoint therefore regulates appressorium 

function, leading to cytoskeletal re-organization and penetration peg emergence (Figure 2C) 
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[22]. After re-polarisation and plant infection, the appressorium remains mitotically active [28], 

providing nuclei into nascent invasive hyphae [29].

The Pmk1 MAP kinase signalling pathway regulates appressorium morphogenesis 

The development of appressoria in response to the hard, hydrophobic leaf surface and 

absence of exogenous nutrients also requires the Pmk1 MAP kinase signalling pathway, 

which is critical to invasive growth by M. oryzae [30], a function conserved in many diverse 

pathogenic fungal species [31]. Pmk1 is a homologue of the Saccharomyces cerevisiae Fus3 

kinase associated with pheromone signalling  [32] and the wider pathway links cell surface 

perception with appressorium morphogenesis [12, 31]. As a consequence, pmk1 mutants 

fail to form appressoria, and do not undergo autophagic conidial cell death, as shown in Figure 

2D, E. Pmk1 also, however, plays a role subsequent to appressorium-mediated infection. A 

conditional, analogue-sensitive mutant of Pmk1 (pmk1AS) is, for example, unable to move from 

cell-to-cell at pit field sites, containing plasmodesmata, during rice tissue invasion when 

inactivated by the specific kinase inhibitor 1 napthyl-PP1 (Figure 2F) [32, 33]. Pmk1 is 

activated by a MAPKK (Mst7) and a MAPKKK (Mst11) [34], which in turn are regulated by a 

putative scaffold protein Mst50 [35]. The Pmk1 MAPK cascade controls the activity of a very 

large number of downstream targets involved in development and pathogenesis. The 

transcription factors Hox7 and Znf1, for example, are essential for appressorium formation 

while Mst12 is required for penetration and invasive growth [36-38]. Consequently, the Pmk1 

MAPK pathway is fundamental to development of appressoria, although how it is activated by 

cell surface signals, in particular, is still not well understood.

Septin-dependent re-polarisation of the appressorium

Once formed, appressoria develop enormous turgor of up to 8.0MPa, by developing a 

melanin-rich cell wall (Video 1) that is able to retain glycerol and other polyols. [39] A critical 

threshold of turgor allows the fungus to re-orientate its cytoskeleton, and transition from 

isotropic expansion to anisotropic, polarised, growth during plant infection. A turgor-sensing 
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histidine aspartate kinase, Sln1, is necessary for modulation of turgor, and acts as a regulator 

of the downstream pathways required for appressorium repolarisation [40]. These include, 

most notably, the aggregation of a hetero-oligomeric complex of septin GTPases which form 

a toroidal structure at the base of the appressorium. Septins re-organise F-actin to the precise 

point of plant infection [41]. A M. oryzae strain expressing Sep5-GFP under control of the 

native Sep5 promotor allows visualisation of septin ring dynamics during a period of 0-24 

hours, when conidia are incubated on hydrophobic glass coverslips (Video 3; Figure 3A). 

Septin recruitment to the appressorium pore begins to occur markedly from 7:00 (Video 3) 

and the ring then becomes apparent by 9:48, showing some constriction by 16:00. The ring is 

then maintained in appressoria incubated on a non-yielding surface.  By contrast, on rice leaf 

sheath which can be penetrated by appressoria, the ring forms in the same manner but then 

undergoes further constriction to a diameter of approximately 0.9-1.1m after 28 hpi when the 

penetration peg is formed (Figure 3A, Figure 4, Video 3 and Video 4). A recent study using 

quantitative 4D widefield fluorescence imaging has revealed the spatiotemporal dynamics of 

F-actin and septin ring recruitment and organisation at the appressorium pore [42]. The septin 

ring provides cortical rigidification and acts as a diffusion barrier for the action of polarity 

determinants, endocytic proteins, the exocyst complex, and actin-binding proteins [41, 43]. In 

addition to F-actin, the microtubule cytoskeleton is re-oriented in the direction of cuticle 

penetration [42]. Organisation of septins in the appressorium involves very long chain fatty 

acids (VLCFAs), that act as mediators of septin interactions at membrane interfaces. Inhibiting 

VLCFA biosynthesis therefore prevents rice infection by M. oryzae providing a new potential 

fungicidal target [44]. Assembly of the septin appressorium pore complex is also controlled by 

the Nox2/NoxR complex which regulates septin-mediated cytoskeletal dynamics. The actin-

binding protein gelsolin, for instance, which regulates actin dynamics by uncapping free 

barbed ends to promote actin polymerisation, is a likely target for regulation by ROS [45] and 

an important component of the appressorium pore. We generated a M. oryzae strain 

expressing Gelsolin-GFP under control of the native Gelsolin promotor. Using 3D maximum 

projection, Z-stack images were captured at 24hpi (Figure 3B, Video 5) [45]. Gelsolin forms a 
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highly organised toroidal structure situated at the base of the appressorium (Video 5) in a 

septin-dependent manner [25]. Septin and F-actin ring formation also requires the Pmk1 MAP 

kinase pathway and the putative downstream transcription factors, such as Mst12 [41] and 

Hox7 [37], as shown in Figure 3C. The turgor sensing Sln1 kinase is necessary for determining 

when a threshold of hydrostatic pressure has been reached in the appressorium to enable re-

polarisation. As a consequence, Δsln1 mutants are unable to organise septins at the site of 

penetration and a clear ring structure does not form (Figure 3B). Sln1 acts in parallel with the 

protein kinase C cell integrity pathway to suppress melanin biosynthesis and the cAMP-

dependent signalling protein kinase A pathway, thereby modulating turgor generation [40]. In 

addition, the turgor-dependent S-phase checkpoint is triggered enabling septin mediated plant 

infection (Figure 5) [22, 40]. Another significant factor in enabling the appressorium to function 

is its attachment to the leaf surface. Critically, the force of fungal attachment must exceed the 

force of penetration at the peg, otherwise the cell would simply lift off the surface. It has been 

shown that spermine synthase (SPS1) is important for surface attachment by buffering 

reactive oxygen species generation in the endoplasmic reticulum, thereby facilitating efficient 

mucilage secretion that provides the tight seal necessary for the appressorium to function. In 

the absence of Sps1, appressoria do not adhere tightly to the plant surface, impairing infection 

[46]

The cell biology of invasive growth by M. oryzae

Once the fungus has penetrated the leaf, it develops primary invasive hyphae (IH) that 

invaginate the plant plasma membrane within the first epidermal cell colonized. The 

membrane around the invasive hyphae is known as the extra-invasive hyphal membrane 

(EIHM), but is entirely a plant-derived membrane which tightly surrounds the fungal cell wall 

[47, 48]. The fungus secretes a battery of effectors proteins during this time, which are either 

directed to the apoplast– the space between the fungal cell wall and the EIHM –or the 

cytoplasm of the host cell. Fungal effectors suppress plant host immunity to facilitate 

colonisation of plant tissue (Figure 6A, B) [47, 49]. A membrane-rich structure forms at the tip 
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of the primary IH and the fungus appears to then bud from this point, whereby the membrane-

rich structure forms the biotrophic interfacial complex (BIC), a plant derived membrane-rich 

body located outside the fungal cell wall [15, 50]. Cytoplasmic effectors, such as AVR-Pik and 

Pwl2, accumulate at the BIC and are also translocated into plant cells. A bright single punctum 

of AvrPik-GFP is, for example, observed defining the BIC structure, as shown in Figure 6A. 

By contrast, apoplastic effectors such as Bas4 outline the invasive hyphae contained within 

the EIHM (Figure 6B) when expressed as a Bas4:mCherry fusion protein, although the BIC is 

also visible (Video 6). Secretion of effectors to these distinct destinations is directed by 

different secretory pathways. Apoplastic effectors are secreted in a Golgi-dependent, brefeldin 

A-sensitive manner to the invasive hyphal tip. By contrast, cytoplasmic effectors are secreted 

from the BIC-adjacent cell into the BIC in an exocyst-dependent pathway that is brefeldin A-

insensitive [15]. It has been shown that the TOR (Target-Of Rapamycin) nutrient-signaling 

pathway is important in mediating membrane integrity at the plant-fungal biotrophic interface. 

Deletion of a novel vacuolar protein gene IMP1, led to mutants impaired in BIC formation 

which released apoplastic effectors into the plant host cytoplasm [51]. The deployment of a 

large battery of effector proteins enables M. oryzae to overcome plant immunity and rapidly 

move from the first invaded cell to neighbouring cells, through pit fields. Interestingly, this 

involves a specific morphogenetic transition in which the hyphal tip swells when it makes 

contact with a pit field, followed by severe hyphal constriction to around 360 nm in diameter 

(equivalent to a pit field) and then emergence of a new invasive hypha in the neighbouring 

cell. This morphological transition is regulated by the Pmk1 MAP kinase [33, 47] (Figure 6C, 

and Video 7). When an analogue-sensitive pmk1AS mutant is allowed to infect a host cell and 

then treated with the 1NA-PP1 inhibitor, it becomes trapped within the epidermal cell [15]. The 

Pmk1 MAPK pathway is therefore required for septin-dependent constriction of invasive 

hyphae at cell wall crossing points in the same way as it is necessary for appressorium 

morphogenesis.  Each crossing point can be clearly seen as being preceded by pronounced 

swelling of the invasive hypha (Video 7, 517 min), followed by severe constriction as the hypha 

moves into the next cell (Video 7, 641-713 min). Often mitosis is seen to occur just after the 
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time of cell-to-cell movement [29, 52], which can be visualised by observing tissue invasion in 

a M. oryzae strain expressing H1-GFP (see Video 8, from 34 min, in which the arrow shows 

cell crossing point, with mitosis occurring shortly afterwards by 36 min). Appressorium 

formation and cell wall crossing therefore have many common features requiring swelling into 

a yeast-like hemispherical cell, followed by re-polarisation and emergence of a narrow 

penetration peg or IH peg, respectively. The cell wall crossing structure has been termed the 

‘transpressorium’, because of the resemblance to appressorium formation (see Video 9 in 

which the terminal swelling and infection peg formation can be seen in the 3D image.) [53].  

The regulation of transpressorium formation by Pmk1 and the requirement for septin-mediated 

invasion [15] are consistent with the morphological conservation.

The suppression of immunity responses by M. oryzae enables the fungus to colonise 

leaf tissue very efficiently.  This is illustrated by Video 10 in which a strain expressing a 

nucleolar marker Fib1-GFP is seen to rapidly colonise plant tissue between 24 and 38h after 

inoculation. During this period the number of fungal nuclei observed increases from 18 to 85 

in the field of view shown, highlighting the speed of cell division that accompanies fungal 

invasive growth in this 14h period. A three-dimensional reconstruction of invasive hyphae 

demonstrates the extent of host colonization, as shown in Video 11.  Here, fungal invasive 

hyphae are visualised using fluorescent wheat germ agglutinin, within propidium iodide-

labelled plant tissue.  Invasive hyphae are large bulbous and branched as they spread within 

epidermal and mesophyll cells, but more elongated as they move into vascular tissue. The 

colonisation of tissue is extremely rapid, with plant cells losing viability at the centre of a fungal 

colony as the fungus continually moves into viable cells, maintaining EIHM integrity as it does 

so. The central part of the colonies, which becomes visible as a disease lesion, will then 

produce aerial hyphae that develop into conidiophores bearing sympodial arrays of conidia.
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Conclusions

In summary, live cell imaging studies have dramatically expanded our understanding of how 

rice plants are infected by the blast fungus M. oryzae [22, 40, 41, 43, 45]. Generation of 

functional appressoria provides the gateway for establishing rice blast disease, and it is now 

clear that this is a highly orchestrated developmental process, requiring several important 

prerequisites– such as perception of the hard-hydrophobic leaf surface, and response to cutin 

monomers or components of plant epicuticular waxes [21]. Next, the fungus utilises two key 

signalling pathways, the cAMP protein kinase A pathway and the highly conserved Pmk1 MAP 

kinase signalling pathway, regulated by G- protein signalling in the developing germ tube tip. 

The Pmk1 signalling pathway regulates appressorium formation, maturation, invasive growth 

and infection of plant tissue [32]. Pmk1, for instance, regulates expression of many genes 

encoding secreted fungal effectors proteins implicated in the suppression of host immunity, in 

addition to its better known role in symmetry-breaking and morphogenesis [33]. Appressorium 

development is, however, also tightly coupled to cell cycle progression [4, 22, 26], which is 

itself linked to nutrient availability and the critical role of TOR kinase as a growth regulator that 

is fundamental to the control of autophagy [14, 54, 55]. Once formed, the appressorium 

undergoes further changes and the role of glycerol and melanin biosynthesis in turgor 

generation are well established, but still lacking in specific details, particularly regarding gene 

regulation and the precise enzymatic activities necessary at each step in these pathways. A 

turgor-sensing mechanism has also now been reported for appressoria, linking turgor control 

to re-polarisation of the infection cell.

Many questions, however, remain to be answered regarding operation of an 

appressorium. How does the turgor-sensing complex work in M. oryzae and what are its 

components? How precisely does Sln1 negatively regulate melanin biosynthesis, interact with 

the Pkc1 cell integrity pathway and negatively regulate glycerol production via the cAMP/PKA 

pathway? What is the precise trigger for septin aggregation at the appressorium pore and how 

does this differ from septin recruitment in well-studied processes, such as bud formation in S. 

cerevisiae [56]. 
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Following leaf infection, the biology of tissue colonisation by M. oryzae and the highly 

effective strategies deployed by the fungus to suppress host immunity, both metabolic and 

effector-driven, are becoming clearer [57-59]. The developmental transitions involved in 

traversing cell junctions within a rice leaf are just as striking and developmentally complex, as 

those on the leaf surface. The transpressorium has significant developmental parallels to the 

appressorium, having evolved to traverse the same type of structural barrier. Many 

components are conserved, such as the Pmk1 MAP pathway and septins, for example. 

However, there are clear differences, such as need to move from one viable cell to another, 

all the time maintaining EIHM integrity [33, 47] and the requirement for host immunity to be 

suppressed at plasmodesmata, where such responses are often focused [60]. Critical 

questions include, how does the fungus identify plasmodesmata-rich pit fields as potential 

crossing points and suppress host immune response at these cell junctions? How are effectors 

secreted by invasive hyphae and delivered across the plant plasma? And what is the precise 

role of each effector protein and why is such a large arsenal of effectors necessary to establish 

blast disease  [49]. 

Rapid advances in live cell imaging have therefore revealed the temporal and spatial 

dynamic of plant infection in unparalleled resolution, allowing a much more holistic 

understanding of nature of fungal pathogenesis by fungi such as M. oryzae to emerge. 
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Figure legends

Figure 1. Infection related morphogenesis in the rice blast fungus Magnaporthe oryzae. 

A. Life cycle of M. oryzae. Infection begins when a three-celled conidium lands and attaches 

to the hydrophobic surface of a rice leaf. The spore germinates producing a long narrow germ 

tube that differentiates into an appressorium. The single celled appressorium matures, and 

the three celled conidium collapses and dies in a programmed process requiring autophagy 

and ferroptosis. The appressorium melanises and generates enormous cellular turgor 

pressure. This is translated into mechanical force leading to rupture of the rice leaf cuticle. 

Plant tissue invasion occurs by means of bulbous invasive hyphae that invaginate the rice 

plasma membrane and spread to neighbouring epidermal cells via pit fields containing 

plasmodesmata. Disease lesions develop after 72-96hpi, and sporulation occurs under humid 

conditions. Emergence of new infections occurs once spores are delivered to new host plants 

by dewdrop splash. B. Scanning electron micrograph with false colouring, of a dome-shaped 

appressorium (grey) on the rice leaf surface (green). The contents of the spore are degraded 

by autophagy and trafficked to the appressorium resulting in enormous turgor that is translated 

into a mechanical force to rupture the waxy rice leaf cuticle. C. Time-lapse confocal 

fluorescence images of nuclear division and cell-cycle progression during appressorium 

development in M. oryzae. Images show Guy11 expressing H1-GFP germinated on glass 

coverslips 2-19hpi. Scale bar =10 µm.

Figure 2. Cell cycle control and autophagy are tightly linked processes to appressorium 

development and invasive growth. 

A. Micrograph to show appressorium formation of Guy11 expressing H1-RFP at 24 hpi on 

hydrophobic glass coverslips. At this time, just one daughter nucleus remains in the 

appressorium, as the original three nuclei have been degraded by autophagy-mediated 

conidial cell death.  B. Confocal micrograph of the autophagy-deficient null 

mutant, ∆atg8, expressing H1-GFP at 24 hpi on hydrophobic coverslips. C. Micrographs 

showing completion of DNA replication is necessary for plant infection. Rice leaf 
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sheath observed 48 hpi after inoculation with Guy11 expressing H1-RFP after exposure to 1M 

of the DNA replication inhibitor hydroxyurea (HU) at 10 hpi. Asterisk indicates appressorium 

penetration site. D. Micrographs showing the effect of Pmk1 inhibition on appressorium 

development 24 hpi. Spores treated with 5 μM 1NA-PP1 at 1 hpi. Asterisks indicate 

appressorium penetration sites. E. Micrographs to show autophagosome localization in Guy11 

and ∆pmk1 mutant expressing GFP-Atg8 at 24 hpi on glass coverslips. F. Pmk1 MAP kinase 

is required for cell-to-cell movement during invasive growth. Micrographs at 48 hpi of 

infected CO39 rice leaf sheath tissue treated with 5 μM of NA-PP1 inhibitor at 26 hpi.  Arrows 

indicate attempts to cross to neighbouring cells. Scale bar =10 µm.

Figure 3. Septin dependent network organisation in M. oryzae appressoria.

A. Time course of cortical septin ring formation during appressorium morphogenesis 

in M. oryzae. Micrographs of septin ring organisation visualised by expression of Sep5-GFP 

in the wild type strain Guy11. Conidial suspensions at 5 x 104 mL-1 were inoculated onto glass 

coverslips and images were captured at different time intervals during infection-related-

development (0-22h). B. M. oryzae mutants displaying aberrant septin ring 

aggregation. Micrographs and corresponding linescan graphs to show organisation of Sep5-

GFP expressed in appressoria of Guy11, Δsln1, Δnox2, and ΔnoxR mutants after 20-

24hpi. Scale bar= 10µm. C. Live cell imaging to show cellular localization of Gelsolin-GFP in 

the appressorium pore of Δmst12, Δpmk1 and Δhox7 mutants at 24 hpi on glass 

coverslips. Arrow indicates an incipient appressorium. Scale bar =10 µm.

Figure 4. A toroidal septin network assembles at the appressorium pore on a plant 

surface.

A. Micrographs of septin ring organisation visualised by expression of Sep5-GFP in wild type 

strain Guy11. Conidial suspensions at 5 x 104 mL-1 were inoculated onto rice leaf sheath and 

images captured at 16hpi. On a rice leaf surface, the septin ring assembles in the same 

manner as when appressoria form on hydrophobic glass coverslips, but undergoes further 



14

constriction for penetration peg emergence. B. Micrographs of Sep5-GFP expressed in 

primary invasive as small dynamic puncta, after constriction of the septin ring in appressoria. 

Images were captured after 28hpi.  Scale bar =10 µm.

Figure 5. Completion of S-phase affects localization of septin-associated proteins at 

the appressorium pore.  

Micrographs to show the localization of Sep5-GFP, Chm1-GFP, Gelsolin-GFP and Tea1–GFP 

during appressorium development at 10 hpi, 24 hpi, and 24 hpi with addition of 200 mM of 

Hydroxyurea (HU) at 10 hpi. Inhibiting DNA replication with HU disrupts septin-mediated 

cytoskeletal reorganisation. Scale bar =10 µm.

Figure 6. Visualisation of the expression of cytoplasmic and apoplastic effectors 

during invasive growth.

A. Micrograph of Guy11 expressing cytoplasmic effector Avrpik-GFP 28h post inoculation. 

Avrpik accumulates predominantly at the biotrophic interfacial complex (BIC). Scale bar =10 

µm. B. Micrograph of Guy11 expressing apoplastic effector Bas4-mCherry, accumulating in 

the apoplast 28hpi. C. A time course of invasive hyphal growth. Conidial suspensions of Guy11 

were inoculated onto rice leaf sheath and images were captured every 10 minutes from the 

point of penetration (24hpi) for 16 hours. Scale bar =20 µm.

Video 1. Live cell imaging of appressorium development and maturation.

Conidia were harvested from wild type strain Guy11 and inoculated onto glass coverslips. The 

movie was captured using a Leica SP8 laser confocal microscope 2-15hpi. The movie is a 

maximum projection of Z-stack, frames were taken every 5 min and are displayed at 15 frames 

per sec.  Time scale is in hours: mins. Scale bar =10 µm.
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Video 2. Live cell imaging of cell-cycle progression during appressorium development.

Conidia were harvested from Guy11 expressing H1-GFP and inoculated onto glass coverslips. 

The white arrow indicates the point at which the nucleus inside the incipient cell undergoes a 

single round of mitosis. The movie was captured using a Leica SP8 laser confocal microscope 

0-24hpi. The movie is a maximum projection of Z-stack Frames were taken every 5 min and 

are displayed at 15 frames per sec. Time scale is in hour: min: sec.  Scale bar =10 µm.

Video 3. Dynamic assembly of a septin ring in M. oryzae appressoria. 

Live cell imaging of septin dynamics during appressorium development in M. oryzae. Movie 

shows Guy11 expressing Sep5-GFP during appressorium development on glass 

coverslips. The movie was captured using a Leica SP8 laser confocal microscope 0-24hpi. 

The movie is a maximum projection of Z-stack. Frames were taken every 5 min and are 

displayed at 15 frames per sec. Time scale is in hour: min: sec Scale bar= 10µm. 

Video 4. Septin ring formation on a rice leaf surface.

Conidia were harvested from a M. oryzae transformant expressing a Sep5-GFP gene fusion 

and inoculated onto rice leaf sheath. The animation is a Z-stack captured at 28hpi using a 

Leica SP8 laser confocal microscope and displayed at 1 frame per sec. Scale bar= 5µm. 

Video 5. Gelsolin ring formation in M. oryzae. 

Conidia were harvested from a M. oryzae transformant expressing a Gelsolin-GFP gene 

fusion and inoculated onto glass coverslips. Three-dimensional maximum projection Z-stack 

images were captured at 24hpi using a Leica SP8 laser confocal microscope and displayed 

at 15 frames per sec. Scale bar= 10µm. 

Video 6. Localisation of apoplastic effector Bas4.

Conidia were harvested from a M. oryzae transformant expressing a Bas4-mCherry gene 

fusion and inoculated onto rice leaf sheath. Three-dimensional maximum projection Z-stack 
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images were captured at 28hpi using a Leica SP8 laser confocal microscope. Scale bar= 

10µm. 

Video 7. Tissue colonisation by M. oryzae.

Conidia were harvested from wild strain Guy11 and inoculated onto rice leaf sheath. Invasive 

growth was imaged every 10 minutes for a duration of 16 hours using a Leica SP8 laser 

confocal microscope. Arrows indicate the crossing points of invasive hyphae into neighbouring 

cells. The movie is a maximum projected Z-stack, frames were taken every 10 min and are 

displayed at 7 frames per sec. Time scale is in mins. Scale bar= 20µm. 

Video 8. Nuclear division during invasive growth by M. oryzae

Rice leaf sheath tissue inoculated with Guy11 expressing H1-GFP showing nuclear division 

during cell-to-cell movement by the fungus. Arrow indicates cell crossing point where 

transpressorium forms, which is shortly followed by mitosis and nuclear movement to the 

adjacent cell where it appears close to junction with the next cell (arrowed). The movie is a 

maximum projected Z-stack, with images recorded every 10 min, displayed at 15 frames per 

sec. Scale bar = 10 µm 

Video 9. High resolution imaging of the M. oryzae transpressorium

Conidia were harvested from a M. oryzae transformant expressing a GFP-HDEL gene fusion 

and inoculated onto rice leaf sheath. 3D visualization of M. oryzae within an infected rice cell 

showed the specialised swollen hyphae termed the ‘transpressorium’, generated prior to 

movement into neighbouring cells. The 3D movie is displayed at 15 frames per sec.

Video 10. Large field of view of rice tissue invasion by M. oryzae.

Time lapse movie showing the colonisation of rice tissue by M. oryzae Guy11 strain expressing 

the nucleolar marker Fib-GFP.  Invasive growth was imaged from 24hpi to 38hpi using a Leica 

SP8 laser confocal microscope. The movie is a maximum projected Z-stack displayed at 8 
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frames per sec. Scale bar = 50µm.  Still image shows four frames from the video which 

demonstrate the rapid cycles of nuclear division that occur during invasive growth

Video 11. Three-dimensional rendering of invasive hyphae colonising rice tissue

Fluorescence images highlighting the organisation of WGA-AF488-stained hyphae of M. 

oryzae Guy11 within infected rice tissue stained with propidium iodide. Scale bar = 50µm. 
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