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Abstract 

Every year five million tonnes of ammonia-containing landfill leachate is 

generated from closed landfills in England. Ammonia is toxic to the 

environment and requires costly and environmentally unsustainable 

treatment at municipal wastewater treatment plants. Norfolk County Council 

are pursuing an alternative, more cost effective and environmentally friendly 

leachate treatment using the microbially driven anammox (anaerobic 

ammonia oxidation) reaction in vertical flow constructed wetlands trials. 

Conversion rates of 70-100% NH3 has typically been observed but the 

underpinning microbiology remains unknown, severely restricting process 

optimisation. The aim of this MSc thesis was to develop the molecular tools 

to determine if anammox microorganisms and other essential nitrogen-

cycling microorganisms were present and to investigate their diversity. It was 

hypothesised that such major players in NH3 transformation would be 

detected within the constructed wetland trials. It was further hypothesised 

that differences would be observed in the nitrogen-cycling community 

between unsaturated and saturated layers of the wetlands due to moisture 

content disparity and between unvegetated and vegetated wetlands. The 

trials tested were an unvegetated wetland and a vegetated wetland planted 

with the common reed (Phragmites australis), often found in the salt marsh 

environment which these trials replicate. Primers were optimised for the 

annamox functional marker genes hydrazine synthase (hzsA) and hydrazine 

oxidoreductase (hzo). Additionally, aerobic ammonia oxidising bacteria 

(AOB) and archaea (AOA), which are important in supplying anammox with 

nitrite, were studied by targeting the ammonia monooxygenase (amoA). 

Anammox bacteria, AOB and AOA were detected in both constructed 

wetland trials tested. The diversity of anammox bacteria, AOB and AOA was 

surprisingly consistent across the unsaturated and saturated regions of the 

wetlands and the presence of Phragmites reeds had little effect on anammox 

diversity. Detection of anammox microorganisms by PCR in these trials 

supports future use of this approach which has great scope for optimisation 

and scale-up.  
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1. Introduction 

1.1 Landfill leachate 

1.1.1 Landfill leachate: why do we need to treat it?  

Landfill sites generate 5 million tonnes of landfill leachate annually in 

England alone, the treatment of which is costly and detrimental to the 

environment due to high ammonia content (NCC, 2017). Ammonia is toxic to 

animals, this is due to the toxic build-up in internal tissues and blood, which 

occurs at relatively low concentrations (NCC, 2017; Kadlec and Wallace, 

2009; Water Framework Directive, 2015). To combat this, a novel yet simple 

solution for the treatment of ammonium is needed. There are recently 

implemented specialist wastewater treatment systems which utilise the 

microbially-driven anaerobic ammonia oxidation (anammox) reaction. This 

reaction oxidises ammonium with nitrite into NO2 gas via the intermediate 

hydrazine and is performed by anammox bacteria. These treatment systems 

aim to enhance growth of microorganisms that perform anammox and their 

activity by employing specific environmental conditions which favour the 

anammox bacteria (Annavajhala et al., 2018). The aim of the NCC project is 

to apply the microbial anammox reaction in the treatment of ammonium from 

landfill leachate by using constructed wetlands (CW).  

1.1.2 Generation of landfill leachate  

Landfill leachate is generated by rainfall falling onto the landfill cap and by 

percolation of groundwater up into the landfill (Fig. 1.1). This water 

subsequently mixes with the inorganic and organic degraded waste picking 

up various toxic compounds and generates the leachate. Without adequate 

systems in place, the water will leach out into the surrounding area, known 

as surficial drainage, which accumulates around the base of the landfill or 

discharges into the groundwater. The leachate can also run off into natural 

rivers and waterways causing eutrophication and toxicity to aquatic life 

(Kadlec and Wallace, 2009). This is a huge environmental problem, as 
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ammonium, one of the molecules produced in landfill leachate through the 

anaerobic hydrolysis of organic nitrogen (Morling, 2007), is highly toxic to 

animals. In natural unpolluted waters, small amounts of ammonia at <0.02 

mg/L in natural waterways to 0.39 mg/L in drinking water are usually 

observed. However, the amount of ammonia depends on multiple 

environmental factors, including temperature, pH and salinity. These 

parameters, in particular the pH, determine the ammonia to ammonium ratio 

and therefore the toxicity of the waters, as ammonia is highly toxic in its 

unionised form (NH3) (Kadlec and Wallace, 2009). The Water Framework 

Directive (2015) requires ammonium levels to not exceed 5 mg/L for direct 

discharge to a watercourse, based on a previous evaluation at the Norfolk 

County Council (NCC) for this project (NCC, 2013; Water Framework 

Directive, 2015). Other chemicals, and BOD and COD levels are assumed to 

be at acceptable levels when ammonium is reduced to a concentration 

accepted for discharge into natural waterways (NCC, 2017; Kadlec and 

Wallace, 2009). 

1.1.3 The composition of the leachate 

The composition of landfill leachate changes throughout the lifecycle of a 

landfill site. During the first few days to weeks after a landfill has been 

capped, the landfill environment is highly aerobic, before turning anaerobic. 

The anaerobic phase lasts for the next several months to years as 

methanogenic (methane producing) conditions are established (Morling, 

2007).  

In the early stages of the anaerobic phase, the landfill leachate generates 

high concentrations of soluble degradable organic compounds and often 

maintains an acidic pH, as well as increasing ammonium and heavy metal 

concentrations. 

Later on, the pH will increase and become slightly basic, and heavy metal 

concentration and Chemical Oxygen Demand (COD) will decrease but 

ammonium levels can remain relatively concentrated (Kadlec and Wallace, 
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2009; NCC, 2013; Morling, 2007). This is the stage that the Mayton Wood 

Landfill site is at currently (Fig. 1.1).  

 

1.2 Treatment Site and Treatment Methodology 

1.2.1 Mayton Wood Closed Landfill site and the feasibility of ammonia 

removal 

Mayton Wood is an older landfill site (Fig. 1.2) and at this stage most of the 

biodegradable carbon has been degraded into biogas and dissolved organic 

carbon (DOC) and heavy metal concentrations have been reduced however 

Figure 1.1 Schematic of a typical closed landfill site. Displayed in the middle is the overall 
schematic displaying the landfill hole containing the waste and the pipes for extracting 
gases, leachate and the monitoring systems for landfill leachate, gas and groundwater. To 
the top left, the landfill cap and its components are indicated and to the bottom left, the 
collection pipe for landfill gases and the components beneath the waste and the drainage 
pipe for leachate are shown (Wastenotnc.org, 2019). 
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ammoniacal nitrogen levels remain relatively high at 1.2 g L-1 (70.4 mM) 

(Morling, 2007; Kadlec and Wallace, 2009). Concentrations of ammonium at 

this level are much higher than that usually treated by constructed wetlands 

alone, Kadlec and colleagues (2009) state that wetlands are usually utilised 

to treat sewage (mostly nitrifying) at influent concentrations of up to 200 mg 

L-1 (0.2 g L-1). At higher concentrations treatment usually consists of an initial 

clean-up step (e.g. reverse osmosis), followed by constructed wetlands as a 

final polishing step (Kadlec and Wallace, 2009; NCC, 2013; NCC, 2017).  

 

Previously, when constructed wetlands have been utilised as a singular step 

in the treatment of ammonium-polluted waters, ammonium concentrations 

have been relatively low. However, a previous study by Fannin and 

colleagues (2009) utilised constructed wetlands as a singular treatment 

method for landfill leachate containing similarly concentrated levels of NH4
+ 

at 1.5 g L-1 (Kadlec and Wallace, 2009). Based on this promising result, the 

Norfolk County Council (NCC) are looking to apply the same single-step 

constructed wetland technology to treat landfill leachate at their other sites, 

Norwich 

Mayton Wood: Landfill 

site 

Figure 1.2 Mayton Wood Landfill site, Norwich (google maps, 2020). 
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Costessey and Edgefield, which receive on average ammonium loads of up 

to 2 and 3 g L-1, respectively (NCC, 2017). 

In typical constructed wetlands with low ammonia loads, the nitrogen 

turnover is mostly performed by vegetative uptake. However, at higher 

concentrations of ammonium (>120 g N m-2 yr-1), the nitrogen turnover in 

constructed wetlands becomes microbially-driven (Kadlec and Wallace, 

2009). Given the high ammonia loading at the Mayton Wood closed landfill 

site (at lowest 1,576 g N m-2 yr-1) (Kadlec and Wallace, 2009), it is imperative 

to understand the microbiology underpinning the nitrogen removal in these 

constructed wetlands. 

The NCC currently send the leachate, pumped up from the bottom of the 

landfill site, into temporary storage which is transferred by tanker trucks to 

the Whitlingham wastewater treatment plant. This is costly and incurs a 

surcharge from the disposal contractor when ammonium concentrations are 

above 1.2 g L-1. This means that attention is still required on site and the 

NCC are looking for a passive treatment technology that when left 

unattended will continue to remove ammonium without extra input.  

A feasibility report produced by the NCC (NCC, 2013) indicated a two-stage 

process, due to the high levels of ammonium in the leachate, would be the 

most beneficial. The process would consist of a first step of reverse osmosis, 

followed by constructed wetlands, utilising the anaerobic ammonium 

oxidation (anammox) reaction as a final polishing step. The anammox 

reaction utilises ammonium and nitrite, condensing these to produce 

dinitrogen gas through hydrazine intermediates. Wetlands utilising this 

reaction are a relatively novel approach in the treatment of ammonium and 

the mechanisms with which ammonium is removed is little understood. The 

NCC implemented three trial constructed wetlands, later followed by a further 

six at the Mayton Wood closed landfill site for testing as outlined later in this 

section (pg. 31-35 ‘1.5 Constructed Wetland Trials’). Constructed wetlands 

have been utilised in the treatment of wastewater from various sources, with 

varying pollutants, including pharmaceuticals, laboratory wastewater, 

institutional wastewater, municipal wastewater, landfill leachate and more 
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(UN-HABITAT, 2008). Constructed wetlands were chosen as the most 

effective treatment option for Mayton Wood, due to the cost-effectiveness 

and efficiency of this technology with regards to its operation. 

1.2.2 Why are constructed wetland systems advantageous in the 

treatment of ammonia? 

Constructed wetlands are cost effective in that they are relatively simple and 

do not require a high level of expensive technological input, such as that 

usually required for aeration. The energy consumed in the aeration of 

traditional nitrification/denitrification (biological nitrogen removal (BNR)) 

wastewater treatment systems is that of 6.5 kW h-1 kg-1 N (Gonzalez-

Martinez et al., 2018). In comparison, the energy consumption of a 

constructed wetland is very favourable and typically less than 0.1 kW h-1 m-3 

(Kadlec and Wallace, 2009). Whereas an ammonium removal system 

utilising the anammox process termed the DEamMONification (DEMON) 

System, requires only 1.16 kW h-1 kg-1 N for aeration, which is higher than in 

constructed wetlands, but much less than that required in traditional BNR 

systems achieving 63% savings in comparison (Gonzalez-Martinez et al., 

2018). For constructed wetlands, oxygen is provided by the roots of reeds, 

examples of the genera utilised prior include: Zizania, Phragmites and 

Spartina, which grow in flooded marshes or ponds where oxygen cannot be 

extracted from the soil as the immediate environment is anaerobic. To deal 

with this these plants have evolved an elongated aerenchyma system, the 

aerenchyma is a soft, spongy plant tissue forming an abundance of gas 

conducting spaces (Kacprzyk et al., 2011). This system transports oxygen 

from the atmosphere through their shoots and to their roots, which is then 

diffused into the rhizosphere creating miniature oxic-zones, this would 

provide oxygen at a rate sufficient to support aerobic nitrification (Yamasaki, 

1984; Chen et al., 2008; Koop-Jakobsen and Giblin, 2009). However, this 

might not be the case with the reeds utilised in the constructed wetland set-

up at Mayton Wood. Phragmites australis (otherwise known as the common 

reed) releases oxygen from the roots at a concentration that is said to be 

insufficient to maintain a micro-oxic zone in close proximity to the root, any 
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oxygen that is released by the roots is quickly utilised by aerobic microbiota 

(Yamasaki, 1984; Chen et al., 2008). Oxygen is also provided for the aerobic 

genera in the design of the constructed wetland itself. A vertical flow wetland, 

such as the wetland trials at Mayton Wood (Fig. 1.3 and Fig. 1.9), consist of 

an unsaturated (dry) aerobic layer within the first 30 cm of the treatment 

matrix, the level of which is controlled by the level of the outflow pipe; below 

is an aerobic layer within the saturated (wet) treatment medium, O2 levels 

are dependent on association with the roots of the reeds and the very bottom 

of the treatment medium is the saturated anaerobic zone, formed by the 

distance from the oxidised soil that is closer to the roots (Kadlec and 

Wallace, 2009; Fannin et al., 2009; NCC, 2017).   

 

There are three basic different designs of wetland: Free-Water Surface 

(FWS), Horizontal Sub-Surface Flow (HSSF) and Vertical Flow (VF), of 

which vertical flow wetlands are employed in the NCC trials (Fig. 1.3 and 

1.9). At times, different types of wetlands are used in a sequence, e.g. HSSF 

wetlands can be coupled with VF wetlands to remove organics and 

suspended solids in the initial stage of treatment (Kadlec and Wallace, 

2009). However, the NCC trials consist of vertical flow wetlands alone as this 

Figure 1.3 Schematic of the constructed wetland tanks designed by Fannin et al. (2009). 
This set-up is based on a vertical flow (VF) wetland design that creates stratified layers from 
an aerobic unsaturated layer, to aerobic saturated and lastly anaerobic saturated, with O2 
levels dropping with distance from the reed roots. Also shown at the bottom of the wetland is 
the drainage layer and outflow pipe. The level of the outflow pipe controls the saturation 
level, defining the height of the interface between the unsaturated and saturated levels 
(Fannin et al., 2009; NCC, 2017). 
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set-up was very promising for treating high ammonia loads in a previous 

study (Fannin et al., 2009). 

Constructed wetlands are cost effective, necessitate little maintenance and 

require no external carbon inputs (which promotes growth of specialist 

microorganisms, such as anammox bacteria) (Kadlec and Wallace, 2009). 

The reeds themselves provide small amount of carbon inputs for 

heterotrophs from lost rhizome material during the winter months (Graneli et 

al., 1992). Roots and the surrounding microbial community also produce CO2 

for chemolithotrophs, e.g. anammox bacteria and aerobic ammonia oxidising 

microorganisms (AOMs) (Gonzalez-Martinez et al., 2018; Chen et al., 2008). 

Constructed wetlands are considered more environmentally sound than their 

more engineered counterparts as the technology is based on the natural 

processes found in saltmarshes and the system requires no chemical inputs. 

The wetlands are also a passive treatment, requiring fewer operating hours 

and should require none whatsoever when fully implemented. Treatment is 

carried out on site, meaning that there are no extra costs for waste removal 

and treatment (Fannin et al., 2009; NCC, 2017).  

The constructed wetlands are designed to favour the activity of the 

microbially-driven anammox process. Anammox bacteria do not require 

carbon inputs for energy as anammox cells derive their energy from 

inorganic nitrogen and carbon from CO2 leading to further reduction in costs 

(Gonzalez-Martinez, et al., 2018). The anammox process is also inherently 

better for the environment, when compared with denitrification as anammox 

bacteria does not emit nitrous oxide, a greenhouse gas (making up to 5% of 

the greenhouse effect) that is also responsible for destroying stratospheric 

ozone (Aronson and Allison., 2012), as a part of its metabolism. Instead, the 

anammox process only emits dinitrogen gas as the end-product, which is 

already plentiful in the atmosphere and not a greenhouse gas (Kartal et al., 

2011; Annavajhala et al., 2018). Constructed wetlands have mostly been 

utilised as a final polishing step in the treatment of leachate prior to this but 

have been coupled together with other technologies to achieve greater 

savings and ammonium removal (Kadlec and Wallace, 2009; NCC, 2013). 
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With the exception of the research by Fannin and colleagues (2009) which 

did not examine the microbial communities, there have been no other studies 

using constructed wetlands as the primary treatment of landfill leachate (Fig. 

1.3 and 1.9). The NCC based their constructed wetland trials on work by 

Fannin and colleagues (2009) which demonstrated ammonium removal rates 

ranging between 69-95% from leachate containing ammonium 

concentrations of 1.5 g L-1, but neither the processes nor the microorganisms 

responsible for ammonium removal were investigated in this paper. This 

current study is therefore important and novel in gaining insights into the 

function and microbiology of constructed wetlands as a single-step 

treatment.  
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1.3 Microbiology and functional marker genes of ammonia 

oxidation and anammox 

 

1.3.1 The nitrogen cycle 

Nitrogen is essential for all life on Earth as it is required by all living 

organisms for amino acids, nucleic acids and other nitrogenous compounds. 

Nitrogen exists in several different forms in the environment, these forms can 

be converted from one to another in microbially-mediated reactions, which 

together constitute to the global nitrogen cycle (Fig. 1.4). The reactions 

within the nitrogen cycle are performed by specific microorganisms. Microbial 

nitrogen transformations include: biological nitrogen fixation of gaseous 

Figure 1.4 The Nitrogen Cycle. The processes by which various nitrogenous compounds are 
transformed from one form to another (Sparacino-Watkins et al., 2014). 
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nitrogen into soil, mineralisation from soil organic matter into ammonium, 

nitrification which transforms ammonia to nitrite and nitrite to nitrate and 

denitrification and anammox which return nitrogen back into atmospheric 

forms such as nitrous oxide and dinitrogen gas (Robertson and Groffman, 

2015; Lehtovirta-Morley et al., 2016; Zhang et al., 2018; Kuenen, 2008). In 

constructed wetlands, nitrogen turnover consists of six processes whereby 

nitrogen is taken up or lost. First is nitrification, coupled with secondly, 

denitrification or anammox which releases nitrogen in atmospheric forms 

N2O and N2. Thirdly, unionised ammonia is relatively volatile and can be lost 

to the atmosphere by a process called volatilisation, particularly when 

environmental pH is above 9.3. Fourthly, adsorption, whereby the ionised 

form of ammonium adheres to the matrix of the constructed wetland and as 

nitrification proceeds, the equilibrium will be maintained by adsorbed 

ammonium being desorped. The fifth is by plant uptake, which drives 

nitrogen uptake when the ammonia level is below 120 g N m-2 yr-1 (Kadlec 

and Wallace, 2009). A sixth step is ammonification i.e. the mineralisation of 

organic nitrogen to ammonia (Kadlec and Wallace, 2009; Vymazal, 2007). 

Sometimes nitrogen can become buried, this is where organic nitrogen is 

incorporated into the detritus of the wetland, becoming unavailable for 

additional nutrient cycling through the process of peat formation and burial 

(Vymazal, 2007).  

Within the microbial nitrogen cycle, ammonia can be transformed by two 

processes: anammox and aerobic ammonia oxidation, which is the first and 

rate-limiting step in nitrification. The microorganisms responsible for 

these processes are the main focus of this study. 

1.3.2 Functional marker genes of ammonia oxidation and anammox 

During nitrification, ammonia is first oxidised to nitrite (ammonia oxidation) 

and nitrite is subsequently oxidised nitrate (nitrite oxidation). There are three 

groups of microorganisms which carry out ammonia oxidation: canonical 

ammonia oxidising bacteria (AOB), ammonia oxidising archaea (AOA) and 

comammox Nitrospira. AOB and AOA oxidise ammonia to nitrite, whereas 
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comammox microorganisms oxidise ammonia to nitrate. Since nitrite is an 

essential substrate for the anammox process and AOA and AOB produce 

nitrite to feed into anammox, this study focused on studying AOB and AOA 

rather than comammox.   

AOB and AOA perform the first step in nitrification, the oxidation of 

ammonium into nitrite: 

(Eq. 1) 

The first step of ammonia oxidation is the oxidation of ammonium to the 

intermediate hydroxylamine: 

(Eq. 2) 

This is catalysed by the membrane-bound enzyme ammonia 

monooxygenase (AMO). After this step, this is further oxidised to nitrite, 

which is then utilised in the anammox reaction. The oxidation of 

hydroxylamine to nitrite produces four electrons, two of which are recycled 

and utilised in the oxidation of ammonium in ammonia oxidation (equation 2) 

and the other two are utilised to generate energy. Since AMO is a key 

enzyme in aerobic ammonia oxidation, it was selected as the first functional 

marker gene in this study to examine the presence and diversity of AOA and 

AOB. Detection of AMO and thus the presence of aerobic ammonia oxidisers 

would indicate that nitrification was occurring, which in turn would suggest 

that it is possible for the anammox process to take place (Lehtovirta-Morley 

et al., 2016; Robertson and Groffman, 2015). 

Anammox (anaerobic ammonia oxidation) is carried out by a distinct group of 

Planctomycetes termed anammox bacteria which convert ammonia and 

nitrite into dinitrogen gas via nitric oxide and hydrazine intermediates under 

anoxic conditions (fig. 1.4). Notably, anammox does not produce the 

greenhouse gas nitrous oxide. This is in contrast to denitrification (sequential 

reduction of nitrate into dinitrogen via nitrite, nitric oxide and nitrous oxide), 
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which has made anammox an attractive choice for ammonia waste treatment 

(Robertson and Groffman, 2015). 

The anammox reaction occurs in three steps (with (4) being the overall 

reaction): 

 

The first reaction is the condensation reaction of nitrite to nitric oxide, which 

is then utilised in the second reaction, where the simultaneous condensation 

of nitric oxide with ammonium to produce hydrazine occurs. This is 

performed by hydrazine synthase (HZS) (reaction (2)). The third step is the 

last, in which hydrazine is oxidised to dinitrogen gas by the second marker 

gene, hydrazine oxidoreductase (HZO) (reaction (3)) also quoted in the 

literature as hydrazine dehydrogenase (HDH). The fourth equation is the 

overall anammox reaction (Kartal et al., 2011; Kuenen, 2008; Van Niftrik and 

Jetten, 2012). In this study, two functional marker genes for anammox were 

used: hydrazine synthase (hzs) and hydrazine oxidoreductase (hzo). 

1.3.3 Discovery, cellular features and enzymology of anammox bacteria 

While the nitrogen cycle has been studied for over a century, the anammox 

process was a recent discovery of 20 years ago. Despite the recent 

discovery, anammox is hugely important to the nitrogen cycle and has been 

estimated to account for up to 50% of nitrogen turnover in marine 

environments, estimated recently to be closer to 23-30%, with a lesser role in 

groundwater (18-36%); in paddy soils (4-37%); and in lakes (9-15%) (Van 

Dongen et al., 2001; Sonthiphand et al., 2014). At the time that the anammox 

process was discovered, it was believed that ammonium was chemically 

inert and only the AMO enzyme of AOMs were capable of oxidising this 

compound. However, in 1992 a group from Gist Brocades Fermentation 

Company found that the disappearance of ammonium was taking place at 
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the expense of nitrate with a clear increase in dinitrogen production and the 

process was termed anaerobic ammonium oxidation or “anammox”. These 

researchers, however, were unable to enrich, grow and identify the 

organisms responsible. In 1995 a flow-through system that was comprised of 

a fluidised bed reactor, continuously fed with mineral medium containing 

ammonium and nitrite (instead of nitrate) was used to produce enrichments 

containing the bacteria responsible for anammox. Efforts into cultivating and 

purifying these organisms has been difficult, this is due to anammox bacteria 

having extremely slow growth rates, which are of approximately two weeks 

doubling time. Further to this, PCR amplification revealed several 

mismatches between the 16S rRNA universal primers and the anammox 16S 

rRNA sequence. Phylogenetic research confirmed this species as a member 

of the Planctomycetes, a phylum known for its unusual membrane-bound 

sub-cellular compartments (Kuenen, 2008). 

Anammox bacteria, like other planctomycetes, have membrane-bound, sub-

cellular compartments. However, anammox cells contain an anammox-

specific, membrane-bound compartment termed the “anammoxosome”, 

where the anammox reaction occurs. This contains hydrazine 

oxidoreductase which is loosely membrane-bound as well as hydrazine 

synthase (Fig. 1.5). The anammoxosome is composed of concatenated 

cyclobutane rings called ladderane lipids and is important for containing and 

compartmentalising the toxic intermediates of the anammox reaction (Van 

Niftrik et al., 2004; Van Niftrik and Jetten, 2012).  
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1.3.4 HZS and HZO enzymes – functional marker genes for anammox 

The anammox reaction occurs in three steps, firstly nitrite (formed by the 

AOB/AOA in aerobic ammonia oxidation) is taken by nitrite reductase (NIR) 

to form nitric oxide. Secondly, the first of the enzymes targeted by key 

marker gene primers in this study, HZS, completes the second step with the 

simultaneous condensation of nitric oxide with ammonium to produce 

hydrazine. Lastly, the second enzyme targeted by key marker gene primers 

in this study, HZO, takes hydrazine and oxidises it to dinitrogen gas, a little 

bit of nitrate is also formed as a part of their metabolism. 

The first marker gene utilised in this study in the search for the bacteria that 

perform anammox, Hydrazine synthase, (Fig. 1.6) consists of a dimer each 

containing a heterotrimer of alpha, beta and gamma subunits. Each 

heterotrimer contains four haems, two in both the alpha and gamma subunits 

and one zinc ion as well as several calcium ions (Fig. 1.7). In two half 

HZS 

HZO 

Figure 1.5 Anammoxosome, the powerhouse of the cell where ammonium and nitric oxide 
are oxidised in various steps to dinitrogen gas generating protons for ATP production (Kartal 
et al., 2011). 
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reactions (shown in reaction (2)) HZS combines nitric oxide (+II oxidation 

number) and ammonium (-III oxidation number). It does so by reducing nitric 

oxide to hydroxylamine (-I oxidation number) within the gamma subunit 

(utilising 3 electrons from a redox partner), this enables the oxidation number 

of -II of the final product hydrazine to be reached. In the second part of the 

reaction, hydroxylamine diffuses from the gamma subunit into the alpha 

subunit active site, ammonia from ammonium performs a nucleophilic attack 

on the nitrogen molecule of hydroxylamine to form hydrazine (Kartal et al., 

2011; Dietl et al., 2015). 
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Figure 1.6 Surface view of hydrazine synthase, which consists of two heterotrimers of alpha, 
beta and gamma subunits in a crescent shape (Dietl et al., 2015). 
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The second marker gene utilised in the search for the presence of anammox 

bacteria, hydrazine oxidoreductase, is a member of the octaheme 

cytochrome c hydroxylamine oxidoreductase protein family. It deviates from 

other proteins in this family in that it oxidises hydrazine only and is unable to 

oxidise hydroxylamine, whereas both hydroxylamine oxidoreductases from 

Kuenenia stuttgartiensis and Nitrosomonas europaea can oxidise both 

hydroxylamine and hydrazine. HZO performs reaction (3) producing 4 

electrons and 4 protons in the oxidation of hydrazine, the most powerful 

reductant in nature, to dinitrogen gas (Maalcke et al., 2016). These four 

electrons then go on to drive the reduction reactions (1) and (2) and the 

protons are utilised in the production of ATP (Kartal et al., 2011). The 

proposed catalytic cycle of HZO involves two steps: the first step is the 

oxidation of hydrazine to a diazene derivative, this reaction releases two 

electrons; the second step is the further oxidation of diazene to dinitrogen 

gas, again yielding two electrons (Fig. 1.8). Hydroxylamine is a side-product 

of this reaction that can inhibit HZO (Maalcke et al., 2016). 

Figure 1.7 Schematic diagram indicating the main residues involved in the catalytic function 
of HZS. The gamma subunit contains the active site for the first half reaction, transforming 
nitric oxide to hydroxylamine and the alpha subunit contains the catalytic site where 
hydroxylamine and ammonia are condensed to form hydrazine (Dietl et al., 2015). 
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1.4 Diversity and distribution of anammox bacteria and aerobic 

ammonia oxidisers 

Understanding how environmental parameters shape the ammonia oxidising 

microbial communities is crucial for optimising and enhancing the landfill 

leachate treatment process in constructed wetlands. There is a strong body 

of evidence to suggest that salinity, pH and ammonia concentration are 

some of the major environmental drivers determining the community 

diversity, abundance and activity of both aerobic ammonia oxidisers and 

anammox microorganisms (Yang et al., 2014; Pommerning-Roser and 

Figure 1.8 Proposed schematic of the catalytic activity of HZO (Maalclke et al., 2016). 
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Koops, 2005; Humbert et al.2010, Sonthiphand et al., 2014; Koop-Jakobsen 

and Giblin, 2009).  

Of the anammox microorganisms, representatives of genus Scalindua are 

typically found in marine habitats (Sonthiphand et al., 2014). Previously 

characterised constructed wetlands contained anammox bacteria belonging 

to genera Brocadia, Jettenia and Anammoxoglobus (Zhu et al., 2011), which 

have also been repeatedly found in wastewater treatment plants alongside 

genus Kuenenia and Brocadia (Sonthiphand et al., 2014). Salinity appears to 

be a key driver of anammox microbial communities (Sonthiphand et al., 

2014; Koop-Jakobsen and Giblin, 2009). The constructed wetland 

technology (Fig. 1.3 and 1.9) is a system designed to replicate and enhance 

the natural occurring microbiological processes in salt-marsh systems as the 

conditions in this environment and mature landfill leachates are highly 

comparable. However, landfill leachate is less saline than in salt marshes, 

measured at 9,542 ppm and <35,000 ppm (just below seawater), 

respectively (Koop-Jakobsen and Giblin, 2009; Boorman, 2003). The 

stratified layers of a constructed wetland are expected to enhance anammox 

activity as it has been reported that in meromictic rivers, where sediments do 

not mix, there are a greater abundance of anammox bacteria. Further to this 

it is found in agricultural soils, where soils are consistently disturbed and 

aerated, there is little to no anammox activity found (Fannin et al., 2009; 

Kadlec and Wallace, 2009; Long et al., 2012; Sonthiphand et al., 2014; 

Humbert et al. 2010). Globally across wetlands, drylands, groundwater 

aquifers and snow it has been indicated that Candidatus Brocadia is the 

dominant genus on a global scale accounting for 80.0% to 99.9% of the 

retrieved sequences in different habitats (Wang et al., 2019). The genus 

Candidatus Jettenia has been found to be the second most abundant group 

detected, accounting for no more than 19.9% in the same environments 

(Wang et al., 2019). Drylands, wetlands and groundwater aquifers indicated 

similar profiles in community diversity and composition, with snow showing 

the most difference. 
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Supply of nitrite has been implicated as the limiting factor for anammox in 

aquatic sediments (anammox microbes can form a symbiotic relationship 

with some nitrate reducing/sulphur oxidising bacteria that can perform 

denitrification, producing nitrite). Association between nitrifiers and anammox 

bacteria may be weak in low permeability sediments (clays, estuarine mud), 

this is because much of the nitrite produced in the upper few millimetres of 

the bed will mostly diffuse into the overlying water or be fully oxidised to 

nitrate before reaching the sub-oxic layer where the anammox bacteria 

reside (Lansdown et al., 2016).  

AOB communities in soil ecosystems normally consist exclusively of β-

proteobacterial genera Nitrosospira and Nitrosomonas, of which in general 

Nitrosospira normally predominates over Nitrosomonas (Pommerning-Roser 

and Koops, 2005). Whereas γ-proteobacterial AOB of the genus 

Nitrosococcus are found in highly saline habitats such as marine 

environments (Pommerening-Roser and Koops, 2005). Some Nitrosomonas 

strains are exceptionally well adapted to high ammonia concentrations, and 

these microorganisms are abundant members of nitrifying communities in 

wastewater treatment plants (Pommerning-Roser and Koops, 2005; Du et 

al., 2016; Yamamoto et al., 2010). In comparison AOA have been usually 

considered to be adapted to low ammonia concentrations (Sauder et al., 

2017; Schleper and Nicol, 2010; Yin et al., 2018) however recently there 

have been reports of AOA genera that are adapted to high ammonia 

concentrations (Lehtovirta-Morley et al., 2016; Sauder et al., 2017). The 

Nitrosocosmicus genus which has been isolated from soils and wastewater 

treatment systems and other AOA genera have also been detected in 

multiple industrial and municipal wastewater treatment plants which are high 

in ammonia (Mussmann et al., 2011). Furthermore, AOA have been reported 

in paddy rice wetlands planted with a species closely related to Phragmites 

australis (Chen et al., 2008). Soil AOA communities are typically dominated 

by the genus Nitrososphaera in neutral pH and the genus Nitrosotalea in 

acidic pH soils (Gubry-Rangin et al., 2011). AOA affiliated with genus 

Nitrosopumilus are found in marine habitats (Alves et al., 2018).  
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1.5 Constructed wetland trials 

Norfolk County Council initiated the anammox constructed wetland trials at 

Mayton Wood in 2013 (Fig. 1.9), the set-up of which is indicated in Fig. 1.10. 

Each of the constructed wetlands measures 1 m3 (soil matrix: 1 m (height) x 

1 m (width) x 77 cm (depth of treatment medium)). Each trial has an 

artificially maintained water table at the depth of approximately 30 cm to 

create an aerobic and anaerobic layer.  The wetlands receive leachate from 

the top.  Constructed wetlands contain a treatment medium of sand and 

compost providing a natural seed population through the compost and 

providing a large surface area for contact between leachate and treatment 

medium. The Compost was sourced from a surface water treatment system 

at a recycling centre and sand to aid in water flow, sourced from a local 

quarry. In Constructed wetlands 1-3, matrices consist of a 1:1 ratio of sand to 

compost. Ponding and clogging problems were observed in the first 

constructed wetland trials and bromide tracer experiments were performed 

indicating that 30% of influent leachate would take preferential pathways 

through gaps created by the piezometers and down the sides of the tank. 

Therefore, in the rest of the constructed wetland trials, the sand to compost 

ratio was changed to 2:1 respectively to provide the correct hydraulic 

properties to improve influent leachate and treatment medium contact. At the 

very bottom of the constructed wetlands is a basal drainage layer consisting 

of gravel, along with an outflow pipe, the height of which determines the 

saturation level in which the VF wetland system depends upon. 
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Figure 1.9 Schematic of the Constructed Wetland trials implemented by the NCC at Mayton 
Wood, based off the constructed wetland trials in Fannin and colleagues (2009). There are 8 
Constructed Wetlands in total (1 m in container height and width and 77 mm in treatment 
medium depth), each receiving different leachate loads and volume (NCC, 2017). IBC – 
Intermediate Bulk Container. 
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Trials (termed Reed Beds) receive different volumes and concentrations of 

landfill leachate to identify optimal conditions for leachate loading, the 

concentration is calculated by varying ratios of clean water to leachate water. 

Trials are also testing the suitability of a two-stage treatment, where effluent 

from one wetland is fed into another wetland. One of the trials is unplanted 

(termed Biobed) to test the effect of vegetation on ammonium removal, the 

others are planted with the reed Phragmites australis. Ponding (i.e. a 

situation where the leachate can no longer pass through the wetland and 

accumulates on top) has occurred on multiple occasions but the reason for 

this is currently unknown. When sampling from the Constructed Wetland 

trials in January, the NCC were measuring a number of parameters onsite. 

Firstly, temperature was measured by probe to the middle of each 

constructed wetland trial; conductivity and chloride ion content was 

measured directly from landfill leachate and dosing tanks/effluent tanks by 

conductivity/chloride water test meter and pH and ammonium/nitrate by 

colorimetric strips. Landfill leachate (100%) was tested weekly at a 

Figure 1.10 Constructed Wetland trials – trials imaged in August of 2019, polytunnel added 
at this time (top of image) – (A) Reed Beds 1-8 and Biobed 12 is out of frame. (B) All Reed 
Beds (1-8) and Biobed 12 are in view (Biobed 12 being closest on the right) and pump (at 
bottom) for drawing out effluent. 

A B 
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laboratory, here they tested for ammoniacal nitrogen NH4
+-N, Biological 

Oxygen Demand (BOD), Chemical Oxygen Demand (COD), Chloride ion 

content (Cl-), conductivity (µS/cm), nitrite, pH, Total Organic Carbon (TOC), 

Total Oxidised Nitrogen (TON). A further extended suite of all hazardous and 

non-hazardous pollutants present in the leachate are carried out every six 

months. Currently, nitrogen species are measured weekly in the laboratory 

and further measurements of BOD and COD are measured monthly in the 

same laboratory (Table 5.1 and 5.2, in supplementary info indicate these 

measurements in Reed Bed 6 and Biobed 12 at time of sampling) and an 

extended suite of other chemicals is still carried out bi-annually (not shown). 

Onsite measurements consist of analysing conductivity by conductivity meter 

and dosing volumes are measured to ensure dilutions are correct. Trials 

have been reasonably successful in ammonium removal, particularly since 

the addition of the poly-tunnel, percentage of removal is estimated in the 

period from July to end of September 2019, as summarised in Table 1.1. 
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Table 1.1 Key features of the constructed wetland trials by NCC (correct on December 
2019) 
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1.6 Project objectives 

The project aims to characterise the microbial community responsible for the 

cycling of nitrogen in the constructed wetland trials. Although the previous 

study by Fannin and colleagues (2009) demonstrated successful removal of 

ammonia with the set-up used in the NCC trials, the work did not examine 

the microbiology of the ammonium removal process. This project will address 

this major knowledge gap in landfill leachate treatment in constructed 

wetlands. Given the high ammonium production and loading at our study 

site, ammonium removal will be driven microbially, as opposed to by uptake 

from the reeds, or by evapotranspiration (Kadlec and Wallace, 2009). This 

highlights the importance of understanding the microbes involved in nitrogen 

cycling, particularly those in the process of removing ammonium and their 

activity. 

It is hypothesised that microorganisms responsible for the process of 

ammonium removal: ammonia oxidising archaea/bacteria and anammox 

bacteria will be detected within the constructed wetland trials. 

It was further hypothesised that given the difference in moisture content 

between the unsaturated and saturated layers these sections would likely be 

distinct in the microbiology community they hosted. The same would be 

difference would be observed between the vegetated and unvegetated 

wetlands. 

 

The aim of this study: 

1. Optimisation of molecular tools for studying nitrogen cycling 

microbial communities by utilising key marker genes, amo, hzs, 

and hzo. The enzymes targeted by the marker gene primers are 

involved in the major steps of the nitrogen cycle related to anammox, 

the presence of HZS and HZO indicate that anammox bacteria are 

present as these genes are directly involved in their metabolism. The 
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genes that are involved in aerobic and anaerobic ammonia oxidation 

are indicative of the presence of these microorganisms. 

2. Investigate the presence of anammox organisms and aerobic 

ammonia oxidizing microorganisms in the constructed wetland 

trials using the newly optimised molecular tools. 

3. Determine the diversity of the key nitrogen cycling 

microorganisms in the trials by sequencing and DNA 

fingerprinting.  
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2. Materials and Methods 

2.1 Description of the study site 

Soil was sampled from two constructed wetland trials: Reed Bed 6 (RB6) 

(22/01/19) (Fig. 2.1) and again on the 12/3/19 along with Biobed 12 (Bb12). 

Reed Bed 6 (RB6) was chosen as it was ponding at the time of sampling and 

was due to be decommissioned. Ponding occurs when the influent landfill 

leachate cannot drain through the matrix and consequent additions of 

influent landfill leachate build up on the matrix surface, leaving some parts of 

the matrix dry beneath. As RB6 was due to be decommissioned (at this time) 

and the method of sampling was yet to be perfected, it was decided to 

attempt sampling from here. A core of 5 cm width, to a depth of 45 cm was 

retrieved, the soil corer could not reach deeper as the corer reached a dry 

patch where the constructed wetland matrix had compacted.  
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Figure 2.1 Soil core sample taken from RB6. (A) Constructed wetland (RB6) set-up with soil 
corer imaged (highlighted) in the center. (B) the soil corer was measured to have reached a 
depth of 45 cm. (C) Outlined from left-to-right are the layers from top-to-bottom that were 
sampled. 
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In sampling, a single core was taken (Fig. 2.1 (A)), retrieving DNA from 4 

different depths (Fig. 2.1 (C)): top unsaturated aerobic (0-30 cm), interface 

zone top, interface zone bottom and bottom saturated aerobic (below 30 cm) 

– most likely to be aerobic as the corer made it 15 cm into the saturated zone 

and did not pass the roots. In choosing soil from the corer, it was decided to 

take soil only from the points that were clearly defined by the soil texture 

(Fig. 2.1 (C)). The top aerobic unsaturated soil was dry and crumbling, the 

saturated aerobic soil was wet and stuck together with bits of root. The 

interface was sampled from the soil between these two distinctly different 

textures.  

At the time of sampling (22/1/19), RB6 dosing of landfill leachate had been 

reduced to an estimated 5 g day-1 of NH3 at 8 L day-1 of landfill leachate 

(previously an estimated 18.75 g day-1 of NH3 at 30 L day-1 of landfill 

leachate) and ammonia removal had improved from removing half or less 

NH3 to removing 4 g day-1 converting 82% of all influent NH3 and removing 

50% of total nitrogen (averaged over 3 months, between October-December 

2018). Ammonia removal is measured by an outside laboratory (Envirolab 

currently, previously National Laboratory Service) measured in the influent 

and effluent water – unsure of method utilised. 

Constructed wetland trials were further investigated by obtaining more soil 

samples on the 12/3/19. RB6 was selected again as it was no longer ponding 

also to further test how seasonal changes may affect the microbiology of the 

constructed wetland. At time of sampling (and currently) dosing levels of 

landfill leachate in RB6 were of an estimated 6-10 g day-1 of NH3 (8 L day-1 of 

landfill leachate) the trial was converting 81 % of all influent NH3 and 

removing 64% of total nitrogen. It was also a first step reed bed, in which its 

effluent was fed into another constructed wetland (RB5) for further NH3 

treatment. Biobed 12 (Bb12) was also chosen as this trial did not contain 

vegetation (Phragmites australis) and was built with only the same sand to 

compost matrix of 60% to 30%, respectively, as the other trials. This trial 

would thus provide insights into the effect of plants in establishing and 

maintaining the microbial community. At this time Bb12 was converting only 
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32% of all influent NH3 and removing 20% of all influent Nitrogen, Bb12 was 

also being dosed an estimated 10 g day-1 of NH3 or 100% leachate at 10 L 

day-1 of landfill leachate. Influent and effluent water samples were taken, first 

to determine if the leachate contained the same community of microbes as 

determined in the soil matrix, this could indicate that the influent leachate 

was perhaps seeding the constructed wetlands. The effluent was tested to 

determine if these microbes would continue to convert NH3. Influent and 

effluent samples were taken from RB6 and Bb12 to gain understanding to 

seeding and wash-off of microorganisms in these treatments and RB8 was 

chosen as this trial was fed half leachate, half its own effluent. The aim was 

to determine if the AOB and AOA diversity within RB6 and Bb12 soil samples 

would be similar to those found in the influent and effluent samples, and 

lastly if RB8 was seeding itself with its own effluent.  

2.2 Soil sampling and processing 

Different methods of sampling were tested to improve sampling efficacy. The 

aims of testing were to, firstly, diminish disturbance of the constructed 

wetland matrix/vegetation and secondly in finding the best method to 

accurately sample each section of the constructed wetland. Soil was 

sampled from the top of the constructed wetland (RB6) using a corer 5 cm in 

diameter (January 22/1/19) and in March (12/3/19) RB6 and Bb12 were 

sampled from the top by a smaller 3 cm open-faced soil auger – utilising a 

smaller diameter corer for less disturbance of soil matrix. Although the 

constructed wetlands were 77 cm deep, due to the roots and the compaction 

of the soil matrix, it was only possible to sample the top-most 45-50 cm in 

both sampling attempts. These contained two visually distinct sections (as 

described in section ‘2.1 Description of Study Site’ and visualised in Fig. 

2.1), which were separated, mixed in a plastic zip-lock bag by crushing, and 

stored at -4˚C until analysis – within a week prior to extraction. For influent 

and effluent water, 1 L was sampled and concentrated by centrifugation at 

3,000 rpm for 30 mins. Supernatant was discarded and the resultant pellet 

and stored at -4oC until used for molecular analysis – within a week prior to 

extraction. 
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For further sampling, ports have been introduced at the side of constructed 

wetland at each of the four layers as described above in ‘1.5 Constructed 

Wetlands’ (Fig 1.9, pg. 25). Each port enables sampling by a 2.5 cm 

diameter open-faced auger, which is pushed in from the side, meaning a 

subsection of each layer across the width of the constructed wetland is taken 

from a specific height. This makes it easier to determine which section is 

being sampled (aerobic unsaturated above the water table; aerobic saturated 

below the water table in close proximity to roots; interface between these two 

sections; lastly the anaerobic saturated layer below the water table but not in 

association with the roots). The first port hole for sampling the aerobic 

unsaturated layer is placed above the interface (water table), determined by 

the outlet height as shown by in ‘1.5 Constructed Wetlands’ Fig. 1.9 (pg. 

25). The next port hole is placed exactly at the level where this same outlet is 

and samples the interface level. The third port hole is placed below this in the 

saturated aerobic zone and the last port hole is placed at the very bottom of 

the constructed wetland, where it is expected the saturated soil will be 

anaerobic.  

2.3 DNA extraction 

2.3.1 Soil and water DNA extraction 

Two types of DNA extraction procedures were used and compared in this 

work. The first DNA extraction method was carried out as described by 

Griffiths and colleagues (Griffiths et al., 2000). Briefly, this procedure 

consisted of bead-beating a 0.5 g soil sample in the presence of CTAB-

containing buffer (10% (w/v) CTAB, 0.7 M NaCl and 240 mM potassium 

phosphate buffer (pH 8.0)) and phenol:chloroform:isoamyl alcohol (25:24:1) 

(pH 8.0). Aqueous layer containing the DNA was further cleaned by 

chloroform:isoamyl (24:1) treatment. DNA was precipitated using 1.6 M 

NaCl, 30% (w/v) polyethylene glycol (PEG6000) and 70% (v/v) ethanol. The 

DNA pellet was air-dried for 5 mins and resuspended in ddH2O 

(Thermofisher Scientific nuclease-free water (not DEPC treated)). The 

second DNA extraction method, utilised due to presence of PCR inhibitors in 
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the soil, was performed using FastDNA™ Spin Kit for Soil (MP Biomedicals) 

according to manufacturer’s instructions. Briefly, 0.2-0.5 g (wet weight) soil 

sample was bead-beaten in the presence of the lysis buffers supplied with 

the DNA extraction kit in the FastPrep® Bead-beater. DNA in the 

supernatant was bound to spin-columns, washed and eluted as 

recommended by the manufacturer.  

PCR inhibitors, suspected to be humic and/or fulvic acids, were observed in 

the DNA extractions. This was first determined by serial dilutions performed 

using anammox primers, amplification either diminished or disappeared 

completely with increasing concentration of DNA and this also occurred in 

the top unsaturated layer of the 12/3/19 extractions from RB6 and Bb12 at 

the lowest DNA concentration with all marker gene primers (AOB AmoA-

1F/2R (Rotthauwe et al., 1997),  AOA crenamoA-23F/616R (Tourna et al., 

2008), hzsA_526F/1857R (Harhangi et al., 2012) and hzoqPCR1F/qPCR1R 

(Schmid et al., 2008) all primers are shown in Table 2.1). The DNA 

extractions were quality checked first with 16S primers (16S-27F/-1497R 

(Lane, 1991) as shown in Table 2.1) and running DNA on 1% (w/v) agarose 

gel (1 x TBE buffer) alone, these indicated no issues with DNA, indicating 

issues mentioned prior were due to PCR inhibitors. PCR inhibitors were 

removed from the DNA extraction by the OneStep™ PCR Inhibitor Removal 

Kit, utilizing the Zymo-Spin™ III-HRC Column, the matrix of which is utilised 

in the removal of polyphenolic compounds, humic/fulvic acids, etc. The 

Zymo-Spin™ III-HRC Column was prepared and utilised on sample DNA 

according to manufacturer’s instructions. Serial dilutions performed after 

utilising Zymo-Spin™ III-HRC Columns improved amplification. 

The quality and quantity of the extracted DNA was determined using 1% 

(w/v) agarose gel (1 x TBE buffer) electrophoresis, nanodrop (Nanodrop™ 

2000) and the Qubit fluorometer (Qubit 2.0 Fluorometer). DNA extracts (5 

µL) were visualised on 1% (w/v) agarose (1 x TBE buffer) gels. Qubit and 

nanodrop were used according to manufacturer’s instructions.  
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2.3.2 Root DNA extraction 

Sterilised workspace and tools with 70% (v/v) ethanol, removed loose soil 

from roots by shaking and root removed from stem by aseptically cutting with 

scalpel. Took a predetermined weight/length of root (1 g). Washing process 

started with removing rhizosphere, roots were washed in 25 mL of sterile 

silwett-amended phosphate buffer solution (PBS) (6.33 g NaH2PO4.H2O; 

16.5 g Na2HPO4.H2O dissolved together in 1 L distilled H2O and autoclaved, 

addition of 200 µL Silwett L-77 after autoclaving) left in a shaker for 30 mins 

at 180 rpm. This step is repeated until roots are cleaned. Solution of 

rhizosphere and PBS from first wash step was centrifuged to form a solid 

pellet (3,200 x g for 15 mins) and the pellet removed from solution then snap 

frozen in lysis matrix E tubes and stored at -80oC ready for extraction. After 

washing, 1 g of root tissue was placed in 25 mL of 70% (v/v) ethanol for 30 

secs, then washed with sterile water (autoclaved distilled water) followed by 

soaking in 3% of NaOCl for 5 mins and then washed again thoroughly with 

sterile water (repeated 5x). Next roots were placed in fresh PBS/water and 

sonicated for 15-20 mins in a water bath. Roots were separated into 2 

samples at approx. 500 mg each and snap frozen in an Eppendorf and 

stored at -80oC until ready for extraction. Prior to extraction roots were 

ground in a sterilised mortar and pestle using liquid nitrogen until the roots 

resembled a fine powder. With both rhizosphere and root samples, DNA 

extraction process follows the process as detailed in ‘2.3.1 soil and water 

DNA extraction” section. 

2.4 PCR 

2.4.1 PCR protocols for marker gene primers and 16S primers 

PCR reactions were carried out in 20 µL volume using PCRBIO Taq Mix Red 

(PCR Biosystems). Unless otherwise stated for specific PCR assays, the 

reactions contained 10 µL 2x PCRBIO Taq Mix Red, between 400-1000 nM 

of each primer, 1 µL of 3.5% (v/v) bovine serum albumin (BSA) and 10 ng (1 

µL) DNA template. The PCRBIO Taq Mix Red contains MgCl2, dNTPs and 
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Taq polymerase, the final concentrations of which were 6 mM, 2 mM and 5 

U/5 µL, respectively. Primers used in this study are detailed in Table 2.1. 

PCR products were visualised on agarose gels as described for DNA 

extracts. 

In optimising anammox primers hzsA_1597F/_1857R, hzsA_526F/_1857R 

and hzo1F/1R the process began with calculating the optimal annealing 

temperature of each primer set using the Thermofisher melting temperature 

(Tm) calculator (Thermofisher annealing temperature calculator). The 

calculated primer Tm is then included in a gradient (with the protocol 

temperature used as the midpoint) to determine the best temperature for 

annealing with each primer set. HzsA_1597F/_1857R optimal annealing 

temperature increased to 60oC (originally 55oC) (Harhangi et al., 2012); 

hzsA_526F/_1857R optimal annealing temperature remained the same 

(54oC) (Harhangi et al., 2012); hzo-1F/1R optimal annealing temperature 

also remained the same (60oC) (Schmid et al., 2008). Changed the length of 

time for each part of the cycle (denaturing, annealing and extension), either 

shortening or increasing the time from the primer protocol to that required by 

the polymerase utilised in each reaction (Taq DNA Polymerase PCR 

Biosystems). As per the manufacturer’s instructions: initial and final steps 

were (3-10 mins), 30 secs denaturation, 30 secs annealing and 1 min 

denaturation step (PB10.13 PCRBIO Taq Mix Red Manual). Number of 

cycles chosen were dependent on published protocol unless unspecific 

binding or dim bands were observed, the number of cycles were 

increased/decreased accordingly. Primer concentration was increased with 

both hzsA primer sets and the hzo primer set. Both hzsA primer sets’ 

concentration was increased from 500 nM to 1,000 nM and hzo primer 

concentration increased from 400 nM to 500 nM as this was found to work 

better on environmental samples.  This could be due to lack of DNA template 

in the environmental samples however increasing of template concentration 

always resulted in loss of amplification in environmental samples due to PCR 

inhibitors. 

https://www.thermofisher.com/uk/en/home/brands/thermo-scientific/molecular-biology/molecular-biology-learning-center/molecular-biology-resource-library/thermo-scientific-web-tools/tm-calculator.html
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2.4.2 amoA AOB AmoA-1F/2R 

Final primer concentration used was 500 nM for each primer. Final cycling 

conditions were as follows: 94oC for 5 mins initial denaturation, followed by 

36 cycles of 94oC for 60 sec denaturation, 90oC for 30 sec annealing, 72oC 

for 90 sec extension, followed by a final extension step of 72oC for 10 mins. 

2.4.3 amoA AOA crenamoA-23F/616R 

Final primer concentration used was 500 nM for each primer. Final cycling 

conditions were as follows: 95oC for 5 mins initial denaturation, followed by 

35 cycles of 95oC for 30 sec denaturation, 55oC for 30 sec annealing, 72oC 

for 1 min extension, followed by a final extension step of 72oC for 10 mins. 

2.4.4 Universal primer bacterial 16S 27F/1492R 

Final primer concentration used was 400 nM for each primer. Final cycling 

conditions were as follows: 95oC for 3 mins initial denaturation, followed by 

30 cycles of 95oC for 20 sec denaturation, 55oC for 20 sec annealing, 72oC 

for 40 sec extension, followed by a final extension step of 72oC for 5 mins. 

2.4.5 hzsA_526F/1857R 

Final primer concentration used was 1 µM for each primer. Final cycling 

conditions were as follows: 96oC for 5 mins initial denaturation, followed by 

30 cycles of 96oC for 30 sec denaturation, 54oC for 30 sec annealing, 72oC 

for 1 min extension, followed by a final extension step of 72oC for 5 mins. 

2.4.6 hzoqPCR1F/qPCR1R 

Final primer concentration used was 500 nM for each primer. Final cycling 

conditions were as follows: 95oC for 5 mins initial denaturation, followed by 

40 cycles of 95oC for 10 sec denaturation, 60oC for 30 sec annealing, 72oC 

for 10 sec extension, followed by a final extension step of 72oC for 5 mins. 
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  Table 2.1 PCR primers used in the study. 
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2.5 Cloning and sequencing 

PCR products produced using archaeal and bacterial amoA and anammox 

hszA and hzo primer sets were purified using MP Biomedicals, LLC 

GeneClean® Turbo Kit and later Roche High Pure PCR Product Purification 

Kit according to manufacturer’s instructions prior to cloning. Purified PCR 

products were quantified and visualised on agarose gels as described above. 

PCR products were ligated into pGEM-T Easy vector using pGEM®-T Easy 

Vector Systems Kit Promega Corporation and transformed into Top 10 

competent E. coli by heat shock. Top 10 competent E. coli cells protocol 

consists of producing seed stocks: Top10 cells streaked on SOB plates and 

grown at 23oC for 36 hrs, single colonies were picked into 2 mL of SOB 

medium and shook overnight at 23oC. Glycerol was added to 15% (w/v) and 

1 mL was aliquoted into cyrotubes and frozen in liquid nitrogen and stored at 

-80oC. Seed stock (1 mL) was inoculated in 250 mL of SOB medium 

(Tryptone 5 g, yeast extract 1.25 g, NaCl 0.125 dissolved in 2.5 mL KCl and 

made up to 250 mL with water (250 mM stock, pH 7.0) just before addition to 

seed stocks MgCL2 and MgSO4 are added to a final concentration of 10 mM) 

and grown at 30oC to an OD600 nm of 0.3-0.4.  After growth period cells 

were centrifuged 2000 x g at 4oC for 10 mins in a 500 mL bottle. Cells were 

gently resuspended in 80 mL of ice cold CCMB80 buffer (10 mM KOAc pH 

7.0; 80 mM CaCl2.2H2O; 20 mM MnCL2 4H2O; 10 mM MgCL2 6H2O; 10% 

(w/v) glycerol (pH 6.4)) and incubated on ice for 20 mins. Centrifuged at 4oC 

and resuspend in 10 mL of ice cold CCMB80 buffer. Added CCMB80 buffer 

until the cells reached an OD of 5-7.5 and incubated on ice for 20 mins. 

Aliquoted 200 µL and frozen with liquid nitrogen and stored at -80oC.  

The transformation method works by blue/white screening of colonies based 

on the disruption of lacZ gene on the vector and the presence of X-gal (40 

mg/mL stock concentration) on the agar plates with the antibiotic ampicillin 

(100 mg/mL stock concentration). White colonies were picked and screened 

by M13F/M13R PCR. Clones containing the insert of the expected size were 

randomly selected for Sanger sequencing which was performed by Eurofins 

genomics. Dependent on the size of the insert, sequences were either 
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sequenced unidirectionally or bidirectionally –for both AOA and AOB amoA 

sequences, marker gene primers AOB AmoA-1F/2R; AOA crenamoA-

23F/616R were used in a unidirectional manner and for hzo sequences 

marker gene primer pair hzo-1F/1R was utilised in a unidirectional manner 

too. Whereas for hzsA sequences, marker gene primer pair hzsA-

526F/1857R produced an insert of 1331-bp, SP6 

(ATTTAGGTGACACTATAG) and T7 (TAATACGACTCACTATAGGG) 

primers were utilised to target the corresponding sites on the pGEM®-T Easy 

Vector bidirectionally. Sequences were quality trimmed by utilising the ABI 

file in sequence alignment software, Bioedit, to remove reads of a weak 

signal which could therefore be incorrect. The sequence was then initially 

analysed by BLASTp homology-based engine search (NCBI: BLASTp) 

against the NCBI database. Sequences that were most similar, both cultured 

and uncultured, were retrieved. 

2.6 Phylogenetic analysis 

Environmental amoA, hzsA and hzo sequences as well as suitable reference 

sequences obtained from NCBI were aligned using ClustalW implemented 

within Bioedit except for RB6 environmental hzsA sequences which were 

aligned by Muscle in MEGA 5.2 (Hall, 1999). Phylogenetic analysis was 

performed using MEGA 5.2 software (Kumar et al., 2016). Neighbour-joining 

trees were constructed in MEGA 5.2 with 1,000 bootstrap replicates. 

2.7 Restriction fragment length polymorphism (RFLP) 

In addition to Sanger sequencing, the diversity of amoA, hzsA and hzo 

sequences in the clone libraries was examined by RFLP. Prior to the digest, 

the suitability of the restriction enzymes was assessed in silico utilising text 

editor program Notepad++. This was achieved by inputting sequences 

retrieved from sanger sequencing and known sequences from NCBI 

taxonomy (NCBI: Taxonomy) for reference. The sequences were then 

examined for the frequency with which the restriction enzyme recognition 

sequences appeared and the location of this sequence. PCR products from 

https://blast.ncbi.nlm.nih.gov/Blast.cgi?PAGE=Proteins
https://www.ncbi.nlm.nih.gov/taxonomy


  Materials and Methods 
 

50 
 

clones were purified as described above and digested using 4-bp cutter 

restriction enzymes MspI and RsaI. These enzymes were used as a 4-bp 

restriction enzyme cleaves a sequence more frequently than restriction 

enzymes with higher bp recognition site. EcoRI is utilised as it removes the 

pGEM®-T Easy Vector ends (left by M13 primer amplification). 

Followed RFLP protocol mix from manufacturer (ThermoScientific) 

instructions for multiple enzymes, with a few adjustments. Added in order as 

stated in guide: ddH2O 5.6 µL; ThermoScientific 10X Fast Digest™ Buffer 1 

µL; DNA template (either PCR product or cleaned-up PCR product) 3 µL; 

FastDigest restriction enzyme 1: 0.2 µL; FastDigest restriction enzyme 2: 0.2 

µL.  Followed manufacturer instructions for protocol, except increased 

incubation time at 37oC to 1 hr/1.5 hr (originally 5 mins) (Molecular Biology, 

FastDigest Restriction enzymes, LabAid). 

Digested DNA fragments were analysed on 2% (w/v) agarose gel (1 x TBE 

buffer) with a 50-bp ladder (GeneRuler ThermoScientific). 
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3. Results and Discussion 

3.1 Ammonia oxidising bacteria and archaea 

3.1.1 Validating the molecular tools developed to study AOA and AOB 

Aerobic ammonia oxidizing microorganisms (AOM) perform the first step in 

the removal of NH3 and provide the NO2- for the anammox reaction. Due to 

this and the fact that the PCR assays for these organisms had been 

previously developed, the first step was to look for aerobic AOMs, AOB and 

AOA. The primers target the gene encoding for a key enzyme of the 

ammonia oxidation pathway in these organisms, ammonia monooxygenase 

(AMO), specifically targeting the gene encoding the alpha subunit (amoA) of 

the ammonia monooxygenase. The primers (amoA of AOB -1F/-2R) – 

amplifying a region of 491-bp of the amoA AOB gene – (Rotthauwe et al., 

1997) and amoA of AOA crenamoA23F/616R – amplifying a region of 594-bp 

of the amoA AOA gene (Tourna et al., 2008; Lehtovirta-Morley et al., 2016) 

were used. PCR was performed using control DNA from the pure cultures of 

Nitrosocosmicus franklandus (AOA) and Nitrosomonas europaea (AOB) as a 

template (Fig. 3.5 panels A and C). The PCR amplicons were clear and 

bright when visualised on the agarose gel and of the correct size, the 

protocol needed no optimisation. Primers targeting these microorganisms 

were next used on DNA extracted from constructed wetlands at the NCC 

trials in Mayton Wood. 

3.1.2 Detecting presence of ammonia oxidising archaea (AOA) and 

bacteria (AOB) in reed bed 6 (RB6) 

AmoA primers targeting both AOAs and AOBs, were used to determine the 

presence of aerobic AOMs. This is a robust initial indicator to determine if 

anammox is occurring within the constructed wetland trials as these 

microorganisms produce nitrite which is essential for the anammox process. 

It was observed that both AOB and AOA were present in each layer of the 

constructed wetland soil matrix, even those presumed to be anaerobic and 
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there were no obvious differences in the brightness of the PCR amplicons 

from different depths when visualised on agarose gels (Figs: 3.1 and 3.2). 

Not shown, is that both these primers were utilised on the influent and 

effluent samples from RB6, RB8 (to be decommissioned), and Bb12 (100% 

leachate), indicated that AOM were present – did not send for sequencing. 
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Figure 3.1 AmoA AOB primers on DNA extracted from RB6 soil matrix, band as shown at 
491-bp. As numbered: (1-2) unsaturated aerobic layer; (3-4) top interface; (5-6) bottom 
interface; (7-8) saturated aerobic layer; (9) +ve control (Nitrosomonas europaea DNA) and 
(10) –ve control of PCR master mix with 1 µL of nuclease-free water added in place of DNA. 
Ladder (L): Generuler 1kb DNA ladder 

Figure 3.2 AmoA AOA primers on DNA extracted from RB6 soil matrix, band as shown at 
594-bp. As numbered: (1-2) unsaturated aerobic layer; (3-4) top interface; (5-6) bottom 
interface; (7-8) saturated aerobic layer; (9) +ve control (Nitrosocosmicus franklandus DNA) 
and (10) –ve control of PCR mastermix with 1 µL of nuclease-free water added in place of 
DNA. Ladder (L): Generuler 1kb DNA ladder. 
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3.1.3 Diversity of ammonia oxidising archaea (AOA) and bacteria (AOB) 

in reed bed 6 (RB6) 

To study the diversity of aerobic ammonia oxidisers, clone libraries were 

produced from these PCR amplicons, five clones were picked from the top 

(unsaturated aerobic) and bottom (saturated aerobic) layers. These layers 

were chosen as the method of sampling was still being perfected, it was 

unlikely that I had properly sampled the interface/ saturated anaerobic layer. 

Clones were sent for Sanger sequencing, and Tables: 3.1 and 3.2 indicate 

the closest related genera from BLAST results (NCBI: BLASTp) and their 

phylogenetic affiliations (Figs: 3.3 and 3.4). It was observed that surprisingly 

the same genera of AOA and AOB were found in both the unsaturated 

aerobic and saturated aerobic layers – originally assumed to be the 

saturated anaerobic layer. This was unexpected as the saturated layer was 

thought to be mostly oxygen-limited and these microorganisms are 

considered aerobic. However as stated by Chen and colleagues (2008) it 

was found that the roots from rice (which have a continuous arenchmytous 

system similar to that found in Phragmites australis used in the constructed 

wetlands) will provide oxygen to water-logged soils as the roots of 

Phragmites australis will similarly provide oxygen to the lower layers of the 

constructed wetland. With the core first taken from RB6 in January (where 

this DNA is sampled from for AOA/AOB sequencing), the lower anaerobic 

layers were perhaps not sampled. With both AOB and AOA primer sets, only 

sequences typically found in soil environments were observed, with no 

marine species present however the primers used were designed to cover 

soil AOBs only (Rotthauwe et al., 1997). It is true however the salinity of the 

system is likely to be too low for marine species at a concentration of 154 

mM at its highest as measured in 100% leachate – in RB6 this will be diluted. 

Nitrosomonas europaea can tolerate a concentration of up to 400 mM NaCl; 

a halophile such as Nitrosomonas halophila will require a salinity higher than 

this and can tolerate salinity levels up to 900 mM (Yamamoto et al., 2010). 

AmoA amino acid sequences and NCBI BLAST-based homology search 

were used to investigate the most highly related species (Table 3.1). AOB 

https://blast.ncbi.nlm.nih.gov/Blast.cgi?PAGE=Proteins
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clones were split between the Nitrosomonas and Nitrosospira genera, with 

Nitrosospira predominating with 8 clones of this genus. Half of the 

Nitrosospira clones were derived from the unsaturated aerobic level and the 

other half from the saturated anaerobic layer. Two clones affiliated with the 

Nitrosomonas genus were recovered from each layer. Nitrosomonas is often 

found in wastewater treatment systems, eutrophic freshwater and brackish 

water, all of which contain high levels of NH3 (Pommerning-Roser and 

Koops, 2005; Du et al., 2016). This is consistent with this genus being able to 

tolerate up to >400 mM of ammonia before ammonia becomes inhibitory 

(Yamamoto et al., 2010). The average concentration of ammonia, in 100% of 

landfill leachate influent at Mayton Wood Landfill site, is considered high at 

70.4 mM. The highest salinity measured in the landfill leachate was 154 mM 

(in 100% landfill leachate) and some representatives of genus Nitrosomonas 

cells can withstand salinity levels of up to 400 mM (Yamamoto et al., 2010). 

Previously characterised strains of Nitrosomonas can grow within a pH range 

of 6.0-9.0 which is consistent with the pH measured in 100% landfill leachate 

at pH 7.66. With RB6 the dilution was 60% landfill leachate to 30% water, 

thus the salinity and NH3 concentration were reduced and the pH closer to 

neutral. Representatives of Nitrosospira genus are found over a wider pH 

range than Nitrosomonas in the environment and typically predominate over 

Nitrosomonas in soil environments including those of neutral pH. Within the 

small subset of clones that were sequenced, more Nitrosospira clones were 

found. Although it is quite usual to find higher abundances of Nitrosospira-

like species in wetlands with emergent plants and in soil habitats in general, 

with higher substrate and oxygen concentrations it is often found 

Nitrosomonas will outcompete Nitrosospira (Chen et al., 2008). To support 

the results found thus far a larger sample size would need to be sequenced 

by amplicon sequencing targeting amoA in AOB and AOA and activity 

studies by RT-qPCR would determine the most active of these species in 

nitrogen cycling. This is expanded upon in the ‘4.5 Limitations of the work’ 

section and ‘4.6 Future work’ in the 4. Overall Discussion.  
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Table 3.1 Closest protein BLAST hits of the AmoA AOB clones to the cultivated 
representatives of AOB. 
* unsaturated aerobic = top layer above water table (interface) in dry soil (aerobic); 
saturated aerobic = bottommost layer below water table (interface) of wet soil next to 
roots (aerobic). 
** colony 

RB6 sample: Clone # Blast Result: 
Highest Match 
Known Species 

Query 
Cover 

Per Identity 

Unsaturated Aerobic*: 

Col** 1 

Nitrosomonas 
eutropha 

 

100% 

 

100% 

Unsaturated Aerobic: 

Col 2 

Col 4 

Nitrosospira sp. 
LT2Fb 

 

100% 

100% 

 

99.31% 

97.24% 

Unsaturated Aerobic: 

Col 3 

Saturated Aerobic*: 

Col 15 

Col 16 

Nitrosospira 
multiformis 

 

100% 

 

100% 

100% 

 

97.24% 

 

97.24% 

98.62% 

Unsaturated Aerobic: 

Col 6 

Saturated Aerobic: 

Col 20 

Nitrosospira sp. 
Nsp22 

 

100% 

 

100% 

 

95.86% 

 

100% 

Saturated Aerobic: 

Col 18 

Nitrosospira 
briensis 

 

100% 

 

99.31% 
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Two main clades of AOA were detected in RB6, Nitrososphaera and 

Nitrosocosmicus. Nitrosocosmicus sequences were separated between two 

species Nitrosocosmicus franklandus and Nitrosocosmicus arcticus, whereas 

Key: 

• Clone retrieved from top layer 

• Clone retrieved from bottom 
layer 

• Uncultured clone 

Figure 3.3 Phylogenetic Tree of the amoA AOB amino acid sequences from RB6. Clones 
retrieved from the unsaturated aerobic layer were taken from soil matrix above the water 
table in dry soil (highlighted in blue). Clones retrieved from the saturated aerobic layer were 
taken from soil matrix below the water table next to Phragmites australis roots (highlighted in 
purple). Length of scale bar represents a difference of 10% between different sequences. 
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Nitrososphaera gargensis was the only species found within the 

Nitrososphaera genus. Nitrosocosmicus are often found in neutral to slightly 

basic pH soils and wastewater, which matches the pH composition of the 

landfill leachate. As with the AOB sequences, the genera found are known to 

be able to withstand a higher concentration of ammonium than most other 

previously characterised AOA genera. The highest ammonium concentration 

Nitrosocosmicus can tolerate is 100 mM which is much higher than that of 

other genera of archaea. Lastly, they can handle a slightly higher level of 

salinity.  
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Table 3.2 Closest protein BLAST hits of the amoA AOA clones to the cultivated 
representatives of AOA. 
* unsaturated aerobic = top layer above water table (interface) in dry soil (aerobic); 
saturated aerobic = bottommost layer below water table (interface) of wet soil next to 
roots (aerobic). 
** colony 

RB6 sample: Clone # Blast Result: 

Highest Match 

Known Species 

Query Cover Per Ident 

Unsaturated Aerobic*: 

Col** 8 

Col 10 

Col 11 

Saturated Aerobic*: 

Col 23 

Col 27 

Nitrososphaera 
gargensis 

 

100% 

100% 

100% 

 

100% 

100% 

 

94.68% 

98.38% 

97.91% 

 

98.68% 

98.95% 

Unsaturated Aerobic: 

Col 9 

Col 12 

Saturated Aerobic: 
Col 22 

Col 24 

Col 25 

Nitrosocosmicus 
franklandus 

 

100% 

100% 

 

100% 

100% 

100% 

 

99.48% 

100% 

 

100% 

98.44% 

98.44% 
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Key: 

• Clone retrieved from top layer  

• Clone retrieved from bottom 
layer  

• Uncultured clone 

Figure 3.4 Phylogenetic Tree of the amoA AOA amino acid sequences from RB6. Clones 
retrieved from the unsaturated aerobic layer were taken from soil matrix above the water 
table in dry soil (highlighted in blue). Clones retrieved from the saturated aerobic layer 
were taken from soil matrix below the water table next to Phragmites australis roots 
(highlighted in purple). Length of scale bar represents a difference of 2% between different 
sequences. 



  Results and Discussion 
 

60 
 

3.2 RFLP  

3.2.1 RFLP analyses 

To streamline the process of identifying organisms from the CW trials in 

future, restriction fragment Length polymorphism (RFLP) analysis was 

employed to identify differences between sequences of the different OTUs. 

This would shorten the time to identify sequence identity and therefore 

determine if the process has captured the diversity within the CW trials.  

Restriction enzyme EcoRI was utilised to remove vector ends and a further 

restriction enzyme with a 4-bp recognition site – MspI – was selected for 

RFLPs. A 4-bp restriction enzyme was chosen at random as it was 

calculated to cleave at least twice within the amoA AOB and AOA sequences 

– both of which are 491-bp/594-bp in size respectively, a 4-bp restriction 

enzyme cleaves once in every 256-bp – providing a greater resolution.  

In fig. 3.5 representative clones from previously sequenced amoA AOB and 

AOA (as seen in Tables: 3.1 and 3.2 and Figs.: 3.3 and 3.4) were selected, 

based on their respective phylogenetic trees to match known sequences with 

an RFLP. With AOB amoA sequences, the resolution of the RFLPs allowed 

for determination of the genus and even species level (Fig. 3.5), the RFLPs 

clearly matched the different genera/species that had been determined by 

sequencing previously (Table: 3.1 and Fig.: 3.3). Representative clones 

were selected, based on the AOB and AOA phylogenetic tree and estimated 

fragment sizes are in Table: 3.4. 
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L         1         

 

B 

500 bp 
491 bp 

C 

500 bp 

750 bp 

594-bp 

1   2   3   4  5   6   7    8  9  10      11 

 

 

 

 

 

 

 

A 

500 bp 
500 bp 

250 bp 250 bp 

518 bp 511 bp 

L 
L 

Figure 3.5 (A) RFLPs of amoA AOB and AOA previously sequenced clones from RB6 
(22/01/2019) – Lane 1 is +ve control DNA Brocadia fulgida (from anammox RFLPs) – 
mentioned later in “3.3.2 Bias in the hzs assay’ section; (2) AOB col 1 – Nitrosomonas sp. 
A7; (3) AOB col 15 – Nitrosospira sp. PJA1; (4) AOB col 2 – Nitrosospira sp. LT2Fb; (5) 
AOB col 16 – Nitrosospira sp. Nsp1; (6) AOB col 3 – Nitrosospira sp. RY3C; (7) AOB col 18 
– Nitrosomonas mobilis strain nc2; (8) AOB col 6 – Nitrosospira sp. Nsp.1; (9) AOA col 27 – 
Nitrososphaera gargensis; (10) AOA col 8 – Nitrososphaera viennensis (according to 
BLASTn (DNA)); (11) AOA col 9 – Nitrosocosmicus franklandus. (B) Standard PCR band 
when utilising AOB amoA primers at 491-bp (1).  (C) Standard PCR band when utilising 
AOA amoA primers at 594-bp (1). Ladder (L) used in A, B and C is Generuler 1 kb DNA 
Ladder. 
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The digest with EcoRI and MspI could not differentiate between two of the 

AOA genera Nitrososphaera viennensis (lane 10) and Nitrosocosmicus 

franklandus (lane 11) and digestion may have been incomplete as indicated 

by the size of the largest fragment being almost the size of a full-size insert 

(594-bp). As can be seen in Table 3.4: AOA col 8 in lane 10 and AOA col 9 

in lane 11 contained one large fragment and two smaller fragments making it 

hard to determine a difference in the final product. Figs 3.6 and 3.7: are two 

representative images of new transformants containing AmoA AOA DNA 

extracted from RB6 on the 12/3/19 (described later), this includes DNA 

extracted from the roots and rhizosphere from the RB6 extraction in January 

– all unknown as had not yet been sequenced.  These indicated either low 

diversity, or a low resolution of RFLP. From here it was decided to utilise only 

16 lane agarose gels (Fig. 3.6) as it was harder to determine differences in 

20-lane agarose gels (Fig. 3.7). 

Table 3.3 Predicted fragments formed by restriction enzymes (EcoRI and MspI) in RFLP 
reactions (Fig. 3.5) on reprensentative sequences picked from AOB and AOA 
phylogenetic trees (Fig. 3.3 and Fig. 3.4). 

Sequences / 
lane # 

Fragment Lengths (bp) Full Fragment size (bp) 

AOB Col 1 / 2 2 - 448 450 

AOB Col 15 / 3 13 – 195 - 235 441 

AOB Col 2 / 4 11 – 107 – 186 - 207 441 

AOB Col 16 / 5 107 - 79 - 21 - 225 432 

AOB Col 3 / 6 235 - 208 442 

AOB Col 18 / 7 4 - 111 - 324 438 

AOB Col 6 / 8 12 - 96 - 79 - 21 - 234 443 

AOA Col 27 / 9 148 - 347 - 105 - 108 709 

AOA Col  8 / 10 518 - 77 - 110 706 

AOA Col 9 / 11 511 - 89 - 108 708 
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3.2.2 RFLP refinement of protocol for AOA 

With each of the restriction digests from Fig. 3.8 there was a fragment near 

to the same size as the original PCR product (594-bp) with fainter bands 

underneath suggesting incomplete digestion. Therefore, specific parameters 

of the digestion were modified: volume of restriction enzyme was doubled, a 

smaller 50-bp ladder (GeneRuler 50-bp DNA Ladder ThermoScientific) was 

used and a 2% (w/v) 1 x TBE buffer agarose gel was employed, separating 

500 bp 
750 bp 

750 bp 
500 bp 

500 bp 
750 bp 

500 bp 
750 bp 

Figure 3.6 AmoA AOA unknown sequences RFLPs from RB6 12/3/19 extractions and 
January RB6 root and rhizosphere extraction. Utilised restriction enzymes EcoRI and MspI.  

 

Figure 3.7 AmoA AOA unknown sequences RFLPs from RB6 12/3/19 extractions and 
January RB6 root and rhizosphere extraction. Utilised restriction enzymes EcoRI and 
MspI. 
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smaller fragments with greater resolution and the restriction digest incubation 

time increased to 1.5 hr. This did not improve the digestion of the highest 

molecular weight fragment, which was around the size of the original insert 

594-bp and the product that had been cut was faint. It was therefore hard to 

determine any differences between RFLPs.  

 

 

 

 

 

 

 

 

In Fig. 3.9 restriction enzyme EcoRI along with another 4-bp restriction 

enzyme RsaI that appeared more frequently within the AmoA AOA sequence 

when analysed in silico (Table 3.4 depicts the expected fragments from the 

in silico analysis), were used and after incubation (1 hr) were run on 2% (w/v) 

1 x TBE buffer agarose gel along with the smaller 50-bp ladder as in Fig. 3.8. 

As can be seen in Fig. 3.9, there was a much higher resolution, the expected 

full fragment size, including M13 ends, is 857-bp. 

Lanes 2, 5, 6, 8 and 9 contain sequences that were within the 

Nitrosocosmicus genus, with slight variations in the RFLP fragment sizes 

reflecting how clones branch in the phylogenetic tree (fig. 3.4). In particular, 

clones 24 and 25, (lanes 8 and 9 respectively) that branch together with 

98.44% relatedness to Nitrosocosmicus arcticus according to BLASTn 

results, have the same RFLP. In contrast, clones 9, 12 and 22 (lanes 2, 5 

and 6 respectively) branched together, with clones 12 and 22, being 100% 

related to Nitrosocosmicus franklandus and 9 being of 98.38% relatedness.  

594 bp 

L L 

500 bp 

600 bp 

Figure 3.8 AmoA AOA sequences RFLPs from RB6 12/3/19 extractions and January 
(22/1/19) RB6 root and rhizosphere extraction. (L) – ladder GeneRuler 50-bp DNA ladder 
ThermoScientific. Restriction enzymes utilised: EcoRI and MspI. 
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Clones 8, 10, 11, and 23 are related to the genus Nitrososphaera. Lanes 3 

and 4, indicate clones 10 and 11, which branch together on the phylogenetic 

tree (fig. 3.4) both highly related to Nitrososphaera gargensis (98.38% and 

97.91% respectively), the RFLPs reflected this. Whereas clone 8 (lane 1) 

was slightly separated but clearly similar to these species. It was also highly 

related to Nitrososphaera gargensis (94.68%) with the amino acid sequence. 

However, the DNA sequence indicated a higher relatedness to 

Nitrososphaera viennensis (88.51%) which could account for some 

differences between these clones in their RFLPs. Clone 23 (lane 7) and 27 

(lane 10) was even more highly related to Nitrososphaera gargensis at 

98.96% and 98.95% identity respectively.  

From these RFLPs, it could be clearly seen which clones were affiliated with 

the genus Nitrosocosmicus or Nitrososphaera as this trend was consistent 

with unknown sequences also (not shown) the protocol was used for further 

RFLPs. 

 

 

 

 

 

 

 

 

  

L              1      2      3     4      5      6     7      8      9    10    11   12               L 

Figure 3.9 RFLPs on AmoA AOA known sequences from RB6 January extractions, utilizing 
restriction enzymes: RsaI and EcoRI. (1) AOA col 8 – Nitrososphaera viennensis (2) AOA 
col 9 – Nitrosocosmicus franklandus; (3) AOA col 10 – Nitrososphaera gargensis; (4) AOA 
col 11 – Nitrososphaera gargensis; (5) AOA col 12 – Nitrosocosmicus franklandus; (6) AOA 
col 22 – Nitrosocosmicus franklandus; (7) AOA col 23 – Nitrososphaera gargensis; (8) AOA 
col 24 – Nitrosocosmicus arcticus; (9) AOA col 25 – Nitrosocosmicus arcticus; (10) AOA col 
27 – Nitrososphaera gargensis; (11-12) unsequenced colonies from Bb12 (L) GeneRuler 50-
bp DNA Ladder ThermoScientific. 
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3.2.3 Diversity of ammonia oxidising archaea (AOA) and bacteria (AOB) 

in BioBed 12 (Bb12) 

Now with methods in place for RFLPs, diversity of AOA and AOB was next 

investigated applying the amoA primers to the DNA extracted from the RB6 

(12/3/19) at the time converting 81% of all influent NH3 and removing 64% of 

total nitrogen and unvegetated Bb12 trial converting only 32% of all influent 

NH3 and removing 20% of total nitrogen, in addition influent and effluent 

water samples from multiple other wetland trials were tested too – only by 

amoA primers to test for presence/absence of AOMs. Due to the presence of 

humic acids and other PCR inhibitors in samples, an alternative DNA 

extraction method was used as described in Materials and Methods. From 

PCR alone, it was observed that there was weaker amplification in the top 

Table 3.4 Predicted fragments formed by restriction enzymes (EcoRI and RsaI) in RFLP 
reactions (Fig. 3.9) on reprensentative sequences picked from AOA phylogenetic trees 
(Fig. 3.4). 

Sequences / 
lane # 

Fragment Lengths (bp) Full Fragment size (bp) 

AOA Col 8 / 2 299 - 153 - 85 - 169 706 

AOA Col 9 / 2 21 - 141 - 365 - 181 708 

AOA Col 10 / 
3 

157 - 7 - 81 - 284 - 182 711 

AOA Col 11 / 
4 

154 - 9 - 79 - 286 - 184 712 

AOA Col 12 / 
5 

18 - 141 - 365 - 185 709 

AOA Col 22 / 
6 

18 - 141 - 365 - 187 711 

AOA Col 23 / 
7 

242 - 286 - 183 711 

AOA Col 24 / 
8 

17 - 141 - 365 - 187 710 

AOA Col  25 / 
9 

16 - 141 – 365 - 183 705 

AOA Col 27 / 
10 

155 - 86 - 210 - 258 709 
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layers (unsaturated aerobic) of RB6 and Bb12 (12/3/19), contrary to what 

was indicated in PCR performed on samples extracted from RB6 in January. 

Continuing with RFLP, the previously optimised protocol with RsaI and EcoRI 

was performed on the PCR amplicons. Again, as fig. 3.10 indicates, the 

resolution decreased. There were clear differences, but it was not as clear as 

in fig. 3.9. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Due to the lack of digestion observed in Fig. 3.10, the same RFLP protocol 

was attempted with a longer incubation time of 1.5 hrs in an effort to digest 

the highest molecular weight DNA and to observe the difference between the 

different OTUs. Fig. 3.11 indicated that restriction digestions performed on 

PCR-cleaned product produced more distinct bands, although there were still 

methodological problems with incomplete digestion. Regardless of 

L                                                                                                                   L 

 

250 bp 

500 bp 

Figure 3.10 AmoA AOA sequence RFLPs from RB6 and Bb12 sequences from March 
extractions. Restriction enzymes utilised RsaI and EcoRI. (L) GeneRuler 50-bp DNA Ladder 
ThermoScientific. 
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methodological limitations, representative sequences could be selected for 

sequencing of AOA and AOB amoA products from RB6 and Bb12. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

Figure 3.11 : AmoA AOA sequence RFLPs from RB6 - sequences from January root and 
rhizosphere extractions and March saturated anaerobic extractions, on PCR-cleaned 
material. Utilised restriction enzymes RsaI and EcoRI. (1) anaerobic saturated  col 1; (2) root 
col 3; (3) root col 5; (4) root col 6; (5) root col 7; (6) rhizosphere col 3; (7) rhizosphere col 
1.2; (8) rhizosphere col 3.2; (9) rhizosphere col 4.2; (10) rhizosphere col 5.2 (L) GeneRuler 
50-bp DNA Ladder ThermoScientific.. 

250 bp 

L              1     2      3      4     5      6      7     8     9     10                            L 

L             1      2      3     4      5     6     7      8      9    10                             L 

500 bp 500 bp 

250 bp 
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3.3 Anammox 

3.3.1 Optimisation of molecular tools to study anammox 

In order to develop robust tools for studying anammox within the constructed 

wetland trials, several sets of previously published PCR primers were tested. 

Three different published primer sets are detailed in the 2. Materials and 

Methods. 

The initials tests were run on amx694F/960R targeting 16S rRNA Hu et al. 

(2010) and hzsA_1597F/_1857R targeting hydrazine synthase Harhangi et 

al. (2012) using control DNA from cultures of Kuenenia stuttgartiensis and 

Brocadia fulgida (fig. 3.12). There was non-specific amplification with the 

amx694F/960R primer set (fig. 3.12) in lanes 1-2 there appeared to be a 

band at the correct size (highlighted at 625-bp) however in all lanes (1-5) 

there appeared to be contamination as highlighted below and smears 

between the band of the correct sizes and this contamination. There were 

multiple attempts to optimize the amx694F/960R primer set, calculating and 

testing annealing temperatures using a gradient; using the touchdown setting 

on the PCR machine reducing the annealing temperature every cycle from 

68oC (where amplification was first observed in the gradient) to 58oC (where 

amplification was brightest in the gradient). Also changed the primer 

concentration and reduced the time for each part of the PCR cycle. (Fig. 

3.13) indicates the last test done using +ve control DNA Brocadia fulgida and 

Kuenenia stuttgartiensis but eventually this primer set was disregarded due 

to specificity problems and efforts were focused on the functional marker 

genes, hzs and hzo. 

Primers hzsA_1597F/_1857R gave a clean band at 260-bp for Brocadia 

fulgida (lanes 6 and 7) however Kunenenia stuttgartiensis had another band 

just above the band of the correct size (260-bp) (lanes 8 and 9). For the 

hzsA_1597F/_1857R primers, further PCR with K. stuttgartiensis was 

performed to test whether non-specific amplification could be overcome. 
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A temperature gradient was run to optimise the annealing temperature for 

this PCR (fig. 3.14). Temperature gradient PCR was performed 

hzsA_1597F/_1857R primers on K. stuttgartiensis in an attempt to remove 

the non-specific band above the one at the expected size of 260-bp. The 

brightest PCR product (lane 6) was at the temperature 59.2oC, closest to the 

protocol temperature of 60oC. However, even with the band becoming fainter 

 1     2     3      4     5     6     7     8    9    10   11   12   13   14  15    L 

 

1     2    3    4    5                      6    7    8    9   10         L         

250 bp 260 bp 
625 bp 

 

500 bp 

Figure 3.12 Testing primers amx (lanes 1-5) and hzsA (lanes 6-10) on positive control DNA 
Brocadia fulgida and Kuenenia stuttgartiensis. (1-2) Brocadia fulgida extractions 1 and 2 
respectively; (3-4) Kuenenia stuttgartiensis extractions 1 and 2 respectively; (5) -ve PCR 
mastermix with addition of 1 µL of nuclease-free water in place of DNA; (6-7) Brocadia 
fulgida extractions 1 and 2 respectively; (8-9) Kuenenia stuttgartiensis extractions 1 and 2 
respectively; (10) -ve PCR mastermix with addition of 1 µL of nuclease-free water in place of 
DNA; (L) GeneRuler 1 kb DNA Ladder. 

Figure 3.13 Amx primers testing. (1-3) 1 µL of primer with annealing temperature of 
58oC on Kuenenia stuttgartiensis and Brocadia fulgida and -ve control (PCR mastermix 
with addition of 1 µL of nuclease-free water in place of DNA) respectively; (4-9) 
replications using different stocks of nuclease-free water to see if contamination was the 
issue at the same temperature and with the same amount of primer; (10-12) 1 µL of 
primer with an annealing temperature of 62oC on K. stuttgartiensis and B. fulgida and -ve 
control; (13-15) replication using different stocks of nuclease-free water to see if 
contamination was the issue at the same temperature and with the same amount of 
primer;  (L) GeneRuler 1 kb DNA Ladder. 
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above or below this temperature, it was not possible to remove this band at 

any temperature.  

 

In trying to remove the band that appeared above the one of the expected 

size of 260-bp and improve amplification brightness, optimisation was again 

performed on extracted K. stuttgartiensis DNA. Implemented shorter times 

for each step of the PCR reaction, this time: 3 mins, 30 secs, 30 secs, 1 min, 

for 30 cycles and 5 mins and also utilised double the concentration (2 µL) of 

primer versus the original volume of (1 µL) but still utilised the rest of the 

protocol master mix as usual. Amplification was observed (fig. 3.15) and the 

band was brighter in the second lane where double the primer concentration 

had been utilised.  

 

 

 

 

 

1            2                   L 

 

260 bp 
250 bp 

1     2     3    4      5     6    7    8     9    10  11           L 

 

250 bp 260 bp 

Figure 3.14 hzsA primers with gradient on +ve DNA K. stuttgartiensis, utilising protocol 
temperature as a midpoint. (1) 66oC, (2) 65.1oC, (3) 64.2oC, (4) 62.9oC, (5) 61.2oC, (6) 
59.2oC, (7) 57.4oC, (8) 56oC, (9) 55oC, (10) 54oC, (11) -ve control PCR mastermix with 
addition of 1 µL of nuclease-free water in place of DNA; (L) GeneRuler 1 kb DNA Ladder. 

Figure 3.15 Testing hzsA primers on Kuenenia stuttgartiensis in lane 1: with 1 µL of primers; 
lane 2: with 2 µL of primers; (L) GeneRuler 1 kb DNA Ladder. 
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This protocol was used on RB6 soil DNA January extractions (fig. 3.16). 

Despite the faintness of the bands, it was clear there was anammox present 

in all the depth layers of the constructed wetland, with no visible difference in 

strength of PCR amplification between the layers. The original published 

protocol (Harhangi et al., 2012) was also tested. It was observed that that the 

PCR product amplified from K. stuttgartiensis was fainter whereas B. fulgida 

and the environmental RB6 samples did not amplify at all. As the 

amplification was weak, alternative DNA extraction method was attempted 

using the FastDNA™ Spin Kit for Soil (MP Biomedicals).  

 

It was reasoned that PCR inhibitors could also interfere with the 

amplification, particularly in later extractions (12/3/19) where the top layers 

(unsaturated aerobic) in both RB6 and Bb12 were fainter with all marker 

gene primers but quality checks utilising 16S primers (27F/1492R) (Lane, 

1991) and running DNA alone on an agarose gel (0.5% (w/v), 1 x TBE buffer) 

indicated the DNA of these extractions were of good quality. Therefore, serial 

dilutions were attempted twice using primers hzsA_1597F/1857R on the top 

layer (unsaturated aerobic layer) of RB6 samples (22/1/19) extracted by 

Griffith’s method. Prior to this, DNA samples were usually diluted to a 

concentration of 10 ng/µL. Serial dilutions were diluted to: 1/5, 1/10 and 1/20 

of extracted DNA, with 1/20 dilution being almost equal to the 10 ng/µL. 

These dilutions were also spiked with a positive control DNA (K. 

stuttgartiensis), in order to see whether amplification of the control DNA 

 L      1     2     3      4     5     6     7             8     9    10           L 

 

 

260 bp 250 bp 

Figure 3.16 hzsA primers utilised on RB6 DNA extractions from January (22/1/19). Lanes 1-
2: unsaturated aerobic layer extractions 1 and 2 respectively; lanes 3-4: interface layer top 
extractions 2 and 2 respectively; lanes 5-6: interface layer bottom extractions 1 and 2 
respectively; lanes 7-8: saturated aerobic layer extractions 1 and 2 respectively; (9) +ve 
Kuenenia stuttgartiensis; (10) -ve PCR master mix with 1 µL of nuclease-free water added in 
place of DNA; (L) GeneRuler 1 kb DNA Ladder. 
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would be diminished as this would indicate the presence of PCR inhibitors. In 

addition, positive control DNA alone was run alongside, to have a control for 

usual amplification levels at the same concentrations. Amplification from the 

control DNA template was reduced in the presence of the extract, confirming 

that PCR inhibitors were present. 

To clean the DNA of the PCR inhibitors, clearly indicated in the spiking 

experiments, DNA was re-extracted from RB6 (January), utilising the second 

DNA extraction protocol. The same serial dilution experiments were 

performed, as fig. 3.17 indicates the DNA was cleaner using the FastDNA™ 

Spin Kit for Soil (MP Biomedicals). Due to the fact that amplification was not 

observed in any of the more concentrated samples of RB6, it was decided to 

utilise an alternative hzsA forward primer, this was hzsA_526F (Harhangi et 

al., 2012) utilised together with the original reverse primer hzsA_1857R.  

 

 

 

 

 

 

 

 

3.3.2 The optimised protocol for detection of anammox using hydrazine 

synthase (hsz)  

The previously published protocol (Harhangi et al., 2012) using 

hzsA_526F/_1857R was utilised on DNA samples from RB6 (22/1/19) 

purified by either the FastDNA™ Spin Kit for Soil (MP Biomedicals) (lanes 3-

10) and two samples by the original Griffiths’ method (lanes 1-2) (fig. 3.18). 

Figure 3.17  hzsA on RB6 interface level extracted DNA alone and spiked with Kuenenia 
stuttgartiensis +ve control DNA. Serial dilution concentrations are as follows (1) 1/5 (2) 1/5 
with  +ve control, (3) 1/10, (4) 1/10 with +ve control, (5) 1/20, (6) 1/20 with +ve control, (7) 
original concentration (154.3 ng/µL) (8) original concentration (154.3 ng/µL) with +ve control, 
(9) +ve control, (10) -ve control PCR master mix with 1 µL nuclease-free water added 
instead of DNA; (L) GeneRuler 1 kb DNA Ladder. 

L           1     2    3    4     5    6     7     8    9  10           L 

250 bp 260 bp 
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There was strong amplification observed for all samples and throughout all 

layers. Further testing with the same serial dilution experiments as earlier 

showed amplification in all samples. Amplification on RB6 samples indicated 

some unspecific binding was present and again a temperature gradient of 

the annealing temperature was performed, as well as shortening the times 

for each step of the cycle. From this, it was clear that the protocol 

temperature of 54oC produced the most specific and strongest amplification, 

and amplification was improved.  

 

 

 

 

 

 

 

 

 

 

3.3.3 Bias in the hzs assay 

During tests with the hzsA_526F/_1857R primers, it was observed that B. 

fulgida was not amplifying well and the band produced was much fainter than 

that observed for K. stuttgartiensis. First tested to ensure both B. fulgida 

DNA extractions were of high quality, utilising universal 16S primers 

(27F/1492R) (Lane, 1991) on both positive control DNA templates. Quality 

checks indicated the extractions were of a good quality and amplified well. 

These experiments suggested that the primers may be biased towards K. 

stuttgartiensis. Suspicions were further confirmed through the production of a 

L            1     2     3     4     5    6     7     8    9    10  11  12            L      

  

1500 bp 
1000 bp 

1331 bp 

Figure 3.18 PCR utilising hzsA primers with new forward primer (hzsA_526F). Lanes 1-2: 
containing extractions by the Griffiths method (31/01/19) from the unsaturated aerobic (1) 
and saturated aerobic (2) layers. The rest were from the column purified samples 
(22/02/19). Lanes 3-4: were unsaturated aerobic layer (1.1 + 1.2); (5-6) the top interface 
layer (2.1 + 2.2); (7-8) the bottom interface layer (3.1 + 3.2) and (9-10) the saturated level 
(4.1 + 4.2); (11) +ve Kuenenia stuttgartiensis; (12) -ve PCR master mix with 1 µL of 
nuclease-free water added instead of DNA. 
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clone library from RB6 DNA extractions (22/1/19), utilising the hzsA_526F/-

_1857R primers. The clones from all layers came back as K. stuttgartiensis 

based on BLASTn (BLASTn) search.  

It was found that not all sequences were 100% K. stuttgartiensis. Almost half 

were but most were of an unknown clade, that were of 95% relatedness to K. 

stuttgartiensis, which is a clade that has been previously reported by 

Humbert and colleagues (2010). One other clone came back as Jettenia 

caeni. 

To test for bias in the hzsA_526F/_1857R primers, clones were produced 

from hzsA_526F/_1857R amplified known positive control DNA K. 

stuttgartiensis and B. fulgida and another set of clones produced from a 1:1 

mix of both positive control DNA. Prior to testing these clones, it was 

observed that amplification from B. fulgida alone was fainter than both the 

bands from K. stuttgartiensis alone and the 1:1 mix of both genera. 

After picking clones and performing colony PCR to retrieve the clones, 

restriction digests was performed utilising EcoRI and 4-bp restriction enzyme 

MspI, which had been investigated in silico first. Fig. 3.19 shows the control 

DNA alone had distinctly different RFLPs, K. stuttgartiensis in lanes 9 and 10 

and B. fulgida in lanes 11 and 12. The rest of the lanes were from the 1:1 mix 

of K. stuttgartiensis DNA and B. fulgida DNA, amplified by the 

hzsA_526F/1857R primers. All clones came back as K. stuttgartiensis, 

indicating a clear bias for K. stuttgartiensis versus B. fulgida. In silico 

analysis indicated a 1-bp mismatch on the reverse primer with B. sinica but 

not B. fulgida. It was especially peculiar that K. stuttgartiensis appeared so 

often, without being accompanied by a species from the Brocadia genus. It 

had been mentioned prior (Humbert et al., 2010; Sonthiphand et al., 2010) 

that the Brocadia genus is often found alongside Kuenenia in wastewater 

treatment systems as this genus can also tolerate high amounts of NH3. Due 

to this discrepancy, it was decided to use hzs primers in tandem with 

another, separate functional marker gene of anammox (hydrazine 

https://blast.ncbi.nlm.nih.gov/Blast.cgi
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oxidoreductase (hzo)), to compare the sequences amplified between the two 

primer sets. 

 

3.3.4 Optimisation of anammox detection using primers for hydrazine 

oxidoreductase (hzo) 

Hydrazine oxidoreductase (HZO) performs the subsequent step in the 

anammox reaction after hydrazine synthase. Although widely used for 

detection and study of anammox organisms, this target gene has the caveat 

of being related to hydroxylamine oxidoreductases, meaning potentially more 

non-target amplification. Nevertheless, studying this functional marker gene 

could provide an important control in the light of the observed bias for the hzs 

primer set. Therefore, the primer set hzo1F/1R was tested on anammox 

control DNA K. stuttgartiensis and B. fulgida. 

The previously published protocol (Long et al., 2012) produced faint PCR 

amplicons for both genera, with a non-specific product above the correctly-

sized PCR product of 243-bp. The second protocol from a different 

publication (Lansdown et al., 2016) was attempted. This produced faint PCR 

products for B. fulgida and no amplification was observed for K. 

L            1    2     3    4    5     6     7     8    9   10   11  12  13    L 

Figure 3.19 RFLPs on clones from hzsA_526F_1857R amplified control DNA Kuenenia 
stuttgartiensis, Brocadia fulgida and 50/50 mix of both control DNA. (1-8) 50/50 mix of 
control DNA; (9-10) +ve control DNA Kuenenia stuttgartiensis; (11-12) +ve control DNA 
Brocadia fulgida; (13) -ve PCR master mix with 1 µL nuclease-free water added in place of 
DNA. 
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stuttgartiensis. A temperature gradient was performed for the annealing 

temperature. The most optimal amplification was seen at 60oC and no 

unspecific binding was observed.  

To improve brightness of amplification, 1 µL of primer pair hzo-1F/1R was 

used (originally 0.8 µL), as this worked better on environmental DNA where 

there was less DNA template available. In addition, a higher concentration of 

DNA was used to provide more DNA template for amplification. Fig. 3.20 

indicates original extractions of the unsaturated aerobic layer (1.1) from RB6 

(12/3/19), versus the zymo-cleaned extractions, with increasing 

concentration in a serial dilution. In lanes 1-4 are the original extractions at 

original concentration of 39.1 ng/µL, ¾, ½ and 10 ng/µL respectively, and 

lanes 7-10 are the zymo-cleaned extractions at the original concentration of 

39.1 ng/µL, ¾. ½ and 10 ng/µL respectively. Zymo-cleaned extractions 

resulted in slightly better amplification in the ¾ diluted sample however this 

made little difference when compared with the difference seen between 

original samples and zymo-cleaned samples.  
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Figure 3.20 hzo primers on unsaturated layer from RB6 March extractions, original and 
zymo-cleaned. (1-4) Original DNA extractions at: 39.1 ng/µL, ¾ dilution, ½ dilution and 10 
ng/µL respectively; (7-10) zymo-cleaned DNA extractions at: ¾ dilution, ½ dilution and 10 
ng/µL respectively; (5+11) +ve control DNA Kuenenia stuttgartiensis; (6+12) -ve PCR master 
mix with 1µL of nuclease-free water added in place of DNA; (L) GeneRuler 1 kb DNA 
Ladder. 

 L              1      2      3      4      5      6      7     8      9     10    11    12             L 

 

250 bp 
243 bp 

250 bp 
243 bp 

250 bp 

250 bp 
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3.3.5 Examining the diversity of anammox in the constructed wetlands 

using hzs and hzo functional marker genes 

Clone libraries were produced from PCR amplicons of both hzs and hzo from 

DNA extracted from RB6. With hzsA primer set (Table 3.5 and fig. 3.21), the 

initial BLAST results suggested clones are likely affiliated with Kuenenia 

stuttgartiensis. More detailed phylogenetic analysis indicated that sequences 

fell into two distinct clades, with more than half of the sequences 

corresponding to a distinct, uncultivated clade. This uncultivated clade has 

been observed previously in association with roots and wastewater treatment 

sites (Humbert et al., 2010). Like in this study, this uncultivated clade co-

occurred with K. stuttgartiensis and the hzs genes of this clade share 95% 

identity with K. stuttgartiensis, the sequences of which were highly related 

clones discovered by the hydrazine synthase primer in an unpublished paper 

by Li and colleagues (2019). 

With hzo primer set (Table 3.6 and fig. 3.22), all sequences were highly 

related to Kuenenia stuttgartiensis in RB6. The clones produced using the 

hzo primer set from RB6 support the findings generated using the hzs primer 

set. This also indicates that the results using hzs as a marker are unlikely to 

be due to the amplification bias observed in earlier experiments and are 

likely to represent the real anammox community in this constructed wetland. 

Combined results using the two functional markers: hzs and hzo, thus 

indicated that the anammox community in RB6 is dominated by organisms of 

genus Kuenenia and with hzs potentially another uncultivated clade. 

Also, in the unvegetated Bb12, most hzo sequences were highly related to 

Kuenenia stuttgartiensis. However, all clones from the interface of Bb12 and 

one from the saturated aerobic zone in RB6 were most closely related to 

various species of the genus Brocadia. This genus is often found in 

association with wastewater treatment. 

Again, for the most part, not any one genera dominated any part of the 

constructed wetland, with a mostly equal distribution of Kuenenia 
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stuttgartiensis throughout the constructed wetlands, apart from the 

sequences all from the interface in Bb12 – found by the hzo primer set. 

 

Table 3.5 Blast results from hzsA sequences amplified from RB6 (22/1/19) and Bb12 
(12/3/19). 
* unsaturated aerobic = top layer above water table (interface) in dry soil (aerobic); 
saturated aerobic = layer below water table (interface) of wet soil next to roots 
(aerobic); interface = in line with water table (meeting of unsaturated (dry) and 
saturated (wet) matrix soil);  saturated anaerobic = bottommost layer below the water 
table (interface) of wet soil with no association with the roots (anaerobic). 
** colony 

Sample: Clone # Blast Result: 
Highest Match 
Known Species 

Query Cover Per Identity 

RB6 

Unsaturated Aerobic*: 

Col 5-2 

Saturated Aerobic*: 

Col 1-1 

Col 7-1 

Bb12 

Unsaturated Aerobic: 

Col 3 

Col 4 

Col 5 

Interface*: 

Col 5 

Saturated Aerobic: 

Col 1 

Col 4 

Saturated Anaerobic*: 

Col 5 

Kuenenia 
stuttgartiensis 

 

 

100.00% 

 

100.00% 

100.00% 

 

 

100.00% 

100.00% 

100.00% 

 

100.00% 

 

100.00% 

100.00% 

 

100.00% 

 

 

99.50% 

 

100.00% 

99.50% 

 

 

99.00% 

99.50% 

100.00% 

 

100.00% 

 

100.00% 

100.00% 

 

100.00% 
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Table 3.6 Blast results from hzsA sequences amplified from RB6 (22/1/19) and Bb12 
(12/3/19). 
* unsaturated aerobic = top layer above water table (interface) in dry soil (aerobic); 
saturated aerobic = layer below water table (interface) of wet soil next to roots 
(aerobic); interface = in line with water table (meeting of unsaturated (dry) and 
saturated (wet) matrix soil);  saturated anaerobic = bottommost layer below the water 
table (interface) of wet soil with no association with the roots (anaerobic). 
** colony. 

Sample: Clone # Blast Result: 
Highest Match 
Known Species 

Query Cover Per Identity 

RB6 

Unsaturated Aerobic: 

Col 1-1 

Col 2-1 

Col 3-1 

Col 7-1 

Col 2-2 

Saturated Aerobic: 

Col 3-1 

Col 6-1 

Col 1-2 

Col 2-2 

Col 3-2 

Col 4-2 

Col 6-2 

Bb12 

Interface: 
Col 1 

Col 3 

Col 4 

Saturated Aerobic: 

Col 2 

Col 3 

Kuenenia 
stuttgartiensis 
(closest relation 
but most likely the 
uncultivated clade 
mentioned in 
Humbert et al. 
2010) 

 

 

 

100.00% 

100.00% 

100.00% 

100.00% 

100.00% 

 

100.00% 

100.00% 

100.00% 

100.00% 

100.00% 

100.00% 

100.00% 

 

100.00% 

100.00% 

100.00% 

 

100.00% 

100.00% 

 

 

 

96.04% 

95.05% 

94.21% 

96.04% 

94.55% 

 

95.05% 

95.05% 

96.04% 

95.05% 

95.54% 

94.06% 

94.97% 

 

96.04% 

96.04% 

96.04% 

 

96.04% 

94.35% 
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Key: 

• Clone retrieved from top layer  

• Clone retrieved from water table 

• Clone retrieved from bottom layer 

(aerobic) 

• Clone retrieved from bottom layer 

(anaerobic) 

Figure 3.21 Phylogenetic tree produced from RB6 (22/1/19) and Bb12 (12/3/19) hzsA 
clones. Clones retrieved from the unsaturated aerobic layer were taken from soil matrix 
above the water table in dry soil (highlighted in bright blue). Clones retrieved from the 
interface were taken from the water table (between the dry and wet soil matrix) (highlighted 
in blue). Clones retrieved from the saturated aerobic layer were taken from soil matrix below 
the water table next to Phragmites australis roots (highlighted in purple). Clones retrieved 
from the saturated anaerobic layer were taken from soil matrix below the water table not in 
association with roots (highlighted in pink). Length of scale bar represents a difference of 
20% between different sequences. 



  Results and Discussion 
 

83 
 

 

 

 

Table 3.7: Blast results from hzo sequences amplified from RB6 and Bb12 (both 
12/3/19) and root/rhizosphere material from RB6 (22/1/19). 
* interface = in line with water table (meeting of unsaturated (dry) and saturated (wet) 
matrix soil); saturated aerobic = layer below water table (interface) of wet soil next to 
roots (aerobic);  saturated anaerobic = bottommost layer below the water table 
(interface) of wet soil with no association with the roots (anaerobic); unsaturated 
aerobic = top layer above water table (interface) in dry soil (aerobic). 
** colony. 

Sample: Clone # Blast Result: 
Highest Match 
Known Species 

Query Cover Per Identity 

RB6 

Interface*: 

Col 8-1 

Col 8-2 

Saturated Aerobic*: 

Col 1-2 

Saturated 
Anaerobic*: 

Col 1-1 

Col 2-1 

Root: 

Col 1-1 

Col 1-2 

Rhizosphere: 

Col 1-1 

Bb12 

Unsaturated 
Aerobic*: 

Col 1 

Col 2 

Col 3 

Col 4 

Col 5 

Kuenenia 
stuttgartiensis 

 

 

100.00% 

100.00% 

 

100.00% 

 

 

100.00% 

100.00% 

 

100.00% 

100.00% 

 

100.00% 

 

 

100.00% 

100.00% 

100.00% 

100.00% 

100.00% 

 

 

98.65% 

98.65% 

 

97.30% 

 

 

98.65% 

98.65% 

 

98.65% 

98.65% 

 

98.65% 

 

 

98.65% 

98.65% 

98.65% 

97.30% 

98.65% 
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Table 3.8: Blast results from hzo sequences amplified from RB6 and Bb12 (both 
12/3/19) and root/rhizosphere material from RB6 (22/1/19). 
* interface = in line with water table (meeting of unsaturated (dry) and saturated 
(wet) matrix soil); saturated aerobic = layer below water table (interface) of wet soil 
next to roots (aerobic);  saturated anaerobic = bottommost layer below the water 
table (interface) of wet soil with no association with the roots (anaerobic); 
unsaturated aerobic = top layer above water table (interface) in dry soil (aerobic). 
** colony 

Sample: Clone # Blast Result: 
Highest Match 
Known Species 

Query Cover Per 
Identity 

Saturated Aerobic: 

Col 1 

Col 2 
Col 3 

Saturated 
Anaerobic: 

Col 1 

Col 2 

Col 3 

Col 4 

Col 5 

Kuenenia 
stuttgartiensis 

 

100.00% 

100.00% 

100.00% 

 

100.00% 

100.00% 

100.00% 

100.00% 

100.00% 

 

98.65% 

98.65% 

98.65% 

 

98.65% 

98.65% 

98.65% 

98.65% 

98.65% 

RB6 

Saturated Aerobic: 

Col 1 

Bb12 

Interface: 
Col 1 

Col 2 

Col 3 

Col 4 

Col 5 

 

Brocadia fulgida  

 

100.00% 

 

 

100.00% 

100.00% 

100.00% 

100.00% 

100.00% 

 

 

94.59% 

 

 

94.59% 

93.24% 

93.24% 

93.24% 

89.19% 
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Key: 

• Clone retrieved 
from top layer  

• Clone retrieved 
from water table 

• Clone retrieved 
from bottom 
layer (aerobic) 

• Clone retrieved 
from bottom 
layer (anaerobic) 

• Clone retrieved 
from root 

• Clone retrieved 

from rhizosphere 

Figure 3.22 Phylogenetic tree produced from RB6 and Bb12 (12/3/19) hzo clones. Clones 
retrieved from the unsaturated aerobic layer were taken from soil matrix above the water 
table in dry soil (highlighted in bright blue). Clones retrieved from the interface were taken 
from the water table (between the dry and wet soil matrix) (highlighted in blue). Clones 
retrieved from the saturated aerobic layer were taken from soil matrix below the water table 
next to Phragmites australis roots (highlighted in purple). Clones retrieved from the saturated 
anaerobic layer were taken from soil matrix below the water table not in association with 
roots (highlighted in pink). Clones retrieved from root (highlighted in orange) and rhizosphere 
(highlighted in red). Length of scale bar represents a difference of 5% between different 
sequences. 
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4. Overall Discussion 

4.1 Environmental drivers of the ammonia oxidiser diversity in the 

constructed wetlands 

Age of landfill site, stage of decomposition and operational conditions highly 

affect the microbial community structure in the landfills, with a shift occurring 

as easily degradable organic matter disappears, and the community 

becomes more highly specialised (Remmas et al., 2017). This microbial 

community shift has been previously described in a landfill treatment system 

coupled to an anammox bioreactor Sequencing Batch Reactor (SBR) with a 

high ammonia concentration of 1,333 mg N L-1, which is similar to the 

ammonia levels found in Mayton Wood Closed Landfill site (1,200 mg L-1). 

The landfill site was a mature one, with effluent levels comparable to that of 

Mayton Wood and the ammonia oxidising microbial community was 

observed to be dominated by AOB sequences.  

AMO is a key enzyme in the ammonia oxidation pathways of both AOB and 

AOA. This membrane-bound enzyme catalyses the first step of the 

nitrification pathway in the aerobic oxidation of ammonia to hydroxylamine 

(NH2OH), which is then further oxidised to nitrite (NO2-) and is often utilised 

as a functional marker gene in the study of examining the presence and 

diversity of AOA and AOB. Since the nitrite produced by this reaction is a 

pre-requisite for anammox, this study utilised AMO as a first indicator that it 

is possible for the anammox reaction to occur (Rotthauwe et al., 1997; 

Tourna et al., 2008; Lehtovirta-Morley et al., 2016). However, there are 

potential caveats in that nitrite can be produced by denitrification from nitrate 

(NO3-) and some anammox bacteria themselves can produce nitrite through 

consumption of acetate and propionate (Sonthiphand et al., 2014). In this 

study, AMO sequences fell into two genera for both AOA and AOB. AOA 

communities were dominated by Nitrososphaera and Nitrosocosmicus and 

AOB communities by Nitrosomonas and Nitrosospira, given the small sample 

size, amplicon sequencing would be required to see if the same patterns 

were observed. All detected sequences were affiliated to soil species, with 
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no marine species found in the small subset of sequences retrieved from 

Reed Bed 6 (RB6). However, this would be due to the fact the primers 

utilised in this study to capture AOB diversity (Rotthauwe et al., 1997) cover 

soil/freshwater species only (β-proteobacteria). Despite this, it seems 

apparent that the salt concentrations would be too low (see section on ‘4.1.3 

Salinity’) for marine species to thrive. 

4.1.1 Ammonia concentration  

Nitrosomonas have been found in sewage disposal plants, eutrophic 

freshwater and brackish water (Pommerning-Roser and Koops, 2005) 

indicating that some representatives of this genus can withstand high levels 

of ammonia, up to >400 mM. This is consistent with the fact that 100% 

landfill leachate at the study site has measured at most 70.4 mM, which is 

well within the tolerated range. In contrast, although Nitrosospira sequences 

have been found in soils with high ammonium concentrations, many 

Nitrosospira representatives are inhibited by much lower concentrations of 

ammonium than Nitrosomonas. Other soil Nitrosospira strains have been 

reported to tolerate a range between 7-50 mM of NH4
+ (Prosser and Nicol, 

2012). In general, AOA are much more sensitive to high concentrations of 

ammonium than AOB and are often found in low nitrogen environments, 

such as oceans and river sediments, although they are found also in 

farmlands (Yin et al., 2012). Although many AOA are sensitive to high levels 

of ammonia, some Nitrososphaera strains can tolerate up to 20 mM NH4
+ 

and the recently described genus Nitrosocosmicus is able to tolerate much 

higher levels of ammonium >100 mM (Mussman et al., 2011; Sauder et al., 

2016). However, at these high substrate levels Nitrosocosmicus becomes 

inhibited and growth rates can be reduced to as much as 60%, which is 

assumed to be due to the greater substrate affinity many AOA have 

compared to AOB. In Reed Bed 6 (RB6) the leachate was diluted to 60% of 

the original strength (42.4 mM NH4+ maximum) and it would be interesting to 

explore which genera of AOB and AOA are dominant in BioBed 12 (Bb12) 

which was fed 100% landfill leachate (70.4 mM NH4+). Presence of AOA in 

high ammonia environments is not completely unprecedented as Yin and 



  Overall Discussion 
 

88 
 

colleagues (2012) observed AOA in wastewater with up to 241.6 mg L-1 NH4
+ 

and found no correlation between low NH4
+ concentrations and AOA 

abundance.  

4.1.2 Oxygen concentration 

AOA studied to date have a higher affinity for oxygen than AOB and AOB 

have a higher affinity for oxygen over nitrite oxidising bacteria (NOB) (Yin et 

al., 2018). Therefore, it seems likely that AOA would be competitive in 

environments with low dissolved oxygen levels. Indeed, Park and colleagues 

(2010) suggested that dissolved oxygen is more important to preferential 

growth of AOA over AOB than the substrate concentration. To test O2 

concentration effects sampling of the bottommost anaerobic layer of RB6 

would need to be perfected and testing of amoA primers on samples from 

Bb12 which below the water table is most likely anaerobic. 

4.1.3 Salinity 

No marine species of either AOB or AOA were observed however the 

primers utilised for AOB (Rotthauwe et al., 1997) cover soil/freshwater 

species in the β-proteobacteria phylogeny only. Still it can be surmised this is 

still likely due to the salinity being lower than that typical for marine 

environments: 100% leachate measured at a salinity of 9,000 ppm maximum 

compared to the 36,000 ppm typically measured in sea water. In addition, all 

AOA genera returned by the CrenamoA-23F/616R primer pair were all of 

soil/freshwater species. This is speculation however and it would be best to 

use primers that have better coverage of all AOB genera. Nitrosomonas 

eutropha can withstand a salinity of up to 400 mM and marine species are 

found in systems with a salinity greater than 400 mM (Yamamoto et al., 

2010). Nitrosospira can tolerate salinities of up to 500 mM and landfill 

leachate at its highest concentration was measured at 154 mM so these 

microorganisms can easily tolerate the salinity of the system (Yamamoto et 

al., 2010). During the summer water evaporates and the constructed wetland 

systems often dry out becoming highly saline. It is unclear how high the 
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salinity becomes under these conditions and this is pending further 

investigation (Yamamoto et al., 2010). In wastewater treatment sites, most 

sequences are related to AOB Nitrosomonas or Nitrosospira. In a saline 

nitrification reactor, under low DO and high nitrogen loading, all sequences 

detected were affiliated to the Nitrosomonas genus (Ye and Zhang, 2011). It 

is interesting to note that, especially at its extremes, moisture plays a role for 

both salinity and oxygen availability and is a topic for future investigation. 

Optimal moisture is important for ammonia oxidisers. For instance, AOB and 

AOA abundances decreased in rice fields with low moisture and in 

grasslands with increasing soil moisture (Yin et al., 2018; Chen et al., 2008). 

It is also interesting to note that when constructed wetlands were sampled in 

spring (03/2019) as opposed to winter (01/2019), amoA PCR amplification 

appeared weaker when estimated qualitatively on an agarose gel. While this 

observation is pending confirmation by qPCR, it could suggest seasonal 

variation in the abundance of aerobic ammonia oxidisers due to temperature 

or moisture and warrants future investigation.  

4.1.4 pH of the constructed wetlands 

All genera detected in this study are generally found at a pH within a range of 

6-8.5 for both AOB and AOA. Many AOA have also been found in acidic soils 

(4.0-7.0) (Yin et al., 2018), but Nitrosomonas generally prefer slightly alkaline 

soils (Pommerning-Roser and Koops, 2005). As the pH in the landfill 

leachate is slightly alkaline (generally around 7.5-7.8) (Morling, 2007), this is 

perfectly within the range that these ammonia oxidisers can adapt to, 

meaning that AOA do not have a competitive advantage in these conditions 

(Pommerning and Koops, 2005).  

4.1.5 Temperature 

AOB are usually found to dominate in mesophilic environments with high 

ammonium, consistent with the constructed wetlands trials. AOA are found 

across a wider range of temperatures than AOB, from polar environments 

with temperatures of 0.2oC to hot springs with temperatures of 74oC. Ca. 
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Nitrososphaera gargensis a slightly thermophilic AOA was found to be the 

most dominant species in cattle manure composting process (Yamamoto et 

al., 2010). Seasonal temperature changes are associated with a decrease in 

AOB abundance in landfill leachate and this trend is particularly pronounced 

in the raw leachate before it has been fed into the constructed wetlands. This 

is interesting given that the AOB Nitrosomonas can be found in a minimum 

temperature of 5oC. This is corroborated by a previous study by Sims and 

colleagues (2012), who observed that AOB were more sensitive to low 

temperatures in constructed wetland systems for wastewater treatment than 

AOA and the AOB community changes were not reflected in the efficiency of 

ammoniacal nitrogen removal (96% in summer and 93% in winter). NO2
- 

levels however increased from 4 mg L-1 to 11 mg L-1 from winter to summer. 

A similar trend has been observed in the NCC trials with elevated 

temperatures, although not explicitly in the summer months. In agreement 

with this, another study reported a decrease in the AOB abundance in cold 

temperatures while AOA abundance remained unchanged throughout 

seasons (Yin et al., 2018). In addition to pH, salinity, ammonia concentration 

and temperature, it is likely that there are other environmental parameters 

which affect the microbial community composition in the constructed 

wetlands, e.g. heavy metals. Archaeal respiration is based on copper-based 

electron-transport, unlike the iron-heme-dependent AOB (Walker et al., 

2010). In the constructed wetland system studied in this work, AOA and AOB 

were unlikely to be copper or iron-limited. Iron concentrations varied between 

2,680 µg L-1 and 15,200 µg L-1 and copper remained constant at 

approximately 5 µg L-1 . There is insufficient data to speculate whether 

toxicity by either of these metals or other metals played a role in shaping the 

ammonia oxidising communities in these constructed wetlands.  

4.2 Detection of anammox organisms 

This study optimised and used two functional marker gene primer sets, hzsA 

and hzo, to determine anammox diversity in the constructed wetlands. Both 

primer sets confirmed that anammox bacteria were present in all layers of 

the two constructed wetland trials studied. It is interesting and surprising that 
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anammox microorganisms were found in all layers of the constructed 

wetlands, even the unsaturated layer which was assumed to be aerobic, 

although previous studies suggest that anammox could be found in aerobic 

environments, e.g. chalk sediment (Lansdown et al., 2016) indicating a 

requirement for an interface between anoxic sediments and aerobic waters 

for access to a nitrite supply as clay sediments which are much less porous 

than chalk did not contain anammox bacteria.  These are important findings, 

in that anammox bacteria are present, however amplicon sequencing would 

be required to confirm if the trends seen in this study can be replicated and 

RNA studies in RT-qPCR to gain an understanding of which of the genera 

are most active in NH3 removal. This will build upon what has been found in 

this study to begin optimising the anammox process in this set up. 

Anammox diversity was consistent when evaluated with both functional 

marker genes, suggesting that both primer sets were robust and suitable for 

studying anammox. Sequencing of the hzs clones derived from both the 

unvegetated Bb12 and the vegetated RB6 (which was planted with 

Phragmites australis), indicated that there were no obvious differences in the 

anammox community between the two trials. The majority of hzs sequences 

were affiliated to the genus Kuenenia. This is in agreement with a previous 

study (Humbert et al., 2010), where K. stuttgartiensis was found in 

freshwater lakes, rhizosphere soil and often in wastewater with high 

ammonium concentrations. Intriguingly, most other anammox hzs sequences 

fell into a distinct uncultivated clade related to Kuenenia. Sequences of this 

uncultivated clade were previously observed by Humbert and colleagues 

(2010) in a salt marsh. These hzs sequences were of 95% similarity to 

Kuenenia and have been found to co-occur with Kuenenia. One sequence 

from the saturated aerobic layer in Reed Bed 6 (RB6) was most closely 

related to Jettenia caeni.  

Reassuringly, the majority of hzo sequences were also related to genus 

Kuenenia in all layers of RB6 and most layers of Bb12. However, in the 

interface between the unsaturated aerobic layer and the saturation zone in 

the unplanted Bb12, all sequences were most closely related to genus 
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Brocadia. This is an important observation as the bias of the hzs primer set 

against Brocadia was demonstrated in this thesis. This bias is likely to be the 

reason why Brocadia-related sequences were not obtained from this same 

sample using the hzs primers. This study thus underlines the need for 

thorough scrutiny and optimisation of primers for molecular ecology surveys. 

Nevertheless, with the exception of this sample, the results from the two 

functional gene primer sets were consistent with one another. This finding 

however could also indicate a difference in the environments between the 

vegetated and unvegetated constructed wetlands as Brocadia was not found 

with either primer set in RB6 and the uncultrivated clade with a 95% similarity 

to K. stuttgartiensis was not found in Bb12, perhaps due to the lack of 

vegetation that would usually be found in a salt marsh. 

4.3 Environmental drivers of anammox diversity 

On a global scale, Brocadia is the most dominant of all anammox in natural 

ecosystems, followed by Jettenia. Brocadia, Jettenia and Kuenenia and are 

the most common anammox genera in terrestrial, freshwater systems and 

man-made wastewater treatment systems, likely due to their metabolic 

versatility and their tolerance against certain environmental parameters, 

particularly high ammonium concentration (Wang et al., 2019). Brocadia is 

usually found in engineered environments and has a lower affinity for 

ammonia and nitrite and a higher tolerance for O2 than other characterised 

anammox bacteria. Especially the oxygen tolerance could explain why 

sequences affiliated to Brocadia were found in the interface of Bb12 where 

O2 is likely to be higher than anywhere else in the saturated zone but not 

appearing in the unsaturated zone itself as the genus still requires a certain 

level of moisture. Brocadia and Kuenenia often co-occur in the environment 

as they appear to in Bb12 with both genera having high ammonia and O2 

tolerance than that of other anammox bacteria genera (Wang et al., 2019). In 

a previous study, anammox showed a negative correlation with soil depth 

(Sonthiphand et al., 2014) and where the sediment is not porous enough 

(Lansdown et al., 2016) likely due to a very low oxygen concentration, which 

would have restricted the activity of AOB and AOA and therefore the nitrite 
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supply. This suggests that in order to couple nitrification and anammox, there 

is a need for abundant oxic-anoxic interfaces (Lansdown et al., 2016). The 

area of such interfaces is higher in the presence of plant roots in RB6 (in this 

study all sequences in association with the roots were found to be related to 

Kuenenia), compared to the unvegetated Bb12 and it would be prudent to 

determine number and activity of anammox in these two constructed wetland 

systems by qPCR, amplicon sequencing and RT-qPCR. 

Terrestrial genera, such as Kuenenia and Brocadia are more versatile in their 

metabolism than Scalindua. They contain the genes necessary for utilisation 

of certain inorganic carbon for additional energy/electron source (i.e. acetate, 

and propionate) (Kartal et al., 2013). However, Brocadia lacks the ability to 

perform dissimilatory nitrate reduction to ammonium, whereas the Kuenenia 

genomes contain a nitrate reductase, which can be used to produce nitrite 

for the anammox metabolism (Kartal et al., 2013). Representatives of 

Brocadia and Kuenenia have also been suggested to perform anaerobic 

respiration of iron and manganese oxides – which are plentiful in the landfill 

leachate (Kadlec and Wallace, 2009; Morling, 2007). These attributes may 

influence the diversity of the anammox community in the constructed 

wetlands. 

Soil moisture level is assumed to be an important driver of the anammox 

community (Humbert et al., 2010; Wang et al., 2019). In wetland systems 

however, diversity can decrease as water can diffuse local environmental 

gradients decreasing the effects above. It may be the case that running 

water through the system from the top periodically disturbs the gradients 

thought to be essential to anammox function, perhaps a fill-and-drain 

mechanism whereby the wetland is filled then left to drain would improve the 

efficacy of the system (Kadlec and Wallace, 2009). Temperature is thought 

to be less important (Sonthiphand et al., 2014). Anammox have a moderately 

high affinity to NH4+, similarly to AOA, 7 uM for NH4
+ and 5 µM for NO2 

- for 

Brocadia and 0.2-0.3 µM with NO2- for Kuenenia. The affinity of anammox 

bacteria for nitrite is higher than that of NOB and anammox would be efficient 

at out-competing NOB and denitrifiers (Wang et al., 2019). 
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Marine areas are found to be dominated by Scalindua and diversity 

increases with the heterogeneous nature of soil, when compared with coastal 

waters. Kuenenia and Brocadia are negatively correlated with salinity (Wang 

et al., 2019). In agreement with the results for aerobic ammonia oxidisers, 

anammox organisms detected in the constructed wetland trials belonged to 

freshwater and terrestrial genera. It is likely that the salinity of the 

constructed wetlands is too low to select for marine ammonia oxidisers and 

anammox bacteria. 

As with AOA and AOB, there was a weaker PCR amplification product 

obtained with anammox primers from the samples acquired from the top 

unsaturated aerobic layer in spring that were estimated qualitatively on 

agarose gels. Although this finding still requires confirmation by qPCR, a 

potentially lower abundance of anammox in the top-most layer of the 

constructed wetlands could be related to the lack of ponding at the time of 

sampling. During sampling in the winter, the trial beds were ponding and the 

top layer of the constructed wetland. which was water-logged. yielded bright 

PCR bands. In a previously studied aquifer system, most anammox activity 

occurred in the saturated soils, likely due to low oxygen in these 

environments and the moisture requirements of these microorganisms 

(Wang et al., 2019). The same study also reported that anammox bacteria 

were undetectable in unsaturated soils until upwelling of groundwater soaked 

these soils and activated anammox bacteria in these layers (Wang et al., 

2019). 

4.4 Conclusions  

In this thesis, it was hypothesised that the microorganisms responsible for 

the process of ammonia removal (ammonia oxidizing archaea/bacteria in 

conjunction with anammox bacteria) would be detected in the soil matrix 

retrieved from the constructed wetland trials. This was indeed the case 

however it was also hypothesised that the contrasting environments in: 

moisture both above and below the water table and between a vegetated 

and unvegetated constructed wetland would indicate two very distinct 
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microbiology communities however this was not observed. To prove the 

hypotheses two functional marker gene PCR primers sets targeting 

anammox were successfully optimised (Aim 1). This enabled investigations 

into anammox organisms in the NCC constructed wetland trials at Mayton 

Wood. The presence of anammox bacteria in two of the wetland trials was 

confirmed using the newly optimised PCR primer sets (Aim 2).   

All primer sets (amoA, hzsA and hzo) indicated that there was no difference 

in the microbial diversity between the different layers of the constructed 

wetland (Aim 3). Furthermore, no difference was observed between the 

vegetated and unvegetated wetland trials studied in this thesis except for the 

presence of the genus Brocadia in the interface of Bb12 and the lack of the 

uncultivated clade of 95% similarity to Kuenenia in Bb12 that was seen in 

RB6. Is was quite surprising given the differences between moisture content 

in the different layers of the wetland however that differences were not 

observed between the saturated and unsaturated layers. Previously 

published work also reported changes to aerobic ammonia oxidising 

communities in rice paddy soils in response to vegetation (Chen et al., 2008). 

In addition, Yang and colleagues (2014) observed a shift in the ammonia 

oxidising communities between vegetated and unvegetated marshes.  

This could be an indication that the constructed wetland does not influence 

diversity however a greater number of sequences would need to be tested by 

amplicon sequencing to gain a greater understanding of the microbial 

community. The results in this study alone indicates the constructed wetland 

is most likely seeded by landfill leachate which already contains these 

microorganisms or the microorganisms could have been introduced in the 

matrix when the wetland was constructed. Without testing the landfill 

leachate, and original compost and sand, it is difficult to speculate how the 

abundances of key microbes have changed. Regardless of how the 

microorganisms were introduced, it is interesting to see no obvious selection 

of the community by the factors studied in this work. One caveat of this work 

is that only a small subset of clones were sequenced. PCR amplicon 

sequencing with the functional marker genes and general 16S primers would 
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provide a much greater depth of sampling and a better resolution of the 

microbial communities and should be performed in future. In addition, this 

study only demonstrated the presence of the organisms but not their activity. 

Although sequence diversity may remain constant across the wetland, some 

microbial clades may be more active in certain parts of the wetland. 

Therefore, RT-qPCR should be carried out in the future to determine the 

transcriptional activity of these microorganisms. 

4.5 Limitations of the work 

Due to the small subset of sequences sampled in this study it is hard to 

determine any meaningful trends from the data and therefore the results are 

reviewed speculatively in this thesis. In the section ‘4.6 Future work’ it is 

determined how to expand upon the results and confirm any speculations 

made. It would be prudent to perform amplicon sequencing, utilising the 

protocols put in place from the optimisations performed on hzsA and hzo 

primers to cover anammox bacterial diversity. General 16S primers designed 

to cover both bacterial and archaeal 16S rRNA sequences would be useful to 

determine the general microbiological community within the constructed 

wetland trials, giving an overall representation of abundances of AOB, AOA 

and anammox bacteria in relation to one another and the wider 

microbiological community. Primer set 16S 515F/806R (v4) (Walters et al., 

2015) tested in silico in the SILVA 16S database (https://www.arb-silva.de/) 

indicated even coverage of bacterial AOB and the Thaumarchaeota and 

Planctomycetes phyla covering AOAs and anammox bacteria respectively. 

Lastly, using marker gene primers amoA for AOB and AOA to determine the 

abundances of nitrite suppliers and how this affects anammox abundances. 

In the case of AOB amoA primers, it would be necessary to find those that 

cover terrestrial, fresh water and marine species to confirm whether marine 

species are indeed missing from the constructed wetlands trials. Although it 

was speculated in the ‘4.1.3 Salinity’ section, that perhaps as no marine 

AOA species were found, that it was likely that there would be no marine 

AOB present either. 

https://www.arb-silva.de/
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Further testing by RT-qPCR would be utilised after confirming the 

microbiological community within these constructed wetland trials to 

determine the most active species involved in nitrogen cycling. Lastly, it 

would be sensible to perform process measurements on the soil matrix in the 

constructed wetland trials themselves – as these measurements were only 

performed on the landfill leachate (100%). Firstly, to determine if there is a 

difference in environmental factors such as pH, salinity, temperature etc. 

between the unsaturated and saturated levels of each wetland and between 

the vegetated and unvegetated constructed wetlands, which would be 

expected. Secondly, it would be useful to determine process measurements 

at the time of sampling for a snapshot of the conditions and microbiological 

community associated with this. Both the information garnered from RT-

qPCR studies and process measurements can lead to a further 

understanding of the conditions required to enhance anammox and nitrogen 

cycling performance and therefore NH3 and total nitrogen removal. 

4.6 Future work 

With the molecular tools in place and with the knowledge that the anammox 

bacteria are present in the wetland trials, there are several future steps which 

should be taken to further understand the microbial ammonia conversions in 

the trials at Mayton Wood. This will help optimise and enhance the 

performance of the constructed wetlands and feed information into scaling up 

the process. The following should be carried out as a priority: 

1. Determination of microbial (AOB, AOA, anammox) abundances by 

qPCR to validate trends and observations from this work.  

2. Amplicon sequencing to sample microbial diversity at greater 

depth. 

3. Process measurements using 15N isotopic tracers. 

It will be crucial to link the molecular tools to process measurements as this 

will provide very robust evidence on both the identity of anammox organisms 

and their contribution to the ammonium removal. There are a plethora of 

other future experiments which could help fine-tune the performance of the 
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constructed wetlands. Measurement of dissolved oxygen levels in the 

constructed wetlands would be vital in finding the balance to achieve partial 

nitrification-anammox. It would be interesting to further examine the effect of 

plants by studying the microbial communities in the rhizosphere. Previous 

studies have found a selection of specific ammonia oxidisers in the 

rhizosphere (Chen et al., 2008). Although in this study no difference was 

observed in the anammox diversity between vegetated and unvegetated 

constructed wetlands, aerobic ammonia oxidisers were not examined in the 

unvegetated trial but were found in the bottommost layers of the constructed 

wetland. Plant roots could potentially provide an important niche of coupling 

aerobic ammonia oxidation and anammox by creating a microaerophilic 

environment. Furthermore, it would be useful to investigate the causes of 

ponding and explore potential other matrices for constructing wetlands. One 

potential way to enhance the performance of the wetlands is seeding by 

activated sludge as previous described (Zhu et al., 2011). While there are 

many adjustments that can be made in the future, the work in this thesis has 

laid a solid foundation for the future work and demonstrated both the 

suitability of the molecular tools and the presence of anammox bacteria in 

the trials.  
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5. List of Abbreviations 

AMO Ammonia monooxygenase 
AmoA Ammonia monooygenase alpha subunit 
Anammox Anaerobic ammonia oxidisation 
AOA Aerobic oxidising archaea 
AOB Aerobic oxidising bacteria 
AOM Aerobic oxidising microorganism 
Bb Biobed 
BNR Biological nitrogen removal 
BOD Biological oxygen demand 
Bp Base pair 
Cl- Chloride 
COD Chemical oxygen demand 
CW Constructed wetland 
DNA Deoxyribonucleotide acid 
FWS Free water surface 
HDH Hydrazine dehydrogenase 
HSSF Horizontal subsurface flow 
HZO Hydrazine oxidoreductase 
HZS Hydrazine synthase 
hzsA Hydrazine synthase alpha subunit 
N2 Dinitrogen gas 
N2O Nitrous oxide 
NaCl Sodium chloride (salt) 
NaOCl Sodium hypochlorite (bleach) 
NCC Norfolk County Council 
NH2OH Hydroxylamine 
NH3 Ammonia 
NH4+ Ammonium 
NH4+-N Ammoniacal nitrogen 
NIR Nitrite reductase 
NO Nitric oxide 
NO2- Nitrite 
NO3- Nitrate 
NOB Nitrite oxidising bacteria 
O2 Oxygen 
OTU Operational taxonomic unit 
PBS Phosphate buffer solution 
PCR Polymerase chain reaction 
RB Reed bed 
RFLP Restriction fragment length polymorphism 
SBR Sequencing batch reactor 
SOB Super Optimal Broth 
TBE Tris/borate/EDTA buffer 
TOC Total organic carbon 
TON Total organic nitrogen 
VF Vertical flow 
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7. Appendices 

Table 7.1 Chemistry of raw leachate in January (22/1/19) 
* These are measured monthly – closest measurement 5/2/19 
** Last measurement by National Laboratory Service on 4/9/18 

Chemical Concentration 

Ammoniacal Nitrogen (NH4+-N) 937 mg L-1 N 

Biological Oxygen Demand 93 mg L-1 O * 

Chemical Oxygen Demand 1390 mg L-1 O * 

Chloride 1450 mg L-1 Cl 

Conductivity 12960 µS cm-1 * 

Nitrite 0.5 mg L-1 

pH 7.69 * 

Total Organic Carbon 344 mg L-1 C ** 

Total Oxidised Nitrogen 0.3 mg L-1 N 

 

Table 7.2 Chemistry of raw leachate in March (12/3/19) 
* These are measured monthly – closest measurement 5/3/19 
** Last Measurement by National Laboratory Service on 4/9/18 

Chemical Concentration 

Ammoniacal Nitrogen (NH4+-N) 1120 mg L-1 N 

Biological Oxygen Demand 119 mg L-1 O * 

Chemical Oxygen Demand 1310 mg L-1 O * 

Chloride 1530 mg L-1 Cl 

Conductivity 13750 µS cm-1 * 

Nitrite <0.1 mg L-1 

pH 7.66 * 

Total Organic Carbon 344 mg L-1 C ** 

Total Organic Nitrogen 0.3 mg L-1 N 

 


