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Abstract

T
his thesis is concerned with the representation theory of the symmetric

groups and related algebras, in particular the combinatorics underlying

the representations of the Khovanov-Lauda-Rouquier (KLR) algebras.

These algebras are of particular interest since they possess cyclotomic quotients

which were shown by Brundan and Kleshchev to be isomorphic to the Ariki-

Koike algebras. The Ariki-Koike algebras generalise Iwahori-Hecke algebras of

the symmetric group, and so in turn generalise the symmetric groups themselves.

Via this isomorphism, we are able to utilise the grading of the KLR algebras in

the setting of the Ariki-Koike algebras, and thus study graded Specht modules.

Specht modules of the KLR algebras admit a definition which lends them well

to diagrammatic combinatorics. We shall first develop an arsenal of combinatorial

lemmas related to the manipulation of braid diagrams. Then, we will use these to

demonstrate the existence of explicit homomorphisms between Specht modules of

certain KLR algebras, related to moving particular shapes between the multipar-

titions associated to these Specht modules. We shall begin by considering moving

single nodes between bipartitions, but eventually consider moving multiple large

connected shapes of nodes between components of multipartitions in higher levels.

We will then use the obtained homomorphisms to investigate the homomor-

phism spaces between Specht modules that lie in core blocks of level 2 KLR

algebras whose base tuples consists entirely of zeroes. We will completely describe

the dominated homomorphism spaces between Specht modules in these blocks. In

particular, when the quantum characteristic is not 2 and the multicharge entries

are distinct, we will completely describe all homomorphism spaces between Specht

modules in these blocks. We will also give a conjecture about replacing the base

tuple with any arbitrary base tuple.
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Introduction

T
he representation theory of the symmetric group Sn over the complex

numbers can be traced back to the work of Young [You00], Frobenius

[Fro03] and Specht [Spe35], whose ideas are still present today. Some-

what more recently, James progressed the topic by working over an arbitrary field,

not just the complex numbers, to construct the irreducible modules as quotients

of Specht modules. A key reference that we will use and a great introduction to

James’s work on the symmetric group is given in the following reference [Jam78a].

In [DJ86], Dipper and James introduced the Iwahori-Hecke algebra HF,q(Sn),

which acts as a generalisation of the symmetric group. As such, results in

the representation theory of HF,q(Sn) can be used to recover corresponding

results from the representation theory of Sn. Subsequently, Murphy [Mur92,

Mur95] obtained a basis for HF,q(Sn) which gave a new approach to studying the

representations of the Iwahori-Hecke algebra. The Murphy basis is an example of

a cellular basis, as defined later by Graham and Lehrer [GL96] and we have that

the Specht modules here arise as the cell modules.

Generalising further, in [AK94] Ariki and Koike introduced the Ariki-Koike

algebra HF,q,Q(Z/lZ o Sn). A cellular basis constructed by Dipper, James and

Mathas [DJM98] gave the representation theory of the Ariki-Koike algebra a

similar framework to that of the Iwahori-Hecke algebra. Again, since the Ariki-

Koike algebra is a generalisation of the Iwahori-Hecke algebra, many of the results

for HF,q(Sn) have corresponding results for HF,q,Q(Z/lZ oSn), and we have Specht

modules arising as cell modules.

In [BK09], Brundan and Kleshchev showed that the Ariki-Koike algebras are

isomorphic to certain Z-graded algebras defined by Khovanov and Lauda [KL09]

[KL11] and Rouquier [Rou08]. This isomorphism gives a non-trivial Z-grading on

HF,q,Q(Z/lZ oSn). In fact we can additionally grade the Specht modules and thus

study graded representation theory.

In Chapter 1, we shall define the algebras that we are to work with, along

1



Introduction George Witty

with giving an overview of any background material that we will need in order to

study their representation theory. This will include both the algebraic setup that

we require along with combinatorial definitions such as braid diagrams for Specht

modules of KLR algebras, partitions, tableaux and abacuses. We shall also give a

more in-depth definition of the Specht modules for KLR algebras, since these will

be the main objects of our study.

Once the necessary background is established, in Chapter 2 we present various

ways in which we can manipulate braid diagrams associated to KLR algebras and

their Specht modules. When making our way through calculations whilst trying

to show the existence of explicit homomorphisms within our KLR algebras, we

will often encounter similar looking patterns of strings within our braid diagrams.

Thus we aim to establish general methods for dealing with such crossings, as this

will be useful for cutting down the amount of work needed in our calculations.

In Chapter 3, we use the processes outlined in the previous chapter in order to

prove the existence of explicit homomorphisms between certain Specht modules

for KLR algebras where the corresponding pair of multipartitions differ by moving

nodes. We will first use our approach in order to find homomorphisms and

explicitly state the image of the generator, which arise between one-node Carter-

Payne pairs as studied by Lyle and Mathas [LM14]. We will then build upon

our techniques so that in Theorem 3.14 and its corollaries we may exhibit new

homomorphisms that arise when considering two multipartitions which differ by

the moving of a large connected set of nodes. We follow this with a conjecture

concerning improving the strictness of the hypotheses of the theorem. We conclude

the chapter with a brief discussion about homomorphisms that occur when we do

not have the diagonal residue condition, by means of exploring some examples.

Finally, in Chapter 4, we consider some recent work by Fayers [Fay06, Fay07]

concerning the core blocks of the Ariki-Koike and KLR algebras and discuss some

relevant ideas using the combinatorics of the abacus in the KLR setting, based

on personal communication with Sinéad Lyle. We shall show that within these

core blocks, the homomorphisms constructed in the previous chapter arise, and

Theorem 4.26 will allow us to describe the entire set of dominated homomorphism

2



Introduction George Witty

spaces within certain classes of core blocks. Due to a result of Speyer [FS16], we

are able to state a condition for when this set coincides with the entire set of

homomorphism spaces in Theorem 4.27. We finish by discussing the possibilities

of extending the results of this chapter to all core blocks, exploring some new

examples with links to those at the end of the previous chapter, and ultimately

stating a relevant conjecture.

3



Chapter 1
Background

I
n this chapter we will state the necessary background information related

to the algebras that we will work with, and the relevant combinatorial

ideas that we will need. In particular, we will detail the definition of a

Specht module for a KLR algebra and describe the combinatorics involved. Some

more general details related to the background, e.g. the definition of an algebra

defined by generators and relations, can be found in [EGH+11].

1.1 The symmetric group

Fix n ≥ 1 and let Sn be the symmetric group of degree n. For 1 ≤ i < n let si

be the transposition (i, i+ 1). Then Sn is generated by the elements s1, . . . , sn−1

subject to the relations:

s2
i = 1, 1 ≤ i ≤ n− 1,

sisj = sjsi, 1 ≤ i < j − 1 ≤ n− 2,

sisi+1si = si+1sisi+1, 1 ≤ i ≤ n− 2.

For w ∈ Sn, write w = si1 · · · sik for some k ≥ 0. If k is minimal then we say

that si1 · · · sik is a reduced expression for w and we say that w has length k and

write l(w) = k. The identity element 1 has length 0. Given w ∈ Sn, we define

the signature of w to be sgn(w) := (−1)l(w).

Given w,w′ ∈ Sn, then we say that w is greater than w′ in the Bruhat order

(and write w � w′) if there is a reduced expression for w such that w′ can be

obtained as a subexpression of this reduced expression. If w � w′ then we also

write w′ � w and say w′ is smaller than w in the Bruhat order.

4



1.2. The Iwahori-Hecke algebra George Witty

1.2 The Iwahori-Hecke algebra

Definition 1.1. Let F be a field and let q be an arbitrary non-zero element of

F. The Iwahori-Hecke algebra HF,q(Sn) of Sn is the unital associative F-algebra

with generators T1, . . . , Tn−1 and relations:

(Ti − q)(Ti + 1) = 0, 1 ≤ i ≤ n− 1,

TiTj = TjTi, 1 ≤ i < j − 1 ≤ n− 2,

TiTi+1Ti = Ti+1TiTi+1, 1 ≤ i ≤ n− 2.

For brevity, we may write H for HF,q(Sn). When q = 1, the first relation becomes

T 2
i = 1, and so in this case HF,q(Sn) is isomorphic to the group algebra FSn.

Definition 1.2. Define e ∈ {2, 3, 4, . . .} to be the quantum characteristic of

HF,q(Sn), that is, the smallest integer e such that

1 + q + q2 + . . .+ qe−1 = 0.

If no such integer exists, let e =∞. Note that if q = 1 (as in the case of Sn) then

e = charF.

Suppose w ∈ Sn and let w = si1 · · · sik be a reduced expression for w. We

define

Tw = Ti1 · · ·Tik .

If w is the identity element of Sn then we identify Tw with the identity element

of F. By Matsumoto’s Theorem for reduced expressions [Mat64], we have that Tw

is independent of the choice of reduced expression for w and hence is well-defined.

The following result details how we perform right multiplication in HF,q(Sn).

Proposition 1.3. [Mat99, Lemma 1.1.2] Let w ∈ Sn, then

TwTsi =


Twsi , if l(wsi) > l(w),

qTws + (q − 1)Tw, if l(wsi) < l(w).

5



1.3. The Ariki-Koike algebra George Witty

Example 1.4. Let w = (1, 2, 3) = (2, 3)(1, 2) and consider s2 = (2, 3). Then

ws2 = (1, 3) = (2, 3)(1, 2)(2, 3), so l(ws2) = 3 > 2 = l(w) hence

T(1,2,3)T(2,3) = T(1,3).

If instead we consider s1 = (1, 2), then ws1 = (2, 3), so l(ws1) = 1 < 2 = l(w)

hence

T(1,2,3)T(1,2) = qT(2,3) + (q − 1)T(1,2,3).

♦

By Lemma 1.3 we see that the elements Tw for w ∈ Sn span HF,q(Sn). It can

also be shown that they are linearly independent to obtain the following theorem.

Theorem 1.5. [Mat99, Theorem 1.1.3] The Iwahori-Hecke algebra HF,q(Sn) is

free as an F-module with basis {Tw | w ∈ Sn}.

1.3 The Ariki-Koike algebra

Definition 1.6. Let F be a field, let q be a non-zero element of F, let l ≥ 1 and

let Q = (Q1, . . . , Ql) ∈ Fl with Qi 6= 0 for 0 ≤ i ≤ l. The Ariki-Koike algebra

HF,q,Q(Z/lZ oSn) is the unital associative F-algebra with generators T0, . . . , Tn−1

and relations:

(T0 −Q1)(T0 −Q2) . . . (T0 −Ql) = 1,

(Ti − q)(Ti + 1) = 0, 1 ≤ i ≤ n− 1,

T0T1T0T1 = T1T0T1T0,

TiTj = TjTi, 0 ≤ i < j − 1 ≤ n− 2,

TiTi+1Ti = Ti+1TiTi+1, 1 ≤ i ≤ n− 2.

We may write just HF,q,Q for HF,q,Q(Z/lZ oSn). Note in the case when l = 1, the

first relation becomes T0 = 1 +Q1 ∈ F, thus the third relation is trivially satisfied,

and so we recover the presentation for the Iwahori-Hecke algebra.

6



1.4. Lie-theoretic setup George Witty

We define the quantum characteristic e of the Ariki-Koike algebra identically

to that of the Iwahori-Hecke algebra. Similarly, for w ∈ Sn we set Tw = Ti1 · · ·Tik

where si1 · · · sik is a reduced expressions for w, and we have the same multiplication

formula as given by Proposition 1.3.

We say Q is q-connected if for each i, Qi = qai for some ai ∈ Z. In [DM02],

Dipper and Mathas prove that any Ariki-Koike algebra is Morita equivalent to a

direct sum of tensor products of smaller Ariki-Koike algebras, each of which has

q-connected parameters. Thus we may assume that we are always working with a

Ariki-Koike algebra where each Qi is an integral power of q.

We call l the level of HF,q,Q. Given e ∈ {2, 3, 4, . . .} ∪ {∞} set I = Z/eZ

(which we identify with {0, 1, . . . , e− 1}) unless e =∞, in which case set I = Z.

Sn acts on the left on elements of In by place permutations. We call an l-tuple

κ = (κ1, . . . , κl) ∈ I l an e-multicharge of level l. If we consider a particular choice

of HF,q,Q, by assumption there exists κ = (κ1, . . . , κl) ∈ I l such that Qi = qκi

for every i ∈ {1, . . . , l}. We call this particular κ the e-multicharge of level l of

HF,q,Q.

1.4 Lie-theoretic setup

Let e ∈ {2, 3, 4, . . .} ∪ {∞} and let I be defined as in Section 1.3. Let Γe be the

quiver with vertex set I and an arrow from i to i− 1 for i ∈ I. If some i, j ∈ I are

not connected by an edge in Γe then we write i 6−− j. Some examples are shown

below.

0

1

0

1 2

0 3

1 2

Γ2 Γ3 Γ4

· · · −1 0 1 2 · · ·

Γ∞

7



1.5. Graded algebras George Witty

The Cartan matrix (ai,j)i,j∈I is given by:

ai,j =



2 if i = j,

0 if j 6= i, i± 1,

−1 if i→ j or i← j,

−2 if i� j.

As in [Kac90], let (h,Π,Π∨) be a realisation of the Cartan matrix, giving us

simple roots αi and fundamental dominant weights Λi for i ∈ I, along with a

bilinear form ( , ) satisfying (αi, αj) = ai,j and (Λi, αj) = δij for i, j ∈ I. Define

P+ :=
⊕

i∈I Z≥0Λi, the positive weight lattice and define Q+ :=
⊕

i∈I Z≥0αi, the

positive root lattice. For α =
∑

i∈I ciαi ∈ Q+, the height of α is defined to be∑
i∈I ci.

Consider κ = (κ1, . . . , κl), an e-multicharge of level l, as defined in Section 1.3.

We define the corresponding dominant weight to be Λκ := Λκ1 + · · ·+ Λκl .

1.5 Graded algebras

Definition 1.7. An F-algebra A is Z-graded if for every i ∈ Z there exists a

vector space Ai such that

(i) AiAj ⊆ Ai+j for every i, j ∈ Z, and

(ii) there is a direct sum decomposition A =
⊕

i∈ZAi as vector spaces.

We will usually refer to Z-graded algebras simply as graded algebras.

Example 1.8. (i) Any algebra A is graded by taking A0 = A,Ai = 0 for i 6= 0.

(ii) Let A = F[x], the polynomial ring with coefficients in F. Let

Ai =


〈xi〉F if i ≥ 0,

0 if i < 0.

Then this defines a grading on A.

8



1.6. KLR algebras George Witty

♦

Definition 1.9. An element a ∈ A is homogeneous of degree i if a ∈ Ai. We

write deg(a) = i.

Definition 1.10. Let A be a graded F-algebra and let M be an A-module. We

say M is Z-graded if for every i ∈ Z there exists a vector space Mi such that

(i) MiAj ⊆Mi+j for every i, j ∈ Z, and

(ii) there is a direct sum decomposition M =
⊕

i∈ZMi as a vector space.

We will refer to Z-graded modules simply as graded modules.

Definition 1.11. Let A be a graded algebra and let M and N be graded A-

modules. A homomorphism of A-modules ϕ : M → N is called homogeneous of

degree d if ϕ(Mi) ⊆ Ni+d for every i ∈ Z.

Definition 1.12. If M is a graded module and k ∈ Z, then we define M〈k〉 to

be the module isomorphic to M but whose grading is shifted by k. That is, we

have M〈k〉d = Md−k.

1.6 KLR algebras

Suppose we have fixed an e ∈ {2, 3, 4, . . .} ∪ {∞} and defined I as in Section 1.3.

As in Section 1.4 we have a Cartan matrix (ai,j)i,j∈I , simple roots αi and the

positive root lattice Q+.

Definition 1.13. Let F be a field and suppose α ∈ Q+ has height n. Define Iα

to be the set

Iα = {i ∈ In | αi1 + · · ·+ αin = α}.

Then define Hα to be the unital associative F-algebra with generators

{e(i) | i ∈ Iα} ∪ {y1, . . . , yn} ∪ {ψ1, . . . , ψn−1}

9



1.6. KLR algebras George Witty

and relations

e(i)e(j) = δije(i), (1.1)∑
i∈Iα

e(i) = 1, (1.2)

yr = e(i)yr, (1.3)

ψre(i) = e(sri)ψr, (1.4)

yrys = ysyr, (1.5)

ψrys = ysψr, if s 6= r, r + 1, (1.6)

ψrψs = ψsψr, if |r − s| > 1, (1.7)

ψryr+1e(i) = (yrψr + δirir+1)e(i), (1.8)

yr+1ψre(i) = (ψryr + δirir+1)e(i), (1.9)

ψ2
re(i) =



0, if ir = ir+1,

(yr+1 − yr)e(i), if ir → ir+1,

(yr − yr+1)e(i), if ir ← ir+1,

(yr+1 − yr)(yr − yr+1)e(i), if ir � ir+1,

e(i), otherwise,

(1.10)

ψrψr+1ψre(i) =



(ψr+1ψrψr+1 + 1)e(i), if ir = ir+2 → ir+1,

(ψr+1ψrψr+1 − 1)e(i), if ir = ir+2 ← ir+1,

(ψr+1ψrψr+1 + yr − 2yr+1 + yr+2)e(i), if ir = ir+2 � ir+1,

(ψr+1ψrψr+1)e(i), otherwise,

(1.11)

for all i, j ∈ Iα and all admissible r and s.

The affine Khovanov-Lauda-Rouquier algebra (or quiver Hecke algebra) Hn is

defined to be
⊕

α Hα, the sum being over all α ∈ Q+ of height n.

Once again recall the Lie-theoretic notation of Section 1.4. Given α ∈ Q+ and

10



1.6. KLR algebras George Witty

κ, an e-multicharge of level l, we obtain the dominant weight Λκ. We define H Λκ
α

to be the quotient of Hα by the relations

y
(Λκ,αi1 )
1 e(i) = 0 (1.12)

for i ∈ Iα.

Definition 1.14. The cyclotomic Khovanov-Lauda-Rouquier algebra H Λκ
n is

defined to be
⊕

α H Λκ
α , the sum being over all α ∈ Q+ of height n.

Note that we will frequently abbreviate Khovanov-Lauda-Rouquier to “KLR”.

We remark that in the case of H Λκ
n , due to [LM07] or [Bru08, Theorem 1] the

blocks are given by the algebras H Λκ
α .

Proposition 1.15. [BK09, Corollary 1] There is a unique Z-grading on H Λκ
α

such that

deg(e(i)) = 0, deg(yr) = 2, deg(ψre(i)) = −air,ir+1 ,

for each admissible r and i ∈ Iα.

Now we state the theorem which motivates our use of the KLR algebras.

Theorem 1.16. [BK09, Main Theorem] Suppose the Ariki-Koike algebra

HF,q,Q(Z/lZ oSn) has e-multicharge κ. Then H Λκ
n
∼= HF,q,Q(Z/lZ oSn).

Theorem 1.16 implies that the Ariki-Koike algebras are (non-trivially) Z-

graded. As special cases, we have that if l = 1 then H Λκ
n
∼= FSn when q = 1 and

H Λκ
n
∼= HF,q(Sn) otherwise.

We will perform multiple calculations within KLR algebras. We will make

liberal use of the commuting relation (1.7) without reference. Also, for ease when

writing elements, we use the following shorthand notation.

For a ≤ b,

Ψa ↑ b:= ψaψa+1 · · ·ψb.

11
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If a > b then Ψa ↑ b:= 1. For a ≤ b ≤ c,

(Ψb ↑ c)↓ a:= Ψb ↑ c Ψb−1 ↑ c−1 · · ·Ψa ↑ a+c−b .

Similarly, for a ≤ b,

Ψb ↓ a:= ψbψb−1 · · ·ψa.

If a > b then Ψb ↓ a:= 1. For a ≤ b ≤ c,

(Ψc ↓ b)↑ a:= Ψc ↓ b Ψc−1 ↓ b−1 · · ·Ψc−b+a ↓ a .

1.7 Braid diagrams

When working with elements of KLR algebras we will prefer to work diagram-

matically, and so we associate a braid diagram to each element of H Λκ
n as in

[KL09]. We define an n-braid diagram to be a graph whose vertices are labelled

by {1′, 2′, . . . , n′, 1, 2, . . . , n}, with every vertex in {1′, 2′, . . . , n′} connected to a

unique vertex in {1, 2, . . . , n}, and each edge labelled by an element of I and

donning a finite number of dots. If we consider the braid diagram B as a map

from {1′, 2′, . . . , n′} to {1, 2, . . . , n}, we obtain a permutation πB ∈ Sn.

Since braid diagrams are graphs, we can draw them in the plane, and we do not

distinguish between over and under crossings. We place the vertices {1′, 2′, . . . , n′}

at the top of the diagram and the vertices {1, 2, . . . , n} at the bottom, with both

sets ordered from left to right in the natural way. We explicitly indicate the

labels of the vertices {1, . . . , n} at the bottom of the diagram whilst at the top we

label the vertices with i = (i1, . . . , in) ∈ In. For r ∈ {1, . . . , n}, we call the edge

connected to the vertex r the r-string of residue i, where i is the component of i

labelling the other vertex of the edge.

12
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If i = (i1, . . . , in), then the braid diagram representing e(i) is

e(i) =

i1 i2 in

1 2 n

ir

r

· · · · · ·

· · · · · ·

.

Now for r ∈ {1, 2, . . . , n− 1}, ψr acts on a braid diagram by crossing the r-string

with the (r+ 1)-string at the bottom of the diagram. For s ∈ {1, 2, . . . , n}, ys acts

on the braid diagram by adding a dot to the bottom of the s-string. For j ∈ In,

e(j) acts as the identity on a diagram if j = π−1
B i, otherwise it acts as zero. The

element e(i)ys can be drawn as

e(i)ys =

i1 i2 in

1 2 n

is

s

· · · · · ·

· · · · · ·

,

whilst e(i)ψr can be drawn as

e(i)ψr =

i1 i2 in

1 2 n

ir ir+1

r r + 1

· · · · · ·

· · · · · ·

.

We can multiply diagrams by concatenation from top to bottom and so we have

braid diagram versions of the relations (1.1)-(1.12). For example, if we use relation

13



1.7. Braid diagrams George Witty

(1.8), part of the diagram will undergo the diagrammatic relation:

ir ir+1

r r + 1

=

ir ir+1

r r + 1

+ δirir+1

ir ir+1

r r + 1

Suppose that ir → ir+1, then when using relation (1.10), part of the diagram will

undergo the following:

ir ir+1

r r + 1

=

ir ir+1

r r + 1

−

ir ir+1

r r + 1

If we suppose that ir = ir+2 → ir+1, then when using relation (1.11), part of the

diagram will undergo the following:

ir ir+1 ir+2

r r + 1 r + 2

=

ir ir+1 ir+2

r r + 1 r + 2

−

ir ir+1 ir+2

r r + 1 r + 2

Often we will not draw entire diagrams for elements since there will be many

strings which do not undergo any crossings or involve dots and so are of no

importance to the calculation in question, just as in the few diagrams directly

above.

For w ∈ Sn, fix a reduced expression w = sr1 · · · sik and define

ψw := ψr1 · · ·ψrk .
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Note that ψw may depend on the choice of reduced expression for w. We can

obtain an associated braid diagram for ψw. Proposition 1.18 will be useful in

determining when an expression for a permutation is reduced. Let us first define

the set N(w) for w ∈ Sn;

N(w) := {(i, j) ∈ Sn | 1 ≤ i < j ≤ n and iw > jw},

and then state an associated result:

Proposition 1.17. [Mat98] Suppose that w ∈ Sn. Then l(w) = #N(w).

Now we can prove the following result that will be of use to us when dealing

with reduced expressions.

Proposition 1.18. A permutation w = si1 · · · sik ∈ Sn is reduced if and only if

in the corresponding braid diagram B, no two strings cross twice.

Proof. Suppose that two strings cross twice. Then remove the corresponding

crossings from the diagram to obtain a new diagram B′ such that the length of

πB′ is two less than that of πB. Hence we have an expression for w that is shorter

than that we started with so that w = si1 · · · sik was not reduced.

Conversely, assume that no two strings cross twice. Then for i < j, string

i crosses string j if and only if (i, j) ∈ N(w). Hence #N(w) = k and so by

Proposition 1.17 we have the desired result.

1.8 Partitions and tableaux

A composition of n is a sequence λ = (λ1, λ2, . . .) of non-negative integers such

that |λ| :=
∑

i≥1 λi = n. Since n <∞, there is a k such that λi = 0 for i > k and

we may write λ = (λ1, . . . , λk). We write ∅ for the empty composition (0, 0, . . .).

If a composition has repeated parts we group them together with an index. For

example,

(5, 5, 3, 1, 1, 1, 0, 0, . . .) = (5, 5, 3, 1, 1, 1) = (52, 3, 13).

A partition of n is a composition of n satisfying λ1 ≥ λ2 ≥ · · · .
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An l-multicomposition of n is an ordered l-tuple of compositions λ =

(λ(1), λ(2), . . . , λ(l)) such that |λ| := |λ(1)|+ · · · |λ(l)| = n. If each λ(i) is a partition,

we say that λ is an l-multipartition of n. We may often refer to a 2-multipartition

as a bipartition.

If λ is a partition, we define the conjugate partition λ′ to be the partition with

ith part

λ′i = #{j ≥ 1 | λj ≥ i}.

If λ is an l-multipartition, then the conjugate multipartition is defined as

λ′ = (λ(l)′ , . . . , λ(1)′).

Given l-multicompositions λ and µ, we say that λ dominates µ, and write λ D µ,

if
m−1∑
k=1

|λ(k)|+
s∑
i=1

λ
(m)
i ≥

m−1∑
k=1

|µ(k)|+
s∑
i=1

µ
(m)
i

for all 1 ≤ m ≤ l and s ≥ 1. If λ D µ then we also write µ E λ.

If λ is an l-multicomposition, we define the diagram of λ to be

[λ] = {(r, c,m) ∈ N× N× {1, . . . , l} | c ≤ λ(m)
r }.

The elements of [λ] are called nodes. Note that if λ is a composition then we can

consider λ as a 1-multicomposition and in this case we identify [λ] with

{(r, c) ∈ N× N | c ≤ λr}.

Given a composition we may draw its diagram in the plane, drawing each node

as a box, with the r coordinate increasing down the page and the c coordinate

increasing from left to right. For example, the diagram of (3, 3, 4, 0, 2) is drawn as

follows.
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Similarly we can draw the diagram of an l-multicomposition as an l-tuple of

the diagrams of its component compositions. For example, the diagram of

((2, 2, 1), (2), (3, 1)) is drawn as

 , ,

 .

We say a node (r, c,m) lies above (r′, c′,m′) if either m < m′ or (m = m′ and

r < r′). Similarly, we say a node (r, c,m) lies below (r′, c′,m′) if either m > m′ or

(m = m′ and r > r′).

For an l-multipartition λ, we say that an element B ∈ N × N × {1, . . . l} is

an addable node if B /∈ [λ] and [λ] ∪ {B} is the diagram of a multipartition.

We say that a node A ∈ [λ] is removable if [λ] \ A is also the the diagram of a

multipartition.

Given a partition λ, let λk̂ := (λ1, λ2, . . . , λk−1, λk − 1, λk+1, λk+2, . . .), i.e.[
λk̂
]

is [λ] with the rightmost node on the kth row removed.

Definition 1.19. Given λ, an l-multipartition of n, a λ-tableau is a bijection

t : [λ]→ {1, . . . , n}. We can represent a λ-tableau t by drawing [λ] and then filling

in the box at position (r, c,m) with its image under t.

We say a λ-tableau t is row standard if its entries increase along the rows of

each component of its diagram, and we say t is standard if, in addition to being

row standard, its entries increase down the columns of each component of its

diagram. We write Std(λ) for the set of standard λ-tableaux.

Example 1.20. Let λ = ((3, 2), (12)). Then

(
1 2 3
4 5

,
6
7

)
,

(
1 3 5
2 4

,
7
6

)
and

(
2 7 3
1 6

,
5
4

)

are examples of λ-tableau, the first of which is standard, the second of which is

row standard but not standard, and the third of which is neither. ♦

The symmetric group acts naturally on λ-tableaux on the right by permuting

the entries. In Example 1.20 above, the permutation (2, 3, 5, 4)(6, 7) sends the
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first tableau to the second.

Definition 1.21. Let λ be a l-multipartition of n. The initial tableau tλ is defined

to be the tableau obtained by writing the numbers 1, . . . , n in order from left to

right, going down the rows of each successive component of λ. Given a λ-tableau

t we define the permutation d(t) ∈ Sn by t = tλd(t).

Example 1.22. Let λ = ((2, 2, 1), (2), (3, 1)), a 3-multipartition of 11. Then we

have

tλ =

 1 2
3 4
5

, 6 7 ,
8 9 10
11

 .

If

t =

 1 4
2 5
3

, 6 7 ,
8 10 11
9

 ,

then d(t) = (2, 4, 5, 3)(9, 10, 11). ♦

Recall the Bruhat order � on Sn as defined in Section 1.1. Given a multipar-

tition λ we define a dominance order on the set of λ-tableaux: for λ-tableaux t

and s we have

t D s if and only if d(t) � d(s).

If t D s then we also write s E t.

1.9 Residues and degrees

Suppose e ∈ {2, 3, 4, . . .}∪{∞} and that we have an e-multicharge κ = (κ1, . . . , κl)

as defined in Section 1.3. Given a node A = (r, c,m) define its residue resA to be

resA = κm + c− r mod e.

Note that in the theory of Sn and HF,q(Sn) we have l = 1, and the choice of

multicharge has no consequence on the structure of the algebra, thus the residue

of a node A is usually defined just as

resA = c− r mod e.
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We say A is an i-node if resA = i. Define the residue diagram of λ to be the

diagram formed by filling in the box of [λ] at node A with resA. If λ is a

multipartition of n and f ∈ F, let cf (λ) be the number of nodes in [λ] of residue

f . We define the residue content of λ to be

cont(λ) =


(c0(λ), c1(λ), . . . , ce−1(λ)) if e ∈ {2, 3, 4, . . .},

(. . . , c−2(λ), c−1(λ), c0(λ), c1(λ), c2(λ), . . .) if e =∞.

Recall the simple roots αi constructed in Section 1.4. If we are in this setting

we may also define the residue content to be

∑
A∈[λ]

αresA ∈ Q+.

Given a λ-tableau t, where λ is a multipartition of n, define the residue

sequence of t to be i(t) = (i1, . . . , in) where ik is the residue of the node whose

image is k under t. In particular, we define iλ := i(tλ). We write resν(a) for the

residue of the node containing a in tν .

Example 1.23. Let λ = ((2, 2, 1), (2), (3, 1)), e = 3 and κ = (0, 2, 1). Then we

have the residue diagram

 0 1
2 0
1

, 2 0 ,
1 2 0
0


and we have that iλ = (0, 1, 2, 0, 1, 2, 0, 1, 2, 0, 0). ♦

Suppose λ is an l-multipartition of n and that A is an i-node of λ. Define

dA(λ) := #

 addable i-nodes of λ

below A

−#

 removable i-nodes of λ

below A

 ,

and

dA(λ) := #

 addable i-nodes of λ

above A

−#

 removable i-nodes of λ

above A

 .
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We define the degree and codegree of t ∈ Std(λ) recursively. We set deg(t) =

0 = codeg(t) when t is the ∅-tableau. For t ∈ Std(λ) with |λ| 6= 0, set

deg(t) := dA(λ) + deg(t<n) and codeg(t) := dA(λ) + codeg(t<n),

where A = t−1(n) and t<n is the tableau obtained by removing A from t.

Example 1.24. Let λ = ((2, 1), (12)), e = 3, κ = (2, 1) and consider t =(
2 4
3

,
1
5

)
. We have the corresponding residue diagram

(
2 0
1

,
1
0

)
.

Then, taking A to be the node t−1(5) = (2, 1, 2), we get dA(λ) = 0 − 0 = 0,

dA(λ) = 1 − 1 = 0, and t<5 =

(
2 4
3

, 1

)
. Continuing in this manner, we

find that deg(t) = 2 and codeg(t) = 0. ♦

1.10 Abacuses

Another way to represent multipartitions is to use abacus configurations. Suppose

λ is a partition and that we have fixed a ∈ Z. For every j ≥ 1 we define the

β-number βj to be

βj := λj − j + a

and we define the set of β-numbers associated to λ with respect to a to be

βa(λ) = {βj | j ≥ 1}.

Now suppose we have an abacus whose runners extend infinitely and are

indexed from left to right by the elements of I and whose possible bead positions

are labelled with the elements of Z from left to right and then top to bottom,

with position 0 appearing on runner 0. Then the abacus configuration associated

to λ with respect to a is the abacus configuration with a bead placed at position

βj for every j ≥ 1.

Example 1.25. Suppose e = 5, a = 3 and λ = (12, 10, 62, 4, 2, 1). Then we have

βa(λ) = {14, 11, 6, 5, 2,−1,−3,−5,−6,−7, . . .}
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and the abacus configuration is

0 1 2 3 4qqq qqq qqq qqq qqq{ { { { {
{ { { { {
{ { {

{
{ {

{ {
qqq qqq qqq qqq qqq

♦

Given an l-multipartition λ = (λ(1), . . . , λ(l)) and a = (a1, a2, . . . , al) ∈ Zl, we

define the abacus configuration associated to λ with respect to a to be the l-tuple

of abacuses where the ith abacus corresponds to the β-numbers βai(λ
(i)).

Note that if κ = (κ1, . . . , κl) is a multicharge and ai ≡ κi for i ∈ {1, . . . , l}

then each bead corresponds to the end of a row of the diagram of λ (or to a row

of length 0), and by the definition of the β-numbers the node at the end of the

row (if it exists) has residue i if and only if the corresponding bead is on runner

i of the abacus. Thus if we increase any β-number by one, this is equivalent to

moving a bead from runner j to runner j+ 1 mod e which is equivalent to adding

a node of residue j + 1 to the diagram of λ. Similarly decreasing a β-number by

one is equivalent to moving a bead from runner j to runner j − 1 mod e which is

equivalent to removing a node of residue j from the diagram of λ.

Example 1.26. Recall the setup in Example 1.25. We see, for example, that

increasing β1 from 14 to 15 corresponds to adding a node of residue 0, whilst

decreasing β5 from 2 to 1 corresponds to removing a node of residue 2. The

corresponding residue diagram is shown below with the addable node in red and

the removable node in blue.
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3 4 0 1 2 3 4 0 1 2 3 4 0
2 3 4 0 1 2 3 4 0 1
1 2 3 4 0 1
0 1 2 3 4 0
4 0 1 2
3 4
2

♦

1.11 Specht modules for H Λκ
n

We will now define Specht modules for H Λκ
n . By Theorem 1.16 we have that

each KLR algebra is isomorphic to some Ariki-Koike algebra. There are well

established ways of defining Specht modules of Ariki-Koike algebras as cell modules

corresponding to cellular bases (see [GL96] for the first such way, or [DJM98]),

and in a similar vein Hu and Mathas construct an explicit homogeneous cellular

basis for H Λκ
n in [HM10]. However, we will define the Specht modules for H Λκ

n

in such a way that gives us a different insight into the representation theory of

the Ariki-Koike algebras.

By Proposition 1.15 we know that H Λκ
n is a graded algebra, but it is not directly

obvious that certain classes of modules should admit a grading. Nevertheless,

graded Specht modules for H Λκ
n were first exhibited in [BKW11], however they are

defined in such a way that computations rely on repeatedly using Theorem 1.16.

Instead, following the method used in [KMR12], we may present the Specht

modules in terms of a single homogeneous generator and relations, allowing us to

consider a different approach to the Specht modules as opposed to using cellular

bases. Note that this grading can of course be transferred to HF,q,Q (and hence

also HF,q(Sn) and FSn) via Theorem 1.16.

Fix e ∈ {2, 3, 4, . . .} ∪ {∞} and let κ be an e-multicharge of level l. Let λ be

an l-multipartition of n, and let A = (a, b,m) ∈ [λ]. We say A is a (row) Garnir

node of λ if (a+ 1, b,m) ∈ [λ]. The (row) Garnir belt BA is defined to be the set
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of nodes

BA = {(a, c,m) ∈ [λ] | c ≥ b} ∪ {(a+ 1, c,m) ∈ [λ] | c ≤ b}.

Example 1.27. Let λ = ((3, 2), (7, 3, 2)) and A = (1, 3, 2). Then the Garnir belt

BA is shown highlighted below.

 ,
A


♦

We define a λ-tableau called the (row) Garnir tableau GA by taking the initial

tableau tλ and rewriting the entries within BA so that they increase from bottom

left to top right.

Example 1.28. Continuing Example 1.27, we have the tableau

tλ =

 1 2 3
4 5

,
6 7 8 9 10 11 12
13 14 15
16 17


and

GA =

 1 2 3
4 5

,
6 7 11 12 13 14 15
8 9 10
16 17

 .

♦

We define a (row) brick to be a set of e successive nodes

{(c, d,m), (c, d+ 1,m), . . . , (c, d+ e− 1,m)} ⊆ BA

such that res(c, d,m) = resA. So BA is a disjoint union of bricks together with

less than e nodes not in a brick at the end of row a and less than e nodes not in a

brick at the beginning of row a+ 1. Let f = fA be the number of bricks in row a

and g = gA be the number of bricks in row a+ 1. Set k = kA = fA + gA, i.e. k is

the total number of bricks in BA. Then we label the bricks BA
1 , B

A
2 , . . . , B

A
k from
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bottom left to top right.

Example 1.29. Continuing Example 1.28, if we suppose e = 2 then the bricks

are illustrated below.

GA =

 1 2 3
4 5

,
6 7 11 12 13 14 15
8 9 10
16 17


BA

1

BA
2 BA

3

♦

If k > 0 let d = dA be the smallest entry in BA
1 . In Example 1.29, we see that

d = 9. For each r ∈ {1, . . . , k − 1}, we define a brick transposition

wAr :=
d+re−1∏
x=d+re−e

(x, x+ e)

which swaps the bricks BA
r and BA

r+1. These elements are the Coxeter generators

for a symmetric group:

SA := 〈wA1 , wA2 , . . . , wAk−1〉 ∼= Sk.

If k = 0 then we set SA to be the trivial group.

Define GarA to be the set of all row standard λ-tableaux which are obtained

from GA by brick permutations, i.e. by acting on GA by SA. Note that every

tableau in GarA is standard except for GA, and GA is the minimal element of GarA

with respect to the Bruhat order.

Let TA be the λ-tableau obtained from GA by reordering the bricks so that

their entries increase along row a and then along row a+ 1.

Example 1.30. Continuining Example 1.29, we have

TA =

 1 2 3
4 5

,
6 7 9 10 11 12 15
8 13 14
16 17

 .
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♦

Define DA to be the set of minimal length right coset representatives of

Sf ×Sg in SA ∼= Sk. Let iA = i(TA) be the residue sequence of TA. Recall that

for w ∈ Sn, we fix a reduced expression w = sr1 · · · sik and define ψw := ψr1 · · ·ψrk .

Note that the ψw may depend on the choice of reduced expression for w. Now if

u ∈ DA, choose a reduced expression u = wAr1 · · ·w
A
rt for d and define

τAu := e(iA)(ψwAr1
+ 1) · · · (ψwArt + 1).

By [KMR12, Theorem 5.11], τAu does not rely on the choice of reduced expression

for u, nor the choice of reduced expression for each ψwAri
. Let t be a λ-tableau,

then after fixing a choice of reduced expression for d(t) we may define ψt := ψd(t).

Definition 1.31. Suppose λ is an l-multipartition of n and A is a Garnir node

of [λ]. The (row) Garnir element is defined as

gA :=
∑
u∈DA

ψTAτAu .

Example 1.32. We continue Example 1.30 and compute the corresponding

Garnir element. We have f = 2, g = 1, and so DA = {1, s2, s2s1}. The brick

transpositions are

wA1 = (9, 11)(10, 12),

wA2 = (11, 13)(12, 14),

and so we get

τA1 = e(iA),

τAs2 = e(iA)(ψwA2 + 1) = e(iA)(ψ(11,13)(12,14) + 1),

τAs2s1 = e(iA)(ψwA2 + 1)(ψwA1 + 1) = e(iA)(ψ(11,13)(12,14) + 1)(ψ(9,11)(10,12) + 1).
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Now

d(TA) = (12, 13)(13, 14)(14, 15)(11, 12)(10, 11)(9, 10)(8, 9),

hence

ψTA = ψ(12,13)ψ(13,14)ψ(14,15)ψ(11,12)ψ(10,11)ψ(9,10)ψ(8,9).

Putting these together, we get

gA = ψTAe(iA)(1 + (ψ(11,13)(12,14) + 1) + (ψ(11,13)(12,14) + 1)(ψ(9,11)(10,12) + 1))

= ψTAe(iA)(3 + 2ψ(11,13)(12,14) + ψ(9,11)(10,12) + ψ(11,13)(12,14)ψ(9,11)(10,12))

= ψTAe(iA)(3 + 2ψ(12,13)ψ(11,12)ψ(13,14)ψ(12,13) + ψ(10,11)ψ(9,10)ψ(11,12)ψ(10,11)

+ ψ(12,13)ψ(11,12)ψ(13,14)ψ(12,13)ψ(10,11)ψ(9,10)ψ(11,12)ψ(10,11)).

Note that since TA = tλd(TA), using relation (1.4) we see that ψTAe(iA) =

ψd(TA)e(i
A) = e(iλ)ψd(TA), and so

gA = e(iλ)ψTA(3 + 2ψ(12,13)ψ(11,12)ψ(13,14)ψ(12,13) + ψ(10,11)ψ(9,10)ψ(11,12)ψ(10,11)

+ ψ(12,13)ψ(11,12)ψ(13,14)ψ(12,13)ψ(10,11)ψ(9,10)ψ(11,12)ψ(10,11)).

= e(iλ)ψ(12,13)ψ(13,14)ψ(14,15)ψ(11,12)ψ(10,11)ψ(9,10)ψ(8,9)(3

+ 2ψ(12,13)ψ(11,12)ψ(13,14)ψ(12,13) + ψ(10,11)ψ(9,10)ψ(11,12)ψ(10,11)

+ ψ(12,13)ψ(11,12)ψ(13,14)ψ(12,13)ψ(10,11)ψ(9,10)ψ(11,12)ψ(10,11)).

♦

Now we can define the Specht modules of H Λκ
n , or rather, in light of Theo-

rem 1.16, give an alternative presentation for the Specht modules of the Ariki-Koike

algebras.

Definition 1.33. Suppose λ is an l-multipartition of n. The Specht module Sλ

of H Λκ
n is the H Λκ

n -module generated by the homogeneous element vt
λ

of degree

deg(tλ) subject to the relations:

(i) vt
λ
e(iλ) = vt

λ
;

(ii) vt
λ
yr = 0, for all r ∈ {1, . . . , n};

26



1.11. Specht modules for H Λκ
n George Witty

(iii) vt
λ
ψr = 0, for all r ∈ {1, . . . , n− 1} such that r and r + 1 are in the same

row of tλ;

(iv) vt
λ
gA = 0, for every Garnir node A of [λ].

We refer to the relations in (iii) as row relations, and those in (iv) as Garnir

relations.

Recall that for any λ-tableau t, we have a corresponding element ψt, which

depends on a choice of reduced expression for d(t). For any λ-tableau t we

define vt := vt
λ
ψt. The next two results do not depend on the choice of reduced

expression.

Proposition 1.34. [KMR12, Proposition 5.14] Suppose λ is a multipartition of

n and that t is a standard λ-tableau. Then deg(vt) = deg(t).

Proposition 1.35. [KMR12, Corollary 6.24] Suppose λ is a multipartition of n.

Then

{vt | t ∈ Std(λ)}

is a homogeneous basis for Sλ over F.

We state two results which are useful for calculations involving the Specht

modules.

Proposition 1.36. [BKW11, Corollary 4.6 & Proposition 4.7] Let λ be a mul-

tipartition of n, t be a standard λ-tableau, and d(t) = si1 · · · sit be a reduced

expression. Then

vt
λ
ψi1 · · ·ψit = vt +

∑
s∈Std(λ)

sCt

asv
s

for some as ∈ F. Furthermore if as 6= 0 then i(s) = i(t).

Proposition 1.37. [BKW11, Lemma 4.8] Let λ be a multipartition of n, t be a

standard λ-tableau, and r ∈ {1, . . . , n}. Then

vtyr =
∑

s∈Std(λ)
sCt

asv
s
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for some as ∈ F. Furthermore if as 6= 0 then i(s) = i(t).

Note that Proposition 1.36 does depend on the reduced expression of d(t).

The following example illustrates this.

Example 1.38. Let λ = ((3, 1), (2, 1)), e = 4, κ = (0, 2). Consider

t =

(
1 2 5
4

,
3 6
7

)
, so then d(t) = (3, 5). Now both (3, 4)(4, 5)(3, 4)

and (4, 5)(3, 4)(4, 5) are reduced expressions for d(t), and so suppose we fix

s3s4s3 = (3, 4)(4, 5)(3, 4) to be our preferred reduced expression. Then

vt
λ
ψ3ψ4ψ3 = vt

λ
ψd(t) = vt

λ
ψt = vt.

But now also

vt
λ
ψ4ψ3ψ4 = vt

λ
e(iλ)ψ4ψ3ψ4

= vt
λ
ψ4ψ3ψ4e(i(t))

and we have e(iλ) = (0, 1, 2, 3, 2, 3, 1) = e(i(t)), i3 = i5 ← i4, so by relation (1.11)

we get

vt
λ
ψ4ψ3ψ4 = vt

λ
ψ4ψ3ψ4e(i(t))

= vt
λ
(ψ3ψ4ψ3 + 1)e(i(t))

= vt + vt
λ
.

♦

Recall that any KLR algebra H Λκ
n is isomorphic to an Ariki-Koike algebra

HF,q,Q(Z/lZ oSn) and that in the latter we have a cellular structure so that the

Specht modules Sλ arise as cell modules. From the theory of cellular algebras,

each module Sλ has an attached bilinear form, and from this we can obtain every

simple HF,q,Q-module as the quotient of an Sλ by the radical associated to this

form. Let us write Dλ for the simple module we obtain. Then we have the

following:
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Theorem 1.39. [DJM98, Theorem 3.30]

{Dλ | λ is an multipartition of n such that Dλ 6= 0}

is a complete set of non-isomorphic irreducible HF,q,Q(Z/lZ oSn)-modules over F.

Using the isomorphism discussed above, we can view these irreducible modules

in the KLR setting also.

We can in fact say exactly when Dλ 6= 0. Given a multipartition λ and i ∈ I

(where I is defined as in 1.3), define the i-signature of λ by assessing the addable

and removable nodes of λ in turn from the highest to the lowest and writing A for

each addable i-node and R for each removable i-node. Then repeatedly remove

any adjacent pairs RA until none are left. The remaining removable i-nodes in

the sequence are called normal i-nodes, and the highest of these (i.e. that which

lies above the others, if it exists) is called the good i-node. We say that λ is

Kleshchev if λ is the empty multipartition, or if there is a good node x of λ (of

any residue) such that removing x from λ still gives a Kleshchev multipartition.

Then the following holds.

Theorem 1.40. [Ari01, Theorem 4.3] Dλ 6= 0 if and only if λ is a Kleshchev

multipartition.

Example 1.41. Let e = 2, κ = (0, 0) and λ = (∅, (2, 1)). Then

[λ] =

(
∅ ,

)
has residue diagram

(
∅ ,

0 1
1

)

and has reduced 1-signature RR thus the highest 1-node is a good node. Then

(
∅ ,

)
has residue diagram

(
∅ ,

0
1

)

and has reduced 1-signature AR thus the 1-node is good. Then

(
∅ ,

)
has residue diagram

(
∅ , 0

)
and has reduced 0-signature AR so the 0-node is good. Since by removing it
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we have the empty multipartition this means that λ is Kleshchev. On the other

hand, if we consider µ = ((2, 1),∅), then we can similarly reduce the situation to

considering the multipartition (1,∅), but

(
, ∅

)
has residue diagram

(
0 , ∅

)
with 0-signature RA, so the reduced 0-signature is empty and there are no good

nodes that we can remove. So µ is not Kleshchev. ♦

Now we use the grading to define graded decomposition numbers. Since the

Specht modules Sλ are graded, we have that the quotients Dλ are also graded.

Recall Definition 1.11.

Definition 1.42. We define the graded decomposition number of Dµ as a compo-

sition factor of Sλ to be

dλµ(v) = [Sλ : Dµ]v :=
∑
k∈Z

[Sλ : Dµ〈k〉]vk

where v is an indeterminate over Z and [Sλ : Dµ〈k〉] is the number of times Dµ〈k〉

appears as a composition factor of Sλ.

It is a long standing open problem to determine the decomposition numbers,

even just in the symmetric group case.

In Section 1.7 we have seen how we can use braid diagrams to work with

elements of KLR algebras. In particular we can work with Specht modules using

these braid diagrams. We can represent the generator of a Specht module Sλ as

the braid diagram corresponding to e(iλ) and then apply KLR generators of the

form ys and ψr as dots and crossings respectively.

Example 1.43. Let λ be the multipartition ((2), (12)), let e = 3 and suppose

κ = (0, 1). Then the residue sequence of tλ is (0, 1, 1, 0) and the standard tableaux,
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corresponding basis elements of Sλ and braid diagrams are shown below.

Standard tableaux Basis element Braid diagram

(
1 2 ,

3
4

)
vt
λ

0 1 1 0

1 2 3 4

(
1 3 ,

2
4

)
vt
λ
ψ2

0 1 1 0

1 2 3 4

(
1 4 ,

2
3

)
vt
λ
ψ2ψ3

0 1 1 0

1 2 3 4

(
2 3 ,

1
4

)
vt
λ
ψ2ψ1

0 1 1 0

1 2 3 4

(
2 4 ,

1
3

)
vt
λ
ψ2ψ1ψ3

0 1 1 0

1 2 3 4

(
3 4 ,

1
2

)
vt
λ
ψ2ψ1ψ3ψ2

0 1 1 0

1 2 3 4
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We also know that vt
λ
ys = 0 for all s ∈ {1, . . . , 4}, so for example we have:

vt
λ
y2 =

0 1 1 0

1 2 3 4

= 0.

Similarly, since 1 and 2 belong to the same row of tλ, we know that

vt
λ
ψ1 =

0 1 1 0

1 2 3 4

= 0.

We have one Garnir node, that containing 3 in tλ, and since e = 3 we have no row

bricks and thus we find that the corresponding Garnir element is just g = ψ3. So

we have:

vt
λ
ψ3 =

0 1 1 0

1 2 3 4

= 0.

♦

We would like to note that, when performing calculations in examples such

as in the above and in later sections when computing homomorphisms, we have

been incredibly reliant on the KLR algebra-focused GAP packages provided by

Matt Fayers.
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Chapter 2
Manipulating braid diagrams

O
ur first goal is to prepare ourselves with the necessary tools in order

to prove our main theorem. Thus, in this chapter we will present

numerous ways of dealing with elements of KLR algebras through

a series of lemmas. When manipulating the braid diagrams corresponding to

elements of KLR algebras we frequently encounter the same ‘patterns’ of strings.

With these lemmas, we aim to eliminate the need to constantly re-explain how

one performs the basic relations from the presentation of H Λκ
n on large sections

of diagrams. Many of the lemmas act as natural extensions of the KLR relations;

they may appear convoluted when written algebraically, but are much easier to

comprehend when viewed with respect to the corresponding diagrams.

2.1 Motivation

Recall the notational shortcuts that we defined at the end of Section 1.6. The

following examples will help motivate how such lemmas can speed up our compu-

tations.

Example 2.1. Let e = 6, κ = (0, 0), n = 10 and consider the associated algebra

H Λκ
n . Let λ = ((2), (4, 4)) and µ = ((3), (4, 3)). Suppose that we are trying to

show that there is a homomorphism from Sλ to Sµ, given by vt
λ 7→ vs, where s is

the tableau (
1 2 10

3 4 5 6
7 8 9

)
.

We wish to show that the Garnir element Ψ6 ↑ 9 for Sλ kills vs, that is, that

vt
µ
Ψ3 ↑ 9 Ψ6 ↑ 9= 0. Writing the left hand side using the braid diagram combina-
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torics seen at the end of Section 1.11 we have:

0 1 2 0 1 2 3 5 0 1

1 2 3 4 5 6 7 8 9 10

We shall perform just the first step in showing that this is zero. If we only apply

the relations for H Λκ
n as written our calculations take an inordinate amount of

time:

Ψ3 ↑ 9 Ψ6 ↑ 9 = Ψ3 ↑ 5 ψ6ψ7ψ6Ψ8 ↑ 9 Ψ7 ↑ 9

= Ψ3 ↑ 5 ψ7ψ6ψ7Ψ8 ↑ 9 Ψ7 ↑ 9

by relation (1.11) as 2 6= 5,

= ψ7Ψ3 ↑ 6 ψ7ψ8ψ7ψ9Ψ8 ↑ 9

= ψ7Ψ3 ↑ 6 ψ8ψ7ψ8ψ9Ψ8 ↑ 9

by relation (1.11) as 2 6= 0,

= Ψ7 ↑ 8 Ψ3 ↑ 7 ψ8ψ9ψ8ψ9

= Ψ7 ↑ 8 Ψ3 ↑ 7 ψ9ψ8ψ9ψ9

again by relation (1.11) as 2 6= 1,

= Ψ7 ↑ 9 Ψ3 ↑ 9 ψ9.

Ideally, instead of all this we wish to just be able to say something in the spirit

of: “We have Ψ3 ↑ 9 Ψ6 ↑ 9= Ψ3 ↑ 9 Ψ6 ↑ 8 ψ9 and then as 2 6= 5, 0, 1 this is equal to

Ψ7 ↑ 9 Ψ3 ↑ 9 ψ9.”

♦
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The second of the two examples exhibits how things can be much worse than

in the first example, greatly increasing our need for some lemmas which speed up

the combinatorics.

Example 2.2. Suppose that e = 8, κ = (0, 7), n = 18 and consider the associated

algebra H Λκ
n . Let λ = ((2), (44)) and µ = ((23), (42, 22)). Suppose that we are

trying to show that there is a homomorphism from Sλ to Sµ, given by vt
λ 7→ vs

where s is the tableau  1 2
13 14
17 18

3 4 5 6
7 8 9 10
11 12
15 16

 .

We wish to show that the Garnir element Ψ6 ↑ 9 for Sλ kills vs, i.e. that

vt
µ (

Ψ6 ↑ 17
)
↓ 5

(
Ψ4 ↑ 13

)
↓ 3 Ψ6 ↑ 9= 0. Then writing the left hand side as a

braid diagram we have:

0 1 7 0 6 7 7 0 1 2 6 7 0 1 5 6 4 5

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

and it is immediately clear that using individual applications of the braid relation

here as in Example 2.1 will be largely inefficient, when really all we wish to do is

notice that the string of residue 2 can be ‘pulled over the other crossings’ so as to

arrive at the top of the diagram (giving us the Garnir relation Ψ10 ↑ 13 for Sµ at

the top).

♦
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2.2 Lemmas

The first lemma we prove acts as a generalisation of relation (1.11). It streamlines

the process of pulling two strings over each other, when the residues are such that

there is no need to add extra terms as in (1.11).

Lemma 2.3. Suppose we have the crossings
(
Ψx+2 ↑x+g+1

)
↓x+1 ·ψx+g+1 with

residues l, m, and r1, . . . , rg as shown in Figure 2.1. Suppose also that one of the

following occurs:

(i) l 6−− m,

(ii) ri 6−− m for every i ∈ {1, . . . , g},

(iii) l 6= ri for every i ∈ {1, . . . , g}.

Then (
Ψx+2 ↑x+g+1

)
↓x+1 ·ψx+g+1 = ψx+1 ·

(
Ψx+2 ↑x+g+1

)
↓x+1,

the right hand side of the equality being shown in Figure 2.2.

l m r1 r2 · · · rg

x+ 1 x+ 2 · · · x+ g x+ g
+1

x+ g
+2

Figure 2.1: Crossings at the start of
Lemma 2.3.

l m r1 r2 · · · rg

x+ 1 x+ 2 · · · x+ g x+ g
+1

x+ g
+2

Figure 2.2: Crossings at the end of
Lemma 2.3.

Proof. Using the braid relation (1.11) we have

(
Ψx+2 ↑x+g+1

)
↓x+1 · ψx+g+1

=
(
Ψx+2 ↓x+1

)
↑x+g ·ψx+g+1ψx+gψx+g+1

=
(
Ψx+2 ↓x+1

)
↑x+g ·ψx+gψx+g+1ψx+g

=
(
Ψx+2 ↓x+1

)
↑x+g−1 ·ψx+gψx+g−1ψx+gψx+g+1ψx+g,
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then by continually applying the braid relation again

= ψx+1 ·
(
Ψx+2 ↓x+1

)
↑x+g+1

= ψx+1 ·
(
Ψx+2 ↑x+g+1

)
↓x+1 .

The next lemma extends Lemma 2.3 by considering when we can pull a string

over multiple other strings instead of just one when the residues are sufficiently

spread apart.

Lemma 2.4. Suppose we have the crossings

Ψx+f+1 ↑x+f+g ·
(

Ψx+f ↑x+f+g
)
↓x+1

with residues l1, . . . , lf , m, and r1, . . . , rg as shown in Figure 2.3. Suppose that

one of the following occurs:

(i) li 6−− m for every i ∈ {1, . . . , f},

(ii) ri 6−− m for every i ∈ {1, . . . , g}, or

(iii) li 6= rj for every i ∈ {1, . . . , f} and j ∈ {1, . . . , g}.

Then

Ψx+f+1 ↑x+f+g ·
(

Ψx+f ↑x+f+g
)
↓x+1=

(
Ψx+f ↑x+f+g

)
↓x+1 ·Ψx+1 ↑x+g,

the right hand side of the equality being shown in Figure 2.4.

Proof. We have

Ψx+f+1 ↑x+f+g ·
(

Ψx+f ↑x+f+g
)
↓x+1

=
(

Ψx+f+1 ↑x+f+g
)
↓x+f ·ψx+f+g ·

(
Ψx+f−1 ↑x+f+g−1

)
↓x+1

= ψx+f ·
(

Ψx+f+1 ↑x+f+g
)
↓x+f ·

(
Ψx+f−1 ↑x+f+g−1

)
↓x+1
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l1 l2 · · · lf m r1 r2 · · · rg

x+ 1 x+ 2 · · · x+ g x+ g
+1

x+ g
+2

x+ g
+3

· · · x+ f
+g+1

Figure 2.3: Crossings at the start of Lemma 2.4.

l1 l2 · · · lf m r1 r2 · · · rg

x+ 1 x+ 2 · · · x+ g x+ g
+1

x+ g
+2

x+ g
+3

· · · x+ f
+g+1

Figure 2.4: Crossings at the end of Lemma 2.4.

by Lemma 2.3 (since one of (i), (ii), or (iii) occurs)

= Ψx+f ↑x+f+g ·
(

Ψx+f ↑x+f+g−1
)
↓x+f−1 ·ψx+f+g−1

·
(

Ψx+f−2 ↑x+f+g−2
)
↓x+1

=
(

Ψx+f ↑x+f+g
)
↓x+1 ·Ψx+1 ↑x+g

by repeatedly applying Lemma 2.3.

The following lemma is an extension of Lemma 2.4 and deals with pulling

multiple strings over each other where the residues are sufficiently spread so that

no extra terms are created due to relation (1.11).
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Lemma 2.5. Suppose we have the crossings

(
Ψx+f+h ↑x+f+g+h−1

)
↓x+f+1 ·

(
Ψx+f ↑x+f+g+h−1

)
↓x+1 (2.1)

with residues l1, . . . , lf , m1, . . . ,mh and r1, . . . , rg as shown in Figure 2.5. Suppose

also that one of the following occurs:

(i) li 6−− mj for every i ∈ {1, . . . , f}, j ∈ {1, . . . , h},

(ii) ri 6−− mj for every i ∈ {1, . . . , g}, j ∈ {1, . . . , h},

(iii) li 6= rj for every i ∈ {1, . . . , f} and j ∈ {1, . . . , g}.

Then (2.1) is equal to:

(
Ψx+f ↑x+f+g+h−1

)
↓x+1 ·

(
Ψx+h ↑x+g+h−1

)
↓x+1 .

l1 l2 · · · lf m1 m2 · · · mh r1 r2 · · · rg

x + 1 x + 2 · · · x + g x + g
+1

x + g
+2

· · · x + g
+h

x + g
+h+ 1

x + g
+h+ 2

· · · x + g
+h+ f

Figure 2.5: Crossings at the start of Lemma 2.5.
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l1 l2 · · · lf m1 m2 · · · mh r1 r2 · · · rg

x + 1 x + 2 · · · x + g x + g
+1

x + g
+2

· · · x + g
+h

x + g
+h+ 1

x + g
+h+ 2

· · · x + g
+h+ f

Figure 2.6: Crossings at the end of Lemma 2.5.

Proof. We will prove that for 0 ≤ k ≤ h− 1 we have that (2.1) is equal to

(
Ψx+f+h ↑x+f+g+h−1

)
↓x+f+k+2 ·

(
Ψx+f ↑x+f+k−1

)
↓x+1

·Ψx+f+k+1 ↑x+f+g+k ·
(

Ψx+f+k ↑x+f+g+k
)
↓x+k+1

·
(

Ψx+k ↑x+g+k−1
)
↓x+1 ·

(
Ψx+f+g+k+1 ↑x+f+g+h−1

)
↓x+g+k+2 .

We can see that if k = 0 we recover (2.1). So now by induction, suppose

γ ∈ {0, 1, . . . , h− 2} and consider

(
Ψx+f+h ↑x+f+g+h−1

)
↓x+f+γ+2 ·

(
Ψx+f ↑x+f+γ−1

)
↓x+1

·Ψx+f+γ+1 ↑x+f+g+γ ·
(

Ψx+f+γ ↑x+f+g+γ
)
↓x+γ+1

·
(
Ψx+γ ↑x+g+γ−1

)
↓x+1 ·

(
Ψx+f+g+γ+1 ↑x+f+g+h−1

)
↓x+g+γ+2

(2.2)

which is shown in Figure 2.7. Applying Lemma 2.4 to the second line (since one
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of (i), (ii) or (iii) holds), gives us that (2.2) is equal to

(
Ψx+f+h ↑x+f+g+h−1

)
↓x+f+γ+2 ·

(
Ψx+f ↑x+f+γ−1

)
↓x+1

·
(

Ψx+f+γ ↑x+f+g+γ
)
↓x+γ+1 ·Ψx+γ+1 ↑x+g+γ

·
(
Ψx+γ ↑x+g+γ−1

)
↓x+1 ·

(
Ψx+f+g+γ+1 ↑x+f+g+h−1

)
↓x+g+γ+2

=
(

Ψx+f+h ↑x+f+g+h−1
)
↓x+f+γ+3 ·

(
Ψx+f ↑x+f+γ

)
↓x+1

·Ψx+f+γ+2 ↑x+f+g+γ+1 ·
(

Ψx+f+γ+1 ↑x+f+g+γ+1
)
↓x+γ+2

·
(
Ψx+γ+1 ↑x+g+γ

)
↓x+1 ·

(
Ψx+f+g+γ+2 ↑x+f+g+h−1

)
↓x+g+γ+3,

proving the inductive step.

So setting k = h− 1 we have that (2.1) is equal to:

(
Ψx+f ↑x+f+h−2

)
↓x+1 ·Ψx+f+h ↑x+f+g+h−1

·
(

Ψx+f+h−1 ↑x+f+g+h−1
)
↓x+h ·

(
Ψx+h−1 ↑x+g+h−2

)
↓x+1

=
(

Ψx+f ↑x+f+g+h−1
)
↓x+1 ·

(
Ψx+h ↑x+g+h−1

)
↓x+1

by applying Lemma 2.4 to the second line, which is what we want.

In many cases when we will wish to use Lemma 2.5, we will want to pull the

strings of residues m1, . . . ,mh over other strings of which only a part will give

the crossings in the setup of the lemma. Hence our final improvement in this

circumstance is to introduce these extraneous crossings to the setup.

Corollary 2.6. Suppose we have the crossings:

(
Ψx+f+k+h ↑x+f+k+h+g−1

)
↓x+k+f+1 ·

(
Ψx+f ↑x+f+k+h+g+t−1

)
↓x+1 (2.3)

with residues p1, . . . , pk, l1, . . . , lf , m1, . . . ,mh, r1, . . . , rg and q1, . . . , qt as shown

in Figure 2.8. Suppose also that one of the following occurs:

(i) li 6−− mj for every i ∈ {1, . . . , f}, j ∈ {1, . . . , h},

(ii) ri 6−− mj for every i ∈ {1, . . . , g}, j ∈ {1, . . . , h},
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(iii) li 6= rj for every i ∈ {1, . . . , f} and j ∈ {1, . . . , g}.

Then (2.3) is equal to:

(
Ψx+f ↑x+f+k+h+g+t−1

)
↓x+1 ·

(
Ψx+k+h ↑x+k+h+g−1

)
↓x+k+1 .

l1 · · · lf p1 · · · pk m1 · · · mh r1 · · · rg q1 · · · qt

x + 1 · · · x + f x + f
+1

· · · x + f
+g

x + f
+g + 1

· · · x + f
+g + h

x + f
+g + h

+1

· · · x + f
+g + h

+t

x + f
+g + h
+t + 1

· · · x + f
+g + h
+t + q

Figure 2.8: Crossings at the start of Corollary 2.6.

l1 · · · lf p1 · · · pk m1 · · · mh r1 · · · rg q1 · · · qt

x + 1 · · · x + k x + k
+1

· · · x + k
+g

x + k
+g + 1

· · · x + k
+h + g

x + k
+h + g

+1

· · · x + k
+h + g

+t

x + k
+h + g
+t + 1

· · · x + f
+k + h
+g + t

Figure 2.9: Crossings at the end of Corollary 2.6.

43



2.2. Lemmas George Witty

Proof.

(
Ψx+f+k+h ↑x+k+f+h+g−1

)
↓x+k+f+1 ·

(
Ψx+f ↑x+f+k+h+g+t−1

)
↓x+1

=
(

Ψx+f ↑x+f+k−1
)
↓x+1 ·

(
Ψx+f+k+h ↑x+k+f+h+g−1

)
↓x+k+f+1

·
(

Ψx+f+k ↑x+f+k+h+g−1
)
↓x+k+1

·
(

Ψx+f+k+h+g ↑x+f+k+h+g+t−1
)
↓x+k+h+g+1

=
(

Ψx+f ↑x+f+k−1
)
↓x+1 ·

(
Ψx+f+k ↑x+f+k+h+g−1

)
↓x+k+1

·
(

Ψx+k+h ↑x+k+h+g−1
)
↓x+k+1

·
(

Ψx+f+k+h+g ↑x+f+k+h+g+t−1
)
↓x+k+h+g+1

by Lemma 5,

=
(

Ψx+f ↑x+f+k+h+g+t−1
)
↓x+1 ·

(
Ψx+k+h ↑x+k+h+g−1

)
↓x+k+1 .

Now we consider what happens if we have the setup of Lemma 2.3, but suppose

instead that the residues of the two strings being pulled over each are one apart,

giving us extra terms. In particular, these terms all begin with crossings whose

leftmost string has residue equal to l, which will often be used to show that terms

are zero when performing calculations within Specht modules.

Lemma 2.7. Suppose we have the crossings
(
Ψx+2 ↑x+g+1

)
↓x+1 ·ψx+g+1 with

residues l, m, and r1, . . . , rg as shown in Figure 2.10. Also suppose that there

are z1 < z2 < . . . < zk with each zj ∈ {1, . . . , g} such that l = rzj for every

j ∈ {1, . . . , k} and l 6= ri for i /∈ {z1, z2, . . . , zk}. These residues are shown in

Figure 2.10. Now suppose that either

(i) l← m, or

(ii) l→ m.
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Then

(
Ψx+2 ↑x+g+1

)
↓x+1 ·ψx+g+1

= ψx+1 ·
(
Ψx+2 ↑x+g+1

)
↓x+1 ±

k∑
j=1

Ψx+zj+2 ↑x+g+1 Ψx+2 ↑x+g Ψx+1 ↑x+zj−1

where the ± is a plus in case (i) and a minus in case (ii).

l m r1 r2 · · · rzj · · · rg

x+ 1 x+ 2 · · · x+ zj · · · x+ g x+ g
+1

x+ g
+2

Figure 2.10: Crossings at the start of Lemma 2.7.

Proof. We have

(
Ψx+2 ↑x+g+1

)
↓x+1 ·ψx+g+1

=
(
Ψx+2 ↑x+zk+1

)
↓x+1 ·

(
Ψx+zk+2 ↑x+g+1

)
↓x+zk+1 ·ψx+g+1

which, by Lemma 2.3

=
(
Ψx+2 ↑x+zk+1

)
↓x+1 ·ψx+zk+1 ·

(
Ψx+zk+2 ↑x+g+1

)
↓x+zk+1

=
(
Ψx+2 ↑x+zk

)
↓x+1 ·ψx+zk+1ψx+zkψx+zk+1 ·

(
Ψx+zk+2 ↑x+g+1

)
↓x+zk+1,

then using the braid relation (1.11)

=
(
Ψx+2 ↑x+zk

)
↓x+1 ·ψx+zk ·

(
Ψx+zk+1 ↑x+g+1

)
↓x+zk

±
(
Ψx+2 ↑x+zk

)
↓x+1 ·

(
Ψx+zk+2 ↑x+g+1

)
↓x+zk+1,

45



2.2. Lemmas George Witty

where the ± is a plus in case (i) and a minus in case (ii). In the former term of

the sum we repeat what we have just done using (Ψx+2 ↑x+zk)↓x+1 ·ψx+zk . That

is, we rewrite (Ψx+2 ↑x+zk) ↓x+1 as a product of two multiplicands to take the

zk−1 into account, and use the braid relation to obtain two terms.

Repeating this k times in total we have

(
Ψx+2 ↑x+g+1

)
↓x+1 ·ψx+g+1

=
(
Ψx+2 ↑x+z1

)
↓x+1 ·ψx+z1 ·

(
Ψx+z1+1 ↑x+g+1

)
↓x+z1

±
k∑
j=1

(
Ψx+2 ↑x+zj

)
↓x+1 ·

(
Ψx+zj+2 ↑x+g+1

)
↓x+zj+1 .

In the first term we can apply Lemma 2.3 to (Ψx+2 ↑x+z1)↓x+1 ·ψx+z1 to obtain

ψx+1 · (Ψx+2 ↑x+z1)↓x+1 and in the terms of the sum we can slightly rearrange

the entries so that all together we have

(
Ψx+2 ↑x+g+1

)
↓x+1 ·ψx+g+1

= ψx+1 ·
(
Ψx+2 ↑x+g+1

)
↓x+1 ±

k∑
j=1

Ψx+zj+2 ↑x+g+1 Ψx+2 ↑x+g Ψx+1 ↑x+zj−1

as required.

The next lemma allows us to swiftly deal with multiple consecutively occurring

cases of relation (1.10), as long as the relevant residues are sufficiently far apart.

Lemma 2.8. Suppose we have the crossings

(
Ψx+f ↑x+f+h+g−1

)
↓x+1 ·

(
Ψx+h+g ↑x+f+h+g+k−1

)
↓x+h+1 (2.4)

with residues l1, . . . , lf , p1, . . . , ph, r1, . . . , rg, q1, . . . , qk as shown in Figure 2.11.

Suppose that l1, l2, . . . , lf 6−− r1, r2, . . . , rg. Then (2.4) is equal to

(
Ψx+f ↑x+f+h−1

)
↓x+1 ·

(
Ψx+f+h+g ↑x+f+h+g+k−1

)
↓x+f+h+1 .
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l1 · · · lf p1 · · · ph r1 · · · rg q1 · · · qk

x + 1 · · · x + h x + h
+1

· · · x + f
+h

x + f
+h + 1

· · · x + f
+h + k

x + f
+h + k

+1

· · · x + f
+h + g

+k

Figure 2.11: Crossings at the start of Lemma 2.8.

l1 · · · lf p1 · · · ph r1 · · · rg q1 · · · qk

x + 1 · · · x + h x + h
+1

· · · x + f
+h

x + f
+h + 1

· · · x + f
+h + k

x + f
+h + k

+1

· · · x + f
+h + g

+k

Figure 2.12: Crossings at the end of Lemma 2.8.

Proof. We have

(
Ψx+f ↑x+f+h+g−1

)
↓x+1 ·

(
Ψx+h+g ↑x+f+h+g+k−1

)
↓x+h+1

=
(

Ψx+f ↑x+f+h−1
)
↓x+1 ·

(
Ψx+f+h ↑x+f+h+g−1

)
↓x+h+1

·
(

Ψx+h+g ↑x+f+h+g−1
)
↓x+h+1 ·

(
Ψx+f+h+g ↑x+f+g+h+k−1

)
↓x+h+f−1

=
(

Ψx+f ↑x+f+h−1
)
↓x+1 ·

(
Ψx+f+h ↑x+f+h+g−1

)
↓x+h+1

·
(

Ψx+h+g ↓x+h+1

)
↑x+f+h+g−1 ·

(
Ψx+f+h+g ↑x+f+g+h+k−1

)
↓x+h+f−1 .
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The second and third multiplicands here are equal to

(
Ψx+f+h ↑x+f+h+g−1 Ψx+f+h−1 ↑x+f+h+g−2 · · ·Ψx+h+1 ↑x+h+g

)
·
(

Ψx+h+g ↓x+h+1 Ψx+h+g+1 ↓x+h+2 · · ·Ψx+f+h+g−1 ↓x+f+h

)
and then since l1, l2, . . . , lf 6−− r1, r2, . . . , rg these brackets cancel each other out

by forming squares using the relation (1.10). So we have that (2.4) is equal to

(
Ψx+f ↑x+f+h−1

)
↓x+1 ·

(
Ψx+f+h+g ↑x+f+g+h+k−1

)
↓x+h+f−1 .

The next lemma acts as an extension of Lemma 2.7, and as such exhibits

when a fairly simple product may be equal to a large sum of terms. However,

it is important to make note of the leading term in most of the summands, as

usually it will be enough to then concern ourselves only with how this leading

term interacts with the crossings above it in a diagram. Along with one ‘regular’

looking term, there will be f summands whose initial term is a crossing whose

leftmost residue is li for i ∈ {1, . . . , f}. In addition, there will be another sum of

terms whose leading terms are crossings of various multiplicities, whose leftmost

residues are always such that they are equal to an li.

Note that in the proof of the following lemma there is a (∗) in the margin that

can be ignored for now and will be of use in a later chapter.

Lemma 2.9. Suppose we have the crossings

Ψx+f+1 ↑x+2f+g ·
(

Ψx+f ↑x+2f+g
)
↓x+1 (2.5)

with residues l1, . . . , lf , m and r1, . . . rf+g as shown in Figure 2.13. Suppose that

the li are all distinct from each other and m, that li = rg+i for every i ∈ {1, . . . , f}

and that

l1 ← l2 ← · · · ← lf ← m→ rf+g → rf+g−1 → · · · → rg+1.
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l1 l2 · · · lf m r1 r2 · · · rg rg+1 · · · rf+g

x + 1 x + 2 · · · x + g x + g
+1

· · · x+ f
+g

x+ f
+g + 1

x+ f
+g + 2

x+ f
+g + 3

· · · x+ 2f
+g + 1

Figure 2.13: Crossings at the start of Lemma 2.9.

Then (2.5) is equal to

f−1∑
s=0

ψx+f−s ·
(

Ψx+f+1 ↑x+2f+g−s
)
↓x+f+2−s

·
(

Ψx+f+1−s ↑x+2f+g−2s−1
)
↓x+f−s ·ψx+2f+g−2s

· ψx+2f+g−2s−1 ·Ψx+2f+g−2s+1 ↑x+2f+g−s

·
(

Ψx+f−s−1 ↑x+2f+g−s−1
)
↓x+1

+

f−1∑
s=0

ks∑
j=1

[
ψx+f+zsj+1 ·

(
Ψx+f+1 ↑x+2f+g−s

)
↓x+f+2−s

·Ψx+f+zsj−s+2 ↑x+2f+g−2s−1 ·Ψx+f+1−s ↑x+2f+g−2s−2

·Ψx+f−s ↑x+f+zsj−s−2 ·ψx+2f+g−2sψx+2f+g−2s−1

·Ψx+2f+g−2s+1 ↑x+2f+g−s ·
(

Ψx+f−s−1 ↑x+2f+g−s−1
)
↓x+1

]
+
(

Ψx+f+1 ↑x+f+g
)
↓x+1

for some constants k0, k1, . . . , kf−1 ≥ 0.
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Proof. We will prove that for 0 ≤ K ≤ f we have that (2.5) is equal to

K−1∑
s=0

ψx+f−s ·
(

Ψx+f+1 ↑x+2f+g−s
)
↓x+f+2−s

·
(

Ψx+f+1−s ↑x+2f+g−2s−1
)
↓x+f−s ·ψx+2f+g−2s

· ψx+2f+g−2s−1 ·Ψx+2f+g−2s+1 ↑x+2f+g−s

·
(

Ψx+f−s−1 ↑x+2f+g−s−1
)
↓x+1

+

K−1∑
s=0

ks∑
j=1

[
ψx+f+zsj+1 ·

(
Ψx+f+1 ↑x+2f+g−s

)
↓x+f+2−s

·Ψx+f+zsj−s+2 ↑x+2f+g−2s−1 ·Ψx+f+1−s ↑x+2f+g−2s−2

·Ψx+f−s ↑x+f+zsj−s−2 ·ψx+2f+g−2sψx+2f+g−2s−1

·Ψx+2f+g−2s+1 ↑x+2f+g−s ·
(

Ψx+f−s−1 ↑x+2f+g−s−1
)
↓x+1

]
+
(

Ψx+f+1 ↑x+2f+g−K
)
↓x+f+1−K ·

(
Ψx+f−K ↑x+2f+g−K

)
↓x+1

for some constants k0, k1, . . . , kK−1 ≥ 0.We can see that if K = 0 we recover (2.5).

So now by induction, suppose γ ∈ {0, 1, . . . , f − 1} and that (2.5) is equal to

γ−1∑
s=0

ψx+f−s ·
(

Ψx+f+1 ↑x+2f+g−s
)
↓x+f+2−s

·
(

Ψx+f+1−s ↑x+2f+g−2s−1
)
↓x+f−s ·ψx+2f+g−2s

· ψx+2f+g−2s−1 ·Ψx+2f+g−2s+1 ↑x+2f+g−s

·
(

Ψx+f−s−1 ↑x+2f+g−s−1
)
↓x+1

+

γ−1∑
s=0

ks∑
j=1

[
ψx+f+zsj+1 ·

(
Ψx+f+1 ↑x+2f+g−s

)
↓x+f+2−s

·Ψx+f+zsj−s+2 ↑x+2f+g−2s−1 ·Ψx+f+1−s ↑x+2f+g−2s−2

·Ψx+f−s ↑x+f+zsj−s−2 ·ψx+2f+g−2sψx+2f+g−2s−1

·Ψx+2f+g−2s+1 ↑x+2f+g−s ·
(

Ψx+f−s−1 ↑x+2f+g−s−1
)
↓x+1

]
+
(

Ψx+f+1 ↑x+2f+g−γ
)
↓x+f+1−γ ·

(
Ψx+f−γ ↑x+2f+g−γ

)
↓x+1 . (2.6)

We show some of the latter term of (2.6) in Figure 2.14. Rewriting the latter term
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l1 · · · lf−γ lf−γ+1 lf−γ+2 · · · lf m r1 · · · rf+g−γ

x+ 1 · · · x+ f
+g−γ

x+ f
+g−γ
+1

x+ f
+g−γ
+2

· · · x+ f
+g

x+ f
+g+1

x+ f
+g+2

· · · x+2f
+g−γ
+1

Figure 2.14: Crossings from the latter term of (2.6).

of (2.6) we have that it is equal to

(
Ψx+f+1 ↑x+2f+g−γ

)
↓x+f+2−γ ·

(
Ψx+f+1−γ ↑x+2f+g−2γ−1

)
↓x+f−γ

· ψx+2f+g−2γψx+2f+g−2γ−1ψx+2f+g−2γ ·Ψx+2f+g−2γ+1 ↑x+2f+g−γ

·
(

Ψx+f−γ−1 ↑x+2f+g−γ−1
)
↓x+1

=
(

Ψx+f+1 ↑x+2f+g−γ
)
↓x+f+2−γ ·

(
Ψx+f+1−γ ↑x+2f+g−2γ−1

)
↓x+f−γ

· ψx+2f+g−2γ−1ψx+2f+g−2γψx+2f+g−2γ−1 ·Ψx+2f+g−2γ+1 ↑x+2f+g−γ

·
(

Ψx+f−γ−1 ↑x+2f+g−γ−1
)
↓x+1

+
(

Ψx+f+1 ↑x+2f+g−γ
)
↓x+f+2−γ ·

(
Ψx+f+1−γ ↑x+2f+g−2γ−1

)
↓x+f−γ

·Ψx+2f+g−2γ+1 ↑x+2f+g−γ ·
(

Ψx+f−γ−1 ↑x+2f+g−γ−1
)
↓x+1,

(2.7)

by applying the braid relation (1.11) to ψx+2f+g−2γψx+2f+g−2γ−1ψx+2f+g−2γ

(since lf−γ ← lf−γ+1 → rf+g−γ).

The latter term of (2.7) is equal to

(
Ψx+f+1 ↑x+2f+g−γ

)
↓x+f+2−γ ·Ψx+2f+g−2γ+1 ↑x+2f+g−γ

·
(

Ψx+f+1−γ ↑x+2f+g−2γ−1
)
↓x+f−γ ·

(
Ψx+f−γ−1 ↑x+2f+g−γ−1

)
↓x+1,
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so we can apply Lemma 2.8 to

(
Ψx+f+1 ↑x+2f+g−γ

)
↓x+f+2−γ ·Ψx+2f+g−2γ+1 ↑x+2f+g−γ

since lf−γ+2, . . . , lf 6−− rf+g−γ (take x̄ = x+f−γ+1, f̄ = γ, h̄ = f+g−γ−1, ḡ =

1, k̄ = 0, where x̄, f̄ , ḡ, h̄, k̄ are the x, f, g, h and k in the hypotheses of Lemma

2.8). So this term is equal to

(
Ψx+f+1 ↑x+2f+g−(γ+1)

)
↓x+f+1−(γ+1) ·

(
Ψx+f−(γ+1) ↑x+2f+g−(γ+1)

)
↓x+1 .

Now also apply Lemma 2.7 to
(
Ψx+f+1−γ ↑x+2f+g−2γ−1

)
↓x+f−γ ·ψx+2f+g−2γ−1

in the former term of (2.7) since lf−γ ← lf−γ+1 giving

ψx+f−γ ·
(

Ψx+f+1 ↑x+2f+g−γ
)
↓x+f+2−γ ·

(
Ψx+f+1−γ ↑x+2f+g−2γ−1

)
↓x+f−γ

· ψx+2f+g−2γ · ψx+2f+g−2γ−1 ·Ψx+2f+g−2γ+1 ↑x+2f+g−γ

·
(

Ψx+f−γ−1 ↑x+2f+g−γ−1
)
↓x+1

+

kγ∑
j=1

[(
Ψx+f+1 ↑x+2f+g−γ

)
↓x+f+2−γ ·ψx+f+zγj+1−γ

·Ψx+f+zγj−γ+2 ↑x+2f+g−2γ−1 ·Ψx+f+1−γ ↑x+2f+g−2γ−2

·Ψx+f−γ ↑x+f+zγj−γ−2 ·ψx+2f+g−2γ

·ψx+2f+g−2γ−1 ·Ψx+2f+g−2γ+1 ↑x+2f+g−γ ·
(

Ψx+f−γ−1 ↑x+2f+g−γ−1
)
↓x+1

]
+
(

Ψx+f+1 ↑x+2f+g−(γ+1)
)
↓x+f+1−(γ+1) ·

(
Ψx+f−(γ+1) ↑x+2f+g−(γ+1)

)
↓x+1

for some constant kγ ≥ 0, and we have rzγj = lf−γ for each j ∈ {1, . . . , kγ}.

(∗)
In the terms arising in the sum from 1 to kγ , apply Corollary 2.6 to(

Ψx+f+1 ↑x+2f+g−γ) ↓x+f+2−γ ·ψx+f+zγj+1−γ since lf−γ+2, . . . , lf 6−− rzγ . Thus
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the former term of (2.7) is equal to

ψx+f−γ ·
(

Ψx+f+1 ↑x+2f+g−γ
)
↓x+f+2−γ ·

(
Ψx+f+1−γ ↑x+2f+g−2γ−1

)
↓x+f−γ

· ψx+2f+g−2γ · ψx+2f+g−2γ−1 ·Ψx+2f+g−2γ+1 ↑x+2f+g−γ

·
(

Ψx+f−γ−1 ↑x+2f+g−γ−1
)
↓x+1

+

kγ∑
j=1

[
ψx+f+zγj+1 ·

(
Ψx+f+1 ↑x+2f+g−γ

)
↓x+f+2−γ

·Ψx+f+zγj−γ+2 ↑x+2f+g−2γ−1 ·Ψx+f+1−γ ↑x+2f+g−2γ−2 ·Ψx+f−γ ↑x+f+zγj−γ−2

·ψx+2f+g−2γ · ψx+2f+g−2γ−1 ·Ψx+2f+g−2γ+1 ↑x+2f+g−γ

·
(

Ψx+f−γ−1 ↑x+2f+g−γ−1
)
↓x+1

]
+
(

Ψx+f+1 ↑x+2f+g−(γ+1)
)
↓x+f+1−(γ+1) ·

(
Ψx+f−(γ+1) ↑x+2f+g−(γ+1)

)
↓x+1 .

So using this we have that (2.6) is equal to

γ∑
s=0

ψx+f−s ·
(

Ψx+f+1 ↑x+2f+g−s
)
↓x+f+2−s

·
(

Ψx+f+1−s ↑x+2f+g−2s−1
)
↓x+f−s ·ψx+2f+g−2s

· ψx+2f+g−2s−1 ·Ψx+2f+g−2s+1 ↑x+2f+g−s

·
(

Ψx+f−s−1 ↑x+2f+g−s−1
)
↓x+1

+

γ∑
s=0

ks∑
j=1

[
ψx+f+zsj+1 ·

(
Ψx+f+1 ↑x+2f+g−s

)
↓x+f+2−s

·Ψx+f+zsj−s+2 ↑x+2f+g−2s−1 ·Ψx+f+1−s ↑x+2f+g−2s−2

·Ψx+f−s ↑x+f+zsj−s−2 ·ψx+2f+g−2sψx+2f+g−2s−1

·Ψx+2f+g−2s+1 ↑x+2f+g−s ·
(

Ψx+f−s−1 ↑x+2f+g−s−1
)
↓x+1

]
+
(

Ψx+f+1 ↑x+2f+g−(γ+1)
)
↓x+f+1−(γ+1) ·

(
Ψx+f−(γ+1) ↑x+2f+g−(γ+1)

)
↓x+1

and we have shown the inductive step. Taking K = f we obtain the desired result.

With the next lemma, we consider attempting to pull one string over some

amount of other strings, where at each step we immediately obtain an extra
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term due to relation (1.11). The result is a sum of f terms each beginning with

a crossing whose leftmost residue is li = ri for i ∈ {1, . . . , f}, plus one term

beginning with a crossing whose leftmost residue is m.

Lemma 2.10. Suppose that we have the crossings

(
Ψx+f ↑x+f+g

)
↓x+1 ·Ψx+1 ↑x+g (2.8)

with residues l1, l2, . . . , lf , m, r1, r2, . . . , rf , rf+1, . . . , rg as shown in Figure 2.15.

Suppose that the li are pairwise distinct and not equal to m, that li = ri for every

i ∈ {1, . . . , f}, and that

lf → lf−1 → · · · → l1 → m← r1 ← r2 ← · · · ← rf .

Then (2.8) is equal to

f∑
i=1

[
ψx+f+i ·

(
Ψx+f ↑x+f+g

)
↓x+i

·Ψx+2i ↑x+g+i−1 ·
(
Ψx+2i−2 ↑x+g+i−2

)
↓x+i

]
+
(

Ψx+2f+1 ↑x+f+g
)
↓x+f+1 .

l1 l2 · · · lf m r1 r2 · · · rf rf+1 · · · rg

x + 1 x + 2 · · · x+ f x+ f
+1

· · · x+ g x+ g
+1

x+ g
+2

x+ g
+3

· · · x+ f
+g + 1

Figure 2.15: Crossings at the start of Lemma 2.10.
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Proof. We will prove that for 0 ≤ k ≤ f we have that (2.8) is equal to

k∑
i=1

[
ψx+f+i ·

(
Ψx+f ↑x+f+g

)
↓x+i

·Ψx+2i ↑x+g+i−1 ·
(
Ψx+2i−2 ↑x+g+i−2

)
↓x+i

]
+
(

Ψx+f ↑x+f+g
)
↓x+k+1 ·

(
Ψx+2k+1 ↑x+g+k

)
↓x+k+1 .

We can see that if k = 0 we recover (2.8). So now by induction, suppose

γ ∈ {0, 1, . . . , f − 1} and that (2.8) is equal to

γ∑
i=1

[
ψx+f+i ·

(
Ψx+f ↑x+f+g

)
↓x+i

·Ψx+2i ↑x+g+i−1 ·
(
Ψx+2i−2 ↑x+g+i−2

)
↓x+i

] (2.9)

+
(

Ψx+f ↑x+f+g
)
↓x+γ+1 ·

(
Ψx+2γ+1 ↑x+g+γ

)
↓x+γ+1 . (2.10)

We will consider what happens to the latter term, i.e. (2.10), which is shown here

in Figure 2.16. Rewriting the terms, we have that (2.10) is equal to

(
Ψx+f ↑x+f+g

)
↓x+γ+2 ·Ψx+γ+1 ↑x+2γ ·ψx+2γ+1ψx+2γ+2ψx+2γ+1

·Ψx+2γ+3 ↑x+g+γ+1 ·Ψx+2γ+2 ↑x+g+γ ·
(
Ψx+2γ ↑x+g+γ−1

)
↓x+γ+1

and then applying the braid relation (1.11) since lγ+1 → rγ ← rγ+1,

=
(

Ψx+f ↑x+f+g
)
↓x+γ+2 ·Ψx+γ+1 ↑x+2γ ·ψx+2γ+2ψx+2γ+1ψx+2γ+2

·Ψx+2γ+3 ↑x+g+γ+1 ·Ψx+2γ+2 ↑x+g+γ ·
(
Ψx+2γ ↑x+g+γ−1

)
↓x+γ+1

(2.11)

+
(

Ψx+f ↑x+f+g
)
↓x+γ+2 ·Ψx+γ+1 ↑x+2γ

·Ψx+2γ+3 ↑x+g+γ+1 ·Ψx+2γ+2 ↑x+g+γ ·
(
Ψx+2γ ↑x+g+γ−1

)
↓x+γ+1 .

(2.12)
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Commuting ψx+2γ+2 with multiple crossings we have that (2.11) is equal to

(
Ψx+f ↑x+f+g

)
↓x+γ+2 ·ψx+2γ+2 · Ψx+γ+1 ↑x+g+γ+1

·Ψx+2γ+2 ↑x+g+γ ·
(
Ψx+2γ ↑x+g+γ−1

)
↓x+γ+1

=
(

Ψx+f ↑x+f+γ−1
)
↓x+γ+2 ·

(
Ψx+f+γ ↑x+f+γ+1

)
↓x+2γ+2 ·ψx+2γ+2

·
(

Ψx+f+γ+2 ↑x+f+g
)
↓x+2γ+4 ·Ψx+γ+1 ↑x+g+γ+1

·Ψx+2γ+2 ↑x+g+γ ·
(
Ψx+2γ ↑x+g+γ−1

)
↓x+γ+1

and then applying Lemma 2.4 to
(
Ψx+f+γ ↑x+f+γ+1

)
↓x+2γ+2 ·ψx+2γ+2,

=
(

Ψx+f ↑x+f+γ−1
)
↓x+γ+2 ·ψx+f+γ+1 ·

(
Ψx+f+γ ↑x+f+γ+1

)
↓x+2γ+2

·
(

Ψx+f+γ+2 ↑x+f+g
)
↓x+2γ+4 ·Ψx+γ+1 ↑x+g+γ+1

·Ψx+2γ+2 ↑x+g+γ ·
(
Ψx+2γ ↑x+g+γ−1

)
↓x+γ+1

= ψx+f+γ+1 ·
(

Ψx+f ↑x+f+g
)
↓x+γ+1

·Ψx+2γ+2 ↑x+g+γ ·
(
Ψx+2γ ↑x+g+γ−1

)
↓x+γ+1 .

(2.13)

Now consider (2.12), as shown in Figure 2.17. This is equal to

(
Ψx+f ↑x+f+g

)
↓x+γ+2 ·Ψx+2γ+3 ↑x+g+γ+1 ·Ψx+2γ+2 ↑x+g+γ

· Ψx+γ+1 ↑x+2γ ·
(
Ψx+2γ ↑x+g+γ−1

)
↓x+γ+1

and we can apply Lemma 2.8 to Ψx+γ+1 ↑x+2γ ·
(
Ψx+2γ ↑x+g+γ−1

)
↓x+γ+1. Then

(2.12) is equal to

(
Ψx+f ↑x+f+g

)
↓x+γ+2 ·

(
Ψx+2γ+3 ↑x+g+γ+1

)
↓x+γ+2 . (2.14)

So putting what we have done together, we have that (2.10) is the sum of
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(2.13) and (2.14), i.e. (2.10) is equal to

ψx+f+(γ+1) ·
(

Ψx+f ↑x+f+g
)
↓x+(γ+1)

·Ψx+2(γ+1) ↑x+g+(γ+1)−1 ·
(

Ψx+2(γ+1)−2 ↑x+g+(γ+1)−2
)
↓x+(γ+1)

+
(

Ψx+f ↑x+f+g
)
↓x+(γ+1)+1 ·

(
Ψx+2(γ+1)+1 ↑x+g+(γ+1)

)
↓x+(γ+1)+1 .

Finally, we can combine the latter term here with (2.9), so that (2.8) is equal to:

γ+1∑
i=1

[
ψx+f+i ·

(
Ψx+f ↑x+f+g

)
↓x+i

·Ψx+2i ↑x+g+i−1 ·
(
Ψx+2i−2 ↑x+g+i−2

)
↓x+i

]
+
(

Ψx+f ↑x+f+g
)
↓x+(γ+1)+1 ·

(
Ψx+2(γ+1)+1 ↑x+g+(γ+1)

)
↓x+(γ+1)+1,

proving the inductive step. Thus taking k = f , we obtain the desired result.

The next lemma speeds up the process of using relation (1.8) when we are

required to move a dot through multiple crossings, whose residues may mean we

encounter multiple additional terms. We obtain one term where the dot is pulled

past all the crossings, along with a sum of terms which can be rearranged in order

to have their leading term be a crossing whose leftmost residue is equal to l.

Lemma 2.11. Suppose we have Ψx+1 ↑x+g · yx+g+1 with residues l and r1, . . . , rg

as shown in Figure 2.18. Also suppose that there are z1 < z2 < . . . < zk with

l r1 r2 · · · rzj · · · rg

x+ 1 x+ 2 · · · x+ zj · · · x+ g x+ g
+1

Figure 2.18: Crossings and dot at the start of Lemma 2.11.

each zj ∈ {1, . . . , g} such that l = rzj for every j ∈ {1, . . . , k}, and l 6= ri for
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i /∈ {z1, z2, . . . , zk}. Then

Ψx+1 ↑x+g ·yx+g+1 = yx+1 ·Ψx+1 ↑x+g +

k∑
j=1

Ψx+1 ↑x+zj−1 · Ψx+zj+1 ↑x+g .

Proof. We have

Ψx+1 ↑x+g · yx+g+1 = Ψx+1 ↑x+zk−1 · ψx+zkyx+zk+1 ·Ψx+zk+1 ↑x+g

= Ψx+1 ↑x+zk−1 · yx+zk ·Ψx+zk ↑
x+g

+ Ψx+1 ↑x+zk−1 ·Ψx+zk+1 ↑x+g

by relation (1.8). Repeating this k times in total we have

= Ψx+1 ↑x+z1−1 · yx+z1 ·Ψx+z1 ↑x+g

+
k∑
j=1

Ψx+1 ↑x+zj−1 ·Ψx+zj+1 ↑x+g

= yx+1 ·Ψx+1 ↑x+g +
k∑
j=1

Ψx+1 ↑x+zj−1 ·Ψx+zj+1 ↑x+g .

The next lemma combines the pulling over of strings from Lemma 2.5 with

the cancelling of square terms as in Lemma 2.8. We assume that the relevant

residues are far enough apart so that we can pull multiple strings over each other

before the ensuing squares disappear.

Lemma 2.12. Suppose we have the crossings

(
Ψx+f ↑x+f+g+k+h−1

)
↓x+1 ·

(
Ψx+k+h ↑x+f+g+k+h+t−1

)
↓x+k+1 (2.15)

with residues l1, . . . , lf , p1, . . . , pk, m1, . . . ,mh, r1, . . . , rg, q1, . . . , qt as shown in

Figure 2.19. Suppose that l1, . . . , lf 6−− m1, . . . ,mh. Then (2.15) is equal to

(
Ψx+f+k+h ↑x+f+g+k+h+t−1

)
↓x+f+k+1 ·

(
Ψx+f ↑x+f+g+k−1

)
↓x+1 .
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Proof. We have

(
Ψx+f ↑x+f+g+k+h−1

)
↓x+1 ·

(
Ψx+k+h ↑x+f+g+k+h+t−1

)
↓x+k+1

=
(

Ψx+f ↑x+f+k−1
)
↓x+1 ·

(
Ψx+f+k ↑x+f+g+k+h−1

)
↓x+k+1

·
(

Ψx+k+h ↑x+g+k+h−1
)
↓x+k+1

·
(

Ψx+g+k+h ↑x+f+g+k+h+t−1
)
↓x+g+k+1 .

Apply Lemma 2.5 to

(
Ψx+f+k ↑x+f+g+k+h−1

)
↓x+k+1 ·

(
Ψx+k+h ↑x+g+k+h−1

)
↓x+k+1

since l1, . . . , lf 6−− m1, . . . ,mh, so then (2.15) is equal to

(
Ψx+f ↑x+f+k−1

)
↓x+1 ·

(
Ψx+f+k+h ↑x+g+k+h−1

)
↓x+f+k+1

·
(

Ψx+f+k ↑x+f+g+k+h−1
)
↓x+k+1

·
(

Ψx+g+k+h ↑x+f+g+k+h+t−1
)
↓x+g+k+1

(2.16)

which is shown in Figure 2.21. Now we can apply Lemma 2.8 to

(
Ψx+f+k ↑x+f+g+k+h−1

)
↓x+k+1 ·

(
Ψx+g+k+h ↑x+f+g+k+h+t−1

)
↓x+g+k−1

since l1, . . . , lf 6−− m1, . . . ,mh. Thus (2.15) is equal to

(
Ψx+f ↑x+f+k−1

)
↓x+1 ·

(
Ψx+f+k+h ↑x+g+k+h−1

)
↓x+f+k+1

·
(

Ψx+f+k ↑x+f+g+k−1
)
↓x+k+1

·
(

Ψx+f+g+k+h ↑x+f+g+k+h+t−1
)
↓x+f+g+k+1

=
(

Ψx+f+k+h ↑x+f+g+k+h+t−1
)
↓x+f+k+1 ·

(
Ψx+f ↑x+f+g+k−1

)
↓x+1 .

The final two lemmas extend a couple of the earlier results to the case where

there are multiple sets of strings to be negotiated, that is, we are able to apply
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one of the earlier lemmas and then immediately find ourselves in another situation

where we can apply the lemma again to a new set of crossings. To ease notation,

we will write
∑b

a for
∑a

i=1 bi. We wish here in particular to draw the reader’s

attention to the diagrams that accompany each lemma, as with this amount

of crossings the written terms appear large and complex but the diagrammatic

depictions of the crossings are comparatively straightforward.

The first of these lemmas extends Lemma 2.12. We encounter the setup of this

lemma a times, each time having some residues li1, . . . , l
i
fi

which are sufficiently

far apart from m1, . . . ,mh.

Lemma 2.13. Suppose we have the crossings

(
Ψx+

∑f
a +

∑k
a−1
↑x+

∑f
a +

∑k
a +h+

∑g
a−1
)
↓
x+
∑f
a−1 +

∑k
a−1 +1

·
(

Ψ
x+
∑f
a−1 +

∑k
a−2
↑x+

∑f
a−1 +

∑k
a +h+

∑g
a−1−1

)
↓
x+
∑f
a−2 +

∑k
a−2 +1

· · · ·
(

Ψ
x+
∑f

1
↑x+

∑f
1 +

∑k
a +h+

∑g
1 −1
)
↓x+1

·
(

Ψx+
∑k
a +h ↑

x+
∑f
a +

∑k
a +h+

∑g
a +t−1

)
↓x+

∑k
a +1

(2.17)

with residues li1, . . . , l
i
fi

, pi1, . . . , p
i
ki

, m1, . . . ,mh, ri1, . . . , r
i
gi, q1, . . . , qt for i ∈

{1, . . . , a} as shown in Figure 2.22. Suppose that li1, . . . , l
i
fi
6−− m1, . . . ,mh for

i ∈ {1, . . . , a}. Then (2.17) is equal to:

(
Ψx+

∑f
a +

∑k
a +h ↑

x+
∑f
a +

∑k
a +h+

∑g
a +t−1

)
↓x+

∑f
a +

∑k
a +1

·
(

Ψx+
∑f
a +

∑k
a−1
↑x+

∑f
a +

∑k
a +

∑g
a−1
)
↓
x+
∑f
a−1 +

∑k
a−1 +1

·
(

Ψ
x+
∑f
a−1 +

∑k
a−2
↑x+

∑f
a−1 +

∑k
a +

∑g
a−1−1

)
↓
x+
∑f
a−2 +

∑k
a−2 +1

· · · ·
(

Ψ
x+
∑f

1
↑x+

∑f
1 +

∑k
a +

∑g
1 −1
)
↓x+1 .
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l1 1
··
·

l1 f
1

p
1 1

··
·

p
1 k
1

··
·

la
−

1
1

··
·

la
−

1
f
a
−

1
p
a
−

1
1

··
·

p
a
−

1
k
a
−

1
la 1

··
·

la f
a

p
a 1

··
·

p
a k
a

m
1

··
·

m
h

r
1 1

··
·

r
1 g
1

··
·

r
a
−

1
g
1

··
·

r
a
−

1
g
a
−

1
r
a 1

··
·

r
a g
a

q
1

··
·

q
t

x
+

1
··
·

x
+
∑ k 1

··
·

x
+
∑ k a−

2
+

1

··
·

x
+
∑ k a−

1

x
+
∑ k a−

1
+

1

··
·

x
+
∑ k a

x
+
∑ k a

+
1

··
·

x
+
∑ k a

+
∑ g 1

x
+
∑ k a

+
∑ g 1

+
1

··
·

x
+
∑ k a

+
∑ g 1

+
∑ f 1

··
·

x
+
∑ k a

+
∑ g a−

2

+
∑ f a−

2
+

1

··
·

x
+
∑ k a

+
∑ g a−

1

+
∑ f a−

2

x
+
∑ k a

+
∑ g a−

1

+
∑ f a−

2
+

1

··
·

x
+
∑ k a

+
∑ g a−

1

+
∑ f a−

1

x
+
∑ k a

+
∑ g a−

1

+
∑ f a−

1
+

1

··
·

x
+
∑ k a

+
∑ g a

+
∑ f a−

1

x
+
∑ k a

+
∑ g a

+
∑ f a−

1
+

1

··
·

x
+
∑ k a

+
∑ g a

+
∑ f a

x
+
∑ k a

+
∑ g a

+
∑ f a +
1

··
·

x
+
∑ k a

+
∑ g a

+
∑ f a +
t

x
+
∑ k a

+
∑ g a

+
∑ f a

+
t+

1

··
·

x
+
∑ k a

+
∑ g a

+
∑ f a

+
t+
h

F
ig

u
re

2.
22

:
C

ro
ss

in
gs

at
th

e
st

ar
t

of
L

em
m

a
2.

13
.
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Proof. Suppose for γ ∈ {0, . . . , a− 1} we have

(
Ψx+

∑f
a +

∑k
a−1
↑x+

∑f
a +

∑k
a +h+

∑g
a−1
)
↓
x+
∑f
a−1 +

∑k
a−1 +1

· · · ·
(

Ψ
x+
∑f
γ+2 +

∑k
γ+1
↑x+

∑f
γ+2 +

∑k
a +h+

∑g
γ+2−1

)
↓
x+
∑f
γ+1 +

∑k
γ+1 +1

·
(

Ψ
x+
∑f
γ+1 +

∑k
γ
↑x+

∑f
γ+1 +

∑k
a +h+

∑g
γ+1−1

)
↓x+

∑f
γ +

∑k
γ +1

·
(

Ψx+
∑f
γ +

∑k
a +h ↑

x+
∑f
a +

∑k
a +h+

∑g
a +t−1

)
↓x+

∑f
γ +

∑k
a +1

·
(

Ψx+
∑f
γ +

∑k
γ−1
↑x+

∑f
γ +

∑k
a +

∑g
γ −1

)
↓
x+
∑f
γ−1 +

∑k
γ−1 +1

· · · ·
(

Ψ
x+
∑f

1
↑x+

∑f
1 +

∑k
a +

∑g
1 −1
)
↓x+1 .

(2.18)

Apply Lemma 2.12 to

(
Ψ
x+
∑f
γ+1 +

∑k
γ
↑x+

∑f
γ+1 +

∑k
a +h+

∑g
γ+1−1

)
↓x+

∑f
γ +

∑k
γ +1

·
(

Ψx+
∑f
γ +

∑k
a +h ↑

x+
∑f
a +

∑k
a +h+

∑g
a +t−1

)
↓x+

∑f
γ +

∑k
a +1

(take x̄ = x +
∑f

γ +
∑k

γ , f̄ = fγ+1, k̄ =
∑k

a−
∑k

γ , h̄ = h, ḡ =
∑g

γ+1, t̄ =∑g
a−
∑g

γ+1 +
∑f

a −
∑f

γ+1 +t, where x̄, f̄ , ḡ, h̄, k̄, t̄ are the x, f, g, h, k and t in the

hypotheses of Lemma 2.12). Then we can rewrite (2.18) as

(
Ψx+

∑f
a +

∑k
a−1
↑x+

∑f
a +

∑k
a +h+

∑g
a−1
)
↓
x+
∑f
a−1 +

∑k
a−1 +1

· · · ·
(

Ψ
x+
∑f
γ+2 +

∑k
γ+1
↑x+

∑f
γ+2 +

∑k
a +h+

∑g
γ+2−1

)
↓
x+
∑f
γ+1 +

∑k
γ+1 +1

·
(

Ψ
x+
∑f
γ+1 +

∑k
a +h
↑x+

∑f
a +

∑k
a +h+

∑g
a +t−1

)
↓
x+
∑f
γ+1 +

∑k
a +1

·
(

Ψ
x+
∑f
γ+1 +

∑k
γ
↑x+

∑f
γ+1 +

∑k
a +

∑g
γ+1−1

)
↓x+

∑f
γ +

∑k
γ +1

·
(

Ψx+
∑f
γ +

∑k
γ−1
↑x+

∑f
γ +

∑k
a +

∑g
γ −1

)
↓
x+
∑f
γ−1 +

∑k
γ−1 +1

· · · ·
(

Ψ
x+
∑f

1
↑x+

∑f
1 +

∑k
a +

∑g
1 −1
)
↓x+1,

i.e. we can replace γ with γ + 1. If γ = 0 we have that (2.18) is equal to (2.17),
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so then if γ = a− 1, performing the above shows that (2.17) is equal to

(
Ψx+

∑f
a +

∑k
a +h ↑

x+
∑f
a +

∑k
a +h+

∑g
a +t−1

)
↓x+

∑f
a +

∑k
a +1

·
(

Ψx+
∑f
a +

∑k
a−1
↑x+

∑f
a +

∑k
a +

∑g
a−1
)
↓
x+
∑f
a−1 +

∑k
a−1 +1

·
(

Ψ
x+
∑f
a−1 +

∑k
a−2
↑x+

∑f
a−1 +

∑k
a +

∑g
a−1−1

)
↓
x+
∑f
a−2 +

∑k
α−2 +1

· · · ·
(

Ψ
x+
∑f

1
↑x+

∑f
1 +

∑k
a +

∑g
1 −1
)
↓x+1 .

The second such lemma extends Lemma 2.5. Again, we encounter the setup of

this lemma a times, each time having some residues li1, . . . , l
i
fi

which are sufficiently

far apart from m1, . . . ,mh.

Lemma 2.14. Suppose we have the crossings

(
Ψx+

∑f
a +

∑k
a−1
↑x+

∑f
a +

∑k
a +h+g+

∑t
a−1
)
↓
x+
∑f
a−1 +

∑k
a−1 +1

·
(

Ψ
x+
∑f
a−1 +

∑k
a−2
↑x+

∑f
a−1 +

∑k
a +h+g+

∑t
a−1−1

)
↓
x+
∑f
a−2 +

∑k
a−2 +1

·

· · · ·
(

Ψ
x+
∑f

1
↑x+

∑f
1 +

∑k
a +h+g+

∑t
1−1
)
↓x+1

·
(

Ψx+
∑k
a +h ↑

x+
∑k
a +h+g−1

)
↓x+

∑k
a +1

(2.19)

with residues li1, . . . , l
i
fi

, pi1, . . . , p
i
ki

, m1, . . . ,mh, r1, . . . , rg, q
i
1, . . . , q

i
ti for i ∈

{1, . . . , a} as shown in Figure 2.23. Suppose that li1, . . . , l
i
fi
6−− m1, . . . ,mh for

i ∈ {1, . . . , a}. Then (2.19) is equal to

(
Ψx+

∑f
a +

∑k
a +h ↑

x+
∑f
a +

∑k
a +h+g−1

)
↓x+

∑f
a +

∑k
a +1

·
(

Ψx+
∑f
a +

∑k
a−1
↑x+

∑f
a +

∑k
a +h+g+

∑t
a−1
)
↓
x+
∑f
a−1 +

∑k
a−1 +1

·
(

Ψ
x+
∑f
a−1 +

∑k
a−2
↑x+

∑f
a−1 +

∑k
a +h+g+

∑t
a−1−1

)
↓
x+
∑f
a−2 +

∑k
a−2 +1

·

· · · ·
(

Ψ
x+
∑f

1
↑x+

∑f
1 +

∑k
a +h+g+

∑t
1−1
)
↓x+1 .

68



2.2. Lemmas George Witty

l1 1
··
·

l1 f
1

p
1 1

··
·

p
1 k
1

··
·

la
−

1
1

··
·

la
−

1
f
a
−

1
p
a
−

1
1

··
·

p
a
−

1
k
a
−

1
la 1

··
·

la f
a

p
a 1

··
·

p
a k
a

m
1

··
·

m
h

r
1

··
·

r
g

q
1 1

··
·

q
1 t
1

··
·

q
a
−

1
1

··
·

q
a
−

1
t
a
−

1
q
a 1

··
·

q
a t
a

x
+

1
··
·

x
+
∑ k 1

··
·

x
+
∑ k a−

2
+

1

··
·

x
+
∑ k a−

1

x
+
∑ k a−

1
+

1

··
·

x
+
∑ k a

x
+
∑ k a

+
1

··
·

x
+
∑ k a

+
g

x
+
∑ k a

+
g
+

1
··
·

x
+
∑ k a

+
g
+
h

x
+
∑ k a

+
g
+
h

+
1

··
·

x
+
∑ k a

+
g
+
h

+
∑ t 1

x
+
∑ k a

+
g
+
h

+
∑ t 1
+

1

··
·

x
+
∑ k a

+
g
+
h

+
∑ t 1

+
∑ f 1

··
·

x
+
∑ k a

+
g
+
h

+
∑ t a−

2

+
∑ f a−

2
+

1

··
·

x
+
∑ k a

+
g
+
h

+
∑ t a−

1

+
∑ f a−

2

x
+
∑ k a

+
g
+
h

+
∑ t a−

1

+
∑ f a−

2
+

1

··
·

x
+
∑ k a

+
g
+
h

+
∑ t a−

1

+
∑ f a−

1

x
+
∑ k a

+
g
+
h

+
∑ t a−

1

+
∑ f a−

1
+

1

··
·

x
+
∑ k a

+
g
+
h

+
∑ t a

+
∑ f a−

1

x
+
∑ k a

+
g
+
h

+
∑ t a

+
∑ f a−

1
+

1

··
·

x
+
∑ k a

+
g
+
h

+
∑ t a

+
∑ f a

F
ig

u
re

2.
23

:
C

ro
ss

in
gs

at
th

e
st

ar
t

of
L
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Proof. Suppose for γ ∈ {0, . . . , a− 1} we have

(
Ψx+

∑f
a +

∑k
a−1
↑x+

∑f
a +

∑k
a +h+g+

∑t
a−1
)
↓
x+
∑f
a−1 +

∑k
a−1 +1

·

· · · ·
(

Ψ
x+
∑f
γ+2 +

∑k
γ+1
↑x+

∑f
γ+2 +

∑k
a +h+g+

∑t
γ+2−1

)
↓
x+
∑f
γ+1 +

∑k
γ+1 +1

·
(

Ψ
x+
∑f
γ+1 +

∑k
γ
↑x+

∑f
γ+1 +

∑k
a +h+g+

∑t
γ+1−1

)
↓x+

∑f
γ +

∑k
γ +1

·
(

Ψx+
∑f
γ +

∑k
a +h ↑

x+
∑f
γ +

∑k
a +h+g−1

)
↓x+

∑f
γ +

∑k
a +1

·
(

Ψx+
∑f
γ +

∑k
γ−1
↑x+

∑f
γ +

∑k
a +h+g+

∑t
γ −1

)
↓
x+
∑f
γ−1 +

∑k
γ−1 +1

·

· · · ·
(

Ψ
x+
∑f

1
↑x+

∑f
1 +

∑k
a +h+g+

∑t
1−1
)
↓x+1 .

(2.20)

Apply Corollary 2.6 to

(
Ψ
x+
∑f
γ+1 +

∑k
γ
↑x+

∑f
γ+1 +

∑k
a +h+g+

∑t
γ+1−1

)
↓x+

∑f
γ +

∑k
γ +1

·
(

Ψx+
∑f
γ +

∑k
a +h ↑

x+
∑f
γ +

∑k
a +h+g−1

)
↓x+

∑f
γ +

∑k
a +1

(take x̄ = x+
∑f

γ +
∑k

γ , f̄ = fγ+1, k̄ =
∑k

a−
∑k

γ , h̄ = h, ḡ = g, t̄ =
∑t

γ+1, where

x̄, f̄ , ḡ, h̄, k̄, t̄ are the x, f, g, h, k and t in the the hypotheses of Corollary 2.6).

Then we can rewrite (2.20) as

(
Ψx+

∑f
a +

∑k
a−1
↑x+

∑f
a +

∑k
a +h+g+

∑t
a−1
)
↓
x+
∑f
a−1 +

∑k
a−1 +1

·

· · · ·
(

Ψ
x+
∑f
γ+2 +

∑k
γ+1
↑x+

∑f
γ+2 +

∑k
a +h+g+

∑t
γ+2−1

)
↓
x+
∑f
γ+1 +

∑k
γ+1 +1

·
(

Ψ
x+
∑f
γ+1 +

∑k
a +h
↑x+

∑f
γ+1 +

∑k
a +h+g−1

)
↓
x+
∑f
γ+1 +

∑k
a +1

·
(

Ψ
x+
∑f
γ+1 +

∑k
γ
↑x+

∑f
γ+1 +

∑k
a +h+g+

∑t
γ+1−1

)
↓x+

∑f
γ +

∑k
γ +1 ·

· · · ·
(

Ψ
x+
∑f

1
↑x+

∑f
1 +

∑k
a +h+g+

∑t
1−1
)
↓x+1,

i.e. we can replace γ with γ + 1. If γ = 0 we have that (2.20) is equal to (2.19),
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so then if γ = a− 1, performing the above shows that (2.19) is equal to

(
Ψx+

∑f
a +

∑k
a +h ↑

x+
∑f
a +

∑k
a +h+g−1

)
↓x+

∑f
a +

∑k
a +1

·
(

Ψx+
∑f
a +

∑k
a−1
↑x+

∑f
a +

∑k
a +h+g+

∑t
a−1
)
↓
x+
∑f
a−1 +

∑k
a−1 +1

·
(

Ψ
x+
∑f
a−1 +

∑k
a−2
↑x+

∑f
a−1 +

∑k
a +h+g+

∑t
a−1−1

)
↓
x+
∑f
a−2 +

∑k
a−2 +1

·

· · · ·
(

Ψ
x+
∑f

1
↑x+

∑f
1 +

∑k
a +h+g+

∑t
1−1
)
↓x+1 .
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Chapter 3
Constructing homomorphisms

N
ow that we are armed with numerous lemmas from the previous chapter,

we aim to utilise them. This chapter is devoted to proving the existence

of explicit homomorphisms between certain Specht modules of KLR

algebras. The ‘certain’ pairs of Specht modules that we are interested in will

be indexed by multipartitions which differ by the moving of nodes. Results

concerning decomposition numbers related to such pairs emerge from the results

of Kleschev regarding partitions that differ by one node [Kle97]; in particular

these have been generalised to the graded case of the Iwahori-Hecke algebra in

papers by Chuang, Miyachi, Tan [CMT08] and Tan and Teo [TT13], and further

to the case of diagrammatic Cherednik algebras by Bowman and Speyer [BS18].

Homomorphisms between Specht modules of KLR algebras have been studied

by Lyle and Mathas in [LM14], where they define the notion of a Carter-Payne

pair. In Sections 3.1 and 3.2 the homomorphisms we detail will arise directly

between Specht modules indexed by Carter-Payne pairs, so their existence is

already known, but due to our approach we will additionally explicitly describe

where the generator of the domain Specht module is mapped to. In Section 3.3,

we will build on the methods used in the previous sections in order to prove the

existence of homomorphisms between Specht modules that are not indexed by

Carter-Payne pairs, and explicitly describe the mapping also. Note that at no

point will we make any assumptions about the characteristic of the base field F.

3.1 One-node homomorphisms

To begin with, we will consider two bipartitions, λ and µ, where µ is formed

from λ by moving a single node from the second component to the first. In order
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for our result to hold, we require that e is large enough so that within a given

component of λ or µ, the nodes of constant residue will all appear along the same

diagonal of nodes (the kth diagonal of component m being all nodes (r, c,m) such

that r − c = k). In general, if this occurs within some partition ν, we shall say

that ν has the diagonal residue condition. This will be satisfied if e > hν11, where

hν11 is the hook length of the top left node in [ν], i.e. hν11 equals the sum of ν1 and

the number of rows of ν, minus one. One reason for requiring this condition is to

control the Garnir relations: if e is large, we have to take into account e-bricks and

we can obtain rather messy Garnir relations with numerous summands, causing

our calculations to quickly get out of control. We will say that an l-multipartition

has the diagonal residue condition if all l of its components do.

The diagonal residue condition also allows us to ensure that our homomor-

phisms keep their ‘form’. In the one-node case, this means that the generator of

Sλ is sent to just a single basis element indexed by a standard µ-tableau, and this

tableau is that obtained by simply moving the “one-node” in tλ to its position in

[µ], keeping its value intact.

For the proof of the result, we aim to show that whenever some element of

H Λκ
n annihilates the generator of Sλ, it also annihilates its image under the

proposed map. In particular, we must take the generating relations of Sλ and

check that they still apply when we replace vt
λ

with its image. The yr relations

are fairly straightforward, since the generating relations for Sλ have a natural

counterpart in Sµ, whilst the ψr relations are similar also, except for that which

relates to the position where the “one-node” was removed. In the case of the

Garnir relations, we have to check a few cases, since many natural counterparts

for these relations are affected by the removed node.

When performing calculations within a Specht module Sλ, certain relations

require an idempotent e(i) (in particular, (1.8)–(1.11)), however we will almost

always drop the idempotent from the algebraic expression of the terms, as it will

only really serve to make things appear more convoluted when written down. For

example, we will write vt
λ
ψr instead of vt

λ
e(iλ)ψr = vt

λ
ψre(sri

λ) (using (1.4)).

Nevertheless, it is important not to forget that it will influence calculations. With
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braid diagrams in mind, we will always be able to easily observe the relevant

residues and this should hopefully alleviate any potential mystery.

Note that the proof of the following proposition has notes in the margin of

the form (A•). These can be ignored for now and will become relevant when

considering the proof of Corollary 3.3.

Proposition 3.1. Let λ and µ be 2-multipartitions of n. Suppose

e ≥ max{hλ(1)

11 + 1, hλ
(2)

11 + 1, hµ
(1)

11 + 1, hµ
(2)

11 + 1}

and that [µ] is formed from [λ] by moving one node from the second component to

the first. Let s be the µ-tableau defined by

s[i] =


tλ[i], if i ∈ [λ],

tλ[j], if i /∈ [λ],

where j is the single node in [λ] \ ([λ] ∩ [µ]). Then there is a homomorphism

ϕ : Sλ → Sµ given by vt
λ 7→ vt

µ
ψs.

Proof. First, observe that in both [λ] and [µ] we have the diagonal residue condition.

Let β+ 1 be the entry of the node j in tλ. To obtain [µ] from [λ], j is moved from

[λ(2)] to [λ(1)]. Let α+ 1 be the entry in s of the added node. Then ψs = Ψα+1 ↑β

(note this may be equal to 1 if α+ 1 = β + 1). The following diagrams help to

illustrate these definitions:

tλ =


1 2

α
α+ 1

,
β β + 1

β + 2
n



s =


1 2

α β + 1
α+ 1

,
β

β + 2
n


It is clear from the definition of s that the residue sequence of s is the same as

that of tλ, so we must check that ϕ(vt
λ
)a = 0 whenever vt

λ
a = 0 for a ∈H Λκ

n . In

particular, we must check that the generating relations of Sλ hold on the image
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of vt
λ
. If (i1, i2, . . . , in) is the residue sequence of tµ then vt

µ
ψs is represented by:

i1 i2 · · · iα iα+1 iα+2 · · · iβ+1 iβ+2 iβ+3 · · · in

1 2 · · · α α+ 1 · · · β β + 1 β + 2 β + 3 · · · n

Checking yr relations

We must check that vt
µ
ψsyr = 0 for r ∈ {1, 2, . . . , n}. Suppose first that

r ∈ {1, 2, . . . , α} ∪ {β + 2, β + 3, . . . , n},

then yr commutes with ψs hence vt
µ
ψsyr = vt

µ
yrψ

s = 0 as yr kills vt
µ

by the

definition of Sµ.

Now suppose r ∈ {α+ 1, α+ 2, . . . , β}. Then the dot corresponding to yr has

to pass through one crossing. Either iα+1 6= ir+1 and the dot passes through (in

particular this happens when r = β), giving vt
µ
yr+1ψ

s = 0, or instead we have

iα+1 = ir+1 and then using the braid relation (1.9) we obtain the following sum

of diagrams:

i1 · · · iα iα+1 iα+2 · · · ir ir+1 ir+2 · · · iβ+1 iβ+2 · · · in

1 · · · α α + 1 · · · r − 1 r r + 1 · · · β β + 1 β + 2 · · · n

−

i1 · · · iα iα+1 iα+2 · · · ir ir+1 ir+2 · · · iβ+1 iβ+2 · · · in

1 · · · α α + 1 · · · r − 1 r r + 1 · · · β β + 1 β + 2 · · · n

Clearly the first summand is zero since the dot has reached the top of the diagram.

In the second summand, we have a ψr+1 crossing at the top. Since we are assuming

iα+1 = ir+1, then using the diagonal residue condition we must have that the

node containing r+ 1 lies in the second component of vt
µ
, above and to the left of
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where the removed node would have been. Due to this, we must have that ψr+1 (A1)

is a row relation for Sµ, hence this summand is zero also.

Finally, suppose r = β + 1. Then the dot corresponding to yr will have to

contend with multiple crossings, but by the previous case if any of these crossings

‘split’ using relation (1.9), then the resulting ‘split’ term is zero. Hence eventually

we are only left with a term where the dot is at the top of the diagram, and hence

this term is zero also.

So we have vt
µ
ψsyr = 0 for every r ∈ {1, 2, . . . , n}.

Checking ψr relations

We must check that vt
µ
ψsψr = 0 for r ∈ {1, 2, . . . , n−1} where ψr is a row relation

for Sλ. Suppose first that r ∈ {1, 2, . . . , α−1}∪{β+2, β+3, . . . , n−1} and that ψr

is a row relation for Sλ. Then ψr commutes with ψs, hence vt
µ
ψsψr = vt

µ
ψrψ

s = 0

as ψr will also be a row relation for Sµ.

Note that if r = α or r = β + 1 then ψr will not be a row relation for Sλ

since both the node containing α and the node containing β + 1 are at the ends

of rows in tλ. So now suppose r ∈ {α+ 1, α+ 2, . . . , β − 1} and that ψr is a row

relation for Sλ. Then ψr+1 will be a row relation for Sµ. For vt
µ
ψsψr we have

the diagram:

i1 · · · iα iα+1 iα+2 · · · ir ir+1 ir+2 ir+3 · · · iβ+1 iβ+2 · · · in

1 · · · α α + 1 · · · r − 1 r r + 1 r + 2 · · · β β + 1 β + 2 · · · n

As is clear in the diagram, we have within this the crossings ψrψr+1ψr. Using the

braid relation (1.11), regardless of the residues we will always obtain a term where

we replace ψrψr+1ψr with ψr+1ψrψr+1. This term will now be vt
µ
ψr+1ψ

s = 0

since ψr+1 is a row relation for Sµ.

If the residues are such that iα+1 = ir+2 = ir+1 ± 1 then the braid relation

76
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(1.11) will also give us the term vt
µ
Ψα+1 ↑ r−1 Ψr+2 ↑β. In this case, we cannot

have r = β − 1 since iα+1 6= iβ+1 as the nodes containing β and β + 1 were not in

the same diagonal in λ. So then we can rewrite this term as vt
µ
Ψr+2 ↑β Ψα+1 ↑ r−1

and we have ψr+2 at the top of the diagram:

i1 · · · iα iα+1 iα+2 · · · ir ir+1 ir+2 ir+3 · · · iβ+1 iβ+2 · · · in

1 · · · α α + 1 · · · r − 1 r r + 1 r + 2 · · · β β + 1 β + 2 · · · n

Since we are assuming iα+1 = ir+2, by the diagonal residue condition we must

have that the node containing r + 2 lies in the second component of vt
µ
, above

and to the left of where the removed node would have been. Hence ψr+2 is a row (A2)

relation for Sµ and so vt
µ
Ψr+2 ↑β Ψα+1 ↑ r−1= 0. Thus all together we have that

vt
µ
ψsψr = 0 for r ∈ {α+ 1, α+ 2, . . . , β − 1}.

So now we only need to consider when r = β and ψβ is a row relation for

Sλ. In this case we have that vt
µ
ψsψr = vt

µ
Ψα+1 ↑β ψ2

β+1, which as a diagram is

represented as:

i1 i2 · · · iα iα+1 iα+2 · · · iβ iβ+1 iβ+2 iβ+3 · · · in

1 2 · · · α α+ 1 · · · β − 1 β β + 1 β + 2 β + 3 · · · n

Using the square relation (1.10) we can rewrite ψ2
β. Since we are assuming ψβ is

a row relation for Sλ, the node containing β in tλ was adjacent and to the left of

the node containing β + 1 in tλ, hence iα+1 = iβ+1 + 1. So we replace ψ2
β with
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(yβ+1 − yβ), giving us the sum of diagrams:

i1 i2 · · · iα iα+1 iα+2 · · · iβ iβ+1 iβ+2 iβ+3 · · · in

1 2 · · · α α + 1 · · · β − 1 β β + 1 β + 2 β + 3 · · · n

−

i1 i2 · · · iα iα+1 iα+2 · · · iβ iβ+1 iβ+2 iβ+3 · · · in

1 2 · · · α α + 1 · · · β − 1 β β + 1 β + 2 β + 3 · · · n

The first summand is clearly zero since the dot is at the top of the diagram. The

second summand will be zero following the same reasoning as to why vt
µ
ψsyβ+1

is equal to zero.

So all together we have shown that for any row relation ψr in Sλ we have that

vt
µ
ψsψr = 0 as we wanted.

Checking the Garnir relations

In tλ a Garnir belt will look like the following for some integers r ≥ 0 and s, t ≥ 1:

r + 1 r + s
r + s+ 1 r + t

Note that due to the diagonal residue condition, t ≤ e− 1, so the corresponding

Garnir relation for Sλ is g =
(
Ψr+s ↑ r+t−1

)
↓ r+1. We split the checking of Garnir

relations into cases based on the location of the Garnir node with respect to the

moved node.

Case I: r + t < α+ 1 or r + 1 > β + 1

In this case, the Garnir belt also exists in [µ] with the exact same entries, so

the Garnir relation is also a generating relation for Sµ. Since in this case the

relation also commutes with ψs, we have vt
µ
ψsg = vt

µ
gψs = 0.
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Case II: r + 1 > α and r + t < β + 1

In this case the Garnir belt also exists in [µ], however its entries are all raised

by 1, giving the Garnir relation h =
(
Ψr+s+1 ↑ r+t

)
↓ r+2 for Sµ. Forgetting the

extraneous strings, vt
µ
ψsg as a diagram looks like:

iα+1 iα+2 · · · ir+1 ir+2 ir+3 · · · ir+s+1 ir+s+2 · · · ir+t+1 ir+t+2 · · · iβ+1

α+ 1 · · · r r + 1 · · · r + t

−s

r + t

−s+1

r + t

−s+2

· · · r + t r + t

+1

· · · β β + 1

By rewriting terms we have that vt
µ
ψsg is equal to

vt
µ
Ψα+1 ↑ r+1 ·Ψr+2 ↑ r+t ·

(
Ψr+s ↑ r+t−1

)
↓ r+2 ·Ψr+1 ↑ r+t−s ·Ψr+t+1 ↑β

so that we can apply Lemma 2.5 to Ψr+2 ↑ r+t ·
(
Ψr+s ↑ r+t−1

)
↓ r+2, which we can

do since ir+3, ir+4, . . . , ir+s+1 6−− ir+s+2, ir+s+3, . . . , ir+t+1. The strings to which

we apply Lemma 2.5 to are coloured blue in the figure above. This gives

vt
µ
Ψα+1 ↑ r+1 ·

(
Ψr+s+1 ↑ r+t

)
↓ r+3 ·Ψr+2 ↑ r+t ·Ψr+1 ↑ r+t−s ·Ψr+t+1 ↑β

= vt
µ
Ψα+1 ↑ r ·

(
Ψr+s+1 ↑ r+t

)
↓ r+3 ·Ψr+1 ↑ r+t−s+1 ·Ψr+1 ↑ r+t−s ·Ψr+t−s+2 ↑β

= vt
µ (

Ψr+s+1 ↑ r+t
)
↓ r+3 ·Ψα+1 ↑ r ·Ψr+1 ↑ r+t−s ·Ψr+1 ↑ r+t−s−1

· Ψr+t−s+1 ↓ r+t−s ·Ψr+t−s+2 ↑β

and here we can apply Lemma 2.3 to Ψr+1 ↑ r+t−s ·Ψr+1 ↑ r+t−s−1 since we have

ir+2 6−− ir+s+2, ir+s+3, · · · , ir+t, so that vt
µ
ψsg is equal to

vt
µ (

Ψr+s+1 ↑ r+t
)
↓ r+3 ·Ψα+1 ↑ r ·Ψr+2 ↑ r+t−s ·Ψr+1 ↑ r+t−s

· Ψr+t−s+1 ↓ r+t−s ·Ψr+t−s+2 ↑β,
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and now our diagram looks like:

iα+1 iα+2 · · · ir+1 ir+2 ir+3 · · · ir+s+1ir+s+2 · · · ir+t ir+t+1ir+t+2 · · · iβ+1

α + 1 · · · r r + 1 · · · r + t

−s − 1

r + t

−s

r + t

−s + 1

r + t

−s + 2

· · · r + t r + t

+1

· · · β β + 1

Now within this we have ψr+t−sψr+t−s+1ψr+t−s with associated left residue iα+1,

right residue ir+t+1 and center residue ir+2. Regardless of what these residues are,

we will always obtain the term where we pull the ir+2-string over the ψr+t−s+1

crossings, which will be equal to

vt
µ (

Ψr+s+1 ↑ r+t
)
↓ r+2 Ψα+1 ↑β= vt

µ
hψs = 0.

If iα+1 = ir+t+1, then as ir+t+1 = ir+2 − 1 using the braid relation (1.11) we

obtain an extra term equal to

vt
µ (

Ψr+s+1 ↑ r+t
)
↓ r+3 ·Ψα+1 ↑ r ·

(
Ψr+2 ↑ r+t−s

)
↓ r+1 ·Ψr+t−s+2 ↑β

= vt
µ (

Ψr+s+1 ↑ r+t
)
↓ r+3 ·Ψr+t−s+2 ↑β ·Ψα+1 ↑ r ·

(
Ψr+2 ↑ r+t−s

)
↓ r+1

and now since ir+3, · · · , ir+s+1 6−− ir+t+1 we can apply Lemma 2.8 to(
Ψr+s+1 ↑ r+t

)
↓ r+3 ·Ψr+t−s+2 ↑β (take x = r + 2, f = s − 1, h = t − s − 1, g =

1, k = β − r − t).

This leaves us with the extra term being equal to

vt
µ (

Ψr+s+1 ↑ r+t−1
)
↓ r+3 ·Ψr+t+1 ↑β ·Ψα+1 ↑ r ·

(
Ψr+2 ↑ r+t−s

)
↓ r+1

so finally we commute the Ψr+t+1 ↑β to the left of the term, i.e. we have a ψr+t+1
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crossing at the top of the corresponding diagram. Since we assumed iα+1 = ir+t+1, (A3)

using the diagonal residue condition we conclude that ψr+t+1 must be a row

relation, hence this extra term is zero. Thus all together we have shown that

vt
µ
ψsg = 0 in case II.

Case III: r + t = β + 1

In this case, the Garnir belt must lie in the second component of [λ]. This

implies that r + 1 > α. Unlike in the previous cases, this Garnir belt does not

entirely exist in [µ]; the removed node is the node beneath the Garnir node.

We can write ψs = Ψα+1 ↑ r+t−1 and so

vt
µ
ψsg = vt

µ
Ψα+1 ↑ r+t−1 ·

(
Ψr+s ↑ r+t−1

)
↓ r+1

= vt
µ
Ψα+1 ↑ r ·Ψr+1 ↑ r+t−1 ·

(
Ψr+s ↑ r+t−2

)
↓ r+1 ·Ψr+t−1 ↓ r+t−s

which, forgetting extraneous strings, looks like:

iα+1 iα+2 · · · ir+1 ir+2 · · · ir+s+1 ir+s+2 · · · ir+t

α+ 1 · · · r r + 1 · · · r + t

−s−1

r + t

−s

r + t

−s+1

· · · r + t

Note that only the crossings where both strings are blue in the above diagram is

where we shall apply Lemma 2.5. Apply Lemma 2.5 to

Ψr+1 ↑ r+t−1 ·
(
Ψr+s ↑ r+t−2

)
↓ r+1
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since iα+1 6= ir+s+2, . . . , ir+t, giving

vt
µ
ψsg = vt

µ
Ψα+1 ↑ r ·

(
Ψr+s+1 ↑ r+t−1

)
↓ r+2 ·Ψr+1 ↑ r+t−1 ·Ψr+t−1 ↓ r+t−s

= vt
µ
Ψα+1 ↑ r ·

(
Ψr+s+1 ↑ r+t−1

)
↓ r+2 ·Ψr+1 ↑ r+t−2 ·Ψr+t−2 ↓ r+t−s

...

= vt
µ
Ψα+1 ↑ r ·

(
Ψr+s+1 ↑ r+t−1

)
↓ r+2 ·Ψr+1 ↑ r+t−s+1 ·Ψr+t−s+1 ↓ r+t−s

by repeated use of relation (1.10) (since iα+1 6= ir+s+1, . . . , ir+3)

= vt
µ (

Ψr+s+1 ↑ r+t−1
)
↓ r+2 ·Ψα+1 ↑ r+t−s−1 · (yr+t−s+1 − yr+t−s)

since iα+1 = ir+2 − 1. As a sum of diagrams (not including extraneous strings)

this is:

iα+1 iα+2 · · · ir+1 ir+2 · · · ir+s+1 ir+s+2 · · · ir+t

α+ 1 · · · r r + 1 · · · r + t

−s−1

r + t

−s

r + t

−s+1

· · · r + t

−

iα+1 iα+2 · · · ir+1 ir+2 · · · ir+s+1 ir+s+2 · · · ir+t

α+ 1 · · · r r + 1 · · · r + t

−s−1

r + t

−s

r + t

−s+1

· · · r + t

In the former term, since ir+2 6= ir+t, . . . , ir+s+2, the dot moves straight to the

top of the diagram hence this term is zero. In the latter term, we start by

observing that we can move the dot some of the way towards the top since

iα+1 6= ir+t, . . . , ir+s+2.
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Next we must compare iα+1 and ir+1. If t− s = 1 then there can be no nodes

of residue iα+1 whose entry is α+2 or greater in either component by the diagonal

residue property. Thus iα+1 6= iα+2, . . . , ir+1 so the dot moves all the way to the (A4)

top and the term is zero. However, if t− s > 1, then iα+1 = ir+1 and in [µ] we

will have the Garnir belt:

r + 1 r + s+ 1
r + s+ 2 r + t

giving the Garnir relation h =
(
Ψr+s+1 ↑ r+t−1

)
↓ r+1. In this instance we will have

that the term is equal to

−vtµ
(
Ψr+s+1 ↑ r+t−1

)
↓ r+2 ·Ψα+1 ↑ r−1 ·ψryr+1 ·Ψr+1 ↑ r+t−s−1

= −vtµ
(
Ψr+s+1 ↑ r+t−1

)
↓ r+2 ·Ψα+1 ↑ r−1 yr ·Ψr ↑ r+t−s−1 (3.1)

− vtµ
(
Ψr+s+1 ↑ r+t−1

)
↓ r+2 ·Ψα+1 ↑ r−1 ·Ψr+1 ↑ r+t−s−1 (3.2)

by applying relation (1.8). In (3.1), apply Lemma 2.11 to Ψα+1 ↑ r−1 yr. Then

there is some k ≥ 0 so that this term is equal to

− vtµyα+1

(
Ψr+s+1 ↑ r+t−1

)
↓ r+2 ·Ψα+1 ↑ r+t−s−1

+
k∑
j=1

vt
µ
Ψα+zj+1 ↑ r−1 ·

(
Ψr+s+1 ↑ r+t−1

)
↓ r+2 ·Ψα+1 ↑α+zj−1 ·Ψr ↑ r+t−s−1

where iα+1 = iα+zj+1 for all j ∈ {1, . . . , k}. Since iα+1 = iα+zj+1, all of the (A5)

ψα+zj+1 crossings will be row relations by the diagonal residue condition. Thus

(3.1) is equal to zero.

By rearranging, (3.2) is equal to

−vtµ
(
Ψr+s+1 ↑ r+t−1

)
↓ r+1 ·Ψα+1 ↑ r−1= −vtµhΨα+1 ↑ r−1= 0.

So all together we have vt
µ
ψsg = 0 in case III.

Case IV: r + s = β + 1

In this case, the Garnir belt must lie in the second component of [λ]. This
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implies that r + 1 > α. The entire Garnir belt does not exist in [µ], since the

removed node lies within the belt. In [µ] we have the Garnir belt

r + 2 r + s
r + s+ 1 r + t

giving the Garnir relation h =
(
Ψr+s ↑ r+t−1

)
↓ r+2.

We can write ψs = Ψα+1 ↑ r+s−1 and so

vt
µ
ψsg = vt

µ
Ψα+1 ↑ r+s−1 ·

(
Ψr+s ↑ r+t−1

)
↓ r+1

= vt
µ
Ψα+1 ↑ r ·Ψr+1 ↑ r+t−1 ·

(
Ψr+s−1 ↑ r+t−2

)
↓ r+1

which, when forgetting irrelevant strings, looks like:

iα+1 iα+2 · · · ir+1 ir+2 · · · ir+s ir+s+1 · · · ir+t

α+ 1 · · · r r + 1 · · · r + t

−s

r + t

−s+1

· · · r + t

−1

r + t

Now since iα+1 6= ir+s+1, ir+s+2 . . . , ir+t we can apply Lemma 2.5 to

Ψr+1 ↑ r+t−1 ·
(
Ψr+s−1 ↑ r+t−2

)
↓ r+1

giving us

vt
µ
Ψα+1 ↑ r ·

(
Ψr+s ↑ r+t−1

)
↓ r+2 ·Ψr+1 ↑ r+t−1

= vt
µ (

Ψr+s ↑ r+t−1
)
↓ r+2 ·Ψα+1 ↑ r+t−1

= vt
µ
hΨα+1 ↑ r+t−1

= 0,

so indeed vt
µ
ψsg = 0.
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Case V: r + s = α

In this case, the Garnir belt lies in the first component of [λ]. The removed

node gets added onto this belt, meaning in [µ] we have the Garnir belt

r + 1 r + s r + s+ 1
r + s+ 2 r + t+ 1

giving the Garnir relation h =
(
Ψr+s+1 ↑ r+t

)
↓ r+1.

We can write ψs = Ψr+s+1 ↑β and so

vt
µ
ψsg = vt

µ
Ψr+s+1 ↑β ·

(
Ψr+s ↑ r+t−1

)
↓ r+1

= vt
µ (

Ψr+s+1 ↑ r+t
)
↓ r+1 ·Ψr+t+1 ↑β

= vt
µ
hΨr+t+1 ↑β

= 0.

Conclusion

Having checked that vt
µ
ψsa = 0 for every a ∈H Λκ

n we have indeed shown that

there is a homomorphism ϕ : Sλ → Sµ given by vt
λ 7→ vt

µ
ψs.

We now extend Proposition 3.1 to work with multipartitions with more than

two components. We now suppose that the moved node moves from one component,

say λ(q), to an earlier one, say λ(p), potentially with other components either side

and in the middle of these. As long as there are no removable nodes of the same

residue as the moved node in the components labelled with p+ 1, . . . , q − 1, we

can form a homomorphism in practically the same way as Proposition 3.1. The

only real difference is that we have to make a few adjustments to the proof of the

proposition in order to account for the extra components in between λ(p) and λ(q).

In addition to this, we show how the degree of such a homomorphism can be

calculated in a combinatorial manner based upon counting the number of addable

nodes of the same residue as the moved node amongst those components labelled

by p + 1, . . . , q − 1. In order to help state the corollary and its ensuing results
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clearly, we make the following definition for a pair of multipartitions λ and µ,

where µ is formed from λ in the fashion described above.

Definition 3.2. Let l ≥ 2 and suppose that λ and µ are l-multipartitions of

n, where [µ] is formed from [λ] by moving one node of residue ι from the qth

component to the pth, for some p and q such that p < q. In addition suppose that

e ≥ max
p≤c≤q

{hλ(c)

11 + 1, hµ
(c)

11 + 1}.

Suppose that amongst the components λ(c′) with c′ ∈ {p + 1, p + 2, . . . , q − 1},

there are exactly k ≥ 0 components containing addable ι-nodes. If k > 0, then we

also require that e is large enough so that the diagonal residue condition holds

when the ι-node is added to these components. Suppose that each component

λ(c′) contains no removable ι-nodes. Then we say that (λ, µ)ι is a one node pair

(of degree k + 1).

Corollary 3.3. Suppose that (λ, µ)ι is a one node pair of degree k + 1. Let s be

the µ-tableau defined by

s[i] =


tλ[i], if i ∈ [λ],

tλ[j], if i /∈ [λ],

where j is the single node in [λ] \ ([λ] ∩ [µ]). Then there is a homomorphism

ϕ : Sλ → Sµ given by vt
λ 7→ vt

µ
ψs. This homomorphism has degree k + 1 and

can be written as a composition of k + 1 homomorphisms, all of degree one.

Proof. Define α and β similarly to the proof of Proposition 3.1, so that the node

to be moved contains β + 1 in tλ and in tµ the added node contains α+ 1. Then

ψs = Ψα+1 ↑β. We need to check that the generating relations of Sλ hold on

ϕ
(
vt
λ
)

.

For each type of relation, our definitions of α and β allow us to follow the

same methods as in Proposition 3.1, only now accounting for the additional nodes

in between the first and last components of [µ] as well as those outside of these

components. In checking each of the relations, apply the same reasoning as
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in Proposition 3.1, however there are a few changes to be made at the places

annotated by numbers in the margins.

(A1) In the second summand, we have Ψr+1 ↑β at the top of the diagram, and if

ψr+1 is not a row relation, by the diagonal residue condition we have that

the node containing r+ 1 in tµ must be a Garnir node, so the corresponding

Garnir relation will be at the top of the diagram.

(A2) We have Ψr+2 ↑β at the top of the diagram, and then by the diagonal residue

condition, if ψr+2 is not a row relation then the node containing r + 2 in tµ

must be a Garnir node, so the corresponding Garnir relation will be at the

top of the diagram.

(A3) By the diagonal residue condition, if ψr+t+1 is not a row relation, the node

containing r+t+1 in tµ will be a Garnir node and we have the corresponding

Garnir relation at the top of the diagram.

(A4) We may have some z such that iα+1 = iz in which case by Lemma 2.11 we

will obtain Ψz ↑ r at the top of the diagram. Using the diagonal residue

condition, either ψz is a row relation and we are done, or the node containing

z in tµ is a Garnir node and its corresponding Garnir relation will be at the

top of the diagram.

(A5) By the diagonal residue condition, if ψα+zj+1 is not a row relation in this

case, the node containing α+ zj + 1 in tµ will be a Garnir node and we have

the corresponding Garnir relation at the top of the diagram.

To describe the degree of ϕ, first suppose that k = 0. By Proposition 1.34 we

have that deg
(
vt
µ
ψs
)

= deg(s). We wish to compute deg
(
vt
µ
ψs
)
− deg

(
vt
λ
)

=

deg(s)−deg
(
tλ
)
. Using the recursive definition of the degree, the nodes containing

n, n− 1, . . . , β + 2 in both tableaux contribute the same value to the respective

degrees. Hence

deg(s)− deg
(
tλ
)

= deg (s<β+2)− deg
(
tλ<β+2

)
.
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Let A be the node s−1
<β+2(β + 1) and B be the node

(
tλ<β+2

)−1
(β + 1). Then

the number of addable ι-nodes below A is one more than that below B, since in

s<β+2 we also count the position where the node was removed from in the qth

component. Thus

deg (s<β+2)− deg
(
tλ<β+2

)
= 1 + deg (s<β+1)− deg

(
tλ<β+1

)
= 1,

since s<β+1 is identical to tλ<β+1. So the degree of a homomorphism when k = 0

is 1.

Next, suppose k > 0 and we will use induction. Let c̃ ∈ {p+1, p+2, . . . , q−1}

be maximal so that λ(c̃) has an addable ι-node. Suppose that if we add the node

to the diagram
[
λ(c̃)
]

we obtain the diagram
[
ν(c̃)
]

and consider the multipartition

ν :=
(
λ(1), λ(2), . . . , λ(c̃−1), ν(c̃), µ(c̃+1), µ(c̃+2), . . . , µ(l)

)
.

Then by induction we have that there is a homomorphism ϕ1 : Sλ → Sν given

by vt
λ 7→ vt

ν
Ψγ+1 ↑β, where γ + 1 is the value of the added node in tν . By our

choice of c̃, this homomorphism must have degree one. Similarly, we also obtain a

homomorphism ϕ2 : Sν → Sµ given by vt
ν 7→ vt

µ
Ψα+1 ↑ γ . By induction, ϕ2 has

degree k and can be written as a composition of k degree one homomorphisms.

Composing, we see that ϕ2 ◦ ϕ1 : Sλ → Sµ is given by vt
λ 7→ vt

µ
Ψα+1 ↑β thus

ϕ = ϕ2 ◦ ϕ1. Hence ϕ has degree k + 1, and can be written as a composition of

k + 1 degree one homomorphisms as we wanted.

We have shown that a homomorphism exists when we move one node to form

[µ] from [λ], but what if we move two or more different unadjacent nodes? If we

assume that the nodes are of residues at least one apart, and that we are able

to form homomorphisms by moving the nodes independently of each other as in

Corollary 3.3, then the homomorphisms obtained by moving the nodes one by one,

in any order, always compose to give the same overall homomorphism from Sλ to
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Sµ. We detail how this works for moving two different unadjacent nodes in the

following Corollary. Note that results concerning decomposition numbers where

multiple nodes are moved of ‘unadjacent residues’ have been given by Chuang

and Tan [CT16] and Bowman and Speyer [BS18].

Corollary 3.4. Let l ≥ 2 and suppose that λ, ν1, ν2 and µ are l-multipartitions

of n. Suppose that [µ] is formed from [λ] by moving one node of residue ι1 and

one other node - not the same as or adjacent to the first - of residue ι2. Suppose

that [ν1] is formed from [λ] by moving just the ι1-node and that [ν2] is formed

from [λ] by moving just the ι2-node, and that ι1 6= ι2 and ι1 6−− ι2. Suppose that

(λ, ν1)ι1, (λ, ν2)ι2, (ν1, µ)ι2 and (ν2, µ)ι1 are all one node pairs. Then there are

non-zero homomorphisms

ϕλν1 : Sλ → Sν1 , ϕν1µ : Sν1 → Sµ,

ϕλν2 : Sλ → Sν2 , ϕν2µ : Sν2 → Sµ,

and we have that ϕν1µ ◦ ϕλν1 = ϕν2µ ◦ ϕλν2 6= 0.

In addition, if (λ, ν1)ι1 and (ν1, µ)ι2 have degrees k1 + 1 and k2 + 1, we have

that the degree of ϕν1µ ◦ ϕλν1 is k1 + k2 + 2.

Proof. Since (λ, ν1)ι1 , (λ, ν2)ι2 , (ν1, µ)ι2 and (ν2, µ)ι1 are all one node pairs, by

Corollary 3.3 we have that there are non-zero homomorphisms

ϕλν1 : Sλ → Sν1 , ϕν1µ : Sν1 → Sµ,

ϕλν2 : Sλ → Sν2 , ϕν2µ : Sν2 → Sµ.

Write ϕλνj (v
tλ) = vt

νj
Ψαj+1 ↑βj for some αj ∈ {0, . . . , n − 1} and βj ∈

{1, . . . , n − 1} with αj ≤ βj , for j ∈ {1, 2}. Without loss of generality, assume

that β1 < β2. If β1 < α2 then

ϕν1µ ◦ ϕλν1(vt
λ
) = vt

µ
Ψα2+1 ↑β2 Ψα1+1 ↑β1

= vt
µ
Ψα1+1 ↑β1 Ψα2+1 ↑β2

= ϕν2µ ◦ ϕλν2(vt
λ
)
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and we are done. Hence, assume that β1 ≥ α2. Then we have multiple cases.

Case I: The ι1-node is moved to a position above the ι2-node in [µ]

In this case, we have that

ϕν1µ ◦ ϕλν1(vt
λ
) = vt

µ
Ψα2+2 ↑β2 Ψα1+1 ↑β1 .

Now

ϕν2µ ◦ ϕλν2(vt
λ
) = vt

µ
Ψα1+1 ↑β1+1 Ψα2+1 ↑β2

which as a diagram is:

iα1+1 iα1+2 · · · iα2+1 iα2+2 iα2+3 · · · iβ1+2 iβ1+3 · · · iβ2+1

α1 + 1 · · · α2 α2 + 1 · · · β1 β1 + 1β1 + 2 · · · β2 β2 + 1

Write

ϕν2µ ◦ ϕλν2(vt
λ
) = vt

µ
Ψα1+1 ↑β1+1 Ψα2+1 ↑β2

= vt
µ
Ψα1+1 ↑α2+1 ·

(
Ψα2+2 ↑β1+1

)
↓α2+1 ·ψβ1+1 ·Ψβ1+2 ↑β2

= vt
µ
Ψα1+1 ↑α2+1 ·ψα2+1 ·

(
Ψα2+2 ↑β1+1

)
↓α2+1 ·Ψβ1+2 ↑β2

by Lemma 2.3 since iα1+1 6−− iα2+2,

= vt
µ
Ψα1+1 ↑α2 ·Ψα2+2 ↑β1+1 ·Ψα2+1 ↑β1 ·Ψβ1+2 ↑β2
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since ψ2
α2+1 = 0 as iα1+1 6−− iα2+2,

= vt
µ
Ψα2+2 ↑β2 ·Ψα1+1 ↑β1

= ϕν1µ ◦ ϕλν1(vt
λ
).

Thus ϕν1µ ◦ ϕλν1(vt
λ
) = ϕν2µϕλν2(vt

λ
).

Case II: The ι1-node is moved to a position below the ι2-node in

[µ]

In this case, we have that

ϕν1µ ◦ ϕλν1(vt
λ
) = vt

µ
Ψα2+1 ↑β2 Ψα1+1 ↑β1 .

Now

ϕν2µ ◦ ϕλν2(vt
λ
) = vt

µ
Ψα1+2 ↑β1+1 Ψα2+1 ↑β2

which as a diagram is:

iα2+1 iα2+2 · · · iα1+1 iα1+2 iα1+3 · · · iβ1+2 iβ1+3 · · · iβ2+1

α2 + 1 · · · α1 α1 + 1 · · · β1 β1 + 1β1 + 2 · · · β2 β2 + 1

Write

ϕν2µ ◦ ϕλν2(vt
λ
) = vt

µ
Ψα1+2 ↑β1+1 Ψα2+1 ↑β2

= vt
µ
Ψα2+1 ↑α1 ·

(
Ψα1+2 ↑β1+1

)
↓α1+1 ·ψβ1+1 ·Ψβ1+2 ↑β2

= vt
µ
Ψα2+1 ↑α1 ·ψα1+1 ·

(
Ψα1+2 ↑β1+1

)
↓α1+1 ·Ψβ1+2 ↑β2
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by Lemma 2.3 since iα2+1 6−− iα1+2,

= vt
µ
Ψα2+1 ↑β2 Ψα1+1 ↑β1

= ϕν1µ ◦ ϕλν1(vt
λ
).

Thus ϕν1µ ◦ ϕλν1(vt
λ
) = ϕν2µ ◦ ϕλν2(vt

λ
).

Since the degree of ϕν1µ ◦ ϕλν1 is equal to the sum of degrees, the degree is

(k1 + 1) + (k2 + 1) = k1 + k2 + 2.

Note that in both cases, ϕν1µ ◦ ϕλν1(vt
λ
) is given by some product of ψi

corresponding to a reduced expression which is not zero thus ϕν1µ ◦ ϕλν1(vt
λ
) =

ϕν2µ ◦ ϕλν2(vt
λ
) 6= 0.

Now that we know that the homomorphisms from moving any two different

unadjacent nodes in any order can be composed in either order to yield the same

result, we now show that this means that for any number of moved nodes we

obtain a similar result. Given any sequence of homomorphisms related to the

gradual moving of individual nodes, we can swap the order of consecutive pairs of

homomorphisms repeatedly using Corollary 3.4 until we obtain any other ordering.

Corollary 3.5. Let l ≥ 2 and suppose that λ and µ are l-multipartitions of

n. Suppose that [µ] is formed from [λ] by moving m distinct nodes x1, . . . , xm,

whose residues ι1, ι2, . . . , ιm are such that ιi 6= ιj nor ιi 6−− ιj for all i 6= j with

1 ≤ i, j ≤ m.

Suppose that for each X ⊆ {1, . . . ,m} we have an l-multipartition of n, νX ,

such that [ν{i1,...,it}] is formed from [λ] by moving just the nodes xi1 , . . . , xit. In

particular ν∅ = λ and ν{1,...,m} = µ. Suppose that whenever B \A = {r}, we have

that (νA, νB)ιr is a one node pair, whose corresponding homomorphism is ϕνAνB .

Then there is a non-zero homomorphism ϕ : Sλ → Sµ and given any sequence

of sets ∅ = X0 ( X1 ( X2,( · · · ( Xm = {1, . . . ,m} we have that

ϕ = ϕνXm−1
νXm ◦ ϕνXm−2

νXm−1
◦ · · · ◦ ϕνX0

νX1
.
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Proof. Without loss of generality suppose that node xa is above node xb for

every a < b. Let Yj := {1, 2, . . . , j} for j ∈ {0, . . . ,m}. Then ∅ = Y0 ( Y1 (

· · · ( Ym = {1, 2, . . . ,m}. By assumption we have l-multipartitions of n, νYj , and

non-zero homomorphisms ϕνYj νYj+1
for each j ∈ {0, . . . ,m − 1}. We may write

ϕνYj νYj+1
(vt

νYj
) = vt

νYj+1
Ψαj+1+ζj+1

↑βj+1 for some αj+1 and βj+1 related to the

positions of the moved nodes, and ζj+1 based on whether moved nodes are added

above or below other moved nodes. Then

ϕνYm−1
νYm ◦ · · · ◦ ϕνY0

νY1
(vt

λ
) = vt

µ
Ψαm+ζm ↑βm · · ·Ψα1+ζ1 ↑β1 . (3.3)

Since β1 < β2 < · · · < βm we must have that in the braid diagram for the above,

no strings will cross twice and so by Proposition 1.18 the above will correspond

to a reduced expression and so this composition of homomorphisms is not zero.

Now let ∅ = X0 ( X1 ( X2,( · · · ( Xm = {1, . . . ,m} be a sequence

of sets. Any such sequence of sets corresponds to a permutation σ ∈ Sm,

given by Xj \Xj−1 = {σ(j)}, and given any permutation in Sm we can define

such a sequence of sets in the same fashion. For j ∈ {1, . . . ,m − 1}, given

sj = (j, j + 1) ∈ Sm if we replace Xj with X̃j := Xj−1 ∪ (Xj+1 \Xj) then

we have ∅ = X0 ( X1 ( X2,( · · · ( Xj−1 ( X̃j ( Xj+1 · · · ( Xm = {1, . . . ,m}

and this sequence corresponds to the permutation sjσ ∈ Sm.

From our original sequence of sets corresponding to σ ∈ Sm we have the

homomorphism

ϕ = ϕνXm−1
νXm◦· · ·◦ϕνXj+1

νXj+2
◦ϕνXj νXj+1

◦ϕνXj−1
νXj
◦ϕνXj−2

νXj−1
◦· · ·◦ϕνX0

νX1
.

By Corollary 3.4 we have that ϕνXj νXj+1
◦ϕνXj−1

νXj
= ϕνX̃j νXj+1

◦ϕνXj−1
νX̃j

thus

ϕ is equal to:

ϕνXm−1
νXm ◦ · · ·ϕνXj+1

νXj+2
◦ ϕνX̃j νXj+1

◦ ϕνXj−1
νX̃j
◦ ϕνXj−2

νXj−1
◦ · · · ◦ ϕνX0

νX1
,

that is, the homomorphism stemming from the sequence of sets corresponding to

sjσ. Since Sm is generated by transpositions, given any sequence of sets we can
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show that the corresponding composition of homomorphisms can be permuted

into any other. In particular any such homomorphism is equal to that given by

(3.3), so is not zero.
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3.2 One-row homomorphisms

Using Proposition 3.1 and its corollaries we are able to show that various ho-

momorphisms between Specht modules exist related to moving individual nodes

in a multipartition. The next step is to ask, whether we can obtain similar

homomorphisms when moving a shape that is more than just a single node. We

first consider moving a single row of nodes. In this case, homomorphisms will

again arise between a pair Specht modules corresponding to a Carter-Payne pair of

bipartitions, however we are able to explicitly describe the image of the generator

of the domain Specht module by such a homomorphism.

The proof of Proposition 3.1 relies on directly checking the different generating

relations for the Specht module Sλ, with the Garnir relation in Case III of the

proof being the most convoluted to check, due to the node beneath the Garnir

node being removed to form [µ]. Since we are now removing a row of nodes, this

sort of problem is going to happen more than once, and since we are looking to

eventually find homomorphisms by moving more than just a single row of nodes

we wish to avoid having to check a large variety of different relations in various

ways. To this end, we use an inductive approach.

Consider bipartitions λ and µ, with [µ] formed from [λ] by moving a row

of at least 2 nodes from the second component to the first. Form [λ̃] from [λ]

by removing the rightmost node in the row of nodes and moving it to a new

third component. Then we can move what was left of the row in [λ̃] to form

[λ̃1], which is almost identical to [µ] except for the single node we placed in the

third component. Then consider [µ̃] formed by moving the node from the third

component to the end of the moved row; this will look almost identical to [µ]

except for the empty extra component.

By induction on the number of nodes in the moved row, we obtain homomor-

phisms from Sλ̃ to Sλ̃1 and we have a one-node homomorphism from Sλ̃1 to Sµ̃.

These compose to give us a non-zero homomorphism from Sλ̃ to Sµ̃ and we are

able to deduce that generating relations from Sλ̃ must kill the image of vt
λ̃

in Sµ̃.

Since this homomorphism is incredibly similar to that which we wish to prove
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exists from Sλ to Sµ, we can use the fact that nearly all the generating relations

for Sλ have a direct counterpart in a generating relation for Sλ̃ to conclude that

most of the generating relations for Sλ will immediately kill the image of vt
λ

in

Sµ. With this, we remove the need to directly check a large amount of relations,

and can instead just mainly focus on the few generating relations for Sλ which do

not have a counterpart for Sλ̃.

Now we shall state our result involving the moving of rows for bipartitions.

Proposition 3.6. Let λ and µ be 2-multipartitions of n. Suppose

e ≥ max{hλ(1)

11 + 1, hλ
(2)

11 + 1, hµ
(1)

11 + 1, hµ
(2)

11 + 1}

and that [µ] is formed from [λ] by moving a row containing a nodes from the

second component to the first. Let s be the µ-tableau defined by considering tλ and

moving the row of a nodes from the second component to the first, keeping their

values intact. Then there is a homomorphism ϕ : Sλ → Sµ given by vt
λ 7→ vt

µ
ψs.

We shall first discuss our strategy for the proof of Proposition 3.6 and expand

on the inductive approach described in the introduction of this section. We can

immediately observe that if a = 1 then by Proposition 3.1 we obtain the desired

result. So we shall be able to suppose that a ≥ 2. Also, as in Proposition 3.1 we

have the diagonal residue condition. Let the row of a nodes that are removed

from
[
λ(2)

]
be

β + 1β + 2 β + a

and let α + 1, α + 2, . . . , α + a be the entries of the added nodes in tµ. Then

ψs =
(
Ψα+a ↑β+a−1

)
↓α+1 (note this may be equal to 1 if α+ 1 = β+ 1, i.e. there

are no nodes beneath the node containing α+ a in
[
µ(1)

]
and no nodes at all in[

µ(2)
]
). The following diagrams help to illustrate these definitions.

tλ =


1 2

α
α+ 1

β β + 1 β + a
β + a+ 1

n


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s =


1 2

α β + 1 β + a
α+ 1

β
β + a+ 1

n



We now wish to work with some 3-multipartitions of n. For this, we need

to define a new KLR algebra H Λκ̃
n using quantum characteristic ẽ := e and

multicharge κ̃ := (κ1, κ2, resλ(β + a)). We write ẽ(i), ỹi and ψ̃i for the generators

of this algebra. We also have the notation Ψ̃• ↑ •, Ψ̃• ↓ •,
(

Ψ̃• ↑ •
)
↓ • and

(
Ψ̃• ↓ •

)
↑ •

formed by taking the corresponding relations in H Λκ
n and replacing any ψ• with

ψ̃•. Note that the only place H Λκ
n and H Λκ̃

n will differ in their definition is in

the relations of the form (1.12).

Recall that given a partition ν, let νk̂ := (ν1, ν2, . . . , νk−1, νk−1, νk+1, νk+2, . . .),

i.e.
[
νk̂
]

is [ν] with the rightmost node on the kth row removed. So now suppose

that the row of [λ] to which the nodes will be added is the k1th row and the

row from which the nodes will be removed is the k2th row. Then consider a

3-multipartition of n, λ̃, defined as

λ̃ :=
(
λ(1), λ

(2)

k̂2
, (1)

)
,

i.e. so that

tλ̃ =


1 2

α
α+ 1

β β + 1 β + a− 1
β + a

n− 1

n
 .

Also define ν̃, a 3-multipartition of n, by

ν̃ :=
(
µ

(1)

k̂1
, µ(2), (1)

)
with a ν̃-tableau s1 defined as

s1 =


1 2

α β + 1 β + a− 1
α+ 1

β
β + a

n− 1

n


so that ψ̃s1 =
(

Ψ̃α+a−1 ↑β+a−2
)
↓α+1.
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Consider λ̃∗ = (λ̃(1), λ̃(2)) along with ν̃∗ = (ν̃(1), ν̃(2)) and let s∗1 be the ν̃∗-

tableau defined as the first two components of s1. Then by induction on the

number of nodes in the moved row, there exists a homomorphism ϕ∗1 : Sλ̃
∗ → S ν̃

∗

given by vt
λ̃∗ 7→ vt

ν̃∗
ψs∗1 , and no generating relation for Sλ̃ kills vt

ν̃∗
ψs∗1 via a

relation of the form (1.12). The base case for this is given by Proposition 3.1.

Due to the definition of s∗1, every generating relation for Sλ̃ except for yn will

correspond directly to a generating relation for Sλ̃
∗

and, due to the existence of

ϕ∗1 and the fact that a relation of the form (1.12) is never used, must kill vt
ν̃
ψ̃s1 .

In addition, yn will kill vt
ν̃
ψ̃s1 since it will commute with ψ̃s1 . In this way, we

can see that there exists a homomorphism ϕ1 : Sλ̃ → S ν̃ given by vt
λ̃ 7→ vt

ν̃
ψ̃s1 .

Now consider the 3-multipartition µ̃ := (µ(1), µ(2),∅) and the µ̃-tableau s2

defined by

s2 =


1 2

α α+ 1 α+ a− 1 n
α+ a

β + a− 1
β + a

n− 1

∅


with ψ̃s2 = Ψ̃α+a ↑n−1. Using Corollary 3.3 we know that there is a homomorphism

ϕ2 : S ν̃ → Sµ̃ given by vt
ν̃ 7→ vt

µ̃
ψ̃s2 .

We have that ψ̃s =
(

Ψ̃α+a ↑β+a−1
)
↓α+1. Composing ϕ2 with ϕ1 we have a

homomorphism ϕ̃ := ϕ2 ◦ ϕ1 : Sλ̃ → Sµ̃ given by

ϕ̃
(
vt
λ̃
)

= ϕ2

(
ϕ1

(
vt
λ̃
))

= ϕ2

(
vt
ν̃
ψ̃s1

)
= ϕ2

(
vt
ν̃
)
ψ̃s1

= vt
µ̃
ψ̃s2ψ̃s1

= vt
µ̃
Ψ̃α+a ↑n−1 ·

(
Ψ̃α+a−1 ↑β+a−2

)
↓α+1

= vt
µ̃
(

Ψ̃α+a ↑β+a−1
)
↓α+1 ·Ψ̃β+a ↑n−1

= vt
µ̃
ψ̃sΨ̃β+a ↑n−1 .

Since the residue sequence of s is the same as that of tλ, in order to show that

the homomorphism ϕ : Sλ → Sµ exists we must show that ϕ(vt
λ
)a = 0 whenever
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3.2. One-row homomorphisms George Witty

vt
λ
a = 0 for a ∈H Λκ

n . In particular, we must check that the generating relations

of Sλ hold on the image of vt
λ
. We are required to check that:

(i) vt
µ
ψsyr = 0 for all r ∈ {1, . . . , n}.

(ii) vt
µ
ψsψr = 0 for all r ∈ {1, . . . , n− 1} such that r and r+ 1 are in the same

row of tλ.

(iii) vt
µ
ψsgAλ = 0 for every Garnir node A of [λ].

Now as we know that ϕ̃ exists, we have the following facts:

(i*) vt
µ̃
ψ̃sΨβ+a ↑n−1 ỹr = 0 for all r ∈ {1, . . . , n}.

(ii*) vt
µ̃
ψ̃sΨβ+a ↑n−1 ψ̃r = 0 for all r ∈ {1, . . . , n− 1} such that r and r + 1 are

in the same row of tλ̃.

(iii*) vt
µ̃
ψ̃sΨβ+a ↑n−1 gA

λ̃
for every Garnir node A of

[
λ̃
]
.

Since µ̃ is identical to µ except for the empty third component, we will have

that the generating relations for Sµ and Sµ̃ are identical (up to swapping e(i)

for ẽ(i), yi for ỹi and ψi for ψ̃i). Note also that since the multicharge κ̃ is just κ

with an additional component, any time that a relation of the form (1.12) is used

to kill a term within H Λκ̃
n , we can use a corresponding relation of this form in

the same way within H Λκ
n since (Λκ, αi1) ≤ (Λκ̃, αi1). So since this is the only

place that H Λκ
n and H Λκ̃

n differ, and the fact that as the diagrams for vt
µ
ψs

and vt
µ̃
ψ̃s are also identical, any relation which kills vt

µ̃
ψ̃s will also kill vt

µ
ψs.

Hence our strategy is to show that using the relations (i*), (ii*) and (iii*), we can

deduce many of the relations in (i), (ii) and (iii), leaving just a few extra cases to

consider.

Note that the following proof has notes in the margin of the form (B•). These

can be ignored for now and will become relevant when considering the proof of

Corollary 3.9.

Proof of Proposition 3.6. As remarked above, we may suppose that a ≥ 2. Let

(i1, i2, . . . , in) be the residue sequence of tµ̃ (which is identical to that of tµ), then
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3.2. One-row homomorphisms George Witty

i1 · · · iα iα+1 · · · iα+a−1 iα+a iα+a+1 · · · iβ+a iβ+a+1 · · · in

1 · · · α α+ 1 · · · β β + 1 · · · β + a
−1

β + a · · · n− 1 n

Figure 3.1: Braid diagram of vt
µ̃
ψ̃sΨ̃β+a ↑n−1.

vt
µ̃
ψ̃sΨ̃β+a ↑n−1 is shown diagrammatically in Figure 3.1. We shall check that

the relations in (i), (ii) and (iii) hold in separate sections below.

3.2.1 Relations in (i).
(B1)

If we are able to show that vt
µ̃
ψ̃sỹr = 0 for every r ∈ {1, . . . , n}, then we will

have that vt
µ
ψsyr = 0 for every such r. Take r ∈ {1, . . . , β + a− 1}. Then

0 = vt
µ̃
ψ̃sΨ̃β+a ↑n−1 ỹr

= vt
µ̃
ψ̃sỹrΨ̃β+a ↑n−1

= vt
µ̃
ψ̃sỹr,

with the last equality following since this is equal to zero and we can apply

Ψ̃n−1 ↓β+a to both sides and then use Lemma 2.8 since iα+a 6−− iβ+a+1, . . . , in.

Now suppose that r ∈ {β + a, . . . , n− 1}. Then iα+a 6−− ir+1 hence we have

0 = vt
µ̃
ψ̃sΨ̃β+a ↑n−1 ỹr

= vt
µ̃
ψ̃sỹr+1Ψ̃β+a ↑n−1

= vt
µ̃
ψ̃sỹr+1.
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3.2. One-row homomorphisms George Witty

Finally suppose that r = n. Then as iα+a 6−− iβ+a+1, . . . , in we have

0 = vt
µ̃
ψ̃sΨ̃β+a ↑n−1 ỹn

= vt
µ̃
ψ̃sỹβ+aΨ̃β+a ↑n−1

= vt
µ̃
ψ̃sỹβ+a.

Putting all of these together, we have that vt
µ̃
ψ̃sỹr = 0 for every r ∈ {1, . . . , n}

as we wanted.

3.2.2 Relations in (ii).
(B1)

We wish to show that vt
µ̃
ψ̃sψ̃r = 0 for when ψr is a row relation for Sλ so that

then we have vt
µ
ψsψr = 0. All but one row relation for Sλ̃ will correspond to a

row relation for Sλ, and we can use this to easily check a large amount of the

relations in (ii).

Suppose that ψr is a row relation for Sλ with r ∈ {1, . . . , β + a− 2}. Then ψ̃r

is also a row relation for Sλ, and will commute with Ψ̃β+a ↑n−1, hence

0 = vt
µ̃
ψ̃sΨ̃β+a ↑n−1 ψ̃r

= vt
µ̃
ψ̃sψ̃rΨ̃β+a ↑n−1

and now as this is zero, multiply by Ψ̃n−1 ↓β+a on both sides:

= vt
µ̃
ψ̃sψ̃r.

Now suppose that r ∈ {β + a+ 1, . . . , n− 1} and ψr is a row relation for Sλ.

Then there is a corresponding row relation for Sλ̃, namely ψ̃r−1. We know that

we have

0 = vt
µ̃
ψ̃sΨ̃β+a ↑n−1 ψ̃r−1

= vt
µ̃
ψ̃sΨ̃β+a ↑ r−2 · ψ̃r−1ψ̃rψ̃r−1 · Ψ̃r+1 ↑n−1

= vt
µ̃
ψ̃sΨ̃β+a ↑ r−2 · ψ̃rψ̃r−1ψ̃r · Ψ̃r+1 ↑n−1,
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3.2. One-row homomorphisms George Witty

as iα+a 6−− ir+1. Then rearranging and applying Ψ̃n−1 ↓β+a to both sides

= vt
µ̃
ψ̃sψ̃r.

So far we have shown that vt
µ̃
ψ̃sψ̃r = 0 for r ∈ {1, . . . , β + a − 2}

∪ {β + a + 1, . . . , n − 1}. All that is left to check is when r = β + a − 1.

However, in this instance, there is not a corresponding row relation in Sλ̃, so we

check that vt
µ
ψsψβ+a−1 is equal to zero directly. We have

vt
µ
ψsψβ+a−1 = vt

µ
(

Ψα+a ↑β+a−1
)
↓α+1 ·ψβ+a−1

= vt
µ
(

Ψα+a ↑β+a−1
)
↓α+a−1 ·ψβ+a−1 ·

(
Ψα+a−2 ↑β+a−3

)
↓α+1,

and then apply Lemma 2.7 to
(
Ψα+a ↑β+a−1

)
↓α+a−1 ·ψβ+a−1

= vt
µ
ψα+a−1 ·

(
Ψα+a ↑β+a−1

)
↓α+a−1 ·

(
Ψα+a−2 ↑β+a−3

)
↓α+1

+ vt
µ

k∑
i=1

Ψα+a+zj ↑β+a−1 ·Ψα+a ↑β+a−2 ·Ψα+a−1 ↑α+a+zj−3

·
(

Ψα+a−2 ↑β+a−3
)
↓α+1

for some k ≥ 0, with zj ’s arising from residues iα+a+zj which are equal to iα+a−1.

In the former term, we have a ψα+a−1 crossing at the top, and this is a row

relation for Sµ hence this term is zero. In the latter term, every summand begins

with a ψα+a+zj crossing , which due to the diagonal residue condition must also (B2)

be a row relation for Sµ. Thus we have vt
µ
ψsψβ+a−1 = 0 as we wanted.

3.2.3 Relations in (iii).

Given a multipartition ν with the diagonal residue condition, Garnir relations in

ν arise from Garnir belts of the form:

r + 1 r + s
r + s+ 1 r + t
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3.2. One-row homomorphisms George Witty

The associated Garnir relation is then
(
Ψr+s ↑ r+t−1

)
↓ r+1. If A is the node in ν

containing r + 1 then we write gAν or gν

(
r + 1

)
for the above Garnir relation.

We also write gAν̃ = gν̃

(
r + 1

)
=
(

Ψ̃r+s ↑ r+t−1
)
↓ r+1.

Let r̃ be the entry of the node directly above that containing β + a− 1 in tλ.

The proof splits into cases depending on the location of a Garnir relation with

respect to r̃. These cases are:

• r ∈ {0, 1, . . . , r̃ − 1}

• r ∈ {r̃ + 1, . . . , β + a− 1}

• r ∈ {β + a, β + a+ 1, . . . , n− 2}

• r = r̃

r ∈ {0,1, . . . , r̃− 1}
(B3)

Suppose r ∈ {0, 1, . . . , r̃ − 1}. Then gλ̃

(
r + 1

)
is a Garnir relation of Sµ, and

gλ̃

(
r + 1

)
commutes with Ψβ+a ↑n−1, hence

0 = vt
µ̃
ψ̃sΨ̃β+a ↑n−1 gλ̃

(
r + 1

)
= vt

µ̃
ψ̃sgλ̃

(
r + 1

)
Ψ̃β+a ↑n−1

= vt
µ̃
ψ̃sgλ̃

(
r + 1

)
Ψ̃β+a ↑n−1 Ψ̃n−1 ↓β+a

= vt
µ̃
ψ̃sgλ̃

(
r + 1

)
,

and then this implies that 0 = vt
µ
ψsgλ

(
r + 1

)
.

r ∈ {r̃ + 1, . . . ,β + a− 1}
(B3)

Next, suppose that r ∈ {r̃ + 1, . . . , β + a − 1}. Since the nodes containing

β + 1, . . . , β + a in tλ are removable, we may assume r + 1 < β + 1. Also, the

nodes that are in the same row as r̃ + 1 but with a higher entry have no nodes

beneath them. So overall, we need only consider such r where the node containing

r + 1 is on the same row as the removed nodes and r + 1 < β + 1. Let us write
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3.2. One-row homomorphisms George Witty

r + 1 = β − j for some j ≥ 0. Then the Garnir belt is

β − j β + a
β + a+ 1 β + k

for some k. The Garnir relation is gλ

(
r + 1

)
=
(
Ψβ+a ↑β+k−1

)
↓β−j .

In tλ̃ we have the similar Garnir belt

β − j β + a− 1
β + a β + k − 1

giving the Garnir relation
(

Ψ̃β+a−1 ↑β+k−2
)
↓β−j for Sλ̃. So we have

0 = vt
µ̃
ψ̃sΨ̃β+a ↑n−1 ·

(
Ψ̃β+a−1 ↑β+k−2

)
↓β−j

= vt
µ̃
ψ̃sΨβ+a ↑β+k−1 ·

(
Ψ̃β+a−1 ↑β+k−2

)
↓β−j · Ψ̃β+k ↑n−1

= vt
µ̃
ψ̃s
(

Ψ̃β+a ↑β+k−1
)
↓β−j · Ψ̃β+k ↑n−1

= vt
µ̃
ψ̃s
(

Ψ̃β+a ↑β+k−1
)
↓β−j ,

by applying Lemma 2.8, implying that 0 = vt
µ
ψs
(
Ψβ+a ↑β+k−1

)
↓β−j , i.e. 0 =

vt
µ
ψsgλ

(
r + 1

)
.

r ∈ {β + a,β + a + 1, . . . ,n− 2}
(B3)

Now suppose that r ∈ {β + a, β + a+ 1, . . . , n− 2}. Then if

gλ

(
r + 1

)
=
(
Ψr+s ↑ r+t−1

)
↓ r+1,

we have that gλ̃

(
r + 1

)
=
(

Ψ̃r+s−1 ↑ r+t−2
)
↓ r. Figure 3.2 exhibits the impor-

tant parts of the diagram for vt
µ̃
ψ̃sΨ̃β+a ↑n−1 gλ̃

(
r + 1

)
. We have

0 = vt
µ̃
ψ̃sΨ̃β+a ↑n−1 gλ̃

(
r + 1

)
= vt

µ̃
ψ̃sΨ̃β+a ↑ r−1 · Ψ̃r ↑ r+t−1 ·

(
Ψ̃r+s−1 ↑ r+t−2

)
↓ r · Ψ̃r+t ↑n−1
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3.2. One-row homomorphisms George Witty

and so we can apply Lemma 2.5 to Ψ̃r ↑ r+t−1 ·
(

Ψ̃r+s−1 ↑ r+t−2
)
↓ r since iα+a 6=

ir+s+1, ir+s+2, . . . , ir+t. This gives

0 = vt
µ̃
ψ̃sΨ̃β+a ↑ r−1 ·

(
Ψ̃r+s ↑ r+t−1

)
↓ r+1 · Ψ̃r ↑ r+t−1 · Ψ̃r+t ↑n−1

= vt
µ̃
ψ̃s
(

Ψ̃r+s ↑ r+t−1
)
↓ r+1 · Ψ̃β+a ↑n−1

= vt
µ̃
ψ̃s
(

Ψ̃r+s ↑ r+t−1
)
↓ r+1 · Ψ̃β+a ↑n−1 Ψ̃n−1 ↓β+a

= vt
µ̃
ψ̃s
(

Ψ̃r+s ↑ r+t−1
)
↓ r+1 .

This implies that 0 = vt
µ
ψs
(
Ψr+s ↑ r+t−1

)
↓ r+1, i.e. 0 = vt

µ
ψsgλ

(
r + 1

)
as we

require.

r = r̃

So now we are left to check the Garnir relation when r = r̃. In this case, there is

not a corresponding Garnir relation in Sλ̃, so we check that vt
µ
ψsgλ

(
r̃ + 1

)
is

equal to zero directly. In tλ the Garnir belt is

r̃ + 1 r̃ + s
r̃ + s+ 1 β + a

giving the Garnir relation gλ

(
r̃ + 1

)
=
(
Ψr̃+s ↑β+a−1

)
↓ r̃+1. The nodes which

remain from the Garnir belt in tµ are:

r̃ + a+ 1 r̃ + a+ s
r̃ + a+ s+ 1 β + a

The important parts of the braid diagram of vt
µ
ψsgλ

(
r̃ + 1

)
are shown in

Figure 3.3.

We have

vt
µ
ψsgλ

(
r̃ + 1

)
= vt

µ
(

Ψα+a ↑β+a−1
)
↓α+1 ·

(
Ψr̃+s ↑β+a−1

)
↓ r̃+1

= vt
µ (

Ψα+a ↑ r̃+a−1
)
↓α+1 ·

(
Ψr̃+a ↑β+a−1

)
↓ r̃+1

·
(

Ψr̃+s ↑β−1
)
↓ r̃+1 ·

(
Ψβ ↑β+a−1

)
↓β−s+1,
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3.2. One-row homomorphisms George Witty

iα+1 · · · iα+a iα+a+1 · · · ir̃+a ir̃+a+1 · · · ir̃+a+s ir̃+a+s
+1

· · · iβ+a

α+ 1 · · · r r + 1 · · · β − s β − s
+1

· · · β + a
−s

β + a
−s+1

· · · β + a

Figure 3.3: Part of the braid diagram for vt
µ
ψsgλ

(
r̃ + 1

)
. The blue parts of

the strings show where Lemma 2.5 is applied.

and we can apply Lemma 2.5 to

(
Ψr̃+a ↑β+a−1

)
↓ r̃+1 ·

(
Ψr̃+s ↑β−1

)
↓ r̃+1

since ir̃+a+1, . . . , ir̃+a+s 6−− ir̃+a+s+1, . . . , iβ+a. This gives

vt
µ
ψsgλ

(
r̃ + 1

)
= vt

µ (
Ψα+a ↑ r̃+a−1

)
↓α+1 ·

(
Ψr̃+a+s ↑β+a−1

)
↓ r̃+a+1

·
(

Ψr̃+a ↑β+a−1
)
↓ r̃+1 ·

(
Ψβ ↑β+a−1

)
↓β−s+1

= vt
µ
(

Ψr̃+a+s ↑β+a−1
)
↓ r̃+a+1 ·

(
Ψα+a ↑β+a−1

)
↓α+1

·
(

Ψβ ↑β+a−1
)
↓β−s+2 · Ψβ−s+1 ↑β+a−s

(3.4)

which is shown as a diagram in Figure 3.4. Since

iα+1, . . . , iα+a 6−− ir̃+a+2, . . . , ir̃+a+s

apply Lemma 2.8 to
(
Ψα+a ↑β+a−1

)
↓α+1 ·

(
Ψβ ↑β+a−1

)
↓β−s+2 (take x = α,
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iα+1 · · · iα+a iα+a+1 · · · ir̃+a ir̃+a+1 ir̃+a+2 · · · ir̃+a+s ir̃+a+s
+1

· · · iβ+a

α+ 1 · · · r r + 1 · · · β − s β − s
+1

· · · β + a
−s

β + a
−s+1

β + a
−s+2

· · · β + a

Figure 3.4: Part of the braid diagram for (3.4). The strings to which we apply
Lemma 2.8 are coloured green.

f = a, h = β + a− s+ 1, g = s− 1, k = 0), giving

vt
µ
ψsgλ

(
r̃ + 1

)
= vt

µ
(

Ψr̃+a+s ↑β+a−1
)
↓ r̃+a+1 ·

(
Ψα+a ↑β+a−s

)
↓α+1

·Ψβ−s+1 ↑β+a−s

= vt
µ
(

Ψr̃+a+s ↑β+a−1
)
↓ r̃+a+1 ·

(
Ψα+a ↑β+a−s−1

)
↓α+1

·Ψβ+a−s ↓β−s+1 · Ψβ−s+1 ↑β+a−s

= vt
µ
(

Ψr̃+a+s ↑β+a−1
)
↓ r̃+a−1 ·

(
Ψα+a ↑β+a−s−1

)
↓α+1

· (yβ+a−s − yβ+a−s+1)

using relation (1.10) since iα+1, . . . , iα+a−1 6−− ir̃+a+1 but iα+a + 1 = ir̃+a+1.

Now in terms of diagrams we have two summands, each with a dot within

them to deal with. For that with the dot corresponding to yβ+a−s+1, we simply

move the dot up through the crossings since ir̃+a+1 6= iβ+a, iβ+a−1, . . . , ir̃+a+s+1,

so with the dot now at the top we have that this summand is zero. For the other

summand, we can move the dot up through some of the crossings since iα+a 6=

iβ+a, iβ+a−1, . . . , ir̃+a+s+1. However, for the next crossing we have iα+a = ir̃+a
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and so using relation (1.8) we have that vt
µ
ψsgλ

(
r̃ + 1

)
is equal to

vt
µ
(

Ψr̃+a+s ↑β+a−1
)
↓ r̃+a+1 ·Ψα+a ↑ r̃+a−2 yr̃+a−1 ·Ψr̃+a−1 ↑β+a−s−1

·
(

Ψα+a−1 ↑β+a−s−2
)
↓α+1

(3.5)

+ vt
µ
(

Ψr̃+a+s ↑β+a−1
)
↓ r̃+a+1 ·Ψα+a ↑ r̃+a−2 ·Ψr̃+a ↑β+a−s−1

·
(

Ψα+a−1 ↑β+a−s−2
)
↓α+1 .

(3.6)

In (3.5), apply Lemma 2.11 to Ψα+a ↑ r̃+a−2 yr̃+a−1. Then there is some k ≥ 0 so

that this term is equal to

vt
µ
yα+a ·

(
Ψr̃+a+s ↑β+a−1

)
↓ r̃+a+1 ·Ψα+a ↑ r̃+a−2 ·Ψr̃+a−1 ↑β+a−s−1

·
(

Ψα+a−1 ↑β+a−s−2
)
↓α+1

+
k∑
j=1

vt
µ
Ψα+a+zj ↑ r̃+a−2 ·

(
Ψr̃+a+s ↑β+a−1

)
↓ r̃+a+1 ·Ψα+a ↑α+a+zj−2

·Ψr̃+a−1 ↑β+a−s−1 ·
(

Ψα+a−1 ↑β+a−s−2
)
↓α+1

where iα+a = iα+a+zj for all j ∈ {1, . . . , k}. Thus as all of the ψα+a+zj are row (B4)

relations by the diagonal residue condition, (3.5) is equal to zero.

Now (3.6) (which is shown in Figure 3.5) can be rewritten as

vt
µ
(

Ψr̃+a+s ↑β+a−1
)
↓ r̃+a ·

(
Ψα+a ↑ r̃

)
↓α+1

· Ψr̃+1 ↑ r̃+a−2 ·
(
Ψr̃ ↑ r̃+a−2

)
↓ r̃−a+3 ·Ψr̃−a+2 ↑ r̃

·
(

Ψr̃+a−1 ↑β+a−s−2
)
↓ r̃+1 .

We can then apply Lemma 2.9 to Ψr̃+1 ↑ r̃+a−2 ·
(
Ψr̃ ↑ r̃+a−2

)
↓ r̃−a+3 since

iα+j = ir̃+j for j ∈ {2, 3, . . . , a− 1} (take x = r − a+ 2, f = a− 2, g = 0). So

(3.6) is equal to

a−1∑
j=1

vt
µ
(

Ψr̃+a+s ↑β+a−1
)
↓ r̃+a ·

(
Ψα+a ↑ r̃

)
↓α+1

·
(
Ψr̃−j+1 ↑ r̃+a−j−1

)
↓ r̃−a+3 ·

(
Ψr̃−a+2+j ↑ r̃

)
↓ r̃−a+3 ·Ψr̃−a+2 ↑ r̃

·
(

Ψr̃+a−1 ↑β+a−s−2
)
↓ r̃+1 .

(3.7)
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3.2. One-row homomorphisms George Witty

iα+a−i iα+a−i
+1

iα+a−i
+2

· · · iα+a iα+a+1 · · · iα+a+zdiα+a+zd
+1

· · · ir̃+1

α+ a
−j

· · · α+ a
−j +
zd
−1

α+ a
−j +
zd

· · · r̃ − j r̃ − j
+1

r̃ − j
+2

r̃ − j
+3

· · · r̃ + 1

Figure 3.6: Part of the braid diagram of (3.8).

Given a summand of (3.7) for when j ∈ {1, . . . , a− 2}, we have that this is:

vt
µ
(

Ψr̃+a+s ↑β+a−1
)
↓ r̃+a ·

(
Ψα+a ↑ r̃

)
↓α+1 · ψr̃−j+1

·
(
Ψr̃−j+2 ↑ r̃+a−j−1

)
↓ r̃−a+3 ·

(
Ψr̃−a+2+j ↑ r̃

)
↓ r̃−a+3 ·Ψr̃−a+2 ↑ r̃

·
(

Ψr̃+a−1 ↑β+a−s−2
)
↓ r̃+1

= vt
µ
(

Ψr̃+a+s ↑β+a−1
)
↓ r̃+a ·

(
Ψα+a ↑ r̃

)
↓α+a−j+2

·
(
Ψα+a−j+1 ↑ r̃−j+1

)
↓α+a−j ·ψr̃−j+1 ·

(
Ψα+a−j−1 ↑ r̃−j−1

)
↓α+1

·
(
Ψr̃−j+2 ↑ r̃+a−j−1

)
↓ r̃−a+3 ·

(
Ψr̃−a+2+j ↑ r̃

)
↓ r̃−a+3 ·Ψr̃−a+2 ↑ r̃

·
(

Ψr̃+a−1 ↑β+a−s−2
)
↓ r̃+1

We exhibit

(
Ψα+a ↑ r̃

)
↓α+a−j+2 ·

(
Ψα+a−j+1 ↑ r̃−j+1

)
↓α+a−j ·ψr̃−j+1 (3.8)

in Figure 3.6. This allows us to apply Lemma 2.7 to

(
Ψα+a−j+1 ↑ r̃−j+1

)
↓α+a−j ·ψr̃−j+1
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3.2. One-row homomorphisms George Witty

since iα+a−j ← ia+a−j+1 (take x = α+ a− j − 1, g = r̃− α− a+ 1). Thus such a

summand of (3.7) is equal to

vt
µ
ψα+a−j ·

(
Ψr̃+a+s ↑β+a−1

)
↓ r̃+a ·

(
Ψα+a ↑ r̃

)
↓α+a−j+2

·
(
Ψα+a−j+1 ↑ r̃−j+1

)
↓α+a−j ·

(
Ψα+a−j−1 ↑ r̃−j−1

)
↓α+1

·
(
Ψr̃−j+2 ↑ r̃+a−j−1

)
↓ r̃−a+3 ·

(
Ψr̃−a+2+j ↑ r̃

)
↓ r̃−a+3

· Ψr̃−a+2 ↑ r̃ ·
(

Ψr̃+a−1 ↑β+a−s−2
)
↓ r̃+1 .

+
k′∑
d=1

vt
µ
(

Ψr̃+a+s ↑β+a−1
)
↓ r̃+a ·

(
Ψα+a ↑ r̃

)
↓α+a−j+2 ·Ψα+a−j+zd+1 ↑ r̃−j+1

Ψα+a−j+1 ↑ r̃−j ·Ψα+a−j ↑α+a−j+zd−2 ·
(
Ψα+a−j−1 ↑ r̃−j−1

)
↓α+1

·
(
Ψr̃−j+2 ↑ r̃+a−j−1

)
↓ r̃−a+3 ·

(
Ψr̃−a+2+j ↑ r̃

)
↓ r̃−a+3 ·Ψr̃−a+2 ↑ r̃

·
(

Ψr̃+a−1 ↑β+a−s−2
)
↓ r̃+1

(3.9)

for some k′ ≥ 0, where the zd are such that ψα+a−j = ψα+a+zd . The former term

is rearranged to have leading term ψα+a−j , thus is zero as this is a row relation.

We have that (3.9) is equal to

k′∑
d=1

vt
µ
(

Ψr̃+a+s ↑β+a−1
)
↓ r̃+a ·

(
Ψα+a ↑ r̃

)
↓α+a−j+2 ·ψα+a−j+zd+1

Ψα+a−j+zd+2 ↑ r̃−j+1 ·Ψα+a−j+1 ↑ r̃−j ·Ψα+a−j ↑α+a−j+zd−2

·
(
Ψα+a−j−1 ↑ r̃−j−1

)
↓α+1 ·

(
Ψr̃−j+2 ↑ r̃+a−j−1

)
↓ r̃−a+3 ·

(
Ψr̃−a+2+j ↑ r̃

)
↓ r̃−a+3

· Ψr̃−a+2 ↑ r̃ ·
(

Ψr̃+a−1 ↑β+a−s−2
)
↓ r̃+1

and then since iα+a+zd = iα+a−j =⇒ iα+a+zd 6−− iα+a−j+2, . . . , iα+a we can

apply Corollary 2.6 to
(
Ψα+a ↑ r̃

)
↓α+a−j+2 ·ψα+a−j+zd+1 (take x = α + a− j +

1, f = j − 1, k = zd − 1, h = 1, g = 1, t = r̃ − α− a− zd). Then every term of the

sum has leading term ψα+a+zd which is a row relation by the diagonal residue (B5)

condition, hence (3.9) is equal to zero.

Now we can go back to (3.7). We are left with considering the summand when
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3.2. One-row homomorphisms George Witty

j = a− 1, which is equal to

vt
µ
(

Ψr̃+a+s ↑β+a−1
)
↓ r̃+a ·

(
Ψα+a ↑ r̃

)
↓α+1 ·Ψr̃−a+2 ↑ r̃

·
(

Ψr̃+a−1 ↑β+a−s−2
)
↓ r̃+1

(3.10)

= vt
µ
(

Ψr̃+a+s ↑β+a−1
)
↓ r̃+a ·

(
Ψα+a ↑ r̃

)
↓α+3 ·

(
Ψα+2 ↑ r̃−a+2

)
↓α+1 ·ψr̃−a+2

·Ψr̃−a+3 ↑ r̃ ·
(

Ψr̃+a−1 ↑β+a−s−2
)
↓ r̃+1 .

(3.11)

This is shown in Figure 3.7. Now we have two cases, depending on whether iα+1 (B6)

is equal to ir̃+1 or not. If they are not equal then we must have also that no

residue ir̃+1, ir̃, . . . , iα+a+1 will equal iα+1. So (3.11) is equal to

vt
µ
ψα+1

(
Ψr̃+a+s ↑β+a−1

)
↓ r̃+a ·

(
Ψα+a ↑ r̃

)
↓α+3 ·

(
Ψα+2 ↑ r̃−a+2

)
↓α+1

·Ψr̃−a+3 ↑ r̃ ·
(

Ψr̃+a−1 ↑β+a−s−2
)
↓ r̃+1

by applying Lemma 2.3 to
(
Ψα+2 ↑ r̃−a+2

)
↓α+1 ·ψr̃−a+2 (take x = α,

g = r − α − a + 1). Then as ψα+1 is a row relation we have that (3.10) is

equal to zero as we wanted.

The second case is when iα+1 = ir̃+1. Then since iα+1 = ir̃+1 = iα+2 − 1 we

have that (3.11) is equal to:

vt
µ
(

Ψr̃+a+s ↑β+a−1
)
↓ r̃+a ·

(
Ψα+a ↑ r̃

)
↓α+3 ·

(
Ψα+2 ↑ r̃−a+1

)
↓α+1

· ψr̃−a+2ψr̃−a+1ψr̃−a+2 ·Ψr̃−a+3 ↑ r̃ ·
(

Ψr̃+a−1 ↑β+a−s−2
)
↓ r̃+1

= vt
µ
(

Ψr̃+a+s ↑β+a−1
)
↓ r̃+a ·

(
Ψα+a ↑ r̃

)
↓α+3 ·

(
Ψα+2 ↑ r̃−a+1

)
↓α+1

· ψr̃−a+1ψr̃−a+2ψr̃−a+1 ·Ψr̃−a+3 ↑ r̃ ·
(

Ψr̃+a−1 ↑β+a−s−2
)
↓ r̃+1

(3.12)

+ vt
µ
(

Ψr̃+a+s ↑β+a−1
)
↓ r̃+a ·

(
Ψα+a ↑ r̃

)
↓α+3 ·

(
Ψα+2 ↑ r̃−a+1

)
↓α+1

·Ψr̃−a+3 ↑ r̃ ·
(

Ψr̃+a−1 ↑β+a−s−2
)
↓ r̃+1

(3.13)

First consider (3.12); we follow the same method as we did for a summand of (3.7).

Apply Lemma 2.7 to
(
Ψα+2 ↑ r̃−a+1

)
↓α+1 ·ψr̃−a+1 (take x = α, g = r̃ − α− a) so
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3.2. One-row homomorphisms George Witty

that (3.12) is equal to

vt
µ
ψα+1

(
Ψr̃+a+s ↑β+a−1

)
↓ r̃+a ·

(
Ψα+a ↑ r̃

)
↓α+3 ·

(
Ψα+2 ↑ r̃−a+1

)
↓α+1

· ψr̃−a+2 · ψr̃−a+1 ·Ψr̃−a+3 ↑ r̃ ·
(

Ψr̃+a−1 ↑β+a−s−2
)
↓ r̃+1

+

k′′∑
j=1

vt
µ
(

Ψr̃+a+s ↑β+a−1
)
↓ r̃+a ·

(
Ψα+a ↑ r̃

)
↓α+3 ·Ψα+zj+2 ↑ r̃−a+1

·Ψα+2 ↑ r̃−a ·Ψα+1 ↑ r̃−a ·ψr̃−a+2 · ψr̃−a+1

·Ψr̃−a+3 ↑ r̃ ·
(

Ψr̃+a−1 ↑β+a−s−2
)
↓ r̃+1

for some k′′ ≥ 0, and the zj are such that iα+1 = iα+a+zj . The former term is

zero since ψα+1 is a row relation. For latter terms in the sum, write such a term

as

vt
µ
(

Ψr̃+a+s ↑β+a−1
)
↓ r̃+a ·

(
Ψα+a ↑ r̃

)
↓α+3 ·ψα+zj+2 ·Ψα+zj+3 ↑ r̃−a+1

·Ψα+2 ↑ r̃−a ·Ψα+1 ↑ r̃−a ·ψr̃−a+2 · ψr̃−a+1

·Ψr̃−a+3 ↑ r̃ ·
(

Ψr̃+a−1 ↑β+a−s−2
)
↓ r̃+1,

and since iα+3, . . . , iα+a 6−− iα+a+zj , apply Corollary 2.6 to

(
Ψα+a ↑ r̃

)
↓α+3 ·ψα+zj+2

(take x = α+ 2, f = a− 2, k = zj − 1, h = 1, g = 1, t = r̃−α− a− zj). Then such

a term has ψα+a+zj as its leading term and thus is zero, as this is a row relation (B7)

by the diagonal residue condition.

Now we are left with (3.13), which is shown in Figure 3.8. Since

iα+3, . . . , iα+a 6−− ir̃+1 we can apply Lemma 2.8 to
(
Ψα+a ↑ r̃

)
↓α+3 ·Ψr̃−a+3 ↑ r̃

(take x = α+ a, f = a− 2, h = r̃ − α− a, g = 1). Then (3.13) is equal to

vt
µ
(

Ψr̃+a+s ↑β+a−1
)
↓ r̃+a ·

(
Ψα+a ↑ r̃−1

)
↓α+3 ·

(
Ψα+2 ↑ r̃−a+1

)
↓α+1

·
(

Ψr̃+a−1 ↑β+a−s−2
)
↓ r̃+1

= vt
µ
(

Ψr̃+a+s ↑β+a−1
)
↓ r̃+1 ·

(
Ψα+a ↑ r̃−1

)
↓α+1 . (3.14)
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3.2. One-row homomorphisms George Witty

As we assumed that iα+1 = ir̃+1, we have that the following Garnir belt is in [µ]:

r̃ + 1 r̃ + a+ 1 r̃ + a+ s
r̃ + a+ s+ 1 β + a

This gives the Garnir relation gµ

(
r̃ + 1

)
=
(
Ψr̃+a+s ↑β+a−1

)
↓ r̃+1, and so (3.14)

must be equal to zero. With this, we have finally shown that vt
µ
ψsgλ

(
r̃ + 1

)
= 0

as we wanted.

Conclusion.

Having checked all of the relations in (i), (ii) and (iii) in the previous sections,

we are done and so there indeed is a homomorphism ϕ : Sλ → Sµ given by

vt
λ 7→ vt

µ
ψs.

3.2.4 Extending the result

We can extend Proposition 3.6 to multipartitions with greater than two components

in a similar way to how we extended Proposition 3.1. This time, we define a one

row pair and then exhibit the relevant changes to the proof of Proposition 3.6,

whilst also describing the degree of such a homomorphism.

Definition 3.7. Let l ≥ 2 and suppose that λ and µ are l-multipartitions of

n, where [µ] is formed from [λ] by moving a row of a ≥ 2 nodes from the qth

component to the pth, for some p and q such that p < q. Suppose that the residue

of the leftmost node in the moved row is ι. In addition suppose that

e ≥ max
p≤c≤q

{hλ(c)

11 + 1, hµ
(c)

11 + 1}.

Amongst the components λ(c′) with c′ ∈ {p + 1, p + 2, . . . , q − 1}, suppose that

there are exactly k ≥ 0 such components to which a row of a nodes whose leftmost

residue is ι can be added. If k > 0, then we also require that e is large enough

so that the diagonal residue condition holds when the row is added to these k

components. Suppose that amongst the components λ(c′), there are no removable
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nodes of residues ι, ι+ 1, . . . , ι+ a− 1 and there are mj addable nodes of residue

ι+ j for j ∈ {0, 1, . . . , a− 1}. Let m =
∑a−1

j=0 mj . Then we say that (λ, µ)kι is a

one row pair (of degree m+ 1).

Remark 3.8. Since we have the diagonal residue condition, if λ belongs to a one

row pair, then in a component λ(c′) with c′ ∈ {p + 1, p + 2, . . . , q − 1}, we can

either have some individual addable nodes of the residues in the row or we can

add only the entire row itself and not some other individual nodes of residues

within the row also.

Corollary 3.9. Suppose that (λ, µ)kι is a one row pair of degree m+ 1. Let s be

the µ-tableau defined by considering tλ and moving the row of a nodes from the qth

component to the pth, keeping their values intact. Then there is a homomorphism

ϕ : Sλ → Sµ given by vt
λ 7→ vt

µ
ψs. This homomorphism has degree m+ 1 and

can be written as a composition of k + 1 homomorphisms.

Proof. If (λ, µ) is a one node pair, then we can simply use Corollary 3.3. Note that

in this case, m will be equal to k and thus the degree matches that of Corollary

3.3. So instead we shall suppose that the shape moved is definitely a row of at

least two nodes.

We shall begin by assuming that k = 0. Define α, β and a similarly as in the

proof of Proposition 3.6, so that the nodes to be moved contain β + 1, . . . , β + a

in tλ from left to right, whilst in tµ the added nodes contain α + 1, . . . , α + a

from left to right. Then ψs =
(
Ψα+a ↑β+a−1

)
↓α+1. We need to check that the

generating relations of Sλ hold on ϕ
(
vt
λ
)

.

Similarly to Proposition 3.6, define a new KLR Algebra H Λκ̃
n using quantum

characteristic ẽ := e and multicharge

κ̃ := (κ1, κ2, . . . , κq, resλ(β + a), κq+1, κq+2, . . . , κl),
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and define l + 1-multipartitions:

λ̃ :=
(
λ(1), λ(2), . . . , λ(q−1), λ

(q)

k̂2
, (1), λ(q+1), λ(q+2), . . . , λ(l)

)
λ̃1 :=

(
λ(1), λ(2), . . . , λ(p−1), µ

(p)

k̂1
, µ(p+1), µ(p+2), . . . , µ(q), (1),

µ(q+1), µ(q+2), . . . , µ(l)
)

µ̃ :=
(
µ(1), µ(2), . . . , µ(q),∅, µ(q+1), µ(q+2), . . . , µ(l)

)

We define a λ̃1-tableau s1 by ψ̃s1 =
(

Ψ̃α+a−1 ↑β+a−2
)
↓α+1 and also a µ̃-tableau

s2 by ψ̃s2 = Ψ̃α+a ↑Q−1, where Q =
∑q

i=1

∣∣λ(i)
∣∣. Then by induction on the

number of nodes moved we have a homomorphism ϕ1 : Sλ̃ → Sλ̃1 given by

vt
λ̃ 7→ vt

λ̃1 ψ̃s1 , and another ϕ2 : Sλ̃1 → Sµ̃ given by vt
λ̃1 7→ vt

µ̃
ψ̃s2 . Defining

ψ̃s :=
(

Ψ̃α+a ↑β+a−1
)
↓α+1, the composition of ϕ2 with ϕ1 gives us a homomor-

phism ϕ̃ := ϕ2 ◦ ϕ1 : Sλ̃ → Sµ̃ given by vt
λ̃ 7→ vt

µ̃
ψ̃sΨ̃β+a ↑Q−1. From this we

obtain relations (i*), (ii*), (iii*), just as in Proposition 3.6, and we can use these

to check the relations (i), (ii) and (iii). Since µ̃ is identical to µ except for the

empty third component, the generating relations for Sµ and Sµ̃ are identical up

to changing the notation of the generators, and the diagrams for vt
µ
ψs and vt

µ̃
ψ̃s

are also identical, so any relation killing vt
µ̃
ψ̃s will also kill vt

µ
ψs.

For each type of relation, the above setup allows us to follow the same methods

as in Proposition 3.6, only now accounting for the additional nodes in between

the first and last components of [µ] as well as those outside of these components.

In checking each of the relations, apply the same reasoning as in Proposition 3.6,

however there are a few changes to be made at the places annotated by the

following labels in the margins:

(B1) Replace n with Q throughout and note that iα+a 6−− iβ+a+1, . . . , iQ. For

r ∈ {Q+1, . . . , n−1}, follow the same reasoning as for r ∈ {1, . . . , β+a−1}.

(B2) If ψα+a+zj is not a row relation then by the diagonal residue condition the

node containing α + a + zj must be a Garnir node, so the corresponding

Garnir relation will be at the top of the diagram for those terms in the sum.
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(B3) Replace n with Q throughout and note that iα+a 6−− iβ+a+1, . . . , iQ. For

r ∈ {Q, . . . , n− 2}, follow the same reasoning as for r ∈ {0, 1, . . . , r̃ − 1}.

(B4) If ψα+a+zj is not a row relation then by the diagonal residue condition the

node containing α + a + zj must be a Garnir node, so the corresponding

Garnir relation will be at the top of the diagram within Ψα+a+z+j ↑ r̃+a−1.

(B5) If ψα+a+zd is not a row relation then by the diagonal residue condition the

node containing α+a+zd in tµ must be a Garnir node. Apply Corollary 2.6 to(
Ψα+a ↑ r̃

)
↓α+a−j+2 ·Ψα+a−j+zd+1 ↑ r̃−j+1 instead, then we have Ψα+a+zd ↑ r̃

at the top of the diagram, i.e. we have the Garnir relation for the node

containing α+ a+ zd in tµ at the top of the diagram.

(B6) Even if iα+1 6= ir̃+1 we may now have some iα+a+z that is equal to iα+1 for

z ∈ {1, . . . , r̃−α−a}. In this case, follow the same method as for summands

of (3.7), applying Lemma 2.7 and using (B5) to obtain a row or Garnir

relation at the top of the diagram.

(B7) Treat this similarly to (B5). If ψα+a+zj is not a row relation then by the

diagonal residue condition the node containing α + a + zj in tµ must be

a Garnir node. Apply Corollary 2.6 to
(
Ψα+a ↑ r̃

)
↓α+3 ·Ψα+zj+2 ↑ r̃−a+1

instead, then we have Ψα+a+zj ↑ r̃−1 at the top of the diagram, i.e. we have

the Garnir relation for the node containing α + a+ zj in tµ at the top of

the diagram.

Now suppose that k ≥ 0, then we wish to show that we can rewrite ϕ as

a composition of k + 1 homomorphisms. When k = 0 this is trivially true, so

suppose that k > 0. Let c̃ ∈ {p+ 1, p+ 2, . . . , q − 1} be maximal so that a row

of a nodes whose leftmost residue is ι can be added to λ(c̃). Suppose that if we

add the row of a nodes to
[
λ(c̃)
]

we obtain the diagram
[
ν(c̃)
]

and consider the

multipartition

ν :=
(
λ(1), λ(2), . . . , λ(c̃−1), ν(c̃), µ(c̃+1), µ(c̃+2), . . . , µ(l)

)
.
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Then, noting Remark 3.8, by induction we have that there is a homomorphism

ϕ1 : Sλ → Sν given by vt
λ 7→ vt

ν (
Ψγ+a ↑β+a−1

)
↓ γ+1, where γ+1, γ+2, . . . , γ+a

are the values of the added nodes in tν . Similarly, we also obtain a homomorphism

ϕ2 : Sν → Sµ given by vt
ν 7→ vt

µ (
Ψα+a ↑ γ+a−1

)
↓α+1. By induction, ϕ2 can be

written as a composition of k homomorphisms.

Composing, ϕ2 ◦ϕ1 : Sλ → Sµ is given by vt
λ 7→ vt

µ (
Ψα+a ↑β+a−1

)
↓α+1 thus

ϕ = ϕ2 ◦ ϕ1. Hence ϕ can be written as a composition of k + 1 homomorphisms

as we wanted.

Finally, we shall describe the degree of ϕ. By Proposition 1.34 we have

that deg
(
vt
µ
ψs
)

= deg(s). We wish to compute deg
(
vt
µ
ψs
)
− deg

(
vt
λ
)

=

deg(s)−deg
(
tλ
)
. Using the recursive definition of the degree, the nodes containing

n, n−1, . . . , β+a+ 1 in both tableaux contribute the same value to the respective

degrees. Hence

deg(s)− deg
(
tλ
)

= deg (s<β+a+1)− deg
(
tλ<β+a+1

)
.

Let Aj be the node s−1
<β+j+2(β+j+1) and Bj be the node

(
tλ<β+j+2

)−1
(β+j+1).

Then for j ∈ {1, 2, . . . , a − 1} we have that the number of addable ι + j-nodes

below Aj is equal to that below Bj plus mj more. The number of removable

ι + j-nodes below Aj is equal to that below Bj , since there are no removable

ι+ j − 1-nodes in the components indexed by p+ 1, p+ 2, . . . , q − 1. Hence we

have

deg (s<β+a+1)− deg
(
tλ<β+a+1

)
=

a−1∑
j=1

mj + deg (s<β+2)− deg
(
tλ<β+2

)
.

Now the number of addable ι-nodes below A0 is m0 + 1 greater than below B0,

since in s<β+2 we count the m0 addable ι-nodes within the components labelled

with p+ 1, p+ 2, . . . , q − 1 along with the position where the node was removed

from in the qth component. The number of removable ι-nodes below A0 is the
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same as that below B0. Thus

deg (s<β+2)− deg
(
tλ<β+2

)
= m0 + 1 +

a−1∑
j=1

mj + deg (s<β+1)− deg
(
tλ<β+1

)
= m+ 1,

since s<β+1 is identical to tλ<β+1. Thus the degree of ϕ is m+ 1.

As with the one-node homomorphisms, we can now consider what happens

when we move two or more different rows of nodes to form [µ] from [λ]. We can

naturally extend the hypotheses of Corollary 3.4 to consider rows instead of nodes,

and with this we obtain a similar corollary.

Corollary 3.10. Let l ≥ 2 and suppose that λ, ν1, ν2 and µ are l-multipartitions

of n. Suppose that [µ] is formed from [λ] by moving one row of a1 nodes whose

leftmost residue is ι1 and one other row - not the same as or adjacent in any

way to the first - whose leftmost residue is ι2. Suppose [ν1] is formed from [λ]

by moving just the row of a1 nodes, whilst [ν2] is formed from [λ] by moving

just the row of a2 nodes. Suppose that ι1 + j 6−− ι2 + k and ι1 + j 6= ι2 + k

for all j ∈ {0, 1, . . . , a1 − 1} and k ∈ {0, 1, . . . , a2 − 1}. Suppose that (λ, ν1)ι1,

(λ, ν2)ι2, (ν1, µ)ι2 and (ν2, µ)ι1 are all one row pairs. Then there are non-zero

homomorphisms

ϕλν1 : Sλ → Sν1 , ϕν1µ : Sν1 → Sµ,

ϕλν2 : Sλ → Sν2 , ϕν2µ : Sν2 → Sµ,

and we have that ϕν1µ ◦ ϕλν1 = ϕν2µ ◦ ϕλν2 6= 0.

In addition, if (λ, ν1)ι1 and (ν1, µ)ι2 have degrees m+ 1 and m′ + 1, we have

that the degree of ϕν1µ ◦ ϕλν1 is m+m′ + 2.

Proof. Since (λ, ν1)ι1 , (λ, ν2)ι2 , (ν1, µ)ι2 and (ν2, µ)ι1 are all one row pairs, by

Corollary 3.9 we have that there are non-zero homomorphisms

ϕλν1 : Sλ → Sν1 , ϕν1µ : Sν1 → Sµ,

ϕλν2 : Sλ → Sν2 , ϕν2µ : Sν2 → Sµ.
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Write ϕλνj (v
tλ) = vt

νj (
Ψαj+aj ↑βj+aj−1

)
↓αj+1 for some αj ∈ {0, . . . , n − 1}

and βj ∈ {0, . . . , n− 1} with αj ≤ βj , for j ∈ {1, 2}. Without loss of generality,

assume that β1 < β2. If β1 < α2 then it must be the case that β1 + a1 < α2 + 1

hence

ϕν1µ ◦ ϕλν1(vt
λ
) = vt

µ
(

Ψα2+a2 ↑β2+a2−1
)
↓α2+1 ·

(
Ψα1+a1 ↑β1+a1−1

)
↓α1+1

= vt
µ
(

Ψα1+a1 ↑β1+a1−1
)
↓α1+1 ·

(
Ψα2+a2 ↑β2+a2−1

)
↓α2+1

= ϕν2µ ◦ ϕλν2(vt
λ
)

and we are done. Hence, assume that β1 ≥ α2. Then we have multiple cases.

Case I: The row of a1 nodes is moved to a position above the row

of a2 nodes in [µ]

In this case, we have that

ϕν1µ ◦ ϕλν1(vt
λ
) = vt

µ
(

Ψα2+a1+a2 ↑β2+a2−1
)
↓α2+a1+1 ·

(
Ψα1+a1 ↑β1+a1−1

)
↓α1+1

whilst

ϕν2µ ◦ ϕλν2(vt
λ
) = vt

µ
(

Ψα1+a1 ↑β1+a1+a2−1
)
↓α1+1 ·

(
Ψα2+a2 ↑β2+a2−1

)
↓α2+1,

(3.15)

which as a diagram is shown in Figure 3.9.

Write

ϕν2µ ◦ ϕλν2(vt
λ
) = vt

µ
(

Ψα1+a1 ↑β1+a1+a2−1
)
↓α1+1 ·

(
Ψα2+a2 ↑β2+a2−1

)
↓α2+1

= vt
µ (

Ψα1+a1 ↑α2+a1+a2−1
)
↓α1+1

·
(

Ψα2+a1+a2 ↑β1+a1+a2−1
)
↓α2+a2+1

·
(

Ψα2+a2 ↑β1+a1+a2−1
)
↓α2+1

·
(

Ψβ1+a1+a2 ↑β2+a2−1
)
↓β1+a1+1 .
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Now apply Lemma 2.5 to

(
Ψα2+a1+a2 ↑β1+a1+a2−1

)
↓α1+a2+1 ·

(
Ψα2+a2 ↑β1+a1+a2−1

)
↓α2+1

since iα1+j 6−− iα2+a2+1, . . . , iα2+a1+a2 for j ∈ {1, . . . , a1}. So then we have

ϕν2µ ◦ ϕλν2(vt
λ
) = vt

µ (
Ψα1+a1 ↑α2+a1+a2−1

)
↓α1+1

·
(

Ψα2+a2 ↑β1+a1+a2−1
)
↓α2+1

·
(

Ψα2+a1 ↑β1+a1−1
)
↓α2+1

·
(

Ψβ1+a1+a2 ↑β2+a2−1
)
↓β1+a1+1 .

We show vt
µ (

Ψα1+1 ↑α2+a1+a2−1
)
↓α1+1 ·

(
Ψα2+a2 ↑β1+a1+a2−1

)
↓α2+1 in the fol-

lowing diagram:

iα1+1 · · · iα1+a1 iα1+a1
+1

· · · iα2+a1 iα2+a1
+1

· · · iα2+a1
+a2

iα2+a1
+a2+1

· · · iβ1+a1
+a2

α1 + 1 · · · α2 α2 + 1 · · · α2+a1 α2+a1

+1

· · · β1 +a1 β1 +a1

+1

· · · β1 +a1

+a2

Now apply Lemma 2.8 to these crossings since iα1+j 6−− iα2+a2+1, . . . , iα2+a1+a2
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for j ∈ {1, . . . , a1}. So then we have

ϕν2µ ◦ ϕλν2(vt
λ
) = vt

µ (
Ψα1+a1 ↑α2+a1−1

)
↓α1+1

·
(

Ψα2+a1+a2 ↑β1+a1+a2−1
)
↓α2+a1+1

·
(

Ψα2+a1 ↑β1+a1−1
)
↓α2+1

·
(

Ψβ1+a1+a2 ↑β2+a2−1
)
↓β1+a1+1

=
(

Ψα2+a1+a2 ↑β2+a2−1
)
↓α2+a1+1 ·

(
Ψα1+a1 ↑β1+a1−1

)
↓α1+1

= ϕν1µ ◦ ϕλν1(vt
λ
).

Thus ϕν2µ ◦ ϕλν2 = ϕν1µ ◦ ϕλν1 .

Case II: The row of a1 nodes is moved to a position below the row

of a2 nodes in [µ]

In this case, we have that

ϕν1µ ◦ ϕλν1(vt
λ
) = vt

µ
(

Ψα2+a2 ↑β2+a2−1
)
↓α2+1 ·

(
Ψα1+a1 ↑β1+a1−1

)
↓α1+1 .

Now

ϕν2µ ◦ ϕλν2(vt
λ
) = vt

µ
(

Ψα1+a1+a2 ↑β1+a1+a2−1
)
↓α1+a2+1

·
(

Ψα2+a2 ↑β2+a2−1
)
↓α2+1

(3.16)

which as a diagram is shown in Figure 3.10.

Now apply Corollary 2.6 to

(
Ψα1+a1+a2 ↑β1+a1+a2−1

)
↓α1+a2+1 ·

(
Ψα2+a2 ↑β2+a2−1

)
↓α2+1

since iα2+j 6−− iα1+a2+1, . . . , iα1+a1+a2 for j ∈ {1, . . . , a2}, so that we have

ϕν2µ ◦ ϕλν2(vt
λ
) = vt

µ
(

Ψα2+a2 ↑β2+a2−1
)
↓α2+1 ·

(
Ψα1+a1 ↑β1+a1−1

)
↓α1+1

= ϕν1µ ◦ ϕλν1(vt
λ
).
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Thus ϕν2µ ◦ ϕλν2 = ϕν1µ ◦ ϕλν1 .

Since the degree of ϕν1µ ◦ ϕλν1 is equal to the sum of the degrees, the degree

is (m+ 1) + (m′ + 1) = m+m′ + 2.

Note that in both cases, ϕν1µ ◦ ϕλν1(vt
λ
) is given by some product of ψi

corresponding to a reduced expression (using Proposition 1.18 as no strings cross

twice) which is not zero, thus ϕν1µ ◦ ϕλν1 = ϕν2µ ◦ ϕλν2 6= 0.

We also have an analogue to Corollary 3.5, that is, that if [µ] is formed from

[λ] by moving multiple rows of nodes whose residues are sufficiently spread apart,

then we can move the rows in any order to get various homomorphisms which

always compose to give the same overall homomorphism.

Corollary 3.11. Let l ≥ 2 and suppose that λ and µ are l-multipartitions of n.

Suppose that [µ] is formed from [λ] by moving m distinct rows of nodes R1, . . . , Rm,

whose leftmost residues are ι1, ι2, . . . , ιm and whose residues amongst the rows are

such that none are equal or adjacent between any two given rows.

Suppose that for each X ⊆ {1, . . . ,m} we have an l-multipartition of n, νX ,

such that [ν{i1,...,it}] is formed from [λ] by moving just the rows Ri1 , . . . , Rit. In

particular ν∅ = λ and ν{1,...,m} = µ. Suppose that whenever B \A = {r}, we have

that (νA, νB)ιr is a one row pair, whose corresponding homomorphism is ϕνAνB .

Then there is a non-zero homomorphism ϕ : Sλ → Sµ and given any sequence

of sets ∅ = X0 ( X1 ( X2,( · · · ( Xm = {1, . . . ,m} we have that

ϕ = ϕνXm−1
νXm ◦ ϕνXm−2

νXm−1
◦ · · · ◦ ϕνX0

νX1
.

Proof. Without loss of generality suppose that the row Ra is above Rb whenever

a < b. Let Yj := {1, 2, . . . , j} for j ∈ {0, . . . ,m}. Then

∅ = Y0 ( Y1 ( · · · ( Ym = {1, 2, . . . ,m}.

By assumption we have l-multipartitions of n, νYj , and non-zero homomorphisms

ϕνYj νYj+1
for each j ∈ {0, . . . ,m − 1}. Suppose that row Rt has length at. We

128



3.2. One-row homomorphisms George Witty

may write ϕνYj νYj+1
(vt

νYj
) = vt

νYj+1 (
Ψαj+1+aj+1+ζj+1

↑βj+1+aj+1−1
)
↓αj+1+ζj+1+1

for some αj+1 and βj+1 related to the positions of the moved nodes, and ζj+1

based on whether moved nodes are added above or below other moved nodes.

Then

ϕνYm−1
νYm ◦ · · · ◦ ϕνY0

νY1
(vt

λ
) = vt

µ
(

Ψαm+am+ζm ↑βm+am−1
)
↓αm+ζm+1 · · · ·

·
(

Ψα1+a1+ζ1 ↑β1+a1−1
)
↓α1+ζ1+1 .

Since βj+1 + 1 > βj +aj for j ∈ {1, . . . ,m− 1} we must have in the braid diagram

for the above, no strings will cross twice and so by Proposition 1.18 the above will

correspond to a reduced expression, and the associated tableau will be standard,

so this composition of homomorphisms is not zero.

The rest of the proof is the same as that for Corollary 3.5, replacing the use

of Corollary 3.4 with Corollary 3.10.
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3.3 Skew homomorphisms

Now that we have shown the existence of homomorphisms between Specht modules

arising from moving rows of nodes in a multipartition, our final step is to take this

yet further and consider moving some arbitrary connected shape of nodes. To be

precise, we say that a diagram is connected if any two nodes in it are connected

by a path going through edges which connect two nodes in the diagram. Given

multipartitions ν and ρ, if the diagram [ν] contains the diagram [ρ], then the skew

diagram [ν \ ρ] is the set-theoretic difference of [ν] and [ρ]. We define a skew shape

to be a connected skew diagram of the form [ν \ ρ].

Example 3.12. Given ν = (4, 3, 22), ρ1 = (2, 12) and ρ2 = (22), we see that

[ν \ ρ1] is a skew shape whilst [ν \ ρ2] is not.

ν \ ρ1 = whilst ν \ ρ2 = .

♦

We want to consider forming [µ] from [λ] by moving a skew shape from one

component to another. In order to prove an explicit homomorphism ϕ : Sλ → Sµ

exists, we are able to take a similar approach to Proposition 3.6: removing the ‘last’

node of the skew shape and using induction to obtain different homomorphisms

and relations, which we can use to help check that many of the generating relations

for Sλ hold on the image of vt
λ
.

The following lemma will at first seem rather technical and out of place. It

is concerned with showing that in a specific setup related to moving a skew

shape to form µ from λ, there will be no standard µ-tableaux with the same

residue sequence as that of tλ. This will turn out to be useful during the proof of

Theorem 3.14 when showing that a certain term is zero. The use of this lemma

is out of place with the rest of our working, but will remove the need to do yet

more braid diagram combinatorics. In particular it will ensure that we will not

need to deal with crossings within the product R that we describe in the proof of
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Theorem 3.14.

Lemma 3.13. Let λ be an l-multipartition of n that contains a skew shape of r

rows in the lth component. Label the rows in the skew shape from top to bottom

by 1 to r and let the nodes in the jth row of the skew shape in tλ contain the

entries βj + 1, . . . , βj + aj. Suppose that the node containing βr is directly to the

left of that containing βr + 1. Suppose that we can form an l-multipartition µ of

n by considering λ and moving the skew shape - keeping its shape intact - to the

first component, as well as the node containing βr in tλ to the position directly

below that where the node containing βr + 1 in tλ is moved. Suppose that both

λ and µ satisfy the diagonal residue condition and that amongst the components

λ(2), . . . , λ(l−1) there are no removable nodes of residues of any of the residues in

the skew shapes. Then there are no standard µ-tableaux whose residue resequence

is the same as that of tλ.

Proof. Let the nodes in the jth row of the skew shape in tµ contain the values

αj + 1, . . . , αj + aj from left to right. Let the entry of the node beneath the skew

shape be αr + 1. Then in the bipartition case, we have the following tableaux (for

l ≥ 2 there are simply some other components between these):

tλ =



1

. .
.

β1 + 1 β1 + a1

. .
.

βr βr + 1 βr + ar



tµ =



1
α1 + 1 α1 + a1

. .
.

αr + 1 αr + ar
αr+1


For j ∈ {1, . . . , r} let mj be the number of nodes in the jth row of the skew

shape which have no node directly above them in the skew shape. Now we shall

try to create a standard µ-tableau, s, with the same residue sequence as tλ. Write
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iλ = (i1, . . . , in), and iµ = (j1, . . . , jn). Given s ∈ {1, . . . , n}, let N [s] denote the

node in [µ] that contains s in tµ. Firstly, consider which node βr will fill. For s

to be standard we must have that the node containing βr has no node directly

beneath it, since there are no nodes in tλ whose entries are greater than βr but of

residue iβr − 1. If such a node exists within the components labelled 2, . . . l − 1,

then there must be at least ar + 1 nodes to the right of it in that row, otherwise

we have a removable node whose residue exists in the skew shape, but then these

nodes cannot all be filled whilst keeping s standard. Thus the only node satisfying

this description is N [αr+1].

Let k ∈ {0, 1, . . . , r−2}. Suppose in addition to filling in a node with βr we have

filled in nodes with the entries βc+1, . . . , βc+ac for c ∈ {r, r−1, . . . , r−k+1}. It

will be clear where these entries go after reading the below, but in effect if an entry

was in the node in position (r, c, l) in [λ] then it will be put in the node in position

(r − 1, c− 1, l) if this node exists, otherwise it will be put in the first component

in the node in the skew shape where it originated from. Then consider βr−k + 1.

The only nodes of residue iβr−k+1 in µ(1) have nodes directly beneath them,

which then would not be able to be filled in with any value greater than βr−k + 1.

Amongst those components labelled 2, . . . , l−1, we may have a node of this residue

with no node directly beneath it, but then there must be at least ar−k nodes to

the right of it in that row; otherwise we have a removable node whose residue

exists in the skew shape, but these cannot all be filled whilst keeping s standard.

So then in the last component there is then only one suitable node, namely

N [βr−(k+1) − mr−k]. Then the nodes N [βr−(k+1) − mr−k + 1], . . . , N [βr−(k+1)]

must be filled with the values βr−k + 2, . . . , βr−k +mr−k + 1 respectively. Note

that these nodes lie directly above and one to the left of where the nodes with

values βr−k + 1, . . . , βr−k +mr−k + 1 were in tλ. Now if ar−k > mr−k + 1, then

we must fill in some nodes with βr−k +mr−k + 2, . . . , βr−k + ar−k. Now the only

nodes suitable to be filled with βr−k +mr−k + 2 lie in µ(1), since one such node

in the last component is that above the node we just filled with βr−k +mr−k + 1,

and the rest all have an empty node directly beneath them, or are in the middle

component and must have at least ar−k +mr−k − 1 nodes to the right of them
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in that row in order to prevent the existence of a removable node whose residue

exists in the skew shape, and then these nodes cannot all be filled whilst keeping s

standard. There is then only one suitable node in the first component which does

not have an empty node directly beneath it, N [αr−k +mr−k + 2], so fill this with

βr−k+mr−k+2. Then we must fill in the nodes N [αr−k+mr−k+3], . . . , N [αr+ar]

with βr−k +mr−k + 3, . . . βr−k + ar−k respectively. Note that these nodes are just

the ‘moved versions’ of the nodes that contained these values in tλ, i.e. they are

the nodes in the skew shape added to the first component that would have had

these values in tλ.

Now we have filled in nodes with βr and entries βc + 1, . . . , βc + ac for c ∈

{r, r − 1, . . . , 2}. To begin with, we can follow the same idea as above. Consider

β1 + 1. As before the only nodes of residue iβ1+1 in the first component have

nodes directly beneath them, and any in the components labelled with 2, . . . , l− 1

must have at least a1 nodes to the right of them in that row otherwise we have

a removable node whose residue exists in the skew shape, and then these nodes

cannot all be filled in whilst keeping s standard. So the only suitable nodes will

be in the last component. Suppose that the row containing β1 + 1 in tλ is the top

row of λ. Then there will be no suitable nodes in the last component either, and

we can conclude that there is no standard µ-tableau of the same residue sequence

as tλ. So instead suppose that the row containing β1 + 1 in tλ is not the top row

of λ. Let the residue of the node in [µ] lying directly above that which contained

β1 + a1 in tλ be jβ0 . Then there is now a suitable node in the last component,

i.e. N [β0 − a1]. Then the nodes N [β0 − a1 + 1], . . . , N [β0 − 1] must be filled with

the values β1 + 2, . . . , β1 + a1 respectively. But now there is no value with which

the node N [β0] can take, since there is no value x such that x > β1 + a1 and

ix = iβ1+a1 + 1. Thus we can conclude that there is no standard µ-tableau of the

same residue sequence as tλ in this case either.

Now we can state the main theorem of this chapter.
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Theorem 3.14. Let λ and µ be 2-multipartitions of n. Suppose

e ≥ max{hλ(1)

11 + 1, hλ
(2)

11 + 1, hµ
(1)

11 + 1, hµ
(2)

11 + 1}

and that [µ] is formed from [λ] by moving a skew shape from the second component

to the first, without changing their shape. Let s be the µ-tableau defined by

considering tλ and moving the skew shape from the second component to the first,

keeping their tableau values intact. Then there is a homomorphism ϕ : Sλ → Sµ

given by vt
λ 7→ vt

µ
ψs.

We shall discuss the strategy for the proof of Theorem 3.14 in much the same

way as for Proposition 3.6. Firstly, note that if the skew shape moved is just

a row of nodes then by Proposition 3.6 we have the desired result. So we may

assume that the skew shape has nodes in at least two rows of
[
λ(2)

]
.

As in Proposition 3.1 we have the diagonal residue condition. Consider the

bottom two rows of the skew shape in
[
λ(2)

]
; suppose that there are a ≥ 1 nodes

in the bottom such row, with q ≥ 0 nodes to the left of this which are not removed.

Suppose that in the higher of the two rows, there are a2 ≥ 1 nodes, b ≥ 0 of which

are removable. Let the entry of the node on the end of this row be β. Then the

two rows look like so:

β − a2 + 1 β − b β − b+ 1 β
β + q + 1 β + q + a

(3.17)

Now consider adding the skew shape to
[
µ(1)

]
; suppose that in tµ there are p ≥ 0

nodes to the left of where the bottom such row is added, and that the entry of

the node on the end of the row above this is α. The following diagram shows the

two rows of tµ to which the bottom two rows of the skew shape have been added,

with the nodes that have been added highlighted.

... . .
.

. .
.

...

α− a2 α− a2 + 1 α− b α− b+ 1 α
α+ 1 α+ pα+ p+ 1 α+ p+ a

. .
.

134



3.3. Skew homomorphisms George Witty

Then ψs =
(
Ψα+p+a ↑β+q+a−1

)
↓α+p+1 ·

(
Ψα ↑β−1

)
↓α−a2+1 ·R, where R is a

product of crossings coming from the rows higher than the bottom two in the

skew shape. Note that some or both of the brackets in the product may be zero

depending on the values of α, β, p and q.

As in Proposition 3.6, we now wish to work with some 3-multipartitions of n.

So we define a new KLR algebra H Λκ̃
n just as before.

Suppose that the row of [λ] which the bottom row of the skew shape extends

by being added to it is the k1th row and the row which this bottom row shortens

by being removed from it is the k2th row. Then consider a 3-multipartition of n,

λ, defined as

λ̃ :=
(
λ(1), λ

(2)

k̂2
, (1)

)
,

i.e. so that tλ̃ is formed from tλ by removing the node containing β + q + a,

subtracting one from the entry of all the nodes containing β + q + a+ 1, β + q +

a+ 2, . . . , n, and placing one node in the third component which will have label n.

Also define ν̃, a 3-multipartition of n, by

ν̃ :=
(
µ

(1)

k̂1
, µ(2), (1)

)
,

with a ν̃-tableau s1 defined by considering s and removing the node containing

β+ q+ a, subtracting one from the entry of all the nodes containing β+ q+ a+ 1,

β + q + a + 2, . . . , n, and placing one node in the third component which will

have label n. Then ψ̃s1 =
(

Ψ̃α+p+a−1 ↑β+q+a−2
)
↓α+p+1 ·

(
Ψ̃α ↑β−1

)
↓α−a2+1 ·R̃,

where R̃ is just R with every ψ replaced by a ψ̃. Using induction on the number of

nodes moved in a similar way to the strategy for Proposition 3.6, we can assume

that there exists a non-zero homomorphism ϕ1 : Sλ̃ → S ν̃ given by vt
λ̃ 7→ vt

ν̃
ψ̃s1 ,

and no generating relation for Sλ̃ kills vt
ν̃
ψ̃s1 via a relation of the form (1.12).

The base case for this is given by Proposition 3.1.

Now consider the 3-multipartition µ̃ :=
(
µ(1), µ(2),∅

)
and the µ̃-tableau s2

defined by considering tµ̃ and changing the entry of the node containing α+ p+ a

to n whilst subtracting one from the entry of every node containing α+ p+ a+ 1

or greater. We have ψ̃s2 = Ψ̃α+p+a ↑n−1. Using Corollary 3.3 we know that there
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is a non-zero homomorphism ϕ2 : S ν̃ → Sµ̃ given by vt
ν̃ 7→ vt

µ̃
ψ̃s2 .

Let ψ̃s =
(

Ψ̃α+p+a ↑β+q+a−1
)
↓α+p+1 ·

(
Ψ̃α ↑β−1

)
↓α−a2+1 ·R̃. Composing ϕ2

with ϕ1 we have a homomorphism ϕ̃ := ϕ2 ◦ ϕ1 : Sλ̃ → Sµ̃ given by

ϕ̃
(
vt
λ̃
)

= ϕ2

(
ϕ1

(
vt
λ̃
))

= ϕ2

(
vν̃ψ̃s1

)
= ϕ2

(
vν̃
)
ψ̃s1

= vt
µ̃
ψ̃s2ψ̃s1

= vt
µ̃
Ψ̃α+p+a ↑n−1 ·

(
Ψ̃α+p+a−1 ↑β+q+a−2

)
↓α+p+1

·
(

Ψ̃α ↑β−1
)
↓α−a2+1 ·R̃

= vt
µ̃
(

Ψ̃α+p+a ↑β+q+a−1
)
↓α+p+1 ·

(
Ψ̃α ↑β−1

)
↓α−a2+1 ·R̃ · Ψ̃β+q+a ↑n−1

= vt
µ̃
ψ̃s · Ψ̃β+q+a ↑n−1 .

Just as in the strategy for Proposition 3.6, the residue sequence of s is identical

to that of tλ and so to prove the existence of ϕ : Sλ → Sµ we must show that

ϕ
(
vt
λ
)
a = 0 whenever vt

λ
a = 0 for a ∈H Λκ

n . In particular, we must check that

the generating relations of Sλ hold on the image of vt
λ
, and so we are required

to check (i), (ii) and (iii) just as in Proposition 3.6. Since ϕ̃ exists we also have

identical-looking facts (i*), (ii*) and (iii*), just with β + a replaced with with

β + q + a.

For the same reasoning as in Proposition 3.6, any relation which kills vt
µ̃
ψ̃s

will also kill vt
µ
ψs. Thus our strategy will once again be to use the relations (i*),

(ii*) and (iii*) in order to deduce many of the relations given by (i), (ii) and (iii),

leaving a few additional cases.

Note that the following proof has notes in the margin of the form (C•). These

can be ignored for now and will become relevant when considering the proof of

Corollary 3.18.

Proof. As we have remarked above, we may suppose that the skew shape moved

has nodes in at least two rows of
[
λ(2)

]
. Let (i1, i2, . . . , in) be the residue sequence
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of tµ̃ (which is identical to that of tµ), then

vt
µ̃
(

Ψ̃α+p+a ↑β+q+a−1
)
↓α+p+1 ·

(
Ψ̃α ↑β−1

)
↓α−a2+1 ·Ψ̃β+q+a ↑n−1

is shown diagrammatically in Figure 3.11.

3.3.1 Relations in (i).
(C1)

Every relation here is checked identically to that in Proposition 3.1, only we

replace α with α+ p and β with β + q.

3.3.2 Relations in (ii).
(C1)

We can show that vt
µ̃
ψ̃sψ̃r = 0 for r ∈ {1, . . . , β+q+a−2}∪{β+q+a+1, . . . , n−1}

in an identical matter to Proposition 3.1, only we replace α with α+ p and β with

β+ q. All that is left to check is when r = β+ q+ a− 1. However, in this instance

there is not a corresponding row relation in Sλ̃, so we check that vt
µ
ψsψβ+q+a−1

is equal to zero directly.

First, suppose that a = 1. If q = 0, then ψβ is not a row relation so there is

nothing to check. So we must suppose that q > 0 and we have r = β + q. Then

we have

vt
µ
ψsψβ+q = vt

µ
Ψα+p+1 ↑β+q ·

(
Ψα ↑β−1

)
↓α−a2+1 ·R · ψβ+q

= vt
µ
Ψα+p+1 ↑β+q ·ψβ+q ·

(
Ψα ↑β−1

)
↓α−a2+1 ·R

= vt
µ
Ψα+p+1 ↑β+q−1 · (yβ+q+1 − yβ+q) ·

(
Ψα ↑β−1

)
↓α−a2+1 ·R

by relation (1.10),

= −vtµΨα+p+1 ↑β+q−1 · yβ+q ·
(

Ψα ↑β−1
)
↓α−a2+1 ·R

since vt
µ
yβ+q+1 equals zero,

= −vtµΨα+p+1 ↑β yβ+1 ·Ψβ+1 ↑β+q−1 ·
(

Ψα ↑β−1
)
↓α−a2+1 ·R
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·( Ψ̃

α
↑β
−
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since iα+p+1 6−− iβ+q, iβ+q−1, . . . , iβ+2. Now iα+p+1 = iβ+1, so using relation (1.8)

we replace ψβyβ+1 with yβψβ + 1. So we have

vt
µ
ψsψβ+q = −vtµΨα+p+1 ↑β−1 yβ ·Ψβ ↑β+q−1 ·

(
Ψα ↑β−1

)
↓α−a2+1 ·R (3.18)

− vtµΨα+p+1 ↑β−1 ·Ψβ+1 ↑β+q−1 ·
(

Ψα ↑β−1
)
↓α−a2+1 ·R.

(3.19)

In (3.18), apply Lemma 2.11 to Ψα+p+1 ↑β−1 yβ. Then (3.18) is equal to

− vtµyα+p+1Ψα+p+1 ↑β−1 ·Ψβ ↑β+q−1 ·
(

Ψα ↑β−1
)
↓α−a2+1 ·R

−
k∑
j=1

vt
µ
Ψα+p+1 ↑α+p+zj−2 ·Ψα+p+zj ↑β−1 ·Ψβ ↑β+q−1 ·

(
Ψα ↑β−1

)
↓α−a2+1 ·R

for some k ≥ 0 and where the zj are such that iα+p+1 = iα+p+zj . Then all of this

is zero, since ψα+p+zj is a row relation by the diagonal residue condition. (C2)

We show that (3.19) is zero in a different way. Consider the multipartitions (C3)

λ̄ and µ̄ defined by considering λ and µ respectively, and removing the nodes

containing β + 1, β + 2, . . . , n. Now define ν̄ by considering λ̄ and moving the

remaining rows of the skew shape from the second component to the first, as they

were moved from λ to form µ. Let t1 be the ν-tableau defined by considering

tλ̄ and moving the skew shape from the second component to the first, keeping

their tableau values intact. Let t2 be the µ-tableau defined by considering tν̄ and

moving the node containing β from the second component to the first (to the only

possible position based on its residue), keeping its value intact. The following

pictures help exhibit some of these tableaux.

tλ =



1

. .
.

. .
.

β
β + 1 β + q β + q + 1
β + q + 2


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tλ̄ =



1

. .
.

. .
.

β



tµ =



1

. .
.

α
α+ p+ 1 β + 2

β + q + 2



tµ̄ =



1

. .
.

α
α+ p+ 1

β



tν̄ =



1

. .
.

α β


Now by induction on the number of nodes moved, we know that there is a

non-zero homomorphism ϕ1 : Sλ̄ → S ν̄ given by vt
λ̄ 7→ vt

λ̄ (
Ψα ↑β−1

)
↓α−a2+1 ·R.

We also have that there is a non-zero homomorphism ϕ2 : S ν̄ → Sµ̄ given by

vt
ν̄ 7→ vt

µ̄
Ψα+p+1 ↑β−1. So composing, we know that there is a homomorphism

ϕ2 ◦ ϕ1 : Sλ̄ → Sµ̄ given by vt
λ̄ 7→ vt

µ̄
Ψα+p+1 ↑β−1 ·

(
Ψα ↑β−1

)
↓α−a2+1 ·R.

However, we may apply Lemma 3.13 to λ̄ and µ̄ and thus there cannot be

a standard µ̄-tableaux of the same residue sequence as tλ̄, meaning that the
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homomorphism ϕ2 ◦ ϕ1 is zero, hence vt
µ̄
Ψα+p+1 ↑β−1 ·

(
Ψα ↑β−1

)
↓α−a2+1 ·R

is zero. Note that any generating relation for Sµ̄ corresponds to a generating

relation for Sµ. Thus this means that vt
µ
Ψα+p+1 ↑β−1 ·

(
Ψα ↑β−1

)
↓α−a2+1 ·R is

zero, i.e. that since Ψβ+1 ↑β+q−1 commutes with R, that (3.19) is zero.

Now suppose that a ≥ 2. We have

vt
µ
ψsψβ+q+a−1 = vt

µ
(

Ψα+p+a ↑β+q+a−1
)
↓α+p+1

(
Ψα ↑β−1

)
↓α−a2+1

·R · ψβ+q+a−1

= vt
µ
(

Ψα+p+a ↑β+q+a−1
)
↓α+p+a−1 ·ψβ+q+a−1

·
(

Ψα+p+a−2 ↑β+q+a−3
)
↓α+p+1 ·R2.

where R2 =
(
Ψα ↑β−1

)
↓α−a2+1 ·R. Since iα+p+a−1 ← iα+p+a, we can apply

Lemma 2.7 to
(
Ψα+p+a ↑β+q+a−1

)
↓α+p+a−1 ·ψβ+q+a−1 (take x = α+p+a−2, g =

β + q − α− p). Then

vt
µ
ψsψβ+q+a−1 =

k∑
j=1

Ψα+p+a+zj ↑β+q+a−1 Ψα+p+a ↑β+q+a−2

Ψα+p+a−1 ↑α+p+a+zj−3 ·
(

Ψα+p+a−2 ↑β+q+a−3
)
↓α+p+1 ·R2

for some k ≥ 0 and z1 < z2 < · · · < zk such that iα+p+a+zj = iα+p+a−1. By

the diagonal residue property, ψα+p+a+zj will certainly be a row relation for

j ∈ {1, . . . , k − 1}. Thus

vt
µ
ψsψβ+q+a−1 = Ψα+p+a+zk ↑

β+q+a−1 Ψα+p+a ↑β+q+a−2

Ψα+p+a−1 ↑α+p+a+zk−3 ·
(

Ψα+p+a−2 ↑β+q+a−3
)
↓α+p+1 ·R2.

(3.20)

If ψα+p+a+zk is a row relation, we are done. However this need not be the case,

i.e. if the node to the right of the node containing α+ p+ a+ zk was removed as

part of the skew shape. A diagram of part of (3.20) is shown in Figure 3.12.
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iα+p+1 · · · iα+p+a
−2

iα+p+a
−1

iα+p+a iα+p+a
+1

· · · iα+p+a
+zk−1

iα+p+a
+zk

iα+p+a
+zk+1

· · · iβ+q+a

α+ p
+1

· · · α+ p
+zk−1

α+ p
+zk

α+ p
+zk+1

· · · β + q β + q
+1

· · · β + q
+a− 2

β + q
+a− 1

β + q
+a

Figure 3.12: Part of the braid diagram for (3.20).

Now, if possible, take d ∈ {0, 1, . . . , a− 3} maximal so that

iα+p+a−2−d 6← iα+p+a−1−d ← iα+p+a−d ← · · · ← iα+p+a−1 → iα+p+a+zk−1 →

→ iα+p+a+zk−2 → · · · → iα+p+a+zk−d.

We can interpret this as meaning that the node containing α+ p+ a+ zk − d in

[µ] has no node to the left of it, and has the same residue as the node containing

α + p + a − 1 − d, so we know which diagonal it lies within. If we cannot take

such a d, take d = a− 2. Now rewrite what we have as

vt
µ
Ψα+p+a ↑α+p+a+zk−2 ·

(
Ψα+p+a−1 ↑α+p+a+zk−d−3

)
↓α+p+1

· Ψα+p+a+zk−d−2 ↑α+p+a+zk−3 ·
(
Ψα+p+a+zk−d−3 ↑α+p+a+zk−3

)
↓α+p+a+zk−2d−2

·
(

Ψα+p+a+zk−2d−3 ↑α+p+a+zk−d−3
)
↓α+p+zk−d

·
(

Ψα+p+a+zk ↑
β+q+a−1

)
↓α+p+zk+1 ·R2,

(3.21)

some of which is shown in this form in Figure 3.13. Then we can apply Lemma 2.9

142



3.3. Skew homomorphisms George Witty
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3.3. Skew homomorphisms George Witty

to Ψα+p+a+zk−d−2 ↑α+p+a+zk−3 ·
(
Ψα+p+a+zk−d−3 ↑α+p+a+zk−3

)
↓α+p+a+zk−2d−2

(take x = α+ p+ a+ zk − 2d− 3, f = d, g = 0), to replace it with

d+1∑
m=1

(
Ψα+p+a+zk−d−2−m ↑α+p+a+zk−2−m)↓α+p+a+zk−2d−2

·
(

Ψα+p+a+zk−2d−3+m ↑α+p+a+zk−d−3
)
↓α+p+a+zk−2d−2 .

(3.22)

The terms where m ∈ {1, . . . , d} are of the form:

vt
µ
(

Ψα+p+a ↑α+p+a+zk−d−2
)
↓α+p+1 ·ψα+p+a+zk−d−2−m ·R3

= vt
µ
(

Ψα+p+a ↑α+p+a+zk−d−2
)
↓α+p+a−m+1

·
(

Ψα+p+a−m ↑α+p+a+zk−d−m−2
)
↓α+p+a−m−1 ·ψα+p+a+zk−d−m−2

·
(

Ψα+p+a−m−2 ↑α+p+a+zk−d−m−4
)
↓α+p+1 ·R3

(3.23)

where R3 consists of later terms which are no longer needed. Some of (3.23)

this is shown in Figure 3.14. Now since iα+p+a−m−1 ← iα+p+a−m apply Lemma

2.7 to
(
Ψα+p+a−m ↑α+p+a+zk−d−m−2

)
↓α+p+a−m−1 ·ψα+p+a+zk−d−m−2 (take x =

α+ p+ a−m− 2, g = zk − d− 1) so that (3.23) is equal to:

vt
µ
(

Ψα+p+a ↑α+p+a+zk−d−2
)
↓α+p+a−m+1

· ψα+p+a−m−1 ·
(

Ψα+p+a−m ↑α+p+a+zk−d−m−2
)
↓α+p+a−m−1

·
(

Ψα+p+a−m−2 ↑α+p+a+zk−d−m−4
)
↓α+p+1 ·R3

+
k′∑
j′=1

vt
µ
(

Ψα+p+a ↑α+p+a+zk−d−2
)
↓α+p+a−m+1 · ψα+p+a+z′

j′−m
·R4

for some k′ ≥ 0 and z′j′ such that iα+p+a+z′
j′

= iα+p+a−m−1, and where R4

consists of later terms which are no longer needed. The former term will be zero

since ψα+p+a−m−1 is a row relation. For a term in the sum, apply Corollary 2.6

to
(
Ψα+p+a ↑α+p+a+zk−d−2

)
↓α+p+a−m+1 · ψα+p+a+z′

j′−m
since iα+p+a+z′

j′+1 6=

iα+p+a−m+1, iα+p+a−m+2, . . . , iα+p+a (take x = α + p + a −m, f = m, k = z′j′ −
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3.3. Skew homomorphisms George Witty

iα+p+1 · · · iα+p+a
−m−2

iα+p+a
−m−1

iα+p+a
−m

iα+p+a
−m+1

· · · iα+p+a iα+p+a
+1

· · · iα+p+a
+zk−d
−1

α + p
+1

· · · α + p
+zk−d

−1

α + p
+zk−d

· · · α + p
+a+zk
−d−m
−3

α + p
+a+zk
−d−m
−2

α + p
+a+zk
−d−m
−1

α + p
+a+zk
−d−m

· · · α + p
+a+zk
−d− 1

Figure 3.14: Part of the braid diagram for (3.23) excluding R3. The strings to
which Lemma 2.7 is applied are coloured red

1, h = 1, g = 1, t = zk − d− 2− z′j′). Then (3.23) is equal to:

k′∑
j′=1

vt
µ
ψα+p+a+z′

j′
·
(

Ψα+p+a ↑α+p+a+zk−d−2
)
↓α+p+a−m+1

= 0

since ψα+p+a+z′
j′

is a row relation by the diagonal residue condition. We are

definitely able to always write the term like this and apply Corollary 2.6 since

iα+p+a+zk−d−1 is never equal to iα+p+a−m−1 for m ∈ {1, . . . , d}.

So now we are just left with the term arising from when m = d+ 1 in the sum
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3.3. Skew homomorphisms George Witty

in (3.22), i.e. (3.21) is equal to

vt
µ
Ψα+p+a ↑α+p+a+zk−2 ·

(
Ψα+p+a−1 ↑α+p+a+zk−d−3

)
↓α+p+1

·
(

Ψα+p+a+zk−2d−3 ↑α+p+a+zk−d−3
)
↓α+p+zk−d

·
(

Ψα+p+a+zk ↑
β+q+a−1

)
↓α+p+zk+1 ·R2.

= vt
µ
Ψα+p+a ↑α+p+a+zk−2 ·

(
Ψα+p+a−1 ↑α+p+a+zk−d−3

)
↓α+p+a−d

·Ψα+p+a−d−1 ↑α+p+a+zk−2d−3 ·
(

Ψα+p+a−d−2 ↑α+p+a+zk−d−3
)
↓α+p+1

·
(

Ψα+p+a+zk ↑
β+q+a−1

)
↓α+p+zk+1 ·R2.

(3.24)

iα+p+1 · · · iα+p+a
−d−2

iα+p+a
−d−1

iα+p+a
−d

· · · iα+p+a
−1

iα+p+a iα+p+a
+1

· · · iα+p+a
+zk−d
−1

α + p
+1

· · · α + p
+zk−d

−1

α + p
+zk−d

α + p
+zk−d
+1

· · · α + p
+a+zk

α + p
+a+zk
+1

· · · α + p
+a+zk
−d− 2

α + p
+a+zk
−d− 1

Figure 3.15: Part of the braid diagram for (3.24) excluding
Ψα+p+a+zk−d−1 ↑α+p+a+zk−2 ·

(
Ψα+p+a+zk ↑β+q+a−1

)
↓α+p+zk+1 ·R2. The

strings to which we apply Corollary 2.6 are coloured blue.

First assume that d 6= a− 2, then we know that

iα+p+a−d−2 6= iα+p+a+1, iα+p+a+2, . . . , iα+p+a+zk−d−1
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3.3. Skew homomorphisms George Witty

hence apply Corollary 2.6 to

Ψα+p+a−d−1 ↑α+p+a+zk−2d−3 ·
(

Ψα+p+a−d−2 ↑α+p+a+zk−d−3
)
↓α+p+1

(take x = α + p, f = a − d − 2, k = 0, h = 1, g = zk − d − 1, t = d) and then we

have a ψα+p+a−d−2 crossing which kills vt
µ

as this is a row relation.

So now assume instead that d = a− 2. Then (3.21) is equal to:

vt
µ
Ψα+p+a ↑α+p+a+zk−2 ·

(
Ψα+p+a−1 ↑α+p+zk−1

)
↓α+p+1

·
(

Ψα+p+a+zk ↑
β+q+a−1

)
↓α+p+zk+1 ·R2.

(3.25)

If the node containing α+p+a+zk in [µ] is a Garnir node, then we are done since

the Garnir relation for this node will be contained within the fourth multiplicand.

So suppose the node containing α + p + a + zk in [µ] is not a Garnir node,

and let δ ∈ {0, 1, . . . , a− 2} be as small as possible so that the node containing

α+p+a+zk−δ is a Garnir node in [µ], whilst the node containing α+p+a+zk−δ+1

is not. Such a node is guaranteed to exist by the fact that d = a− 2. Note that

we now must have a ≥ 3 in order to be in this situation. Rewrite (3.25) as

vt
µ
Ψα+p+a+zk ↑

β+q+a−1 ·
(
Ψα+p+a ↑α+p+zk

)
↓α+p+1 ·Ψα+p+zk+1 ↑α+p+a+zk−δ−2

·Ψα+p+a+zk−δ−1 ↑β+q+a−2 ·
(

Ψα+p+a+zk−2 ↑β+q+a−3
)
↓α+p+zk−δ−1

·
(

Ψα+p+a+zk−δ−2 ↑β+q+a−δ−3
)
↓α+p+zk+1 ·R2.

(3.26)

Some of this is shown in Figure 3.16.

Now, since iα+p+a 6−− iα+p+a+zk−1, iα+p+a+zk−2, . . . , iα+p+a+zk−δ apply

Lemma 2.5 to Ψα+p+a+zk−δ−1 ↑β+q+a−2 ·
(
Ψα+p+a+zk−2 ↑β+q+a−3

)
↓α+p+zk−δ−1

(take x = α+ p+ a+ zk − δ − 2, f = 1, g = β + q − α− p− zk, h = δ). So (3.25)
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3.3. Skew homomorphisms George Witty

is equal to:

vt
µ
Ψα+p+a+zk ↑

β+q+a−1 ·
(
Ψα+p+a ↑α+p+zk

)
↓α+p+1 ·Ψα+p+zk+1 ↑α+p+a+zk−δ−2

·
(

Ψα+p+a+zk−1 ↑β+q+a−2
)
↓α+p+a+zk−δ ·Ψα+p+a+zk−δ−1 ↑β+q+a−2

·
(

Ψα+p+a+zk−δ−2 ↑β+q−δ−3
)
↓α+p+zk+1 ·R2.

(3.27)

Now with a bit of rearranging, we can see that we have(
Ψα+p+a+zk ↑β+q+a−1

)
↓α+p+a+zk−δ at the top of the diagram, thus the

Garnir relation corresponding to the node containing α+ p+ a+ zk − δ will be at

the top of the diagram, making the whole term zero.

So we are done for this section, having shown vt
µ
ψsψβ+q+a−1 = 0 in all cases.

3.3.3 Relations in (iii).

We use the same notation as at the beginning of this section in Proposition 3.6.

The proof splits into the same cases depending on the location of a Garnir relation

with respect to r̃ just as before. For the cases:

• r ∈ {0, 1, . . . , r̃ − 1}

• r ∈ {r̃ + 1, . . . , β + q + a− 1}

• r ∈ {β + q + a, β + q + a+ 1, . . . , n− 2}

we follow the same method as in Proposition 3.6, replacing α with α+ p and β

with β + q. Then we are left with only one case left to check.

r = r̃

We must check the Garnir relation when r = r̃. In this case, there is not a

corresponding Garnir relation in Sλ̃, so we check that vt
µ
ψsgλ

(
r̃ + 1

)
is equal

to zero directly. Using our notation, we can write r̃ + 1 = β − b for some b ≥ 0.

Then in tλ the Garnir belt is

β − b β
β + 1 β + q + a
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3.3. Skew homomorphisms George Witty

giving the Garnir relation gλ

(
r̃ + 1

)
=
(
Ψβ ↑β+q+a−1

)
↓β−b. In Figure 3.17 we

display the important parts of the braid diagram of vt
µ
ψsgλ

(
r̃ + 1

)
.

We have that vt
µ
ψsgλ

(
r̃ + 1

)
is equal to

vt
µ
Ψα+p+a ↑β+q+a−1 ·

(
Ψα ↑α+p−1

)
↓α−b

·
(

Ψα+p+a−1 ↑β+q+a−2
)
↓α+p+1 ·

(
Ψα+p ↑β+q+a−2

)
↓α+p−b

·Ψβ+q+a−1 ↓β+q+a−b−1 ·
(

Ψα−b−1 ↑β−b−2
)
↓α−a2+1 ·R,

(3.28)

and then we can apply Lemma 2.5 to

(
Ψα+p+a−1 ↑β+q+a−2

)
↓α+p+1 ·

(
Ψα+p ↑β+q+a−2

)
↓α+p−b

(take x = α + p − b − 1, f = b + 1, g = β + q − α − p, h = a − 1) since

iα+p+1, . . . , iα+p+a−1 6−− iα−b, . . . , iα. Figure 3.18 helps demonstrate this.

Thus (3.28) is equal to

vt
µ
Ψα+p+a ↑β+q+a−1 ·

(
Ψα ↑α+p−1

)
↓α−b

·
(

Ψα+p ↑β+q+a−2
)
↓α+p−b ·

(
Ψα+p+a−b−2 ↑β+q+a−b−3

)
↓α+p−b

·Ψβ+q+a−1 ↓β+q+a−b−1 ·
(

Ψα−b−1 ↑β−b−2
)
↓α−a2+1 ·R

= vt
µ (

Ψα ↑α+p+a−2
)
↓α−b ·Ψα+p+a ↑β+q+a−1

·
(

Ψα+p+a−1 ↑β+q+a−1
)
↓α+p+a−b ·Ψα+p+a−b−1 ↑β+q+a−b−1

·
(

Ψα+p+a−b−2 ↑β+q+a−b−3
)
↓α+p−b ·

(
Ψα−b−1 ↑β−b−2

)
↓α−a2+1 ·R,

(3.29)

some of which is shown in Figure 3.19. Since iα+p+a 6−− iα−b+1, . . . , iα, we can

apply Lemma 2.4 to Ψα+p+a ↑β+q+a−1 ·
(
Ψα+p+a−1 ↑β+q+a−1

)
↓α+p+a−b (take

x = α+ p+ a− b− 1, f = b, g = β + q − α− p). Then (3.29) is equal to

vt
µ
(

Ψα ↑β+q+a−1
)
↓α−b+1 ·Ψα−b ↑α+p+a−b−2

·
(

Ψα+p+a−b ↑β+q+a−b−1
)
↓α+p+a−b−1 ·ψβ+q+a−b−1

·
(

Ψα+p+a−b−2 ↑β+q+a−b−3
)
↓α+p−b ·

(
Ψα−b−1 ↑β−b−2

)
↓α−a2+1 ·R

(3.30)
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iα−b iα−b+1 · · · iα iα+1 · · · iα+p+a
−1

iα+p+a iα+p+a
+1

· · · iβ+q+a

α − b · · · α + p
+a− b
−2

α + p
+a− b

−1

· · · β + q
+a− b
−2

β + q
+a− b

−1

β + q
+a− b

β + q
+a− b
+1

· · · β + q
+a

Figure 3.20: Part of the braid diagram for (3.30) excluding the last three multipli-
cands. The strings to which we apply Lemma 2.7 are coloured red.

some of which is shown in Figure 3.20.

Since iα−b = iα+p+a + 1, we can apply Lemma 2.7 to

(
Ψα+p+a−b ↑β+q+a−b−1

)
↓α+p+a−b−1 ·ψβ+q+a−b−1

(take x = α+ p+ a− b− 2, g = β + q − α− p). Then (3.30) is equal to

vt
µ
(

Ψα ↑β+q+a−1
)
↓α−b ·Ψα+p+a−b−1 ↑β+q+a−b−2

·
(

Ψα+p+a−b−2 ↑β+q+a−b−3
)
↓α+p−b ·

(
Ψα−b−1 ↑β−b−2

)
↓α−a2+1 ·R

(3.31)

+

k∑
j=1

vt
µ (

Ψα ↑α+p+a−2
)
↓α−b ·

(
Ψα+p+a−1 ↑α+p+a+zj−2

)
↓α+p+a−b

·
(

Ψα+p+a+zj−1 ↑β+q+a−1
)
↓α+p+a+zj−b ·Ψα+p+a+zj−b ↑

β+q+a−b−1

·Ψα+p+a−b ↑β+q+a−b−2 ·Ψα+p+a−b−1 ↑α+p+a+zj−b−3

·
(

Ψα+p+a−b−2 ↑β+q+a−b−3
)
↓α+p−b ·

(
Ψα−b−1 ↑β−b−2

)
↓α−a2+1 ·R

(3.32)

for some k ≥ 0, with zj ’s arising from residues iα+p+a+zj which are equal to iα−b.

When considering an arbitrary term in (3.32) we shall just write z for zj . Part of
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such a term in the sum of (3.32) is shown in Figure 3.21. Note that

(
Ψα ↑β+q+a−1

)
↓α−b =

(
Ψα ↑α+p+a−1

)
↓α−b ·

(
Ψα+p+a ↑β+q+a−1

)
↓α+p+a−b

= gµ

(
α− b

)
·
(

Ψα+p+a ↑β+q+a−1
)
↓α+p+a−b

so that (3.31) is equal to zero.

Take the greatest δ ∈ {0, 1, . . . , b} such that ψα+p+a+z+m is a row relation for

Sµ for each m ∈ {0, 1, . . . , δ − 1}. If δ = 0, then note that most of the following

does not apply and we can move straight to considering (3.33) (as it is equal to

a given term of (3.32)). Figure 3.22 helps to illustrate the residues of the nodes

related to these row relations.

Consider the fourth and fifth multiplicand in (3.32), and rewrite these as

(
Ψα+p+a+z−1 ↑β+q+a−1

)
↓α+p+a+z−b ·Ψα+p+a+z−b ↑β+q+a−b−1

=
(

Ψα+p+a+z−1 ↑β+q+a−1
)
↓α+p+a+z−b+δ

·
(

Ψα+p+a+z−b+δ−1 ↑β+q+a−b+δ−1
)
↓α+p+a+z−b ·Ψα+p+a+z−b ↑β+q+a−b−1 .

In Figure 3.23 we show the relevant part of (3.32) with the corresponding residues.

Now since

iα−b+δ → iα−b+δ−1 → · · · → iα−b+1 → iα+p+a+z ← iα+p+a+z+1 ←

· · · ← iα+p+a+z+δ,

we can apply Lemma 2.10 to

(
Ψα+p+a+z−b+δ−1 ↑β+q+a−b+δ−1

)
↓α+p+a+z−b ·Ψα+p+a+z−b ↑β+q+a−b−1
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α+ p+ a+ z α+ p+ a+ z + δ

α− b α− b+ δ α
α+ 1 α+ p+ a

Figure 3.22: Diagram to show equality of residues between the different components
of µ. The top half shows nodes in the second component of tµ whilst the bottom
shows nodes in the first, with the dotted lines connecting nodes of equal residue.

iα−b+1 · · · iα−b+δ iα−b+δ
+1

· · · iα iα+p+a
+z

iα+p+a
+z+1

· · · iα+p+a
+z+δ

· · · iβ+q+a

α + p
+a+ z

−b

· · · α + p
+a+ z
−b+ δ
−1

· · · β + q
+a− b

−1

β + q
+a− b

β + q
+a− b
+1

· · · β + q
+a− b
+δ

β + q
+a− b
+δ + 1

· · · β + q
+a

Figure 3.23: Braid diagram of the crossings
(
Ψα+p+a+z−1 ↑β+q+a−1

)
↓α+p+a+z−b+δ

·
(
Ψα+p+a+z−b+δ−1 ↑β+q+a−b+δ−1

)
↓α+p+a+z−b ·Ψα+p+a+z−b ↑β+q+a−b−1 with the

associated residues from (3.32). The strings to which we apply Lemma 2.10 are
coloured brown.
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3.3. Skew homomorphisms George Witty

(take x = α+ p+ a+ z − b− 1, f = δ, g = β + q − α− p− z), replacing it with

δ∑
j′=1

[
ψα+p+a+z−b+δ−1+j′

·
(

Ψα+p+a+z−b+δ−1 ↑β+q+a−b+δ−1
)
↓α+p+a+z−b−1+j′

·Ψα+p+a+z−b−1+2j′ ↑β+q+a−b−2+j′

·
(

Ψα+p+a+z−b−3+2j′ ↑β+q+a−b−3+j′
)
↓α+p+a+z−b−1+j′

]
+
(

Ψα+p+a+z−b+2δ ↑β+q+a−b+δ−1
)
↓α+p+a+z−b+δ .

So consider a term of (3.32), then this will consist of terms corresponding to the

above sum for j′ ∈ {1, 2, . . . , δ} and these will each be equal to

vt
µ
(

Ψα ↑β+q+a−1
)
↓α−b+δ+1 · ψα+p+a+z−b+δ−1+j′ ·R′′

where R′′ consists of later terms which are no longer needed in calculations. Since

iα−b+δ+1, iα−b+δ+2, . . . , iα 6= iα+p+a+z+j′ we can apply Corollary 2.6 to the above

(take x = α−b+δ, f = b−δ, k = p+a+z+δ−1, h = 1, g = 1, t = β+q−α−p−z−δ),

giving

vt
µ
ψα+p+a+z−1+j′ ·

(
Ψα ↑β+q+a−1

)
↓α−b+δ+1 ·R′′

which will be zero.

So now we need only look at the term which corresponds to when j′ = δ + 1.

If ψα+p+a+z+δ is a row relation then we can follow the same method as for the

terms when j′ ∈ {1, 2, . . . , δ} and annihilate vt
µ

with a ψα+p+a+z+δ crossing. So

suppose instead that ψα+p+a+z+δ is not a row relation. Then overall we have that
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(3.32) is equal to

vt
µ (

Ψα ↑α+p+a−2
)
↓α−b ·

(
Ψα+p+a−1 ↑α+p+a+z−2

)
↓α+p+a−b

·
(

Ψα+p+a+z−1 ↑β+q+a−1
)
↓α+p+a+z−b+δ

·
(

Ψα+p+a+z−b+2δ ↑β+q+a−b+δ−1
)
↓α+p+a+z−b+δ ·Ψα+p+a−b ↑β+q+a−b−2

· Ψα+p+a−b−1 ↑α+p+a+z−b−3

·
(

Ψα+p+a−b−2 ↑β+q+a−b−3
)
↓α+p−b ·

(
Ψα−b−1 ↑β−b−2

)
↓α−a2+1 ·R,

(3.33)

some of which is shown in Figure 3.24. Since none of iα−b+δ+1, iα−b+δ+2, . . . , iα are

equal to any of iα+p+a+z+δ+1, iα+p+a+z+δ+2, . . . , iβ+q+a we can apply Lemma 2.5

to the fourth and fifth multiplicands (take x = α+ p+ a+ z− b+ δ− 1, f = b− δ,

g = β+q−α−p−z−δ, h = δ+1). This gives us
(
Ψα+p+a+z+δ ↑β+q+a−1

)
↓α+p+a+z

at the top of the diagram. If the node containing α+ p+ a+ z in tµ is a Garnir (C4)

node, then we have the corresponding Garnir relation at the top of the diagram

giving us zero. So instead, assume it is not a Garnir node.

So now (3.33) is equal to

vt
µ
(

Ψα+p+a+z+δ ↑β+q+a−1
)
↓α+p+a+z ·

(
Ψα ↑α+p+a−2

)
↓α−b

·
(

Ψα+p+a−1 ↑β+q+a−1
)
↓α+p+a−b+δ

·
(

Ψα+p+a−b+δ−1 ↑α+p+a+z−b+δ−2
)
↓α+p+a−b ·Ψα+p+a−b ↑α+p+a+z−b−2

· Ψα+p+a+z−b−1 ↑β+q+a−b−2 ·Ψα+p+a−b−1 ↑α+p+a+z−b−3

·
(

Ψα+p+a−b−2 ↑β+q+a−b−3
)
↓α+p−b ·

(
Ψα−b−1 ↑β−b−2

)
↓α−a2+1 ·R,

(3.34)

some of which is shown in Figure 3.25. Since

iα−b+1, iα−b+2, . . . , iα−b+δ 6−− iα+p+a

we can apply Lemma 2.5 to the fourth and fifth multiplicands (take x = α+ p+

a− b− 1, f = δ, g = z − 1, h = 1), replacing them with

Ψα+p+a−b+δ ↑α+p+a+z−b+δ−2 ·
(

Ψα+p+a−b+δ−1 ↑α+p+a+z−b+δ−2
)
↓α+p+a−b .
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Now rewrite

(
Ψα+p+a−b+δ−1 ↑α+p+a+z−b+δ−2

)
↓α+p+a−b ·Ψα+p+a+z−b−1 ↑β+q+a−b−2

as

(
Ψα+p+a−b+δ−1 ↑α+p+a+z−b+δ−3

)
↓α+p+a−b ·Ψα+p+a+z−b+δ−2 ↓α+p+a+z−b−1

· Ψα+p+a+z−b−1 ↑α+p+a+z−b+δ−2 ·Ψα+p+a+z−b+δ−1 ↑β+q+a−b−2

and then since we still have iα−b+1, iα−b+2, . . . , iα−b+δ 6−− iα+p+a, apply

Lemma 2.8 to Ψα+p+a+z−b+δ−2 ↓α+p+a+z−b−1 ·Ψα+p+a+z−b−1 ↑α+p+a+z−b+δ−2

(take x = α+ p+a+ z− b− 2, f = δ, g = 1, k = 0). We can see how this is applied

in Figure 3.26. So now (3.34) is equal to

vt
µ
(

Ψα+p+a+z+δ ↑β+q+a−1
)
↓α+p+a+z ·

(
Ψα ↑α+p+a−2

)
↓α−b

·
(

Ψα+p+a−1 ↑β+q+a−1
)
↓α+p+a−b+δ

· Ψα+p+a−b+δ ↑α+p+a+z−b+δ−2 ·
(

Ψα+p+a−b+δ−1 ↑α+p+a+z−b+δ−3
)
↓α+p+a−b

· Ψα+p+a+z−b+δ−1 ↑β+q+a−b−2 ·Ψα+p+a−b−1 ↑α+p+a+z−b−3

·
(

Ψα+p+a−b−2 ↑β+q+a−b−3
)
↓α+p−b ·

(
Ψα−b−1 ↑β−b−2

)
↓α−a2+1 ·R,

(3.35)

some of which is shown in Figure 3.27.

Rearranging, (3.35) is equal to

vt
µ
(

Ψα+p+a+z+δ ↑β+q+a−1
)
↓α+p+a+z ·

(
Ψα ↑α+p+a−2

)
↓α−b

·
(

Ψα+p+a−1 ↑β+q+a−1
)
↓α+p+a−b+δ

· Ψα+p+a−b+δ ↑β+q+a−b−2 ·
(

Ψα+p+a−b+δ−1 ↑α+p+a+z−b+δ−3
)
↓α+p+a−b−1

·
(

Ψα+p+a−b−2 ↑β+q+a−b−3
)
↓α+p−b ·

(
Ψα−b−1 ↑β−b−2

)
↓α−a2+1 ·R,

(3.36)

and then since iα−b+j 6−− iα+p+1, iα+p+2, . . . , iα+p+a−1 for j ∈ {0, 1, . . . , δ}, we
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3.3. Skew homomorphisms George Witty

can apply Corollary 2.6 to

(
Ψα+p+a−b+δ−1 ↑α+p+a+z−b+δ−3

)
↓α+p+a−b−1

·
(

Ψα+p+a−b−2 ↑β+q+a−b−3
)
↓α+p−b

(take x = α+p−b−1, f = a−1, k = 0, h = δ+1, g = z−1, t = β+q−α−p−z−δ),

so that (3.36) is equal to

vt
µ
(

Ψα+p+a+z+δ ↑β+q+a−1
)
↓α+p+a+z ·

(
Ψα ↑α+p+a−2

)
↓α−b

·
(

Ψα+p+a−1 ↑β+q+a−1
)
↓α+p+a−b+δ

· Ψα+p+a−b+δ ↑β+q+a−b−2 ·
(

Ψα+p+a−b−2 ↑β+q+a−b−3
)
↓α+p−b

·
(

Ψα+p−b+δ ↑α+p+z−b+δ−2
)
↓α+p−b ·

(
Ψα−b−1 ↑β−b−2

)
↓α−a2+1 ·R

= vt
µ
(

Ψα+p+a+z+δ ↑β+q+a−1
)
↓α+p+a+z ·

(
Ψα ↑α+p+a−2

)
↓α−b+δ+1

·
(

Ψα+p+a−1 ↑β+q+a−1
)
↓α+p+a−b+δ ·Ψα+p+a−b+δ ↑β+q+a−b−2

·
(

Ψα−b+δ ↑α+p+a−b+δ−2
)
↓α−b ·

(
Ψα+p+a−b−2 ↑β+q+a−b−3

)
↓α+p−b

·
(

Ψα+p−b+δ ↑α+p+z−b+δ−2
)
↓α+p−b ·

(
Ψα−b−1 ↑β−b−2

)
↓α−a2+1 ·R.

(3.37)

Since iα−b+j 6−− iα+p+1, iα+p+2, . . . , iα+p+a−1 for j ∈ {0, 1, . . . , δ}, apply

Lemma 2.8 to
(
Ψα−b+δ ↑α+p+a−b+δ−2

)
↓α−b ·

(
Ψα+p+a−b−2 ↑β+q+a−b−3

)
↓α+p−b

(take x = α − b − 1, f = δ + 1, h = p, g = a − 1, k = β + q − α − p − δ − 1). So
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3.3. Skew homomorphisms George Witty

then (3.37) is equal to

vt
µ
(

Ψα+p+a+z+δ ↑β+q+a−1
)
↓α+p+a+z ·

(
Ψα ↑α+p+a−2

)
↓α−b+δ+1

·
(

Ψα+p+a−1 ↑β+q+a−1
)
↓α+p+a−b+δ ·Ψα+p+a−b+δ ↑β+q+a−b−2

·
(

Ψα−b+δ ↑α+p−b+δ−1
)
↓α−b ·

(
Ψα+p+a−b+δ−1 ↑β+q+a−b−3

)
↓α+p−b+δ+1

·
(

Ψα+p−b+δ ↑α+p+z−b+δ−2
)
↓α+p−b ·

(
Ψα−b−1 ↑β−b−2

)
↓α−a2+1 ·R

= vt
µ
(

Ψα+p+a+z+δ ↑β+q+a−1
)
↓α+p+a+z ·

(
Ψα ↑β+q+a−1

)
↓α−b+δ+1

·
(

Ψα+p+a−b+δ ↑β+q+a−b−2
)
↓α+p−b+δ+1

·
(

Ψα−b+δ ↑α+p+z−b+δ−2
)
↓α−b ·

(
Ψα−b−1 ↑β−b−2

)
↓α−a2+1 ·R.

(3.38)

Some of this is shown in Figure 3.28.

Suppose m ∈ {1, . . . , a2 − b− 1} and consider

vt
µ
(

Ψα+p+a+z+δ ↑β+q+a−1
)
↓α+p+a+z ·

(
Ψα ↑β+q+a−1

)
↓α−b+δ+1

·
(

Ψα+p+a−b+δ ↑β+q+a−b−2
)
↓α+p−b+δ+1

·
(

Ψα+p+z−b+δ−1 ↑β−b−2
)
↓α+p+z−b+δ−m+1

·
(

Ψα−b+δ ↑α+p+z−b+δ−1−m
)
↓α−b−m+1 ·

(
Ψα−b−m ↑β−b−1−m

)
↓α−a2+1 ·R.

(3.39)

Note that if m = 1 we recover (3.38). Consider the bottom line of (3.39). Rewrite

this as

(
Ψα−b+δ ↑α+p+z−b+δ−1−m

)
↓α−b−m+2 ·

(
Ψα−b−m+1 ↑α+p+z−b−2m

)
↓α−b−m

· ψα+p+z−b−2m ·Ψα+p+z−b−2m+1 ↑β−b−1−m

·
(

Ψα−b−m−1 ↑β−b−2−m
)
↓α−a2+1 ·R

and then apply Lemma 2.7 to

(
Ψα−b−m+1 ↑α+p+z−b−2m

)
↓α−b−m ·ψα+p+z−b−2m

since iα−b−m ← iα−b−m+1 (take x = α − b−m, g = p+ z −m). Then (3.39) is
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3.3. Skew homomorphisms George Witty

equal to

vt
µ
ψα−b−m ·

(
Ψα+p+a+z+δ ↑β+q+a−1

)
↓α+p+a+z ·

(
Ψα ↑β+q+a−1

)
↓α−b+δ+1

·
(

Ψα+p+a−b+δ ↑β+q+a−b−2
)
↓α+p−b+δ+1

·
(

Ψα+p+z−b+δ−1 ↑β−b−2
)
↓α+p+z−b+δ−m+1

·
(

Ψα−b+δ ↑α+p+z−b+δ−1−m
)
↓α−b−m

·Ψα+p+z−b−2m+1 ↑β−b−1−m ·
(

Ψα−b−m−1 ↑β−b−2−m
)
↓α−a2+1 ·R

+
k′∑
t=1

vt
µ
(

Ψα+p+a+z+δ ↑β+q+a−1
)
↓α+p+a+z ·

(
Ψα ↑β+q+a−1

)
↓α−b+δ+1

·
(

Ψα+p+a−b+δ ↑β+q+a−b−2
)
↓α+p−b+δ+1

·
(

Ψα+p+z−b+δ−1 ↑β−b−2
)
↓α+p+z−b+δ−m+1

·
(

Ψα−b+δ ↑α+p+z−b+δ−1−m
)
↓α−b−m+2 ·Ψα−b−m+ζt+1 ↑α+p+z−b−2m

·Ψα−b−m+1 ↑α+p+z−b−2m−1 ·Ψα−b−m ↑α−b−m+ζt−2

·Ψα+p+z−b−2m+1 ↑β−b−1−m ·
(

Ψα−b−m−1 ↑β−b−2−m
)
↓α−a2+1 ·R

(3.40)

for some k′ ≥ 0 and ζt ∈ {p + 1, . . . , p + z − m} such that iα+ζt+a equals

iα−b−m. The first term will be zero since ψα−b−m is a row relation. Given

a term in (3.40), some of which is shown in Figure 3.29, if ζt 6= p + z − m

then since iα−b−m+2, iα−b−m+3, . . . , iα−b+δ 6−− iα+ζt+a, apply Corollary 2.6 to(
Ψα−b+δ ↑α+p+z−b+δ−1−m)↓α−b−m+2 ·Ψα−b−m+ζt+1 ↑α+p+z−b−2m. In Figure 3.30

we illustrate the relationships between the residues of the nodes in question here.

So now such a term in (3.40) is equal to

vt
µ
(

Ψα+p+a+z+δ ↑β+q+a−1
)
↓α+p+a+z ·

(
Ψα ↑β+q+a−1

)
↓α−b+δ+1

·
(

Ψα+p+a−b+δ ↑β+q+a−b−2
)
↓α+p−b+δ+1

·Ψα−b+δ+ζt ↑α+p+z−b+δ−m−1 ·
(

Ψα−b+δ ↑α+p+z−b+δ−m−1
)
↓α−b−m+2 ·Rζt

where Rζt consists of terms that we no longer need. Now the nodes containing (C5)

α+ ζt+a, . . . , α+ ζt+a+m−1 all belong to the same row, to the left of the node
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3.3. Skew homomorphisms George Witty

α+ ζt + a α+ p+ a+ z α+ p+ a+ z + δ

α− a2 + 1 α− b−m α− b α− b+ δ
α+ 1 α+ p+ a−m α+ p+ a

Figure 3.30: Diagram to show equality of residues between the different components
of µ with the introduction of α+ ζt + a. The top half shows nodes in the second
component of tµ whilst the bottom shows nodes in the first, with the dotted lines
connecting nodes of equal residue.

containing α+ p+ a+ z, so ψα+ζt+a will be a row relation by the diagonal residue

condition. If m = 1 then iα+ζt+a = iα+p+a so iα+ζt+a+1 6= iα+p+1, . . . , iα+p+a, and

iα+ζt+a 6−− iα, . . . iα−b+δ+1 so we can apply Corollary 2.6 to pull the ψα−b+δ+ζt

crossing to the top, obtaining ψα+ζ+a at the top of the diagram meaning our term

will be zero. Now suppose m > 1, then since

iα+p+1, . . . , iα+p+a−m+1 6= iα+ζt+a+1, . . . , iα+ζt+a+m−1,

rewrite
(
Ψα+p+a−b+δ ↑β+q+a−b−2

)
↓α+p−b+δ+1 ·Ψα−b+δ+ζt ↑α+p+z−b+δ−m−1 as

(
Ψα+p+a−b+δ ↑β+q+a−b−2

)
↓α+p+a−b+δ−m+2

·
(

Ψα+p+a−b+δ−m+1 ↑β+q+a−b−m−1
)
↓α+p−b+δ+1 ·Ψα+ζt−b+δ ↑α+ζt−b+δ+m−2

·Ψα+ζt−b+δ+m−1 ↑α+p+z−b+δ−m−1

(3.41)

and apply Corollary 2.6 to

(
Ψα+p+a−b+δ−m+1 ↑β+q+a−b−m−1

)
↓α+p−b+δ+1 ·Ψα−b+δ+ζt ↑α+ζt−b+δ+m−2

giving

Ψα+ζt+a−b+δ−m+1 ↑α+ζt+a−b+δ−1

·
(

Ψα+p+a−b+δ−m+1 ↑β+q+a−b−m−1
)
↓α+p−b+δ+1 .
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3.3. Skew homomorphisms George Witty

Then (3.41) is equal to

(
Ψα+p+a−b+δ ↑α+ζt+a−b+δ−2

)
↓α+p+a−b+δ−m+2

·
(

Ψα+ζt+a−b+δ−1 ↑α+ζt+a−b+δ+m−2
)
↓α+ζt+a−b+δ−m+1

·Ψα+ζt+a−b+δ−m+1 ↑α+ζt+a−b+δ−1

·
(

Ψα+ζt+a−b+δ+m−1 ↑β+q+a−b−2
)
↓α+ζt+a−b+δ+1

·
(

Ψα+p+a−b+δ−m+1 ↑β+q+a−b−m−1
)
↓α+p−b+δ+1

·Ψα+ζt−b+δ+m−1 ↑α+p+z−b+δ−m−1 .

In Figure 3.31 we show some of the crossings at this stage. Now apply Lemma

2.10 to (
Ψα+ζt+a−b+δ−1 ↑α+ζt+a−b+δ+m−2

)
↓α+ζt+a−b+δ−m+1

·Ψα+ζt+a−b+δ−m+1 ↑α+ζt+a−b+δ−1

since iα+p+a → · · · → iα+p+a−m+2 → iα+ζt+a ← iα+ζt+a+1 ← · · · ← iα+ζt+a+m−1

(take x = α+ ζt + a− b+ δ −m, f = m− 1, g = m− 1).

Thus replace

(
Ψα+ζt+a−b+δ−1 ↑α+ζt+a−b+δ+m−2

)
↓α+ζt+a−b+δ−m+1

·Ψα+ζt+a−b+δ−m+1 ↑α+ζt+a−b+δ−1

with a sum of terms, which each begin with the crossing ψα+ζt+a−b+δ−1+j for

j ∈ {1, . . . ,m − 1}, along with one other term where the crossings in question

disappear. In the former case, these crossings ψα+ζt+a−b+δ−1+j commute with(
Ψα+p+a−b+δ ↑α+ζt+a−b+δ−2

)
↓α+p+a−b+δ−m+2, and since

iα−b+δ+1, . . . , iα 6−− iα+ζt+a

we can apply Corollary 2.6 to

(
Ψα+p+a+z+δ ↑β+q+a−1

)
↓α+p+a+z ·ψα+ζt+a−b+δ−1+j
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3.3. Skew homomorphisms George Witty

to obtain a sum of terms which have the crossings ψα+ζt+a−1+j at the top for

j ∈ {1, . . . ,m}. In the latter case, we do the same but with the crossing

ψα+ζt+a−b+δ+m−1 coming from
(
Ψα+ζt+a−b+δ+m−1 ↑β+q+a−b−2

)
↓α+ζt+a−b+δ+1.

In either case, the crossings we obtain at the top of the diagram are all row

relations, since they will all occur to the left of the node containing α+ p+ a+ z

in tµ, and so all the corresponding terms are zero.

So instead suppose that we have a term in (3.40) where ζt = p+ z −m. Then

(3.39) is equal to

vt
µ
(

Ψα+p+a+z+δ ↑β+q+a−1
)
↓α+p+a+z ·

(
Ψα ↑β+q+a−1

)
↓α−b+δ+1

·
(

Ψα+p+a−b+δ ↑β+q+a−b−2
)
↓α+p−b+δ+1

·
(

Ψα+p+z−b+δ−1 ↑β−b−2
)
↓α+p+z−b+δ−m+1

·
(

Ψα−b+δ ↑α+p+z−b+δ−m−1
)
↓α−b−m+2 ·Ψα−b−m+1 ↑α+p+z−b−2m−1

·Ψα−b−m ↑α+p+z−b−2m−2 ·Ψα+p+z−b−2m+1 ↑β−b−1−m

·
(

Ψα−b−m−1 ↑β−b−2−m
)
↓α−a2+1 ·R.

Rearrange terms and apply Lemma 2.8 to

(
Ψα−b+δ ↑α+p+z−b+δ−1−m

)
↓α−b−m+2 ·Ψα+p+z−b−2m+1 ↑β−b−1−m

(take x = α−b−m+1, f = δ+m−1, h = p+z−m−1, g = 1, k = β−α−p−z−δ)
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since iα−b−m+2, . . . , iα−b+δ 6= iα+p+a+z−m, so that we have

vt
µ
(

Ψα+p+a+z+δ ↑β+q+a−1
)
↓α+p+a+z ·

(
Ψα ↑β+q+a−1

)
↓α−b+δ+1

·
(

Ψα+p+a−b+δ ↑β+q+a−b−2
)
↓α+p−b+δ+1

·
(

Ψα+p+z−b+δ−1 ↑β−b−2
)
↓α+p+z−b+δ−m+1

·
(

Ψα−b+δ ↑α+p+z−b+δ−m−2
)
↓α−b−m+2 ·Ψα+p+z−b+δ−m ↑β−b−1−m

·Ψα−b−m+1 ↑α+p+z−b−2m−1 ·Ψα−b−m ↑α+p+z−b−2m−2

·
(

Ψα−b−m−1 ↑β−b−2−m
)
↓α−a2+1 ·R

= vt
µ
(

Ψα+p+a+z+δ ↑β+q+a−1
)
↓α+p+a+z ·

(
Ψα ↑β+q+a−1

)
↓α−b+δ+1

·
(

Ψα+p+a−b+δ ↑β+q+a−b−2
)
↓α+p−b+δ+1

·
(

Ψα+p+z−b+δ−1 ↑β−b−2
)
↓α+p+z−b+δ−(m+1)+1

·
(

Ψα−b+δ ↑α+p+z−b+δ−(m+1)−1
)
↓α−b−(m+1)+1

·
(

Ψα−b−(m+1) ↑β−b−1−(m+1)
)
↓α−a2+1 ·R.

So we are able to repeat the above process multiple times for successive values

of m, assuming we have relevant ζt (otherwise we obtain zero and are done). This

leaves us with

vt
µ
(

Ψα+p+a+z+δ ↑β+q+a−1
)
↓α+p+a+z ·

(
Ψα ↑β+q+a−1

)
↓α−b+δ+1

·
(

Ψα+p+a−b+δ ↑β+q+a−b−2
)
↓α+p−b+δ+1

·
(

Ψα+p+z−b+δ−1 ↑β−b−2
)
↓α+p+z+δ−a2+1

·
(

Ψα−b+δ ↑α+p+z+δ−1−a2

)
↓α−a2+1 ·R.

(3.42)

If we did have relevant ζt, then we have that

iα+p+a+z+b−a2+1 ← iα+p+a+z+b−a2+2 ← · · · ← iα+p+a+z−1

and that the nodes corresponding to these residues all belong to the same row of tµ.

Using the diagonal residue condition, we know that iα+p+a+z+b−a2+1 = iα−a2+1

implies that the node containing α+ p+ a+ z + b− a2 + 1 in tµ is a Garnir node
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for [µ]. So there will be some γ ∈ {1, . . . , a2− b−1} such that the node containing

α+ p+ a+ z − γ in [µ] is a Garnir node whilst the node directly to the right of it

is not. We show some of the braid diagram for (3.42) in Figure 3.32.

Write
(
Ψα+p+z−b+δ−1 ↑β−b−2

)
↓α+p+z+δ−a2+1 as

(
Ψα+p+z−b+δ−1 ↑β−b−2

)
↓α+p+z−b+δ−γ+1

·
(

Ψα+p+z−b+δ−γ ↑β−b−γ−1
)
↓α+p+z+δ−a2+1

and apply Corollary 2.6 to

(
Ψα+p+a−b+δ ↑β+q+a−b−2

)
↓α+p−b+δ+1

·
(

Ψα+p+z−b+δ−1 ↑β−b−2
)
↓α+p+z−b+δ−γ+1

(take x = α+ p− b+ δ, f = a, k = z − γ, h = γ − 1, g = β −α− p− z − δ, t = q)

since iα+p+a+z−j 6−− iα+p+a+z+δ+1, iα+p+a+z+δ+2, . . . , iβ+a for j ∈ {1, . . . , γ − 1}.

This gives us all together:

vt
µ
(

Ψα+p+a+z+δ ↑β+q+a−1
)
↓α+p+a+z ·

(
Ψα ↑β+q+a−1

)
↓α−b+δ+1

·
(

Ψα+p+a+z−b+δ−1 ↑β+a−b−2
)
↓α+p+a+z−b+δ−γ+1

·
(

Ψα+p+a−b+δ ↑β+q+a−b−2
)
↓α+p−b+δ+1

·
(

Ψα+p+z−b+δ−γ ↑β−b−γ−1
)
↓α+p+z+δ−a2+1

·
(

Ψα−b+δ ↑α+p+z+δ−1−a2

)
↓α−a2+1 ·R

Now apply Corollary 2.6 to

(
Ψα ↑β+q+a−1

)
↓α−b+δ+1 ·

(
Ψα+p+a+z−b+δ−1 ↑β+a−b−2

)
↓α+p+a+z−b+δ−γ+1

(take x = α− b+ δ, f = b+ δ, k = p+ a+ z− γ, h = γ − 1, g = β−α− p− z− δ,

t = q + δ + 1) since iα+p+a+z−j 6−− iα+p+a+z+δ+1, iα+p+a+z+δ+2, . . . , iβ+a for
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j ∈ {1, . . . , γ − 1}. Then we have

vt
µ
(

Ψα+p+a+z+δ ↑β+q+a−1
)
↓α+p+a+z

·
(

Ψα+p+a+z−1 ↑β+a−δ−2
)
↓α+p+a+z−γ+1 ·

(
Ψα ↑β+q+a−1

)
↓α−b+δ+1

·
(

Ψα+p+a−b+δ ↑β+q+a−b−2
)
↓α+p−b+δ+1

·
(

Ψα+p+z−b+δ−γ ↑β−b−γ−1
)
↓α+p+z+δ−a2+1

·
(

Ψα−b+δ ↑α+p+z+δ−1−a2

)
↓α−a2+1 ·R.

(3.43)

Some of this is shown in Figure 3.33.

Let the value of the node underneath the one containing α + p + a + z − γ

be η. Figure 3.34 helps to illustrate the positions of certain nodes including the

one containing η. We have that iα+p+a+z−γ = iα−b−γ and iη = iα+p+a−γ . Write(
Ψα+p+z−b+δ−γ ↑β−b−γ−1

)
↓α+p+z+δ−a2+1 as

Ψα+p+z−b+δ−γ ↑ η−b−γ−a−2 ·Ψη−b−γ−a−1 ↑β−b−γ−1

·
(

Ψα+p+z−b+δ−γ−1 ↑β−b−γ−2
)
↓α+p+z+δ−a2+1

and then as we have that iα+p+a+z−γ 6−− iα+p+a+z+δ+1, . . . , iη−1, we can apply

Corollary 2.6 to

(
Ψα+p+a−b+δ ↑β+q+a−b−2

)
↓α+p−b+δ+1 ·Ψα+p+z−b+δ−γ ↑ η−b−γ−a−2

(take x = α+ p− b+ δ, f = a, k = z− γ − 1, h = 1, g = η−α− p− a− z− δ− 1,

t = β + a− η + γ + q). This gives us

vt
µ
(

Ψα+p+a+z+δ ↑β+q+a−1
)
↓α+p+a+z

·
(

Ψα+p+a+z−1 ↑β+a−δ−2
)
↓α+p+a+z−γ+1 ·

(
Ψα ↑β+q+a−1

)
↓α−b+δ+1

· Ψα+p+a+z−b+δ−γ ↑ η−b−γ−2 ·
(

Ψα+p+a−b+δ ↑β+q+a−b−2
)
↓α+p−b+δ+1

·Ψη−b−γ−a−1 ↑β−b−γ−1 ·
(

Ψα+p+z−b+δ−γ−1 ↑β−b−γ−2
)
↓α+p+z+δ−a2+1

·
(

Ψα−b+δ ↑α+p+z+δ−1−a2

)
↓α−a2+1 ·R.

(3.44)
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α+p+a
+z − γ

α+p+a
+z−γ+1

α+p+a
+z

α+p+a
+z + δ

η

α−b−γ α− b α− b+ δ

α+p+ 1
α+p+a
−γ α+p+a

Figure 3.34: Diagram to show equality of residues between the different components
of µ with the introduction of η. The top half shows nodes in the second component
of tµ whilst the bottom shows nodes in the first, with the dotted lines connecting
nodes of equal residue. The bold line along the top nodes illustrates the border of
the component.

Now write
(
Ψα+p+a−b+δ ↑β+q+a−b−2

)
↓α+p−b+δ+1 as

(
Ψα+p+a−b+δ ↑β+q+a−b−2

)
↓α+p+a−b+δ−γ

·
(

Ψα+p+a−b+δ−γ−1 ↑β+q+a−b−γ−3
)
↓α+p−b+δ+1

and then since iα+p+a+z−γ 6−− iα+p+1, . . . , iα+p+a−γ−1 we can apply Corollary 2.6

to

(
Ψα+p+a−b+δ−γ−1 ↑β+q+a−b−γ−3

)
↓α+p−b+δ+1 ·Ψη−b−γ−a−1 ↑β−b−γ−1

(take x = α + p − b + δ, f = a − γ − 1, k = η − α − p − a − γ − δ − 2, h = 1,

g = β + a− η + 1, t = γ + q − 1). The use of this corollary is demonstrated in
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Figure 3.35. So then we have

vt
µ
(

Ψα+p+a+z+δ ↑β+q+a−1
)
↓α+p+a+z

·
(

Ψα+p+a+z−1 ↑β+a−δ−2
)
↓α+p+a+z−γ+1 ·

(
Ψα ↑β+q+a−1

)
↓α−b+δ+1

· Ψα+p+a+z−b+δ−γ ↑ η−b−γ−2 ·
(

Ψα+p+a−b+δ ↑β+q+a−b−2
)
↓α+p+a−b+δ−γ

·Ψη−b−2γ−2 ↑β+a−b−2γ−2 ·
(

Ψα+p+a−b+δ−γ−1 ↑β+q+a−b−γ−3
)
↓α+p−b+δ+1

·
(

Ψα+p+z−b+δ−γ−1 ↑β−b−γ−2
)
↓α+p+z+δ−a2+1

·
(

Ψα−b+δ ↑α+p+z+δ−1−a2

)
↓α−a2+1 ·R.

(3.45)

Writing
(
Ψα+p+a−b+δ ↑β+q+a−b−2

)
↓α+p+a−b+δ−γ ·Ψη−b−2γ−2 ↑β+a−b−2γ−2 as

(
Ψα+p+a−b+δ ↑ η−b−γ−3

)
↓α+p+a−b+δ−γ ·

(
Ψη−b−γ−2 ↑β+q+a−b−2

)
↓ η−b−2γ−2

·Ψη−b−2γ−2 ↑β+a−b−2γ−2

=
(

Ψα+p+a−b+δ ↑ η−b−γ−3
)
↓α+p+a−b+δ−γ

·
(

Ψη−b−γ−2 ↑β+q+a−b−2
)
↓ η−b−2γ−1 ·ψη−b−2γ−2ψη−b−2γ−1ψη−b−2γ−2

·Ψη−b−2γ ↑β+q+a−b−γ−2 ·Ψη−b−2γ−1 ↑β+a−b−2γ−2

we can then use the braid relation (1.11) on ψη−b−2γ−2ψη−b−2γ−1ψη−b−2γ−2 since

iα+p+a−γ ← iα+p+a+z−γ → iη.

We now obtain a sum of two terms, one where we replace the cross-

ings ψη−b−2γ−2ψη−b−2γ−1ψη−b−2γ−2 with ψη−b−2γ−1ψη−b−2γ−2ψη−b−2γ−1 and one

where these crossings disappear. We will deal with each term separately. Consider

the former case, then instead of just replacing these crossings we could apply

Corollary 2.6 to

(
Ψα+p+a−b+δ ↑β+q+a−b−2

)
↓α+p+a−b+δ−γ ·Ψη−b−2γ−2 ↑β+a−b−2γ−2

in (3.45) since iα+p+a+z−γ 6−− iη+1, . . . , iβ+a and ignoring the fact that

iα+p+a+z−γ → iη (take x = α + p + a − b + δ − γ − 1, f = γ + 1,

k = η − α − p − a − γ − δ − 2, h = 1, g = β + a − η + 1, t = γ + q − 1),
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giving us

vt
µ
(

Ψα+p+a+z+δ ↑β+q+a−1
)
↓α+p+a+z

·
(

Ψα+p+a+z−1 ↑β+a−δ−2
)
↓α+p+a+z−γ+1 ·

(
Ψα ↑β+q+a−1

)
↓α−b+δ+1

· Ψα+p+a+z−b+δ−γ ↑β+a−b−γ−1 ·
(

Ψα+p+a−b+δ ↑β+q+a−b−2
)
↓α+p−b+δ+1

·
(

Ψα+p+z−b+δ−γ−1 ↑β−b−γ−2
)
↓α+p+z+δ−a2+1

·
(

Ψα−b+δ ↑α+p+z+δ−1−a2

)
↓α−a2+1 ·R.

(3.46)

Some of this is shown in Figure 3.36.

Now apply Corollary 2.6 to

(
Ψα ↑β+q+a−1

)
↓α−b+δ+1 ·Ψα+p+a+z−b+δ−γ ↑β+a−b−γ−1

since iα+p+a+z−γ 6−− iα−b+δ+1, . . . , iα (take x = α − b + δ, f = b − δ,

k = p+ a+ z − γ − 1, h = 1, g = β − α− p− z − δ, t = γ + q + δ). Then we have

vt
µ
(

Ψα+p+a+z+δ ↑β+q+a−1
)
↓α+p+a+z ·

(
Ψα+p+a+z−1 ↑β+a−δ−2

)
↓α+p+a+z−γ

·
(

Ψα ↑β+q+a−1
)
↓α−b+δ+1 ·

(
Ψα+p+a−b+δ ↑β+q+a−b−2

)
↓α+p−b+δ+1

·
(

Ψα+p+z−b+δ−γ−1 ↑β−b−γ−2
)
↓α+p+z+δ−a2+1

·
(

Ψα−b+δ ↑α+p+z+δ−1−a2

)
↓α−a2+1 ·R.

(3.47)

Note that this means that in terms of the diagram we have the crossings(
Ψα+p+a+z+δ ↑β+a−1

)
↓α+p+a+z−γ at the top, and this will certainly contain

the Garnir relation corresponding to the Garnir node containing α+ p+ a+ z− γ

in [µ]. So (3.47) will be zero.

So now consider the other term arising from the application of braid relation
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(1.11) to (3.45). This is

vt
µ
(

Ψα+p+a+z+δ ↑β+q+a−1
)
↓α+p+a+z

·
(

Ψα+p+a+z−1 ↑β+a−δ−2
)
↓α+p+a+z−γ+1 ·

(
Ψα ↑β+q+a−1

)
↓α−b+δ+1

· Ψα+p+a+z−b+δ−γ ↑ η−b−γ−2 ·
(

Ψα+p+a−b+δ ↑ η−b−γ−3
)
↓α+p+a−b+δ−γ

·
(

Ψη−b−γ−2 ↑β+q+a−b−2
)
↓ η−b−2γ−1 ·Ψη−b−2γ ↑β+q+a−b−γ−2

·Ψη−b−2γ−1 ↑β+a−b−2γ−2 ·
(

Ψα+p+a−b+δ−γ−1 ↑β+q+a−b−γ−3
)
↓α+p−b+δ+1

·
(

Ψα+p+z−b+δ−γ−1 ↑β−b−γ−2
)
↓α+p+z+δ−a2+1

·
(

Ψα−b+δ ↑α+p+z+δ−1−a2

)
↓α−a2+1 ·R.

(3.48)

We show most of the braid diagram for (3.48) in Figure 3.37. Write

Ψη−b−2γ ↑β+q+a−b−γ−2 as Ψη−b−2γ ↑β+a−b−2γ−1 ·Ψβ+a−b−2γ ↑β+q+a−b−γ−2 and

then since iα+p+a−γ+j 6= iη+1, . . . , iβ+a for j ∈ {1, . . . , γ} apply Corollary 2.6 to

(
Ψη−b−γ−2 ↑β+q+a−b−2

)
↓ η−b−2γ−1 ·Ψη−b−2γ ↑β+a−b−2γ−1

(take x = η− b− 2γ − 2, f = γ, k = 1, h = 1, g = β + a− η, t = γ + q− 1). Then

since iα−b+δ+j 6= iη+1, . . . , iβ+a for j ∈ {1, . . . , b− δ} apply Corollary 2.6 to

(
Ψα ↑β+q+a−1

)
↓α−b+δ+1 ·Ψη−b−γ ↑β+a−b−γ−1,

then as iα+p+a+z−γ+1, . . . , iα+p+a+z−1 6−− iη apply Corollary 2.6 to

(
Ψα+p+a+z−1 ↑β+a−δ−2

)
↓α+p+a+z−γ+1 ·Ψη−δ−γ ↑β+a−δ−γ−1

and then finally as iα+p+a+z, . . . , iα+p+a+z+δ 6−− iη apply Corollary 2.6 to

(
Ψα+p+a+z+δ ↑β+q+a−1

)
↓α+p+a+z ·Ψη−δ−1 ↑β+a−δ−2 .
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3.3. Skew homomorphisms George Witty

Then we have

vt
µ
Ψη ↑β+a−1 ·

(
Ψα+p+a+z+δ ↑β+q+a−1

)
↓α+p+a+z

·
(

Ψα+p+a+z−1 ↑β+a−δ−2
)
↓α+p+a+z−γ+1 ·

(
Ψα ↑β+q+a−1

)
↓α−b+δ+1

· Ψα+p+a+z−b+δ−γ ↑ η−b−γ−2 ·
(

Ψα+p+a−b+δ ↑ η−b−γ−3
)
↓α+p+a−b+δ−γ

·
(

Ψη−b−γ−2 ↑β+q+a−b−2
)
↓ η−b−2γ−1 ·Ψβ+a−b−2γ ↑β+q+a−b−γ−2

·Ψη−b−2γ−1 ↑β+a−b−2γ−2 ·
(

Ψα+p+a−b+δ−γ−1 ↑β+q+a−b−γ−3
)
↓α+p−b+δ+1

·
(

Ψα+p+z−b+δ−γ−1 ↑β−b−γ−2
)
↓α+p+z+δ−a2+1

·
(

Ψα−b+δ ↑α+p+z+δ−1−a2

)
↓α−a2+1 ·R.

Now apply Corollary 2.6 to

(
Ψη−b−γ−2 ↑β+q+a−b−2

)
↓ η−b−2γ−1 ·Ψη−b−2γ−1 ↑β+a−b−2γ−2

since iα+p+a+z−γ 6−− iη+1, . . . , iβ+a (take x = η − b− 2γ − 2, f = γ, k = 0, h = 1,

g = β + a− η, t = γ + q), giving us

vt
µ
Ψη ↑β+a−1 ·

(
Ψα+p+a+z+δ ↑β+q+a−1

)
↓α+p+a+z

·
(

Ψα+p+a+z−1 ↑β+a−δ−2
)
↓α+p+a+z−γ+1 ·

(
Ψα ↑β+q+a−1

)
↓α−b+δ+1

· Ψα+p+a+z−b+δ−γ ↑β+a−b−γ−2 ·
(

Ψα+p+a−b+δ ↑ η−b−γ−3
)
↓α+p+a−b+δ−γ

·
(

Ψη−b−γ−2 ↑β+q+a−b−2
)
↓ η−b−2γ−1 ·Ψβ+a−b−2γ ↑β+q+a−b−γ−2

·
(

Ψα+p+a−b+δ−γ−1 ↑β+q+a−b−γ−3
)
↓α+p−b+δ+1

·
(

Ψα+p+z−b+δ−γ−1 ↑β−b−γ−2
)
↓α+p+z+δ−a2+1

·
(

Ψα−b+δ ↑α+p+z+δ−1−a2

)
↓α−a2+1 ·R.

Then we can apply Corollary 2.6 to

(
Ψα ↑β+q+a−1

)
↓α−b+δ+1 ·Ψα+p+a+z−b+δ−γ ↑β+a−b−γ−2

since iα+p+a+z−γ 6−− iα+p+a+z+δ+1, . . . , iη−1, iη+1, . . . , iβ+a (take x = α − b + δ,
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3.3. Skew homomorphisms George Witty

f = b− δ, k = p+a+ z−γ−1, h = 1, g = β−α−p− z− δ−1, t = γ+ q+ δ+ 1).

Then we have

vt
µ
Ψη ↑β+a−1 ·

(
Ψα+p+a+z+δ ↑β+q+a−1

)
↓α+p+a+z

·
(

Ψα+p+a+z−1 ↑β+a−δ−2
)
↓α+p+a+z−γ+1 ·Ψα+p+a+z−γ ↑β+a−δ−γ−2

·
(

Ψα ↑β+q+a−1
)
↓α−b+δ+1 ·

(
Ψα+p+a−b+δ ↑ η−b−γ−3

)
↓α+p+a−b+δ−γ

·
(

Ψη−b−γ−2 ↑β+q+a−b−2
)
↓ η−b−2γ−1 ·Ψβ+a−b−2γ ↑β+q+a−b−γ−2

·
(

Ψα+p+a−b+δ−γ−1 ↑β+q+a−b−γ−3
)
↓α+p−b+δ+1

·
(

Ψα+p+z−b+δ−γ−1 ↑β−b−γ−2
)
↓α+p+z+δ−a2+1

·
(

Ψα−b+δ ↑α+p+z+δ−1−a2

)
↓α−a2+1 ·R.

(3.49)

Some of the above is shown in Figure 3.38.

Take d ∈ {0, 1, . . . , a− γ − 2} to be maximal such that the node containing

η−d in [µ] is in the same row as the node containing η, whilst the node containing

η−d−1 is not. If such a d does not exist, let d = a−γ−1. Then iη−d = iα+p+a−γ−d.

We illustrate some relevant residues in Figure 3.39. Write (3.49) as

vt
µ
Ψη ↑β+a−1 ·

(
Ψα+p+a+z+δ ↑β+q+a−1

)
↓α+p+a+z

·
(

Ψα+p+a+z−1 ↑β+a−δ−2
)
↓α+p+a+z−γ+1 ·Ψα+p+a+z−γ ↑β+a−δ−γ−2

·
(

Ψα ↑β+q+a−1
)
↓α−b+δ+1 ·

(
Ψα+p+a−b+δ ↑β+q+a−b−2

)
↓α+p+a−b+δ−γ+1

· Ψβ+a−b−2γ ↑β+q+a−b−γ−2 ·Ψα+p+a−b+δ−γ ↑ η−b−2γ−3

·
(

Ψα+p+a−b+δ−γ−1 ↑ η−b−2γ−3
)
↓α+p+a−b+δ−γ−d

·
(

Ψα+p+a−b+δ−γ−d−1 ↑ η−b−2γ−d−3
)
↓α+p−b+δ+1

·
(

Ψη−b−2γ−2 ↑β+q+a−b−γ−3
)
↓ η−b−a−γ

·
(

Ψα+p+z−b+δ−γ−1 ↑β−b−γ−2
)
↓α+p+z+δ−a2+1

·
(

Ψα−b+δ ↑α+p+z+δ−1−a2

)
↓α−a2+1 ·R

(3.50)
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3.3. Skew homomorphisms George Witty

α+ p+ a
+z−γ−d

α+p+a
+z − γ

α+p+a
+z−γ+1

η − d η

α−b−γ

α+ p+
a−γ−d

α+p+a
−γ

Figure 3.39: Diagram to show equality of residues between the different components
of µ with the introduction of d. The top half shows nodes in the second component
of tµ whilst the bottom shows nodes in the first, with the dotted lines connecting
nodes of equal residue. The short bold line along the top nodes illustrates the
border of the component.

so that we can apply Lemma 2.9 to

Ψα+p+a−b+δ−γ ↑ η−b−2γ−3 ·
(

Ψα+p+a−b+δ−γ−1 ↑ η−b−2γ−3
)
↓α+p+a−b+δ−γ−d

(3.51)

since

iα+p+a−γ−d ← iα+p+a−γ−d+1 ← · · ·

· · · ← iα+p+a−γ−1 ← iα+p+a−γ → iη−1 → iη−2 → · · · → iη−d

(take x = α+ p+ a− b+ δ − d− γ − 1, f = d, g = η − α− p− a− δ − γ − d− 2).

This is shown in Figure 3.40. So we must replace (3.51) with a large sum of terms,

whose summands belong to three different types.

The first type are terms which begin with a ψα+p+a−b+δ−γ−1−s crossing for

s ∈ {0, . . . , d− 1}. Then we can apply Corollary 2.6 to

(
Ψα ↑β+q+a−1

)
↓α−b+δ+1 ·ψα+p+a−b+δ−γ−1−s

since iα−b+δ+1, . . . , iα 6−− iα+p+j for j ∈ {1, . . . , a − γ − 1} (take x = α − b + δ,
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3.3. Skew homomorphisms George Witty

f = b − δ, k = p + a − γ − 2 − s, h = 1, g = 1, t = β + q − α − p + γ + s − 1),

giving us ψα+p+a−γ−1−s at the top of the diagram, which is a row relation and so

terms of this type will be zero.

The second type are terms which begin with ψα+p+a−b+δ−γ+Z where (C6)

Z belongs to {1, . . . , z − γ − 1} and iα+p+a+Z = iα+p+a−γ−j for some

j ∈ {1, . . . , d} (note that iα+p+a+z+δ+1, . . . , iη−d−1 6= iα+p+a−γ−j for such

j). Since iα+p+a−γ+Z 6−− iα+p+a−γ+1, . . . , iα+p+a, we may apply Corol-

lary 2.6 to
(
Ψα+p+a−b+δ ↑β+q+a−b−2

)
↓α+p+a−b+δ−γ+1 ·ψα+p+a−b+δ−γ+Z and

then since iα+p+a−γ+Z 6−− iα−b+δ+1, . . . , iα we may apply Corollary 2.6 to(
Ψα ↑β+q+a−1

)
↓α−b+δ+1 ·ψα+p+a−b+δ+Z giving us ψα+p+a+Z at the top of the

diagram, which is a row relation by the diagonal residue condition and so terms

of this type will be zero.

So then all that is left is to consider the term where we have replaced (3.51)

with (
Ψα+p+a−b+δ−γ ↑ η−b−2γ−d−3

)
↓α+p+a−b+δ−d−γ .

Overall we have that (3.50) is equal to

vt
µ
Ψη ↑β+a−1 ·

(
Ψα+p+a+z+δ ↑β+q+a−1

)
↓α+p+a+z

·
(

Ψα+p+a+z−1 ↑β+a−δ−2
)
↓α+p+a+z−γ+1 ·Ψα+p+a+z−γ ↑β+a−δ−γ−2

·
(

Ψα ↑β+q+a−1
)
↓α−b+δ+1 ·

(
Ψα+p+a−b+δ ↑β+q+a−b−2

)
↓α+p+a−b+δ−γ+1

· Ψβ+a−b−2γ ↑β+q+a−b−γ−2 ·
(

Ψα+p+a−b+δ−γ ↑ η−b−2γ−d−3
)
↓α+p+a−b+δ−d−γ

·
(

Ψα+p+a−b+δ−γ−d−1 ↑ η−b−2γ−d−3
)
↓α+p−b+δ+1

·
(

Ψη−b−2γ−2 ↑β+q+a−b−γ−3
)
↓ η−b−a−γ

·
(

Ψα+p+z−b+δ−γ−1 ↑β−b−γ−2
)
↓α+p+z+δ−a2+1

·
(

Ψα−b+δ ↑α+p+z+δ−1−a2

)
↓α−a2+1 ·R.

(3.52)
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iα+p+1 · · · iα+p+a
−γ−d
−2

iα+p+a
−γ−d
−1

iα+p+a
−γ−d

iα+p+a
−γ−d

+1

· · · iα+p+a
−γ

iα+p+a
+1

· · · iη−d−1

α + p
−b+ δ

+1

· · · η − a
−b− γ
−d− 2

η − a
−b− γ
−d− 1

η − a
−b− γ
−d

· · · η − a
−b− γ
−1

η − a
−b− γ

· · · η − b
−2γ−d
−3

η − b
−2γ−d
−2

Figure 3.41: Braid diagram of the crossings in (3.53) with the associated residues
from (3.52). The strings to which we apply Corollary 2.6 are coloured blue.

We show (
Ψα+p+a−b+δ−γ ↑ η−b−2γ−d−3

)
↓α+p+a−b+δ−d−γ

·
(

Ψα+p+a−b+δ−γ−d−1 ↑ η−b−2γ−d−3
)
↓α+p−b+δ+1

(3.53)

in Figure 3.41.

If d ∈ {0, 1, . . . , a− γ − 2} then η − d = α+ p+ a+ z + δ + 1 and

iα+p+a−d−γ−1 6−− iα+p+a+1, . . . iα+p+a+z−γ−1, iα+p+a+z+δ+1, . . . , iη−d−1

using the diagonal residue condition. Then we can apply Corollary 2.6 to (C7)

Ψα+p+a−b+δ−d−γ ↑ η−b−2γ−2d−3 ·Ψα+p+a−b+δ−γ−d−1 ↑ η−b−2γ−d−3

(take x = α+p+a−b+δ−γ−d−2, f = 1, k = 0, h = 1, g = η−γ−α−p−a−d−δ−2,

t = d). Then we can apply Corollary 2.6 to

(
Ψα ↑α−b+δ+1

)
↓β+q+a−1 ·ψα+p+a−b+δ−γ−d−1

since iα+p+a−d−γ−1 6−− iα−b+δ+1, . . . , iα giving us ψα+p+a−γ−d−1 at the top of the

diagram, which is a row relation and so we have zero.
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So instead suppose that we had to take d = a− γ − 1. We show a diagram

for some of (3.52) when d = a − γ − 1 in Figure 3.42. Figure 3.43 illustrates

the residues of some relevant nodes. If we suppose that η < β + a, then write(
Ψη−b−2γ−2 ↑β+q+a−b−γ−3

)
↓ η−b−a−γ as

(
Ψη−b−2γ−2 ↑β+a−b−2γ−3

)
↓ η−b−a−γ ·

(
Ψβ+a−b−2γ−2 ↑β+q+a−b−γ−3

)
↓β−b−γ .

Note that

iη−a+γ+j 6−− iα+p+a−γ+1, . . . , iα+p+a, iα−b+δ+1, . . .

. . . , iα, iα+p+a+z−γ , . . . , iα+p+a+z+δ

for j ∈ {1, . . . , a− γ − 1}. So we can apply Corollary 2.6 to

(
Ψα+p+a−b+δ ↑β+q+a−b−2

)
↓α+p+a−b+δ−γ+1

·
(

Ψη−b−2γ−2 ↑β+a−b−2γ−3
)
↓ η−b−a−γ ,

and then we can apply Corollary 2.6 to

(
Ψα ↑β+q+a−1

)
↓α−b+δ+1 ·

(
Ψη−b−γ−2 ↑β+a−b−γ−3

)
↓ η−b−a .

Next, we can apply Corollary 2.6 to

Ψα+p+a+z−γ ↑β+a−δ−γ−2 ·
(

Ψη−δ−γ−2 ↑β+a−δ−γ−3
)
↓ η−a−δ,

then to

(
Ψα+p+a+z−1 ↑β+a−δ−2

)
↓α+p+a+z−γ+1 ·

(
Ψη−δ−γ−1 ↑β+a−δ−γ−2

)
↓ η−a−δ+1,

then to

(
Ψα+p+a+z+δ ↑β+q+a−1

)
↓α+p+a+z ·

(
Ψη−δ−2 ↑β+a−δ−3

)
↓ η−a−δ+γ ,
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i α
−
b
+
δ

+
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··
·

i α
i α

+
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··
·

i α
+
p
i α
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p
+
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·
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+
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α+p+a
+z − γ

α+p+a
+z

η − a
+γ + 1

η

α− b

α+p+ 1
α+p+a
−γ α+p+a

Figure 3.43: Diagram to show equality of residues between the different components
of µ when d = a− γ − 1. The top half shows nodes in the second component of
tµ whilst the bottom shows nodes in the first, with the dotted lines connecting
nodes of equal residue. The bold line along the top nodes illustrates the border of
the component.

and then this gives us

Ψη ↑β+a−1 ·
(

Ψη−1 ↑β+a−2
)
↓ η−a+γ+1=

(
Ψη ↑β+a−1

)
↓ η−a+γ+1

at the top of the diagram. The node containing η − a + γ + 1 in tµ must be a

Garnir node since it has the same residue as iα+p+a−γ−d = iα+p+1, so we have

the Garnir relation corresponding to this node at the top of the diagram and thus

we have zero.

Finally we can suppose then that η = β + a. Figure 3.44 helps to illustrate

some of the nodes and their associated residues in this case. Rewriting (3.52) in

195
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α+p+a
+z − γ

α+p+a
+z

β+γ+ 1 β + a

α− b

α+p+ 1
α+p+a
−γ α+p+a

Figure 3.44: Diagram to show equality of residues between the different components
of µ when η = β + a. The top half shows nodes in the second component of tµ

whilst the bottom shows nodes in the first, with the dotted lines connecting nodes
of equal residue. The bold line along the top nodes illustrates the border of the
component.

this case gives us the following:

vt
µ
(

Ψα+p+a+z+δ ↑β+q+a−1
)
↓α+p+a+z

·
(

Ψα+p+a+z−1 ↑β+a−δ−2
)
↓α+p+a+z−γ+1

· Ψα+p+a+z−γ ↑β+a−δ−γ−2 ·
(

Ψα ↑β+q+a−1
)
↓α−b+δ+1

·
(

Ψα+p+a−b+δ ↑β+q+a−b−2
)
↓α+p+a−b+δ−γ+1

· Ψβ+a−b−2γ ↑β+q+a−b−γ−2 ·
(

Ψα+p+a−b+δ−γ ↑β−b−γ−2
)
↓α+p−b+δ+1

·
(

Ψβ+a−b−2γ−2 ↑β+q+a−b−γ−3
)
↓β−b−γ

·
(

Ψα+p+z−b+δ−γ−1 ↑β−b−γ−2
)
↓α+p+z+δ−a2+1

·
(

Ψα−b+δ ↑α+p+z+δ−1−a2

)
↓α−a2+1 ·R

(3.54)

This is shown in Figure 3.45. By rearranging we have that (3.54) is equal to
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vt
µ
(

Ψα+p+a+z+δ ↑β+q+a−1
)
↓α+p+a+z

·
(

Ψα+p+a+z−1 ↑β+a−δ−2
)
↓α+p+a+z−γ+1 ·Ψα+p+a+z−γ ↑β+a−δ−γ−2

·
(

Ψα ↑β+q+a−1
)
↓α−b+δ+1

·
(

Ψα+p+a−b+δ ↑β+q+a−b−2
)
↓α+p+a−b+δ−γ+1

·Ψβ+a−b−2γ−2 ↓β−b−γ ·
(

Ψβ+a−b−2γ ↑β+q+a−b−γ−2
)
↓β−b−γ+1

·
(

Ψα+p+a−b+δ−γ ↑β−b−γ−2
)
↓α+p−b+δ+1

·
(

Ψα+p+z−b+δ−γ−1 ↑β−b−γ−2
)
↓α+p+z+δ−a2+1

·
(

Ψα−b+δ ↑α+p+z+δ−1−a2

)
↓α−a2+1 ·R

and now we can apply Corollary 2.6 to

(
Ψα+p+a−b+δ ↑β+q+a−b−2

)
↓α+p+a−b+δ−γ+1 ·Ψβ+a−b−2γ−2 ↓β−b−γ

(take x = α+p+a−b+δ−γ, f = γ, k = β−α−p−a−δ−1, h = a−γ−1, g = 1,

t = γ + q) since iα+p+a−γ+j 6−− iβ+γ+1, . . . , iβ+a−1 for j ∈ {1, . . . , γ}. Then as

iα−b+δ+j 6−− iβ+γ+1, . . . , iβ+a−1 for j ∈ {1, . . . , b− δ} we can also apply Corollary

2.6 to
(
Ψα ↑β+q+a−1

)
↓α−b+δ+1 ·Ψβ+a−b−γ−2 ↓β−b and so (3.54) is equal to

vt
µ
(

Ψα+p+a+z+δ ↑β+q+a−1
)
↓α+p+a+z

·
(

Ψα+p+a+z−1 ↑β+a−δ−2
)
↓α+p+a+z−γ+1 ·Ψα+p+a+z−γ ↑β+a−δ−γ−2

·Ψβ+a−δ−γ−2 ↓β−δ ·
(

Ψα ↑β+q+a−1
)
↓α−b+δ+1

·
(

Ψα+p+a−b+δ ↑β+q+a−b−2
)
↓α+p+a−b+δ−γ+1

·
(

Ψβ+a−b−2γ ↑β+q+a−b−γ−2
)
↓β−b−γ+1

·
(

Ψα+p+a−b+δ−γ ↑β−b−γ−2
)
↓α+p−b+δ+1

·
(

Ψα+p+z−b+δ−γ−1 ↑β−b−γ−2
)
↓α+p+z+δ−a2+1

·
(

Ψα−b+δ ↑α+p+z+δ−1−a2

)
↓α−a2+1 ·R.

Now apply Lemma 2.8 to Ψα+p+a+z−γ ↑β+a−δ−γ−2 ·Ψβ+a−δ−γ−2 ↓β−δ (take

x = α+ p+ a+ z − γ − 1, f = 1, h = β + γ − α− p− a− z − δ, g = a− γ − 1,
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k = 0) since iα+p+a+z−γ 6−− iβ+γ+1, . . . , iβ+a−1. This leaves us with

vt
µ
(

Ψα+p+a+z+δ ↑β+q+a−1
)
↓α+p+a+z

·
(

Ψα+p+a+z−1 ↑β+a−δ−2
)
↓α+p+a+z−γ+1 ·Ψα+p+a+z−γ ↑β−δ−1

·
(

Ψα ↑β+q+a−1
)
↓α−b+δ+1

·
(

Ψα+p+a−b+δ ↑β+q+a−b−2
)
↓α+p+a−b+δ−γ+1

·
(

Ψβ+a−b−2γ ↑β+q+a−b−γ−2
)
↓β−b−γ+1

·
(

Ψα+p+a−b+δ−γ ↑β−b−γ−2
)
↓α+p−b+δ+1

·
(

Ψα+p+z−b+δ−γ−1 ↑β−b−γ−2
)
↓α+p+z+δ−a2+1

·
(

Ψα−b+δ ↑α+p+z+δ−1−a2

)
↓α−a2+1 ·R,

(3.55)

most of which is shown in Figure 3.46. Since iα+p+a+z−γ+j 6−− iβ+γ+1, . . . , iβ+a

for j ∈ {1, . . . , γ − 1} we can apply Corollary 2.6 to

(
Ψα+p+a−b+δ ↑β+q+a−b−2

)
↓α+p+a−b+δ−γ+1

·
(

Ψβ+a−b−2γ ↑β+q+a−b−γ−2
)
↓β−b−γ+1,

and then again to
(
Ψα ↑β+q+a−1

)
↓α−b+δ+1 ·

(
Ψβ+a−b−γ ↑β+q+a−b−2

)
↓β−b+1 since

iα+p+a+z−γ+j 6−− iβ+γ+1, . . . , iβ+a for j ∈ {1, . . . , γ − 1}, so that (3.55) equals

vt
µ
(

Ψα+p+a+z+δ ↑β+q+a−1
)
↓α+p+a+z

·
(

Ψα+p+a+z−1 ↑β+a−δ−2
)
↓α+p+a+z−γ+1 ·

(
Ψβ+a−δ−γ ↑β+q+a−δ−2

)
↓β−δ+1

· Ψα+p+a+z−γ ↑β−δ−1

·
(

Ψα ↑β+q+a−1
)
↓α−b+δ+1 ·

(
Ψα+p+a−b+δ ↑β+q+a−b−2

)
↓α+p+a−b+δ−γ+1

·
(

Ψα+p+a−b+δ−γ ↑β−b−γ−2
)
↓α+p−b+δ+1

·
(

Ψα+p+z−b+δ−γ−1 ↑β−b−γ−2
)
↓α+p+z+δ−a2+1

·
(

Ψα−b+δ ↑α+p+z+δ−1−a2

)
↓α−a2+1 ·R.

(3.56)

Now since iα+p+a+z−γ+j 6−− iβ−γ+1, . . . , iβ+a for j ∈ {1, . . . , γ − 1} we can apply
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i α
−
b
+
δ

+
1

··
·

i α
i α

+
1

··
·

i α
+
p
i α

+
p
+

1
··
·

i α
+
p
+
a

−
γ

i α
+
p
+
a

−
γ
+

1

··
·

i α
+
p
+
a
i α

+
p
+
a

+
1

··
·

i α
+
p
+
a

+
z
−
γ

−
1

i α
+
p
+
a

+
z
−
γ

i α
+
p
+
a

+
z
−
γ

+
1

··
·

i α
+
p
+
a

+
z
−

1

i α
+
p
+
a

+
z

··
·

i α
+
p
+
a

+
z
+
δ

i α
+
p
+
a

+
z
+
δ

+
1

··
·

i β
+
γ
i β

+
γ
+

1
··
·

i β
+
a
i β

+
a
+

1
··
·

i β
+
q
+
a

α
−
b

+
δ
+

1
··
·

α
+
p

−
b
+
δ

α
+
p

−
b
+
δ

+
1

··
·

α
+
p

+
z
−
γ

−
b
+
δ

−
1

α
+
p

+
z
−
γ

−
b
+
δ

··
·

β
−
b

−
a
−

1
β
−
b

−
a

··
·

β
−
b

−
γ
−

1
β
−
b

−
γ

β
−
b

−
γ

+
1

··
·

β
−
b

−
1

β
−
b

··
·

β
+
q

−
b
−

1
β

+
q

−
b

··
·

β
+
q

+
a
−
b

−
γ
−

1

β
+
q

+
a
−
b

−
γ

··
·

β
+
q

+
a
−
b

−
1

β
+
q

+
a
−
b

··
·

β
+
q

+
a
−
b

+
δ

β
+
q

+
a
−
b

+
δ
+

1

··
·

β
+
q

+
a

F
ig

u
re

3.
46

:
P

ar
t

of
th

e
b
ra

id
d
ia

gr
am

fo
r

(3
.5

5)
,

ex
cl

u
d
in

g
( Ψ

α
+
p
+
z
−
b+
δ
−
γ
−

1
↑β
−
b−
γ
−

2
) ↓ α+

p
+
z
+
δ
−
a

2
+

1
·( Ψ

α
−
b+
δ
↑α

+
p
+
z
+
δ
−

1
−
a

2
) ↓ α−

a
2
+

1
·R

.
T

h
e

st
ri

n
g
s

co
lo

u
re

d
b

lu
e

a
re

th
o
se

w
h

ic
h

w
e

p
u

ll
ov

er
m

u
lt

ip
le

cr
os

si
n

gs
u

si
n

g
C

or
ol

la
ry

2.
6.
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Lemma 2.8 to

(
Ψα+p+a+z−1 ↑β+a−δ−2

)
↓α+p+a+z−γ+1 ·

(
Ψβ+a−δ−γ ↑β+q+a−δ−2

)
↓β−δ+1

(take x = α+ p+ a+ z − γ, f = γ − 1, h = β + γ − α− p− a− z − δ, g = a− γ,

k = q) so that (3.56) is equal to

vt
µ
(

Ψα+p+a+z+δ ↑β+q+a−1
)
↓α+p+a+z

·
(

Ψα+p+a+z−1 ↑β+γ−δ−2
)
↓α+p+a+z−γ+1 ·

(
Ψβ+a−δ−1 ↑β+q+a−δ−2

)
↓β+γ−δ

· Ψα+p+a+z−γ ↑β−δ−1 ·
(

Ψα ↑β+q+a−1
)
↓α−b+δ+1

·
(

Ψα+p+a−b+δ ↑β+q+a−b−2
)
↓α+p+a−b+δ−γ+1

·
(

Ψα+p+a−b+δ−γ ↑β−b−γ−2
)
↓α+p−b+δ+1

·
(

Ψα+p+z−b+δ−γ−1 ↑β−b−γ−2
)
↓α+p+z+δ−a2+1

·
(

Ψα−b+δ ↑α+p+z+δ−1−a2

)
↓α−a2+1 ·R.

(3.57)

We show the crossings corresponding to the first few multiplicands of (3.57)

in Figure 3.47. Since iα+p+a+z+j 6−− iβ+γ+1, . . . , iβ+a for j ∈ {0, 1, . . . , δ} we can

apply Corollary 2.6 to

(
Ψα+p+a+z+δ ↑β+q+a−1

)
↓α+p+a+z ·

(
Ψβ+a−δ−1 ↑β+q+a−δ−2

)
↓β+γ−δ

(take x = α+ p+ a+ z − 1, f = δ + 1, k = β + γ − α− p− a− z − δ, h = a− γ,
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i α
+
p
+
a

+
z
−
γ

+
1

··
·

i α
+
p
+
a

+
z
−

1
i α

+
p
+
a

+
z

··
·

i α
+
p
+
a

+
z
+
δ
i α

+
p
+
a

+
z
+
δ

+
1

··
·

i β
+
γ
i β

+
γ

+
1

··
·

i β
+
a
i β

+
a
+

1
··
·

i β
+
q
+
a

α
+
p

+
a
−
z

−
γ
+
1

··
·

β
−
δ
β
−
δ

+
1

··
·

β
+
γ

−
δ
−

1
β
+
γ

−
δ

··
·

β
+
q

+
γ
−
δ

−
1

β
+
q

+
γ
−
δ

··
·

β
+
q

+
a
−
δ

−
1

β
+
q

+
a
−
δ

··
·

β
+
q

+
a

F
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u
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3.3. Skew homomorphisms George Witty

g = q, t = 0). Then we have that (3.57) is equal to

vt
µ
(

Ψβ+a ↑β+q+a−1
)
↓β+γ+1 ·

(
Ψα+p+a+z+δ ↑β+q+a−1

)
↓α+p+a+z

·
(

Ψα+p+a+z−1 ↑β+γ−δ−2
)
↓α+p+a+z−γ+1 ·Ψα+p+a+z−γ ↑β−δ−1

·
(

Ψα ↑β+q+a−1
)
↓α−b+δ+1 ·

(
Ψα+p+a−b+δ ↑β+q+a−b−2

)
↓α+p+a−b+δ−γ+1

·
(

Ψα+p+a−b+δ−γ ↑β−b−γ−2
)
↓α+p−b+δ+1

·
(

Ψα+p+z−b+δ−γ−1 ↑β−b−γ−2
)
↓α+p+z+δ−a2+1

·
(

Ψα−b+δ ↑α+p+z+δ−1−a2

)
↓α−a2+1 ·R.

Since the node containing β + γ + 1 in tµ will be a Garnir node (otherwise we

could not have taken d = a− γ − 1), we have a Garnir relation at the top of our

diagram, giving us zero. With this we have finally shown that vt
µ
ψsgλ

(
r̃ + 1

)
is zero and we are done checking relations in (iii).

Conclusion

Having checked all of the relations in (i), (ii) and (iii), we are done and so there is

indeed a homomorphism ϕ : Sλ → Sµ given by vt
λ 7→ vt

µ
ψs.

3.3.4 Extending the result

In order to describe the degree of a homomorphism arising from moving a skew

shape, we will need to use the following definitions given two partitions λ and µ

and a skew shape of the form [λ \ µ].

• Given a node (x, y) ∈ [λ\µ] such that (x−1, y), (x−1, y−1), (x, y−1) /∈ [λ\µ],

call the nodes (x+ j, y + j) ∈ [λ \ µ] for j ≥ 0 a positive diagonal.

• Given a node (x, y) ∈ [λ \ µ] such that (x− 1, y), (x, y − 1) ∈ [λ \ µ] whilst

(x− 1, y − 1) /∈ [λ \ µ], call the nodes (x+ j, y + j) ∈ [λ \ µ] such that j ≥ 0

a negative diagonal.

This definition extends naturally to components of multipartitions. Let a+ be the
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3.3. Skew homomorphisms George Witty

number of nodes in positive diagonals, and a− be the number of nodes in negative

diagonals. Then the base degree of λ \ µ is defined as a+ − a−.

Example 3.15. For the given skew shape below, the positive diagonals are shown

in blue whilst the negative diagonals are shown in red.

The base degree is 10− 5 = 5.

♦

Definition 3.16. Let l ≥ 2 and suppose that λ and µ are l-multipartitions of n,

where [µ] is formed from [λ] by moving a skew shape of base degree b from the qth

component to the pth, for some p and q such that p < q. In addition suppose that

e ≥ max
p≤c≤q

{hλ(c)

11 + 1, hµ
(c)

11 + 1}.

Suppose that amongst each component λ(c′) with c′ ∈ {p + 1, p + 2, . . . , q − 1},

there are exactly k ≥ 0 such components to which the same skew shape of the

same residues can be added. If k > 0, then we also require that e is large enough

so that the diagonal residue condition holds when the skew shape is added to

these k components. Suppose that amongst the components λ(c′) that are not one

of these k components, there are no removable nodes of any of the residues in the

skew shape, and that there are mι addable nodes of residue ι, with aι instances

of the residue ι within the skew shape. Then we say that (λ, µ)k is a skew pair,

of degree (k + 1)b+
∑

ι aιmι, where the sum runs over all residues ι in the skew

shape.

Remark 3.17. Since we have the diagonal residue condition, if λ is one half of a

skew pair, then in a component λ(c′) with c′ ∈ {p+ 1, p+ 2, . . . , q − 1}, either we

can either have some individual addable nodes of the residues in the skew shape
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3.3. Skew homomorphisms George Witty

or we can add only the entire skew shape itself and not some other individual

nodes of residues within the skew shape.

We may sometimes refer to components λ(c′) with c′ ∈ {p+ 1, p+ 2, . . . , q− 1}

as the middle components.

Corollary 3.18. Suppose that (λ, µ)k is a skew pair of degree (k+ 1)b+
∑

ι aιmι.

Let s be the µ-tableau defined by considering tλ and moving the skew shape

from the qth component to the pth, keeping their values intact. Then there is

a homomorphism ϕ : Sλ → Sµ given by vt
λ 7→ vt

µ
ψs. This homomorphism

has degree (k + 1)b +
∑

ι aιmι and can be written as a composition of k + 1

homomorphisms.

Proof. If (λ, µ) is a row pair, then we can simply use Corollary 3.9. Note that in

this case b = 1, aι ≤ 1 for every residue ι and that mι is the number of addable

nodes of residue ι across all components λ(p+1), . . . , λ(q−1) for every ι except that

which is the leftmost residue in the row, in which case k +mι counts this value

instead. Then the degree (k + 1)b+
∑

ι aιmι matches that of Corollary 3.9. So

instead we shall suppose that the shape moved is definitely a skew shape of at

least two rows worth of nodes.

We shall begin by assuming that k = 0. Define α, β, q, a, a2 and b similarly

to Theorem 3.14, so that the bottom two rows of the skew shape to be moved

are as in (3.17). Then ψs =
(
Ψα+p+a ↑β+q+a−1

)
↓α+p+1 ·

(
Ψα ↑β−1

)
↓α−a2+1 ·R

where R is a product of crossings coming from the rows higher than the bottom

two in the skew shape. We need to check that the generating relations of Sλ hold

on ϕ
(
vt
λ
)

.

Similarly to Theorem 3.14, define a new KLR algebra H Λκ
n using quantum

characteristic ẽ := e and multicharge

κ̃ := (κ1, κ2, . . . , κq, resλ(β + q + a), κq+1, κq+2, . . . , κl)
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3.3. Skew homomorphisms George Witty

and define l + 1-multipartitions:

λ̃ :=
(
λ(1), λ(2), . . . , λ(q−1), λ

(q)

k̂2
, (1), λ(q+1), λ(q+2), . . . , λ(l)

)
λ̃1 :=

(
λ(1), λ(2), . . . , λ(p−1), µ

(p)

k̂1
, µ(p+1), µ(p+2), . . . , µ(q), (1),

µ(q+1), µ(q+2), . . . , µ(l)
)

µ̃ :=
(
µ(1), µ(2), . . . , µ(q),∅, µ(q+1), µ(q+2), . . . , µ(l)

)

We define a λ̃1-tableau s1 by

ψ̃s1 =
(

Ψα+p+a−1 ↑β+q+a−2
)
↓α+p+1

(
Ψα ↑β−1

)
↓α−a2+1 ·R̃,

where R̃ is just R but every ψ is replaced by ψ̃, and also a µ̃-tableau s2 by

ψ̃s2 = Ψα+p+a ↑Q−1 where Q =
∑q

i=1

∣∣λ(i)
∣∣. Then by induction we have a homo-

morphism ϕ1 : Sλ̃ → Sλ̃1 given by vt
λ̃ 7→ vt

λ̃1 ψ̃s1 , and another ϕ2 : Sλ̃1 → Sµ̃

given by vt
λ̃1 7→ vt

µ̃
ψ̃s2 . Defining

ψ̃s :=
(

Ψ̃α+p+a ↑β+q+a−1
)
↓α+p+1 ·

(
Ψ̃α ↑β−1

)
↓α−a2+1 ·R̃,

the composition of ϕ2 with ϕ1 gives us a homomorphism ϕ̃ := ϕ2 ◦ ϕ1 : Sλ̃ → Sµ̃

given by vt
λ̃ 7→ vt

µ̃
ψ̃sΨ̃β+q+a ↑Q−1. This gives us relations (i*), (ii*), (iii*), just

as in Theorem 3.14, and we can use these to check the relations (i), (ii) and (iii),

since the diagrams for vt
µ
ψs and vt

µ̃
ψ̃s are identical.

For each type of relation, the above setup allows us to follow the same methods

as in Theorem 3.14, only now accounting for the additional nodes in between the

first and last components of [µ] as well as those outside of these components. In

checking each of the relations, we apply the same reasoning as in Theorem 3.14;

however, there are a few changes to be made at the places annotated by the

following labels in the margins:

(C1) Replace n with Q throughout and note that iα+p+a 6−− iβ+q+a+1, . . . , iQ.

For r ∈ {Q + 1, . . . , n − 1}, we may follow the same reasoning as for

r ∈ {1, . . . , β + q + a− 1}.
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(C2) If ψα+p+zj is not a row relation then by the diagonal residue condition the

node containing α+p+zj in tµ must be a Garnir node, so the corresponding

Garnir relation will be at the top of the diagram for those terms in the sum.

(C3) We can define λ̄, µ̄ in the same way, only in addition dropping the components

labelled from 1 to p − 1. Note that we should really relabel the tableaux

entries here by a shift, but this would only serve to make things more

confusing. We can then define ν̄ and the tableaux t1 and t2 and we will still

get homomorphisms ϕ1 and ϕ2 in the same way.

(C4) Note that if ψα+p+a+z+δ is not a row relation then the node containing

α+ p+ a+ z in tµ will always be a Garnir node if it occurs in the middle

components, otherwise there will be a removable node of a residue which

occurs in the skew shape, which we have assumed do not exist. Hence from

now on we can assume the node containing α + p + a + z cannot lie in a

middle component.

(C5) The node containing α+ ζt + a may belong to a middle component. Take

D ∈ {0, 1, . . . ,m − 1} maximal so that ψα+ζt+a+j is a row relation for

j ∈ {0, 1, . . . , D − 1}. If D = m − 1 and ψα+ζt+a+m−1 is a row relation

then we can follow the reasoning just as before (note in particular this

will happen if the node containing α + ζt + a is on the bottom row of a

middle component). So suppose otherwise. If D = 0 then let α+ ζt + a+X

be the value of the node beneath that containing α + ζt + a and write(
Ψα+p+a−b+δ ↑β+q+a−b−2

)
↓α+p−b+δ+1 ·Ψα+ζt−b+δ ↑α+p+z−b+δ−m−1 as

(
Ψα+p+a−b+δ ↑β+q+a−b−2

)
↓α+p+a−b+δ−m

·
(

Ψα+p+a−b+δ−m−1 ↑β+q+a−b−m−3
)
↓α+p−b+δ+1

·Ψα+ζt−b+δ ↑α+ζt−b+δ+X−1 ·Ψα+ζt−b+δ+X ↑α+p+z−b+δ−m−1

and since iα+ζt+a 6−− iα+p+1, . . . , iα+p+a−m−1 apply Corollary 2.6 to the
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second and third multiplicand in the above. Then we need only consider

(
Ψα+p+a−b+δ ↑β+q+a−b−2

)
↓α+p+a−b+δ−m

·Ψα+ζt+a−b+δ−m−1 ↑α+ζt+a−b+δ+X−m−2 .

Now, if we ignore the fact that iα+ζt+a+X = iα+p+a−m we could apply

Corollary 2.6 here since iα+ζt+a 6−− iα+ζt+a+1, . . . , iα+ζt+a+X−1. Then we

could apply Corollary 2.6 again since iα+ζt+a 6−− iα−b+δ+1, . . . , iα, giving

Ψα+ζt+a ↑α+ζt+a+X−1 at the top of the diagram, which is the Garnir relation

for the node containing α + ζt + a so this is would be zero. However, we

have that iα+ζt+a+X = iα+p+a−m, so in fact we have to also take this into

consideration. We instead use Corollary 2.6 to pull over all of the crossings

except the last. Then we have

Ψα+ζt+a−b+δ ↑α+ζt+a−b+δ+X−2

·
(

Ψα+p+a−b+δ ↑α+ζt+a−b+δ+X−1
)
↓α+p+a−b+δ−m

· ψα+ζt+a−b+δ+X−m−2

·
(

Ψα+ζt+a−b+δ+X ↑β+q+a−b−2
)
↓α+ζt+a−b+δ+X−m .

Since iα+p+a−m ← iα+ζt+a → iα+ζt+a+X we apply the braid relation to

ψα+ζt+a−b+δ+X−m−2ψα+ζt+a−b+δ+X−m−1ψα+ζt+a−b+δ+X−m−2. If we pull

the crossing over we actually just apply the reasoning above where we

applied Corollary 2.6 to the whole thing. If not, then consider the crossings

(
Ψα+p+a−b+δ ↑β+q+a−b−2

)
↓α+p+a−b+δ−m+1

·Ψα+ζt+a−b+δ+X−m ↑α+ζt+a−b+δ+X+X2−m−1

·Ψα+ζt+a−b+δ+X+X2−m ↑β+q+a−b−m−2,

where α+ ζt + a+X +X2 is the value of the node beneath that containing

α+ζt+a+X. Apply Corollary 2.6 to the first two multiplicands in question,
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since

iα+p+a−m+1, . . . , iα+p+a 6−− iα+ζt+a+X+1, . . . , iα+ζt+a+X+X2 .

Then pull the resulting crossings Ψα+ζt+a−b+δ+X ↑α+ζt+a−b+δ+X+X2−1

over the next set of strings using Corollary 2.6 since iα+ζt+a+X 6−−

iα−b+δ+1, . . . , iα. Thus we have the Garnir relation for the node containing

α+ ζt + a+X at the top of the diagram so this is zero.

Now suppose D > 0, then since

iα+p+1 . . . iα+p+a−m+1 6= iα+ζt+a+1 . . . iα+ζt+a+D,

rewrite
(
Ψα+p+a−b+δ ↑β+q+a−b−2

)
↓α+p−b+δ+1 ·Ψα+ζt−b+δ ↑α+p+z−b+δ−m−1

as

(
Ψα+p+a−b+δ ↑β+q+a−b−2

)
↓α+p+a−b+δ−m+2

·
(

Ψα+p+a−b+δ−m+1 ↑β+q+a−b−m−1
)
↓α+p−b+δ+1

·Ψα+ζt−b+δ ↑α+ζt−b+δ+D−1 ·Ψα+ζt−b+δ+D ↑α+p+z−b+δ−m−1

(3.58)

and apply Corollary 2.6 to

(
Ψα+p+a−b+δ−m+1 ↑β+q+a−b−m−1

)
↓α+p−b+δ+1 ·Ψα+ζt−b+δ ↑α+ζt−b+δ+D−1

giving

Ψα+ζt+a−b+δ−m+1 ↑α+ζt+a−b+δ−m+D

·
(

Ψα+p+a−b+δ−m+1 ↑β+q+a−b−m−1
)
↓α+p−b+δ+1 .
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Then (3.58) is equal to

(
Ψα+p+a−b+δ ↑α+ζt+a−b+δ−2

)
↓α+p+a−b+δ−m+2

·
(

Ψα+ζt+a−b+δ−1 ↑α+ζt+a−b+δ+D−1
)
↓α+ζt+a−b+δ−m+1

·Ψα+ζt+a−b+δ−m+1 ↑α+ζt+a−b+δ−m+D

·
(

Ψα+ζt+a−b+δ+D ↑β+q+a−b−2
)
↓α+ζt+a−b+δ−m+D+2

·
(

Ψα+p+a−b+δ−m+1 ↑β+q+a−b−m−1
)
↓α+p−b+δ+1

·Ψα+ζt−b+δ+D ↑α+p+z−b+δ−m−1 .

(3.59)

In Figure 3.48 we show some of the crossings at this stage. Now write the

second and third multiplicands of the above as

(
Ψα+ζt+a−b+δ−1 ↑α+ζt+a−b+δ+D−1

)
↓α+ζt+a−b+δ−m+D+1

·
(

Ψα+ζt+a−b+δ−m+D ↑α+ζt+a−b+δ−m+2D
)
↓α+ζt+a−b+δ−m+1

·Ψα+ζt+a−b+δ−m+1 ↑α+ζt+a−b+δ−m+D

and then as

iα+p+a−m+D+1 → · · · → iα+p+a−m+2 → iα+ζt+a ← iα+ζt+a+1 ← · · ·

· · · ← iα+ζt+a+D

apply Lemma 2.10 to

(
Ψα+ζt+a−b+δ−m+D ↑α+ζt+a−b+δ−m+2D

)
↓α+ζt+a−b+δ−m+1

·Ψα+ζt+a−b+δ−m+1 ↑α+ζt+a−b+δ−m+D

(take x = α+ ζt + a− b+ δ−m, f = D, g = D) and replace this with a sum

of terms, each which begin with ψα+ζt+a−b+δ−m+D+j for j ∈ {1, . . . , D},

along with another term where these crossings all disappear. In the former
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cases, as iα+ζt+a+j−1 6−− iα+p+a−m+D+2, . . . , iα+p+a, apply Corollary 2.6 to

(
Ψα+ζt+a−b+δ−1 ↑α+ζt+a−b+δ+D−1

)
↓α+ζt+a−b+δ−m+D+1

· ψα+ζt+a−b+δ−m+D+j ,

then as iα+ζt+aj−1 6−− iα−b+δ+1, . . . , iα we can apply Corollary 2.6 to(
Ψα ↑β+q+a−1

)
↓α−b+δ+1 ·ψα+ζt+a−b+δ+j−1. Then we have a ψα+ζt+a+j−1

crossing at the top of the diagram. This will be a row relation by assumption.

In the latter case, where the crossings disappear, we have that (3.59) is

equal to

(
Ψα+p+a−b+δ ↑α+ζt+a−b+δ−2

)
↓α+p+a−b+δ−m+2

·
(

Ψα+ζt+a−b+δ−1 ↑α+ζt+a−b+δ+D−1
)
↓α+ζt+a−b+δ−m+D+1

·
(

Ψα+ζt+a−b+δ+D ↑β+q+a−b−2
)
↓α+ζt+a−b+δ−m+D+2

·
(

Ψα+p+a−b+δ−m+1 ↑β+q+a−b−m−1
)
↓α+p−b+δ+1

·Ψα+ζt−b+δ+D ↑α+p+z−b+δ−m−1 .

Figure 3.49 shows some of the term we are dealing with now. Since

we are assuming that α + ζt + a + D is not a row relation then write

gµ

(
α+ ζt + a+D

)
= Ψα+ζt+a+D ↑α+ζt+a+D+X for some X ≥ 0. Rewrite

the second and third multiplicands here in the form

(
Ψα+ζt+a−b+δ−1 ↑β+q+a−b−2

)
↓α+ζt+a−b+δ−m+D+1

·Ψα+ζt+a−b+δ−m+2D+1 ↑α+ζt+a−b+δ−m+2D+X+1

·Ψα+ζt+a−b+δ−m+2D+X+2 ↑β+q+a−b−m+D−1

·
(

Ψα+ζt+a−b+δ−m+2D ↑β+q+a−b−m+D−2
)
↓α+ζt+a−b+δ−m+D+2

and now apply Corollary 2.6 to

(
Ψα+ζt+a−b+δ−1 ↑β+q+a−b−2

)
↓α+ζt+a−b+δ−m+D+1

·Ψα+ζt+a−b+δ−m+2D+1 ↑α+ζt+a−b+δ−m+2D+X+1
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3.3. Skew homomorphisms George Witty

since

iα+p+a−m+D+2, . . . , iα+p+a 6= iα+ζt+a+D+1, . . . , iα+ζt+a+D+X ,

and then apply Corollary 2.6 again to

(
Ψα ↑β+q+a−1

)
↓α−b+δ+1 ·Ψα+ζt+a−b+δ+D ↑α+ζt+a−b+δ+D+X .

This gives us gµ

(
α+ ζt + a+D

)
at the top of the diagram, and thus we

will obtain zero.

(C6) We may also have terms which begin with ψZ−b+δ−γ where Z is the entry

of a node in a middle component of µ such that iZ = iα+p+a−γ−j for some

j ∈ {1, . . . , d}. In this case either ψZ is a row relation, and we can pull

ψZ−b+δ−γ to the top for the same reasons as we could ψα+p+a−b+δ−γ+Z , or

the node containing Z is a Garnir node (otherwise it is a removable node of

a forbidden residue) and so in the application of Lemma 2.9, note that we

could have instead applied Corollary 2.6 at (∗) to

(
Ψx+f+1 ↑x+2f+g−γ

)
↓x+f+2−γ ·Ψx+f+zγj+1−γ ↑x+2f+g−2γ−1,

which would then instead correspond to a term that begins with the crossings

ΨZ−b+δ−γ ↑ η−b−2γ−3. Then apply Corollary 2.6 in the same way as above

to pull ΨZ−b+δ−γ ↑ η−b−2γ−3 to the top, giving ΨZ ↑ η−δ−γ−3 at the top of

the diagram which will contain the Garnir relation corresponding to the

node containing Z (in this case d ≥ 1 thus the node containing η− δ− γ− 2

is either that containing α+ p+ a+ z − γ or to the right of it).

(C7) We may have Z ∈ {1, . . . , z−γ−1} such that the node containing α+p+a+Z

lies in a middle component and iα+p+a+Z = iα+p+a−γ−d−1. In this case,
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3.3. Skew homomorphisms George Witty

write Ψα+p+a−b+δ−d−γ ↑ η−b−2γ−2d−3 ·Ψα+p+a−b+δ−γ−d−1 ↑ η−b−2γ−d−3 as

Ψα+p+a−b+δ−d−γ ↑ η−b−2γ−2d−3 ·Ψα+p+a−b+δ−γ−d−1 ↑ η−b−2γ−2d−3

·Ψη−b−2γ−2d−2 ↑ η−b−2γ−d−3

and apply Lemma 2.7 to

Ψα+p+a−b+δ−d−γ ↑ η−b−2γ−2d−3 ·Ψα+p+a−b+δ−γ−d−1 ↑ η−b−2γ−2d−3

(take x and g as in the application of Corollary 2.6). We deal with

the term beginning with ψα+p+a−b+δ−γ−d−1 in the same way as in

the original proof. In addition there will be terms beginning with

Ψα+p+a−b+δ−d−γ+Z ↑ η−b−2γ−2d−3. Then apply Corollary 2.6 to

(
Ψα+p+a−b+δ−γ ↑ η−b−2γ−d−3

)
↓α+p+a−b+δ−d−γ

·Ψα+p+a−b+δ−d−γ+Z ↑ η−b−2γ−2d−3

since iα+p+a+Z 6−− iα+p+a−γ−d+1, . . . , iα+p+a−γ , then apply Corollary 2.6 to(
Ψα+p+a−b+δ ↑β+q+a−b−2

)
↓α+p+a−b+δ−γ+1 ·Ψα+p+a−b+δ−γ+Z ↑ η−b−2γ−d−3

as iα+p+a+Z 6−− iα+p+a−γ+1, . . . , iα+p+a, and then apply Corollary 2.6 to(
Ψα ↑β+q+a−1

)
↓α−b+δ+1 ·Ψα+p+a−b+δ+Z ↑ η−b−γ−d−3. But now using the

fact that η− d = α+ p+a+ z+ δ+ 1 we will have Ψα+p+a+Z ↑α+p+a+z−γ−2

at the top of the diagram, and either ψα+p+a+Z will be a row relation and

this is zero, or the node containing α + p + a + Z will be a Garnir node

(otherwise it is a removable node of a forbidden residue) this will contain

the corresponding Garnir relation gµ

(
α+ p+ a+ Z

)
.

Now suppose that k ≥ 0, then we wish to show that we can rewrite ϕ as

a composition of k + 1 homomorphisms. When k = 0 this is trivially true, so

suppose that k > 0. Let c̃ ∈ {p+ 1, p+ 2, . . . , q − 1} be maximal so that the skew

shape (with residues intact) can be added to λ(c̃). Suppose that if we add the
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skew shape to
[
λ(c̃)
]

we obtain the diagram
[
ν(c̃)
]

and consider the multipartition

ν :=
(
λ(1), λ(2), . . . , λ(c̃−1), ν c̃, µ(c̃+1), µ(c̃+2), . . . , µ(l)

)
.

Let u be the ν-tableau defined by considering tλ and moving the skew shape from

the qth component to the c̃th, keeping its tableau values intact. Then, noting

Remark 3.17, by induction we have that there is a homomorphism ϕ1 : Sλ → Sν

given by vt
λ 7→ vt

ν
ψu. Similarly, we also obtain a homomorphism ϕ2 : Sν → Sµ

given by vt
ν 7→ vt

µ
ψv where v is the µ-tableau defined by considering tν and

moving the skew shape from the c̃th component to the pth.

Note that d(v) maps the entries of the skew shape in tµ to the values of the

corresponding entries as they were in tν , whilst d(u) maps the entries of the skew

shape in tν to the values of the corresponding entries as they were in tλ. Thus

performing d(u) followed by d(v) will map the entries of the skew shape in tµ

to the values of the corresponding entries as they were in tλ, and we have that

d(v) ·d(u) = d(s) and this is a reduced expression, thus ψv ·ψu = ψs. With this in

mind, ϕ2 ◦ ϕ1 : Sλ → Sµ is given by vt
λ 7→ vt

µ
ψv · ψu = vt

µ
ψs thus ϕ = ϕ2 ◦ ϕ1.

Hence ϕ can be written as a composition of k + 1 homomorphisms as we wanted.

Finally, we shall describe the degree of ϕ. By Proposition 1.34 we have

that deg
(
vt
µ
ψs
)

= deg(s). We wish to compute deg
(
vt
µ
ψs
)
− deg

(
vt
λ
)

=

deg(s)−deg
(
tλ
)
. Using the recursive definition of the degree, the nodes containing

n, n − 1, . . . , β + q + a + 1 in both tableaux contribute the same value to the

respective degrees. Hence

deg(s)− deg
(
tλ
)

= deg(s<β+q+a+1)− deg
(
tλ<β+q+a+1

)
.

Now, when calculating the change in degree due to those nodes within the skew

shape, most nodes will simply be of such a residue ι that there are mι addable

nodes below them and no removable nodes below them amongst the components

indexed by p+ 1, p+ 2, . . . , q. However, if such a node belongs to a positive or

negative diagonal, there will still be mι addable and no removable nodes below
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it amongst the components indexed by p + 1, p + 2, . . . , q − 1. In addition, in

any of the k components to which the skew shape of the same residues can be

added along with the component indexed by q, if the node in question lies in

a positive diagonal then there will in addition be an addable node of residue ι,

whilst conversely if the node belongs to a negative diagonal then there will in

addition be an removable node of residue ι.

Thus we find that as we count over the nodes in the skew shape, the degree is

obtained by summing (k+1)b with
∑

ι aιmι. The first summand arising due to the

additional addable or removable nodes corresponding to those in the positive or

negative diagonals, and the second arising simply from the miscellaneous addable

nodes amongst the components indexed by p+ 1, p+ 2, . . . , q − 1. Thus

deg(s)− deg
(
tλ
)

= (k + 1)b+
∑
ι

aιmι + deg(s<x+1)− deg
(
tλ<x+1

)

where x+ 1 is the least value present in the skew shape within the tableaux s and

tλ. Then since s<x+1 and tλ<x+1 are identical, we have that

deg(s)− deg
(
tλ
)

= (k + 1)b+
∑
ι

aιmι,

i.e. the degree of ϕ is (k + 1)b+
∑

ι aιmι.

As before, we are now in the position to consider what happens when we move

two or more different skew shapes to form [µ] from [λ]. We extend the hypothesis

of Corollary 3.10 to consider skew shapes instead of rows, and with this we obtain

another similar corollary.

Corollary 3.19. Let l ≥ 2 and suppose that λ, ν1, ν2 and µ are l-multipartitions

of n. Suppose that [µ] is formed from [λ] by moving two separate skew shapes.

Suppose [ν1] is formed from [λ] by moving just one of the skew shapes, whilst [ν2]

is formed from [λ] by moving just the other skew shape. Suppose that given one

of the skew shapes, the residues contained within it are not equal nor adjacent to

any of those contained within the other skew shape. Suppose that (λ, ν1), (λ, ν2),
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(ν1, µ), (ν2, µ) are all skew pairs. Then there are non-zero homomorphisms

ϕλν1 : Sλ → Sν1 , ϕν1µ : Sν1 → Sµ,

ϕλν2 : Sλ → Sν2 , ϕν2µ : Sν2 → Sµ,

and we have that ϕν1µ ◦ ϕλν1 = ϕν2µ ◦ ϕλν2 6= 0.

In addition, if (λ, ν1) and (ν1, µ) have degrees d1 and d2 respectively, we have

that the degree of ϕν1µ ◦ ϕλν1 is d1 + d2.

Proof. Since (λ, ν1), (λ, ν2), (ν1, µ), (ν2, µ) are all skew pairs, by Corollary 3.18

we have that there are non-zero homomorphisms

ϕλν1 : Sλ → Sν1 , ϕν1µ : Sν1 → Sµ,

ϕλν2 : Sλ → Sν2 , ϕν2µ : Sν2 → Sµ.

We shall label the tableau entries in the skew shapes being moved differently

to the labelling used in Theorem 3.14. Suppose the first skew shape being moved

has k rows, with rj nodes in each row (for j ∈ {1, . . . , k}). We also label the first

node in row j of the shape as βj + 1. Within tλ, this skew shape will look as

follows:
β1 + 1 β1 + r1

β2 + 1 β2 + r2

. .
.

. .
.

βk + 1 βk + rk

Label nodes in the component to which the skew shape will be added to so that if

u is the tableau formed by moving the skew shape, we have

ψu =
(

Ψαk+
∑
k
↑βk+rk−1

)
↓αk+

∑
k−1 +1 · · · · ·

(
Ψα1+r1 ↑β1+r1−1

)
↓α1+1 (3.60)

for some a1, . . . , ak, where
∑

j :=
∑j

i=1 rj to ease notation.

Similarly we suppose that the second skew shape being moved has k′ rows,

with r′j nodes in each row (for j ∈ {1, . . . , k′}). We label the first node in row j

as β′j + 1. If v is the tableau formed by moving this skew shape, we have

ψv =
(

Ψα′
k′+

∑′
k′
↑β
′
k′+r

′
k′−1

)
↓α′

k′+
∑′
k′−1 +1 · · · · ·

(
Ψα′1+

∑′
1
↑β′1+r′1−1

)
↓α′1+1,
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where
∑′

j :=
∑j

i=1 r
′
j .

With this in mind, we can write

ϕλν1(vt
λ
) = vt

ν1
(

Ψαk+
∑
k
↑βk+rk−1

)
↓αk+

∑
k−1 +1 · · · · ·

(
Ψα1+r1 ↑β1+r1−1

)
↓α1+1

and

ϕλν2(vt
λ
) = vt

ν2
(

Ψα′
k′+

∑′
k′
↑β
′
k′+r

′
k′−1

)
↓α′

k′+
∑′
k′−1 +1 · · · ·

·
(

Ψα′1+
∑′

1
↑β′1+r′1−1

)
↓α′1+1 .

Without loss of generality, assume that β1 < β′1. If β1 < α′1 then we will in

fact have that βk + rk < α′1 + 1 and so

ϕν1µ ◦ ϕλν1 = vt
µ
(

Ψα′
k′+

∑′
k′
↑β
′
k′+r

′
k′−1

)
↓α′

k′+
∑′
k′−1 +1 · · · ·

·
(

Ψα′1+
∑′

1
↑β′1+r′1−1

)
↓α′1+1 ·

(
Ψαk+

∑
k
↑βk+rk−1

)
↓αk+

∑
k−1 +1

· · · · ·
(

Ψα1+r1 ↑β1+r1−1
)
↓α1+1

= vt
µ
(

Ψαk+
∑
k
↑βk+rk−1

)
↓αk+

∑
k−1 +1 · · · ·

·
(

Ψα1+r1 ↑β1+r1−1
)
↓α1+1 ·

(
Ψα′

k′+
∑′
k′
↑β
′
k′+r

′
k′−1

)
↓α′

k′+
∑′
k′−1 +1

· · · · ·
(

Ψα′1+
∑′

1
↑β′1+r′1−1

)
↓α′1+1

= ϕλν1 ◦ ϕν1µ

and we are done. Hence, assume that β1 ≥ α′1. Then we have multiple cases.

Case I: The skew shape containing β1 is moved to a position above

the other skew shape in [µ]

In this case, we have that

ϕν1µ◦ϕλν1 =
(

Ψα′
k′+

∑
k +

∑′
k′
↑β
′
k′+r

′
k′−1

)
↓α′

k′+
∑
k +

∑′
k′−1 +1 · · · ·

·
(

Ψα′1+
∑
k +

∑′
1
↑β′1+r′1−1

)
↓α′1+

∑
k +1

·
(

Ψαk+
∑
k
↑βk+rk−1

)
↓αk+

∑
k−1 +1 · · · · ·

(
Ψα1+r1 ↑β1+r1−1

)
↓α1+1
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whilst

ϕν2µ ◦ ϕλν2 =
(

Ψαk+
∑
k
↑βk+

∑′
k′ +rk−1

)
↓αk+

∑
k−1 +1 · · · ·

·
(

Ψα1+r1 ↑β1+
∑′
k′ +r1−1

)
↓α1+1

·
(

Ψα′
k′+

∑′
k′
↑β
′
k′+r

′
k′−1

)
↓α′

k′+
∑′
k′−1 +1 · · · ·

·
(

Ψα′1+
∑′

1
↑β′1+r′1−1

)
↓α′1+1 .

Now observe that for γ ∈ {0, 1, . . . , k′ − 1}, if we have

(
Ψα′

k′+
∑′
k′ +

∑
k
↑β
′
k′+r

′
k′−1

)
↓α′

k′+
∑
k +

∑′
k′−1 +1 · · · ·

·
(

Ψα′
k′−(γ−1)

+
∑′
k′−(γ−1) +

∑
k
↑β
′
k′−(γ−1)

+r′
k′−(γ−1)

−1
)
↓α′

k′−(γ−1)
+
∑
k +

∑′
k′−γ +1

·
(

Ψαk+
∑
k
↑βk+

∑′
k′−γ +rk−1

)
↓αk+

∑
k−1 +1 · · · ·

·
(

Ψα1+r1 ↑
β1+

∑′
k′−γ +r1−1

)
↓α1+1

·
(

Ψα′
k′−γ+

∑′
k′−γ
↑β
′
k′−γ+r′

k′−γ−1
)
↓α′

k′−γ+
∑′
k′−(γ+1) +1 · · · ·

·
(

Ψα′1+r′1
↑β′1+r′1−1

)
↓α′1+1

then we can apply Lemma 2.13 to

(
Ψαk+

∑
k
↑βk+

∑′
k′−γ +rk−1

)
↓αk+

∑
k−1 +1 · · · · ·

(
Ψα1+r1 ↑

β1+
∑′
k′−γ +r1−1

)
↓α1+1

·
(

Ψα′
k′−γ+

∑′
k′−γ
↑β
′
k′−γ+r′

k′−γ−1
)
↓α′

k′−γ+
∑′
k′−(γ+1) +1

(take: x = α1, fi = ri, ki = αi+1 − αi, (i ∈ {1, . . . , k − 1}), kk = α′k′−γ − αk +∑
k′−(γ+1), h = r′k′−γ , g1 = β1 − α′k′−γ , gi = βi − βi−1 − ri−1, (i ∈ {2, . . . , k}),

t = β′k′−γ − βk −
∑′

k′−(γ+1)−rk). Then ljc = iαj+
∑
j−1 +c for j ∈ {1, . . . , k} and

c ∈ {1, . . . , fj}, whilst mb = iα′
k′−γ+

∑
k +

∑′
k′−(γ+1) +b for b ∈ {1, . . . , r′k′−γ} and we

have that ljc 6−− mb for admissible j, c and b since the nodes of residues ljc belong

to one of the moved sets of nodes whilst the nodes of residues mb belong to the

other.
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After applying the lemma we have

(
Ψα′

k′+
∑′
k′ +

∑
k
↑β
′
k′+r

′
k′−1

)
↓α′

k′+
∑
k +

∑′
k′−1 +1 ·

· · · ·
(

Ψα′
k′−γ+

∑′
k′−γ +

∑
k
↑β
′
k′−γ+r′

k′−γ−1
)
↓α′

k′−γ+
∑
k +

∑′
k′−(γ+1) +1

·
(

Ψαk+
∑
k
↑βk+

∑′
k′−(γ+1) +rk−1

)
↓αk+

∑
k−1 +1 · · · ·

·
(

Ψα1+r1 ↑
β1+

∑′
k′−(γ+1) +r1−1

)
↓α1+1

·
(

Ψα′
k′−(γ+1)

+
∑′
k′−(γ+1)

↑β
′
k′−(γ+1)

+r′
k′−(γ+1)

−1
)
↓α′

k′−(γ+1)
+
∑′
k′−(γ+2) +1 ·

· · · ·
(

Ψα′1+r′1
↑β′1+r′1−1

)
↓α′1+1 .

All we have in effect done is ‘replaced’ γ with γ + 1.

So apply the lemma repeatedly to the terms corresponding to ϕν2µ ◦ ϕλν2 .

Eventually we obtain the expression for ϕν1µ ◦ϕλν1 , thus ϕν2µ ◦ϕλν2 = ϕν1µ ◦ϕλν1 .

Case II: The skew shape containing β1 is moved to a position below

the other skew shape in [µ]

In this case we have that

ϕν1µ ◦ ϕλν1 =
(

Ψα′
k′+

∑′
k′
↑β
′
k′+r

′
k′−1

)
↓α′

k′+
∑′
k′−1 +1 · · · ·

·
(

Ψα′1+r′1
↑β′1+r′1−1

)
↓α′1+1 ·

(
Ψαk+

∑
k
↑βk+rk−1

)
↓αk+

∑
k−1 +1 · · · ·

·
(

Ψα1+r1 ↑β1+r1−1
)
↓α1+1

whilst

ϕν2µ ◦ ϕλν2 =
(

Ψαk+
∑′
k′ +

∑
k
↑βk+

∑′
k′ +rk−1

)
↓αk+

∑′
k′ +

∑
k−1 +1 ·

· · · ·
(

Ψα1+
∑′
k′ +r1

↑β1+
∑′
k′ +r1−1

)
↓α1+

∑′
k′ +1

·
(

Ψα′
k′+

∑′
k′
↑β
′
k′+r

′
k′−1

)
↓α′

k′+
∑′
k′−1 +1 · · · ·

·
(

Ψα′1+r′1
↑β′1+r′1−1

)
↓α′1+1 .
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Now observe that for γ ∈ {0, 1, . . . , k − 1}, if we have

(
Ψαk+

∑′
k′ +

∑
k
↑βk+

∑′
k′ +rk−1

)
↓αk+

∑′
k′ +

∑
k−1 +1 ·

· · · ·
(

Ψαk−γ+1+
∑′
k′ +

∑
k−γ+1

↑βk−γ+1+
∑′
k′ +rk−γ+1−1

)
↓αk−γ+1+

∑′
k′ +

∑
k−γ +1

·
(

Ψα′
k′+

∑′
k′
↑β
′
k′+r

′
k′−1

)
↓α′

k′+
∑′
k′−1 +1 · · · · ·

(
Ψα′1+r′1

↑β′1+r′1−1
)
↓α′1+1

·
(

Ψαk−γ+
∑
k−γ
↑βk−γ+rk−γ−1

)
↓αk−γ+

∑
k−(γ+1) +1 · · · ·

·
(

Ψα1+r1 ↑β1+r1−1
)
↓α1+1

then we can apply Lemma 2.14 to

(
Ψα′

k′+
∑′
k′
↑β
′
k′+r

′
k′−1

)
↓α′

k′+
∑′
k′−1 +1 · · · · ·

(
Ψα′1+r′1

↑β′1+r′1−1
)
↓α′1+1

·
(

Ψαk−γ+
∑
k−γ
↑βk−γ+rk−γ−1

)
↓αk−γ+

∑
k−γ−1 +1

(take: x = α′1, fi = r′i, ki = α′i+1 − α′i, (i ∈ {1, . . . , k − 1}), kk = αk−γ − α′k′ +∑
k−(γ+1), h = rk−γ , g = βk−γ − αk−γ −

∑
k−(γ+1), t1 = β′1 − βk−γ − rk−γ ,

ti = β′i − β′i−1 − r′i−1, (i ∈ {2, . . . , k})). Then ljc = iα′j+
∑′
j−1 +c for j ∈ {1, . . . , k′}

and c ∈ {1, . . . , fj}, whilst mb = iαk−γ+
∑′
k′ +

∑
k−(γ+1) +b for b ∈ {1, . . . , rk−γ} and

we have that ljc 6−− mb for admissible j, c, and b since the nodes of residues ljc

belong to one of the moved sets of nodes whilst the nodes of residues mb belong

to the other. After applying the lemma we have:

(
Ψαk+

∑′
k′ +

∑
k
↑βk+

∑′
k′ +rk−1

)
↓αk+

∑′
k′ +

∑
k−1 +1 ·

· · · ·
(

Ψαk−γ+
∑′
k′ +

∑
k−γ
↑βk−γ+

∑′
k′ +rk−γ−1

)
↓αk−γ+

∑′
k′ +

∑
k−γ−1 +1

·
(

Ψα′
k′+

∑′
k′
↑β
′
k′+r

′
k′−1

)
↓α′

k′+
∑′
k′−1 +1 · · · · ·

(
Ψα′1+r′1

↑β′1+r′1−1
)
↓α′1+1

·
(

Ψαk−(γ+1)+
∑
k−(γ+1)

↑βk−(γ+1)+rk−(γ+1)−1
)
↓αk−(γ+1)+

∑
k−(γ+2) +1 ·

· · · ·
(

Ψα1+r1 ↑β1+r1−1
)
↓α1+1

What we have in effect done is ‘replaced’ γ with γ + 1.

So apply the lemma repeatedly to the terms corresponding to ϕν1µ ◦ ϕλν1 .

Eventually we obtain the expression for ϕν2µ ◦ϕλν2 , thus ϕν1µ ◦ϕλν1 = ϕν2µ ◦ϕλν2 .
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We can again make an analogue to Corollaries 3.5 and 3.11, that is that if [µ]

is formed from [λ] by moving multiple skew shapes of nodes whose residues are

sufficiently spread apart, then we can move the rows in any order to get various

homomorphisms which always compose to give the same overall homomorphism.

Corollary 3.20. Let l ≥ 2 and suppose that λ and µ are l-multipartitions of n.

Suppose that [µ] is formed from [λ] by moving m distinct skew shapes of nodes

S1, . . . , Sm, whose residues amongst the skew shapes are such that none are equal

or adjacent between any two given skew shapes.

Suppose that for each X ⊆ {1, . . . ,m} we have an l-multipartition of n, νX ,

such that [ν{i1,...,it}] is formed from [λ] by moving just the skew shapes Si1 , . . . , Sit .

In particular ν∅ = λ and ν{1,...,m} = µ. Suppose that whenever |B \ A| = 1, we

have that (νA, νB) is a skew pair, whose corresponding homomorphism is ϕνAνB .

Then there is a non-zero homomorphism ϕ : Sλ → Sµ and given any sequence

of sets ∅ = X0 ( X1 ( X2,( · · · ( Xm = {1, . . . ,m} we have that

ϕ = ϕνXm−1
νXm ◦ ϕνXm−2

νXm−1
◦ · · · ◦ ϕνX0

νX1
.

Proof. Without loss of generality suppose that the shape Sa is above Sb whenever

a < b. Let Yj := {1, 2, . . . , j} for j ∈ {0, . . . ,m}. Then ∅ = Y0 ( Y1 ( · · · ( Ym =

{1, 2, . . . ,m}. By assumption we have l-multipartitions of n, νYj , and non-zero

homomorphisms ϕνYj νYj+1
for each j ∈ {0, . . . ,m− 1}. As in Corollary 3.19, we

may write ϕνYj νYj+1
(vt

νYj
) as in (3.60) and then similarly to Corollary 3.11 the

product ϕνYm−1
νYm ◦ · · · ◦ ϕνY0

νY1
(vt

λ
) will correspond to a reduced expression,

since in tλ, the smallest entry within Sj is strictly greater than the largest entry

within Sj−1 for every j ∈ {2, . . . ,m}. Hence no strings will cross twice, and thus

as the associated tableau will be standard, the composition of homomorphisms is

not zero.

The rest of the proof is the same as that for Corollary 3.5, replacing the use

of Corollary 3.4 with Corollary 3.19.

To conclude this section, we give a conjecture that is concerned with relaxing
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the conditions that define a skew pair. Given a partition λ, write λ̂→ λ if λ̂ is a

partition formed form λ by removing a node. Write λ̂
m−→ λ if there is a sequence

λ̂ = λ0 → λ1 → · · · → λm = λ for some m ≥ 0. Now given a skew shape S of the

form [λ \ µ] whose nodes have associated residues, define the set XS as follows:

XS := {X | X is a non-empty connected skew shape with associated

residues from S of the form [λ̂ \ µ] where λ̂
m−→ λ for some m ≥ 0

}
Now for l-multipartitions λ and µ, define (λ, µ)∗ to be a skew* pair if the require-

ments of Definition 3.16 are satisfied, except that amongst each component λ(c′)

that are not of the k components to which a skew shape of the same residues can

be added, there are no removable shapes X such that X belongs to XS , where S

is the skew shape to be moved to form [µ] from [λ]. Then we have the following

conjecture, which is an adaptation of Corollary 3.18.

Conjecture 3.21. Suppose that (λ, µ)∗ is a skew* pair. Let s be the µ-tableau

defined by considering tλ and moving the skew shape from the qth component to

the pth, keeping their values intact. Then there is a homomorphism ϕ : Sλ → Sµ

given by vt
λ 7→ vt

µ
ψs.

The difficulty in proving this conjecture relates to the fact that in proving

Theorem 3.14 we only ever rely on using terms arising from the bottom two rows

of the skew shape (i.e. we never utilise the term R in ψs). When dealing with

skew* pairs, we find that it is necessary to deal with terms arising from other rows

in addition to these, and given the already unwieldy nature of our combinatorics,

this would appear to be a step too far.

We also conjecture that there are similar adaptations of Corollaries 3.19 and

3.20. We give some examples below of homomorphisms which exist, but cannot

be proved to exist using Corollary 3.18 and instead fall under those covered by

the conjecture.

Example 3.22. Let e = 4, κ = (0, 1, 0), λ = (∅, (3), (4)) and µ = ((4), (3),∅).

Then XS :=
{

0 , 0 1 , 0 1 2 , 0 1 2 3
}

and there is a homomorphism
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ϕ : Sλ → Sµ given by

tλ =

(
∅ 1 2 3 4 5 6 7

)
7→
(

4 5 6 7 1 2 3 ∅
)
.

Note that λ(2) contains a removable 3 node, but 3 /∈ XS . ♦

Example 3.23. Let e = 4, κ = (0, κ2, 0), λ = (∅, (1), (2, 2)), and µ =

((2, 2), (1),∅). Then XS :=

{
0 , 0 1 ,

0
3
,

0 1
3

,
0 1
3 0

}
and then for any

κ2 6= 0 there is a homomorphism ϕ : Sλ → Sµ given by

tλ =

(
∅ 1

2 3
4 5

)
7→
(

2 3
4 5

1 ∅
)
.

♦

3.4 Relaxing the diagonal residue condition

We now exhibit some examples which demonstrate some possible effects when

relaxing the diagonal residue condition, that is, working with small e.

Example 3.24. Let e = 3, λ = ((1), (6, 5)), µ = ((4, 3), (3, 2)), κ = (0, 1). The

initial tableau tλ is

tλ =

(
1

2 3 4 5 6 7
8 9 10 11 12

)
.

Then there is exactly one non-zero homomorphism ϕ : Sλ → Sµ given by

vt
λ 7→ vs + 2vt

where

s =

(
1 5 6 7
10 11 12

2 3 4
8 9

)
and

t =

(
1 2 3 4
10 11 12

5 6 7
8 9

)
.

♦

Note that the tableau s arises in the same way as we expect from Theorem 3.14,
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however we also have a term indexed by the tableau t, and naively speaking this

is formed by acting on s by the permutation (2, 5)(3, 6)(4, 7).

Example 3.25. Let e = 3, λ = ((1), (7, 6)), µ = ((4, 3), (4, 3)), κ = (0, 0). The

initial tableau tλ is

tλ =

(
1

2 3 4 5 6 7 8
9 10 11 12 13 14

)
.

Then there is exactly one non-zero homomorphism ϕ : Sλ → Sµ given by

vt
λ 7→ vs + 2vt + 2vu + 4vv

where

s =

(
1 6 7 8
12 13 14

2 3 4 5
9 10 11

)
,

t =

(
1 6 7 8
9 10 11

2 3 4 5
12 13 14

)
,

u =

(
1 3 4 5
12 13 14

2 6 7 8
9 10 11

)
,

and

v =

(
1 3 4 5
9 10 11

2 6 7 8
12 13 14

)
.

♦

Similarly to the previous example, the tableau s arises as we expect, and we

have

t = s(9, 12)(10, 13)(11, 14)

u = s(3, 6)(4, 7)(6, 8), and

v = s(3, 6)(4, 7)(6, 8)(9, 12)(10, 13)(11, 14).

Example 3.26. Let e = 3, λ = ((1), (9, 8)), µ = ((4, 3), (6, 5)), κ = (0, 1). The

initial tableau tλ is

tλ =

(
1

2 3 4 5 6 7 8 9 10
11 12 13 14 15 16 17 18

)
.
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Then there is exactly one non-zero homomorphism ϕ : Sλ → Sµ given by

vt
λ 7→ vs + 2vt + 2vu + 4vv + 3vw + 6vx

where

s =

(
1 8 9 10
16 17 18

2 3 4 5 6 7
11 12 13 14 15

)
,

t =

(
1 8 9 10
13 14 15

2 3 4 5 6 7
11 12 16 17 18

)
,

u =

(
1 5 6 7
16 17 18

2 3 4 8 9 10
11 12 13 14 15

)
,

v =

(
1 5 6 7
13 14 15

2 3 4 8 9 10
11 12 16 17 18

)
,

w =

(
1 2 3 4
16 17 18

5 6 7 8 9 10
11 12 13 14 15

)
,

and

x =

(
1 2 3 4
13 14 15

5 6 7 8 9 10
11 12 16 17 18

)
.

♦

Again, the tableau s arises as we expect, and we have

t = s(13, 16)(14, 17)(15, 18),

u = s(5, 8)(6, 9)(7, 10),

v = s(5, 8)(6, 9)(7, 10)(13, 16)(14, 17)(15, 18),

w = (5, 8)(6, 9)(7, 10)(2, 5)(3, 6)(4, 7) = s(2, 5, 8)(3, 6, 9)(4, 7, 10), and

x = s(2, 5, 8)(3, 6, 9)(4, 7, 10)(13, 16)(14, 17)(15, 18).

These examples appear to exhibit a pattern in the images of the homomor-

phisms. However, if we work with larger components we see that this does not

work quite as nicely as in the last examples.

Example 3.27. Let e = 3, λ = ((3, 2), (7, 6)), µ = ((6, 5), (4, 3)), κ = (0, 2). The

227



3.4. Relaxing the diagonal residue condition George Witty

initial tableau tλ is

tλ =

(
1 2 3
4 5

6 7 8 9 10 11 12
13 14 15 16 17 18

)
.

Then there is exactly one non-zero homomorphism ϕ : Sλ → Sµ given by

vt
λ 7→ vs + 2vt + 2vu + 4vv

where

s =

(
1 2 3 5 11 12
4 10 16 17 18

6 7 8 9
13 14 15

)
,

t =

(
1 2 3 5 11 12
4 10 13 14 15

6 7 8 9
16 17 18

)
,

u =

(
1 2 3 5 8 9
4 7 16 17 18

6 10 11 12
13 14 15

)
,

and

v =

(
1 2 3 5 8 9
4 7 13 14 15

6 10 11 12
16 17 18

)
.

♦

This time, none of the tableaux are of the ‘expected form’. However, note that

t = s(13, 16)(14, 17)(15, 18),

u = s(7, 10)(8, 11)(9, 12), and

v = s(7, 10)(8, 11)(9, 12)(13, 16)(14, 17)(15, 18),

displaying a similar relationship between the tableaux as before.

From a naive point of view, the tableau we expect (as in Theorem 3.14) is

prevented from appearing because there are now other nodes of the residues that

we are moving, that lie between the position where we remove these nodes in λ(2)

and where we add them in µ(1), and that in some cases we can move these to the

positions in µ(1) before moving the nodes in the skew shape there.

The patten becomes obfuscated when we begin to deal with multipartitions

containing a component consisting of at least e rows, as in the following example:
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Example 3.28. Let e = 3, λ = ((3, 2, 1), (7, 6, 5)), µ = ((6, 5, 4), (4, 3, 2)), κ =

(0, 2). The initial tableau tλ is

tλ =

 1 2 3
4 5
6

7 8 9 10 11 12 13
14 15 16 17 18 19
20 21 22 23 24

 .

Then there is exactly one homomorphism ϕ : Sλ → Sµ, whose image consists of

16 terms and whose coefficients belong to the set {−4,−2, 1, 2, 4, }. ♦

A similar, but more explicit example is as follows.

Example 3.29. Let e = 3, λ = ((1), (22, 1)), µ = ((23, 1), (24, 1)), κ = (0, 1). The

initial tableau tλ is

tλ =


1

2 3
4 5
6 7
8 9
10 11
12 13
14 15
16


.

There is exactly one non-zero homomorphism ϕ : Sλ → Sµ given by vt
λ

maps to:


1 11
9 13
14 15
16

2 3
4 5
6 7
8 12
10

+


1 8
3 10
5 12
7

2 6
4 11
9 13
14 15
16

−


1 5
6 7
8 12
10

2 3
4 11
9 13
14 15
16



+


1 5
3 7
14 15
16

2 6
4 8
9 10
11 12
13

+ 3


1 5
3 7
11 12
13

2 6
4 8
9 10
14 15
16

− 2


1 5
3 7
8 12
10

2 9
4 11
6 13
14 15
16



+3


1 5
3 7
8 9
10

2 6
4 11
12 13
14 15
16

− 1


1 2
3 4
8 12
10

5 6
7 11
9 13
14 15
16


♦

In the following Chapter, we will reinvestigate the pattern observed here in

the context of multipartitions within core blocks in level 2, and we will claim that

the preventions which restrict the pattern from occurring will not arise.
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Chapter 4
Core blocks

W
ithin the previous chapter we have demonstrated the existence of

certain homomorphisms between Specht modules. In this chapter, we

will use these homomorphisms to prove Theorem 4.26, which, provided

e is large enough, allows us to describe the entire set of dominated homomorphism

spaces between Specht modules that lie in core blocks when l = 2. Once again, all

results will be independent of the characteristic of the base field F. We shall first

need to state a few relevant definitions so that we can understand core blocks

precisely.

Let A be a finite-dimensional algebra over F, and suppose A = B1 ⊕ · · · ⊕Bc

is a decomposition of A into a direct sum of indecomposable two-sided ideals.

Then we call the Bi the blocks of A. As remarked following Definition 1.14, the

blocks of H Λκ
n are given by the algebras H Λκ

α , that is, two Specht modules Sλ

and Sµ belong to the same block of H Λκ
n if and only if the multipartitions λ and

µ have the same content. We will say that a multipartition λ lies in a block B of

H Λκ
n if Sλ lies in B.

Let λ be a partition of n. The rim of [λ] is defined to be the set of nodes

{(i, j) ∈ [λ] | (i+ 1, j + 1) /∈ [λ]}.

For e ∈ {2, 3, 4, . . .} define an e-rim hook to be a connected subset R of the rim

containing exactly e nodes such that [λ] \R is the diagram of a partition. If λ has

no e-rim hooks, or if e =∞, then we say that λ is an e-core. If we can remove w

e-rim hooks from [λ] to produce an e-core, then we say that λ has e-weight w. In

particular, an e-core has weight 0.
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Note that given the abacus configuration for λ, removing an e-rim hook

from [λ] corresponds to sliding a bead up one row on the abacus. So an abacus

configuration for an e-core has all the beads pushed up the runners to their highest

possible positions. Using this we obtain the next result which demonstrates that

the definition of e-weight is well-defined.

Lemma 4.1. [Jam78b] [Mat99, Lemma 5.35] Let λ be a partition. Then the

e-core and e-weight of λ depend only on λ and e.

Now we can state when two Specht modules lie in the same block of HF,q(Sn).

Theorem 4.2 (The Nakayama conjecture). [DJ87, Corollary 4.4] [JM97, Theo-

rem 4.29] Suppose that λ and µ are partitions of n. Then the Specht modues Sλ

and Sµ belong to the same block of HF,q(Sn) if and only if λ and µ have the same

e-core.

Of course, we wish to study core blocks for Ariki-Koike algebras as well as

KLR algebras. Due to Theorem 1.16, and since the theory we detail is the same

in both settings, we simultaneously develop both cases. We use the following

definition to extend the notion of an e-core to these algebras.

Definition 4.3. An l-multipartition λ = (λ(1), . . . , λ(l)) is an e-multicore if λ(i)

is an e-core for each i ∈ {1, . . . , l}.

Note that when e = ∞, every multipartition is an e-core. For l = 1, an

e-multicore is an e-core. There is also an analogous definition for the weight of

a multipartition, however as we will deal only with core blocks we shall not be

required to state the long setup. The relevant details are given in [Fay06] and

[Fay07].

As we have seen, the weight and core of a partition λ play an important role

in determining the block that Sλ belongs to and its properties within HF,q(Sn).

In particular, Theorem 4.2 states that two Specht modules Sλ and Sµ belong to

the same block if and only if λ and µ have the same core. However, for l > 1 the

natural generalisation of this is not necessarily true; Sλ and Sµ may belong to

the same block yet λ may be a multicore whilst µ is not.
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Example 4.4. Let e = 4, κ = (3, 1) and consider λ = ((3, 12), (3)) and µ =

((13), (5)). Then λ and µ have the same content and thus belong to the same

block, but λ is a multicore whilst the second component of µ has a removable

4-rim hook. ♦

In this chapter we study certain core blocks when l = 2. Following the work

of Fayers in [Fay06] and [Fay07], we shall define core blocks for arbitrary l and

use the results of the previous chapters in order to study homomorphisms within

these blocks.

Suppose λ = (λ(1), . . . , λ(l)) is a multicore and a = (a1, . . . , al) ∈ Zl. If e <∞

then we define baij(λ) to be the position of the lowest bead on runner i of the

abacus display for λ(j) with respect to a. In other words, baij(λ) is the largest

element of βaj (λ) that is congruent to i modulo e.

Now we can state the definition of a core block for Ariki-Koike algebras (and

hence KLR algebras) using the following theorem.

Theorem 4.5. [Fay07, Theorem 3.1] Suppose e ∈ {2, 3, 4, . . .} and that λ is a

multipartition with Sλ lying in a block B of HF,q,Q(Z/lZ o Sn). Let κ be the

multicharge associated to this algebra. Then the following are equivalent.

1. λ is a multicore, and there exists a = (a1, . . . , al) ∈ Zl such that ai ≡ κi

mod e and integers α0, . . . , αe−1 such that for each i ∈ I and j ∈ {1, . . . , l},

bκij(λ) equals either αi or αi + e.

2. Every multipartition in B is a multicore.

Definition 4.6. Suppose B is a block of HF,q,Q(Z/lZ oSn). Then we say B is a

core block if

• e ∈ {2, 3, 4, . . .} and the conditions of Theorem 4.5 are satisfied for any λ in

B, or

• e =∞.

Example 4.7. Let e = 4, κ = (0, 1), and let λ = ((2, 1), (12)). The abacus

configuration for λ is:
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λ(1) λ(2)

0 1 2 3qqq qqq qqq qqq{ { { {
{ { {

{
qqq qqq qqq qqq

0 1 2 3qqq qqq qqq qqq{ { { {
{ { {
{ {
qqq qqq qqq qqq

Let B be the block containing Sλ. Then since

bκ01 = −4,

bκ11 = 1,

bκ21 = −6,

bκ31 = −1,

bκ02 = 0,

bκ12 = 1,

bκ22 = −2,

bκ32 = −5,

we may take α0 = −4, α1 = 1, α2 = −6 and α3 = −5 to see that B is a core

block. The other multipartitions in the block are ((2, 2), (1)) and ((2), (13)) with

respective abacus configurations

0 1 2 3qqq qqq qqq qqq{ { { {
{ {
{ {
qqq qqq qqq qqq

0 1 2 3qqq qqq qqq qqq{ { { {
{ { { {

{
qqq qqq qqq qqq

and
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0 1 2 3qqq qqq qqq qqq{ { { {
{ { {

{
qqq qqq qqq qqq

0 1 2 3qqq qqq qqq qqq{ { { {
{ { {
{ {
qqq qqq qqq qqq

.

♦

4.1 Core blocks in level 2 and plus minus sequences

Now we will consider core blocks for Ariki-Koike algebras in level 2, i.e. when

l = 2. In this section we shall use Theorems 4.14 and 4.15 that are from personal

communication with Lyle. They supplement results of Brundan and Stroppel

[BS11] and Hu and Mathas [HM10] which state that when e =∞ or e > n, the

decomposition numbers are independent of the characteristic of the base field, no

matter the weight of the block.

To begin, let e <∞ and consider the abacus configuration for a partition λ.

The set βa(λ) used to define the abacus is an infinite set, and as such we have an

infinite amount of beads in the abacus configuration, in particular there is a point

where every row to the north of this point is completely full of beads. Instead we

can consider a truncated abacus configuration which has only finitely many beads

on each runner, which we associate to a multipartition by filling in all the rows

north of the highest beads with beads in every position.

Conversely, if we are given a partition λ we can fix a truncated abacus

configuration associated to it. Let N be maximal so that x ∈ βa(λ) whenever

x < Ne. Then we define the truncated abacus configuration for λ to be the

one corresponding to the set βa(λ) ∩ {Ne,Ne+ 1, . . .}. In the same way we can

associate an l-tuple of truncated abacus configurations to an l-multipartition.

Example 4.8. Let e = 5, a = 1 and λ = (12, 10, 62, 4, 2, 1), as in Example 1.25.
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Then we take N = −1, so that

βa(λ) ∩ {−5,−4,−3, . . .} = {14, 11, 6, 5, 2,−1,−3,−5}

and the truncated abacus configuration is:

0 1 2 3 4

{ { {
{

{ {
{ {

qqq qqq qqq qqq qqq
♦

Now let λ be a multipartition, e ∈ {2, 3, 4, . . .}, κ an e-multicharge, a =

(a1, . . . , al) ∈ Zl such that ai ≡ κi mod e and define baij(λ) to be the number of

beads on runner i of the truncated abacus display for λ(j) with respect to a. Using

Theorem 4.5, we see that for λ corresponding to Sλ in a core block, we have that

there are integers b0, b1, . . . , be−1 such that for each i ∈ I and j ∈ {1, . . . , l}, baij(λ)

equals either bi or bi + 1. We call such an e-tuple (b0, b1, . . . , be−1) a base tuple

for λ. Adapting Theorem 4.5 we have the following result.

Proposition 4.9. Suppose l = 2, e ∈ {2, 3, 4, . . .}, λ is a multicore and κ =

(κ1, κ2) is a 2-multicharge for HF,q,Q(Z/lZ o Sn). Then Sλ lies in a core block

of HF,q,Q(Z/lZ o Sn) if and only if there is a = (a1, a2) ∈ Z2 such that ai ≡ κi

mod e and an abacus configuration for λ such that |bai2(λ)− bai1(λ)| ≤ 1 for each

i ∈ I.

Suppose l = 2 and we have a base tuple B = (b0, b1, . . . , be−1) for λ lying in

a core block along with κ and a as above. Then we define a total order ≺ on
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{0, 1, . . . , e− 1} by

i ≺ j ⇐⇒ bi < bj or bi = bj and i < j

and we let π be the permutation of {0, 1, . . . , e− 1} such that

π(0) ≺ π(1) ≺ · · · ≺ π(e− 1).

Then define

di :=


+ if baπ(i)2(λ)− baπ(i)1(λ) = 1,

0 if baπ(i)2(λ)− baπ(i)1(λ) = 0,

− if baπ(i)2(λ)− baπ(i)1(λ) = −1,

and so for a multipartition λ, and e ∈ {2, 3, 4, . . .} we get the plus minus sequence

d(λ) = (d0, d1, . . . , de−1).

Naively, we obtain d(λ) by ordering the runners so that a runner with a lower

base tuple entry precedes one with a greater entry, and if these are the same

then they are ordered from left to right. Then di equals the symbol + if the ith

runner in this order contains one more bead in the second component than the

first, it equals the symbol − if this ith runner contains one less bead in the second

component than the first, and it equals 0 if this ith runner contains the same

number of beads in both components.

The reduced plus minus sequence d̂(λ) is obtained by removing all 0s and

recursively cancelling adjacent pairs −,+ within the sequence d(λ). If such a pair

−,+ can be cancelled in this way we say they are linked by an arc or call them

a linked pair, and draw an arc between them. Notation-wise, to distinguish a

reduced sequence d̂(λ) from a sequence d(λ) we also remove the commas.

Example 4.10. Consider the truncated abacus configuration for a multipartition

λ given below
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0 1 2 3 4 5 6

{ { { { { { {
{ { { {

{ {
{
{

qqq qqq qqq qqq qqq qqq qqq

0 1 2 3 4 5 6

{ { { { { { {
{ { { { { {
{ { {

{

qqq qqq qqq qqq qqq qqq qqq
with base tuple (2, 1, 4, 3, 1, 1, 1). Then π = (0, 1, 4)(2, 5, 3, 6) and

d(λ) = (+,+, − , + ,+, 0,−).

The reduced sequence is d̂(λ) = (+ + +−). ♦

Note that when an entry of d(λ) is zero, it is not clear as to whether the

number of beads on the corresponding runner is equal to the corresponding entry

of the base tuple, or if it is one more than it. Thus we cannot necessarily uniquely

construct a multipartition given just a plus minus sequence and a base tuple.

However, we can write 0N to signify that we intend the corresponding runner

to have ‘no’ extra bead, i.e. the number of beads on the runner is equal to the

corresponding entry of the base tuple, and 0B when the number of beads is one

more than the corresponding entry of the base tuple.

Example 4.11. Let e = 3 and B = (0, 0, 0). Then the following table illustrates

an example of the difference between 0N and 0B.
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d(λ) Pair of abacuses Multipartition

(−, 0N ,+)

0 1 2

{
qqq qqq qqq

,

0 1 2

{
qqq qqq qqq

(∅, (2))

(−, 0B,+)

0 1 2

{ {
qqq qqq qqq

,

0 1 2

{ {
qqq qqq qqq

(∅, (12))

♦

With this notation, since we can now determine the multipartition along with

its residues from the abacus, if we are given a plus minus sequence and a base

tuple we can calculate the corresponding multicharge κ.

Proposition 4.12. Suppose we have a plus minus sequence and a base tuple

(b0, b1, . . . , be−1) giving a truncated abacus configuration and a 2-multipartition

λ =
(
λ(1), λ(2)

)
. Let p be the number of plusses in the sequence, m be the number

of minuses, zN be the number of zeroes corresponding to no bead added and zB

be the number of zeroes corresponding to a bead added. Then the e-multicharge

κ = (κ1, κ2) associated to λ is given by

κ1 ≡
e−1∑
k=0

bk +m+ zB mod e,

κ2 ≡
e−1∑
k=0

bk + p+ zB mod e.

Proof. Suppose the truncated abacus configuration we obtain for λ(c) has beads

at positions β̂cj for j ≥ 1, where position 0 is the position at the top left on runner

0 and the β̂cj ’s are ordered so that β̂cj > β̂cj+1 for every j ≥ 1. If the truncated
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abacus configuration has no beads then we let β̂c1 = −1. These positions satisfy

β̂cj ≡ βcj mod e.

Since by definition, βc1 = λ
(c)
1 − 1 + κc, we have

κc ≡ β̂c1 − λ
(c)
1 + 1 mod e, for c ∈ {1, 2}.

Now let runner rc be the runner with position β̂c1 on it. If such a runner does

not exist then we have β̂c1 = −1 and λ
(c)
1 = 0 hence κc ≡ 0 mod e. Otherwise,

β̂c1 = rc + (x− 1)e where x is the number of beads on runner rc. To find λ
(c)
1 , we

need to count all the empty spaces preceding the bead at position β̂c1.

Define δ as follows:

δ =


1, if the entry of the −+ sequence corresponding to runner rc is a +,

0, if the entry of the −+ sequence corresponding to runner rc is a − .

First, consider when c = 1. Then β̂1
1 = r1 + (br1 − δ)e. We can write λ

(1)
1 as

λ
(1)
1 =

∑
i

(br1 − bi + 1− δ) +
∑
j

(br1 − bj − δ)− (e− 1− r1),

where the first sum is over all i such that bi corresponds to a + or a 0N runner,

the second is over all j such that bj corresponds to a − or a 0B runner. The third

summand accounts for those empty spaces in the e− 1− r1 positions greater than

β̂1
1 that have been overcounted. Grouping terms we have

λ
(1)
1 = br1e−

e−1∑
k=0

bk + p+ zN − δe− e+ 1 + r1
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and so

κ1 ≡ β̂1
1 − λ

(1)
1 + 1

≡ r1 + br1e− δe− br1e+
e−1∑
k=0

bk − p− zN + δe+ e− 1− r1 + 1

≡
e−1∑
k=0

bk + e− p− zN

≡
e−1∑
k=0

bk +m+ zB

modulo e.

Now consider when c = 2. Then β̂2
1 = r2 + (br2 + δ− 1)e. We can write λ

(2)
1 as

λ
(2)
1 =

∑
i

(br2 − bi − 1 + δ) +
∑
j

(br2 − bj + δ)− (e− 1− r2),

where the first sum is over all i such that bi corresponds to a + or a 0B runner,

the second is over all j such that bj corresponds to a − or a 0B runner. Grouping

terms we have

br2e−
e−1∑
k=0

bk − p− zB + δe− e+ 1 + r2

and so

κ2 ≡ β̂2
1 − λ

(2)
1 + 1

≡ r2 + br2e+ δe− e− br2e+
e−1∑
k=0

bk + p+ zB − δe+ e− 1− r2 + 1

≡
e−1∑
k=0

bk + p+ zB

modulo e.

With this, we can note the following.

Remark 4.13. Given a plus minus sequence d(λ) and a base tuple B, we can

extract a value for n based on the associated λ, a value for e from the numbers
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of runners on the abacuses, and a value for κ by Proposition 4.12. Thus given a

base field F we can uniquely define an algebra H Λκ
n based solely on d(λ) and B.

It turns out that the sequence d(λ) is incredibly useful, and holds a lot of

information about the core block that Sλ lies in.

Theorem 4.14. [Lyle] Let λ be a multipartition arising from a plus minus

sequence. Then λ is Kleshchev if and only if d̂(λ) consists only of plusses, or only

of minuses, or is empty.

Given a multicore λ lying in a core block, we obtain all the other multipartitions

in the block by permuting the plusses and minuses in the sequence d(λ) to obtain

other multicores with respect to the same base tuple.

Suppose λ is a multicore, Kleshchev, and lying in a core block with plus minus

sequence d(λ), and that µ is a multicore also lying in the same core block where

d(µ) is obtained from d(λ) by swapping each pair in some subset of pairs −,+

that are each linked by an arc to obtain +,−. Then we say that µ is formed from

λ by a process of arcs, and write λ _ µ. Any Kleshchev multicore λ is formed

from itself by a trivial process of arcs so λ _ λ. This notion allows us to state the

graded decomposition number for the relevant Specht and irreducible modules.

Theorem 4.15. [Lyle] Let λ and µ be multicores lying in the same block with

λ Kleshchev. Then [Sµ : Dλ] 6= 0 ⇐⇒ λ _ µ. Moreover, if λ _ µ, then

[Sµ : Dλ]v = vi where i is the number of −,+ pairs that have been swapped to

obtain d(µ) from d(λ).

Example 4.16. Let e = 3, and consider the abacus configuration

0 1 2

{ { {
{ {
{
qqq qqq qqq

0 1 2

{ { {
{ { {

{
qqq qqq qqq
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which corresponds to the multicore λ = ((12), (2)) with base tuple (2, 1, 2) and

multicharge κ = (0, 1). We have d(λ) = (+,−,+) and so d̂(λ) = (+) hence λ

is Kleshchev. To get the other multicores in the block we permute the plusses

and minuses in d(λ). So we will have µ with d(µ) = (−,+,+), d̂(µ) = (+) and

ν with d(ν) = (+,+,−), d̂(ν) = (+ + −). More precisely, µ is the Kleshchev

multipartition (∅, (2, 12)) with abacus configuration

0 1 2

{ { {
{ { {

qqq qqq qqq

0 1 2

{ { {
{ {
{ {
qqq qqq qqq

and ν is the (not Kleshchev) multipartition ((3, 1),∅) with abacus configuration

0 1 2

{ { {
{ {

{
qqq qqq qqq

0 1 2

{ { {
{ { {
{
qqq qqq qqq

.

We see that µ _ λ by swapping one −,+ pair:

d(µ) = ( − , + ,+) whilst (+,−,+) = d(λ),

and λ _ ν by swapping one −,+ pair:

d(λ) = (+, − , + ) whilst (+,+,−) = d(ν).

Hence using Theorem 4.15, we obtain the decomposition matrix for the multicores
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in the block:

Dµ Dλ

Sµ 1 0

Sλ v 1

Sν 0 v

♦

4.2 Homomorphisms within core blocks

Let e ∈ {2, 3, 4, . . .} and suppose from now on that we have the base tuple

B = (0, 0, . . . , 0). Then if we have a bipartition λ given by a plus minus sequence

d(λ), we must have that the components of λ (and all other multipartitions

in the corresponding block) obey the diagonal residue condition. Thus we can

use Theorem 3.14 to find homomorphisms between Specht modules in the block

containing λ. We first exhibit some combinatorics related to our plus minus

sequence using the Russian convention for drawing partitions, and then exhibit a

result of Hu and Mathas [HM10] in this setting.

Given the diagram of an l-multicomposition λ:

[λ] = {(r, c,m) ∈ N× N× {1, . . . , l} | c ≤ λ(m)
r }

we can draw its diagram in the Russian convention by drawing each node as a

box, with the r coordinate increasing from south-east to north-west and the c

coordinate increasing from south-west to north-east. For example, the Russian

convention diagram of ((2, 2, 1), (2), (3, 1)) is drawn as

 , ,

 .

Now given our bipartition λ and its plus minus sequence d(λ), we can construct

paths corresponding to the two components of λ by reading along the plus minus

sequence. To draw the path for λ(1), whenever we encounter a − we draw a
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line � whilst for + we draw �. To draw λ(2) we do the opposite: for − draw

� and for + draw �. For either component, if we encounter a zero we draw

� if this corresponds to a bead (i.e. it is a 0B), or draw � if it does not

(i.e. it is a 0N ). We can place the path for λ(1) in a ‘trough’ of e lines long,

consisting of at first #(minuses) + #(bead zeroes) lines of the form � followed

by #(plusses) + #(no bead zeroes) lines of the form �. We place the path for

λ(2) in a ‘trough’ of e lines long, consisting of #(plusses) + #(bead zeroes) lines

of the form � followed by #(minuses) + #(no bead zeroes) lines of the form �.

This constructs the diagram for λ since if we observe the abacus corresponding

to the first component plus minus sequence, every time we encounter a minus

(or a bead zero) this corresponds to a bead which corresponds to the end of a

row (which may be empty), whilst every time we encounter a plus (or a no bead

zero) this corresponds to an empty runner on the abacus which corresponds to a

column. Similarly we obtain the diagram of the second component since the roles

of the plus and minus swap with respect to where we place beads on the abacus,

whilst the roles of the zeroes stay fixed.

Example 4.17. Let e = 13, and d(λ) = (−,−, 0B,−,+,−, 0N ,+,+,−, 0B,+,+).

The path for λ(1) is:

-

-

0B
- + - 0N

+

+ -

0B
+

+

The path for λ(1) sits in a trough whose left hand side is 7 lines long and whose

right hand side is 6 lines long, which is:

giving:

244



4.2. Homomorphisms within core blocks George Witty

Meanwhile, the path for λ(2) is:

-

- 0B - + -
0N

+

+ - 0B
+

+

and this sits in a trough whose left hand side is 7 lines long and whose right hand

side is 6 lines long, which is:

giving:

♦

We can pair up edges of the path in an analogous way to how we pair entries

of the plus minus sequence. If a pair −,+ is linked by an arc in the plus minus

sequence, we link the corresponding edges of the second component of the tableau

by a tile. To be precise, starting at the node adjacent to the edge labelled by the

−, if this is also adjacent to the edge labelled by the + we are done and our tile

consists of just the one node. Otherwise, we also incorporate the node north-east

of this, unless this is already within another tile, in which case we incorporate the

node south-east of this into the tile. We then repeat this until we reach the node

adjacent to the edge labelled by the +. Note that in practice, we must pair up

the edges by starting with those −,+ pairs that are contained within other pairs

and then work outwards.

Example 4.18. We exhibit the tiling for λ(2) as in the previous example.
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-

- 0B - + -
0N

+

+ - 0B
+

+

♦

Now, if we swap a linked −,+ pair in d(λ), we obtain a new plus minus

sequence which will correspond to a bipartition µ. Using the path construction

of the Russian convention diagram, we see that to obtain µ(1) we add the tile

corresponding to the −,+ pair in λ(2) to λ(1), whilst to obtain µ(2) we remove

this tile from λ(2).

Example 4.19. If d(µ) = (+,−, 0B,−,+,−, 0N ,+,+,−, 0B,+,−) (i.e. we have

swapped the outer −,+ pair in the previous d(λ)), then the shape of µ is as

follows:

+ -

0B
- + -0N

+
+ -

0B+ - + - 0B - + -
0N +

+ - 0B
+ -

♦

For any such µ obtained by swapping some linked −,+ pairs, we can construct

a µ-tableau s from tλ by considering values of the corresponding tiles in tλ and

simply filling in the tiles of µ with the same values as they had in tλ. In this way,

we construct a standard µ-tableau whose residue sequence is the same as that of

tλ. In fact, due to Hu and Mathas, the following result tells us that this is the only

such tableau with sD tλ. Let e be large enough so that λ and µ obey the diagonal
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residue condition, and define Stdλ(µ) := {s ∈ Std(µ) | sD tλ and res(s) = res(tλ)}.

We will say that a tableau t is regular if its entries increase along the diagonals

in each component (recall that the kth diagonal of component m consists of the

nodes (r, c,m) such that r − c = k).

Proposition 4.20. [HM10, Lemma B1 & Corollary B2] Suppose that λ and µ

are 2-multipartitions of n and let e be large enough so that λ and µ both obey the

diagonal residue condition. Then #Stdλ(µ) ≤ 1.

Proof. Suppose that t ∈ Stdλ(µ) such that t B tλ (otherwise t = tλ and we are

done). Note that the tableau t is uniquely determined by its residue sequence

and the sets t(1) and t(2). Let X be the set of nodes in µ(1) \ λ(1) that are either

(horizontally, vertically, or diagonally) adjacent to a node in λ(1) or are in the

first row or the first column of µ(1). Let A := {t(x) | x ∈ X}. Define tA to be

the unique regular tableau with res(t) = res(tλ) such that t
(1)
A = t(1) \ A and

t
(2)
A = t(2) ∪ A. In other words, we form tA from t by moving the numbers in A

from the first component of t to the second without changing their ‘shape’, whilst

‘sliding’ numbers along the diagonals in order to fill in the gaps from where A was

in the first component and create gaps for A in the second component. As t and

tλ are both standard we must have that tA is standard.

Now we show how we can uniquely form t given only λ and µ. We have

that λ and µ uniquely determine the set X, and so they also uniquely determine

Shape(tA). Note that Shape(tA)C µ and so by induction #Stdλ(Shape(tA)) ≤ 1.

The basis case of the induction is that #Stdλ(λ) = 1, and any tableau in Stdλ(ν)

for some ν must have been formed using the above construction in reverse, hence

there is only at most one candidate for such a standard tableau. In particular,

given the tableau tA, we can recover t. Thus #Stdλ(µ) ≤ 1.

Example 4.21. Consider the plus minus sequence (−,−,−,+,−,+,+,−,+,+)

associated to the multipartition λ = ((3, 1), (52, 42, 3)). We exhibit λ below with
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the tiling made clear in λ(2).

-

-

- + - +

+ - +

+
-

-

- + - +

+ - +

+

The tableau tλ is as follows:

1
2

3
4

5
6

7
8

9

10
11

12
13

14

15
16

17
18

19
20

21
22

23
24

25

Let µ = ((5, 4, 22, 1), (4, 32, 1)) be the multipartition corresponding to the plus

minus sequence d(µ) = (+,−,+,−,−,+,+,−,+,−), obtained from that for λ by

swapping some −,+ pairs linked by arcs.

The µ-tableau t is as follows:

1
2

3
8

9

4
11

12
13

15
1619

2523

5
6

7
14

10
17

18
20

21
22

24

The set X consists of the red nodes, and A = {8, 9, 11, 12, 13, 15, 16, 19, 23}. In

this case, tA is the tableau:

1
2

3
4

25

5
6

7
8

9

10
11

12
13

14

15
16

17
18

19
20

21
22

23
24

♦

Now we wish to determine the homomorphisms between Specht modules

248



4.2. Homomorphisms within core blocks George Witty

indexed by bipartitions arising from plus minus sequences. We will need the

following definition.

Definition 4.22. Suppose λ and µ are l-multipartitions of n. If ϕ ∈

HomH Λκ
n

(
Sλ, Sµ

)
, we say that ϕ is dominated if ϕ(vt

λ
) ∈ 〈vs | s ∈ Stdλ(µ)〉F.

We write DHomH Λκ
n

(
Sλ, Sµ

)
for the space of dominated homomorphisms from

Sλ to Sµ.

Due to the first part of the following theorem (which we state for arbitrary l)

we have that when e 6= 2 and κ1 6= κ2 it will be enough to concern ourselves with

studying dominated homomorphisms.

Theorem 4.23. [FS16, Theorem 3.13] Suppose e 6= 2 and that κ1, . . . , κl are

distinct, and λ and µ are l-multipartitions of n. Then the set DHomH Λκ
n

(
Sλ, Sµ

)
is equal to HomH Λκ

n

(
Sλ, Sµ

)
. Hence HomH Λκ

n

(
Sλ, Sµ

)
6= {0} only if λ E µ,

HomH Λκ
n

(
Sλ, Sλ

)
is one-dimensional and Sλ is indecomposable.

Example 4.24. The following two examples demonstrate what happens upon

relaxing the hypotheses of Theorem 4.23.

1. Let e = 2, l = 1, λ = (2) and µ = (1, 1). Then there is a non-zero

homomorphism ϕ : Sµ → Sλ, vt
µ 7→ vt

λ
, but this is not a dominated

homomorphism.

2. Let e = 3, take κ = (1, 1), λ = (∅, (2)), µ = ((2),∅). Then there is

a non-zero homomorphism ϕ : Sµ → Sλ, vt
µ 7→ vt

λ
, but this is not a

dominated homomorphism. Note that λ corresponds to d(λ) = (−, 0N ,+)

whilst d(µ) = (+, 0N ,−) for the base tuple B = (0, 0, 0).

Note that both of these homomorphisms are in fact isomorphisms. ♦

Let us again suppose that we have the base tuple B = (0, 0, . . . , 0) and a

bipartition λ given by a plus minus sequence d(λ). We wish to find bipartitions

µ so that HomH Λκ
n

(
Sλ, Sµ

)
6= {0}. Of course, we will only need to consider

bipartitions µ that belong to the same block as λ. So in order to find the

bipartitions λ and µ such that DHomH Λκ
n

(
Sλ, Sµ

)
6= {0} we will first need to
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find the sets Stdλ(µ) that are non-empty. Define a tile of nodes to be a finite set

of nodes that can be ordered as {N1, N2, . . . , Nk} such that given Ni = (r, c,m),

we have Ni+1 ∈ {(r + 1, c,m), (r, c+ 1,m)}. The following proposition allows us

to disregard many different bipartitions µ for a given λ. Note that here we are in

effect utilising our combinatorial setting in order to adapt [HM10, Theorem B3]

to our needs.

Proposition 4.25. Let e ∈ {2, 3, 4, . . .} and suppose we have a base tuple B =

(0, 0, . . . , 0). Suppose also that λ and µ are obtained from plus minus sequences

d(λ) and d(µ). Then if Stdλ(µ) 6= ∅ then d(µ) is obtained from d(λ) by swapping

some −,+ pairs that are linked by arcs in d(λ).

Proof. Let t ∈ Stdλ(µ). Then following the construction in Proposition 4.20, we

can form t from a tableau tA by sliding some nodes from the second component

to the first. By induction, assume that d(Shape(tA)) is obtained from d(λ) by

swapping some −,+ pairs that are linked by arcs in d(λ) (the base case being when

Shape(tA) is just λ). So we wish to show that d(µ) is formed from d(Shape(tA))

by swapping some −,+ pairs that are linked by arcs in d(λ).

Note that since Stdλ(µ) 6= ∅, λ and µ must lie in the same block. d(λ) and

d(µ) must contain the same number of plusses and minuses. Consider d(µ). In

order to recover Shape(tA) we need to remove some tiles of nodes, that are adjacent

to λ(1). Removing a tile from [µ] will correspond to swapping the positions of a +

and a − in d(µ), where + occurs before the −. We cannot swap any + and −

corresponding to a tile which also occur in the exact same positions as in d(λ),

since no such tile can have its rightmost (in the Russian convention) residue being

equal to that of a residue at the end of a row of λ(1), as we would then be removing

nodes from λ(1) which is not allowed as we must have that λ(1) is contained within

µ(1).

From now on, we refer to the + and − to be swapped as a backwards pair.

Consider the entries of d(µ) that fall between the backwards pair. We must have

that amongst these entries, there are the same number of −’s and +’s, since

otherwise the tile removed from the first component of µ will not be the same
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as that added to the second component to form Shape(tA). Not only this, but if

these entries correspond to any nodes, these nodes will sit ‘above’ (in the Russian

convention) the tile corresponding to the backwards pair, and so these entries

will pair up as either a pair +,− that was a linked −,+ pair in d(λ), or as a pair

−,+ that corresponds to a linked −,+ pair in d(λ). But so this means that the

backwards pair +,− must be the result of swapping a pair −,+ that is linked by

an arc in d(λ).

Thus d(µ) arises from d(Shape(tA)) by swapping some pairs −,+ that were

linked by an arc in d(λ), hence by induction, the whole of d(µ) arises by swapping

some such pairs −,+ in d(λ).

So we now need only consider those µ whose plus minus sequence d(µ) arises

from that of λ by swapping −,+, pairs that are linked by arcs. Suppose that we

obtain d(µ) by swapping linked pairs −,+ along with all linked pairs −,+ that

are contained within these pairs when reading the plus minus sequence. We shall

denote this by writing λ__µ. Trivially, we have λ__λ. If µ 6= λ, then λ__µ will

correspond to removing skew shapes from the right hand component and adding

them to the left hand component. Now we can state the main theorem of this

chapter.

Theorem 4.26. Let e ∈ {2, 3, 4, . . .} and suppose we have the base tuple B =

(0, 0, . . . , 0). Suppose that λ and µ are obtained from plus minus sequences d(λ)

and d(µ) respectively, and that H Λκ
n is the uniquely determined algebra as in

Remark 4.13. Then

DimF

(
DHomH Λκ

n

(
Sλ,Sµ

))
=


1 if λ__µ,

0 otherwise.

Moreover, when this dimension equals 1, we can explicitly describe the homomor-

phism in DHomH Λκ
n

(
Sλ, Sµ

)
and its degree is equal to the number of −,+ pairs

swapped to obtain µ from λ.

Proof. If λ__µ, then by Proposition 4.20 we can construct a unique standard
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tableau so that using Corollary 3.18 we have that there is exactly one non-

zero dominated homomorphism from Sλ to Sµ. When µ = λ, the only such

homomorphism from Sλ to itself is the trivial homomorphism.

Now suppose that we do not have λ__µ, and so in order to obtain d(µ) we

have to swap a linked pair −,+ but do not swap some linked −,+ pair that is

contained within this pair. Then in view of the tile construction from above, we

will have that there is a unique µ-tableau s ∈ Stdλ(µ), that is constructed by

removing some tiles from the second component of tλ and adding them to the first

component, without also removing every tile that sits above them (in the Russian

convention). But then there will be some value r in the moved tiles such that

r + 1 belongs to an unmoved tile, and that ψr is a row relation for Sλ. However,

vt
µ
ψsψr 6= 0 since swapping r and r + 1 in s still gives us a standard µ-tableau.

Thus there is no non-zero dominated homomorphism from Sλ to Sµ in this case.

Now we are left with proving the statement about calculating the degree. So

first suppose that λ__µ and that we swap just one linked −,+ pair to obtain

d(µ), then we have moved one tile from the second component of λ to the first.

Note that in the language associated to Corollary 3.18, any tile contains one more

positive diagonal than negative diagonals hence the base degree associated to a

tile will be 1.

If we instead are required to swap a linked −,+ pair along with any completely

contained linked −,+ pairs then note that each completely contained pair will

simply add 1 to the associated base degree, as the corresponding tile will have

one more positive diagonal than negative diagonals and these will line up directly

with positive and negative diagonals associated with the outer −,+ pair.

Thus the degree of a homomorphism Sλ → Sµ will be equal to the number of

linked −,+ pairs that are swapped.

We are now able to put everything we have done together in order to compute

every homomorphism space between the Specht modules lying in a core block of a

level 2 KLR algebra when e ∈ {3, 4, 5, . . .} and κ1 6= κ2. Adapting Theorem 4.26

in light of Theorem 4.23 we have the following.

252



4.2. Homomorphisms within core blocks George Witty

Theorem 4.27. Suppose the assumptions of Theorem 4.26 hold, and further

suppose that e 6= 2 and that the number of plusses in d(λ) or d(µ) is not equal to

the number of minuses. Then κ1 6= κ2 and so we have that

DimF

(
HomH Λκ

n

(
Sλ, Sµ

))
=


1 if λ__µ,

0 otherwise.

Given a plus minus sequence d(λ) corresponding to some multipartition λ, we

shall write Sd(λ) to mean Sλ. For the following example we shall exhibit how when

e ∈ {3, 4, 5, . . .} and κ1 6= κ2 we can compute the entire set of homomorphism

spaces between Specht modules in a core block for which B = (0, 0, . . . , 0).

Example 4.28. Let d(λ) = (−,−,−,+,+), e = 5, B = (0, 0, 0, 0, 0). Then the

decomposition matrix for the corresponding block is shown in Table 4.1. Using the

facts we have outlined above, we can complete Table 4.2. We can fill in most of

the homomorphism table purely on the basis that homomorphisms only arise from

swapping linked −,+ pairs. The only two entries that we have to worry about

are those that related are related to homomorphisms S(−,−,−,+,+) → S(−,+,−,+,−)

and S(−,−,+,+,−) → S(+,−,+,−,−). Note that in the former case, when d(µ) =

(−,+,−,+,−), we have that tλ is:

∅ 1
2

3
4

5
6

whilst the unique tableau t in Stdλ(µ) is:

2
35

1
64

and a row relation for Sλ that does not annihilate vt
µ
vt is ψ5. We can follow a

similar argument for the latter case, and thus the two entries of the homomorphism

table in question are both zero. ♦

In the case that the entries of the multicharge are not all distinct, we cannot
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(−,−,+,+) (−,+,−,+) (−,+,+,−) (+,−,−,+) (+,−,+,−) (+,+,−,−)

(−,−,+,+) 1 v 0 0 0 v2

(−,+,−,+) 0 1 v v v2 0

(−,+,+,−) 0 0 1 1 v 0

(+,−,−,+) 0 0 1 1 v 0

(+,−,+,−) v−1 1 0 0 1 v

(+,+,−,−) v−2 v−1 0 0 0 1

Table 4.3: Table of graded dimensions of homomorphism spaces for the block
corresponding to d((−,−,+,+)). The entry whose row heading is x and column
heading is y is the graded dimension of the space of homomorphisms from Sx to
Sy.

claim that every homomorphism is a dominated homomorphism, and so in turn we

cannot determine the possible standard tableaux in the image of a homomorphism

as we could when considering ‘sliding tiles’. In general, we are thus unable to

determine the entire set of homomorphism spaces precisely without checking each

tableaux individually.

Example 4.29. Let d(λ) = (−,−,+,+), e = 4, B = (0, 0, 0, 0, 0). Then an

example of a homomorphism which is not a dominated homomorphism is ϕ :

S(+,−,−,+) → S(−,+,+,−) given by

(
1
2

3 4

)
7→
(

3 4
1
2

)

The homomorphism table for the associated block is shown in Table 4.3. ♦

4.3 Different base tuples

We now detail some examples of homomorphisms between Specht modules that

arise from plus minus sequences for base tuples other than just (0, 0, . . . , 0), and

discuss a potential pattern seen in the images of these homomorphisms. It will be

useful to refer back to Chapter 3, Section 3.4.

Firstly, we note simply that if we have a base tuple other than (0, 0, . . . , 0)

then our homomorphisms may not be indexed by a single tableau.

Example 4.30. Let e = 3, d(λ) = (−,−,+), d(µ) = (−,+,−) and B = (0, 0, 2).
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The initial tableau tλ is

tλ =

 1 2
3 4 5 6 7 8
9 10 11 12
13 14

 .

There is a homomorphism ϕ : Sλ → Sµ given by vt
λ 7→ vs + 2vt where

s =

 1 2 6 7 8
10 11 12
14

3 4 5
9
13


and

t =

 1 2 3 4 5
10 11 12
14

6 7 8
9
13

 .

♦

The tableau s arises in the same way as we expect, but we also have a term

indexed by the tableau t, and this is formed by acting on s by the permutation

(3, 6)(4, 7)(5, 8).

Next, note that if we make the differences between the base tuple entries

bigger, we obtain even more terms in the image of a homomorphism.

Example 4.31. Consider the setup of the previous example but now suppose

that B = (0, 0, 3). Then the initial tableau tλ is

tλ =

 1 2 3 4
5 6

7 8 9 10 11 12 13 14
15 16 17 18 19 20
21 22 23 24
25 26

 .

There is a homomorphism ϕ : Sλ → Sµ given by

vt
λ 7→ vs + 2vt + 2vu + 4vv

where

s =


1 2 3 4 12 13 14
5 6 18 19 20
22 23 24
26

7 8 9 10 11
15 16 17
21
25

 ,

256



4.3. Different base tuples George Witty

t =


1 2 3 4 9 10 11
5 6 18 19 20
22 23 24
26

7 8 12 13 14
15 16 17
21
25

 ,

u =


1 2 3 4 12 13 14
5 6 15 16 17
22 23 24
26

7 8 9 10 11
18 19 20
21
25

 ,

and

v =


1 2 3 4 9 10 11
5 6 15 16 17
22 23 24
26

7 8 12 13 14
18 19 20
21
25

 .

♦

Similarly, to before, we obtain the tableau s as expected and then

t = s(9, 12)(10, 13)(11, 14),

u = s(15, 18)(16, 19)(17, 20), and

v = s(9, 12)(10, 13)(11, 14)(15, 18)(16, 19)(17, 20).

Note that vt and vu both have coefficient 2, whilst vv has a coefficient of 4.

In the previous two examples, we may observe the same pattern in the

coefficients that was also exhibited in Examples 3.24 – 3.26. Whereas some of the

other examples in Section 3.4 did not follow this pattern, we conjecture that in the

current setting this pattern will always appear. In an attempt to motivate this,

suppose that λ and µ are multipartitions arising from plus minus sequences with

some arbitrary base tuple B, and that λ__µ, where µ is formed just by moving a

single i-node x in λ (for some residue i). It will be useful to consider the abacus

configurations of λ and µ here. First, consider λ(2), then there are no removable

i-nodes above x in this component, since otherwise removing x will not leave an

e-core. Now consider λ(1); there can be no removable i-nodes below where we

shall add x to form µ(1), since otherwise we cannot add x in the first place. Thus

in terms of the naive point of view discussed at the very end of Section 3.4, there

are no removable i-nodes lying between the position from which node x is removed
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and added, and so we expect that the ‘expected tableau’ will appear in the image.

If λ__µ, where µ is formed from λ by moving a skew shape S, then we claim

that the restrictions of the abacus afforded by working with such multipartitions

ensure that the shapes in XS cannot be removed from anywhere higher in the

second component, or from anywhere lower in the first component. Thus we

conjecture that we will always obtain homomorphisms which arise in the same

way as the examples above, following a pattern based around permuting sets of e

entries, and moreover that these homomorphisms are the only ones that arise, so

that we have the following:

Conjecture 4.32. Theorem 4.26 holds for any arbitrary base tuple.
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