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Abstract

HIS thesis is concerned with the representation theory of the symmetric

groups and related algebras, in particular the combinatorics underlying

the representations of the Khovanov-Lauda-Rouquier (KLR) algebras.
These algebras are of particular interest since they possess cyclotomic quotients
which were shown by Brundan and Kleshchev to be isomorphic to the Ariki-
Koike algebras. The Ariki-Koike algebras generalise Iwahori-Hecke algebras of
the symmetric group, and so in turn generalise the symmetric groups themselves.
Via this isomorphism, we are able to utilise the grading of the KLR algebras in
the setting of the Ariki-Koike algebras, and thus study graded Specht modules.
Specht modules of the KLR algebras admit a definition which lends them well
to diagrammatic combinatorics. We shall first develop an arsenal of combinatorial
lemmas related to the manipulation of braid diagrams. Then, we will use these to
demonstrate the existence of explicit homomorphisms between Specht modules of
certain KLR algebras, related to moving particular shapes between the multipar-
titions associated to these Specht modules. We shall begin by considering moving
single nodes between bipartitions, but eventually consider moving multiple large
connected shapes of nodes between components of multipartitions in higher levels.
We will then use the obtained homomorphisms to investigate the homomor-
phism spaces between Specht modules that lie in core blocks of level 2 KLR
algebras whose base tuples consists entirely of zeroes. We will completely describe
the dominated homomorphism spaces between Specht modules in these blocks. In
particular, when the quantum characteristic is not 2 and the multicharge entries
are distinct, we will completely describe all homomorphism spaces between Specht
modules in these blocks. We will also give a conjecture about replacing the base

tuple with any arbitrary base tuple.

iii



Access Condition and Agreement

Each deposit in UEA Digital Repository is protected by copyright and other intellectual property rights,
and duplication or sale of all or part of any of the Data Collections is not permitted, except that material
may be duplicated by you for your research use or for educational purposes in electronic or print form.
You must obtain permission from the copyright holder, usually the author, for any other use. Exceptions
only apply where a deposit may be explicitly provided under a stated licence, such as a Creative
Commons licence or Open Government licence.

Electronic or print copies may not be offered, whether for sale or otherwise to anyone, unless explicitly
stated under a Creative Commons or Open Government license. Unauthorised reproduction, editing or
reformatting for resale purposes is explicitly prohibited (except where approved by the copyright holder
themselves) and UEA reserves the right to take immediate ‘take down’ action on behalf of the copyright
and/or rights holder if this Access condition of the UEA Digital Repository is breached. Any material in
this database has been supplied on the understanding that it is copyright material and that no quotation
from the material may be published without proper acknowledgement.



Contents

Abstract iii
Acknowledgements vi
Introduction 1
1 Background 4
1.1 The symmetric group . . . . . . . . . o e e 4

1.2 The Iwahori-Hecke algebra . . . . . . . . ... ... ... ... ... )

1.3 The Ariki-Koike algebra . . . . . .. ... ... 0L 6

1.4 Lie-theoretic setup . . . . . .. .. .. ... ... .. 7

1.5 Graded algebras . . . . .. ... L 8

1.6 KLR algebras . . . . . . . . . . . ... 9
1.7 Braid diagrams . . . . . .. .. oo Lo 12

1.8 Partitions and tableaux . . . . .. ... ... Lo 15

1.9 Residues and degrees . . . . . . . . . .. ... 18
1.10 Abacuses . . . . ... 20
1.11 Specht modules for s . . . ... 22

2 Manipulating braid diagrams 33
2.1 Motivation . . . ... . 33
2.2 Lemmas . . . . . ..o e e 36

3 Constructing homomorphisms 72
3.1 One-node homomorphisms . . . . . . . ... ... ... ... .... 72
3.2 One-row homomorphisms . . . . .. ... ... ... .. ...... 95
3.2.1 Relationsin (). . . . . . . ... o 100

3.2.2 Relationsin (if). . . . . ... .. ... oL 101

3.2.3 Relations in (iii). . . . . . ... ..o oo 102

3.24 Extending theresult . . . . . ... ... ... ... ... 117

v



Contents

George Witty

3.3 Skew homomorphisms

3.3.1
3.3.2
3.3.3
3.3.4

3.4 Relaxing the diagonal residue condition

Relations in (i). . . . .. ... ...
Relations in (ii). . ... ... ...

Relations in (iii). . . .. ... ...

Extending the result

4 Core blocks

4.1 Core blocks in level 2 and plus minus sequences
4.2 Homomorphisms within core blocks

4.3 Different base tuples

Bibliography



Acknowledgements

of research, and for being that one person within a fifty mile radius
who actually has some sort of idea about the mathematics in this thesis.

I would also like to thank Matt Fayers for his KLR algebra-focused GAP
packages. These have been immensely useful in almost all areas of this thesis.

It goes without saying that I would like to thank all of the UEA maths
PhD students who I have had the pleasure of meeting during my time here. In

particular, thanks go to:

e Mike, for the many games of cribbage.
e Andy, for the abundance of Christmas merriment and general mirth.

e Carl-Fredrik, for teaching me more about semigroups than I ever needed to

know, a keen love of words, and for proofreading this whole thing!
e Mark, for being a korfball comrade.

e OG Ben, for the funky tunes, geocaching excitement and all the games of

squash we played.

e BBQ Ben, for yet more thrilling games of squash, and always being up for a

pub quiz, even though there never was an Ariana Grande round...

More generally, I thank everyone who has made my time at UEA enjoyable.
In particular, anyone that I have worked with in the maths department or for
outreach, my friends Ben, Adam and Aryan for some entertaining lunches and
Skype for Business conversations, and of course the entirety of the UEA Korfball
Club.

Finally, I give thanks to my family for not demanding too strongly that I get a
‘proper job’, and to Amy (who may have been a little more contemptuous towards

my state of employment), who has been a constant companion throughout.

vi



Introduction

HE representation theory of the symmetric group &, over the complex

numbers can be traced back to the work of Young [You00], Frobenius

[Fro03] and Specht [Spe35], whose ideas are still present today. Some-
what more recently, James progressed the topic by working over an arbitrary field,
not just the complex numbers, to construct the irreducible modules as quotients
of Specht modules. A key reference that we will use and a great introduction to
James’s work on the symmetric group is given in the following reference [Jam78a].

In [DJ8&6], Dipper and James introduced the Iwahori-Hecke algebra Hr ,(S,,),
which acts as a generalisation of the symmetric group. As such, results in
the representation theory of Hp ,(&,) can be used to recover corresponding
results from the representation theory of &,. Subsequently, Murphy [Mur92,
Mur95] obtained a basis for Hr 4(6,,) which gave a new approach to studying the
representations of the Iwahori-Hecke algebra. The Murphy basis is an example of
a cellular basis, as defined later by Graham and Lehrer [GL96] and we have that
the Specht modules here arise as the cell modules.

Generalising further, in [AK94] Ariki and Koike introduced the Ariki-Koike
algebra Hp 4.0(Z/1Z1 S,). A cellular basis constructed by Dipper, James and
Mathas [DJM98] gave the representation theory of the Ariki-Koike algebra a
similar framework to that of the Iwahori-Hecke algebra. Again, since the Ariki-
Koike algebra is a generalisation of the Iwahori-Hecke algebra, many of the results
for Hr (&) have corresponding results for Hr 4 o(Z/1716,,), and we have Specht
modules arising as cell modules.

In [BK09], Brundan and Kleshchev showed that the Ariki-Koike algebras are
isomorphic to certain Z-graded algebras defined by Khovanov and Lauda [KL09]
[KL11] and Rouquier [Rou08]. This isomorphism gives a non-trivial Z-grading on
Hr,q,0(Z/1Z26,,). In fact we can additionally grade the Specht modules and thus
study graded representation theory.

In Chapter 1, we shall define the algebras that we are to work with, along

1



Introduction George Witty

with giving an overview of any background material that we will need in order to
study their representation theory. This will include both the algebraic setup that
we require along with combinatorial definitions such as braid diagrams for Specht
modules of KLR algebras, partitions, tableaux and abacuses. We shall also give a
more in-depth definition of the Specht modules for KLR algebras, since these will
be the main objects of our study.

Once the necessary background is established, in Chapter 2 we present various
ways in which we can manipulate braid diagrams associated to KLR algebras and
their Specht modules. When making our way through calculations whilst trying
to show the existence of explicit homomorphisms within our KLR algebras, we
will often encounter similar looking patterns of strings within our braid diagrams.
Thus we aim to establish general methods for dealing with such crossings, as this
will be useful for cutting down the amount of work needed in our calculations.

In Chapter 3, we use the processes outlined in the previous chapter in order to
prove the existence of explicit homomorphisms between certain Specht modules
for KLR algebras where the corresponding pair of multipartitions differ by moving
nodes. We will first use our approach in order to find homomorphisms and
explicitly state the image of the generator, which arise between one-node Carter-
Payne pairs as studied by Lyle and Mathas [LM14]. We will then build upon
our techniques so that in Theorem 3.14 and its corollaries we may exhibit new
homomorphisms that arise when considering two multipartitions which differ by
the moving of a large connected set of nodes. We follow this with a conjecture
concerning improving the strictness of the hypotheses of the theorem. We conclude
the chapter with a brief discussion about homomorphisms that occur when we do
not have the diagonal residue condition, by means of exploring some examples.

Finally, in Chapter 4, we consider some recent work by Fayers [Fay06, Fay07]
concerning the core blocks of the Ariki-Koike and KLR algebras and discuss some
relevant ideas using the combinatorics of the abacus in the KLR setting, based
on personal communication with Sinéad Lyle. We shall show that within these
core blocks, the homomorphisms constructed in the previous chapter arise, and

Theorem 4.26 will allow us to describe the entire set of dominated homomorphism
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spaces within certain classes of core blocks. Due to a result of Speyer [F'S16], we
are able to state a condition for when this set coincides with the entire set of
homomorphism spaces in Theorem 4.27. We finish by discussing the possibilities
of extending the results of this chapter to all core blocks, exploring some new
examples with links to those at the end of the previous chapter, and ultimately

stating a relevant conjecture.



Background

N this chapter we will state the necessary background information related

to the algebras that we will work with, and the relevant combinatorial

ideas that we will need. In particular, we will detail the definition of a
Specht module for a KLR algebra and describe the combinatorics involved. Some
more general details related to the background, e.g. the definition of an algebra

defined by generators and relations, can be found in [EGH"11].

1.1 The symmetric group

Fix n > 1 and let &, be the symmetric group of degree n. For 1 <i < n let s;
be the transposition (7,7 + 1). Then &,, is generated by the elements s1,...,$,-1

subject to the relations:

2 .
sy =1, 1<:<n—1,
8iSj = 8;8i, 1<i<j—1<n—2,
SiSi+1Si = Si+15iSi+1, 1<:<n—-2

For w € 6,,, write w = s;, - - - 55, for some k > 0. If k is minimal then we say
that s;, - - s;, is a reduced expression for w and we say that w has length k and
write [(w) = k. The identity element 1 has length 0. Given w € &,,, we define
the signature of w to be sgn(w) = (—1)1®),

Given w,w’ € &,, then we say that w is greater than w’ in the Bruhat order
(and write w = w’) if there is a reduced expression for w such that w’ can be
obtained as a subexpression of this reduced expression. If w = w’ then we also

write w’ < w and say w’ is smaller than w in the Bruhat order.

4



1.2. The Iwahori-Hecke algebra George Witty

1.2 The Iwahori-Hecke algebra

Definition 1.1. Let F be a field and let ¢ be an arbitrary non-zero element of

F. The Iwahori-Hecke algebra Hp 4(S,) of &, is the unital associative F-algebra

with generators 17, ...,7T,_1 and relations:
(T; —q)(Ti + 1) =0, 1<i<n-—1,
T;T; = T;T;, 1<i<ji—1<n-2,
LT T = Tia 1T, 1<i<n—-2

For brevity, we may write H for Hr 4(S,). When ¢ = 1, the first relation becomes

Tf =1, and so in this case Hp 4(S,) is isomorphic to the group algebra F&,,.

Definition 1.2. Define e € {2,3,4,...} to be the quantum characteristic of

Hr,¢(Sy), that is, the smallest integer e such that

1+qg+¢+...+¢ =0

If no such integer exists, let e = co. Note that if ¢ = 1 (as in the case of &,,) then

e = charF.

Suppose w € &, and let w = s;, ---s;, be a reduced expression for w. We
define

If w is the identity element of &,, then we identify T, with the identity element
of F. By Matsumoto’s Theorem for reduced expressions [Mat64], we have that Ty,
is independent of the choice of reduced expression for w and hence is well-defined.

The following result details how we perform right multiplication in Hp 4(Sy,).

Proposition 1.3. [Mat99, Lemma 1.1.2] Let w € &,,, then

Tws;s if lws;) > l(w),
T,T,, =

qTws + (g — DTy,  if l(ws;) < l(w).
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Example 1.4. Let w = (1,2,3) = (2,3)(1,2) and consider so = (2,3). Then
wsy = (1,3) = (2,3)(1,2)(2,3), so l(wsz) =3 > 2 = [(w) hence

Ta23T023 =T(1,3)-

If instead we consider s; = (1,2), then ws; = (2,3), so l(ws1) =1 < 2 = [l(w)
hence

Ta23 T2 = aT23) + (¢ — 1)T(123)-
O

By Lemma 1.3 we see that the elements T, for w € &,, span Hp 4(S,). It can

also be shown that they are linearly independent to obtain the following theorem.

Theorem 1.5. [Mat99, Theorem 1.1.3] The Iwahori-Hecke algebra Hy o(Sy) is

free as an F-module with basis {T,, | w € &,,}.

1.3 The Ariki-Koike algebra

Definition 1.6. Let F be a field, let ¢ be a non-zero element of IF, let [ > 1 and
let Q = (Q1,...,Q;) € F' with Q; # 0 for 0 < i <. The Ariki-Koike algebra
Hr.q,0(Z/1Z S,,) is the unital associative F-algebra with generators Ty, ..., T,—1

and relations:

(To — Q1)(To — Q2) ... (To — Q1) = 1,
(T; — q)(Ti + 1) = 0, 1<i<n-—1,
ToThToTh = TATo T To,
T, = T5T;, 0<i<j—1<n-—2

Ll =T 1Ty, 1<i<n-—2.

We may write just Hr q.q for Hr q0(Z/1Z1S,). Note in the case when | = 1, the
first relation becomes Ty = 14 @1 € F, thus the third relation is trivially satisfied,

and so we recover the presentation for the Iwahori-Hecke algebra.
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We define the quantum characteristic e of the Ariki-Koike algebra identically
to that of the Iwahori-Hecke algebra. Similarly, for w € &,, we set T, =15, - - - 15,
where s;, - - - 55, is a reduced expressions for w, and we have the same multiplication
formula as given by Proposition 1.3.

We say Q is g-connected if for each i, Q; = ¢* for some a; € Z. In [DMO02],
Dipper and Mathas prove that any Ariki-Koike algebra is Morita equivalent to a
direct sum of tensor products of smaller Ariki-Koike algebras, each of which has
g-connected parameters. Thus we may assume that we are always working with a
Ariki-Koike algebra where each @; is an integral power of q.

We call [ the level of Hrg4q. Given e € {2,3,4,...} U{oo} set I = Z/eZ
(which we identify with {0,1,...,e — 1}) unless e = oo, in which case set I = Z.
G, acts on the left on elements of I™ by place permutations. We call an [-tuple
k= (K1,...,K) € I' an e-multicharge of level . If we consider a particular choice
of Hr 4, by assumption there exists k = (K1,...,K;) € I' such that Q; = ¢

for every i € {1,...,1}. We call this particular x the e-multicharge of level [ of

HF,q,Q-

1.4 Lie-theoretic setup

Let e € {2,3,4,...} U{oo} and let I be defined as in Section 1.3. Let I'. be the
quiver with vertex set I and an arrow from ¢ to i —1 for s € I. If some 4,j € I are

not connected by an edge in I'. then we write i -~ j. Some examples are shown

below.
0 0 0—— 3
Il VRN [
1 1+— 2 1+—2
I'y I's Iy
—1 < 0 < 1< 2 ¢
'
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The Cartan matriz (a; ;)i jer is given by:

2 ifi=j

0 ifjAditl,
aZJ:
—1 ifi—jori<j

2 ifis

As in [Kac90], let (h,II,IIV) be a realisation of the Cartan matrix, giving us
simple roots «; and fundamental dominant weights A; for ¢ € I, along with a
bilinear form ( , ) satisfying (a;, ;) = a;; and (A;, o) = &;5 for 4,5 € I. Define
Pt = @,c; Z>oA;, the positive weight lattice and define QT = @,;c; Z>o«, the
positive root lattice. For o = Y . ;cio; € Q™, the height of « is defined to be

D icr Ci-
Consider k = (K1, ..., /), an e-multicharge of level [, as defined in Section 1.3.

We define the corresponding dominant weight to be A, == A, +--- + Ay,

1.5 Graded algebras

Definition 1.7. An F-algebra A is Z-graded if for every ¢ € Z there exists a

vector space A; such that
(i) A;A; C A,y for every i,j € Z, and
(ii) there is a direct sum decomposition A = €, ., A; as vector spaces.
We will usually refer to Z-graded algebras simply as graded algebras.
Example 1.8. (i) Any algebra A is graded by taking Ag = A, A; = 0 for 7 # 0.

(ii) Let A =TF[z], the polynomial ring with coefficients in F. Let

(9 ifi >0,
A; =

0 it 7 <0.

Then this defines a grading on A.
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O

Definition 1.9. An element a € A is homogeneous of degree i if a € A;. We

write deg(a) = i.

Definition 1.10. Let A be a graded F-algebra and let M be an A-module. We

say M is Z-graded if for every ¢ € Z there exists a vector space M; such that
(i) M;A; C M;,; for every i,j € Z, and
(ii) there is a direct sum decomposition M = @,., M; as a vector space.
We will refer to Z-graded modules simply as graded modules.

Definition 1.11. Let A be a graded algebra and let M and N be graded A-

modules. A homomorphism of A-modules ¢: M — N is called homogeneous of

degree d if p(M;) C N;yq for every i € Z.

Definition 1.12. If M is a graded module and k € Z, then we define M (k) to
be the module isomorphic to M but whose grading is shifted by k. That is, we
have M (k)q = My_.

1.6 KLR algebras

Suppose we have fixed an e € {2,3,4,...} U{oo} and defined I as in Section 1.3.
As in Section 1.4 we have a Cartan matrix (ai7j)i7j€1, simple roots «; and the

positive root lattice Q.

Definition 1.13. Let IF be a field and suppose o € Q" has height n. Define I
to be the set

I“={4{4iel" oy +- -+, =al.

Then define %, to be the unital associative F-algebra with generators

{e(i) [ie I} U{yr, .., ynf U{¥1, ..., ¥ 1}
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and relations

Yr = e(i)yra

wre(i) = e(sri)¢r7

YrYs = YsYr,
¢rys = yswra
U)Mﬁs = wswm

¢ryr+le(i) = (yﬂ/}r + 5irir+1)e(i)’

yr’-i-lq/}?"e(i) = (wryr + 5irir+1)€(i)7

0,

(yr-‘rl - yr)e(i)v

re) = § (o — yran)e(i),
(Yr+1 = Yr) (Yr — Yrs1)e(d),
<),
($r10rg1 + Ded),
ot antel) = (Yr19rthry1 — De(i),

(wr+1¢rwr+1>e(i)7

\

for all i,j € I* and all admissible r and s.

(Vrs1Vrrg1 + Yr — 2yrg1 + Yrg2)e(i),

(1.2)
(1.3)
(1.4)
(1.5)
if s£rr+1, (1.6)
iflr—s|>1,  (L7)
(1.8)
(1.9)
if 4, = i, y1,
if ip = 4py1,
if Gy < iy, (1.10)

if iy = iT+17

otherwise,

if iy = Z.1“4-2 — Z’r+1;
if Uy = ir+2 < 'L'r+1a
if by = iT-i—Q = i’f-‘rh
otherwise,

(1.11)

The affine Khovanov-Lauda-Rouquier algebra (or quiver Hecke algebra) 2, is

defined to be @, ., the sum being over all @ € Q% of height n.

Once again recall the Lie-theoretic notation of Section 1.4. Given oo € Q" and

10



1.6. KLR algebras George Witty

%, an e-multicharge of level [, we obtain the dominant weight A.. We define 2+

to be the quotient of 2, by the relations
(i) = 0 (1.12)

for i e 1.

Definition 1.14. The cyclotomic Khovanov-Lauda-Rouquier algebra %’jf‘“ is

defined to be @, M the sum being over all o € QT of height n.

Note that we will frequently abbreviate Khovanov-Lauda-Rouquier to “KLR”.
We remark that in the case of s~ due to [LMO07] or [Bru08, Theorem 1] the

blocks are given by the algebras L%ZAH.

Proposition 1.15. [BK09, Corollary 1] There is a unique Z-grading on H

such that

deg(e(i)) =0, deg(yr) = 2, deg(¢re(i)) = T ipg1s

for each admissible r and i € I%.
Now we state the theorem which motivates our use of the KLR algebras.

Theorem 1.16. [BK09, Main Theorem] Suppose the Ariki-Koike algebra
Hr 4.0(Z/1Z218,,) has e-multicharge k. Then M = Hy , o(Z)1Z2216,,).

Theorem 1.16 implies that the Ariki-Koike algebras are (non-trivially) Z-
graded. As special cases, we have that if [ = 1 then %A“ = FS,, when ¢ =1 and
AN = Hp (S,) otherwise.

We will perform multiple calculations within KLR algebras. We will make
liberal use of the commuting relation (1.7) without reference. Also, for ease when
writing elements, we use the following shorthand notation.

For a < b,

\IjaTb:: wawa—kl T wb'

11



1.7. Braid diagrams George Witty

If @ > b then ¥,1%:=1. Fora<b<c,

(Tp19) dai= U1 Wpoy 1671 - Wt ore?

Similarly, for a < b,

V0L o= Yothp1 - Y.

If a > bthen U° | ,:=1. Fora <b<c,

(Ulp)Th= W, \Ifc_lib_l oo \ch_b-i—a\La .

1.7 Braid diagrams

When working with elements of KLR algebras we will prefer to work diagram-
matically, and so we associate a braid diagram to each element of JZ~ as in
[KLO09]. We define an n-braid diagram to be a graph whose vertices are labelled
by {1/,2',...,n/,1,2,...,n}, with every vertex in {1’,2',...,n'} connected to a
unique vertex in {1,2,...,n}, and each edge labelled by an element of I and
donning a finite number of dots. If we consider the braid diagram B as a map
from {1’,2/,...,n'} to {1,2,...,n}, we obtain a permutation 7g € &,,.

Since braid diagrams are graphs, we can draw them in the plane, and we do not
distinguish between over and under crossings. We place the vertices {1’,2',...,n'}
at the top of the diagram and the vertices {1,2,...,n} at the bottom, with both
sets ordered from left to right in the natural way. We explicitly indicate the
labels of the vertices {1,...,n} at the bottom of the diagram whilst at the top we
label the vertices with i = (i1,...,4,) € I"™. For r € {1,...,n}, we call the edge
connected to the vertex r the r-string of residue i, where i is the component of i

labelling the other vertex of the edge.

12



1.7. Braid diagrams George Witty

Ifi= (i1,...,i,), then the braid diagram representing e(i) is

i1 AT M

Now for r € {1,2,...,n — 1}, 1, acts on a braid diagram by crossing the r-string
with the (r 4 1)-string at the bottom of the diagram. For s € {1,2,...,n}, ys acts
on the braid diagram by adding a dot to the bottom of the s-string. For j € I"™,
e(j) acts as the identity on a diagram if j = 7g 1§, otherwise it acts as zero. The

element e(i)ys can be drawn as

i PR S

whilst e(i)1, can be drawn as

2‘1 i2 N ir ir+1 e Zn

1 2 .- r r+1 - n

We can multiply diagrams by concatenation from top to bottom and so we have

braid diagram versions of the relations (1.1)-(1.12). For example, if we use relation

13
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(1.8), part of the diagram will undergo the diagrammatic relation:

iy Z‘7“—1—1 ir ir-i—l ir Z'7‘—|—1

X : X +6Z‘T'ir+l
r r+1 r r4+1

Suppose that i, — 7,41, then when using relation (1.10), part of the diagram will

r r+1

undergo the following:

ir ir—l—l ir Z.7"—0—1 ir 7;7"+1

r r+1 r r+1 r r+1

If we suppose that i, = i,19 — 4,41, then when using relation (1.11), part of the

diagram will undergo the following:

'L'r ir+1 ir+2 ir 'L'r+1 ir+2 ’L.r Z'7"Jr1 ir+2

r r+1lr+2 r r+1r+2 r r+1lr+2

Often we will not draw entire diagrams for elements since there will be many
strings which do not undergo any crossings or involve dots and so are of no
importance to the calculation in question, just as in the few diagrams directly
above.

For w € 6,,, fix a reduced expression w = s,, - - - s;, and define

ww = wm wrk

14



1.8. Partitions and tableaux George Witty

Note that 1, may depend on the choice of reduced expression for w. We can
obtain an associated braid diagram for v,,. Proposition 1.18 will be useful in
determining when an expression for a permutation is reduced. Let us first define

the set N(w) for w € Gy;

Nw) ={(i,j) € 6, |1 <i<j<nand iw > jw},

and then state an associated result:
Proposition 1.17. [Mat98] Suppose that w € &,,. Then l(w) = #N(w).

Now we can prove the following result that will be of use to us when dealing

with reduced expressions.

Proposition 1.18. A permutation w = s;, --- s;, € &, is reduced if and only if

in the corresponding braid diagram B, no two strings cross twice.

Proof. Suppose that two strings cross twice. Then remove the corresponding
crossings from the diagram to obtain a new diagram B’ such that the length of
g is two less than that of mg. Hence we have an expression for w that is shorter

than that we started with so that w = s;, - - - s;, was not reduced.

k
Conversely, assume that no two strings cross twice. Then for ¢ < j, string
i crosses string j if and only if (i,j) € N(w). Hence #N(w) = k and so by

Proposition 1.17 we have the desired result. O

1.8 Partitions and tableaux

A composition of n is a sequence A = (A1, A2, ...) of non-negative integers such
that [A[ :== ;51 A = n. Since n < oo, there is a k such that A\; = 0 for ¢ > k and
we may write A = (Ag,...,\;). We write @ for the empty composition (0,0, ...).
If a composition has repeated parts we group them together with an index. For

example,

(5,5,3,1,1,1,0,0,...) = (5,5,3,1,1,1) = (5%,3,1%).

A partition of n is a composition of n satisfying \; > Ay > ---.

15



1.8. Partitions and tableaux George Witty

An [-multicomposition of n is an ordered [-tuple of compositions A =
AW X@ L AD) such that |A] = [AD| 4 [AD| = n. If each A is a partition,
we say that A is an [-multipartition of n. We may often refer to a 2-multipartition
as a bipartition.

If )\ is a partition, we define the conjugate partition X' to be the partition with
1th part

XNo=#{7 > 1[N >4}

If A\ is an [-multipartition, then the conjugate multipartition is defined as

Given [-multicompositions A and p, we say that A dominates p, and write A > p,
if
m—1 s m—1 s
DUED SIS DT ED W
k=1 i=1 k=1 i=1
forall 1 <m <[ and s> 1. If A > y then we also write p < A.

If X\ is an [-multicomposition, we define the diagram of A to be
A ={(r,e;m) e NxNx{1,...,0} | e <A™},

The elements of [A] are called nodes. Note that if A is a composition then we can

consider \ as a 1-multicomposition and in this case we identify [A] with
{(r,c) e NxN|c< A}

Given a composition we may draw its diagram in the plane, drawing each node
as a box, with the r coordinate increasing down the page and the ¢ coordinate
increasing from left to right. For example, the diagram of (3, 3,4, 0,2) is drawn as

follows.

16



1.8. Partitions and tableaux George Witty

Similarly we can draw the diagram of an [-multicomposition as an [-tuple of
the diagrams of its component compositions. For example, the diagram of

((2,2,1),(2),(3,1)) is drawn as

L,

We say a node (r,c,m) lies above (r',¢’,m’) if either m < m’ or (m = m’ and
r < r'). Similarly, we say a node (r, ¢, m) lies below (r',c',m’) if either m > m’ or
(m =m' and r > r’').

For an [-multipartition A\, we say that an element B € N x N x {1,...1} is
an addable node if B ¢ [\ and [\] U {B} is the diagram of a multipartition.
We say that a node A € [\] is removable if [\] \ A is also the the diagram of a
multipartition.

Given a partition A, let A; = (A1, A2, .., Ae—1, A — 1, Aeg1, Akga, - - ), o€

[A;] is [A] with the rightmost node on the kth row removed.

Definition 1.19. Given A, an [-multipartition of n, a A-tableau is a bijection
t: [\ = {1,...,n}. We can represent a \-tableau t by drawing [\] and then filling

in the box at position (r, ¢, m) with its image under t.

We say a A-tableau t is row standard if its entries increase along the rows of
each component of its diagram, and we say t is standard if, in addition to being
row standard, its entries increase down the columns of each component of its

diagram. We write Std(\) for the set of standard A-tableaux.

Example 1.20. Let A\ = ((3,2), (1?)). Then

112]3] [6] 113][5] [7] d 2[7]3] [5]
al5] 7)) \z2la] 6] ) ™ \[1l6] |4

are examples of A-tableau, the first of which is standard, the second of which is

row standard but not standard, and the third of which is neither. %

The symmetric group acts naturally on A-tableaux on the right by permuting

the entries. In Example 1.20 above, the permutation (2,3,5,4)(6,7) sends the

17



1.9. Residues and degrees George Witty

first tableau to the second.

Definition 1.21. Let A be a [-multipartition of n. The initial tableau t* is defined
to be the tableau obtained by writing the numbers 1,...,n in order from left to
right, going down the rows of each successive component of A\. Given a A-tableau

t we define the permutation d(t) € &, by t = td(t).

Example 1.22. Let A = ((2,2,1),(2),(3,1)), a 3-multipartition of 11. Then we

have
1]2 =
= 3[4],[6]7], ﬁ
i —l
If
1[4
e={ [2]5], [6]7]. o )
i L2
then d(t) = (2,4,5,3)(9,10,11). 0

Recall the Bruhat order > on G,, as defined in Section 1.1. Given a multipar-
tition A we define a dominance order on the set of A-tableaux: for A-tableaux t
and s we have

t> s if and only if d(t) > d(s).

If t > s then we also write s < t.

1.9 Residues and degrees

Suppose e € {2,3,4,...}U{co} and that we have an e-multicharge k = (K1, ..., k)

as defined in Section 1.3. Given a node A = (7, ¢, m) define its residue resA to be

resA =k, +c—r mod e.

Note that in the theory of &, and Hp ,(S,) we have | = 1, and the choice of
multicharge has no consequence on the structure of the algebra, thus the residue

of a node A is usually defined just as

resA=c—r mod e.

18



1.9. Residues and degrees George Witty

We say A is an i-node if resA = i. Define the residue diagram of A to be the
diagram formed by filling in the box of [A] at node A with resA. If X is a
multipartition of n and f € F, let c¢(A\) be the number of nodes in [A] of residue

f. We define the residue content of A to be

(co(A)yc1(A), .. oyce—1(N)) ifee{2,3,4,...},
cont(\) =

(.., c—2(N),c—1(N), co(N), c1(A), ca(N),...) if e = oc.

Recall the simple roots a; constructed in Section 1.4. If we are in this setting

we may also define the residue content to be

Z QresA € Q+-

A€[N]

Given a A-tableau t, where A is a multipartition of n, define the residue
sequence of t to be i(t) = (i1,...,1,) where iy is the residue of the node whose
image is k under t. In particular, we define i* := i(t}). We write res, (a) for the

residue of the node containing a in t”.

Example 1.23. Let A = ((2,2,1),(2),(3,1)), e =3 and x = (0,2,1). Then we

have the residue diagram

01
20]., [2[0], 11210
i L=
and we have that i* = (0,1,2,0,1,2,0,1,2,0,0). O

Suppose A is an [-multipartition of n and that A is an i-node of A. Define

addable 7-nodes of A removable 7-nodes of A
dA()\) = # - # )
below A below A
and
" addable 7-nodes of A removable ¢-nodes of A
d?(\) = # -
above A above A

19



1.10. Abacuses George Witty

We define the degree and codegree of t € Std() recursively. We set deg(t) =
0 = codeg(t) when t is the @-tableau. For t € Std(\) with |A| # 0, set

deg(t) = da(\) + deg(t<p) and codeg(t) = d*(\) + codeg(tp),

where A = t~!(n) and t., is the tableau obtained by removing A from t.

Example 1.24. Let A = ((2,1),(1%)), e = 3, kK = (2,1) and consider t

<24 20)
0

3 > We have the corresponding residue diagram ( 1 , m
Then, taking A to be the node t~1(5) = (2,1,2), we get da(\) = 0—0 =

dA()\):l—lzo,andt<5:<

g 4 ‘ , > Continuing in this manner, we
find that deg(t) = 2 and codeg(t) =0. O

1.10 Abacuses

Another way to represent multipartitions is to use abacus configurations. Suppose
A is a partition and that we have fixed a € Z. For every j > 1 we define the
B-number [3; to be

and we define the set of S-numbers associated to A with respect to a to be

Ba(N) ={B; | = 1}.

Now suppose we have an abacus whose runners extend infinitely and are
indexed from left to right by the elements of I and whose possible bead positions
are labelled with the elements of Z from left to right and then top to bottom,
with position 0 appearing on runner 0. Then the abacus configuration associated
to A with respect to a is the abacus configuration with a bead placed at position

B; for every j > 1.

Example 1.25. Suppose ¢ = 5, a = 3 and A = (12,10,62,4,2,1). Then we have

Ba(N) = {14,11,6,5,2,—1,-3,—5,—6,—7,...}
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1.10. Abacuses George Witty

and the abacus configuration is

O

Given an l-multipartition A = (A1, ..., X)) and a = (a1, az, ..., ) € Z, we
define the abacus configuration associated to A with respect to a to be the [-tuple
of abacuses where the ith abacus corresponds to the S-numbers 3, ()\(i)).

Note that if k = (k1,...,%;) is a multicharge and a; = k; for i € {1,...,1}
then each bead corresponds to the end of a row of the diagram of A (or to a row
of length 0), and by the definition of the f-numbers the node at the end of the
row (if it exists) has residue i if and only if the corresponding bead is on runner
1 of the abacus. Thus if we increase any S-number by one, this is equivalent to
moving a bead from runner j to runner j+1 mod e which is equivalent to adding
a node of residue j + 1 to the diagram of A. Similarly decreasing a S-number by
one is equivalent to moving a bead from runner j to runner j —1 mod e which is

equivalent to removing a node of residue j from the diagram of A.

Example 1.26. Recall the setup in Example 1.25. We see, for example, that
increasing (1 from 14 to 15 corresponds to adding a node of residue 0, whilst
decreasing (5 from 2 to 1 corresponds to removing a node of residue 2. The
corresponding residue diagram is shown below with the addable node in red and

the removable node in blue.
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1.11 Specht modules for J#x

We will now define Specht modules for .72+, By Theorem 1.16 we have that
each KLR algebra is isomorphic to some Ariki-Koike algebra. There are well
established ways of defining Specht modules of Ariki-Koike algebras as cell modules
corresponding to cellular bases (see [GLI6] for the first such way, or [DJM98]),
and in a similar vein Hu and Mathas construct an explicit homogeneous cellular
basis for s+ in [HM10]. However, we will define the Specht modules for 7+
in such a way that gives us a different insight into the representation theory of
the Ariki-Koike algebras.

By Proposition 1.15 we know that %”HA“ is a graded algebra, but it is not directly
obvious that certain classes of modules should admit a grading. Nevertheless,
graded Specht modules for j’ijA” were first exhibited in [BKW11], however they are
defined in such a way that computations rely on repeatedly using Theorem 1.16.
Instead, following the method used in [KMR12], we may present the Specht
modules in terms of a single homogeneous generator and relations, allowing us to
consider a different approach to the Specht modules as opposed to using cellular
bases. Note that this grading can of course be transferred to Hr, g (and hence
also Hr 4(6,) and FS,,) via Theorem 1.16.

Fix e € {2,3,4,...} U{oo} and let ¥ be an e-multicharge of level [. Let A be
an [-multipartition of n, and let A = (a,b,m) € [A\]. We say A is a (row) Garnir
node of X if (a +1,b,m) € [\. The (row) Garnir belt B4 is defined to be the set
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1.11. Specht modules for A+ George Witty

of nodes

B = {(a,c,m) € [\ | e >b}U{(a+1,¢,m) € [\ | c<b}.

Example 1.27. Let A = ((3,2),(7,3,2)) and A = (1,3,2). Then the Garnir belt

B“ is shown highlighted below.

O

We define a A-tableau called the (row) Garnir tableau G* by taking the initial
tableau t* and rewriting the entries within B so that they increase from bottom

left to top right.

Example 1.28. Continuing Example 1.27, we have the tableau

6|7[8]9[10/11/12|
A
= i g 3, 131415
16/17
and
_ | 23 6 | 7 [11]12[13]14]15|
A5 81910
16[17

We define a (row) brick to be a set of e successive nodes
{(¢,d,m),(c,d+1,m),...,(c,d+e—1,m)} C B4

such that res(c,d,m) = resA. So B4 is a disjoint union of bricks together with
less than e nodes not in a brick at the end of row a and less than e nodes not in a
brick at the beginning of row a + 1. Let f = f4 be the number of bricks in row a
and g = g be the number of bricks in row a + 1. Set k = k4 = f4 + ¢4, ie. k is

the total number of bricks in BA. Then we label the bricks Bf‘, B4, ..., B,f from
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1.11. Specht modules for A+ George Witty

bottom left to top right.

Example 1.29. Continuing Example 1.28, if we suppose e = 2 then the bricks

are illustrated below.

Bg By

6 | 7 [11]12]13]14]15|
A
G" = 1 § 30, 5ol

16 17\

Bt 0

If k> 0 let d = d* be the smallest entry in Bf‘. In Example 1.29, we see that

d=9. For each r € {1,...,k — 1}, we define a brick transposition

d+re—1

wh = H (z,x+e)
r=d+re—e
which swaps the bricks B4 and B2 |. These elements are the Coxeter generators
for a symmetric group:
&4 = (wf‘,wf‘, ) w?71> = 6.
If k = 0 then we set G to be the trivial group.

Define Gar? to be the set of all row standard A-tableaux which are obtained
from G4 by brick permutations, i.e. by acting on G4 by &4. Note that every
tableau in Gar? is standard except for G4, and G4 is the minimal element of Gar®
with respect to the Bruhat order.

Let T4 be the A-tableau obtained from G* by reordering the bricks so that

their entries increase along row a and then along row a + 1.

Example 1.30. Continuining Example 1.29, we have

6| 719 10[11]12]15]
A
= i§3, 8 [13[14]

16/17
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O

Define 24 to be the set of minimal length right coset representatives of
Sf x Gy in G4 =2 G, Let i* = i(T4) be the residue sequence of T4. Recall that
for w € &,,, we fix a reduced expression w = s,, - - - 5;, and define ¥, = VP, - Yy, .
Note that the 1, may depend on the choice of reduced expression for w. Now if

u e 24, choose a reduced expression u = wfl . -w;fi for d and define

7_114 = e(lA)<ww;f‘1 =+ 1) T (ww;f‘t + 1)

By [KMR12, Theorem 5.11], 7! does not rely on the choice of reduced expression
for u, nor the choice of reduced expression for each ¢,,4a. Let t be a A-tableau,

then after fixing a choice of reduced expression for d(t) we may define ' = Yagy)-

Definition 1.31. Suppose ) is an [-multipartition of n and A is a Garnir node

of [A]. The (row) Garnir element is defined as

gt= 30wtk

ucPA

Example 1.32. We continue Example 1.30 and compute the corresponding
Garnir element. We have f = 2, g = 1, and so 2° = {1, s, s951}. The brick

transpositions are

wit = (9,11)(10,12),

wi = (11,13)(12,14),

and so we get

Tsé = e(iA)ww;‘ +1) = e(iA)(¢(11,13)(12,14) +1),

Topsy — e(iA)(¢w§ +D)Wa+1) = e(iA)(T/}(ll,ls)(lz,M) + 1)(¥9,11)(10,12) + 1)-
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Now

d(T) = (12,13)(13,14)(14,15)(11,12)(10, 11)(9, 10)(8,9),

hence

TA

V' = 2,13)Y(13,14)¥(14,15) ¥ (11,12) ¥V (10,11) ¥ (9,10) ¥ (8,9) -

Putting these together, we get

gt = ¢TA€(1A)(1 + (Ya1,13)02,14) + 1) + (Paris)az,14) + D(@e,11)00,12) + 1))

A,

=" e(i) (3 + 2¢11.13)(12.14) + Y(9,11)(10,12) + P(11.13) (1214 % (9,11)(10,12))
A,

=T e(i) (3 + 201213V (11,12)Y (13,10 (12,13) + (10,11 (9,100 ¥ (11,12) Y (10,11)

+Ya2,13)Pa1,12)P03,14) P (12,13) (10,119,100 11,12)P(10,11))-

Note that since T4 = td(T4), using relation (1.4) we see that T e(id) =

Yycraye(i?) = e(i*)yera), and so

. A
gt = 6(1/\)¢T (3 + 2¥112,13Y1,12) V13,14V 12,13) T Y011 P 9,100 (11,12)¥(10,11)

+ Y213 Pa1,12) P 3,14 Y (12,13) (10,10 9,100V (11,12) P (10,11) ) -
= e(iM)12,13) ¥ 13,10 4,15) Y (11,12) Y (10,11) V(9,10 ¥ (8,9 (3
+ 2¢12,13)%11,12)¥(13,14) Y (12,13) T Y(10,11)¥(9,10)¥(11,12)¥(10,11)

+Ya2,13)Pa1,12)P03,14) P (12,13) (10,109,100 (11,12)P(10,11))-

O

Now we can define the Specht modules of ji’le”, or rather, in light of Theo-
rem 1.16, give an alternative presentation for the Specht modules of the Ariki-Koike

algebras.

Definition 1.33. Suppose \ is an [-multipartition of n. The Specht module S*
of S+ is the s +-module generated by the homogeneous element ot of degree

deg(t*) subject to the relations:
(i) vtke(i)‘) =t

(ii) vy, =0, for all 7 € {1,...,n};
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(iii) v, =0, for all r € {1,...,n — 1} such that r and r + 1 are in the same

row of £}
(iv) vt g4 = 0, for every Garnir node A of [A].

We refer to the relations in (iii) as row relations, and those in (iv) as Garnir
relations.

Recall that for any A-tableau t, we have a corresponding element 1, which
depends on a choice of reduced expression for d(t). For any A-tableau t we
define vt :== v*"t. The next two results do not depend on the choice of reduced

expression.

Proposition 1.34. [KMR12, Proposition 5.14] Suppose X is a multipartition of

n and that t is a standard A-tableau. Then deg(v') = deg(t).

Proposition 1.35. [KMR12, Corollary 6.24] Suppose X is a multipartition of n.
Then

{v' | te Std(A\)}
is a homogeneous basis for S* over F.

We state two results which are useful for calculations involving the Specht

modules.

Proposition 1.36. [BKW11, Corollary 4.6 € Proposition 4.7] Let X be a mul-
tipartition of n, t be a standard \-tableau, and d(t) = s;, -+ s;, be a reduced

expression. Then

% t
v 7/%1"'1/1it:v+ Z asvs
s€Std(A)
st

for some a5 € F. Furthermore if as # 0 then i(s) = i(t).

Proposition 1.37. [BKW11, Lemma 4.8] Let A be a multipartition of n, t be a

standard \-tableau, and r € {1,...,n}. Then

vy, = E asv®

s€Std(A)
st
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for some a5 € F. Furthermore if as # 0 then i(s) = i(t).

Note that Proposition 1.36 does depend on the reduced expression of d(t).

The following example illustrates this.

Example 1.38. Let A\ = ((3,1),(2,1)), e = 4, x = (0,2). Consider

¢ = < : 2]5] 3 6), so then d(f) = (3,5). Now both (3,4)(4,5)(3,4)

and (4,5)(3,4)(4,57 are reduced expressions for d(t), and so suppose we fix

sgsas3 = (3,4)(4,5)(3,4) to be our preferred reduced expression. Then
A A A
v Pgihyrhy = v gy = v Yt =0t

But now also

v hatzhy = oF e(P)atpaihy
= v hyhahae(i(t))

and we have e(i*) = (0,1,2,3,2,3,1) = e(i(t)), i3 = i5 < i4, so by relation (1.11)

we get,

v Puishs = o Yatbsie(i(t))
= 0" (h3thahs + De(i(t))

A
=ot 4o,

O

Recall that any KLR algebra %’j{“ is isomorphic to an Ariki-Koike algebra
Hr,q,0(Z/1Z1 &y,) and that in the latter we have a cellular structure so that the
Specht modules S* arise as cell modules. From the theory of cellular algebras,
each module S* has an attached bilinear form, and from this we can obtain every
simple Hr 4 o-module as the quotient of an S by the radical associated to this
form. Let us write D* for the simple module we obtain. Then we have the

following:
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Theorem 1.39. [DJMYIS, Theorem 3.30]

{D* | X is an multipartition of n such that D # 0}

is a complete set of non-isomorphic irreducible Hr q.0(Z/1Z &y,)-modules over F.

Using the isomorphism discussed above, we can view these irreducible modules
in the KLR setting also.

We can in fact say exactly when D* # 0. Given a multipartition X\ and i € T
(where I is defined as in 1.3), define the i-signature of A by assessing the addable
and removable nodes of A in turn from the highest to the lowest and writing A for
each addable i-node and R for each removable i-node. Then repeatedly remove
any adjacent pairs RA until none are left. The remaining removable i-nodes in
the sequence are called normal i-nodes, and the highest of these (i.e. that which
lies above the others, if it exists) is called the good i-node. We say that X is
Kleshchev if X is the empty multipartition, or if there is a good node x of A (of
any residue) such that removing = from A still gives a Kleshchev multipartition.

Then the following holds.

Theorem 1.40. [Ari01, Theorem 4.3] D # 0 if and only if \ is a Kleshchev

multipartition.

Example 1.41. Let e =2, kK = (0,0) and A = (&, (2,1)). Then

\] = < z, | > has residue diagram < o, (1) 1] )
and has reduced 1-signature RR thus the highest 1-node is a good node. Then

< g, H > has residue diagram ( [ )

and has reduced 1-signature AR thus the 1-node is good. Then

( T, D) has residue diagram ( a, @)

and has reduced 0-signature AR so the 0-node is good. Since by removing it
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we have the empty multipartition this means that A is Kleshchev. On the other
hand, if we consider p = ((2,1),2), then we can similarly reduce the situation to

considering the multipartition (1, @), but

( D , O ) has residue diagram ( @ , )

with 0-signature RA, so the reduced 0-signature is empty and there are no good

nodes that we can remove. So u is not Kleshchev. O

Now we use the grading to define graded decomposition numbers. Since the
Specht modules S* are graded, we have that the quotients D* are also graded.

Recall Definition 1.11.

Definition 1.42. We define the graded decomposition number of D* as a compo-

sition factor of S* to be

dau(v) = [$*: D*), =Y [S*: DH(k)Jv*
keZ
where v is an indeterminate over Z and [S*: D*(k)] is the number of times D (k)

appears as a composition factor of S*.

It is a long standing open problem to determine the decomposition numbers,
even just in the symmetric group case.

In Section 1.7 we have seen how we can use braid diagrams to work with
elements of KLLR algebras. In particular we can work with Specht modules using
these braid diagrams. We can represent the generator of a Specht module S* as
the braid diagram corresponding to e(i*) and then apply KLR generators of the

form y, and 1, as dots and crossings respectively.

Example 1.43. Let A\ be the multipartition ((2),(12)), let e = 3 and suppose

x = (0,1). Then the residue sequence of t* is (0,1, 1,0) and the standard tableaux,
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corresponding basis elements of S* and braid diagrams are shown below.

Standard tableaux | Basis element Braid diagram
0 1 1 0
() | ]
1 2 3 4
0 1 1 0
2
@) | e ] X |
1 4
0 1 1 0

<, > v iy N

( ) ) Ut/\ipﬂﬂl

—
[\
e

)
[
—
)

—
M§
w

W

@)
—
—
)

< ; > v oih11h3

&

—
W

)
—_
—
)

( ; ) v o1t

%

—
()
w
I
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We also know that vtAys =0 for all s € {1,...,4}, so for example we have:

We have one Garnir node, that containing 3 in !, and since e = 3 we have no row
bricks and thus we find that the corresponding Garnir element is just g = 3. So

we have:

O

We would like to note that, when performing calculations in examples such
as in the above and in later sections when computing homomorphisms, we have
been incredibly reliant on the KLR algebra-focused GAP packages provided by

Matt Fayers.
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Manipulating braid diagrams

UR first goal is to prepare ourselves with the necessary tools in order

to prove our main theorem. Thus, in this chapter we will present

numerous ways of dealing with elements of KLR algebras through
a series of lemmas. When manipulating the braid diagrams corresponding to
elements of KLR algebras we frequently encounter the same ‘patterns’ of strings.
With these lemmas, we aim to eliminate the need to constantly re-explain how
one performs the basic relations from the presentation of /= on large sections
of diagrams. Many of the lemmas act as natural extensions of the KLR relations;
they may appear convoluted when written algebraically, but are much easier to

comprehend when viewed with respect to the corresponding diagrams.

2.1 Motivation

Recall the notational shortcuts that we defined at the end of Section 1.6. The
following examples will help motivate how such lemmas can speed up our compu-

tations.

Example 2.1. Let e = 6, kK = (0,0), n = 10 and consider the associated algebra
AN Let A = ((2),(4,4)) and p = ((3),(4,3)). Suppose that we are trying to

t

show that there is a homomorphism from S* to S*, given by v Y v®, where s is

the tableau

(e | BREE).

We wish to show that the Garnir element Wg 19 for S* kills v°, that is, that

v W31 We19= 0. Writing the left hand side using the braid diagram combina-
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torics seen at the end of Section 1.11 we have:

1 2 3 4 5 6 7 8 9 10

We shall perform just the first step in showing that this is zero. If we only apply
the relations for JZ* as written our calculations take an inordinate amount of

time:

Wy t? W t? = U1 vgtripeUst” Wrt?

= U31° PripeiprUg 1 Wy t?
by relation (1.11) as 2 # 5,

= 7031 Yrihsihrihg U 17

= 731" Ysihripsihg W 1
by relation (1.11) as 2 # 0,

= W7 1® Wa T sgthotisib

= U718 Wyt T othgibgibo

again by relation (1.11) as 2 # 1,

= U7 1? W3t oy

Ideally, instead of all this we wish to just be able to say something in the spirit
of: “We have W31? Wg19= W31 W18 1)y and then as 2 # 5,0, 1 this is equal to

U719 Wyt ahg.”
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The second of the two examples exhibits how things can be much worse than
in the first example, greatly increasing our need for some lemmas which speed up

the combinatorics.

Example 2.2. Suppose that e =8, k = (0,7), n = 18 and consider the associated
algebra s, Let A = ((2), (4%)) and u = ((23), (42,22)). Suppose that we are

t)\

trying to show that there is a homomorphism from S* to S, given by v'" — v*

where s is the tableau

314/5|6
12
1314 7181910
17118 1112
15|16

We wish to show that the Garnir element Wg 12 for S* kills v°, i.e. that
vt (\II6T17) I3 (\IJ4T13) 13 g 12= 0. Then writing the left hand side as a

braid diagram we have:

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

and it is immediately clear that using individual applications of the braid relation
here as in Example 2.1 will be largely inefficient, when really all we wish to do is
notice that the string of residue 2 can be ‘pulled over the other crossings’ so as to
arrive at the top of the diagram (giving us the Garnir relation W12 for S* at

the top).
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2.2. Lemmas George Witty

2.2 Lemmas

The first lemma we prove acts as a generalisation of relation (1.11). It streamlines
the process of pulling two strings over each other, when the residues are such that

there is no need to add extra terms as in (1.11).

Lemma 2.3. Suppose we have the crossings (Vp42 17 9T Logy - Yaqgyr with
residues I, m, and r1,...,r4 as shown in Figure 2.1. Suppose also that one of the

following occurs:
(i) L+ m,
(ii) ri - m for every i € {1,...,g},

(iii) | # r; for every i € {1,...,g}.
Then

(Taia 9 Lagt  Vapgir = Yagr - (Wag2 1719 Lo,

the right hand side of the equality being shown in Figure 2.2.

l m.o Ty rg e Ty [ m Ty T2 e Ty
z+1lz+2 -+ z+gzxt+gaxzt+g z+1lz4+2 -+ z+gzr+gax+g
+1  +2 +1  +2

Figure 2.1: Crossings at the start of Figure 2.2: Crossings at the end of
Lemma 2.3. Lemma 2.3.

Proof. Using the braid relation (1.11) we have

(Wag2 179 Lt - Yoggra
(\le+2\l/a:+1) Terg ' wx+g+17/}x+gwx+g+1
(U2 Lo 1) 19 g gy 41Ut

(T2 L o) T gha g1Vt gVt g+1%atgs

36



2.2. Lemmas George Witty

then by continually applying the braid relation again

— wx_‘rl . (\le+2~l/27+1) Tx+g+1
= Poi1+ (Va2 P9 Logr
]

The next lemma extends Lemma 2.3 by considering when we can pull a string
over multiple other strings instead of just one when the residues are sufficiently

spread apart.

Lemma 2.4. Suppose we have the crossings

Uy P19 (‘I’x+f THHg) bzt

with residues ly,...,ly, m, and r1,...,ry as shown in Figure 2.3. Suppose that

one of the following occurs:
(i) l; -+ m for every i€ {1,..., f},
(ii) r; - m for everyi € {1,...,g}, or
(111) l; # rj for everyie {1,...,f} and j € {1,...,g}.

Then

\I/:r:+f+1 Tz-{—f—i—g ’ (‘I/x+f/r$+f+g) J/x—i-l: (q/x+f Tx+f+g> \LLB+1 '\I/a:—i-l T$+g7

the right hand side of the equality being shown in Figure 2.4.

Proof. We have

Uy pyr PHT0 (‘I’erfTHHg) lat1
= (‘Ifx+f+1 THH‘L]) Yot Votfig- (\I/:Jchffl THHg*l) dat1

= Yy <‘I’x+f+1Tm+f+g) Loty (\I"x+f71 THHg*l) Lot
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2.2. Lemmas George Witty

ll l2 lf m 71 79 Tg
x+1 z+2 -+ x49g x4+9g x+g z+g x4+ f
+1 42 43 +g+1

Figure 2.3: Crossings at the start of Lemma 2.4.

ll l2 lf m 1 79 Ty
x+1 z+2 -+ x4+g z4+9g z+9g x+g z+ f
+1 42 43 +g+1

Figure 2.4: Crossings at the end of Lemma 2.4.
by Lemma 2.3 (since one of (i), (ii), or (iii) occurs)
= W, T (‘l’x+fT”f +971) baorfo1 - Vuifig1

. (‘I’z+f—2 Tx+f+g*2> lay1

= <\Ijaz+fTI+f+g> lot1 Vot Tx—l—g

by repeatedly applying Lemma 2.3.
O

The following lemma is an extension of Lemma 2.4 and deals with pulling
multiple strings over each other where the residues are sufficiently spread so that

no extra terms are created due to relation (1.11).
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2.2. Lemmas George Witty

Lemma 2.5. Suppose we have the crossings

(‘Ifz+f+th+f+g+h_1> batper - (‘Px+me+f+g+h_1> Lat1 (2.1)

with residues Iy, ...,ly, m1,...,mp andr1,...,74 as shown in Figure 2.5. Suppose

also that one of the following occurs:
(1) li -/ m; for everyi e {1,...,f},j€{1,...,h},
(1t) s ~mj for everyi e {1,...,g},5 € {1,...,h},
(1i1) l; # r; for everyie {1,...,f} and j € {1,...,g}.

Then (2.1) is equal to:

(\le+f THHQHL_I) UPI (\le—‘rh Tm+g+h_1) UPIE

Iy Is Iy my Mo mn r To Ty
z+1 xz4+2 - z+g z+g z+g - r+g z+g z+g - T+g
+1 42 +h  +h+1+h+2 +h+ f

Figure 2.5: Crossings at the start of Lemma 2.5.
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2.2. Lemmas George Witty

I Is Iy m1 mo mn 1 o g
z+1 =z+4+2 - z+g z+g z+g - z+g z+g z+g - r+g
+1 +2 +h +h+1+h+2 +h+ f

Figure 2.6: Crossings at the end of Lemma 2.5.

Proof. We will prove that for 0 < k < h — 1 we have that (2.1) is equal to

(‘I/x+f+h Tx+f+g+h*1) batprne2 <‘I/x+f THHk*l) a1
Wy pagepr TR (‘I’x+f+ka+f+g+k> okt
- (‘I’HHHgM*l) batr - (qjm+f+g+k+1 THHQMA) Vatgrrte

We can see that if & = 0 we recover (2.1). So now by induction, suppose

~v€{0,1,...,h — 2} and consider

(‘I’a;+f+th+f+g+h_l> datfit2 - (%HT‘HH”—I) les1
W pgr T (‘1’ Tx+f+g+7> batrt1 (2.2)

(War TEHITTT) Ly - (‘I’x+f+g+7+1 Tx+f+g+h_1> batgaqt2

x4+ f4+y

which is shown in Figure 2.7. Applying Lemma 2.4 to the second line (since one
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2.2. Lemmas

"9N[(| PAINO[0D oIk f'g ewwor] Jo uolpesrdde o) Ul peA[oAUl SSULIS oY T, *(7'g) WOIJ SSUISSOL) :)°g 9IS

o+ T+

b+x b+x b+a ctT 1+

eHAtgHAFTHAE Lt

oy + b+ eHYF Ty Yt
b+x b+x b+x b+

S+ b+z b+z b+

Y

)
)

¢

6, Tu Ty o ethw  eth TR A s fu 1 K g
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2.2. Lemmas George Witty

of (i), (ii) or (iii) holds), gives us that (2.2) is equal to

(\I/x+f+hT$+f+g+h_1> batfeyte (\I/:c+f THfﬂ_l) dat1
: (\I/x-i—f-i-’y Tﬁfﬂﬂ) botrrt - Wopyp1 170977
. (‘I/z+'yTx+g+7_1) \Lx+1 . (\I/:c+f+g+'y+l Tx-l—f—&—g—i—h—l) \I/m+g+'y+2

= <\I/x+f+th+f+g+h_l> batfryts (‘I’HfTHfH) Lo

petfrgtr+l (\I/ Ta:+f+g+v+1>

Vot fiyt2 bagyt2

h—1
(W1 15T L - (\I’x+f+g+7+2TI+f+g+ >\Lz+g+7+37

o+ f+y+1

proving the inductive step.

So setting k = h — 1 we have that (2.1) is equal to:

(q;x+fTﬂf+f+h—2) Vosr Wy panotitorh=1
: (\Px+f+h—1 THHQM_I) Lath - (‘I’x+h—1 T$+g+h_2> Lot

= (W g 1) Ly (R 1)

by applying Lemma 2.4 to the second line, which is what we want. O

In many cases when we will wish to use Lemma 2.5, we will want to pull the
strings of residues my, ..., my over other strings of which only a part will give
the crossings in the setup of the lemma. Hence our final improvement in this

circumstance is to introduce these extraneous crossings to the setup.

Corollary 2.6. Suppose we have the crossings:

(‘I’x+f+k+hT$+f+k+h+g_l) Vorksfer (‘I’x+fT$+f+k+h+g+t_l) bav1 (2.3)

with residues p1,...,pg, l1,...,lp, m1,...,mp, T1,...,7¢ and q1,...,q as shown

in Figure 2.8. Suppose also that one of the following occurs:
(1) li -~ m; for everyic{1,...,f},j€{1,...,h},

(it) s -~ mj for everyi e {1,...,g},5 € {1,...,h},
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2.2. Lemmas George Witty

(111) l; # r; for everyie {1,...,f} and j € {1,...,g}.

Then (2.3) is equal to:

<‘1fx+fT$+f+k+h+g+t_l) lotr <‘I]x+k+hT$+k+h+g_l) lothyl -

l1 Ly pP1 Pk mi1 mp 1 rg q1 qt
z+1 z+f x+f z+f o+ f z+f x+f z+f =+ f z+ f
+1 +9 +g+1 +9+h+g+h +9+h+g+h +g+h
+1 +t t+1 +t+q

Figure 2.8: Crossings at the start of Corollary 2.6.

I Ly p1 Pr m mp 1 rg a1 qt
rx4+1 .- z+k z+k - z+k x4+k .- c+k x+k - z+k z+k - x4+ f
+1 +9 +g+1 +h+g+th+yg +h+g+th+yg +k+h
+1 +t +t+1 +g+t

Figure 2.9: Crossings at the end of Corollary 2.6.
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2.2. Lemmas George Witty

Proof.
(\I,x+f+k+hT:c+k+f+h+g—1) Vorktfa1 (\I,x+sz+f+k+h+g+t—1) Lot
= (\leJrfoJer_l) bas1 (‘Pm+f+k+th+k+f+h+g_l) Lotk ft1
: (‘I’x+f+k Tw+f+k+h+g_1) b otk
: (‘I/x+f+k+h+g Tx+f+k+h+g+t_l> b atbthtg+
= (‘I’erfoJer*l) dat1 - (‘I/m+f+k THHHHQA) daotkt1
: (‘I/x+k+th+k+h+g_l) dotkt1
: (‘I/x+f+k+h+gTHHHH‘(]HA) batkthrgrl
by Lemma 5,

= (‘I’x+me+f+k+h+g+t_l) dat1 (‘I’m+k+hTm+k+h+g_l> daotk+1 -

O]

Now we consider what happens if we have the setup of Lemma 2.3, but suppose
instead that the residues of the two strings being pulled over each are one apart,
giving us extra terms. In particular, these terms all begin with crossings whose
leftmost string has residue equal to [, which will often be used to show that terms

are zero when performing calculations within Specht modules.

Lemma 2.7. Suppose we have the crossings (‘IJI+2T$+9+1) Lot1 - Ypqgr1 with
residues [, m, and ri,...,7ry as shown in Figure 2.10. Also suppose that there
are z1 < z2 < ... < z with each z; € {1,...,g} such that | = r,, for every
jge{l,....k} and 1l # r; fori ¢ {z1,22,...,2}. These residues are shown in

Figure 2.10. Now suppose that either
(i) 1 < m, or

(ii) I — m.
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Then

(War2 P9 Lot - ot

k
1 § : 1 i—1
= ¢x+1 : (\le—i-QTZJrng )\L:c—‘rl + \I’x+2j+2Tz+g+ \le—i—QTIJrg \le—i—l Terz]
J=1

where the £ is a plus in case (i) and a minus in case (ii).

l m ’r‘l 7”2 T»zj ,r.g
r+1 z+2 - x+2 -+ x+g Tx+g T+yg
+1 +2

Figure 2.10: Crossings at the start of Lemma 2.7.

Proof. We have

(Tar2 P9 Lot - Yaggin

= (\I’z+2Tz+zk+1) \l/z+1 : (‘I’m+zk+2Tz+g+1) ~L:1:+zk+1 : QZ)gﬁJrngl

which, by Lemma 2.3

1 1
= (\I/$+2TI+Zk+ )\LLE-I—I 'wm+zk+1 : (\Ilm+zk+2/rx+g+ )J/:c—l—zk—&-l

1
= (\Ilz+2 TJH_Zk) ¢m+1 ’ wx+zk+1¢m+zk wx+zk+1 ’ (‘I/:v+zk+2 T$+g+ ) \LIE+Zk+17

then using the braid relation (1.11)

= (\I/a:+2Tx+Zk)\Lcc+1 'wz-i—zk : (\le—i-zk—f—l Tz+g+1) \Lm—&-zk

£+ (Uapa ) Lot - (Wagzpr2 779 Lozt
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2.2. Lemmas George Witty

where the £ is a plus in case (i) and a minus in case (ii). In the former term of
the sum we repeat what we have just done using (V121 "#%) | ;11 - ¥yt . That
is, we rewrite (U 401%"%k) .11 as a product of two multiplicands to take the
zr_1 into account, and use the braid relation to obtain two terms.

Repeating this k times in total we have

(\le+2Tz+g+1) dat1 - wx-i-g—&-l

= ( w+2TI+Z1)\Lz+1 'wx+z1 ’ (\I/ac—f—zﬁ-l T:H_g—i_l)iw—&-n

+ Z oo 177%) Lagt - (Wagay 42 P79 Lo 11

In the first term we can apply Lemma 2.3 to (U, 21*T#1) [ 211 - 1412, to obtain
Vet1 - (\le+2Tm+Zl)¢w+1 and in the terms of the sum we can slightly rearrange

the entries so that all together we have

(War2 P9 Lot - thaggrn
k

= Y1 (Par2 ") Lopn + Z LTS LSt AR TS SR PTRE LAt
=1

as required. O

The next lemma allows us to swiftly deal with multiple consecutively occurring

cases of relation (1.10), as long as the relevant residues are sufficiently far apart.

Lemma 2.8. Suppose we have the crossings

<qlx+f/]\x+f+h+g71) i/a:—i—l ! (‘Il:):Jthrg Tx+f+h+g+kil) J/m+h+1 (24)

with residues Iy, ..., lf,p1,. .. PhyT15- -3 Tg,q1y -+ -, Q@S shown in Figure 2.11.

Suppose that 11,1z, ..., ly /= ri,ra,...,179. Then (2.4) is equal to

(\I/J;+f Tx+f+h_1> 4 z+1 - (‘Ijx—i-f—i-h—i—g Tx+f+h+g+k_1> 4 z+f+h+1 -
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I Iy p1 - opn T e @
z+1 -+ z+h z+h z+f x+f - z+f =+ f z+ f
+1 +h +h 41 +h+k+h+k +h+g

—+1 +k

Figure 2.11: Crossings at the start of Lemma 2.8.

I Pn

LW

x z+h x4+ h c+f x4+ f f z+ f
+1 R +h 1 AR +h+g
+1 +k

Figure 2.12: Crossings at the end of Lemma 2.8.

Proof. We have

(\I’a:+fo+f+h+g_l> dat1 - (‘I’m+h+ng+f+h+g+k_1) datht1
— (\le+fTw+f+h_1) dat1 - (‘lix+f+hTm+f+h+g_l> Laothtl

: (‘I’z+h+gT$+f+h+g_1) Laotht - (‘I’z+f+h+gT$+f+g+h+k_l) Yathif-1
- (\le+fo+f+h_1) dat1 - (‘lfx+f+hTz+f+h+g_l> Laothtl

: (\If‘”+h+g¢x+h+1> prtS it (‘llx+f+h+ng+f+g+h+k_1) Vathis-1-

47



2.2. Lemmas George Witty

The second and third multiplicands here are equal to

(‘I’x+f+h (AEAE A TSR LA AR RPN IR JHhﬂ)

h h 1 h+g—1
(W gy WLy TR

and then since l1,l3,...,lf -/ r1,72,...,74 these brackets cancel each other out

by forming squares using the relation (1.10). So we have that (2.4) is equal to

(‘I’HfTHHh_l) dat1 - (‘lfx+f+h+ng+f+g+h+k_1> Laothtf-1-

O]

The next lemma acts as an extension of Lemma 2.7, and as such exhibits
when a fairly simple product may be equal to a large sum of terms. However,
it is important to make note of the leading term in most of the summands, as
usually it will be enough to then concern ourselves only with how this leading
term interacts with the crossings above it in a diagram. Along with one ‘regular’
looking term, there will be f summands whose initial term is a crossing whose
leftmost residue is [; for ¢ € {1,..., f}. In addition, there will be another sum of
terms whose leading terms are crossings of various multiplicities, whose leftmost
residues are always such that they are equal to an ;.

Note that in the proof of the following lemma there is a () in the margin that

can be ignored for now and will be of use in a later chapter.

Lemma 2.9. Suppose we have the crossings

Uy pa DP9 (\Ifx+w+2f +9) Lo (2.5)

with residues ly,...,ly, m and r1,...7714 as shown in Figure 2.13. Suppose that
the l; are all distinct from each other and m, that l; = rg4; for everyi € {1,..., f}

and that

Lhlo = lpem—=Tpig = Tprg1— " = Tgrl.
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Iy Is Iy m rL ro T Tg+1 Tiig
z+1 242 -+ z4+9g z+g9g - a+f x+f x+f z+f -+ x4+2f
+1 +9 +g9g+1+g9g+2+g9+3 +g+1

Figure 2.13: Crossings at the start of Lemma 2.9.

Then (2.5) is equal to

-1
Z wx—l—f—s ’ (qla:—i-f—i-l Tz+2f+gfs> l«x+f+2—s
s=0

' (‘I/x+f+1fsTx+2f+gfzsfl> Yatfos Yataftg—2s

rz+2f+g—s
Apyiopig-2s1 - Vuropigasi1 T2

: <\I/x+ffsfl ,]\:c+2f+g—s—1> \l/w-i-l
-1k
+ [¢x+f+zsj+1 : (‘I’z+f+1 THzHg—S) Latfia-s

s=0 j=1

»

Tx+2f+g—25—1 U Tm+2f+g—25—2
S

'\I/ererzsj —s+2 z+f+1—

i —5—2
'\Ijx—l—f—sTJH_f—’—Z im? : ¢:c+2f+g—2$wx+2f+g—2s—l
'\le+2f+g—2s+1Tm+2f+g_s : <\Ila:+f—s—1 Tz+2f+g—s—1> \Lerl]

+ (‘I’x+f+1 T$+f+g> lay1

for some constants ko, k1,...,kr—1 > 0.
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2.2. Lemmas George Witty

Proof. We will prove that for 0 < K < f we have that (2.5) is equal to

K-1

Z w:erffs ’ (q/ererl Tm+2f+gfs> \Lx+f+2fs
s=0

: (‘I’x+f+1—sTx+2f+g_25_l> Yatfos  Yutaftg—2s

x+2f+g—s
Auiaprg-2s—1 Varopigasi T2

: (lPerffsfl Tz+2f+g—s—1) \Lx—i-l
K—-1 kg

2> [¢x+f+zsj+1 : (‘I’x+f+1 THQH"_S) batfro—s

s=0 j=1

z4+2f+g—2s—1 R} Tr+2f—|—g—2s—2

'\I,m—i—f—l—zsj —s+2T z+f+1—s
'\I’x+f—sTx+f+Zsj 2 '¢z+2f+g—2s¢r+2f+g—2s—1
Wyiopigasi1 T2 (\I/x+ffsfl THQHQ*SA) ¢x+1}

+ (‘I’x+f+1 THQHg*K) Laotfi1-K - (‘I’HffKTx“Hg*K) Lot

for some constants ko, k1, ..., kx—1 > 0.We can see that if K = 0 we recover (2.5).

So now by induction, suppose v € {0,1,..., f — 1} and that (2.5) is equal to

y—1
Z ¢w+f—s : (qjx+f+1 Tm+2f+gis) \Lm+f+2—s
s=0

: (q’x+f+1—sTH2f+972sfl) Yavfs Verapig—2s

+2f+9—
Aurofig2s1 Voropigospr THT2HI7S

: (‘I’x+f—sf1 THQH‘(]*SA) dat1
’Y_]- ks

+D.) [T/’x+f+zsj+1 . <‘1’x+f+1Tx+2f+g_s) batfro—s

s=0 j=1

Tm+2f+g—23—1 R, T:Jc+2f+g—2s—2
s

Vot iz, —s+2 o f41-

'\I]:L"JrffstJrerzsj w2 ‘¢:v+2f+g7231/}:p+2f+g72571
N R A (‘I/erffsfl Tx+2f+g_s_1> \l/z-i-l}

+ (‘I’m+f+1 THZHQ*V) Vot <‘I’x+ffvTx+2f+gﬂ> datr (2.6)

We show some of the latter term of (2.6) in Figure 2.14. Rewriting the latter term
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A lpey lpmyt1 lp—qp2 oo ly m 1 o Titg—n
z+1 - z+f x+f z+f - a+f x+f z+f - x42f
9=y +9—v +9— +9  +g+1 +g+2 +9—7

+1 +2 +1

Figure 2.14: Crossings from the latter term of (2.6).

of (2.6) we have that it is equal to

(Warrir T ) Loy iy - (Wanpin o PP 270
Aui2ftg-2yVat2ftg-oy—1Vet2frg—2y - Cotpafrgooyi1 T TITY

: (\Ila:-l-f—’y—l THzHgﬂ_l) dat1
= (Car g P Lo (g o P2

z+2f+g—y
“Vryofrg—2y—1Vzt2f1g-29Vrt2f+g—2v-1 " Yat2frg-29+17T

. (q;w+f_y_1Tx+2f+g—7—1) Lot1
+ (‘Ijx+f+1/rm+2f+g_7) \Lx+f+2—'y : (‘I/x+f+l—'yTx+2f+g_2’y_1> i:c-‘rf—’y

Wy goppgooy1 T (‘I’z+f—y—1Tx+2f+g_7_l> Lat1,

(2.7)

by applying the braid relation (1.11) to ¥yi2f4g—2vVzt2f+g—2v—1Vat2f+g—2v
(since lf_y <= lp—yi1 = Tfig—ry)-

The latter term of (2.7) is equal to

(‘I’x+f+1 Tm+2f+g_7> Vot fiomny Wopopigoypr TET2HI

: (\I]oc+f+1—'yTx+2f+g_27_1> ~Lx+f—’Y ’ (‘I]z-i-f—’\/—l Tac+2f+g—7—1> dat1,

o1
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so we can apply Lemma 2.8 to

(‘I’x+f+1 Tx+2f+g_7> Yatfr2—y Vat2ftg—2y+1T w+2f+g=y

since lf_nyo,...,lp 7 rfigny (takeZ =2+ f—v+1,f=~,h=f+g—v-1,5=
1,k = 0, where Z, f, g, h, k are the z, f, g, h and k in the hypotheses of Lemma

2.8). So this term is equal to

<\I’z+f+1Tx+2f+g_(7+l)> Lotfri—(v+1) - <‘I’x+f—(fy+1)Tm+2f+g_(7+l)) dat1 -

Now also apply Lemma 2.7 to (Wyypi1o TZT2IH972071) | e thyiopig 0y 1

in the former term of (2.7) since ly_ < ly_41 giving

¢:L‘+f—'y : (‘I/:L‘-&-f-‘rl ) x+2f+g—'y> 4 T+ f4+2—y " (\Il:c—‘rf—kl—'y Ta:+2f+g—27—1) { T+ f—y

2 _
“ Vptofrg—2y  Vrt2ftg—29—1" \Ifx+2f+g_27+1Tl’+ f+9—

: (\Ijx-i-f—'y—l Tr+2f—|—g—’y—1) lat1
Fy

+ Z [(q/z+f+l TIHH‘L}*V) Vaorsrz— Vot fra,+1-
j=1

T;r:+2f+g—2’}/—l ] /l\x+2f+g—2’y—2
2l

Wt fhzy,—r+2
2
'\Ijx+f—’yTx+f+z’Yj v . wx+2f+g—2'y
Pps2ftg—2v—1 " Vatafpgoyr T2 (‘I’a:+f—7—1 T$+2f+g_7_l) ¢x+1}

+ (‘Ifx+f+1 T”ZH‘"_(”H)) Vot fr1—(rt1) - (‘I’x+f—(7+1) T”Qf”_”“)) bat1

T+ f+1-

for some constant k, > 0, and we have Ty, = ly_, for each j € {1,...,k,}.

In the terms arising in the sum from 1 to k,, apply Corollary 2.6 to

(\I]J:-i-f-i-l Tx+2f+g_’y) \Ir:C-l—f-f—Q—’y '¢$+f+2'yj+1—’y since lf_,y+2, N ,lf 7L TZW' Thus
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the former term of (2.7) is equal to

¢:L‘+f—'y : (\II:L‘—&-f-&-l Tz—i—?f—}—g—v) i:c+f+2—'y : (\Il:c+f+l—'y Tx+2f+g—2’y—1) \Lx-i-f—’y
Potafrg—2y  Vut2frg—2y—1 Vayopsg oypr T2 T977

. (q;x+f_7_1Tw+2f+g—v—1) Vot1
kW

+ Z [¢w+f+2w]~ 1 (‘I’Hfﬂ Tﬁzﬂgﬂ) Vatrio—
j=1

T+2f+g—2v-1 z+2f+g—27—2 T+ ftzy, —y—2
'\I]x+f+z7jf'y+21\ =2 '\I/a:Jrerlf'yT fro=2v '\I]:Jc+ff'y/]\ K

T+2f+g—
WYaroftg-2v  Yat2f+g—2v—1 " Yatorrg—2y+17T

’ (lIIJ:-‘rf—’Y—l Tac—l—?f—&—g—v—l) i:):Jrl}

+ (‘Ifx+f+1TI+2f+g_(7+1)> Lot frio(y+1) - (‘I’x+f—(v+1)Tx+2f+g_(7+1)) bett .

So using this we have that (2.6) is equal to

2
Z ¢x+ffs : (\Ilm+f+1 Ta:+2f+gfs) J/x+f+275
s=0

. (qfx+f+1fs/]\z+2f+g7257l) i/:erffs ' ¢x+2f+gf2s

x+2f+g—s
Auiapig-2s—1 Varopygosi1 T2

: (\le+f,5,1 Tz+2f—i—g—s—l) \LSC+1
v ks

+2.D. |:wx+f+25j+1 : (‘I’w+f+1 T”Qfﬂ_s) batrro—s

s=0 j=1

2 —2s5—1
_s+2T$+ frg=2s -

+2f+g—25—2
"I’aﬁ—&-f-&-zsj sTF fto=2s

T+f+1-

52
'\I’:c—i—f—sTererz i pgafig—2sVat2ftg—2e—1
Wypofpgosir TET2ITI7s (\le+ffsfl THQHQ*SA) ix+1}

+ (q’x+f+1Tw+2f+gi(7+1)) Yot fr1-(y+1) - (\I]:p+ff('y+1) Tx+2f+gi(7+1)) let1

and we have shown the inductive step. Taking K = f we obtain the desired result.

O]

With the next lemma, we consider attempting to pull one string over some

amount of other strings, where at each step we immediately obtain an extra
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2.2. Lemmas George Witty

term due to relation (1.11). The result is a sum of f terms each beginning with
a crossing whose leftmost residue is l; = r; for ¢ € {1,..., f}, plus one term

beginning with a crossing whose leftmost residue is m.

Lemma 2.10. Suppose that we have the crossings

(i PHH9) L - W 140 (2.8)

with residues ly,la, ..., lf, m, r1,72,...,7¢,7f41,...,74 as shown in Figure 2.15.
Suppose that the l; are pairwise distinct and not equal to m, that l; = r; for every

ie{l,...,f}, and that
ly =lp g — =l = mr 1o 1y

Then (2.8) is equal to

D7 s (Carr 17H) L

i=1

1 2
Wi I (W g o pHITT) Loy ]

+ (‘I’ac+2f+1 Tm+f+g> VP ISI

I la ly m 1 T2 TFo Ti41 Tg
x+lzxz+2 -+ z+fa+f r+gzr+gr+gx+g - T+ f
+1 +1 42 +3 +g+1

Figure 2.15: Crossings at the start of Lemma 2.10.
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Proof. We will prove that for 0 < k < f we have that (2.8) is equal to

5 [Vorrei s (Vo 175049 ) do

=1

Wy I (Wy gy o PO | }

+ (‘IforfTHHg) Vaotkt1 <\I/x+2k+1 THQH’C) Votktl -

We can see that if & = 0 we recover (2.8). So now by induction, suppose

v€{0,1,...,f — 1} and that (2.8) is equal to

Z |:¢x+f+i : (\II:EJrfoJrerg) \l/x-‘,-i
i=1 (2.9)
W P (Wi g 179 72) Ly ]

+ (‘%HTHHQ) \L:c+’y+1 . (\I/x+2'y+1 Tm—l—g—&—*y) \Lg;+»y+1 . (210)

We will consider what happens to the latter term, i.e. (2.10), which is shown here

in Figure 2.16. Rewriting the terms, we have that (2.10) is equal to

2
(‘l’x+me+f+g) Vatyt2 - Varn 1 17727 Yugoy i 1¥e 0y 42V 2941

1 -1
: \le+2'y+3 Tac+g+7+ : \Ijx+2'y+2 Ta:+g+'y : (‘llx—i-Q'yTerngﬁ/ ) l«x-l—’y-i—l

and then applying the braid relation (1.11) since 41 — ry <= 7441,

2
= <\I/x+fo+f+g) J/a:—l—v—&-? : \I/a:—&-v—i-l TH 7. ¢x+27+2¢x+27+17/}x+27+2

2.11
Wy oy 3 TUTITH W g o PRI (W TR L =
+ (‘I’ﬁfTHerg) Jatyr2  Wapypr 15727
B TIPS RALANAREE TIPS L AuiN (P LS N
(2.12)
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'O9N[J PaINoJod aIe

0} (T1°1) uoryeor preiq oty Ajdde [im om jery sSULI)S Y, "()] g BWWOT Jo 98R)S UOIPONPUL oY) SULIpP ((]'Z) WLIDY Y} JO SSUISSOI) :9]'g 9IS

I+ o+ T+

I+ 6+ €+ A+ g +A+tT+A+ et o1
f+z [+=z L+z A+2z Atz - g+2T T+

o f+x b4z b4z b6+x b64+x b4+x b4+x

L L L k ) )
Ttk THLy ) [ B 1 1 K

6, +5y fa
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2.2. Lemmas George Witty

Commuting ;42442 with multiple crossings we have that (2.11) is equal to

(‘I’ﬁfT”fﬂ’) Lotz Vagarysn - Ugpnaq TETITTHL
Wgpoyra TITITY (W0 9P Ly
- (\IIHfTHfﬂ_l) Yotyre (‘Il:v+f+vTx+f+7+1) Logoy42 " Yryoyi2
. (\Ilf‘?+f+w+2T$+f+g) bavoyia - Wopypa POHOH0H

-1
: \IjachQ'erZT:H—g—i_’y : (\Ilz+27/r$+g+,y )\L:v+'y+1

and then applying Lemma 2.4 to (\I/x+f+7Tx+f+7+l) baotoy+2  Yatoyto,

= (\I’J:+f Twﬂ“ﬂ_l) dadrt2 Vat a1 - (qfx+f+sz+fﬂ+1) Lotoy42
' (‘I’x+f+7+2Tz+f+g) Voo - Uapqqr PHH9HH

Wgpayra TITITY (W PPF90Y) |

= Yogfrrt1 - (qu+fTw+f+g) baty41

-1
Wy I (W I L

(2.13)

Now consider (2.12), as shown in Figure 2.17. This is equal to

I+ Fgtyt1 +g+
(\Pzﬂme ! g>¢x+v+2 Wy 3 T Wy o 17977

2 -1
: lI’ar:—l—'y—‘,—l Ter T (\Ijz-i—Qv Tx+g+'y )\Lx—&-'y-i-l

and we can apply Lemma 2.8 t0 Wy iyq1 1727+ (Wgyoy 19 71) | o411, Then

(2.12) is equal to

(‘Il:r:+fo+f+g) Laotyte - (‘Ifm+2y+3Tx+g+V+1) dogys2 . (2.14)

So putting what we have done together, we have that (2.10) is the sum of
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T+ 6+
[+

6y

U013 paInofoo are g'g ewwer] Ajdde am yorym 03 s8uL1ys oy, (g['g) WIey oY) Jo s3ulssor)) :21°g oINS

VAt e+At AT HAE At

b+x b4+x b4+ b4+ b4+ b

e+4ty T+hy T+4y Ly

e+ ¢t T+ e+ ¢t T+
+x 6+x b+ b+ S L+ L4+ A4+ A4+ e 7+ 1+=x

T4 T4 w m+£ m+£ TQ\N S d] 1
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2.2. Lemmas George Witty

(2.13) and (2.14), i.e. (2.10) is equal to

Vot fr(y+1) ° (‘I’x+fo+f+g) Yot (1)

prtgti+)-1 . (\Ij

“Wata(y41) dat(r+1)

z+2(w+1)—2T$+g+(7+1)_2)

+ (‘I/erf Tx+f+g> betr(rr1)+1 (‘I’x+2(7+1)+1TI+g+(V+1)) bat(r+n)41 -

Finally, we can combine the latter term here with (2.9), so that (2.8) is equal to:

7+1

Z [%Jrfﬂ' : (‘I’z+fo+f+g) dati

=1

Wy TEFITIT (W g o HOTIm2) |, ]

+ (11/1+fo+}€+9> \Lx+('y+1)+1 : <\le+2('y+1)+l T:E+g+('y+1)> ¢z+('y+1)+17

proving the inductive step. Thus taking £ = f, we obtain the desired result.
O

The next lemma speeds up the process of using relation (1.8) when we are
required to move a dot through multiple crossings, whose residues may mean we
encounter multiple additional terms. We obtain one term where the dot is pulled
past all the crossings, along with a sum of terms which can be rearranged in order

to have their leading term be a crossing whose leftmost residue is equal to [.

Lemma 2.11. Suppose we have Wy 11719 -y i g1 with residues | and r1,...,rg
as shown in Figure 2.18. Also suppose that there are z1 < zo0 < ... < zp with
l 71 Tyt Ty Tg
z+1 z+2 -+ 2x24+2; -+ xT4+g TH+g

+1

Figure 2.18: Crossings and dot at the start of Lemma 2.11.

each z; € {1,...,g} such that | = r,; for every j € {1,...,k}, and | # r; for
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2.2. Lemmas George Witty

] ¢ {Zl, 2y eeny Zk} Then
k
i—1
Uot1 Tr+g Yotg+1 = Yot1* Yop1 Tm+g +Z Vot Tm+2] ) ‘I’x+zj+1 Tm_g .
j=1

Proof. We have

Tz-{—zk—l

U1 1779 Yoggrr = Uopn otz Yatzptl - Yagz41 179

—1
= \I’x+1 Tw+2k : ym+zk . \I’m+zk Tz_'_g

+zp—1 +
'i_\Ilac—i-lTz “k '\I]w—l—zk-l—le g

by relation (1.8). Repeating this k times in total we have

_ +21-1 +
= \I/$+1 TI = C Ytz '\I/z+21 TI g

k
i—1
+ Z \I’x—l—l Tx+zj '\Ilz-l—z]- +1 Terg
J=1

!
—1
= Yot1 - Vo1 7719 + E TR R i O
i=1

O]

The next lemma combines the pulling over of strings from Lemma 2.5 with
the cancelling of square terms as in Lemma 2.8. We assume that the relevant
residues are far enough apart so that we can pull multiple strings over each other

before the ensuing squares disappear.

Lemma 2.12. Suppose we have the crossings

(o gt =T |y (Wapan PR ey (215)

with residues ly, ..., lf, p1y... Pk, M1,.. o, Mp, T1,...,Tg, q1,...,qt aS shown in

Figure 2.19. Suppose that ly,...,ly = my,...,my. Then (2.15) is equal to

<\I/;v+f+k+h T ﬂBJrergJHkJthrt_l) VPV (\I’x+f Tm+f+g+k_1) losr -
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1+ y+
y + b+
fte

b

T+71+ 7+ T+
o+ 6+ + 6+ A+ 0+ + 6+ T+y+ ¥+
f+x [+=x cee f+z [+=x b+x b4+x

h 6y

T Ad

1+
4+ 4+

d \N

I+

T
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1+ y+
q+ b6+
fte

b

"Z1° eWw JO Puo oY) Je SBUISSOI) :()g g oINS

T+71+ 2+ T+

o+ 6+ + 6+ A+ 0+ + 6+ T+y+ ¥+ I+

f+z [+ f+z [+=x b+x b4+x y+2r y4w
19)) 6 Ty Y Tw dd d \N

|

T
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Proof. We have

(‘I’xﬂ‘ Tz+f+g+k+h_1) dag1- (‘I/x+k+th+f+g+k+h+t_l> daotk+1
= (\I/a:+f Tx+f+k_1> VP <‘I/z+f+k Tx+f+g+k+h_1> bathtt

kth—1
. (‘I/x+k+hTw+g+ * )\LerkJrl

Tx+f+g+k+h+t—1)¢ otk

: (‘I’x+g+k+h

Apply Lemma 2.5 to

(‘I’x+f+kTm+f+g+k+h71> datrsr - (‘I’z+k+hTm+g+k+h71> daotk+1
since l1,...,lf -/ mq,...,my, so then (2.15) is equal to

(‘I’x+fo+f+k_1) dat1 - (‘l’a:+f+k+hTw+g+k+h_1) Lot ftktt
: (‘l’m+f+kfx+f+g+k+h71) b okt (2.16)

ot fgrkthit—1
'(‘I’z+g+k+hT f+e )er+g+k+1

which is shown in Figure 2.21. Now we can apply Lemma 2.8 to

+f+gtk+h—1 +f4g+kt+htt—1
(\Il:c+f+ka ft )\l/x—i-k—&-l : (\I/x-i-g-i-k-i-th f+ >¢x+g+k—1

since ly,...,lf —~ mi,...,my. Thus (2.15) is equal to

<‘I/x+f T ‘Hﬁk*l) loyr - (‘I’x+f+k+h T Hgﬂﬁh*l) batfri1

: (‘I’x+f+k THHgM*l) dotkt1

T:Jc+f+g+k+h+t71>

' (‘I’x+f+g+k+h bat frgrhe

Tx+f+g+k+h+t—1) z+f+g+k71)

= (‘l’m+f+k+h Vot b+l (%HT dat1 -

O

The final two lemmas extend a couple of the earlier results to the case where

there are multiple sets of strings to be negotiated, that is, we are able to apply
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"U09I3 paInofoo are g'g ewwe] Ajdde am yorgm 03 s3uriys o], (91°g) Ul sSUISSOI) :1g'g 9mM31g

1+ y+ T+2++ 1+ T+

o+ 0+ o+ 6+ + 6+ ¥+ 06+ + b+ T+y+ %+ T+

[+ f+z [+ f+z [+=x b+x b+ ¥+ y+4x I+
1h 1h 6y T4 Y Tw 4 1d &N 0
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one of the earlier lemmas and then immediately find ourselves in another situation
where we can apply the lemma again to a new set of crossings. To ease notation,
we will write ZZ for >°7 | bi. We wish here in particular to draw the reader’s
attention to the diagrams that accompany each lemma, as with this amount
of crossings the written terms appear large and complex but the diagrammatic
depictions of the crossings are comparatively straightforward.

The first of these lemmas extends Lemma 2.12. We encounter the setup of this
lemma a times, each time having some residues [}, ... ’liﬁ' which are sufficiently

far apart from mq,...,my.

Lemma 2.13. Suppose we have the crossings

e+ S+ S h Y -1 1
AL+ XE L+

N AP YARE D WETAD VAR ) !

(‘I’x+z£ ey T

(W
( e+ Yk, Y]+ Yk 41

- (2.17)
9 _
) (‘I,HZ{THZIJrZa +h+39 1)¢x+1
A Y -1
'<‘1’w+2’;+th St >¢r+zl’i+1
with residues I3, ..., 3}2,, p’i,...,p};i, M, ..., M, T’i,...,réi, qiy---,q for i €

{1,...,a} as shown in Figure 2.22. Suppose that li,. .. ,lgci —~ mq,...,my for
i€{l,...,a}. Then (2.17) is equal to:

e+ + S +ht Y +t—1) !

(\I'x+2({ +3F4n T e+ R

. e+ S+ YR+
(\I'r+25 s ) Yorst st

f k g
Ty g +Za+2 11
T ‘ ‘ ¢w+2£72 +Y b 41

f k g _
. <q,x+Z{Tr+Zl + k45 1) Jott -

' (‘szfifl +k,
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2.2. Lemmas George Witty

Proof. Suppose for v € {0,...,a — 1} we have

2t S ok _
3 S 1)¢

(‘IIHEﬁ s AR S|

) D BAPE DU NS —1)
<\le+2£+2 +3554 [ " i‘HZerl + 3541 1
IO DA S 5 3 |
. (\III+Z£+1+Z§Tw E'V-H > Z'y-ﬂ ) \l”it-l—z.j‘j-i-zl; 1 (2 18)
A+ Y -1 ‘
: (‘I’m+2£+z’; +th Lot x >¢z+2£+2§ +1

DY R DD 4) 1

. (\IJHZﬁ + 2571 T x+2£71 +Z§_1 +1

f k _
. (q,HZ{THZﬁZﬁZi’ 1)%“ ,

Apply Lemma 2.12 to

f k g
T+ + +h+ -1
Zw-l Za ZW-H ) ‘l’w-i—Zﬂ;-‘rzs 41

e+ Y]+ +h+ Y +H> !

(Yorsr, o

: (‘I’HZQ +3F+h T a+3 + k41

(take r = ZE+Z,€+Z§, ](T - f'y+1; ]_C = 22—25’ }_Z = ha g = Z";—ﬁ-la t =
I — Zg-u +Z£ - Z£+1 +t, where Z, f, g, h, k,t are the z, f, g, h, k and t in the

hypotheses of Lemma 2.12). Then we can rewrite (2.18) as

a+ S+ +h Yy -1
(Yerszaxs T Josstistn
) D SR S E |
<\II$+Z£+2 +55 1 T " " ) ¢93+2£+1 + 554+l
+ L+ Y -1
' (‘I’HZiH ik et > )i

w+2£+1 + ZI; + E?y-u _1) \L

x+2£+1 +Xh+1

. (\Ilz""thq + Z—Ii T x+2f/ + Zﬁ +1

DY EDIED S 4) i

. (\IJHZﬁ + 2571 T x+2{,71 +E§_1 +1

f k _
: (q,ﬁzﬁwzl@ﬁz% 1)%“,

i.e. we can replace v with v 4+ 1. If v = 0 we have that (2.18) is equal to (2.17),
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so then if v = a — 1, performing the above shows that (2.17) is equal to

e+ + 3k +ht Y +t—1> 1

<\Ijx+Z£+E§ T e+

. e+l + S+ -1
(‘IJHZ!: +3 0y T ) \J/;L,J'_Z({—l +Yh 41

TIJFZ«{A YR+, *1> 1

A
( DR s+ L+ Yk

x f k —
. (WHZ{T +o{+ T+ 1>¢M ,
O

The second such lemma extends Lemma 2.5. Again, we encounter the setup of
this lemma a times, each time having some residues [¢, . . ., lj% which are sufficiently

far apart from mq,...,my.

Lemma 2.14. Suppose we have the crossings

e+ Y]+ Hhtg Y, 71> .
(‘pwzi e, T Vorsl 43k, 41 (2.19)
. DN WY SO S 4) .
(Parsy s 17500 S A0 S S e
f k t
. (\p“z AR AR 1) Joit
+Y o +htg—1
: (\IIJH-ZZ +hTI = ! )iHZZ +1
with residues l?l,...,ljci, p’i,...,pfﬁi, M, .eesMpy, T1,...,Tg, q’i,...,qgi for i €

{1,...,a} as shown in Figure 2.25. Suppose that I}, ... ’lﬁ”@- —~ maq,...,my for
ie{l,...,a}. Then (2.19) is equal to

a+r+ >k +h+g—1) i

(\I’x+2£ +3k4n T T+l + T+

o+ + Yk thtg+3l -1
'<\IJ$+Z£+Z§71T YD g+ )¢

AP IRE D DR A0 D —1> 1

O NARED SIS

AW .
( e+ Yk, Y L+ 4

TerZ{ +3F fhtg+Yt 71)

' <\I'x+2{ Lot
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$1°C eWWoT JO 11818 9] 1R SSUISSOI)) :£g'g 9IN3Iq

orr H\wur 1—-v Tr+ 1-o a\ﬁr z—o _c+

PR+ TR+ TR FR+HTTIR TRHETRH Eess R+ +

T+ X+ R+ IR TR+ TR TR+ eI+ IR+ X+ X+ T+ T+ T+
Yo+ y+b+ y+o+ y+h+ y+b+ y+h+ ytb+ y+b+ Y46+ Yy+b+ y+6+ y+6+  y+6+ T+6+ G+ T+ R+ TR+ ETR+

4w e X4 BR4w 4w IX4w e DXfw SR4w e DX4w o BR4w e DX4w X4 o BX4w BX4w R4w IR4w - DR4w DR4w ) B . B 1X4a T+

I
I
I
= .\\\t 7
I'
I
A \
I
'I'\\\
I'
I

1-v
A, L .
ol 1-n? -o®  ponl 1

B L Y

2.2. Lemmas
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Proof. Suppose for v € {0,...,a — 1} we have

o+ + Yk o+

Tm+2£+2 +E thag+Y L, —1> 1

e+ + Y thtgt Yt -1
R e A e

. (\DHELQ + Z:+1 $+Z,fy+1 + Z]fwrl +1

' e+, Yk hgr Yt -1
(‘I/a:+2f/+l + Z: T v+1 y+1 ) ¢x+2£ + zlf{ +1 (2 20)

f k _ )

' (Wm+2£ + 4 +h (AR 1) v

Tx+2£ + Y thtg+Y 71> J

o+ + 3k 41

AT .
< Y+ DN ANE D ST

f k t_
. (\yﬁzmwzl + e Hhtot 3] 1) Tost .

1

Apply Corollary 2.6 to

f k t
NP DR NS DA
1+Z§T K K %+Z£+Z§+1

e+l + 3k +h+g—1> !

(\I’x+2£+

: <\I'z+2£ +3k T a+3 + k41

(take5::x+2f;—|—zf‘;,f:f,YH,l_c:ES—Zi,ﬁ:h,gzg,f:nyH,Where

z,f,g,h,k,t are the z, f, g, h,k and t in the the hypotheses of Corollary 2.6).

Then we can rewrite (2.20) as

242 R gt -1 )
(‘I'Hzé wye T Vorst st 4
f kg t
A LADATE DI ¥ A DI )
( e+ Y]+ TN T i9E+Z£+l +32h 1
f k
. THY g+ 2, thtg—1
(‘PHZ% N ‘ Yol 45

f k t
S T$+Zy+1 + 2 thtg+3 2l *1) 1l
-

(Yersr THL AT

S & -
_ (\Ijmsz A2+ Tkttt 1>¢x+1’

i.e. we can replace v with v+ 1. If v = 0 we have that (2.20) is equal to (2.19),
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so then if v = a — 1, performing the above shows that (2.19) is equal to

a+f+ 3k +h+g—1) 1

(‘I’x+2£ rxtanl e+ S+ k41

e+ + 3k 4 P
'(\I/erZﬁJrZ’;,IT 2on e thtg )¢

TxJFngl + 3 E gty *1> i}

$+Z£71 + 2271 +1

DN APE DUIPES I

x f k —
. (‘I'HZ /1 +3 + X8 +hto+ Y] 1)

' (‘I’w+z£_1 Y,

ix—i—l .
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Constructing homomorphisms

OW that we are armed with numerous lemmas from the previous chapter,

we aim to utilise them. This chapter is devoted to proving the existence

of explicit homomorphisms between certain Specht modules of KLR
algebras. The ‘certain’ pairs of Specht modules that we are interested in will
be indexed by multipartitions which differ by the moving of nodes. Results
concerning decomposition numbers related to such pairs emerge from the results
of Kleschev regarding partitions that differ by one node [Kle97]; in particular
these have been generalised to the graded case of the Iwahori-Hecke algebra in
papers by Chuang, Miyachi, Tan [CMT08] and Tan and Teo [TT13], and further
to the case of diagrammatic Cherednik algebras by Bowman and Speyer [BS18].
Homomorphisms between Specht modules of KLR algebras have been studied
by Lyle and Mathas in [LM14], where they define the notion of a Carter-Payne
pair. In Sections 3.1 and 3.2 the homomorphisms we detail will arise directly
between Specht modules indexed by Carter-Payne pairs, so their existence is
already known, but due to our approach we will additionally explicitly describe
where the generator of the domain Specht module is mapped to. In Section 3.3,
we will build on the methods used in the previous sections in order to prove the
existence of homomorphisms between Specht modules that are not indexed by
Carter-Payne pairs, and explicitly describe the mapping also. Note that at no

point will we make any assumptions about the characteristic of the base field F.

3.1 One-node homomorphisms

To begin with, we will consider two bipartitions, A and u, where p is formed

from A by moving a single node from the second component to the first. In order
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3.1. One-node homomorphisms George Witty

for our result to hold, we require that e is large enough so that within a given
component of A or u, the nodes of constant residue will all appear along the same
diagonal of nodes (the kth diagonal of component m being all nodes (r, ¢, m) such
that r — ¢ = k). In general, if this occurs within some partition v, we shall say
that v has the diagonal residue condition. This will be satisfied if e > hY;, where
h¥, is the hook length of the top left node in [v], i.e. h¥; equals the sum of v; and
the number of rows of v, minus one. One reason for requiring this condition is to
control the Garnir relations: if e is large, we have to take into account e-bricks and
we can obtain rather messy Garnir relations with numerous summands, causing
our calculations to quickly get out of control. We will say that an [-multipartition
has the diagonal residue condition if all I of its components do.

The diagonal residue condition also allows us to ensure that our homomor-
phisms keep their ‘form’. In the one-node case, this means that the generator of
S is sent to just a single basis element indexed by a standard p-tableau, and this
tableau is that obtained by simply moving the “one-node” in t* to its position in
[1t], keeping its value intact.

For the proof of the result, we aim to show that whenever some element of
M annihilates the generator of S*, it also annihilates its image under the
proposed map. In particular, we must take the generating relations of S* and
check that they still apply when we replace vt with its image. The y, relations
are fairly straightforward, since the generating relations for S* have a natural
counterpart in S*, whilst the 1, relations are similar also, except for that which
relates to the position where the “one-node” was removed. In the case of the
Garnir relations, we have to check a few cases, since many natural counterparts
for these relations are affected by the removed node.

When performing calculations within a Specht module S*, certain relations
require an idempotent e(i) (in particular, (1.8)—(1.11)), however we will almost
always drop the idempotent from the algebraic expression of the terms, as it will
only really serve to make things appear more convoluted when written down. For
example, we will write v ¢, instead of vt (i), = v re(s,i*) (using (1.4)).

Nevertheless, it is important not to forget that it will influence calculations. With
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3.1. One-node homomorphisms George Witty

braid diagrams in mind, we will always be able to easily observe the relevant
residues and this should hopefully alleviate any potential mystery.

Note that the proof of the following proposition has notes in the margin of
the form (Ae). These can be ignored for now and will become relevant when

considering the proof of Corollary 3.3.

Proposition 3.1. Let A and u be 2-multipartitions of n. Suppose

)
e>max{hN” + LN + 1, 1Y 41y

and that [p] is formed from [A] by moving one node from the second component to

the first. Let s be the u-tableau defined by

i),  ific [N,

], ifi ¢ [N,

s[i] =

where j is the single node in [N\ ([\] N [u]). Then there is a homomorphism

@ SN = SH given by ot AETER

Proof. First, observe that in both [A] and [u] we have the diagonal residue condition.
Let 3+ 1 be the entry of the node j in t*. To obtain [x] from [)], j is moved from
[A®] to [AM]. Let a4 1 be the entry in s of the added node. Then ¥¢ = W17
(note this may be equal to 1 if « +1 = 8+ 1). The following diagrams help to

illustrate these definitions:

1 ‘2‘ .......................... ‘
N B ‘

................. a ,

a+1‘ .......

1 [ 2] |
5= [ alﬂ‘i‘l ?

a—l—l‘ .......

It is clear from the definition of s that the residue sequence of s is the same as
that of £*, so we must check that (v )a = 0 whenever v a = 0 for a € AN In

particular, we must check that the generating relations of S* hold on the image
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3.1. One-node homomorphisms George Witty

of vt*. If (i1,12,...,iy) is the residue sequence of t* then v'1)* is represented by:
i1 2 da latl fat2 0 G841 ig42 ig43 0 in
1 2 .. a a+l .- B B+1+25+3 --- n

Checking y, relations

We must check that v 4%y, = 0 for r € {1,2,...,n}. Suppose first that

re{l,2,...,atU{B8+2,8+3,...,n},

then gy, commutes with 1% hence v* 1%y, = vy, = 0 as y, kills v* by the
definition of S*.

Now suppose r € {a+ 1, + 2,...,5}. Then the dot corresponding to y, has
to pass through one crossing. Either i441 # 4,41 and the dot passes through (in
particular this happens when r = ), giving v¥9,119° = 0, or instead we have
ia+1 = 41 and then using the braid relation (1.9) we obtain the following sum

of diagrams:

i1 0 da dag1 fat2 ot dr dpg1 Geg2 o g4l G2 0 in
1 a a+1 -+ r—1 r r+1 --- 8 B+1+2 --- n
1 o da fadl fat+2  ccc Gr el Geg2 00 @Byl igy2 0 in
1 o — +1 .- B ﬁ+1ﬁ+2 n

Clearly the first summand is zero since the dot has reached the top of the diagram.
In the second summand, we have a ¢, crossing at the top. Since we are assuming
ta+1 = Ir4+1, then using the diagonal residue condition we must have that the

node containing 7 + 1 lies in the second component of v', above and to the left of
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3.1. One-node homomorphisms George Witty

where the removed node would have been. Due to this, we must have that i,
is a row relation for S*, hence this summand is zero also.

Finally, suppose r = 8 + 1. Then the dot corresponding to y, will have to
contend with multiple crossings, but by the previous case if any of these crossings
‘split’ using relation (1.9), then the resulting ‘split’ term is zero. Hence eventually
we are only left with a term where the dot is at the top of the diagram, and hence
this term is zero also.

So we have v"¢%y, = 0 for every r € {1,2,...,n}.

Checking ¢, relations

We must check that v¥ 9%, = 0 for r € {1,2,...,n—1} where 1, is a row relation
for S*. Suppose first that r € {1,2,...,a—1}U{B+2,+3,...,n—1} and that 1),
is a row relation for S*. Then v, commutes with ¢*, hence v¥ %), = v ¢, = 0
as 1, will also be a row relation for S*.

Note that if » = a or r = 8 + 1 then 1, will not be a row relation for §*
since both the node containing « and the node containing 8 4 1 are at the ends
of rows in t). So now suppose r € {a+1,a+2,...,8— 1} and that v, is a row
relation for S*. Then 1,1 will be a row relation for S*. For v¥ 9%, we have

the diagram:

11 o la latl la42 vt lp o Upgl Gp42 G430 0841 ig42 0 ip

1 a a+1 -+ r—1 r r+1r+2 --- 8 B4+18+2 - n

As is clear in the diagram, we have within this the crossings 4,1, 11%,. Using the
braid relation (1.11), regardless of the residues we will always obtain a term where
we replace Y,p 11, with ¥, 190011, This term will now be vt”@Ders =
since ¥,41 is a row relation for S*.

If the residues are such that iq4+1 = 442 = i,4+1 £ 1 then the braid relation
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3.1. One-node homomorphisms George Witty

(1.11) will also give us the term v* W, 1 177! ¥, 517, In this case, we cannot
have r = 8 — 1 since iq41 # ig4+1 as the nodes containing $ and 3 + 1 were not in
the same diagonal in A. So then we can rewrite this term as v¥ U, 917 W, 11771

and we have 1,12 at the top of the diagram:

A1 T o Z‘oc-&—l Z-oz—i-2 iy Z.7“-‘,-1 ir+2 Z‘7"—|—3 te Z.BJrl i5+2 to in

1 a a+l -+ r—=1 r r4+1lr+2 - s B+1p+2 --- n

Since we are assuming i,+1 = ir4+2, by the diagonal residue condition we must
have that the node containing r + 2 lies in the second component of v, above
and to the left of where the removed node would have been. Hence 42 is a row (A2)
relation for S* and so vt”\IJr+2Tﬁ Uot1 17=1= 0. Thus all together we have that
v, =0forr € {a+1,a+2,...,6—1}.

So now we only need to consider when r = 3 and v is a row relation for
S*. In this case we have that vt 1%, = v U118 ¢%+1, which as a diagram is

represented as:

1 i o la latl lat2 vt ig g1 lgt2 igy3 0 in

1 2 .- a a+l -~ -1 g B+1+25+3 --- n

Using the square relation (1.10) we can rewrite w%. Since we are assuming g is
a row relation for S*, the node containing 3 in * was adjacent and to the left of

the node containing 5 + 1 in }, hence iq41 = ig+1 + 1. So we replace ¢§ with
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3.1. One-node homomorphisms George Witty

(yg+1 — yp), giving us the sum of diagrams:

11 G2 la latl tat2 18 G841 1842 G843 o lp
1 2 a a+l -~ =1 B B+1p+2p+3 --- n
i1 g2 da fagl fat2 v B8 g4l 1842 G843 v ip
1 2 - a a4+l -+ B—1 B B+1B+2B+3 -+ n

The first summand is clearly zero since the dot is at the top of the diagram. The
second summand will be zero following the same reasoning as to why v"”@bsyﬁﬂ
is equal to zero.

So all together we have shown that for any row relation 1, in S* we have that

v %1, = 0 as we wanted.

Checking the Garnir relations

In ¢* a Garnir belt will look like the following for some integers r > 0 and s,t > 1:

r4 1 ‘T—FS‘
[Pt s+ 1] [r+t

Note that due to the diagonal residue condition, ¢ < e — 1, so the corresponding
Garnir relation for S* is g = (\I/H_ST’”H’l) dr4+1. We split the checking of Garnir
relations into cases based on the location of the Garnir node with respect to the

moved node.

Casel: r+t<a+lorr+1>p+1
In this case, the Garnir belt also exists in [u] with the exact same entries, so
the Garnir relation is also a generating relation for S*. Since in this case the

relation also commutes with ¥°, we have v 9°g = v* gy = 0.
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3.1. One-node homomorphisms George Witty

CaseIl: r+1>aandr+t<pf+1
In this case the Garnir belt also exists in [u], however its entries are all raised
by 1, giving the Garnir relation h = (\IJT+5+1TT+t) $ryo for S*. Forgetting the

extraneous strings, v¥*1)°¢ as a diagram looks like:

tat1 fat2 0 Grgl Grg2 G430 drgstllrst2 0t Gpgtfl brgrg2 o0 G841
a+1l .- r r+1 -+ r4+t r+t r+t -+ r+t r+t --- s B+1
-5 —s5+1—-s54+2 +1

By rewriting terms we have that v¥'¢%g is equal to

VW P W T (W AT L - U 1T 1

so that we can apply Lemma 2.5 to W,421" " - (¥, 5177 1) |, 1o, which we can

do Since 443, bpad, .-« dptstl —— Grtst2, brtst3y-- -, bptt+1- Lhe strings to which

we apply Lemma 2.5 to are coloured blue in the figure above. This gives

VW M (W ) b W P W TS 1
= 0" W11 (a1 7 L - Ut 7T W 1001
= 0" (W1 ) Logs - Waa 17 W 17H75 0 7S]

t—s+1
! \IITJF t i/r—i—t—s '\I’r—i-t—s—l—QTB

and here we can apply Lemma 2.3 to W, 1" . W, 1 17775~ gince we have

. . . . t# .
ir42 = Gryst2, irpsi3, 5 drgt, SO that vV g is equal to

vt (\I/T+s+1 TTH) brgs Uo7 - W o8 W, 47 HEs

t—s+1
: \IJT+ ot \Lrthfs "Ijr+tfs+2/rﬂa
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and now our diagram looks like:

lat1l fat+2 0 G4l Gr42 Gpd3 0 Gppstllrgs42 0 et bpgtlledt42 0 g4l
a+1 - r r4+1 r+t r+t r+t r+t r4+t r+t B B+1
—s—1 —s —s+1—-s+2 +1

Now within this we have ¥4t s¥rii—s+1¥rti—s With associated left residue 7441,
right residue é,4.+1 and center residue ¢,12. Regardless of what these residues are,
we will always obtain the term where we pull the ¢, 2-string over the ¥, ¢ 41

crossings, which will be equal to

Ut# (‘Ilr+s+1 TT—H) ¢r+2 \I/a—O—l TB: Utuhws = 0.

If ia+1 = ir4¢41, then as 4411 = 42 — 1 using the braid relation (1.11) we

obtain an extra term equal to

'Uw (\Ijr+s+1 TT—H) \Lr+3 : \I’aJrl Tr : (\I’r+2TT+t_S) ¢r+1 '\I’rthferQTB

= fUtH (\IlT‘-i-S-‘rl TT—H) \lrr+3 : \Ijr—i-t—s—i-ZTB : \I’a+1 Tr : (\I’r+2Tr+t_s) \l/r—l—l

and now since 4,43, ,lppst1 —— dr4tr1 we can apply Lemma 2.8 to
(Urpsr1 ™) Lrgs - Upygyo 1P (take x = r +2,f =s— L h=t—s5—-1,g=
Lk=p—r—1).

This leaves us with the extra term being equal to

0 (a1 T L U1 M7 W1 17 (T t77%) Lo

so finally we commute the W, 117 to the left of the term, i.e. we have a ¥, ¢41
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3.1. One-node homomorphisms George Witty

crossing at the top of the corresponding diagram. Since we assumed i4+1 = ip4¢4+1, (A3)
using the diagonal residue condition we conclude that v,;:y1 must be a row
relation, hence this extra term is zero. Thus all together we have shown that

v 1%g = 0 in case II.

Case IIl: r+t=06+1

In this case, the Garnir belt must lie in the second component of [A]. This
implies that » + 1 > «. Unlike in the previous cases, this Garnir belt does not
entirely exist in [u]; the removed node is the node beneath the Garnir node.

We can write 9° = ¥,y 117771 and so

Wty = v Wy 4L (‘Pr+sTr+t71)¢r+1

=0V W 17 W A (W ) gy O

which, forgetting extraneous strings, looks like:

o+l  lat2 - Gr4l Urg2 s Gpgstl brgst2 e Trgt

a+1l --- r r+1 - r4+t r4+t r+t -+ r+4t

—s—1 —s —s+1

Note that only the crossings where both strings are blue in the above diagram is

where we shall apply Lemma 2.5. Apply Lemma 2.5 to

U M (U ) L
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3.1. One-node homomorphisms George Witty

SINCE a1 7 Urtst2y-- -5 brtt, SIVING

,Utﬂwsg — Utu\Ija—&—lTr X (‘Ijr+s+lTr+t_1) \LT'—O—Q X \I/T+1Tr+t—1 . \I/T+t_1 ~Lr+t—s

" ~1 —2 —2
=" Yat1 T (\Ijr+s+1TT+t )¢r+2 Wy TT—H gt dryt—s

y2 — — —
= 0 W1 17 (a1 17T Lppg - Wy prHmstlogrbtmstl

by repeated use of relation (1.10) (Since 41 # Grtstls---»irt3)

tH t—1 t—s—1
= 0" (W1 1) Lra2 - W 1777 (Urgtmst1 — Urgis)

since iq+1 = ip42 — 1. As a sum of diagrams (not including extraneous strings)

this is:
ia+1 ia+2 Tt ir+1 ir+2 Tt ir+s+1 ir+s+2 Tt ir+t
at+l .- r r+1 - r4+t r+t r4+t -+ r4+t
—-s5—1 —s —s+1
7:onl ia+2 et ir+1 ir+2 et 7:7‘+s+1 7;7‘+s+2 et 7:7‘+t
a+l - T r+1 - r4+t r4+t r4+4t -+ v+t
—-s—1 —s —s+1
In the former term, since 4,49 # @pi¢, - - -, ir4s+2, the dot moves straight to the

top of the diagram hence this term is zero. In the latter term, we start by

observing that we can move the dot some of the way towards the top since

Gat1 7 Grtty - oy brtst2e
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3.1. One-node homomorphisms George Witty

Next we must compare i441 and ¢,41. If £ — s =1 then there can be no nodes
of residue i441 whose entry is a+ 2 or greater in either component by the diagonal
residue property. Thus ig+41 # ia+2,--.,ir+1 S0 the dot moves all the way to the (A4)
top and the term is zero. However, if t — s > 1, then 441 = i,41 and in [u] we

will have the Garnir belt:

| r+s+1]
lr+s+2][ r4t

giving the Garnir relation h = (¥, 4541777 1) | ,41. In this instance we will have

that the term is equal to

ot (\Ilr+s+1Tr+t_l)J’T+2 ,\I,aHTr—l Ayyrgr - Uppq P
= _vt“ (\IIT+S+1Tr+t—1) ir—&-? '\I/a—HTr_l Yy - ‘Ierr-i-t—s—l (3'1)

- 'Uw (\I/r+s+1 TT—H_I) \LT‘+2 : \PaJrl TT_I : \Ierrl TT—H_S_I (32)

by applying relation (1.8). In (3.1), apply Lemma 2.11 to W41 17! 9. Then

there is some k > 0 so that this term is equal to

t t—1 t—s—1
— U Yo+l (‘ljr-i—s—i-lTT—i_ )¢r+2 ’\I}a+1/]\r+ 3

k
p 1 1 1 —s—1
+ th Voigz+1 1" -(\Ifr+s+1 Pt )\Lr+2 Wy TOTHL g, S
i=1

where iq 1 = dayz;+1 for all j € {1,...,k}. Since iq41 = datz;+1, all of the (A5)
Ya+z;+1 crossings will be row relations by the diagonal residue condition. Thus
(3.1) is equal to zero.

By rearranging, (3.2) is equal to
_,UU‘ (\I’r+s+1Tr+t_1) \LT‘+1 '\Ila+1TT_1: _'Utﬂhg’aJrlTr_l: 0.

So all together we have v**¢*g = 0 in case IIL.

CaselV: r+s=p0+1

In this case, the Garnir belt must lie in the second component of [A]. This
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3.1. One-node homomorphisms George Witty

implies that r + 1 > «. The entire Garnir belt does not exist in [u], since the

removed node lies within the belt. In [u] we have the Garnir belt

r4 2 \7’—1—5\
[rts+1[-[r+t

giving the Garnir relation h = (¥4 17 71) Lo

We can write 9* = U, 1177~ and so

v g = o W g T (U AT

=0 W1 17 W AT (U 1)

which, when forgetting irrelevant strings, looks like:

ia+1 ia+2 M 7:7‘+1 /iT+2 et ir+s ir-&-s-&-l e 'L"r-&-t
a+1l --- T r+1 - r4+t r+t -+ r+t r+t
—s —s+1 -1
Now Since ig41 7 trtst1s bptst2 - - -, o+t We can apply Lemma 2.5 to

L N | N i R

giving us

Utu \Ija—&-l Tr ’ (\IIT+STT—H_1) \Lr+2 : ‘Ijr—i-l TH_t_l
= UW (\I’r+sTr+t_1) ¢r+2 : \I’a+1 TT—H_I
_ vt“h \I’a+1 Tr—l—t—l

=0,

so indeed v 9)%g = 0.
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3.1. One-node homomorphisms George Witty

Case V: r+s=a
In this case, the Garnir belt lies in the first component of [A]. The removed

node gets added onto this belt, meaning in [u] we have the Garnir belt

r+1 |- ‘r—i—s‘r—{—s—l—l‘
r+s+2] r4+t+1

giving the Garnir relation h = (\IJT+S+1 TT”) drt1-

We can write 1° = ¥, o117 and so

wasg = Utu\l}r-ﬁ-s-ﬁ-lTﬁ : (\Ilr-‘rsTrHil) drs1
=" (‘I/r+s+1 TTH) ARSTIR LT Tﬂ
= Ut#h‘l’r+t+1 T’B

=0.

Conclusion

Having checked that v**4*a = 0 for every a € J£** we have indeed shown that

o

there is a homomorphism ¢ : S* — S* given by v — v 9",

O

We now extend Proposition 3.1 to work with multipartitions with more than
two components. We now suppose that the moved node moves from one component,
say A9 to an earlier one, say AP), potentially with other components either side
and in the middle of these. As long as there are no removable nodes of the same
residue as the moved node in the components labelled with p+1,...,¢ — 1, we
can form a homomorphism in practically the same way as Proposition 3.1. The
only real difference is that we have to make a few adjustments to the proof of the
proposition in order to account for the extra components in between A® and \(@).

In addition to this, we show how the degree of such a homomorphism can be
calculated in a combinatorial manner based upon counting the number of addable
nodes of the same residue as the moved node amongst those components labelled

by p+1,...,q— 1. In order to help state the corollary and its ensuing results
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3.1. One-node homomorphisms George Witty

clearly, we make the following definition for a pair of multipartitions A and p,

where p is formed from A in the fashion described above.

Definition 3.2. Let | > 2 and suppose that A and p are l-multipartitions of
n, where [u] is formed from [A] by moving one node of residue ¢ from the gth

component to the pth, for some p and ¢ such that p < ¢. In addition suppose that
)\(C) M(C>
e> max {h7; +1,h}; +1}.
p<c<q

Suppose that amongst the components A(¢) with ¢/ € {p+Lp+2,...,q— 1},
there are exactly k& > 0 components containing addable ¢-nodes. If k£ > 0, then we
also require that e is large enough so that the diagonal residue condition holds
when the (-node is added to these components. Suppose that each component
M) contains no removable (-nodes. Then we say that (A, i), is a one node pair

(of degree k + 1).

Corollary 3.3. Suppose that (X, ), is a one node pair of degree k + 1. Let s be
the p-tableau defined by

i), i e[\,

], ifi g [N,

sli] =

where j is the single node in [N\ ([\] N [u]). Then there is a homomorphism

t)\

@ 8N = SH given by v¥ — v p%. This homomorphism has degree k + 1 and

can be written as a composition of k + 1 homomorphisms, all of degree one.

Proof. Define a and § similarly to the proof of Proposition 3.1, so that the node
to be moved contains 5+ 1 in t* and in * the added node contains o + 1. Then
¥® = o1 1P, We need to check that the generating relations of S* hold on
© (vtA>.

For each type of relation, our definitions of o and § allow us to follow the
same methods as in Proposition 3.1, only now accounting for the additional nodes
in between the first and last components of [u] as well as those outside of these

components. In checking each of the relations, apply the same reasoning as
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3.1. One-node homomorphisms George Witty

in Proposition 3.1, however there are a few changes to be made at the places

annotated by numbers in the margins.

A1) In the second summand, we have U, ;17 at the top of the diagram, and if
+

¥ry1 18 not a row relation, by the diagonal residue condition we have that

the node containing r 4+ 1 in t* must be a Garnir node, so the corresponding

Garnir relation will be at the top of the diagram.

(A2) We have U, 517 at the top of the diagram, and then by the diagonal residue
condition, if ¥,42 is not a row relation then the node containing r + 2 in t*
must be a Garnir node, so the corresponding Garnir relation will be at the

top of the diagram.

(A3) By the diagonal residue condition, if 1,411 is not a row relation, the node
containing r+t+1 in t* will be a Garnir node and we have the corresponding

Garnir relation at the top of the diagram.

(A4) We may have some z such that i,41 = i, in which case by Lemma 2.11 we
will obtain ¥, 1" at the top of the diagram. Using the diagonal residue
condition, either 1, is a row relation and we are done, or the node containing
z in t* is a Garnir node and its corresponding Garnir relation will be at the

top of the diagram.

(A5) By the diagonal residue condition, if 14+ .;11 is not a row relation in this
case, the node containing o+ z; + 1 in t* will be a Garnir node and we have

the corresponding Garnir relation at the top of the diagram.

To describe the degree of ¢, first suppose that £k = 0. By Proposition 1.34 we
have that deg (vwwﬁ) = deg(s). We wish to compute deg (vwws) — deg (vtx> =
deg(s) —deg (t)‘). Using the recursive definition of the degree, the nodes containing
n,n—1,...,8 4+ 2 in both tableaux contribute the same value to the respective

degrees. Hence

deg(s) — deg (tA) = deg (s5<p42) — deg (QBJ&) .
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3.1. One-node homomorphisms George Witty

-1
Let A be the node 5;}”2(5 + 1) and B be the node (ti,8+2> (84 1). Then
the number of addable -nodes below A is one more than that below B, since in
S<g+4+2 we also count the position where the node was removed from in the gth

component. Thus

deg (5<pt2) — deg (fimz) =1+ deg(s<p41) — deg (tiﬁﬂ)

=1,

since s-g41 is identical to t)<‘ G410 So the degree of a homomorphism when & =0
is 1.

Next, suppose k > 0 and we will use induction. Let ¢ € {p+1,p+2,...,¢—1}
be maximal so that A(®) has an addable -node. Suppose that if we add the node

to the diagram [)\(5)} we obtain the diagram [l/(é)] and consider the multipartition
U (Au), A2 AED L@ e @) ,u“)) .

Then by induction we have that there is a homomorphism ¢; : S* — S¥ given
by ot ot (] 18, where v + 1 is the value of the added node in . By our
choice of ¢, this homomorphism must have degree one. Similarly, we also obtain a

Y s "W, 117, By induction, (o has

homomorphism ¢y : S¥ — S* given by v

degree k and can be written as a composition of k degree one homomorphisms.
Composing, we see that ¢g 0 @1 : S* — SH is given by ot s U1 1P thus

@ = w9 0 1. Hence ¢ has degree k 4+ 1, and can be written as a composition of

k + 1 degree one homomorphisms as we wanted.

O]

We have shown that a homomorphism exists when we move one node to form
(] from [A], but what if we move two or more different unadjacent nodes? If we
assume that the nodes are of residues at least one apart, and that we are able
to form homomorphisms by moving the nodes independently of each other as in
Corollary 3.3, then the homomorphisms obtained by moving the nodes one by one,

in any order, always compose to give the same overall homomorphism from S* to
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3.1. One-node homomorphisms George Witty

S*. We detail how this works for moving two different unadjacent nodes in the
following Corollary. Note that results concerning decomposition numbers where
multiple nodes are moved of ‘unadjacent residues’ have been given by Chuang

and Tan [CT16] and Bowman and Speyer [BS18].

Corollary 3.4. Letl > 2 and suppose that A\, vi, vo and p are -multipartitions
of n. Suppose that (] is formed from [A] by moving one node of residue vy and
one other node - not the same as or adjacent to the first - of residue 12. Suppose
that 1] is formed from [A] by moving just the t1-node and that [vo] is formed
from [\] by moving just the ta-node, and that v1 # 12 and 1y -~ t2. Suppose that
(M v1)y, (M 2),, (v, 1), and (va, ), are all one node pairs. Then there are

non-zero homomorphisms

Oapy - S — S, oup t ST — S,

PAvy - SA — Sl/z’ Prop * S — SM’

and we have that @, © Oxu, = Prop © Pav, 7 0.
In addition, if (\,v1),, and (v1,u),, have degrees ki + 1 and ko + 1, we have

that the degree of @, © Yy, 05 k1 + kg + 2.

Proof. Since (A\,v1),,, (A, 12).,, (v1,1),, and (va, u),, are all one node pairs, by

Corollary 3.3 we have that there are non-zero homomorphisms

Oy SA — S¥, Gy 2 S — SH,

Oy SA S, Qa1 SV — SH.

Write cp,\l,].(vtA) = ot W1 145 for some a; € {0,...,n — 1} and B; €
{1,...,n— 1} with o; < p;, for j € {1,2}. Without loss of generality, assume

that 81 < Bs. If 81 < ag then

A
Prip © P (Ut ) = vt#q}arﬁ-l TﬂQ ‘11041-%1 Tﬁl
= \I/al_HTﬂl quLQ"rlT/gQ

A

= Pup © Pavy (V1)
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3.1. One-node homomorphisms George Witty

and we are done. Hence, assume that §; > ay. Then we have multiple cases.

Case I: The (1-node is moved to a position above the (;-node in [y

In this case, we have that

A
Prip © Py (Ut ) = UW\IIOQ-&-?T& \Paﬁ-l Tﬁl .

Now

A
Prap © Py (’Ut ) = Utu\pa1+1 T/Bﬁ_l \Ila2+1 Tﬁ2

which as a diagram is:

tag+1 fag+2 0 fag+l fag+2 fag+3 U+2 Ipi43 c dpp+d

oar+1 --- oz az+1 --- B Bri+181+2 --- B2 B2+1

Write

t)\

Prop © PAvg (U ) = UW\IJOqul Tﬂﬁ_l \I/a2+1 Tﬂ2

= 0" g 1 1 (‘Ifa2+2TB1+l) Lagt1 g1 Ugpo

=" W, 112 i - (\I’a2+2T51+1> bagt1 Vg, 401

by Lemma 2.3 since iq,+1 - taq+2;

= 0" Wy, 1119 Wy o 1T W, g 190 T p 1P
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. 2 _ . .
since ¥, 1 = 0 as iq, 41 — taet2,

= vt“ \Ijag—‘rQTﬁQ '\I/al+1 Tﬁl

A
= Prip © Py (Ut )-

A A
Thus v, © P (Ut ) = PropPrvs ('Ut ).

Case II: The (;-node is moved to a position below the i(;-node in

(1]

In this case, we have that

t)\

Prip © Prin (U ) = fUtH\IJOtTH T62 \Ija1+1 Tﬁl .

Now
A
qugp, O @Ay ('Ut ) - Utu\pa1+2Tﬁl+l \I/ag—&-l TﬁQ

which as a diagram is:

tag+1 fag+2 0 far+1 far+2 a4 0 Ug42 Up43 Gy

az+1 --- o ar+1 - B Pr+1B81+2 --- B2 B2+1

Write

2

Prap © Pvy (’U ) = vtu\I}a1+2Tﬁl+l \I}a2+1 TﬁQ
= Utu\pa2+1 Tal ' (\Ila1+2TBI+1) \J/CM1+1 ' wﬂl-i-l ! \Il51+2/]\52

= vf“\I]a2+1 Tal '¢a1+1 . (qja1+2T61+1> \LO{1+1 '\Ijﬁl'i‘QTﬁz
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by Lemma 2.3 since iq,+1 7 tay+2,

== ’Utu \I/a2+1 T/Bz \Ila1+1 Tﬁl

A

= Prip © Py (Ut )-

Thus @y, © Pam (V) = Guo © Pan (V).

Since the degree of ¢,,,, 0 ¢y, is equal to the sum of degrees, the degree is
(k1 +1)+ (ko +1) = k1 + ko2 + 2.

Note that in both cases, ¢,,, 0 Y, (v"k) is given by some product of

. . . . A
corresponding to a reduced expression which is not zero thus ¢,,, o @, (V1) =

A
Prop © Py (UJL ) 75 0.
O

Now that we know that the homomorphisms from moving any two different
unadjacent nodes in any order can be composed in either order to yield the same
result, we now show that this means that for any number of moved nodes we
obtain a similar result. Given any sequence of homomorphisms related to the
gradual moving of individual nodes, we can swap the order of consecutive pairs of

homomorphisms repeatedly using Corollary 3.4 until we obtain any other ordering.

Corollary 3.5. Let I > 2 and suppose that A and p are l-multipartitions of
n. Suppose that [u] is formed from [A] by moving m distinct nodes 1, ..., Tm,
whose residues t1,L2, ...,y are such that v; # 1 nor v; -/~ 1j for all i # j with
1<i,j<m.

Suppose that for each X C {1,...,m} we have an l-multipartition of n, vx,
such that [vy;, . i3] is formed from [A] by moving just the nodes x;y, ..., z;,. In
particular v = X and vy = pt. Suppose that whenever B\ A = {r}, we have
that (va,vB),, is a one node pair, whose corresponding homomorphism is v, 1y -

Then there is a non-zero homomorphism ¢ : S* — S* and given any sequence

of sets @ =Xo9 C X1 C X0, - C X, ={1,...,m} we have that

O -

P =Prx, vx, ©Prx,, ovx, ;" °Puxorx, -
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3.1. One-node homomorphisms George Witty

Proof. Without loss of generality suppose that node z, is above node z; for

every a < b. Let Y; = {1,2,...,j} for j € {0,...,m}. Then @ =Y, C Y1 C

=

< QY ={1,2,...,m}. By assumption we have [-multipartitions of n, vy;, and
non-zero homomorphisms Puy vy, for each 5 € {0,...,m —1}. We may write
VY_ UY_
SOVy.Vy,+1( Ey =t o1 4¢541 1Ai+1 for some 41 and Bj11 related to the
J J

positions of the moved nodes, and (j41 based on whether moved nodes are added
above or below other moved nodes. Then

<P1/y

m—1

A
vy O O Puyyryy (vt )= v \I/aerCmTﬂm Wit TBI . (3.3)

Since 1 < Py < - -+ < B, we must have that in the braid diagram for the above,
no strings will cross twice and so by Proposition 1.18 the above will correspond
to a reduced expression and so this composition of homomorphisms is not zero.

Now let & = X9 € X3 € X9, C -+ € X,,, = {1,...,m} be a sequence
of sets. Any such sequence of sets corresponds to a permutation o € S,,,
given by X; \ X;_1 = {o(j)}, and given any permutation in &,, we can define
such a sequence of sets in the same fashion. For j € {1,...,m — 1}, given
sj = (j,j+1) € &, if we replace X; with X; :== X;_1 U (X;41\ X;) then
we have = X0 C X1 € X0, C - C X; 1 C X; C Xjy1--- € Xop = {1,...,m}
and this sequence corresponds to the permutation s;jo € &,,.

From our original sequence of sets corresponding to ¢ € &,, we have the

homomorphism

(¢] e}

P Py v O 0P Vg O v OV OPuxg g O 0Py -

By Corollary 3.4 we have that Pux,vx,,, O Pux,_vx, = go,,j(j vx, . © 90VX]-_1V5(J- thus

p is equal to:

O (¢}

PR O ~ o ~ O .. O
Pux, 1 Vxm (‘OVXjJerXjJrQ SOVXj VX1 ¢qu71qu SOVXJ-,QVXJ-,1 Purxovx; s

that is, the homomorphism stemming from the sequence of sets corresponding to

sjo. Since &, is generated by transpositions, given any sequence of sets we can
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show that the corresponding composition of homomorphisms can be permuted
into any other. In particular any such homomorphism is equal to that given by

(3.3), so is not zero.
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3.2. One-row homomorphisms George Witty

3.2 One-row homomorphisms

Using Proposition 3.1 and its corollaries we are able to show that various ho-
momorphisms between Specht modules exist related to moving individual nodes
in a multipartition. The next step is to ask, whether we can obtain similar
homomorphisms when moving a shape that is more than just a single node. We
first consider moving a single row of nodes. In this case, homomorphisms will
again arise between a pair Specht modules corresponding to a Carter-Payne pair of
bipartitions, however we are able to explicitly describe the image of the generator
of the domain Specht module by such a homomorphism.

The proof of Proposition 3.1 relies on directly checking the different generating
relations for the Specht module S, with the Garnir relation in Case III of the
proof being the most convoluted to check, due to the node beneath the Garnir
node being removed to form [u]. Since we are now removing a row of nodes, this
sort of problem is going to happen more than once, and since we are looking to
eventually find homomorphisms by moving more than just a single row of nodes
we wish to avoid having to check a large variety of different relations in various
ways. To this end, we use an inductive approach.

Consider bipartitions A and p, with [u] formed from [A] by moving a row
of at least 2 nodes from the second component to the first. Form [\] from [}]
by removing the rightmost node in the row of nodes and moving it to a new
third component. Then we can move what was left of the row in [A] to form
[A1], which is almost identical to [1] except for the single node we placed in the
third component. Then consider [ii] formed by moving the node from the third
component to the end of the moved row; this will look almost identical to [u]
except for the empty extra component.

By induction on the number of nodes in the moved row, we obtain homomor-
phisms from S* to SN and we have a one-node homomorphism from SM to SP.
These compose to give us a non-zero homomorphism from S* to S* and we are

able to deduce that generating relations from S* must kill the image of o in SA.

Since this homomorphism is incredibly similar to that which we wish to prove
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exists from S to S, we can use the fact that nearly all the generating relations
for S* have a direct counterpart in a generating relation for S* to conclude that
most of the generating relations for S* will immediately kill the image of o in
S*. With this, we remove the need to directly check a large amount of relations,
and can instead just mainly focus on the few generating relations for S* which do
not have a counterpart for s>,

Now we shall state our result involving the moving of rows for bipartitions.

Proposition 3.6. Let A and p be 2-multipartitions of n. Suppose

(1) (2)
e > max{nly” + 1,007 + 1,0y + 1 pT + 1}
and that [p] is formed from [\ by moving a row containing a nodes from the
second component to the first. Let s be the p-tableau defined by considering £\ and
moving the row of a nodes from the second component to the first, keeping their

values intact. Then there is a homomorphism ¢ : S — S* given by ot vt s,

We shall first discuss our strategy for the proof of Proposition 3.6 and expand
on the inductive approach described in the introduction of this section. We can
immediately observe that if @ = 1 then by Proposition 3.1 we obtain the desired
result. So we shall be able to suppose that a > 2. Also, as in Proposition 3.1 we
have the diagonal residue condition. Let the row of a nodes that are removed

from [A®)] be

B+13+2-B+a

and let  + 1, + 2,...,a + a be the entries of the added nodes in t*#. Then
P® = (\Ila+aT5+“_1) la+1 (note this may be equal to 1 if «+1 = 3+ 1, i.e. there
are no nodes beneath the node containing o + a in [,u(l)] and no nodes at all in

[,u(2)] ). The following diagrams help to illustrate these definitions.
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We now wish to work with some 3-multipartitions of n. For this, we need
to define a new KLR algebra %AR using quantum characteristic € := e and
multicharge & := (k1, ko, resy (8 + a)). We write é(i), §; and v; for the generators
of this algebra. We also have the notation U, 1e, U, (ﬁl. T’) e and (@' i.) 1
formed by taking the corresponding relations in ,%”,LA“ and replacing any 1, with
1/;.. Note that the only place £ and 2% will differ in their definition is in
the relations of the form (1.12).

Recall that given a partition v, let v; == (v1,v2, ..., Vk—1, Ve — 1, Vg g1, Vky2, - - -),
ie. [uk] is [v] with the rightmost node on the kth row removed. So now suppose
that the row of [A] to which the nodes will be added is the kith row and the
row from which the nodes will be removed is the koth row. Then consider a

3-multipartition of n, A\, defined as

ks
i.e. so that
1 ‘2‘ .............................. ‘ ......................................................... ‘ n
t/\: .............. Oé‘ .................. ﬁlﬁ_}r]_l ...... Iﬂ+a_1|
Of+1‘ ...... ,84*0,‘ ..........
.................... ‘n_]_

Also define 7, a 3-multipartition of n, by

D= (u,%ll),u(g), (1))

with a r-tableau s defined as

51 =

so that 1;51 = <\I~/a+a—1 Tﬁ+a72> Lo+l
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Consider \* = (AW, X®)) along with 7* = (1), 5(?)) and let 57 be the *-
tableau defined as the first two components of s;. Then by induction on the
number of nodes in the moved row, there exists a homomorphism 7 : SN 5 57
given by v"x* — v"ﬁ*dﬁi, and no generating relation for S* Kills ot” Y1 via a
relation of the form (1.12). The base case for this is given by Proposition 3.1.
Due to the definition of s}, every generating relation for S except for y, will
correspond directly to a generating relation for SN and, due to the existence of
¢} and the fact that a relation of the form (1.12) is never used, must kill oo
In addition, ¥, will kill vtﬁd;sl since it will commute with ¥°'. In this way, we

can see that there exists a homomorphism ¢ : R given by ot UtDTZJSI.
Now consider the 3-multipartition fi = (M, u(®), ) and the fi-tableau s;
defined by

S0 =

with 1/752 = \i/aJra 17=1 Using Corollary 3.3 we know that there is a homomorphism
@9 : S” — SH given by ot vtﬂ@;s?.
We have that 1;5 = (‘i/aJraTﬂ*a*l) dat1.- Composing o with ¢ we have a

homomorphism @ := @y 0 py: S A SR given by

Il
<
-
®
<
0
0
<
o
st

= ’Uw\ija-',-a/rn_l : (‘iJa—i-a—lTﬁ_‘_a_Q) l«a—i—l
— (‘i’a+aTﬂ+Q_l)ia+1 _@B+aTn—l

= Utu?z)s\ilﬁ-i-aTn_l .

Since the residue sequence of s is the same as that of t}, in order to show that

the homomorphism ¢ : S* — S exists we must show that go(vtk)a = 0 whenever
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va=0forac M. In particular, we must check that the generating relations

of S* hold on the image of v, We are required to check that:
(i) v" ¢y, =0 forall v € {1,...,n}.

(i) v¥ 9%, =0 for all r € {1,...,n — 1} such that 7 and 7 + 1 are in the same

row of t*.
(iif) v*1)°g4 = 0 for every Garnir node A of [A].
Now as we know that ¢ exists, we have the following facts:
(i*) v" oW, 01" G =0 for all 7 € {1,...,n}.

(ii*) v"ﬁq/;s\I'/ngaT”_l Y =0 for all r € {1,...,n — 1} such that r and r + 1 are

in the same row of t\.
(iii*) v"ﬂi/js\ll5+aT”_1 gf\‘ for every Garnir node A of [5\} :

Since i is identical to p except for the empty third component, we will have
that the generating relations for S# and S” are identical (up to swapping e(i)
for &(i), y; for §; and v; for ;). Note also that since the multicharge & is just
with an additional component, any time that a relation of the form (1.12) is used
to kill a term within 7%, we can use a corresponding relation of this form in
the same way within 2% since (A., ;) < (Az, ;). So since this is the only
place that s and 77+ differ, and the fact that as the diagrams for v!¢®
and vtﬂ@ZNJS are also identical, any relation which kills e ¥% will also kill vt e)s.
Hence our strategy is to show that using the relations (i*), (ii*) and (iii*), we can
deduce many of the relations in (i), (ii) and (iii), leaving just a few extra cases to
consider.

Note that the following proof has notes in the margin of the form (Be). These
can be ignored for now and will become relevant when considering the proof of

Corollary 3.9.

Proof of Proposition 3.6. As remarked above, we may suppose that a > 2. Let

(i1,42,...,in) be the residue sequence of t# (which is identical to that of t*), then
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7:1 e ia Z'04—0—1 T Z'oz-‘—a—l 7:044—0, ia+a+l e 7:,(‘3+a iﬁ+a+1 e 'ln

1 o a+1l - ﬂ ﬂ+1 ﬂ+a B+a --- n—1 n

Figure 3.1: Braid diagram of Utﬂ1/;5\i/5+aT”_1.

vtﬁz/;s U g+aT”_1 is shown diagrammatically in Figure 3.1. We shall check that

the relations in (i), (ii) and (iii) hold in separate sections below.

3.2.1 Relations in (i).
(B1)
If we are able to show that v* g, = 0 for every r € {1,...,n}, then we will

have that v¥9%y, = 0 for every such . Take r € {1,...,84a —1}. Then

0=v" g0t Gy
= Utuisgr\ilﬂ—&-a Tnil

B Tg~
:Ut lbs Ty

with the last equality following since this is equal to zero and we can apply
\i’”_lim_a to both sides and then use Lemma 2.8 since iat+a 7~ i8+a+1s- - - s in-

Now suppose that r € {8+ a,...,n — 1}. Then i44+q -~ ir+1 hence we have

0=0v" Wg 01" g,
= 0" 1 Wpia T

AT
=o' VYt
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Finally suppose that r = n. Then as iqtq - i8+a+1;- - - in We have

0=0"P Vgt Gn
= Uwijsgﬁﬂ-a\i’ﬁﬁ-a Tn_l

= fUtH ¢5§ﬂ+a~

Putting all of these together, we have that vtﬂzzﬁgjr =0 for every r € {1,...,n}

as we wanted.

3.2.2 Relations in (ii).
] (B1)
We wish to show that v"”q/?sd;r = 0 for when 1, is a row relation for S* so that

then we have v' 1%, = 0. All but one row relation for S will correspond to a
row relation for S*, and we can use this to easily check a large amount of the
relations in (ii).

Suppose that v, is a row relation for S* with r € {1,...,8+a —2}. Then Uy

is also a row relation for S*, and will commute with \ilﬁJraT"*l, hence

0= 0" 05,0 4y

= Ut#l;sqzjrqjﬁJraTnil
and now as this is zero, multiply by \il”_lima on both sides:
= Utﬁd;s&r-

Now suppose that » € {8 +a+1,...,n — 1} and ¥, is a row relation for S*.
Then there is a corresponding row relation for SS‘, namely 1@_1. We know that

we have

0= Utﬁijs\ijﬁ—kaTn_l 'J}rfl
= vtﬁ¢5@ﬁ+alrr_2 'irflirirfl : \i’r+1 Tn_l

= Ut#lzsqlﬁ+a1\ri2 '&T&r—l&r : \ilr—‘rl Tnila
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3.2. One-row homomorphisms George Witty

as lg+a - ir+1. Then rearranging and applying \if”_li/gﬂ to both sides
= Utﬂiszzr-

So far we have shown that vf%%[;r = 0 for r € {1,...,86+a— 2}
U{f+a+1,...,n—1}. All that is left to check is when r = f +a — 1.
However, in this instance, there is not a corresponding row relation in SS‘, SO we

check that vwwﬁw@m,l is equal to zero directly. We have

dejswﬁ—i-a—l =" <\I}a+aTB+a71> lat1 '¢B+a—1

= Utu <\Ija+aTﬁ+a_1> \La-i-a—l : 1/16+a—1 ’ (\1}a+a_2Tﬁ+a_3> ia—i_l’

and then apply Lemma 2.7 to (\Ifa+aT5+a_1) lata—1-Vs4a—1

= Utuwa—i-a—l : (\I/a+aTﬁ+a_1> ia—o—a—l : <\I/a+a—2/rﬁ+a_3> J/a—l—l
k

t E +a—1 +a—2 +a+z;—3
+v ‘ljonraJrzj TB “ '\I]aJraTB “ '\IjaJrafl Ta T
i=1

. (\I/a+a—2 T6+a_3> J/a—&-l

for some k > 0, with z;’s arising from residues tata+z; Which are equal t0 in4q—1-
In the former term, we have a t,44—1 crossing at the top, and this is a row
relation for S* hence this term is zero. In the latter term, every summand begins
with & ¥4 a4z, crossing , which due to the diagonal residue condition must also (B2)

be a row relation for S*. Thus we have vt“¢5¢5+a_1 = (0 as we wanted.

3.2.3 Relations in (iii).

Given a multipartition v with the diagonal residue condition, Garnir relations in

v arise from Garnir belts of the form:

41 ‘T—Fs‘
[r+s+1[[r+t
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3.2. One-row homomorphisms George Witty

The associated Garnir relation is then (\I’HST”t_l) $ra1. If A is the node in v

containing r + 1 then we write gf or g, () for the above Garnir relation.

We also write g2t = g5 () = (\iJT+STT+t_1> Lrat.
Let 7 be the entry of the node directly above that containing 8+ a — 1 in .
The proof splits into cases depending on the location of a Garnir relation with

respect to 7. These cases are:
e rc{0,1,...,7 —1}
erc{r+1,....04+a—1}

erc{f+a,pf+a+1,...,n—2}

re{0,1,...,T—1}
(B3)
Suppose r € {0,1,...,7 —1}. Then g5 () is a Garnir relation of S*, and

gs (> commutes with Wg,,1" !, hence

0= v 301" g5 (1))

= gy ()
=075 () TP R L P
S (=)}

and then this implies that 0 = v ¢°g) ( )

re{fr+1,....,8+a—1}
(B3)

Next, suppose that » € {F +1,...,8 4+ a — 1}. Since the nodes containing
B+1,....,8+ain t* are removable, we may assume r + 1 < 8+ 1. Also, the
nodes that are in the same row as 7 4+ 1 but with a higher entry have no nodes
beneath them. So overall, we need only consider such r where the node containing

r + 1 is on the same row as the removed nodes and r + 1 < S + 1. Let us write
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3.2. One-row homomorphisms George Witty

r—+ 1= —j for some j > 0. Then the Garnir belt is

B—jl]B+a]
[B+a+ 1] B+k

for some k. The Garnir relation is gy () = (Uppa PP 1) L5y

In tj‘ we have the similar Garnir belt

B—j |- B+a—1
B+d-[B+k—1

giving the Garnir relation (\ilg+a_1 TBJF’“_Q) l_j for S*. So we have

0= 0" 5 g, 17 (Dppaa PF2) 1
= 0B PR (B g 172 L By
=0 (Dpyat ™) g - B!

=0 (B 1) Ly,

by applying Lemma 2.8, implying that 0 = v"'¢° (W4, 1775 71) | 5_;, ie. 0 =

vy ( )

re{B+aB+a+1,...,n—2}
(B3)
Now suppose that r € {8+ a,8+a+1,...,n—2}. Then if

9x () = (Tpps TN L,

we have that g5 () = <\TJT+S_1 TTHJ) 4. Figure 3.2 exhibits the impor-

tant parts of the diagram for vtﬂ’(;s\i]ﬁ_i_a/l\n_l s ( ) We have

e T (1)

- Utﬂ";5¢}5+a/]\1ﬂ_l : @rTH_t_l : (‘i}r—i-s—l Tr+t_2> Ir- \I}r-&-tTn_l
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3.2. One-row homomorphisms

‘porpdde st G'g rWWOT YoTYM
0} 9s01[) aIe anjq paIno[od s8utlys oy J, {g—u‘ "D+ ¢} > 4 uoym AEV 9 —ud s+n®m%%@ IOJ wreISeIp prelq oy} Jo 1Ied :g'¢ 9Insig

- - -
u T—u 74+ 4 7+ S 4+ S+ 4 ol T—d SITQ @lTQ HITQ Q ﬁl_l@

Ug, - T+2+4g 1+l A T+s+u S+udg . T+-49 Ly, - 1+2+4d7 D+gy e I+0+0q D+ 1—D0+0g - T+0g
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3.2. One-row homomorphisms George Witty

and so we can apply Lemma 2.5 to U, 17+t=1 . <\ijr+5_1 TT+t—2) 1 since iqiq #

ir+s+1, ir+s+27 e ,ir+t. This giVGS

0= Utﬁqgs\ij,@-ﬁ—aTr_l : (‘ijr—l—sTH_t_l) drt1 - \ierH_t_l : \ilr—&-tTn_l
= Utﬂ'&s (qu—i-sTr—H_l) Loy \i/ﬁJraTn_l
= Utuig (ﬁ/r—i—sTr—H_l) bri1 '\ilﬁJraTn_l \ijn_liﬁJra

— ’Utﬂlz5 (ﬁlr—l—sTrHil) \I/T-i-l )

This implies that 0 = v ¢*® (\IJT+5TT+t_1)¢T+1, ie. 0=v"1%g\ () as we

require.

So now we are left to check the Garnir relation when r = 7. In this case, there is
not a corresponding Garnir relation in SS‘, so we check that v* ¢°g) () is

equal to zero directly. In t* the Garnir belt is

Fl | | Fts |
[F+s+1[ B+a

giving the Garnir relation gy () = (\IJ,:JFSTfB"’a_l) $#+1. The nodes which

remain from the Garnir belt in t* are:

F+a+ 1] |Ft+a+ts

F+at+s+1]- | B+a |

The important parts of the braid diagram of v 1)%gy () are shown in
Figure 3.3.
We have

vy gy () =" (‘I’amTﬁM_l) a1 - (‘I]'FFSTBJ’_Q_l) it
= 0" (Vara ™) Lot - (‘I/F+aTﬁ+a_1) lin1

. (‘I’HsTﬁ_l)ifﬂ ' (‘%Tﬁﬂ_l) b B—s+1,
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3.2. One-row homomorphisms George Witty

ia+1 ia+a Z'o(—O—a-‘,-l Z'7:-',-11 Z’F—Q—a-&-l 7:F+a+s iF+al~l»s Z',8-9—a
+

a+1 - r r+1 ... B—s B—s5 - ﬁ+a 5+a 5_’_&
+1 —s —s+1

Figure 3.3: Part of the braid diagram for v¥'1°g, ( ) The blue parts of
the strings show where Lemma 2.5 is applied.

and we can apply Lemma 2.5 to
(‘I/HaTBJra_l) Lig1- (\PHSTﬂ_l) L1
since i yq41,- -+, itats 7= titatstls---»i8+a- Lhis gives

UWWQA () = Ut“ (\Ila—i-a/]\?urail) \La-i-l : (qlf—l—a—l—sTBJrail) i/f—l—a-i-l
: (‘I’F+aTﬁ+a_l)¢f+1 : (‘I’ﬁT’8+a_1> Lpost1
=" (‘I’f+a+sTﬁ+a71) ditat1 - (‘I’a+aT'B+a71> lat1

(3.4)
’ (‘Ilﬁ/]\ﬁurail) \lfﬁ*s+2 : \I/,stJrl T’BJFG*S

which is shown as a diagram in Figure 3.4. Since

ia-‘,—lv s 7ioz+a + if+a+27 s ’if+a+s

apply Lemma 2.8 to (\Ija+aTB+a_1) dat1 -(\I/5T5+“_1) lp—st2 (take 2 = a,
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3.2. One-row homomorphisms George Witty

ia+1 et iﬂt+a Z'04—0—11-4—1 o Z'77—0—11 i?—‘—a—‘—l Z'7:—0—11-‘,-2 et 7:F+a+s 7;F+fl+s et iﬂ-}—a
a+1 - r r+1 .- ﬁ_s ,B—S ﬁ+a ﬁ_|_a ﬁ+a ﬂ+a
+1 —s —s+1 —s+2

Figure 3.4: Part of the braid diagram for (3.4). The strings to which we apply
Lemma 2.8 are coloured green.

f=ah=0+a—-s+1,g=s—1k=0), giving

ARV () =" (‘I’F+a+s T'BM*I) ditart - (‘I’a+aTﬁ+a78) Lat1
WUg_ 11 pPra=s
= (‘Iff+a+sT'B+a71> ditatt (‘I’amT’BM*s*l) lat1
S FIDET FEPET
=" (‘I’f+a+sT'B+a71> dita—1- <‘I’a+aT’6+a7571) lat1

: (y,3+afs - yBJraferl)

using relation (1.10) since ig41, - - - tata—1 7~ titatrl DU Gotq + 1 = G54qt1-
Now in terms of diagrams we have two summands, each with a dot within
them to deal with. For that with the dot corresponding to yg4q—s+1, we simply
move the dot up through the crossings since #7441 7 18+, 1+a—1s- - - » iFtatst1s
so with the dot now at the top we have that this summand is zero. For the other
summand, we can move the dot up through some of the crossings since iy+q #

i84a>18+a—1s-- -+ titats+1. However, for the next crossing we have iqyq = 744
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3.2. One-row homomorphisms George Witty

and so using relation (1.8) we have that v ¢%gy () is equal to

’Uf‘“ ( r+a+sTﬂ+a )J/F+a+1 -\IfaJraT’f-f—a—Q Yita_1 - \I/F+a71»]\5+a—5—1
(3.5)
: (‘Ila+a71 T’8+a_s_2> Las1

+ 'U"” ( r+a+sT5+a )\Lf+a+1 ,\I;a+aTF+a—2 . \PF+aTﬁ+a_S_1

' Bta—s—2 (3.6)
(\I]a+a71 ) ) latt -

In (3.5), apply Lemma 2.11 to W41 177%"2 971, 1. Then there is some k > 0 so

that this term is equal to

Ut#ya-‘ra : ( T—l—a-i-sTﬁJr B )if-ﬁ-a-{-l ‘\I’a+aTF+“*2 .\IJF+G_1Tﬁ+afsfl

: (‘I’a+a—1 Tma*S*Q) da+t1

k
tH Fta—2 — -2
+ ZU \I/aJraJij TH—G ’ ( r+a+8Tﬁ+ >¢F+a+1 '\I’a+aTa+a+ZJ
Jj=1

T (T R

where io1q = iatatz for all j € {1,...,k}. Thus as all of the ¥aq+.; are row (B4)
relations by the diagonal residue condition, (3.5) is equal to zero.

Now (3.6) (which is shown in Figure 3.5) can be rewritten as

e ( r+a+8Tﬁ+a 1) Yita " (\Ija—l—aTF) lat1
Wi 17072 (Wt ™ 72) L g Uit

: (‘I’f+a—1 Tﬁ+a7572) dig1 .

We can then apply Lemma 2.9 to Wiy 177972 - (U47T072) |5 L4 since
tatj = lppj for j€{2,3,...,a—1} (takex =r—a+2,f=a—-2,9=0). So

(3.6) is equal to

a—1

ot (‘I’f+a+5TB+a71) bita " (Pata TF) lat1

-1
(Wi MY L - (Wrmag2i 1) Licars - Uimaqa

< F+a— 1Tﬁ+a o 2>\l/7:+1 :

.

(3.7)
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George Witty

3.2. One-row homomorphisms

"98uRIO Ul UMOYS Ik ' e A[dde om YPIYM 09 s3uLlys oy ], *(9'¢) I0] WeISerp preiq o) Jo HIeJ :G'¢ I3

s—  T—s- ¢t 1+ ¢t 1+
BITQ @nTQ UITQ %|Q %|Q m|.®\ HITM@ o4 T—d D — .4 D— 4 HIT@

v+d A T+5+D0+u4q s+0+49 A D+, T—D+dy (47} T+ R T+0+09 D+0y T—0+0y PN g+09 1+0y
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3.2. One-row homomorphisms George Witty

tata—i bata—i bata—i  c° lata Tatatl ' latatzglotatzg “°° [
+1 +2 +1
a+a -+ at+a ata - rT—j T—3 T—j T—35 - 741
—=J -7+ —-J+ +1 +2 +3
2d Zd
-1

Figure 3.6: Part of the braid diagram of (3.8).

Given a summand of (3.7) for when j € {1,...,a — 2}, we have that this is:
ot <\Iff+a+sTﬂ+a_1) biva * (Watal") bagt - Yieji1
(Wi I L ans - (Wimagoi 1) Licars - Uimaqa
: (\I’f+a—1 T'BM*SJ) div1
=% (\I’f+a+sT6+a71> dita - (\Ifa+aTF) dota—j+2
(Pata—jr1 177 Latamj Vimjit - (Paga—jm1 17777 Lat
(Wit Ly - (Wimagori 1) dimats Pioaga

. (‘Iff+a—1 T5+Q_S_2) li1

We exhibit

(Yata ") bata—jrz - (Pata—sir1 T 7)) Lata—j - Yiojt (3.8)

in Figure 3.6. This allows us to apply Lemma 2.7 to

o
(Wata—jr1 177 ) Lagams - Vimjt1
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3.2. One-row homomorphisms George Witty

since ia4a—j < lata—js1 (takex =a+a—j—1,9=7—a —a+1). Thus such a

summand of (3.7) is equal to

Ut#wo&-"—a—j : (‘ij-i—a-l—s/rﬁurail) \Lf-i-a : (\Iloz—i-aTF) ¢a+a—j+2
: (\I’a-&-a—j-‘rl TFﬁjJrl) l«a-ﬁ-a—j : (‘l’a—i—a—j—l Tfijil) ~Lo¢+1
(W2t Lt - (Wrmagos T7) dicass

Vel (\IIFJ““_ITBM_S_Q) bt
K ~ B
+ E Q}UL <\PF+G+ST/B+G'_1) \Lf_"_a . (\I/a+a/]\7’) \l/a+a_j+2 -\Ija+a_j+2d+1/]\7“—]+1
d=1

‘1}01+a7j+1 T'F—j '\I’a+a7j/l\a+a_j+zd_2 : (\I"aJrafjfl Tf_j_l)\lra+l
(Wi T Lty - (Wrmag2i 1) bicats - Uimara
' (‘I/f+a—1 TﬁJra*s*Q) dina

(3.9)

for some k' > 0, where the z4 are such that Vata—j = Vatatz,- The former term
is rearranged to have leading term 9o44—;, thus is zero as this is a row relation.

We have that (3.9) is equal to

kl
qut“ <\I/f+a+s/]\/8+a71> biva " (ParaT") data—jt2 - Yata—jtzgtt
d=1

r—j+1 T—7] ata—j+zq—2
\I/a+afj+zd+2T / '\I’a+afj+1/r / '\I]OPFCL*].T I

c(atamjo1 P77 ) Lot - (Tijpa ™I Vi ans - (Wrmagoi 17) Limats

cWigpo T (‘I’f+a—1 Tﬁﬂfs*z) it

and then since itnyatzy; = lata—j == fatatzg 7= lata—j+2,--->lata WE CAN
apply Corollary 2.6 to (\I/aJraTF) lota—j+2 “Vata—jtzg+1 (take z =a+a—j+
Lf=j—1Lk=2g—1,h=1,9g=1,t =7 —a—a— zg). Then every term of the

sum has leading term 1q+,, which is a row relation by the diagonal residue (B5)
condition, hence (3.9) is equal to zero.

Now we can go back to (3.7). We are left with considering the summand when
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3.2. One-row homomorphisms George Witty

j = a — 1, which is equal to

vt” < r+a+sT5+a 1) i/F-i-a : (\Ija-i-a TF) ~La+1 . \Pf—a+2TF
: (\IJF-&-a—l T6+a7872) \Lf—i-l
= ( Wryars AT 1) Vita - (\l;aJran)iaJrg ) (‘yaHTF_aH)iaH A ar2

Wi_gq31" (\I’F+a—l T5+a_s_2) AR IE

(3.11)

(3.10)

This is shown in Figure 3.7. Now we have two cases, depending on whether 4,41
is equal to 4741 or not. If they are not equal then we must have also that no

residue @741, 47, - -+, latat1 Will equal i441. So (3.11) is equal to

Ut#wa—kl (‘I/f—l—a-l—s/]\ﬁurail) i/f-i-a : (\IIoz-l—aTF) ¢a+3 : (\I/a—l—QTFiaJrQ) \La-i-l

Wil (\IIF-&-a—l Tﬁ+a_5_2> Lit

by applying Lemma 2.3 to (Pag2?™ ""?) lag1 VUi_age (take 2 = q,
g=r—a—a+1). Then as 9,41 is a row relation we have that (3.10) is
equal to zero as we wanted.

The second case is when i,41 = i741. Then since 1441 = 4541 = tq+2 — 1 We

have that (3.11) is equal to:

o (‘I’f+a+sTB+a71> bita (Watra ") bats - (Taga ™) Laga
- Prar2Viar1Viat2 - Yiats T’ - <‘I’f+a—1 Tﬂﬂ_s_z) it
=" ( Frats TPTOT >¢f+a (Tarat) dats  (Tag2 ™) Laga
- i a1 Vi—ar2Viat1 - Yiats T’ - (‘I’Ha—lT’BM*s*Q) bt
0" (Brrars T ) L - (Bara ) baks - (Tarat ™) Lo

Wiiqq3t" <\Iff+a—1 Tma*s*Z) it

(3.12)

(3.13)

First consider (3.12); we follow the same method as we did for a summand of (3.7).

Apply Lemma 2.7 to (\I/OHFQTF*C‘H) bat1 Vi1 (take x =, g =7 —a —a) so
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George Witty

3.2. One-row homomorphisms

"(0T°¢) 10§ UrRISeIp preiq oty jo 4Ied :L°¢ omMSL]

s—  T—5— ¢+ 1+ ¢+ 1+
dl_lm.w\ UATQ GITQ %|Q m|Q %|AQ T+ 4 o4 D— 4 D— 4 ﬂnT@
AT
s+m.s v.THd.Tms m+d+&.s . 6+u§ ﬂlduTn@.N . m+v£\ ﬁ+&.s . ﬁ+e+5.s @+B.N N N+d.s ﬁ+é.s
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3.2. One-row homomorphisms George Witty

that (3.12) is equal to

0" ot ( Wiiqps T _1> bita  (YaraT) dats - (Tare ™) Lot

P2 Vicat1 - Vil (‘I/f+a—1 T’B+a_5_2> dit1
k//
T va (qlf+a+$Tﬁ+a_l> ita - (\Ija—&-aTr)J/a—&-fi '\I/a+2j+2Tr_a+l
=1
Uosa ™" Wap1 17"  iata - Yiat

Wiyt (‘IJerafl Tﬁ+a_s_2> li1

for some k" > 0, and the z; are such that in41 = lotatz;- The former term is

zero since Y,4+1 is a row relation. For latter terms in the sum, write such a term

as
Ut“ ( 7"+a+s/]\/8+a 1) \LF—&-a ’ (\Ija-&-a/]\?:)\l/a—&-S ’wa—l—z]--‘r? : \Iloz-l—zj-—&-STFiale
Wosa " Uo7 Yiate  Yiat
Wiiqq31" (‘I’Ha—l Tﬁ+a_s_2> Lit1,
and since ia+3, - - -, lata 7= lata+z;, apply Corollary 2.6 to

(\I/a—i-a TF) \l/a+3 'woa+2j+2

(takex =a+2,f=a—-2,k=2;—1,h=1,9g=1,t =7 —a —a— z;). Then such
a term has ¥ yq+.; as its leading term and thus is zero, as this is a row relation (B7)
by the diagonal residue condition.

Now we are left with (3.13), which is shown in Figure 3.8.  Since

ia43: - iata 7 G741 we can apply Lemma 2.8 to (Waga ") Lags Wiars T’

(takez =a+a,f =a—2,h=7—a—a,g =1). Then (3.13) is equal to

UW ( r+a+sT6+ _1) \l/f—i-a : (‘lJa—l—aTF_l) i«a+3 : (‘1104+2Tf_a+1) i/a—i-l
‘ <\I’f+a—1 TﬁJra*S*Q) it

=" ( Uipqps 7107 )iﬂl (Tara" ) datt - (3.14)
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3.2. One-row homomorphisms

"U99I8 POINO[OD oIk §'g RUWIWIS] SUISTL SUI[[00URD Y[} Ul PIAJOAUL oI YDIYM SSULIIS o], (OT'¢) 10] wreldeIp prelq :{'¢ oInsIg

I e+ 1+ e+ ot I+
\B+Q dx_vQ \BATQ W\Q %\Q mu\m\ T+ 4 o4 D— 4 D— 4 D— 4 D— 4 I+0

v+gy . §+D+4q  S+D+dy . D+ibg, T—P+g . Tty T+ 49 - T+0+09 D+09 . €+09 z+09 1+09
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3.2. One-row homomorphisms George Witty

As we assumed that iq41 = i741, we have that the following Garnir belt is in [u]:

F 1 [ [Fta+1][[Fft+a+ts]
Ftrads+ 1] B+a

This gives the Garnir relation g, () = (‘I’f+a+sTﬂ+a*1) 1711, and so (3.14)
must be equal to zero. With this, we have finally shown that v'1)% gy ( ) =0

as we wanted.

Conclusion.

Having checked all of the relations in (i), (ii) and (iii) in the previous sections,
we are done and so there indeed is a homomorphism ¢ : S* — S* given by

ot v s,

3.2.4 Extending the result

We can extend Proposition 3.6 to multipartitions with greater than two components
in a similar way to how we extended Proposition 3.1. This time, we define a one
row pair and then exhibit the relevant changes to the proof of Proposition 3.6,

whilst also describing the degree of such a homomorphism.

Definition 3.7. Let | > 2 and suppose that A and p are [-multipartitions of
n, where [u] is formed from [A] by moving a row of @ > 2 nodes from the gth
component to the pth, for some p and ¢ such that p < ¢q. Suppose that the residue
of the leftmost node in the moved row is ¢. In addition suppose that

e > max {hi‘ic) +1, h’ﬁC) +1}.
p<c<q

Amongst the components M) with ¢ € {p+1,p+2,...,q— 1}, suppose that
there are exactly & > 0 such components to which a row of a nodes whose leftmost
residue is ¢ can be added. If £ > 0, then we also require that e is large enough
so that the diagonal residue condition holds when the row is added to these k

components. Suppose that amongst the components )\(Cl), there are no removable
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3.2. One-row homomorphisms George Witty

nodes of residues ¢,¢ +1,...,.+a — 1 and there are m; addable nodes of residue
t+jfor j€{0,1,...,a—1}. Let m = Z?;é mj. Then we say that (\, u)F is a

one row pair (of degree m + 1).

Remark 3.8. Since we have the diagonal residue condition, if A belongs to a one
row pair, then in a component A(¢) with ¢ € {p+1,p+2,...,q — 1}, we can
either have some individual addable nodes of the residues in the row or we can
add only the entire row itself and not some other individual nodes of residues

within the row also.

Corollary 3.9. Suppose that (\, 1)* is a one row pair of degree m + 1. Let s be
the p-tableau defined by considering €\ and moving the row of a nodes from the qth
component to the pth, keeping their values intact. Then there is a homomorphism

2

@ SN = S* given by v¥ — v Y. This homomorphism has degree m + 1 and

can be written as a composition of k + 1 homomorphisms.

Proof. If (A, p) is a one node pair, then we can simply use Corollary 3.3. Note that
in this case, m will be equal to k£ and thus the degree matches that of Corollary
3.3. So instead we shall suppose that the shape moved is definitely a row of at
least two nodes.

We shall begin by assuming that £ = 0. Define «, 5 and a similarly as in the
proof of Proposition 3.6, so that the nodes to be moved contain S+ 1,...,8+a
in t from left to right, whilst in #* the added nodes contain a +1,...,a +a
from left to right. Then ° = (\I'a+aT6+“_1) dat1. We need to check that the
generating relations of S* hold on ¢ <vtk>.

Similarly to Proposition 3.6, define a new KLR Algebra % using quantum

characteristic € := e and multicharge

K= (K1,K2,..., kg resx(B + a), Kgt1, Kgg2,-- -, K1),
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3.2. One-row homomorphisms George Witty

and define [ + 1-multipartitions:

>

- (Au), A® A Agn’ (1), @D \@+2) A(l))
2

Xl = (A(l)a A(Z)v s 7)\(p_1)>/igi)7/ﬁ(p+l)a M(p+2)7 s Mu'(q)? (1)7

platd) a2 u”))

/1 = ('u’(l)7 ,LL(2), s 7M(q)7 g, M(q+1)7 :u’(q+2)’ e 7M(l))

We define a Xl—tableau 51 by 1/351 = <‘i’a+a_1 T5+a_2> Ja+1 and also a fi-tableau
sy by %2 = ‘i’aJra 1@-1 where Q = Py ’)\(i)‘. Then by induction on the
number of nodes moved we have a homomorphism ¢; : S* 5 S given by
o Uti11/~)517 and another @3 : Sh g given by AN vtﬁiﬁ?. Defining
1/35 = (i’a+aTﬁ+“_1) $a+1, the composition of po with ¢ gives us a homomor-

e — vtﬂ@ZE\T/BJraTQ’l. From this we

phism @ = @9 0 1 : S* - A given by v
obtain relations (i*), (ii*), (iii*), just as in Proposition 3.6, and we can use these
to check the relations (i), (ii) and (iii). Since fi is identical to u except for the
empty third component, the generating relations for S* and S* are identical up
to changing the notation of the generators, and the diagrams for v**1° and vtﬁz/;ﬁ
are also identical, so any relation killing U"ﬂ1/~)5 will also kill vt 4*.

For each type of relation, the above setup allows us to follow the same methods
as in Proposition 3.6, only now accounting for the additional nodes in between
the first and last components of [u] as well as those outside of these components.
In checking each of the relations, apply the same reasoning as in Proposition 3.6,

however there are a few changes to be made at the places annotated by the

following labels in the margins:

(B1) Replace n with @ throughout and note that inyq -~ ig1a+1,---,%Q. For

re{Q+1,...,n—1}, follow the same reasoning as for r € {1,...,84+a—1}.

B2) If ¥qrqr-. is not a row relation then by the diagonal residue condition the
+a+z;
node containing a + a + z; must be a Garnir node, so the corresponding

Garnir relation will be at the top of the diagram for those terms in the sum.
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3.2. One-row homomorphisms George Witty

(B3)

(B4)

(B5)

(B6)

(B7)

Replace n with @ throughout and note that inye - ig4q+1,--.,ig. For

reA{Q,...,n— 2}, follow the same reasoning as for r € {0,1,...,7 —1}.

If Ya+a+z,; is not a row relation then by the diagonal residue condition the
node containing o + a + z; must be a Garnir node, so the corresponding

Garnir relation will be at the top of the diagram within W4 .41 7271

If Yata+z, is not a row relation then by the diagonal residue condition the
node containing a+a—+z4 in t* must be a Garnir node. Apply Corollary 2.6 to
(Yara?) dara—jt2 Pata—jtzar1 177 instead, then we have Woyqqz, 17
at the top of the diagram, i.e. we have the Garnir relation for the node

containing o + a + z4 in t* at the top of the diagram.

Even if {441 # 4741 We may now have some 44+, that is equal to 441 for
z€{l,...,7—a—a}. In this case, follow the same method as for summands
of (3.7), applying Lemma 2.7 and using (B5) to obtain a row or Garnir

relation at the top of the diagram.

Treat this similarly to (B5). If 941442, is not a row relation then by the
diagonal residue condition the node containing a + a + z; in t* must be
a Garnir node. Apply Corollary 2.6 to (\IiaJraT’:) la+s Watz+2 pr-atl
instead, then we have Woyq4; 17=1 at the top of the diagram, i.e. we have
the Garnir relation for the node containing a + a + z; in t* at the top of

the diagram.

Now suppose that k£ > 0, then we wish to show that we can rewrite ¢ as

a composition of k£ + 1 homomorphisms. When k = 0 this is trivially true, so

suppose that £ > 0. Let ¢ € {p+ 1,p+2,...,q — 1} be maximal so that a row

of a nodes whose leftmost residue is ¢ can be added to A©. Suppose that if we

add the row of a nodes to [)\(5)] we obtain the diagram [V(E)] and consider the

multipartition

U= (A(n, A® L AED L@ e @) ,u(”) _
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3.2. One-row homomorphisms George Witty

Then, noting Remark 3.8, by induction we have that there is a homomorphism
@1 : S* — S¥ given by ot s ot (\Ilq,+aT5+a*1) lys1, where y+1,v+2,...,v+a
are the values of the added nodes in V. Similarly, we also obtain a homomorphism
@9 1 S¥ — SH given by v' — " (\I/a+aT7+a_1) $at1.- By induction, @9 can be
written as a composition of k& homomorphisms.

Composing, g0 @1 : S* — S* is given by ot e ot (\II(HGTB*'“_l)iaH thus
@ = @9 0 1. Hence ¢ can be written as a composition of k£ + 1 homomorphisms
as we wanted.

Finally, we shall describe the degree of ¢. By Proposition 1.34 we have
that deg (Utuﬂ)s) = deg(s). We wish to compute deg (U”ﬁﬁ) — deg (v"k> =
deg(s)—deg (t)‘) . Using the recursive definition of the degree, the nodes containing
n,nm—1,...,84+a+1in both tableaux contribute the same value to the respective

degrees. Hence

deg(s) — deg (tA) = deg (S<pra+1) — deg (t)<\ﬁ+a+1> .

Let A; be the node 5;é+j+2(,3+j+ 1) and Bj; be the node (tiﬁ—‘,—j_l,_Q)_l (B+j+1).
Then for j € {1,2,...,a — 1} we have that the number of addable ¢ + j-nodes
below A; is equal to that below B; plus m; more. The number of removable
t + j-nodes below A; is equal to that below B;, since there are no removable
t + j — 1-nodes in the components indexed by p+ 1,p+ 2,...,q — 1. Hence we

have

a—1

deg (S<pgta+1) — deg (t)<\ﬁ+a+1> = ij + deg (s<pg+2) — deg (Qﬂm) :
j=1

Now the number of addable t-nodes below Ag is mg + 1 greater than below By,
since in s.549 we count the mgy addable t-nodes within the components labelled
with p+1,p+2,...,q — 1 along with the position where the node was removed

from in the gth component. The number of removable t-nodes below Ay is the
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3.2. One-row homomorphisms George Witty

same as that below By. Thus

a—1

deg (s<p12) — deg <t26+2> =mo+1+ Z m;j + deg (s<p4+1) — deg (QBH)
j=1

=m+1,

since s.g11 is identical to t)<‘ﬁ+1. Thus the degree of ¢ is m + 1.

O

As with the one-node homomorphisms, we can now consider what happens
when we move two or more different rows of nodes to form [u] from [A]. We can
naturally extend the hypotheses of Corollary 3.4 to consider rows instead of nodes,

and with this we obtain a similar corollary.

Corollary 3.10. Letl > 2 and suppose that \, v1, vo and p are l-multipartitions
of n. Suppose that [u] is formed from [\ by moving one row of a1 nodes whose
leftmost residue is 11 and one other row - not the same as or adjacent in any
way to the first - whose leftmost residue is ta. Suppose [v1] is formed from [\
by moving just the row of a; nodes, whilst [va] is formed from [\ by moving
just the row of as nodes. Suppose that 11 +j -~ 1o+ k and 11 +j # 1o+ k
for all j € {0,1,...,a1 — 1} and k € {0,1,...,a2 — 1}. Suppose that (\,v1),,,
(A 12),, (V1,1),, and (va, 1), are all one row pairs. Then there are non-zero
homomorphisms

Oy SA — S¥1, Gy 2 ST — SH,

Oavy - S S, Qa1 SV — S,
and we have that Yy, © P = Puop © Paw, 7 0.

In addition, if (\,11),, and (v1,p),, have degrees m + 1 and m' + 1, we have

that the degree of @y, 0 Pry, s M +m' + 2.
Proof. Since (A\,v1).,, (A, 12)1y, (V1,1),, and (v, p),, are all one row pairs, by
Corollary 3.9 we have that there are non-zero homomorphisms

Oy - SA — Svi, Oy 2 S — SH,

Oavsy SA — Sv2, Guop + V2 — SH.
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Write cp,\yj(vtA) =7 (U (Vo +a, 1 Bita— )iaﬁl for some o € {0,...,n — 1}
and 3; € {0,...,n — 1} with a; < 35, for j € {1,2}. Without loss of generality,
assume that 51 < ps. If B1 < as then it must be the case that 81 +a1 < as + 1

hence

A —
Prip © Py (Ut )= vt <\Ija2+a2 T62+a2 1) bastt - ( ar+a; TBH_QI 1) a1
= ’Ut# <\I/o¢1+a1 T61+a1_1> \J/Oq-i-l ' < a+az TBQ—HLQ 1) \Lag—i-l

A

t
= Puop © P, (U )
and we are done. Hence, assume that #; > as. Then we have multiple cases.

Case I: The row of a; nodes is moved to a position above the row

of a; nodes in [y

In this case, we have that

A

t tH —1 1
Prip © Py (U ) =v (\Ila2+a1+a2 TBQ_HZQ )\l/a2+al+1 : ( ai+ap Tﬁﬁ_al >\l/a1+1

whilst

A 7 _ —
()01/2},6 o 80)\112 (Ut ) = vtl (\11061-‘1-&1 T61+a1+(12 1) \1/041-‘1-1 : (\IJOLQ-HIQ /]\524’0«2 1) \Laz+17
(3.15)
which as a diagram is shown in Figure 3.9.

Write

2% - -1 -1
QDVQN O PAvy (U ) = <‘1j011+a1 Tﬂ1+a1+a2 ) l«a1+1 : (\I/a2+a2 T62+a2 ) J/a2+1
I3 -1
=t (\I’a1+a1 poztartas ) dai+1

—1
T51+a1+a2 ) Vantapt

: (‘11042+a1+a2

. (\IJa2+a2Tﬁl+al+a2_l>la2+1

-1
’ <\I]61+a1+a2 T62+a2 >¢51+a1+1 .
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"(G1°¢) 103 wrerdeIp preiq oy Jo Jred :6°¢ 9IMILg

T+
m@n_‘mQ H.TNQ NQ HGI_LQ SQITHQ ~+HQ HQ T+ %o (49} I+ ™

1480+ eo+ 1+ en+ I+
Zo+4-2gfy . Io+1Tg, o4 1g, - ¢4 In4-Coy 43S0y e In4-3%oy Tn+4C0y e 1+ In+4Toy To+Toy e T+ 1oy
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3.2. One-row homomorphisms George Witty

Now apply Lemma 2.5 to

-1 -1
(‘;[/a2+a1+a2 Tﬁl+a1+a2 ) \l/a1+a2+1 : (\Ija2+a2 Tﬁ1+al+a2 ) \l/ag-l-l

Since ia, 45 7= lastas+1s-- s bastartas 08 j € {1,...,a1}. So then we have

2 tH -1
QIOVQ,M © SOAVQ (/U ) = (\I]al-i—m TO&2+CL1+CL2 )\J/Oél-i-l

. (‘Ija2+a2Tﬁ1+al+a2_1)\La2+1
. (\I]ag-‘ral T/81+a171> \I/Otz-i-l

’ <\Ilf31+a1+a2 T,Bnganl) i31+a1+1 .

We show vt (\I,a1+1Ta2+a1+a2—1) lagtt (\Ija2+a2T51+a1+a2—1) Lapy1 in the fol-

lowing diagram:

ia1+1 T Z.041th11 oy +aq T ia2+a1 tog+an e tagtar lagtay e iﬁ1+a1
+1 +1 +az +az+1 +az
ar+1 .- a2 az+1 -+ oaetaroetar - Pitar frtar - Bitar
+1 +1 +az
Now apply Lemma 2.8 to these crossings since ia,+; = tastas+1s- - - » bas+ai+as
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3.2. One-row homomorphisms George Witty

for j € {1,...,a1}. So then we have

2

Prop © Pivo (v7) = v (\IjaH-al Ta2+a1_1) a4

Tﬂ1+a1+a2—1)

’ (\I]a2+a1+a2 J,a2+a1+1

! (\Ila2+a1 Tﬂl—i_al_l) ¢a2+1
) (\Ilﬁl-i—aﬁ-az Tﬁﬁ_@_l) ¢51+a1+1
= (‘I/a2+a1+a2 T62+a2_1> ¢a2+a1+1 : (\IIQ1+(11 T61+a1_1> ¢a1+1

A
= Puip © Py (Ut )

Thus Prop © Prvg = Prip © Py -

Case II: The row of a; nodes is moved to a position below the row

of a; nodes in [y]

In this case, we have that

A

Prip © Py (Ut ) = Utu (\Ija2+a2 Tﬁﬁ_az—l) *Lochrl ' (ll[a1+a1 TBH—al_l) *La1+1 .

Now

A

¢ ) =¥ <\I’a1+a1+a2 Tﬁ1+a1+a271> Lartast1 (3‘16)

. (‘I/ch—i-ag TB2+0‘271> \Lag-‘rl

Prap © Prvy (1}

which as a diagram is shown in Figure 3.10.

Now apply Corollary 2.6 to

+ai+az—1 +az—1
(\I/a1+a1+a2/l\ﬁl arraz )\l/a1+(l2+1 '(\I/a2+a2/l\52 2 )\La2+1

SINCe Gaytj 7= lay+ast1ls- - s bai+ar+as 108 j € {1,..., a2}, so that we have

A

Prop © Prvy (Ut )= vt (‘lla2+a2 Tﬁfrarl) dag+1 - (q}a1+al Tﬁﬁalil) Lai+1

A
= Puvip © Py (Ut )
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ep -+ 2gf

Znt2g,

(91°¢) I0] wreISeIp preiq oY) Jo e :(0°¢ om3r

T+
H.TNQ NQ HGI_LQ SQITHQ ﬁn_.ﬁQ HQ I+ ™ 0

L 7

1+%0+ o+ T+ e+ T+
Io+1Tg, o4 1g, - ¢4 In4-Tog In4-Tog - Zp4-Tog o+ Tog - 1+%p+420y To+T0y

1+

ﬁ+mdw
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3.2. One-row homomorphisms George Witty

Thus Quyp © Pave = Puip © P, -

Since the degree of ¢,,, © ¢\, is equal to the sum of the degrees, the degree
is(m+1)+(m +1)=m+m' +2.

Note that in both cases, ¢, © ¥, (v"A) is given by some product of 1
corresponding to a reduced expression (using Proposition 1.18 as no strings cross
twice) which is not zero, thus ¢, 4 © Y, = Puap © Prv, 7 0.

O]

We also have an analogue to Corollary 3.5, that is, that if [u] is formed from
[A] by moving multiple rows of nodes whose residues are sufficiently spread apart,
then we can move the rows in any order to get various homomorphisms which

always compose to give the same overall homomorphism.

Corollary 3.11. Let I > 2 and suppose that A and p are l-multipartitions of n.
Suppose that [u] is formed from [\ by moving m distinct rows of nodes Ry, ..., Ry,
whose leftmost residues are t1,t2, ...,y and whose residues amongst the rows are
such that none are equal or adjacent between any two given rows.

Suppose that for each X C {1,...,m} we have an l-multipartition of n, vx,
such that [V, . i) is formed from [\ by moving just the rows R;,, ..., R;,. In
particular vy = X and vy = pt. Suppose that whenever B\ A = {r}, we have
that (va,vB),, s a one row pair, whose corresponding homomorphism s Yy vy -

Then there is a non-zero homomorphism ¢ : S* — S* and given any sequence
of sets @ =Xo9 C X1 C X0, C - C X,, ={1,...,m} we have that

o -

P =Prx, vxy, ©Prx,, ovx, ;" °Puxarx, -

Proof. Without loss of generality suppose that the row R, is above Ry whenever

a<b LetY;:={1,2,...,5} for j € {0,...,m}. Then
G=YyCYiC - CVYp=1{12...,m}.

By assumption we have [-multipartitions of n, vy;, and non-zero homomorphisms

Povivy,,y for each j € {0,...,m — 1}. Suppose that row R; has length a;. We
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3.2. One-row homomorphisms George Witty

VY. l/y_
s t I\ ot Tutl . |
may write Pry,vy (" 7)) =w (\Ijaj+l+aj+1+Cj+1 (AR )*Laj+1+4j+1+l
for some o1 and Bj41 related to the positions of the moved nodes, and (41
based on whether moved nodes are added above or below other moved nodes.

Then

) =" (‘I/am+am+cm Tﬁmﬂlm*l) VomtGmet o

) <\I’a1+al+C1 Tﬁl+a171) bar+¢it1 -

Since Bj41+1> Bj+a;j for j € {1,...,m—1} we must have in the braid diagram
for the above, no strings will cross twice and so by Proposition 1.18 the above will
correspond to a reduced expression, and the associated tableau will be standard,
so this composition of homomorphisms is not zero.

The rest of the proof is the same as that for Corollary 3.5, replacing the use
of Corollary 3.4 with Corollary 3.10. O
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3.3. Skew homomorphisms George Witty

3.3 Skew homomorphisms

Now that we have shown the existence of homomorphisms between Specht modules
arising from moving rows of nodes in a multipartition, our final step is to take this
yet further and consider moving some arbitrary connected shape of nodes. To be
precise, we say that a diagram is connected if any two nodes in it are connected
by a path going through edges which connect two nodes in the diagram. Given
multipartitions v and p, if the diagram [v] contains the diagram [p], then the skew
diagram [v\ p] is the set-theoretic difference of [v] and [p]. We define a skew shape

to be a connected skew diagram of the form [v\ p].

Example 3.12. Given v = (4,3,2%), p; = (2,1%) and py = (22), we see that

[V \ p1] is a skew shape whilst [v\ p2] is not.

v\pL= whilst v\ p2 =

O

We want to consider forming [p] from [A] by moving a skew shape from one
component to another. In order to prove an explicit homomorphism ¢ : S* — S
exists, we are able to take a similar approach to Proposition 3.6: removing the ‘last’
node of the skew shape and using induction to obtain different homomorphisms
and relations, which we can use to help check that many of the generating relations
for S* hold on the image of ot

The following lemma will at first seem rather technical and out of place. It
is concerned with showing that in a specific setup related to moving a skew
shape to form p from A, there will be no standard p-tableaux with the same
residue sequence as that of t*. This will turn out to be useful during the proof of
Theorem 3.14 when showing that a certain term is zero. The use of this lemma
is out of place with the rest of our working, but will remove the need to do yet
more braid diagram combinatorics. In particular it will ensure that we will not

need to deal with crossings within the product R that we describe in the proof of
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Theorem 3.14.

Lemma 3.13. Let \ be an l-multipartition of n that contains a skew shape of r
rows in the [th component. Label the rows in the skew shape from top to bottom
by 1 to r and let the nodes in the jth row of the skew shape in £ contain the
entries B; +1,...,B; + a;j. Suppose that the node containing 3, is directly to the
left of that containing B, + 1. Suppose that we can form an l-multipartition p of
n by considering A and moving the skew shape - keeping its shape intact - to the
first component, as well as the node containing B, in " to the position directly
below that where the node containing B, + 1 in £ is moved. Suppose that both
A and p satisfy the diagonal residue condition and that amongst the components
A2 XD there are no removable nodes of residues of any of the residues in
the skew shapes. Then there are no standard p-tableaux whose residue resequence

is the same as that of t*.

Proof. Let the nodes in the jth row of the skew shape in t* contain the values
aj +1,..., a5+ a; from left to right. Let the entry of the node beneath the skew
shape be a; + 1. Then in the bipartition case, we have the following tableaux (for

[ > 2 there are simply some other components between these):

............ 815, + 1[5 + a,]

¢ =

For j € {1,...,r} let m; be the number of nodes in the jth row of the skew
shape which have no node directly above them in the skew shape. Now we shall

try to create a standard p-tableau, s, with the same residue sequence as t*. Write
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i* = (i1,...,ip), and i* = (j1,...,jn). Given s € {1,...,n}, let N[s] denote the
node in [p] that contains s in t“. Firstly, consider which node g, will fill. For s
to be standard we must have that the node containing 5, has no node directly
beneath it, since there are no nodes in t* whose entries are greater than 3, but of
residue g, — 1. If such a node exists within the components labelled 2,...1 -1,
then there must be at least a, + 1 nodes to the right of it in that row, otherwise
we have a removable node whose residue exists in the skew shape, but then these
nodes cannot all be filled whilst keeping s standard. Thus the only node satisfying
this description is N|a41].

Let k € {0,1,...,r—2}. Suppose in addition to filling in a node with 3, we have
filled in nodes with the entries 8. +1,..., 8.+ ac forc € {r,r—1,...,r—k+1}. It
will be clear where these entries go after reading the below, but in effect if an entry
was in the node in position (7, ¢, 1) in [A] then it will be put in the node in position
(r — 1,¢ — 1,1) if this node exists, otherwise it will be put in the first component
in the node in the skew shape where it originated from. Then consider §,_; + 1.
The only nodes of residue ig _, 41 in 1Y) have nodes directly beneath them,
which then would not be able to be filled in with any value greater than 5,_; + 1.
Amongst those components labelled 2, ...,l—1, we may have a node of this residue
with no node directly beneath it, but then there must be at least a,_; nodes to
the right of it in that row; otherwise we have a removable node whose residue
exists in the skew shape, but these cannot all be filled whilst keeping s standard.
So then in the last component there is then only one suitable node, namely
NI[Br—(ks1) — mr—k]. Then the nodes N[B,_(xy1) — M-k + 1],..., N[Br_(r11)]
must be filled with the values 8,_r + 2,..., Br_r + m,_r + 1 respectively. Note
that these nodes lie directly above and one to the left of where the nodes with
values Br_i +1,..., Br—k + my_p + 1 were in *. Now if a,_g > m,_; + 1, then
we must fill in some nodes with B,_r + my_x + 2,..., Br_k + ar_i. Now the only
nodes suitable to be filled with B,_g + m,_; + 2 lie in u(l), since one such node
in the last component is that above the node we just filled with 8,_; +m,_ + 1,
and the rest all have an empty node directly beneath them, or are in the middle

component and must have at least a,_; + m,_ — 1 nodes to the right of them
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in that row in order to prevent the existence of a removable node whose residue
exists in the skew shape, and then these nodes cannot all be filled whilst keeping s
standard. There is then only one suitable node in the first component which does
not have an empty node directly beneath it, N[a,_ + m,_j + 2], so fill this with
Br—k+my_+2. Then we must fill in the nodes N[a,_r+m,_x+3],..., Na,+a;]
with B,_r +m,_p +3,...Br_k + a,._j respectively. Note that these nodes are just
the ‘“moved versions’ of the nodes that contained these values in t*, i.e. they are
the nodes in the skew shape added to the first component that would have had
these values in ).

Now we have filled in nodes with 3, and entries 8. + 1,..., 5. + a. for c €
{r,r—1,...,2}. To begin with, we can follow the same idea as above. Consider
B1 + 1. As before the only nodes of residue ig, 41 in the first component have
nodes directly beneath them, and any in the components labelled with 2,...,1—1
must have at least a; nodes to the right of them in that row otherwise we have
a removable node whose residue exists in the skew shape, and then these nodes
cannot all be filled in whilst keeping s standard. So the only suitable nodes will
be in the last component. Suppose that the row containing 5, + 1 in ¢ is the top
row of A\. Then there will be no suitable nodes in the last component either, and
we can conclude that there is no standard p-tableau of the same residue sequence
as t!. So instead suppose that the row containing 51 + 1 in ¢} is not the top row
of A. Let the residue of the node in [u] lying directly above that which contained
B1+ap in t* be Jg,- Then there is now a suitable node in the last component,
i.e. N[Bo — a1]. Then the nodes N[By — a1 +1],..., N[By — 1] must be filled with
the values 81 + 2,..., 51 + a1 respectively. But now there is no value with which
the node N[fy] can take, since there is no value = such that > 1 + a1 and
iz = 18,4+q, + 1. Thus we can conclude that there is no standard p-tableau of the

same residue sequence as t* in this case either.

Now we can state the main theorem of this chapter.
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Theorem 3.14. Let A and p be 2-multipartitions of n. Suppose

( )
e > max{hd” +1,my" + 1,10 + 1,047 + 13
and that [p] is formed from [A] by moving a skew shape from the second component
to the first, without changing their shape. Let s be the p-tableau defined by
considering £\ and moving the skew shape from the second component to the first,
keeping their tableau values intact. Then there is a homomorphism ¢ : S» — S*

. A
given by v¥ — v Y5,

We shall discuss the strategy for the proof of Theorem 3.14 in much the same
way as for Proposition 3.6. Firstly, note that if the skew shape moved is just
a row of nodes then by Proposition 3.6 we have the desired result. So we may
assume that the skew shape has nodes in at least two rows of [)\(2)].

As in Proposition 3.1 we have the diagonal residue condition. Consider the
bottom two rows of the skew shape in [)\(2)]; suppose that there are a > 1 nodes
in the bottom such row, with ¢ > 0 nodes to the left of this which are not removed.
Suppose that in the higher of the two rows, there are as > 1 nodes, b > 0 of which
are removable. Let the entry of the node on the end of this row be 5. Then the

two rows look like so:

B —ag+ 1] B—b [B—b+1][B]
‘B+q+1‘ ................................... ﬁ+q+a

(3.17)

Now consider adding the skew shape to [u(l)]; suppose that in t* there are p > 0
nodes to the left of where the bottom such row is added, and that the entry of
the node on the end of the row above this is . The following diagram shows the
two rows of t# to which the bottom two rows of the skew shape have been added,

with the nodes that have been added highlighted.

.......................................... ‘Q_GQb_QQ‘i‘l"" a_b a—b—i—l“a
a+ﬂb+da+p+1‘ ...................................... a+p+a
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Then ¢° = (Watpra T Y) Laipir - (WaP71) La—ap41 R, where R is a
product of crossings coming from the rows higher than the bottom two in the
skew shape. Note that some or both of the brackets in the product may be zero
depending on the values of «, 5, p and q.

As in Proposition 3.6, we now wish to work with some 3-multipartitions of n.
So we define a new KLR algebra s just as before.

Suppose that the row of [A] which the bottom row of the skew shape extends
by being added to it is the ki1th row and the row which this bottom row shortens
by being removed from it is the koth row. Then consider a 3-multipartition of n,
A, defined as

X = (A“),Ag, (1)) ,

i.e. so that t* is formed from by removing the node containing 5 + ¢ + a,
subtracting one from the entry of all the nodes containing 8 4+qg+a+ 1,8+ q+
a+2,...,n, and placing one node in the third component which will have label n.

Also define 7, a 3-multipartition of n, by
- 1
U= (uﬁ;}u@), (1)) :

with a 7-tableau s; defined by considering s and removing the node containing
B+ q + a, subtracting one from the entry of all the nodes containing 8+ qg+a+ 1,
B+q+a+2,...,n, and placing one node in the third component which will
have label n. Then 1;51 = (i’a+p+a,1 T5+q+a_2> Yatptl - (@aTﬁ_l) da—ast1 ‘R,
where R is just R with every v replaced by a V. Using induction on the number of
nodes moved in a similar way to the strategy for Proposition 3.6, we can assume
that there exists a non-zero homomorphism ¢ : R given by v"X > v"ﬁvf)sl,
and no generating relation for S kills vtﬂzﬁsl via a relation of the form (1.12).
The base case for this is given by Proposition 3.1.

Now consider the 3-multipartition i = (,u(l), ), @) and the fi-tableau s9
defined by considering t# and changing the entry of the node containing o+ p + a

to n whilst subtracting one from the entry of every node containing o +p+a+1

or greater. We have %2 = \i/a+p+aT”_1. Using Corollary 3.3 we know that there
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is a non-zero homomorphism ¢y : S¥ — S# given by v'" — v %2,

Let 0° = (Darprat 00 ) Lppin - (Wa 771 ) Lamapr -R. Composing s

with 1 we have a homomorphism ¢ = @30 : S Ay i given by

= Uw‘i’a—i-p—i-aTnil . (\ija+p+a—1TB+q+ai2) \La—&-p—&—l
. (‘i’aTBil>\La—a2+1 R
= UW (i’a+p+aTB+q+ail> ia-ﬁ-p-‘rl : (\i’aTﬁil) \l/oz—az—i-l R : ijﬁ—i—q—&—aTnil

_ vt“¢5 . i’ﬂ-‘,—q—l—a/l\n_l .

Just as in the strategy for Proposition 3.6, the residue sequence of s is identical
to that of t* and so to prove the existence of  : S* — S* we must show that

Pa=0forac M In particular, we must check that

® (vtk> a = 0 whenever v
the generating relations of S* hold on the image of vtA, and so we are required
to check (i), (ii) and (iii) just as in Proposition 3.6. Since ¢ exists we also have
identical-looking facts (i*), (ii*) and (iii*), just with § + a replaced with with
B+q+a.

For the same reasoning as in Proposition 3.6, any relation which kills vtﬂzﬁﬁ
will also kill v*1/°. Thus our strategy will once again be to use the relations (i*),
(ii*) and (iii*) in order to deduce many of the relations given by (i), (ii) and (iii),
leaving a few additional cases.

Note that the following proof has notes in the margin of the form (Ce). These

can be ignored for now and will become relevant when considering the proof of

Corollary 3.18.

Proof. As we have remarked above, we may suppose that the skew shape moved

has nodes in at least two rows of [)\(2)]. Let (i1,12,...,1y,) be the residue sequence
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of t# (which is identical to that of t*), then

Uw (\i/a+p+aT/B+q+a_l> \La+p+1 : (qlaTB_l) ia—ag—i-l ‘\i/ﬁ+Q+aTn_1
is shown diagrammatically in Figure 3.11.

3.3.1 Relations in (i).

Every relation here is checked identically to that in Proposition 3.1, only we

replace o with a4+ p and 8 with S + q.

3.3.2 Relations in (ii).

We can show that vtﬂzﬁzﬁr =0forre{l,...,8+q+a—2}U{B+q+a+1,...,n—1}
in an identical matter to Proposition 3.1, only we replace a with a+ p and g with
B+ q. All that is left to check is when » = 8+ ¢+ a — 1. However, in this instance
there is not a corresponding row relation in S;\, so we check that vt“¢5w5+q+a,1
is equal to zero directly.

First, suppose that a = 1. If ¢ = 0, then 13 is not a row relation so there is
nothing to check. So we must suppose that ¢ > 0 and we have r = § + ¢. Then

we have

Utuws¢ﬂ+q = 'UtM\IIaerJrlTBJrq ) (qjaTﬁ_1> \Lafa2+1 R ¢ﬁ+q
= ’l)tu\Ija+p+1 Tﬁ—HI ! w,@—i-q . (‘I/aTﬁ_l) ia—ag—l—l ‘R

= Utuq’a+p+1 Tﬂ+q_1 ) <y5+q+1 - 3/,3+q) ) (‘IjaTﬂ_l> la—ay+1 R

by relation (1.10),

= _Ut“\lja+p+1 TBJrqil : y5+q : (‘I’aTﬁil) \La—ag—f—l ‘R

since v"”y5+q+1 equals zero,

= 0" U1 1P ygr - Ty PP (‘I’aTﬁ_l) la—ay+1 R
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3.3. Skew homomorphisms

“

.T:ecttwn@. 1+e0—04 Aﬁwmed\wv - THd4o 4 AH\3+@+Q_«@+@+@®V A0 103 weIseIp prelq oy} Jo 1red :11°¢ oInsrq

4+ -0+ T+ T+ [+d+ d+
@.TQ @.TQ @.TQ @.TQ H.TQ Q N@IQ deQ ip —0 Ip —0

'b'

<2

T+ T+ I—
v+b+4gy v+b+gy A T+0+dy v+gy . v4d+oq D+d4+0q v4d40q A I+d+oq  d+oy . 1+09 0y

T+

<p — 0

T+ep—my
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since a4pr1 7= 1849 18+q—1s-- - i8+2. NOW Gaqpt1 = ig4+1, SO using relation (1.8)

we replace 1gys41 with ygig + 1. So we have

0 Uy = =0 gy 1P s Wt (0t ) Lo R (318)

- Ut#ll’oz—&-p—l—lTﬁil : \Ilﬁ—l—lTBJrqil ’ (‘IlocTﬁil) \lxa—az—i-l ‘R.

(3.19)

In (3.18), apply Lemma 2.11 to Weyp+1177! yg. Then (3.18) is equal to

B Ut#ya"!‘p"rlqja-f-l?-f-l T/Bil ‘\Ilﬂ/rﬁJrqil ' (\IIOéTfB71> ba—ast1 R

k
- thu‘lja+p+1Ta+p+zj_2 Watptz PPl gt (‘I’aTﬁ_1> la—ay+1 R
j=1
for some k > 0 and where the z; are such that in4p+1 = ia+p+z;- Then all of this
is zero, since Yo4ptz; is a row relation by the diagonal residue condition. (C2)
We show that (3.19) is zero in a different way. Consider the multipartitions (C3)
X and i defined by considering A\ and u respectively, and removing the nodes
containing 8 + 1,3 + 2,...,n. Now define 7 by considering A and moving the
remaining rows of the skew shape from the second component to the first, as they
were moved from A to form p. Let t; be the v-tableau defined by considering
t* and moving the skew shape from the second component to the first, keeping
their tableau values intact. Let ty be the p-tableau defined by considering t” and
moving the node containing § from the second component to the first (to the only
possible position based on its residue), keeping its value intact. The following

pictures help exhibit some of these tableaux.
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s | LT e [
= [ ﬁ
1‘ .......................................................................................................
e _I ..................................................... ‘
o | e ‘al .....................
....... Oé‘i‘p“‘ll 6+2‘
] B+q+2]
* =
=

Now by induction on the number of nodes moved, we know that there is a
non-zero homomorphism ¢; : SA 5 g7 given by o s ot (\IlaTﬁ_l) Ya—as+1 -R.
We also have that there is a non-zero homomorphism ¢ : S — SH# given by

¥ vtﬁ\I/aerH 1P=1. So composing, we know that there is a homomorphism

v
@201+ S* — SP given by o v W 18T (VatPY) Lacastr R
However, we may apply Lemma 3.13 to A\ and i and thus there cannot be

a standard ji-tableaux of the same residue sequence as tj‘, meaning that the
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homomorphism s o ¢ is zero, hence vtﬂ\IJaerH T/B_l . (\PanB_l) Ya—ar+1 R
is zero. Note that any generating relation for S# corresponds to a generating
relation for S#. Thus this means that vt“\lla+p+1 A1 (\IJOCTB_I) Ya—as+1 -R is
zero, i.e. that since W1 171971 commutes with R, that (3.19) is zero.

Now suppose that a > 2. We have

Ut#¢5¢5+q+a—1 = Ut“ (lPa+p+aTB+q+ail> \Loz-‘rp—&-l (lI/aTﬁ71> \La—az—f—l

‘R Ypigrat
=" <\I/a+p+aT’B+q+a71> Vatpta—1 *Vpigta—1
' <\Ijo¢+p+a—2/]\ﬁ+q+a73) J/oc—&-p—l—l ‘Ra.

where Ry = (\I/aTﬁ—l) la—ast1 -R. Since iqypira—1 < tatpta, We can apply
Lemma 2.7 to (‘11a+p+aT5+q+“_1) Latptra—1 - Vsigta—i (takex = a+p+a—2,9 =

B+ q—a—p). Then

k
s _ +gta—1 +q+a—2
VP PBigra—1 = § Voatptatz TB e \I/a+p+aTB e
j=1

i—3 -3
\Iloz+p+a71 Ta+P+a+Z] . (\Ija+p+a72 T6+q+0« ) ¢a+p+1 .R2

for some k > 0 and 21 < 22 < -+ < 2i such that iaipiatz; = latpta—1- By
the diagonal residue property, Ya+pta+tz; Will certainly be a row relation for

je{l,...,k—1}. Thus

t s _ +gta—1 +qt+a—2
VY Y1gra—1 = Yatptata, TB e \I/a+p+aT’B e

T6+q+a73>

\Ila-l—p-i-a—l l«a-i—p-i—l ‘Ra.

pofpratz=s . (\I/a+p+a—2

(3.20)

If Yatptatz, is a row relation, we are done. However this need not be the case,
i.e. if the node to the right of the node containing o + p + a + 2z was removed as

part of the skew shape. A diagram of part of (3.20) is shown in Figure 3.12.

141



3.3. Skew homomorphisms George Witty

Z‘OH—zH—l T ia+p+a ia+p+a Z‘az-‘rzzH—a ia+p+a T i&+p+a i&+P+a Z'oz+p+a t i5+q+a
—2 —1 +1 +z,—1 +zp +zp+1

atp - at+p at+p a+p - fHq f+q - Btq B+qg BHgq
+1 tzr—1 “4zx Hzp+l +1 +a—2 +a—1 +Ha

Figure 3.12: Part of the braid diagram for (3.20).

Now, if possible, take d € {0,1,...,a — 3} maximal so that

Z.onrp+af2fd §’L ia+p+a717d <~ ia+p+a7d A ia—&—p—&-a—l — ia+p+a+zk—1 —

— ia+p+a+zk72 — ia+p+a+zk—d~

We can interpret this as meaning that the node containing a4+ p+ a + 2z — d in
[1] has no node to the left of it, and has the same residue as the node containing
a+p+a—1—d, sowe know which diagonal it lies within. If we cannot take

such a d, take d = a — 2. Now rewrite what we have as

tH a+ptatzp—2 a+pta+z—d—3
v Yoipra TP e (\Ija+p+a71T P . )Jronerrl

a+pt+a+tzp—3
: \Ija+p+a+zk—d—2T P . : (\I’

T a+p+a+zg —3)

a+ptatzp—d—3 \La+p+a+zk—2d—2

T a+p+tatzy ,d,3>

' (qloz+p+a+zk72d73 \La+p+zk7d

+gq+a—1
: (‘I"a—l—p—&-a—&—zk Tﬁ e )ia—l—p—i—zk—i-l 'R27

(3.21)

some of which is shown in this form in Figure 3.13. Then we can apply Lemma 2.9
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"98uRIO PaIno(od are pardde ST g W YIIYM 0f SSULI)S oY ], "¢ SuIpnxa (1g'¢) 10J WeIdelp preiq oY) Jo 1red

HI
- - p P
+  [—D+ g—D+ p—vt+ p—ot I+ [+%2+ [zt — iz — izt
b+g b+g big b+g b+g -+ btg b+g - dto d+o d+o - dto dto
/
///
fIIlIIIIIIIIIIIlIl

T-p—

c—pP—

T+ 1=+

Az

T—1z+

v+b+gy v+d+0q D4d+0g DA+

p—z4

v+d+0q p4d+0y

p—z4

1+
v4d+40q D+d+0g

I— -
v+d+0q v4d+0q

v+d+0q D4d40g

'€T°¢ 93y

1+
d+

ﬁ+&+dw
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t0 Wotprate, d2 Ta+p+a+2k—3 . (\IJ

1 a+ptatzy —3)

a+pt+a+zp—d—3 \La+p+a+zk—2d—2

(take x =a+p+a+ 2z, —2d—3,f =d,g =0), to replace it with

d+1

9
E (‘I/a—i-p—i—a—i-zk—d—Z—m T atpatz m) ~L a+ptatzy—2d—2
| (3.22)

—d—3
: (\Ija+p+a+zk—2d—3+mTa+p+a+2k ) ¢a+p+a+zk—2d—2 .

The terms where m € {1,...,d} are of the form:

t +ptatzp—d—2
v (‘I’aerJraTa prat sk )l«aerJrl : wa+p+a+zk—d—2—m ’ R3

_ ot a+ptatzp—d—2
=v (\I’aﬂﬂraT P . )\La+p+afm+1

—d—m—2
{otptatz—d—m >¢a+p+afm71 “Yatptatz—d—m—2 (3.23)

: (\I’a+p+a7m

T a+ptatzg —d—m—4>

. (‘I’a+p+afmf2 datpr1 B3

where Rj3 consists of later terms which are no longer needed. Some of (3.23)
this is shown in Figure 3.14. Now since iq+pta—m—1 < tat+p+a—m apply Lemma

2.7 to (\I]a—l—p—l—a—mTa+p+a+zkidim72) \La—&-p—&-a—m—l : wa+p+a+zkfd7mf2 (take T =

a+p+a—m—2,9=z;,—d—1) so that (3.23) is equal to:

tH —d—2
v (\I’a+p+aTa+p+a+zk ) \La+p+afm+1

¢a+p+a7mfl

+p+ —d—m—2
: @Z)a+p+a7m71 : (\I’a+p+a7mTa pratzy " >

T a+ptatzg —d—m—4)

: (‘Ija+p+afm72 ¢a+p+1 ‘R

k,/
tH a+ptatzp—d—2
+ E v (\IjaerJraT P r )¢Q+P+a*m+1 ’ ¢a+p+a+zg-/*m Ry
J'=1

for some k' > 0 and z}, such that ia+p+a+z§,/ = datpta—m—1, and where Ry

consists of later terms which are no longer needed. The former term will be zero

since Ya+pta—m—1 is a row relation. For a term in the sum, apply Corollary 2.6
+ptatz,—d—2 : :

to (\I/a+p+aTa praTak )J/a+p+a7m+1 : ¢a+p+a+z;,—m simce Zoa—&-p—i—a—i—z;./—i-l 7é

. . . ,
batpra—m+1s latpta—mt2; - - - latpta (take x =a+p+a—m, f=mk =2} —
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Z'aer+1 e Z'aJr;DvLa 7;oﬁrp+a ia+p+a Z‘c>z+p+a tee ia+p+a ia+p+a tee ia+p+a
—m—2 —m—1 —m —m +1 +Zlc1_d
a+p a+p a+p a+p a+p a+p a+p a+p
+1 +z—d+z—d +a+zp +a+zx +a+zk +a+zk +a+zk
-1 —d—m —d—m —d—m —d—m —d—1

-3 -2 -1

Figure 3.14: Part of the braid diagram for (3.23) excluding R3. The strings to
which Lemma 2.7 is applied are coloured red

Lh=1g=1t=2z, —d—2—z,). Then (3.23) is equal to:

k/
tH a+ptatz—d—2
Z v Q/)C‘Hr:tﬂrasz;/ ’ (\Ija+p+aT ; )ia+p+a—m+1

=

=0

since Yo4ptats, 18 a Tow relation by the diagonal residue condition. We are
J

definitely able to always write the term like this and apply Corollary 2.6 since

Gotptate—d—1 is never equal to iqqpre—m—1 for m € {1,...,d}.

So now we are just left with the term arising from when m = d + 1 in the sum
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in (3.22), i.e. (3.21) is equal to

tH a+tptatzp—2 a+pta+tzp—d—3
v Yoiptal P e (\Iloz—ﬁ-p—&—a—l/]\ P . )~Lo<+p+1

T a+p+atz —d—3>

: (‘Pa+p+a+zk72d73 \l/a+p+zk7d

+qta—1
: (lIIOZ-‘rZH—a-‘er phtata >\La+p+zk+1 “Ra.

A 2 a+ptatzr—2 a+ptatzp—d—3
=v \Ila—l—p-l—aT P F ' (qja-l—p-i-a—lT P 4 >¢a+p+afd

+pta+zr—2d—3
' \IjaerJrafdfl Ta praTEk <\Ij \l/a—i—p—l-l

a+p+a+zp—d—3
a+p+a7d72/]\ P k )

+q+a—1
’ (qja-l-p-i-a—&-zk Tﬂ e )¢a+p+2k+1 “Ry.

(3.24)
7;oz-HD-‘rl e ifx+p+a ia+p+a ia+p+a tee ia+p+a ia+p+a ia+p+a te ia+p+a
—d—2 —d-1 —d -1 +1 +z,—d
—1
a+p a+p a+p a+p a+p a+p a+p a+p
+1 +zp—d+z—d+zp—d +a+z +a+zg +a+zp +a+zg
—1 +1 +1 —d—2 —-d—-1

Figure 3.15: Part of the braid diagram for (3.24) excluding

Ui prato—d1 Ta+p+a+zk—2 . (‘I’a+p+a+zk Tﬁ+q+a—1) Vatpiz+1 -Ra.  The
strings to which we apply Corollary 2.6 are coloured blue.

First assume that d # a — 2, then we know that

Z.Oz-i-zo—i-a—d—Q 7£ ia+p+a+1a ia+p+a+2a s aia—i-p—i-a—&-zk—d—l
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hence apply Corollary 2.6 to

Votpta—d—1 datpti

T a+p+a+zp—2d—3 X (\Ila+p+a—d—2

Ta—i—p—i—a-i—zk—d—?))
(takez =a+p, f=a—-d—2,k=0,h=1,9g =2, —d—1,t = d) and then we
have a ¥q4ptq—d—2 crossing which kills ¥ as this is a row relation.

So now assume instead that d = a — 2. Then (3.21) is equal to:

Ta+p+a+zk72 . (\I/ Ta+p+zk71)

Iz
v qja—&-p—i—a a+p+a—1 ia—l—p—l—l

(3.25)
: (‘I’a+p+a+2k Tﬁ+q+a_1) ¢a+p+2k+1 “Ry.

If the node containing o +p+a+ 2 in [p] is a Garnir node, then we are done since
the Garnir relation for this node will be contained within the fourth multiplicand.

So suppose the node containing « + p + a + 2, in [p] is not a Garnir node,
and let § € {0,1,...,a — 2} be as small as possible so that the node containing
a+p+a+zi—9 is a Garnir node in [p], whilst the node containing a+p+a+z;—0+1
is not. Such a node is guaranteed to exist by the fact that d = a — 2. Note that

we now must have a > 3 in order to be in this situation. Rewrite (3.25) as

e +q+a—1 a+ptz o+ptatzp—90—2
0" Wartptatz Tﬁ ! : (\Ija—&-p—i-aT P k)\La—i-p—H Wasptz+1 TP F

Tﬁ+q+a—3)

+q+a—2
’ ‘Ija—i—p-l—a-‘,-zk—é—l Tﬁ raTe (‘I’a+p+a+zk72 ia—&-p—&-zk—zs—l

Tﬁ+q+a—§—3)

: (\I]a—}—p-‘ra—&—zk —0—-2 ¢a+p+zk+1 ‘Ra.

(3.26)

Some of this is shown in Figure 3.16.

Now, since iatpta 7 fatptatzn—1slatpratz—2s-- - latptatz,—§ apply

-2 -3
Lemma 2.5 to \Ila+p+a+zk7571 T,8+q+a : (\Ija+p+a+zk—2TB+q+a ) \La+p+zk7671

(takez =a+p+a+z,—6—-2,f=1,9g=0+q—a—p— 2z, h=17). So (3.25)
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"an[q paInojod axe parjdde SI G g WU YIYm 09 SSULIIS 9], "9 ¢ 10] UreideIp preiq oY) Jo yeJ :97°¢ 2Indi g

- z— ¢+ T+
v+ [—v4 -t 9—vt+ 9—v+ T+ T+42+ Y2+ D—dz+ D—z4 T+
b+¢g b+g b+g -~ b+g b4+g -~ b+g btg - d+o d4+o - d4o d+o - d+0

<
<25

1—
T+ 72+ Az 4 1—"z+ o—fz4 ozt t+ 1+ 1+ 1—
e+m+m.s . @+&+d.s v+d+0q D4d+0g . +o+d+0q D4d+09 . Aztd+0q lz4d+0g . p+d+0q D+d+0y Dtd+0g c. 1+d+404
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is equal to:

Tﬁ—‘rq-&-a—l . (\I’ Ta+p+zk) TO&+P+G+Zk_6_2

¢
V" Vodtptatz Latpt1 - Vatptz+1

+q+a—2 +q+a—2
'(\I/a-l—p—&-a—&-zk—l/l\ﬁ e >~La+p+a+zk76 'q}a+p+a+zk76717\ﬁ e

a+p+a

+q—6-3
: (q]a+p+a+zk7§721\ﬁ 1 )\I/Oé-‘rp-‘rzk-‘rl ‘Ry.

(3.27)

Now with a bit of rearranging, we can see that we have
(Yaiptate TPT97Y) L oipiats,—s at the top of the diagram, thus the
Garnir relation corresponding to the node containing o + p + a + zx — d will be at
the top of the diagram, making the whole term zero.

So we are done for this section, having shown v ¢® Yg4g+a—1 = 0 in all cases.

3.3.3 Relations in (iii).

We use the same notation as at the beginning of this section in Proposition 3.6.
The proof splits into the same cases depending on the location of a Garnir relation

with respect to 7 just as before. For the cases:
e rc{0,1,...,7 —1}
erc{r+1,....0+q+a—-1}
erc{f+q+a,f+qg+a+1,....n—2}

we follow the same method as in Proposition 3.6, replacing a with a4+ p and 3

with 8 4 q. Then we are left with only one case left to check.

We must check the Garnir relation when r = 7. In this case, there is not a
corresponding Garnir relation in S*, so we check that v % gy () is equal
to zero directly. Using our notation, we can write 7 +1 = 8 — b for some b > 0.

Then in t* the Garnir belt is

B-b [~ E
[ B+1 ]~ ]B+qta
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giving the Garnir relation gy () = (Tgtrlrata=l) | 5 4. In Figure 3.17 we
display the important parts of the braid diagram of v* 1% g ( >
We have that v 1% g () is equal to

0 Wapra TOTHOT (W0 1P Loy
‘ (‘I’a+p+a—1 quﬂ*?) batpr1 (‘Pa+pTﬂ+q+a72) batp-b (3.28)

SOl g a1 (\I/afbfl T57b72> la—ast1 R,

and then we can apply Lemma 2.5 to

<‘I’a+p+a71 T,8+q+a—2) ¢a+p+1 : (‘Ifa+pTlB+q+a_2) iroc—&—p—b

(take z = a+p—-b—-1,f =b+1,9g = 8+q—a—ph = a— 1) since
tadptls-- > latpta—l 7= la—b,---,lq. Figure 3.18 helps demonstrate this.

Thus (3.28) is equal to

V Wt TPHITITE (U 1P Loy,
(Wit Y o (Waspra s a TP
R T (‘Pa—b—l Tﬂ_b_2) ba—az+1 R
= 0" (WatHPH2) Lop - Wagpya TIHITT
: (‘I’a+p+a—1 quﬂ*l) Vatprab Paiprap1TPrara=b
: (‘I’a+p+a—b—2T6+q+a7b73> Latp-b - (‘I’a—b—l T57b72> ba—ay+1 R,

(3.29)

some of which is shown in Figure 3.19. Since iq4pta 7 la—bt1s- - - » la, WE CaN
apply Lemma 2.4 to \Iloz—i-p-i-a Tﬁ+q+a_1 . (\I]a—i-p-l—a—l T6+Q+a_1) \La—i—p—&-a—b (take
r=a+p+a—-b—1,f=b,g=LF+q— a—p). Then (3.29) is equal to
o (W) g W et
: <\Ila+p+afb/]\ﬁ+q+a_b_1) Latpra—b-1 Vprqra—b-1 (3-30)

: <\I/a+p+afb72/]\,8+q+aibi3) i/aerfb : (‘Ijafbfl TﬁibiQ) i/oa—ag-i—l ‘R
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3 Supnpxo AEV X6 4,0 10§ UIRISRIP PreIq oyy JO jred :L1°¢ omSLg

.—Hl
LS Q-+ q—vt - 19— - T+ [+d+  dt T+
@ATQ\ UITQ wlT@\ NVITQ UITQ Q|Q ®|Q NB|Q NU|®\ Zp —0 Ip —n0 Zp — 0
s+b+®\4~ A H+3+QN erQN - dnTHNmﬂ‘dN d.TQ.TCN - ﬁ+&+dw &.Td.s e H.TCN ©q e ="y 19—y A T+%p—09
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"9N[( PAINO[0D oIk G'g ewwo] A[dde om TOIYM 03 SULIS O], Y SUIPN[OX0 (7€) 10 WeIeIp preiq o1} Jo 1red Q'€ oINS

I— ¢—
v+ qQ—v+ q—v+ q—v+ 9=  T—q—
wnTQ @.TQ @.TQ @nTQ @.TQ ®+Q @IQ QIQ NUIQ

I

\~\‘

- I+ T+d+ d+ I+
N\B|Q ip —0 Ip — 0 Znp — 0

iy

T+

U+w+Qw - 1+7v+4d7 v4gy - v4d+09 1+%p—n4

T—
v+d+0q D4d+0g . 1+d+0 d+0g . 1+09 g . qQ—™09 T—q—0y
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"9N[( PAOINOT0D

ore §'z ewmor] Ajdde om ydIyMm 03 sSULI)s oy, Y- LTt ANLT,@;\ Talmtoav surpnyoxe (6z'¢) I0J WreIseIp preiq oY) Jo 1R :GI'¢ I3

- t—
o+ -0+ Q-0+ q—v+ -0+ 9= 19— 9= 19—
b+g b+g -+ Db+g b+g b+g -+ btg bt+g - d+o d+0 -+  q—D

T+ -
attlu.s A v4d40q D+d+0q  v4d40g . T+d+nq  d+0g - 1+09 09 - T+9—"9 q—"9,
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la—b Ta—btl ** o lat1 Z'atp1+a latpta ia?ﬁ»a cor iB4gta

a=b -+ atp atp - B+q B+q B+q B+q - [Hgq
+a—b+4+a—0> +a—b+a—b+a—b+a—-0> +a
—2 —1 —2 —1 +1

Figure 3.20: Part of the braid diagram for (3.30) excluding the last three multipli-
cands. The strings to which we apply Lemma 2.7 are coloured red.

some of which is shown in Figure 3.20.

Since iq—p = tatpta + 1, We can apply Lemma 2.7 to

—b—1
PR | pba bt Ugigtasb

(qlaerJrafb

(takez =a+p+a—b—2,9g=p+q—a—p). Then (3.30) is equal to

i (‘I’aTﬂ+q+a_1) Laob Wasppa—p ToTTHeb=2

(3.31)
: (\Ija—i—p+a—b—2T6+q+a_b_3) i/a—l-p—b : <‘110¢—b—1 Tﬁ_b_z) \1/017(12+1 ‘R
k
+ th# (Wa P2 Lot - (Watpra1 TPHP572) | oipracs
j=1
: (‘I’a+p+a+zj—1 Tﬁ+q+a_1> doatptatz—b '\IIa+p+a+ijbTﬁ+q+a_b_1 (3.32)

+q+a—b—2 a+p+a+z;—b—3
Voiprap T Woypra—b1 TOTPTITE

’ (\Ila+p+a7b72/r'8+q+a_b_3> ¢a+p7b : (\I/afbfl T/B_b_2> \l/a—ag—&-l ‘R

for some k > 0, with z;’s arising from residues iq4p+a+; Which are equal to in—p.

When considering an arbitrary term in (3.32) we shall just write z for z;. Part of
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such a term in the sum of (3.32) is shown in Figure 3.21. Note that

= u () : (\I/a+p+aT’B+q+a_1> \l/a+p+a7b

so that (3.31) is equal to zero.

Take the greatest 0 € {0,1,...,b} such that ¥o4ptatz+m is a row relation for
S# for each m € {0,1,...,0 — 1}. If 6 = 0, then note that most of the following
does not apply and we can move straight to considering (3.33) (as it is equal to
a given term of (3.32)). Figure 3.22 helps to illustrate the residues of the nodes
related to these row relations.

Consider the fourth and fifth multiplicand in (3.32), and rewrite these as

Tﬂ+q+a—1) T6+q+a—b—1

(‘I’a+p+a+zfl \lra—l—p—l-a-l—z—b : ‘lja—l—p—l—a-l—z—b

/]\,B-Fq—l—a—l)

= (\I’a+p+a+zfl \La+p+a+z—b+5

Tﬁ+q+a—b+6—1) T,B+q+a—b—1 .

: (\Ija—l—p—i-a—&—z—b-l—é—l i/a—l-p—l—a—&—z—b : \I]a—l—p—l—a—&—z—b

In Figure 3.23 we show the relevant part of (3.32) with the corresponding residues.

Now since

ta—bts — ba—bts—1 = *** > la—b+1 — latpratz € latptatztl

I ia+p+a+z+5>

we can apply Lemma 2.10 to

Tﬂ+q+a—b+6—1) T,ﬁ’-i—q-‘ra—b—l

<\I/o¢+p+a+sz+6fl J/a+p+a+sz ’ \I/oz+p+a+sz
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‘ay. TH—04 Am\o\m;\ HLTd%v . q—d4o 4 Amwaws+@+m;\m$|@+a+cav surpnpxe (gg'¢) I0] WeISerp preiq oY) Jo ued :1g'¢ 9Isrg

D+
b+¢g

v+b+gy

T+ 1— ¢— IT—9— ¢—9— ¢€—9q— 1— G—
qQ—P+ qQq—D+ Q—Dv+ q— D+ z4+0+ z24+0+ 24D+ qQ— v+ q— Do+
b+g b+4+¢g b+g b4+¢g d+0o d+no d+o d+o d+o qQ— "

-

77

S
S
S

1+z+ z4 1—z+ 1+ —
v+d+40q v4d+0q Dd40g - v+d+0q D+d+0g  D4d40g - 1+09 0y

T+q—0q q—"9
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a1 [ at+p+a

Figure 3.22: Diagram to show equality of residues between the different components
of p. The top half shows nodes in the second component of t# whilst the bottom
shows nodes in the first, with the dotted lines connecting nodes of equal residue.

ia7b+1 e ia7b+6 ia7b+6 e ia ia+p+a ia+p+a e ia+p+a e iﬁ+q+a
+1 +z +z+1 +z+6
atp -+ a+p -+ pB+q B+q B+q - pfH+q B+q -+ P+g
+a+ z +a+z +a—b+a—b+a—0> +a—b+a—0> +a
—b —-b+4 —1 +1 +§ +o+1
-1

Figure 3.23: Braid diagram of the crossings (Voptat-—1 177N | ohpiatsbis

: (\I’a-i-p-‘ra-i-z—b-‘r(s—l T,B—i—q—&—a—b-i—é—l) \Loz-i-p-i—a—‘rz—b '\I’a+p+a+z—bTﬁ+Q+a_b_l with the
associated residues from (3.32). The strings to which we apply Lemma 2.10 are
coloured brown.
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(takez =a+p+a+z—b—1,f=069=0+q—a—p—z), replacing it with
é
D [Gatpratebro ity

j'=1

—bts—1
' (‘I’a+p+a+z—b+6—1 phrata=bt )\La+p+a+z7b71+j/
—b-24j
Wogprate—b—tqy THTITO072H

+q+a—b—3+j'
Frata I )\La—l—p—i-a—i—z—b—l—i—j/

: (\I’a+p+a+z—b—3+2j’ )

—b+6—1
Prata—bst >~La+p+a+z—b+6 .

+ (\I’a+p+a+z—b+26T
So consider a term of (3.32), then this will consist of terms corresponding to the

above sum for j' € {1,2,...,0} and these will each be equal to

o +a—1 "
v (\I’aT'B—H] “ )\lroc—b-i-é-‘rl “Yatpratz—bri—1+5 - B

where R” consists of later terms which are no longer needed in calculations. Since
ba—bt 6415 ba—btd+2s - - - > ba 7 latptatatj We can apply Corollary 2.6 to the above
(take z = a—b+0, f =b—0,k = p+a+z+0—1,h=1,9 = 1,t = f+q—a—p—z—9),
giving

* -1 1"
v wa+p+a+z—1—|—j’ ’ (\IlaTﬁ+q+a )J/afb+5+1 ‘R

which will be zero.

So now we need only look at the term which corresponds to when 7' =6 + 1.
If Yotptatz+s is a row relation then we can follow the same method as for the
terms when j/ € {1,2,...,0} and annihilate v* with a 14 ptas-1+s crossing. So

suppose instead that 1)q4p4a+2.+6 is not a row relation. Then overall we have that

158



3.3. Skew homomorphisms George Witty

(3.32) is equal to

t -2 —2
v (\IIaTaﬂH_a )\l/afb : (\Ija-&-p—l—a—l Ta+p+a+z )\La+p+a7b

Tﬂ-‘rq—f—a—l)

: (‘I’a+p+a+zfl \La+p+a+z—b+5

: (qla+p+a+z—b+25TB+Q+a_b+5_1) \La+p+a+z—b+6 : \Ija+p+a—bT6+q+a_b_2 (3'33)

+pt+a+z—b-3
: \Ijoz—i-p—i-a—b—l Ta praT=

: (\I’a+p+a—b—2T'B+q+a_b_3> ioz-l—p—b : (\Ija—b—l Tﬂ_b_z) ¢a7a2+1 ‘R,

some of which is shown in Figure 3.24. Since none of ¢o—p1541, ta—brs+2, - - -, ta are
equal to any of ia4ptatrt6+1> latptatz+6+2s - - - 1 L8+q+a We can apply Lemma 2.5
to the fourth and fifth multiplicands (take xt = a+p+a+z—b+5—1,f =b—,
g = B+q—a—p—z—06,h = 6+1). This gives us (Vaspratz4s T Latprass
at the top of the diagram. If the node containing o 4+ p + a + z in t* is a Garnir
node, then we have the corresponding Garnir relation at the top of the diagram
giving us zero. So instead, assume it is not a Garnir node.

So now (3.33) is equal to

t -1 -2
v (‘lla+p+a+z+§TB+q+a >¢a+p+a+z : (\I’aTa+p+a )\lra—b

1
: (‘l’a+p+a—1 pPtata )¢a+p+a—b+5

a+ptatz—b—2 (3‘34)

+2z—b4+0—-2
atpratambd )\l/oc—&-p—l—a—b : \I’a—&-p—&—a—b/]\

' (‘1’a+p+a—b+5—1 )
+ —b—2 —b-3
: \I’a+p+a+z—b—1 Tﬁ ate : \I]a—i-p—i-a—b—l Ta—&-p—&-a—l—z

. (‘1/a+p+a—b—2TB+Q+a_b_3> ira—l—p—b : (lpoz—b—l Tﬂ_b_z) \I/Oé—ag—‘,-]_ R,

some of which is shown in Figure 3.25. Since

Z.o¢—b—i-17 Z'o¢—b-|—27 v 7ia—b+5 7L ia+p+a

we can apply Lemma 2.5 to the fourth and fifth multiplicands (take z = a+p +

a—b—1,f=46849g=z—1,h=1), replacing them with

Ta+p+a+z—b+6—2 . (\I/ Ta+p+a+z—b+6—2)

\I’oz-l—p—&-a—b-‘,—é a+p+a—b+i—1 ia—&-p—&-a—b .
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D+ qQ— v+ qQ— D+ qQ—1v+ qQq—Do+ q— D+ 2 +Dv+ 2+ 0+ Z 4+ 0+ 2+ 0+ qQ—0v+ qQq— v+ q— D+
b+g b+g b+g b+g b+g b+g d+n0 d+o d+n0 d+o d+o d+o0 d+o Q—

T+
otz  otat TR T+ - T+
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Now rewrite

Ta+p+a+z—b+5—2) 4 B+q+a—b—2

(qja—l—p—i—a—b—i-z?—l ~l/o¢+p+a—b : \Ija—&-p—i-a—i-z—b—l

as

a+p+a+z—b+6—3 a+pt+atz—b+6—2
(‘Ifa+p+a—b+6—1T P )¢a+p+a—b TP datptratz—b-1

Ta+p+a+z7b+572 R B+q+a—b—2

: qja—l—p—&—a—i—z—b—l a+ptatz—b+o—1 T

and then since we still have i4_pi1,%0-b42,---3ta—b+s —— tatptas apply
Lemma 2.8 to Wotptatz—b+5—2 \l/a+p+a+z_b_1 "Pa+p+a+z—b—1 Ta+p+a+z—b+5—2
(take x = a+p+a+z—b—2,f =0d,9g =1,k =0). We can see how this is applied

in Figure 3.26. So now (3.34) is equal to

tH —1 -2
v (qja+p+a+z+6Tﬂ+q+a )¢a+p+a+z : (\IjaTa+p+a )\Loe—b
—1
: <‘1’a+p+a—1 hrata )ia+p+a—b+5

+ —b+d6-2 —b+46-3
: \Ija+p+a—b+5Ta+p et : (\Iloz+p+a—b+5—1Ta+p+a+z * )ia-{—p—&—a—b

1 B+q+a—b—2 N, 1 a+p+at+z—b—3

: \Iloc—l—p—&-a—l—z—b—&—é—l

: (\I]a+p+a—b—2Tﬂ+q+a_b_3) i/oz—i—p—b ’ <\Ijo¢—b—1 Tﬁ_b_Q) xLozfaqul ‘R,

(3.35)

a+p+a—b—1

some of which is shown in Figure 3.27.

Rearranging, (3.35) is equal to

t -1 -2
v (qfa+p+a+z+5¢5+q+“ )¢a+p+a+z (W tetrreTy
-1
’ (‘PaerJrafl Tﬁ-&—q—i—a )\La—i-p—i-a—b-i-(?
—b—2 —b+4-3
: \Ila+p+a7b+6T/B+q+a . (\Ila+p+a7b+671 Ta—i—p—i—a-{—z - )\La+p+a7b71

: <\I/a+p+afb72/]\ﬁ+q+a_b_3) \LOH»pfb : (‘I/afb—l Tﬁ_b_Q) \La—ag—l-l 'R7

(3.36)

and then since iq—p1j - Gatp+1,latpt2s-- - latpra—1 for j € {0,1,...,6}, we
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can apply Corollary 2.6 to

—b+d6—-3
(‘I/a+p+a—b+6—1Ta+p+a+Z + )¢a+p+a—b—1
—b—-3
: (\Da+p+a_b_2¢ﬁ+q+“ )¢a+p_b

(takex = a+p—b—1,f =a—1,k=0,h=0+1,g=2—-1,t = f+q—a—p—2z—90),

so that (3.36) is equal to

i -1 -2
v (\I’a+p+a+z+51\ﬁ+q+a )ia-&-p—f—a—f—z ' (\I/aTa+p+a )iafb

T5+q+a71)

' (‘Pa+p+a—1 Latpta—bts

 Wogprabys TITITEET2 (‘Pa+p+a—b72T5+q+a7b73> Latp-b
. <\I’a+/p—b+5Ta+p+Z7b+672) Latp—b - (‘l’a_b—l T'beiQ) la—ast1 R
=" (‘Pa+p+a+z+5T5+q+a71> batprats - (TaTOTPTO2) | pisi
' (\IJOC-S-p—s—a—l Tﬁ+q+a71) iOH—/p—&-a—b+6 : ‘I’a+p+a—b+6fﬁ+q+aib72
: (\Ija—b+5Ta+p+a_b+5_2> la—b- (‘lla+p+a—b—2 T5+Q+a_b_3> \lroz—l—p—b

’ (\Ija+p—b+6Ta+p+2_b+6_2) \lroc—&-p—b : (\I’a—b—lTﬁ_b_2> \l/afangl ‘R.

(3.37)

Since iq-byj + Gatptliatpi2s .- tatpra—1 for j € {0,1,...,d}, apply
Lemma 2.8 to (\Dafb+5/]\a+p+aib+672) da—b - (\Pa+p+afbf2Tﬁ+q+aib73) Latp—b

(takex =a—-b—-1,f=0+1,h=pg=a—-1Lk=F+q—a—p—0—1). So
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then (3.37) is equal to

ot (‘I’a+p+a+z+6T’B+q+a_l> Vatprats - (TaTOTPT2) | pisi
: (‘I’a+p+a—1 P +q+a_1) Larpra—bes - Yarpra—pis T TITO7072
'<manﬁTa+p%+&4)¢a7b'(Qa+pﬂkb+&4Tﬁ+wﬂ_hﬁ)¢a+p%+&H
: (‘I’a+p7b+5Ta+p+Z*b+572> datp—b- (qjafbfl Tﬁfbd) la—ay+1 R
=" (‘I’a+p+a+z+57ﬁ+q+a71> batprats - (‘I’aTBJquil) fa—brot1
: <‘I’a+p+afb+6T’3+q+a7672> L atp—bto+1 (3.38)

(Warps TEY  (Way 1) L R

Some of this is shown in Figure 3.28.

Suppose m € {1,...,a2 — b — 1} and consider

i -1 -1
v (‘I/a+p+a+z+5/]\/8+q+a )ia-ﬁ-p-&-a—f—z : (lIlaT/BJqura >¢a7b+6+1

—b—2
PRI | bttt

: (\Ila+p+afb+6
b2
: (lI/a+p+sz+6fl 18 >¢a+p+z7b+6fm+1

’ (\Ilafb+6/]\a+p+27b+5ilim> l«afbferl : (leafbfmTﬁibilim)J/a—ag-l—l ‘R.

(3.39)

Note that if m = 1 we recover (3.38). Consider the bottom line of (3.39). Rewrite

this as

—b+6—1— —b—2
(‘IjaberJTa—HH_z + m) ¢a7b7m+2 : <\Ija7b7m+1 Ta+p+z m) iafbfm

—h—1—
: wa+p+z—b—2m : qja—i—p—i—z—b—?m-{—l Tﬁ "

: (‘Ija—b—m—l T'B_b_Q_m> J/afangl ‘R

and then apply Lemma 2.7 to

(‘IJafbfm+l Ta+p+z—b—2m> \l/oszfm : ¢a+p+z7b72m

since iq—p—m  la—b—m+1 (take x =a —b—m, g =p+ 2z —m). Then (3.39) is
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o4
bty

4btgy

‘po1 paanojod are )z ewwor] Ajdde om yoIym o) SSULIYS O], Y/ SUIpn[poxe (g¢'¢) I0] WreISeIp preiq oY) Jo Ied :87'¢ oImMII]

1+e+ ot - 1+%vp— To— -
Q—v+ q—o+ 9—o+ q—v+ 9— 19— - 1+ o+z+ otz+ to—z4 to—z4 1+%0— Cn— 1+
b+g b+g .- b+g b+g - big bty 9-¢ 49-¢ - To—g T0—¢g ... dto dto .. dt© df® .. dio dfo ... ED—D

T+
T+

THotg, ot

o+z+ o+z+
d+&+é.s€+&+d.~

=+ 1-z+ T+

v4d+0p+d+0,

v4d+0p+d+0,

H+&+6.~ R‘wa

T+0,

©q

0F+q—0,0+q =,

=Py T—q—0,

H+Ns\d.~

167
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equal to

waa—b—m : (\Ila+p+a+z+5Tﬁ+Q+a_1) \Loz+z7+a+z : (qjaTﬁ—Hﬁ_a—l) \La—b-&-é—i-l
: (‘I’a+p+a—b+6Tﬁ+q+a_b_2) dotp—bto+l
: (‘I’a+p+sz+571 18 _b_2> atpra—bro—mt1

. \I}a+p+sz72m+1 Tﬁibilim . (\I}a—bfmfl T67b727m) i/oa—ag-i—l ‘R
kl
+ Z Ut# (qja+p+a+z+51\5+q+ail> \Loc-&-p—i—a—l—z ' (\IJaTﬁ+q+a71) i/aber(H»l
t=1

+g+a—b—2
: <\Da+p+afb+6/]\/8 1 )¢a+p—b+5+1
—b-2
' (\:[Ja+p+z7b+671 8 )J/a+p+sz+6fm+1
tptz—bto—1— +pta—b—2
. <\Ija—b+§Ta L m)ia—b—m—l—Q '\Ija—b—m+ct+1Ta pre m

a+p+z—b—2m—1 R, TafbferQfQ
m

. \Ija—b—m—l—l T
: \]i]a+p+sz*2m+1 Tﬁibilim : (\I]afbfmfl Tﬂib727m> \La—ag—f—l ‘R

(3.40)

a—b—

for some ¥ > 0 and ¢ € {p +1,...,p + z — m} such that iy4¢,1, equals
la—b—m- The first term will be zero since ¥,_p_,, is a row relation. Given
a term in (3.40), some of which is shown in Figure 3.29, if (; # p+ 2z —m
then since ia—p—m+2; la—b—m+3, - - - s ta—bts 7= la+¢i+a, apply Corollary 2.6 to
(Wooppgtotprz=bro=lom) | o W pomic1 TOTPT27072m I Figure 3.30
we illustrate the relationships between the residues of the nodes in question here.

So now such a term in (3.40) is equal to

e -1 +a—1
v (\I]a+p+a+z+5Tﬂ+q+a >\La+p+a+z : (\IjaTIB—HI “ )\lroc—b-l—é—&—l

ta—b—2
' (‘I’a+p+a—b+6T'B+q “ >¢a+p—b+6+1

T at+pt+z—b+d—m— 1)

“Wabtrite da—b-mr2 Ry

—b+0—m—1

where R¢, consists of terms that we no longer need. Now the nodes containing (C5)

a+G+a,...,a+G+a+m—1 all belong to the same row, to the left of the node
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"9N[( PAINO[0d aIe 9'g Arefjoro)) Ajdde om yorym o) s3uriys oy, *(OfF'¢) I0j wreldeip preiq oY) Jo }IeJ :6g ¢ oINSIg

T+

THet et - w9+ w—ot gwg—THwg— wg— T+ o+ T+
o+ q-p+ q—v+ q—p+ q—v+ - 19— T THw—  w— 9-=+ q—z+ -2+ -2+ q—=+ w—q— w—q— dtw— dfw— ISR
btg b+g  btg b+g  btg b+g  b+g a—g q—¢ 9—¢g q—¢ d4+o  d4o d4+o  d4o  d+o 1940 1940 .. 9g—v q—n q—o

T+ T+
o7+ o474 -zt w—zt w—zi I S s 1+ T+ e+
vibtgy .. T4DEgy vhdy .. vdiogoddo, L oddiogotdio, L ofdogodddo, L 40, 940, 40, L ohdiogoddio, L T+ddo, dbo, L 140, oy oo eha—myetq—y L wdg—w,
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3.3. Skew homomorphisms George Witty

la+¢G+al latptatsd-latptatztd]

la—ag+1] a—b—m |- .a—b ~la—b+4]
‘Oé-i-l‘ .......................... a—l—p—i—a—ma—i—p—l—a

Figure 3.30: Diagram to show equality of residues between the different components
of p with the introduction of o + (; + a. The top half shows nodes in the second
component of t* whilst the bottom shows nodes in the first, with the dotted lines
connecting nodes of equal residue.

containing o+ p +a + z, S0 Ya¢,+a Will be a row relation by the diagonal residue
condition. If m = 1 then in4¢, 44 = latpta 5O latcitatl 7 batptls-- - batptar and
latCi+a 7= bas- - la—pts+1 S0 we can apply Corollary 2.6 to pull the 9 _pis54¢,
crossing to the top, obtaining 14 ¢4. at the top of the diagram meaning our term

will be zero. Now suppose m > 1, then since

ia+p+1a cee aia+p+afm+l 7£ ia—l—g}—l—a-{-ly s 7ia+Ct+a+m—1a

i —b=2 —bts—m—1
rewrite (Patpra—bis T/ 07) Lagpoprsrt Papiarg TOFPH0H7m " as

Tﬁ+q+a—b—2>

(‘I’a+p+a—b+5 datpra—b+i—m-+2

Tﬁ-f—q-i—a—b—m—l) Ta+<t_b+5+m—2

: (\I’a—&—p—l—a—b—&-&—m—&-l ¢a+p—b+5+1 ‘\Ija—‘rCt—b-i-(S

—b+d—m—1
~\I/a+ct—b+6+m—1Ta+p+Z omm

(3.41)

and apply Corollary 2.6 to

Tﬂ+q+a—b—m—1) a+Ge—b+o+m—2

(‘I’a+p+a—b+6—m+1 Vatp—b+d+1 Va—brote, T
giving
b1
Vot cira—bté—mi1 potlta=bl

Tﬂ+q+a—b—m—1>

: (lI[oz-i—p—&-a—b—i-(S—m—i-l \La—l—p—b—‘ré—i-l .
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Then (3.41) is equal to

Toa+Ct+a—b+5—2>

(‘I’a+p+a—b+5 4 atpra—b+ro—m+2

Ta+§,g+a—b+5+m—2)

’ (\Ila—l—Ct—i—a—b—i-&—l \La+Ct+a—b+6—m+1

—b+6—1
Vot ita—btrs—m+1 TOH_QJFQ +

Tﬁ+q+a—b—2)

: (\Iloa—ﬁ-g}—&-a—b-i—é—&—m—l J/oc+(t+a—b+5+1

Latp—btot1

—b—m—1
'(\Ija+p+a—b+5—m+1TB+q+a " )

—b+6—m—1
'\Ila+ct7b+5+mfl/ra+p+z Homm .

In Figure 3.31 we show some of the crossings at this stage. Now apply Lemma
2.10 to

—btb+m—2
TCH_CH—G tm )\La+ct+a—b+(5—m+1

<‘1’a+<t+a—b+5—1

—b+5—1
“Voicita—brs—m+1T oterta

SINCE latpta = =+ = latpra—m+2 = lat¢ita € lat(tatl < € lat+atm—1
(takez =a+G+a—b+d—m, f=m—1,g=m—1).

Thus replace

+(t+a—b+d+m—2
,]\a Cta " )J/a+ct+a7b+57m+l

(qloﬂrct +a—b+0—1

—b+d-1
'\Ija+Q+a7b+57m+1Ta+Q+a *

with a sum of terms, which each begin with the crossing ¥o4¢,+a—p+s5—1+; for
j€{l,...,m — 1}, along with one other term where the crossings in question
disappear. In the former case, these crossings ¥n4¢,+a—b45—1+; commute with

Ta+<t+afb+572) L atpta—btro—m+2, and since

(Patpra—bis
Z‘a,b+§+1, ceey Z‘Oé + ia+<z+a

we can apply Corollary 2.6 to

+g+a—1
Fta >¢a+p+a+z 'T/Ja+Ct+a—b+5—1+j

(qja—i—p—i—a-‘,-z—&-(s T

171



George Witty

3.3. Skew homomorphisms

"UMOIQ PIINOTOD 3T ()T

Arefjoro)) Ajdde om yorym og s8uLIys o) ‘T < w wdyA\ “(TH°¢) ur 9'g Arefjoio)) Surd[dde 1o9Je peurelqo weliseIp prelq o) Jo 1red :1¢'¢ 9INS3L]

- T+ + T+
T+o+ w9+ we+ T+o+ o+ 1—0+ w—g+  w—e+ w—g+  w—e+
D+ q—o+ qQ—0+ q—0+ qQ—n+ qQ—0+ q—o+ qQ—n+ q—0+ q—o+ qQ—0+ T+9+
b+g b+g 40 DR 940 M+ DR 940 R d+no d+0 qQ—n

=
i

.'

w T—w T+ 1= T+ g+w— T+Huw— 1+
D190y DIy DIy DERSfo, DIty Dd40g D+d+0g . Dd+0 Dd4og 1+, 0y o+q—my
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to obtain a sum of terms which have the crossings ¥n4¢,+4—1+; at the top for

j € {l,...,m}. In the latter case, we do the same but with the crossing

Tﬁ+q+a—b—2)

7poz—',—@—',—a—b—i—é—‘,—m—l coming from (\I}a+Ct+a—b+5+m—1 \l/a+(t+a—b+6+1'

In either case, the crossings we obtain at the top of the diagram are all row
relations, since they will all occur to the left of the node containing o +p + a + z
in t#, and so all the corresponding terms are zero.

So instead suppose that we have a term in (3.40) where (; = p+ 2z — m. Then

(3.39) is equal to

ke (‘I’a+p+a+z+5TB+q+a71> Latprats - (‘I’aTﬁﬂﬂfl) da—brot1
: (\I]a+p+afb+§/]\ﬁ +q+“7b72) datp—brot1
: (‘I’a+p+z—b+5—1 T57b72) datptrz—brs—mi1
. (‘Ija—b+5/]\a+p+z—b+6_m_l> i«a—b—m+2 'lI’oz—b—m—l—l Ta+p+z—b—2m—1
3 RIS S N L

: (\Ila—b—m—l Tﬁib72im) \l/oa—ag—i-l ‘R.

Rearrange terms and apply Lemma 2.8 to

—b+0—1— —b—1—
(\I’a—b+5Ta+p+Z + m) \La—b—m+2 '\Ija+p+z—b—2m+1 T/B "

(takez = a—b—m+1, f=0+m—1, h=p+z—m—1,9g=1,k=F—a—p—2—90)
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since to—b—m+2, - - - » ba—bts 7 Latptatz—m, 5O that we have

t -1 -1
v (\I/a+p+a+z+5/rﬁ+q+a ) ~La+p+a+z : (\IlaTﬁ+q+a ) ~l/o¢—b+6+1

b2
phtata ) Latp—btoti

: (‘I/a+p+a—b+5
b2
: (‘Ija+p+sz+6fl 18 >¢a+p+sz+6fm+1

+p+z—b+6—m—2 —b—1—
. (qlafb+5/]\a L m )i,a,b,m+2 '\I/a+p+sz+§7m/l\6 mn

Ta+p+sz72mfl R} Ta+p+sz72m72

: \I/oszferl a—b—m

: (\Ilafbfmfl Tﬂ_b_Q_m> la—ay+1 R
=t (\I/a+p+a+z+5Tﬁ+q+a_l> Vatptatz - <‘I’aT’8+q+a_l> La—btst1
: <\Ija+p+afb+5/rﬁ +q+“_b_2> batp—brot1
. (\I/a+p+sz+571 Tﬁ_b_2> b atptz—brs—(mt1)+1
. <\I/a7b+5Ta+p+z*b+5*(m“)*1> Vab—(me1)41

’ (\IIafbf(erl)TBibili(erl)) \Loc—ag—i—l ‘R.

So we are able to repeat the above process multiple times for successive values
of m, assuming we have relevant (; (otherwise we obtain zero and are done). This

leaves us with

# -1 -1
v <qja+p+a+z+5TB+q+a >¢a+p+a+z : (‘I’aT’B+q+a >¢a7b+5+1

—b—2
P2 | bttt

: <\I/a+p+afb+5 (3 42)

b2
' (\Ila+p+z7b+671 16 > doatptzto—az+l

. (q/aibJr&ToHererréflfaz) \J/Oc—ag-l—l -R.
If we did have relevant (;, then we have that
ia+p+a+z+b—a2+l — ia+p+a+z+b—a2+2 A ia+p+a+z71

and that the nodes corresponding to these residues all belong to the same row of t#.
Using the diagonal residue condition, we know that in4ptatotb—aot1 = la—ast1

implies that the node containing o +p+a+ 2+ b —as + 1 in t* is a Garnir node
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for [p]. So there will be some v € {1,...,as —b— 1} such that the node containing
a+p+a+z—yin [p is a Garnir node whilst the node directly to the right of it

is not. We show some of the braid diagram for (3.42) in Figure 3.32.

Write (\I]a+p+z—b+5—1 Tﬁ_b_Q) 4 a+pt+z+d—ag+1 A8

—b-2
(\Ila+p+sz+671 6 )J/a+p+sz+67'y+1

b1
: (\Ila-i-p-i-z—b-l-(s—'y/rﬂ 7 )\La-i-p-‘rz-‘ré—ag-i-l

and apply Corollary 2.6 to

T,6’+q+afb72)

(\Ija+p+afb+§ datp—btotl

b2
: <\I/oz+p+sz+571 18 ) datptz—bio—yt1

(takex =a+p—b+0d, f=a,k=z—vy,h=7—1,9g=0—-a—p—2z—90§,t=q)

since ia—l—p—l—a—l—z—j + ia+p+a+z+6+17 ia+p+a+z+5+2; c. ,'i6+a for j € {17 ceey Y — 1}

This gives us all together:

t“ +q+a—1 +q+a—1
v <\Pa+p+a+z+5TB ara )ia—&—p—&—a—i—z : (\IIaTB ara )\l/a—b—l—(s—&—l
—b—2
: (qla+p+a+z—b+§—1 4Pta )ia+p+a+z—b+6—w+1

+g+a—b—2
. (\I/a+p+a—b+6TB e >¢a+p—b+6+1

Ch—y—1
o K )ia-{—p—&-z—&—é—ag—‘rl

: (\Ija-i-p-‘rz—b-‘ré—wT

5—1—
: (\Ifa—b+5Ta+p+Z+ a2> la—ast1 ‘R

Now apply Corollary 2.6 to

+q+a—1 —b—2
(\IlaTﬁ e >¢a7b+5+1 : (‘Ija+p+a+sz+571 T5+a )\La+p+a+sz+57'y+l

(takex =a—b+0, f=b+d,k=p+a+z—v,h=v—1,9g=F—a—p—2z—19,

t =q+ 0+ 1) since lotptatz—j e batptatz+5+1s batptatats+2s - - 1B+a for
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"9N[( POINOT0D dIR

9'g Arefjoro)) Ardde om yorym o9 sSurrys oyJ, - [+~ A§|T%+N+g+dew+@|69v Surpnoxe (gj'¢) 10J WeISeIp prelq o) Jo 1R :g¢'¢ omS3I]

T+e+ o+ - 1+%0— en— 1+
D+ 9—v+ q—v+ 9—v+ q—v+ 9—  1—9— - L 1+ ot+z+ o+z+4 e+q— @+q— T+e+
b+g - bt+g b+g - b+g btg o btg btd - q—g 9-¢d - q—g aq—¢d -+ To—g Io—g .. di® dfo . dio dio o q-P

T+ T+ 1+%p— Co—
o+z+ o+z+ z+ T—=z+ b—zt L—z4 +z+ q+z+ T+ 1+
Dbty .. TEDdey gy ... pHddoptdio, . ofdpoptdio, . vfdtopmtdio, Dtdfoptdto, L. Dhddopdddo, . THd4oy d4o, L TH0, oy R
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je{l,...,y7—1}. Then we have

Tﬁ-ﬁ-q-ﬁ-a—l)

th
v (‘Pa+p+a+z+6 datptatz

. (‘IJQ—&—p—&—a—i-z—l Tﬁ+a_6_2> ~l/a+p+a+z—'y+1 : (“Ila/rﬁ—i_q—‘ra_l) ¢a7b+5+1

: (‘I/a+p+afb+6l]\/8+q+a_b_2> Latp—brot1 (3.43)

b1
' (\I"a+p+z7b+57'y/]\/8 7 >~La+p+z+5fa2+1

0—1—
. (\I/a—b+5/|\a+p+z+ az) \l/(l’—a2+1 .R.

Some of this is shown in Figure 3.33.

Let the value of the node underneath the one containing o +p+a+ z — v
be 1. Figure 3.34 helps to illustrate the positions of certain nodes including the
one containing 1. We have that iqqpiatz—y = la—p—ry and i; = iqypra—ny. Write

(\Ija—i-p—l—z—b—i-d—’y ) ,B—b—'y—l) 4 a+ptzt+di—az+1 @S

—b—y—a—2 —b—y—1
\I/oHerrszJréf'yTn R '\Ijnfbf'yfafl Tﬁ K

b2
: <‘1’a+p+z—b+6—~/—1 A== )¢a+p+z+6—a2+1

and then as we have that inqptatz—y 7 tatpratzts+ls---,in—1, We can apply

Corollary 2.6 to

+q+a—b—2 —b—y—a—2
(‘l’a+p+a—b+5T5 4 )ia+p—b+5+1 VYorprzbrsyTT 77

(takex =a+p—0+6, f=a,k=z—y—1,h=1,9g=n—a—-p—a—z—0—1,

t=084+a—n+~v+q). This gives us

vtM (\IIQ+P+a+z+6 T,B+q+a71) J/Oc-l—p—i-a-i-z
’ (\I/Oé-‘rp-‘ra-f—z—l Tﬁ+a7672> \La+p+a+z—’7+1 ’ (qjaTB+q+ail> \Lafb+6+1
Wagpratebirsy TR (‘I’a+p+a_b+5T5 +q+“7b72> batp—brorr  (3.44)
Wy g PO (\IJa+p+z—b+5—v—1Tﬁib7772> datptztd—antl

6—1—
) (‘I’a—b+§Ta+p+Z+ a2> Lacagi1 -R.
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vt
bty

v+btg,

T+o+ o+
a-v+ q-v+
b+g b

T+o+d, v+d,

1—
q—v+ q—Dp+ q— 19—
b+g  btg b+g  btg

T+
otz ozt 2+ 1-z+
D4d+0,0+d+0, D4 d+0,04d+0,

T—

b—o+ L—o+
1— T+HA— A= T—A— q—z+ q—z+
9-d 9-d 9-¢ a9-d e d4o d4o

1+ T—
k—z4+ A—z4 L—z4
D4 dt00+d+0,p+d+0,

T+
D4 d40,04+d+0,

T+d+0, d+,

‘. THE—04 A§|H|%+N+a+@em+@|5av . THED—gtz+d+0 4 ANL(LTQ;\ H|>|m+eln+g+69v Surpnoxe (¢f'¢) 10 WeISeIP prelq o) Jo 1R :¢¢'¢ 9MS3I]

T+
o+q— 9o+9— T+o+
d+o d+o q—o

1+

T+, oy e+a—1,
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3.3. Skew homomorphisms George Witty

a+p+a a+pta | a+pt+a | a+p+a
+z =7 +z—v+1 +2z +z+0
n
a_b_fy ...... a_b ...... a_b+6
a_.l_p_l_l ...... a+_lj/y+a ...... Oé—l—p—l-a

Figure 3.34: Diagram to show equality of residues between the different components
of p with the introduction of 1. The top half shows nodes in the second component
of t* whilst the bottom shows nodes in the first, with the dotted lines connecting
nodes of equal residue. The bold line along the top nodes illustrates the border of
the component.

Now write (Voipra—brs TPTIT072) | oty piss as

+qt+a—b—2
(‘I’a+p+a—b+5T6 e )¢a+p+a—b+5—y

+gta—b—y—3
'<‘1’a+p+a—b+6—7—1Tﬂ by )ia+p—b+6+1

and then since iq4ptatz—y 7 Gatptis-- - batpta—y—1 We can apply Corollary 2.6

to

. T5+q+afb7773> 4 B=b=7—1

(\I]a—l-p-l-a—b—i-(s—'y— \La+p—b+5+1 "l}n—b—fy—a—l

(take z =a+p—-0+4+90, f=a—-~v—-1L, k=n—a—-p—a—vy—0—2,h =1,

g=pB+a—n+1,t=~4q—1). The use of this corollary is demonstrated in
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3.3. Skew homomorphisms George Witty

Figure 3.35. So then we have

1 a+ptatz

t -1
v (‘I’a+p+a+z+6T5+q+a )

—5-2 -1
. <\I/a+p+a+zfl Tﬁ+a )J/a+p+a+zf~/+1 : (lI/aTﬁ—HH_a )ia—b—i—d-ﬁ-l
—b—y—2 +q+a—b—2
: \Ija+p+a+sz+57'yTn 7 : (‘Ija+p+afb+6/r/8 e )\La+p+afb+57'y

+a—b—2y—2 +gta—b—vy—3
Wy gy g PPt (\Ila+p+a7b+67'yfl Hhtata=bmy )¢a+p—b+5+1

—b—y—2
A 7 )i/a+p+z+57a2+1

: <\Ija+p+sz+5f’yfl )

. (\Ijaib+6/ra+p+z+5717a2) \La—ag-i-l -R.
(3.45)

.. b2 s
Writing (\I’a+p+a—b+5Tﬂ+q+a b )¢a+p+a_b+6_7 "I’n—b—2v—2T’8+a b—2y-2 4o

—b—~—3 +a—b—2
(\I’a-&-p—l—a—b—‘r(STn 7 )¢a+p+a—b+5—'y ) (\Ijn—b—v—QTﬁ—’—q “ )in—b—27—2

+a—b—2y—2
: \Iln—b—%/—?TB “ 7

—b—y—3
K 7 )¢a+p+a—b+6—'y

= (\Ija-i—p—&—a—b-i-é/r
b2
~ (\I'n_b_y_ﬁmqﬂ )in—b—2y—1 WPy—b—2y—2Vn—b—2y—1Vn—b—2y—2

+q+a—b—y—2 +a—b—2y—2
"ljn—b—?ylrﬂ e 7 '\Ijn—b—Qv—lTﬂ “ g

we can then use the braid relation (1.11) on 9, _p—2y—29n—p—2y—1%n—p—2y—2 since
tatpta—y $ latptatz—y = by

We now obtain a sum of two terms, one where we replace the cross-
ings ¥y _p—2y—2Un—b—2y—1Vy—b-2y—2 With ¥y _p oy 19y p 2y 29y 2,1 and one
where these crossings disappear. We will deal with each term separately. Consider
the former case, then instead of just replacing these crossings we could apply

Corollary 2.6 to

Tﬁ+q+afb72> Tﬁ+afbf2772

(‘Ifa+p+a—b+6 datpra—bis—y Yy_b_2y—2

in (3.45) since iat4ptatz—y F~ intl,---,i8+q and ignoring the fact that
lotptats—y — ip (take 2 = a+p+a—-b+d6d—v—-1, f = v+ 1,

k:n_a_p_a_7_5_27h:179:/3+a_77+17t:7+q—1)7
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1—

3.3. Skew homomorphisms

- [ k=gt kb — o+ T+
k—q- Ag—q— Le—q— THA— A= T—A= A —o—L—0v— Q-2+ q— 2+ 9+aq-
D+ g p+g D+g q—¢g q9q—¢g q—¢ Qq—UL q—1UL d+0 d+o d+ o
1+ -
o+z+ A—z4 A—24 1+ L— T—A—
v+dy o lg T—ly Dtd+0g Dfd+0y D+d+0q Dd40g D4-d0y D4d+0g D+d+10g T+d+oy
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3.3. Skew homomorphisms George Witty

giving us

vt (\I’a+p+a+z+5Tﬁ+q+a_l) Vatpratz (3.46)
: (lpa+p+a+zfl Tﬁﬂ_&_z) datptatz—v+1 - (‘I/aT5+q+a_1> da—bts+1
* Wospratabroy TOTOT0TITL (‘I’a+p+a7b+5T6+q+G_b_2> doatp—btotl
: <‘I’a+p+sz+67771 Tﬁ_b_v_Q) dotpteti—as+l

0—1—
i (‘I’afmeaHHZJr a2> \La_@_’_l -R.

Some of this is shown in Figure 3.36.

Now apply Corollary 2.6 to

-1 —b—y—1
(\IlaTﬁ+q+a )\La—b+6+1 '\I/a+p+a+z—b+6—'y/rﬁ+a K

since iaqptatz—y = fa—biitls---ria (take . = o —b+ 4, f = b -4,

k=p+a+z—v—1,h=1,9g=08—-a—p—2—06,t=~v+q+0). Then we have

tH +g+a—1 +a—35—2
v (qja+p+a+z+6Tﬂ e >¢a+p+a+z ' (qja+p+a+z71 TB >¢a+p+a+z7'y

+qta—1 tgta—b-2
: (\I’aTﬁ e )ia—b+5+1 : (‘I’a+p+a—b+5TB ata )¢a+p—b+5+1
Chy—2
' (\Ija+p+z—b+6—'y—1 By )¢a+p+z+6—a2+1

. (\I,a_b+5Ta+p+z+6—1—a2) \Lafangl -R.
(3.47)

Note that this means that in terms of the diagram we have the crossings
(\Ifa+p+a+z+5T5+“_1) latptatz—~ at the top, and this will certainly contain
the Garnir relation corresponding to the Garnir node containing o +p+a+ 2 —~y
in [p]. So (3.47) will be zero.

So now consider the other term arising from the application of braid relation
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T+e+ o+ - 1+%0— &o— 1+
D+ 9—v+ q—v+ 9—v+ q—v+ 9— 19— - T+A— k= T—Ak-— 1+ o+z+ o+z+ 9+q— o+q— T+e+
btg - bdd btgd - btg bty o btd btd - q—d aq—¢ - q—g q-g q—4d to—g To—g . dio dto .. dio dfo o g

D —
e —
L 7
,I,
.
—
A —
T+ T+ - 1+%v0— Co—
9+z+ ot+z+4 2+ T2+ A—zt L—z4 L—z+ 9tz+  q+z+ T+ 1+
Db+, T+0+g,y v4d, Dtd+optdto, Dtd4optdto, Ddoptdtoptdio, D4d4opfd4o, D4d+opfd4o, 1+d40, d+o, T+0, 0, 0+q—,
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3.3. Skew homomorphisms George Witty

(1.11) to (3.45). This is

vt (\Ila+p+a+z+5Tﬁ +q+a_1) b atptatz
. (‘Pa+p+a+271 Tﬁ+a_5_2) Latptatz—y+l - (‘I/aTﬁ+q+a_1> La—btst1
 Woipratabroy T2 (‘I’a+p+a7b+5T”_bﬂ_3> latpta—bto—ny
. (lpnfbf'nyT’B—Hﬁ_a_b_Q) infbf?yfl '\Ilnfb72'y/r'8+q+a_b_’y_2
Wy poy1 phrazb=y=2, (qla+p+afb+67771 T’B+q+a7b*'y*3> doatp—btotl
. <‘I’a+p+sz+57771 Tﬁfbﬂﬂ) doatptzti-az+l

. (\Pa_b+61\a+p+z+6flfa2) \La—az—f—l R.
(3.48)
We show most of the braid diagram for (3.48) in Figure 3.37. Write
an—b—?’y T6+q+a—b—'y—2 as \Iln—b—2fy T,8+a—b—2'y—l . \II,B+a—b—2’y T/3+Q+a—b—'y—2 and
then since ta4pta—nytj 7 int+1s---,i+q for j € {1,...,v} apply Corollary 2.6 to

(an—b—'y—2 T B+q+a7b72) i/ n—b—2y—1 '\Ijn—b—Z'y T'B+a7b72’y71

(takex =n—b—2y—-2, f=~vk=1,h=1,g=0F+a—n,t=v+q—1). Then

since iq—pts4j 7 Inti,--->i5+q for j € {1,...,b— 0} apply Corollary 2.6 to

(Wat ) o gin Wy 1T

then as ia4ptatz—n+1s---»latptratz—1 - iy apply Corollary 2.6 to

-2 -1
(‘I’a+p+a+zfl/]\5+a >¢a+p+a+z—'y+1 Wy g PO

and then finally as ia4ptatzs---»latptatzt+s 7 iy apply Corollary 2.6 to

-1 52
(‘I/a+p+a+z+5T6+q+a ) Vasptats Tp_s1 177 :
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THot ot - L= T—k— g—k— T— o otq— o+q— T+
vt q—v+ q—D+ q—v+ q—p+ q—v+ q—v+ q—D+ 9— 19— - T+A— A= T—A— h=D— L—D— L—D— b—z+4 L—z+ o+q— 9+q— 1+o+
b+¢f b+g b+¢f b+g b+g b+g b+g b+4g b+g b+g q—gd q—g q—gd q—g q—¢ q—Ul q—Ul q—U d+vo d+o d+no d+o q—0

e

+ T+ -
+ z+ T—z+ hk—z4 Ak—z4+ L—z4 T+ T+A— k— T—A— T+
v+btg, ... T1+v+d, v+, T+, Ly T—ly ... DHdto,ptd ... DpHdtopddio, . Ddtoptd4opddto, pdd4o,p4d40, Dd40,p4d40,p4d+0, ... T+d40, dto, T+, 0, . 99—,
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3.3. Skew homomorphisms George Witty

Then we have

t +a—1 +qta—1
v \PnTﬁ “ : (qja+p+a+z+6T6 e )\La+p+a+z
—5-2 —1
: (‘Ila+p+a+z71 Tﬁ+a )J/a+p+a+zf~/+1 : (qlaTﬁ+q+a )ia—b—i—(s-i-l
—b—vy—2 —b—vy-3
: \Ija+p+a+sz+677Tn R (lpa+p+a7b+61\n 7 )xl/a+p+afb+67'y

’ (\Ilnfbf'yf2 T,B—i—q—&-a—b—Z) ~Lnfb72'yfl : \Ij,8+a7b72'y TB—i—q—i—a—b—’y—?

B+a—b—2y—2 (\Il

atpta—brd—y—1T doatp—btotl

. \Ijnfbfhfl 1 B+q+a7b7773>

—b—y—2
A 7 )J/a+p+z+57a2+1

: <\I/a+p+sz+5—7—1 )

6—1—
) (\Pa_b+5Ta+p+z+ a2> bacags1 -R.

Now apply Corollary 2.6 to

<\Ijn—b—v—2TB+Q+a_b_2) byt Yy pgy_ g FATOTIT22

since ta4ptatz—y 7= Intly---rig+q (takex =n—b—2y—2, f=~, k=0, h=1,

g=p+a—n,t=~y+q), giving us

ke +a—1 +q+a—1
v \IjnTﬂ “ (‘lja+p+a+z+§T5 e )ia-ﬁ-p-&-a-ﬁ—z
+a—5—2 +q+a—1
: (Wa+p+a+z—lT6 “ )\I/Oc—ﬁ-p—i-a—i-z—’y—i-l : <\IjaTB e )\La—b—l—&—l-l
fa—b—ry—2 —b—y—3
c Waipratzebrsy TPHE0T '(‘I’a+p+a—b+5T77 7 )\La-&-p-&-a—b—i-é—w

. (\I’n_b_7_2frﬁ+q+a—b—2) \Ln—b—Q"/—l . \I]B+a—b—27Tﬁ+q+a_b_7_2

b3
7_1T5+<H-a Y )

' (‘I’a+p+a—b+5— datp—btotl

b2
: (‘I/a-i-p-i-z—b—i-&—fy—l By )\La+p+z+5—a2+1

5—1—
: (‘I’a—b+aTa+p+z+ ‘”) ta—as+1 -R.

Then we can apply Corollary 2.6 to
(‘I’aT'Bﬂﬂ*l)ia*bMH '\Ila+p+a+27b+57’yTﬁ+aib7’yi2

since Z'Oé+p+a+z_—y + ia+p+a+z+6+17 . ,in_l, in+1, ey 1:54_& (take r=oa—b+ 6,
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3.3. Skew homomorphisms George Witty

f=b=0,k=p+at+z—y—1,h=1g9g=F—a—-p—z—0—1,t=~v+q+0+1).

Then we have

s +a—1 +gq+a—1
v \I/nTﬁ “ (‘Pa+p+a+z+61\ﬁ e >\l/a+p+a+z

+a—35-2 +a—§—y—2
: (‘Ija—l-p—l-a—i-z—l T’B “ )¢a+p+a+z—'y+1 '\I/a+p+a+z—'yTB “ K

-1 —b—y—3
: (\Pa T6+Q+a )\Lafb+6+1 : <\I/oz+10+afb+5/]\77 7 >¢a+p+a7b+67’7

’ (\Ilnfbf'ny Tﬁ+q+aib72) \lfﬁ*b*Q’}lfl ’ \Ij,8+a7b72'y T6+q+aib7772 (349)

—b—y—3
At NPT

: (\I’a+p+afb+67771
b2
: (‘l’a+p+z—b+5—'y—1 =0 )¢a+p+z+6—ag+1

6—1—
) (‘I’a—b+6Ta+p+Z+ az) Lacags1 -R.

Some of the above is shown in Figure 3.38.

Take d € {0,1,...,a — v — 2} to be maximal such that the node containing
n—d in [p] is in the same row as the node containing 7, whilst the node containing
n—d—1isnot. If such a d does not exist, let d = a—~—1. Then i,_q = iq4pta—r—d-

We illustrate some relevant residues in Figure 3.39. Write (3.49) as

o, tATaml (\I/a+p+a+z+6T’B+q+a71) Latprats
’ (qla-l—l)-i-a-i—z—l T6+a7672) atptatz—vy+1 - \I’a+p+a+z_7TB+a7‘57772
‘ (\PaTﬁJqurail) Yosbiotl (Waﬂ’ﬂ—ﬂﬁﬁﬂﬂibd) datpra—bts—y+1
W ooy PITITETTE W s  1TTTT

nibi}yig) J/a+p+afb+6f’yfd (3'50)

: <\I’a+p+afb+6f'yfl )

—b—2y—d—3
K 7 ) Latp—btot1

' (qja+p+afb+6f'yfd71/l\
+g+a—b—vy—3
'(\Ijn—b—27—2T'B e 7 )in—b—a—'y

—by—2
P 7 )\La+p+z+6—a2+1

: (‘I’a+p+z—b+5—7—1 T

6—1—
. <‘1Ja_b+6Ta+p+z+ a2) i/afa2+1 ‘R
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-
- c— 9+q— 9+q— I+
z

I+o+ o+ I— A= 1—k— g—A—
o4 q—v+ q-v+ q—v+ q-v+ q—v+ q-p+ q—D+ 9—  1—q— - THA— A= Tk k—D— L—D— L—D— L—z+ k—z+ o+q— o+q9— T+9+
b+g b+g  btgd b+g  bt+g - b+g  btd Dbty b+g  btgd 9—¢ a-¢d 9—¢ a9-d a-d 9=l gl q-l d+o dto . dio dpo e =P

T+ 1+
) ) z o+z z 24 k—z4 A—z4 A—z4 T+ THA— L— T—A— i+
otbtg, . o+, vy T4l, Uy T—liy o DHd4ootddn, . p4d4ootddo, L vd4ogotdoptdio, Dpdto,tdto, . Dpd40y04d4 00 +d40, L. Td4o, d4o, T+0, oy . eta—my,
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3.3. Skew homomorphisms George Witty

a+pt+a | a+p+ta a+p+ta
+z—v—d +z—7 +z—y+1
n_d ...... n
a—b—vy
a+p+ | a+pta
a—vy—d —y

Figure 3.39: Diagram to show equality of residues between the different components
of i with the introduction of d. The top half shows nodes in the second component
of t whilst the bottom shows nodes in the first, with the dotted lines connecting
nodes of equal residue. The short bold line along the top nodes illustrates the
border of the component.

so that we can apply Lemma 2.9 to

—b—2vy—3 —b—2y-3
\Ija+p+a—b+6—7Tn 7 : (Wa+p+a—b+6—7—1 TTI 7 )\La—&—p—&—a—b—l—é—'y—d
(3.51)

since
lotpta—y—d € latpra—y—d+1 € -
“ = ladpra—y—1 ¢ latpra—y —> Iy—1 —> Ip—2 —> =+ > iy_g

(takex =a+p+a—-b+o—d—vy—-1,f=dg=n—a—-p—a—56—y—d—2).
This is shown in Figure 3.40. So we must replace (3.51) with a large sum of terms,
whose summands belong to three different types.

The first type are terms which begin with a ¥a4ptq—pt§—y—1—s crossing for

s €{0,...,d—1}. Then we can apply Corollary 2.6 to

1
<\I/aTﬁ+q+a >¢a—b+6+1 “Vatpta—brs—y—1—s

SINCe lq—ptst1s---»ba 7 latpts for j € {1,...,a —~vy — 1} (take z = o — b+ 4,

189



George Witty

3.3. Skew homomorphisms
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I—

- c— - c— IT—P— C—P— 0+q— 9+4q— T+
g—Ag— p—Ahg— p—Aig— L—D— Ab—D— L —D— A—D— b —D— L —z4+ A —24+ 0+q—
qQq—UL qQ—UL qQ—UL qQ—UL qQ—UL qQ—U qQ—U qQ—U d+n0 d+ o d+ o

T—

T+ -
otz+  L—z+ T+ L— T—k— p—k—  p—h—
T—lyg L. u\:.s H\w\:.s .. D+d+0y Dtd+oy .. D+d+0y Dtd+og Dtd+oy .. Dd+0y Dd40y .. 1+d+0,
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3.3. Skew homomorphisms George Witty

f=b—0,k=p+a—-v—-2—-s,h=1g9g=1t=04+q—a—-p+y+s—1),
giving us Ya4pta—~y—1—s at the top of the diagram, which is a row relation and so
terms of this type will be zero.

The second type are terms which begin with tYaipire—bt5-v+2z where (C6)

Z belongs to {1,...,2 — v — 1} and iqyptat+z = fTatpta—y—j fOr some
j S {1, N ,d} (note that icx+p+a+z+5+la ‘e ,’in_d_l ;’é ia—i—p-}-a—’y—j for such
J).  Since iatpta—y+z T~ latpta—ytls---slatpra; We may apply Corol-

B+q+afbf2)

lary 2.6 to (\I/a+p+afb+6/r Latpra—btoi—~+1 Vatpra—btsi—+z and

then since intpta—r+z 7 ta—btst+ls---,ia We may apply Corollary 2.6 to
(T 1PT9T91) | pisi1 Yatpra—brorz SIVING US Yatpiatz at the top of the
diagram, which is a row relation by the diagonal residue condition and so terms
of this type will be zero.

So then all that is left is to consider the term where we have replaced (3.51)
with

—b-2y—d—3
(‘I’a+p+a—b+6—wT” 7 ) Vatpta—btro—d—y -

Overall we have that (3.50) is equal to

t +a—1 +g+a—1
v, ot '(‘I’a+p+a+z+5Tﬁ e )J/a+p+a+z

+a—8—2 +a—8—y—2
’ <\1ja+p+a+zfl T/B “ >¢a+p+a+z7'y+1 ‘\I/a+p+a+zf'yTB ¢ 7

-1 —b—2
: (q/aTﬁ+q+a )~l/o¢—b+5+1 : (q/a+p+a—b+6Tﬁ+q+a )\La+p+a—b+5—'y+1

4 B+qt+a—b—y—2 (mp

—b—2y—d-3
: ‘;[IﬁJrafbfZ'y a+p+a7b+67'yl]\n 7 )\La+p+afb+6fd7'y

—b—2vy—d—3
P | o

' (\I/a+p+a7b+57'yfdfl
+gq+a—b—vy—3
’ (\Ilnfbe’nyT'B e 7 )l/nfbfaf'y

b2
: <\Iloz+p+sz+57'yfl ph=b=y )¢a+p+z+57a2+1

o—1—
) (‘I’a—b+6Ta+p+Z+ a2) Lacags1 -R.

(3.52)
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3.3. Skew homomorphisms George Witty

ia+p+1 e ia+p+a ia+p+a ia+p+a ia+p+a e ioz+p+a ia+p+a e in—d—l
—y—d —y—d —y—d —y—d -y +1
—2 -1 +1
a+p n—a m—a n—a n—a n-—a n—b n-—>5
b+ —b—y =b—vy —b—7vy —b—y =b—vy —2y—d —2vy—d
+1 —d—2 —d—-1 —d -1 -3 -2

Figure 3.41: Braid diagram of the crossings in (3.53) with the associated residues
from (3.52). The strings to which we apply Corollary 2.6 are coloured blue.

We show
—b-2y—d—3
(‘I’a+p+a—b+6—ﬁn K ) Loatpta—bto—d—ry (3.53)
—b-2y—d—3
: (\I]a+p+afb+6fﬂ/fdfl AR ) datp—btotl

in Figure 3.41.
Ifde{0,1,...,.a—~y—2}thenn—d=a+p+a+z+Jd+1and

Z‘a+p+afd7’yfl 7L ia—l—p—i—a-{—la s ioc—&-p—i—a—l—z—'y—lu ia+p+a+z+6+17 s 7Z’nfd71
using the diagonal residue condition. Then we can apply Corollary 2.6 to (C7)

Tn—b—2'y—2d—3 U T’]—b—QW—d—3

Vot pta—bto—d—ry atpta—bto—y—d—1

(take x = a+p+a—b+d—y—d—2, f =1, k=0,h=1,9 =n—y—a—p—a—d—5—2,

t = d). Then we can apply Corollary 2.6 to

btotl
(‘l’aTa Tor )¢ﬂ+q+a—1 “Yatpra—bts—y—d—1

SINCe ia4pra—d—y—1 7= ba—bto+1s- -+ »la IVING US Yoypre—ny—d—1 at the top of the

diagram, which is a row relation and so we have zero.
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3.3. Skew homomorphisms George Witty

So instead suppose that we had to take d = a — v — 1. We show a diagram
for some of (3.52) when d = a — v — 1 in Figure 3.42. Figure 3.43 illustrates
the residues of some relevant nodes. If we suppose that n < 8 + a, then write

(\Ijn—b—Q'y—QT5+q+a_b_’y_3) in—b—a—v as
(anibiwiﬂﬁﬂ—b—?w—“%) bn—b—a—v - (‘I/,B+a7b72772Tﬁ+q+a_b_7_3) bpbry -

Note that

in—a—i—'y-i—j 7L ioa—i—p—i—a—’y—i—lu oo 7ia+p+aa Lo—bt-6+15 - - -

s 7iou ia-{—p—&-a—&—z—vv s aioz+p+a+z+5

for j € {1,...,a—~ —1}. So we can apply Corollary 2.6 to

+g+a—b—2
(‘I]a+p+a—b+5TB e )J/a+p+a—b+6—’y+1

’ (\I’n—b—2'y—2 T/B—Fa_b_%/_?)) in—b—a—w

and then we can apply Corollary 2.6 to
<‘I/aTB+q+a71> Loa—bto+1 - (\Ilnfb77727\ﬁ+aibi’yi3> In—b—a -
Next, we can apply Corollary 2.6 to
Vapratey T2 (W gy p AP0 |
then to
(‘Pa+p+a+z—1 Tﬂ+a_6_2> datptatz—+l - <‘I/n757771 Tﬁﬂ_éﬂ_?) Ln—a—s+1,
then to

(\I’a+p+a+z+6 Tﬁ+q+a_1) Vatptats (‘I’n—5—2T6+a_§_3) Ln—a—6+v,
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THelg (o LR ureqo dpey 09

9'g Arerjoroy) Sursn sBurssord ofdijnun 109A0 poafnd oIk YOITYM 9SO} 9Ie oN[( PaIno[od s3urys oy, - T4 Amslﬁlw+m+a+@em+@|©9v .

T+HE0—¢+z+d+o4 Am\>\@\n;\7>\m+oww+$d\wv Surpnpxe ‘T — L — p = p ueym (gg'¢) I0J weidelp preiq oY) Jo IR :gi'¢ 2IN3iq

-
- o+a—  ota— +
X -

THe+ et - A= 1=k— g—h—
o+ 9—v+ q-vt 9-v+ q—v+ 9-v+ q-v+ gq-v+ 9= 19— - THe— A= Tk L—o— L—v— vg— 17— L—zt L—z4 9+a—  o+q— T+o+
btg btg btg btg btg btg btg btg btg btg q—d q—d 9—g q—g q—g q—l q—L q—U q—L d+o  dto d+o  d+o q—o

|

|

§

%il

gi
!

T+ 1+ -
T+ otz otzt 4+ 1—z4 k—zt A—zi L—z4 T+ THL— A= T+
vtbtgy, ... T40+dy vtg, . Ty ly T—ly Atp—lig & . vHdfogvtdin, L ofdiogvddio, . ofd4oyotddoyvdddn, L vddoyvddio, L. ptddogoddio, L [Hd4o, dio, oy 0y o eta-my
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3.3. Skew homomorphisms George Witty

a+p+a a-+p+a

+z—7 +z

n—a
+y+1

Figure 3.43: Diagram to show equality of residues between the different components
of p when d = a — v — 1. The top half shows nodes in the second component of
t# whilst the bottom shows nodes in the first, with the dotted lines connecting
nodes of equal residue. The bold line along the top nodes illustrates the border of
the component.

and then this gives us

‘I’nT5+a_l ' (\I’n—l T,B—i—a—Z) ~Ln—a+'y+1: (\IInT6+a_1) in—a+’y+1

at the top of the diagram. The node containing 7 — a + v 4+ 1 in t* must be a
Garnir node since it has the same residue as iq4pra—y—d = tatpt1, SO We have
the Garnir relation corresponding to this node at the top of the diagram and thus
we have zero.

Finally we can suppose then that n = 8 + a. Figure 3.44 helps to illustrate

some of the nodes and their associated residues in this case. Rewriting (3.52) in
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3.3. Skew homomorphisms George Witty

atp+a | a+pta
+z—7 +z
B+~y+1 | B+a

Figure 3.44: Diagram to show equality of residues between the different components
of p when n = 8 + a. The top half shows nodes in the second component of t#
whilst the bottom shows nodes in the first, with the dotted lines connecting nodes
of equal residue. The bold line along the top nodes illustrates the border of the
component.

this case gives us the following:

tH
v (‘I’a+p+a+z+6 T

+a—0—2
' <\Ija+p+a+z—1 TB ) J/ a+ptatz—y+1

: \Ija+p+a+z—'yTﬁ+a_6_7_2 . (\IIQTB_HH_G_I) ~Loz—b—|—6+1

+gq+a—1
At )i«a+p+a+z

Tﬁ+q+a—b—2)

' (‘I’a+p+a—b+é Latpra—bts—+1

b2 b2
 Wgpqpoy PATaTATETI72 (\IJa—i-p-‘ra—b—i-é—'yTﬁ 7 )¢a+p—b+5+1

: (Wﬂ+a—b—27—2 Tﬁ+q+a_b_7_3) La—b—y

(3.54)

b2
: (‘Pa+p+z—b+5—7—lT6 7 )¢a+p+z+5—a2+1

5-1—
: (\Ila—b+5Ta+p+z+ az) la—ast1 R

This is shown in Figure 3.45. By rearranging we have that (3.54) is equal to
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‘9z Areforo)) Sursn s8urssord o[diynur 1040 [nd om YIIYM 9SO} oIk SN[ PAINOJ0D SSULIS YT,
“ay. TH—04 A§|H|w+w+a+dem+¢|@9v . T+Ep—tz+d+0 4 ANL(LTQe T>|m+alm+g+dav Surpnioxe ‘(FG'¢) 10J weiIderp preiq o) Jo MR Gy ¢ 9Imsrg

-
o+q—  e+q—

I+o+ ot - L i
o4 q—v+  q-v+ q—v+ q—v4 q—v+ q-v4+ q-vt 9—  1-q— — THh— A= 1=k b—  [—v— ezt L—z4
bty o btg  big o btg  big - bty btg  b+g - btg  b+g o q—g  q—g =g a—¢ a—¢g - a—g a—g - dfo  diw

1+
otzt  otrt 4+ 1—z+ L—zt h—zt L—zt T+ T+l— L
vtdto, otd 40, ptdto, vtdto, Dd o, Dtdto, vtdto, vdto, vtdto,

1+
vhbigy .. THvddy vy T-vtdy . Ltdy  Atd,y

phdtoyvbdto, L. T+ddo, dio,

I+

ota—  etaq—
d+o d+o
tHo, oy

T+o+
q—o

1+
9+a—",
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3.3. Skew homomorphisms George Witty

1 B+g+a— 1)

nz
v (‘lja—l—p-l—a-l—z—&—(? ~La+p+a+z

+a—95—2 +a—3—y—2
’ (\Ija-i-p—&-a—kz—l TB ) ¢a+p+a+z—'y+1 ’ \I'a+p+a+z—'yT6 7

: (Wa TB—HH_CL_I) \La—b—‘ré—f—l

Tﬂ+q+a—b—2)

' (‘I’a+p+a—b+6 Vatpra—bro—t1

PITTR2 (‘Ifﬁ+a—b—2yT6+q+a_b_7_2> b B—b—r+1
' (‘Pa+p+a—b+5—7Tﬁ_bﬂ_2) b atp—btot1
: (‘I’a+p+z—b+6—y—1 Tﬁ_bﬂﬂ) b oatptzto—az+1

o—1—
. (\I/a—b+5Ta+p+z+ a2> la—ast1 R

and now we can apply Corollary 2.6 to

4 B+q+a7b72)

—b—2y—2
(\Iloz—&-p—i-a—b—&-(s ¢a+p+a—b+6—'y+1 '\I]BJra 7 \Lﬁ—b—w

(take z = a+p+a—b+0—7, f=v, k=pf—a—p—a—0—1,h=a—v—1,9 =1,
t =+ q) since iaqpra—ntj 7= 184y+1s---198+a—1 for j € {1,...,v}. Then as
to—btd4j 7= 1B+~y+1s- - -+ i8+a—1 for j € {1,...,b— 0} we can also apply Corollary

2.6 to (\IfaTﬁ+q+“_1) ba—brsrr WPHe=0=7=2 | 5 and so (3.54) is equal to

1 B+q+a— 1)

Nz
v (‘Pa+p+a+z+5 ~La+p+a+z

+a—95—2 +a—3—y—2
’ (\Ija-i-p—&-a—kz—l TB ) ¢a+p+a+z—'y+1 ’ \I’a+p+a+z—'yT6 7

Lppra=i=2 ) o (\IIQTBJ“ZJF“_I) ba-brst

Tﬁ+q+a—b—2)

' (‘I’a+p+a—b+6 Vatpra—bro—t1

)

: (‘Ijﬁ-&-a—b—%
: (‘I/a+p+a—b+5—'yTﬁ_b_7_2) b atp—btot1

b2
: (‘I’a+p+z—b+6—y—1TB 7 )\La+p+z+6—a2+l

51—
' (‘I/afb+5Ta+p+z+ az) ta—as+1 -R.

Now apply Lemma 2.8 t0 Wyipiats—ny THT707772 . ghra=d=7=2 | 5 o (take

r=a+pt+at+z—v—1,f=1,h=pF4+y—a—-p—a—z—06,9g=a—~v—1,
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k = 0) since iqtptratz—y 7 18441, -+ 98+a—1. This leaves us with

-1
T Pata > i a+ptatz

o
v <\I’O¢+p+a+z+5

+a—6—2 —5—1
’ <\Pa+p+a+z—1 TB > ¢a+p+a+z—'y+1 ’ \Ija+p+a+z—'y Tﬁ

: (\I’a TB—&—q—i—a—l) \La—b+6+1

Tﬁ+q+a—b—2)

' (‘I’a+p+a—b+5 atpra—bro—~+1

(3.55)

T6+q+a_b_7_2> LB—bryt1

: (\Ijﬁ-&-a—b—%
' (‘I’a+p+a—b+6—7Tﬁ_b_7_2) doatp—btotl

b2
: (‘I/a+p+sz+57'yfl B )\La+p+z+67a2+1

0—1—
. <\I/o¢7b+5/l\a+p+z+ a2) \La—ag-i—l 'R7

most of which is shown in Figure 3.46. Since iaipiatz—ntj 7= 1847415 -+>18+a

for j € {1,...,7 — 1} we can apply Corollary 2.6 to

+q+a—b—2
(qja+p+a—b+5TB e )¢a+p+a—b+(5—7+1

' (‘1’6+a—b—27TB+q+a_b_7_2) b B—b—y+1,

and then again to (o 177977 1) |\ pisiy - (Uppqopqy TATITA7072) | 5 1y since

Gotptatz—n+j 7= 1B4y+1,---,ig4q for j € {1,...,7 — 1}, so that (3.55) equals

Tﬁ+q+a—1>

e
v (“Ila+p+a+z+6 \l/a+p+a+z

: (‘Ifa+p+a+z—1 T/BM_(S_Z) datpratz—ntl (‘I’ma—a—yTﬁﬂﬂ_(S_Q) lp—s11

—6—1
: \Pa—&—p—&—a—i-z—'y T g

tgta—1 b2
: (\I/aTB e )wLoz—b-i—(H—l : (‘I/a+p+a—b+6TB+q+a >¢a+p+a—b—i—5—’y+1
—b—y—2
: (‘I/a+p+a—b+6—7Tﬁ 7 )\Loz-i-p—b-&-é—i-l
—b—y—2
: <\I/a+p+sz+5f'yfl B )\La+p+z+5fa2+1

6—1—
. (ma7b+5Ta+p+z+ az) \La—az-i-l ‘R.

(3.56)
Now since iaqptatz—y+j 7= 18—y+1s---»i8+q for j € {1,...,7 — 1} we can apply
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‘9'g Arejo1o)) Sursn sguIssoro o[dinur 1040 nd om TOIYM 9SO} dJe SN[ PAINO[0D STULIYS YT,
‘. THE—04 A§|H|%+m+g+@_\@+@|69v . THED—+z+d+0 4 Am|>|&|m_\ Thlmilmtt%av Surpn(oxe ‘(GG ¢) 10J wreIdeIp preiq oY) Jo MR :9'¢ 9Im3r g

-
o+q— 9o+q— I+

I+9+ o+ - L
o+ 9—v+ q—v+ 9—v+ q—v+ 9—v+ q—v+ 9— 19— T— L p—  T-D— k—zt L—z+4 o+q—  9+q— et
b+gd b+g  b+g b+g  btgd b+g  btgd b+g  btgd 9—-g q9-¢ 9-¢g a9-d a—-d —-g a—-d d+o  dto dto  dto 9—°

,,I'
—
—_—
—,
T+ T+ T—
. otz+  o4z+ Z+ I—%+ k—z4 hb—z4 L—z4 T+ T+A— L= 1+
p4btgy L. TP+, vty THh+gy gy ... otdtoptdio, ... vdtoptdto, ... vtdtogptdiogptdto, ... ptdto,otdto, pd+ootdto, ... 1+d+o, dto, 140, 04 ... etq—m,

200



3.3. Skew homomorphisms George Witty

Lemma 2.8 to

(‘Pa+p+a+z—1 Tﬁ+a_6_2) datptatz—v+1 - (‘Ifﬁﬂ—é—y T6+q+a_6_2) dp—s+41

(takez =a+p+a+z—7, f=v—1L, h=F+y—a—-p—a—z—05,9g=a—",
k = q) so that (3.56) is equal to

t +g+a—1
v (‘I/a-i-p—&—a—&-z—f—&/rﬁ e )J/a+p+a+z

: (‘I’a+p+a+zfl TB+’Y—(S_2) \La+p+a+27'y+1 : (‘Ij6+a—5—1 TB—&-q—i—a—(S—?) ~L,3+'y—6

: ‘I/a+p+a+zf'yTB_5_1 : (\IIQTB+Q+G_1> \l/a—b+5+1

Tﬁ+q+a—b—2)

: (‘Ija+p+afb+6 Latpta—bro—n+1

b2
' <\I/a+p+afb+6f'yT/B 7 )¢a+p—b+6+1
b2
'<‘I’a+p+sz+5ﬂ71T’B 7 )\l/a+p+z+6fa2+1

0—1—
. (\I/a—b+6Ta+p+z+ a2>¢a_a2+1 -R.

(3.57)

We show the crossings corresponding to the first few multiplicands of (3.57)

in Figure 3.47. Since ia4ptateti 7= 184y+1s---»08+q for j € {0,1,...,0} we can

apply Corollary 2.6 to

T5+q+a71> T6+q+a7572)

(‘Ija+p+a+z+§ \Loz-‘rp-‘ra—I—z : (‘IIB—Fa—é—l \LB+7—6

(takex =a+p+a+z—-1,f=0+1L, k=pf+y—a—-p—a—z—05, h=a—",
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"9N[(q PAINOT0d aIe §,'g ewwa] Ajdde om oIy M 09
sgutrys o], *(LG'¢) Ul oq pnom Ady) se sepnstal o1y Sulsn (L¢'¢) Jo spueordiynua [)Imoj pue pIryj ‘puodas o1} 10 Welderp prerg :)j'¢ oIS

1— - T+A—
D+ ¢ — D49 — v+ 0 —A40 — L+ o— T—9— T+ 2 — D+
@.TQ @ITQ @L.%\ @.TQ @.TQ F.TQ F.TQ %IQ %IQ oo d40
T+ T+
ofz+ otz 41—zt b=z
a+v+m.s . H+s+h.s E+Q@ e HAI\TQ@ F+Q.~ . ®+&+C.s 6+&+6N .. G+A+G.s 3+Q+6.N . G+Q+d.s
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g =q, t =0). Then we have that (3.57) is equal to

s (‘I’ﬁ+aT’8+q+a_l) b Byt - (\I/a+p+a+z+5T5+q+a_l> Vatpratz

+y—6—-2 —6—1
’ (\Ila+p+a+z—1/r5 7 )¢a+p+a+z—v+1 '\Ila+p+a+z—7Tﬁ

-1 —b-2
: (‘%qum )\Losz+6+1 : <\Ila+p+afb+6/]\/8+q+a )wl/a+p+afb+6f“/+l
—b—y—2
' (‘I/a+p+afb+677TB 7 )¢a+p—b+5+1
b2
: <\I]a+p+sz+6fﬂ/fl Hh=b=y )¢a+p+z+67(z2+1

6—1—
) (‘I’a—b-i-&TaerJrZJr a2)\l/o¢—a2+1 R.

Since the node containing 8 + v + 1 in t* will be a Garnir node (otherwise we
could not have taken d = a — vy — 1), we have a Garnir relation at the top of our
diagram, giving us zero. With this we have finally shown that v 1% g ()

is zero and we are done checking relations in (iii).

Conclusion

Having checked all of the relations in (i), (ii) and (iii), we are done and so there is

LA waﬁ.

indeed a homomorphism ¢ : S* — S* given by v
3.3.4 Extending the result

In order to describe the degree of a homomorphism arising from moving a skew
shape, we will need to use the following definitions given two partitions A and p

and a skew shape of the form [\ \ pl.

e Given anode (z,y) € [A\p] such that (z—1,y), (x—1,y—1), (z,y—1) & [N\pyl,

call the nodes (z + j,y + j) € [\ \ p] for 7 > 0 a positive diagonal.

e Given a node (z,y) € [A\ p] such that (x — 1,y), (z,y — 1) € [A\ p] whilst
(x—1,y —1) ¢ [A\ p, call the nodes (z + j,y + j) € [A\ ] such that 7 >0

a negative diagonal.

This definition extends naturally to components of multipartitions. Let ay be the
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number of nodes in positive diagonals, and a_ be the number of nodes in negative

diagonals. Then the base degree of A\ u is defined as a4 — a_.

Example 3.15. For the given skew shape below, the positive diagonals are shown

in blue whilst the negative diagonals are shown in red.

The base degree is 10 — 5 = 5.
%

Definition 3.16. Let [ > 2 and suppose that A and p are [-multipartitions of n,
where [p] is formed from [A] by moving a skew shape of base degree b from the gth

component to the pth, for some p and ¢ such that p < ¢. In addition suppose that

(©)
e > max {h},

()
nax + 1, + 1}

Suppose that amongst each component A) with ¢ € {p+1,p+2,...,q— 1},
there are exactly k > 0 such components to which the same skew shape of the
same residues can be added. If £ > 0, then we also require that e is large enough
so that the diagonal residue condition holds when the skew shape is added to
these k components. Suppose that amongst the components A(¢) that are not one
of these k components, there are no removable nodes of any of the residues in the
skew shape, and that there are m, addable nodes of residue ¢, with a, instances
of the residue ¢+ within the skew shape. Then we say that (X, p)* is a skew pair,
of degree (k+1)b+ )", a,m,, where the sum runs over all residues ¢ in the skew

shape.

Remark 3.17. Since we have the diagonal residue condition, if A is one half of a
skew pair, then in a component M) with ¢ e {p+1,p+2,...,q— 1}, either we

can either have some individual addable nodes of the residues in the skew shape

204



3.3. Skew homomorphisms George Witty

or we can add only the entire skew shape itself and not some other individual

nodes of residues within the skew shape.

We may sometimes refer to components A(¢) with ¢ € {p+L,p+2,...,q—1}

as the middle components.

Corollary 3.18. Suppose that (A, p)* is a skew pair of degree (k+1)b+ Y, a,m,.
Let s be the p-tableau defined by considering €\ and moving the skew shape
from the qth component to the pth, keeping their values intact. Then there is
a homomorphism ¢ : S* — S* given by ot v %, This homomorphism
has degree (k4 1)b + )" a,m, and can be written as a composition of k + 1

homomorphisms.

Proof. If (A, p) is a row pair, then we can simply use Corollary 3.9. Note that in
this case b =1, a, < 1 for every residue ¢ and that m, is the number of addable
nodes of residue ¢ across all components AP . A\a=1) for every ¢ except that
which is the leftmost residue in the row, in which case k& + m, counts this value
instead. Then the degree (k4 1)b+ >, a,m, matches that of Corollary 3.9. So
instead we shall suppose that the shape moved is definitely a skew shape of at
least two rows worth of nodes.

We shall begin by assuming that £ = 0. Define «, 3, ¢, a, a2 and b similarly
to Theorem 3.14, so that the bottom two rows of the skew shape to be moved
are as in (3.17). Then ¢* = (Vaipia TP ) Loppir - (Wa 7)) Lacagtr R
where R is a product of crossings coming from the rows higher than the bottom
two in the skew shape. We need to check that the generating relations of S* hold
on ¢ (v"k).

Similarly to Theorem 3.14, define a new KLR algebra %’jLA“ using quantum

characteristic é := e and multicharge

K= (K1,K2,...,Kq,resx(B + q+ a), Kgq1, Kgg2, - - -5 K1)
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3.3. Skew homomorphisms George Witty

and define [ + 1-multipartitions:

>

- (Au), A® A A;{q)’ (1), @D \@+2) A(l))
2

Xl = (A(l)a A(Z)v s 7)\(p_1)>/igi)7/ﬁ(p+l): M(p+2)7 s Mu'(q)? (1)7

platd) a2 u”))

/1 = ('u’(l)7 ,LL(2), s 7M(q)7 g, M(q+1)7 :u’(q+2)’ e 7M(l))

We define a Xl—tableau 51 by

59 = (Parpra1 P72 Laspin (at P Lacapi R,

where R is just R but every v is replaced by 1, and also a ji-tableau so by
Y2 = \Ifa+p+aTQ*1 where Q = Y7, |)\(i)‘. Then by induction we have a homo-

morphism ¢ : S* — S given by ot s vtquﬁsl, and another @9 : Sh — gh

given by vt'! s 0¥ %2, Defining

1;5 = (ﬁla+p+aTﬂ+Q+a_l) ¢a+p+1 : (\i’aTﬁ_l> ia—az-&-l 'Ra

the composition of py with 1 gives us a homomorphism ¢ := @9 0 1 : S* - Gh
given by v Utﬁ1;5®6+q+aTQ_1. This gives us relations (i*), (ii*), (iii*), just
as in Theorem 3.14, and we can use these to check the relations (i), (ii) and (iii),
since the diagrams for v**1/* and vtﬁz/zs are identical.

For each type of relation, the above setup allows us to follow the same methods
as in Theorem 3.14, only now accounting for the additional nodes in between the
first and last components of [u] as well as those outside of these components. In
checking each of the relations, we apply the same reasoning as in Theorem 3.14;

however, there are a few changes to be made at the places annotated by the

following labels in the margins:

(C1) Replace n with @ throughout and note that inypta = i84+q+atis---,iQ-
For r € {@Q +1,...,n — 1}, we may follow the same reasoning as for

re{l,....,.0+q+a—1}.
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3.3. Skew homomorphisms George Witty

(C2)

(C4)

If Ya+4p+z; is not a row relation then by the diagonal residue condition the
node containing o +p+ z; in t* must be a Garnir node, so the corresponding

Garnir relation will be at the top of the diagram for those terms in the sum.

We can define \, fi in the same way, only in addition dropping the components
labelled from 1 to p — 1. Note that we should really relabel the tableaux
entries here by a shift, but this would only serve to make things more
confusing. We can then define 7 and the tableaux t; and t, and we will still

get homomorphisms ¢; and 9 in the same way.

Note that if ¥n4ptatz4s is not a row relation then the node containing
a+p+a+zin t* will always be a Garnir node if it occurs in the middle
components, otherwise there will be a removable node of a residue which
occurs in the skew shape, which we have assumed do not exist. Hence from
now on we can assume the node containing o 4+ p + a + z cannot lie in a

middle component.

The node containing « + (; + a may belong to a middle component. Take
D e {0,1,...,m — 1} maximal so that ¢ tet; is @ row relation for
j€{0,1,...,D—1}. If D = m — 1 and Yai¢4atm—1 1S @ row relation
then we can follow the reasoning just as before (note in particular this
will happen if the node containing o + (; + a is on the bottom row of a
middle component). So suppose otherwise. If D = 0 then let «+ (¢ +a+ X
be the value of the node beneath that containing o« + (; + a and write

T5+q+a7b72) Ta+p+sz+57m*1 as

(Patpra—bis Yatp—v+o+1 Yatc—bto

+qt+a—b—2
(‘Ila+p+afb+§/]\6 e >\La+p+afb+6fm

T6+q+a7bfm73>

: <\Ija+p+afb+5fmfl datp—btotl

Ta+Ct*b+5+X*1 R} Ta+p+sz+5*mfl

“Wort¢—bto atCi—bri+X

and since iq4¢,4+a 7~ tatptls---»latpra—m—1 apply Corollary 2.6 to the
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3.3. Skew homomorphisms George Witty

second and third multiplicand in the above. Then we need only consider

—b—2
T5+Q+a ) \La+p+a—b+5—m

(‘I’a+p+a—b+5

—b+6+X—m—2
'\I’a+ct+a—b+6—m—1Ta+Ct+a +0+X-—m—2

Now, if we ignore the fact that ini¢,40+x = fatpta—m We could apply
Corollary 2.6 here since in4¢,+a 7= fat¢i+atls-- - lat+atrX—1- Then we
could apply Corollary 2.6 again since ini¢,4a 7= la—bts+1s- - -+ ta, Eiving
Woicyra T =1 at the top of the diagram, which is the Garnir relation
for the node containing a + (; 4+ @ so this is would be zero. However, we
have that in4¢,+a+X = latpta—m, 50 in fact we have to also take this into
consideration. We instead use Corollary 2.6 to pull over all of the crossings
except the last. Then we have

+Cta—brs+X—2
Votcira—brs T Geta

Ta+(t+afb+5+X71>

: <\Ija+p+afb+6 \l/a+p+a7b+5fm

’ ¢a+§t +a—b+d+X—-m—2

Tﬁ+q+a—b—2)

: (lI/a+Ct+a7b+5+X dat¢ita—brotX—m -

Since iatpta—m  latci+a — latc+a+x We apply the braid relation to
Yat¢ita—brot X —m—2Vatcita—btotX—m—1VatCira—brs+tX-—m—2- 1f we pull
the crossing over we actually just apply the reasoning above where we
applied Corollary 2.6 to the whole thing. If not, then consider the crossings

T6+q+afb72>

(\Ija+p+a—b+5 { o+p+a—b+i—m-+1

a+(i+a—b+d+X+Xo—m—1
' Wa—&—g},—l—a—b—l—&—l—X—mT G 2

+q+a—b—m—2
Wt ¢ibambt s+ X+ Xp—m TP ;

where o+ (; + a + X + X3 is the value of the node beneath that containing

a+G+a+ X. Apply Corollary 2.6 to the first two multiplicands in question,
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since

batpra—mtls -+ latpta 7= latCeratX+1s - latCtatX+Xo-

Then pull the resulting crossings Wo.i¢,1q—piopx TOTGTa-bHoFX+Xa—1

over the next set of strings using Corollary 2.6 since igy¢ta+x
fo—bt6+1s - - - 5 Lo Thus we have the Garnir relation for the node containing

o+ (¢ + a+ X at the top of the diagram so this is zero.

Now suppose D > 0, then since

ia—i—p-ﬁ-l cee ia—l—p—i—a—m—i—l ?é ia—i—g}—i—a—i—l cee ia+Ct+a+D7

+a—b—2) Ta—i—p—l—z—b—i—é—m—l

rewrite (Vo pra—brst? atp—bts+1 “Watc—bts

as

T/3+q+a—b—2)

(‘Ija+p+afb+6 atpta—bro—m+2

' (‘Pa+p+a—b+5—m+l T’B+q+&_b_m_1> ia—&-p—b—i—d-&-l (3.58)

Ta+Ct—b+5+D—1 R} Toc+p+z—b+§—m—1

“Wort¢,—b+s a+Ci—bto+D

and apply Corollary 2.6 to

+g+a—b—m—1 +¢—b+6+D—1
(Wa+p+afb+6fm+l/r6 e " >\La+p7b+6+1 ‘\I’aJrthbJr&Ta G

giving

—b+d—m+D
\I’a+§t+a—b+5—m+1Ta+Ct+a Homm

—b—m—1
T5+q+a " )\La—&—p—b—&-é—&-l-

: (‘I’a+p+a—b+6—m+1
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3.3. Skew homomorphisms George Witty

Then (3.58) is equal to

Ta+<t+a_b+6_2) ~l/o¢+p+a—b+6—m+2 (359)

(‘I’a+p+a—b+6

Ta+Ct+a—b+5+D—1>

: (\I[oa+§t+a—b+6—l \La—i-g}—i—a—b—&—é—m—&—l

—b+6— D
-\I/a+§t+a—b+5—m+1Ta+Ct+a ot

Tﬂ+q+a—b—2>

. (q]a+§t+a—b+(5+D \LO¢+Ct+a—b+§—m+D+2

1 B+q+a—b—m— 1)

' (‘Pa+p+a—b+5—m+1 dotp—btotl

—b+6—m—1
'qja+§t7b+6+DTa+p+Z +o—m—1

In Figure 3.48 we show some of the crossings at this stage. Now write the

second and third multiplicands of the above as

a+Ct+a—b+5+D—1)

(\I’a+§t+a—b+6—1 T \lroz—l—Ct—&-a—b—&—é—m—l—D—i—l

Ta+§t+a—b+§—m+2D>

. (\I’a—&—ct—&—a—b-i-é—m-i—D ia+§t+a—b+6—m+1

+¢t+a—b+6—m+D
'qja+ct+a—b+5—m+lTa Cotazbiommit

and then as
ia—i—p—l—a—m—i—D—l—l i ia+p+a7m+2 — ioz—&-(ﬁ-a A ia+§t+a+1 A
o 4= ot Gtat D
apply Lemma 2.10 to
—b+6— 2D
(\I’a+¢t+a—b+5—m+DTa+<t+a ot )ia+ct+a—b+5—m+1
+¢ta—b+5—m+D
: ‘lja—l—g}—i—a—b—&—&—m—&—l Ta Cotazbiommit

(take x = a+(+a—b+d—m, f = D, g = D) and replace this with a sum
of terms, each which begin with va4¢,+a—b+5—m+p+j for j € {1,...,D},

along with another term where these crossings all disappear. In the former
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“UMOIQ PAINO[0d

ore ()1°g ewwe] Ajdde [[m om yorym 01 sSuLr)s oy, (8¢ ¢) ur 9'g Arefjoio)) Surd[dde IoJe pourejqo weIseIp preiq oY) Jo 1R Q)¢ 2In3Ig

T+ Chw— THw— ctw— THw—  w— T+ ot T+
T+o+ wto+ a+e+ a+e+ aste+ aste+ a+e+ a+et a+o+ w—gt w—g+ w—gt w—g+
o+ q—+ q—o+ q—v+  q—v+ q—v+ Q-0+ q—v+  q—v+ Q-+ q—v+ v+ q—v+ gD+ T+o+
mlTQ @Lﬁ% «vle «.VA_LO “.VL_LO uVAT»u uVlT»u «VlT@ «vle «vlT@ “.VL_:@ *VL_LO d+no d+0 qQ—0

ot 1+
wi 1+a+ a+ i+ - 1+ atw—  gtw— g+u— T+uw— 1+
?CYI@ D419+0y DI+ D419+ DHIIF0y DHII+0, D4d+0q  DAd+0g v4d+0q  Dd+og D+d+0y  D4d+0g T+07 0y 9+q—m0y
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cases, as ta+(;+atj—1 7= tat+pta—m+D+2; - - - s batp+as apply Corollary 2.6 to

Ta+Ct+a—b+5+D—l>

(‘I’a+g+a—b+5—1 dat¢ita—bts—m+D+1

) wa-&-ﬁt +a—b+0—m~+D+j>

then as iqi¢ta;-1 7 fa—bts+1s---»ia We can apply Corollary 2.6 to
(o PPTIT1) | pisi1 Yatcita—brorj—1- Then we have a Vai¢itratj1
crossing at the top of the diagram. This will be a row relation by assumption.
In the latter case, where the crossings disappear, we have that (3.59) is

equal to

+(ita—bt6—2
(‘l’a+p+a—b+5Ta Ceta >¢a+p+a—b+(5—m+2

+Cta—b++D—1
: (\I]a+gt+a—b+5—1Ta Gta )\La+§t+a—b+6—m+D+1

+qta—b—2
: (‘I’a+ct+a—b+6+DT5 e )\La+Ct+a—b+5—m+D+2

T B+q+a—b—m— 1)

' <‘1’a+p+a—b+5—m+1 Latp-brsrt

—b+d—m—1
'\I’a+g‘t—b+6+DTa+p+z +o—m—1

Figure 3.49 shows some of the term we are dealing with now. Since

we are assuming that a + (4 + a + D is not a row relation then write

9u (\ a+G+a+ D D = Vpi¢tarn TOTHTATDTX for some X > 0. Rewrite
the second and third multiplicands here in the form

T6+q+a—b—2>

(lpa+(t+a7b+671 ia+(t+a7b+6fm+D+1

+Cita—btdi—m+2D+X+1
Woicita—bis—mizni1 T "
tqta—b—m+D—1
'\I]a+Ct+a—b+5—m+2D+X—|—2Tﬂ e m

+g+a—b—m+D—2
. (‘Ija+Q+a—b+6—m+2DTB ara m )\lra+Ct+a—b+5—m+D+2

and now apply Corollary 2.6 to

T5+q+a—b—2)

(\Ila—i—ft-i—a—b—i-d—l ia+(t+a—b+6—m+D+1

—b+6—m+2D+X+1
-\IJa+Q+a—b+6—m+2D+1Taﬂﬁa rommaDEAY

212



George Witty

3.3. Skew homomorphisms

Ardde om UOIYm 09} 9SOY} oIe SN[ POINO[0d S3ULIIS oY T,

T+ -

ot ot - G- qru— qu— Thwu— we
vt q-v+  q-v q-v+  q-vt q-v+  q-vf gt 9o+ q-vt
bty - b+g  big big  btg - b+g  b+g  big - btg  btg

T+ -+
o7+ odit =+ T-z 4 x+a+ x+a+
Dby, 4+o4d, vtd, vdto, vtdto, vtd+o, phdto, v DI040,

Tta+ g+ 1-da+ T+ . T—
D95 0,04 I3 40,04 #9110, D35+, 0435004 F5 0,

-readdesp s3urssor o) ueym (6G'¢) I0J

o+ T+

THw—  w— x+a+ x+a+ e+a+

T+ Zo+  z4o+ Wt w—ot w—gt
w—q—  w—q— 9=+ q-v+ 9-p+  q-v+ q-v+
o4g o4g dyo  dio - 940 1540 . 940

nul H@V\s‘v

—_—
e
——————

T+
vidio, vhdio,

'9°¢ A1eqjo1o)
weISeIp prelq oy} Jo 1Ied :6F'¢ oInsrg

+a+  a+ T+ ot T+
w—g  w—g+ w—gt  w—gt wogt  w—gt
9-v+  q-vt 9-v+ q-vt 9-v+  q-v+ T+et
Do Bt . H4o Ito dto  dio - 9-o
S
S
ot T+
atu— qtw— chw— 4w 1+
Dtd+oy Dtdto, vtdto, vtdto, T+o, 0 B 0]
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(C6)

since

Z.Oc—l—p—l—a—’m—l—D-l—Q7 s 7ia+p+a # ia—i—Q—i—a—i—D—&-l, s >ia+Ct+a+D+X7

and then apply Corollary 2.6 again to

-1 —b+5+D+X
(\I/aT'B+q+a )ia—b+6+1 '\I’a+gt+a—b+§+DTa+<t+a oA

This gives us g, (‘ a+G+a+ D D at the top of the diagram, and thus we

will obtain zero.

We may also have terms which begin with ¢ z_;15_, where Z is the entry
of a node in a middle component of ;1 such that iz = iqqpta—y—; for some
j € {1,...,d}. In this case either ¢ is a row relation, and we can pull
Y7 _pt+5—~ to the top for the same reasons as we could 9q4pta—bp+5—y+2, OF
the node containing Z is a Garnir node (otherwise it is a removable node of
a forbidden residue) and so in the application of Lemma 2.9, note that we

could have instead applied Corollary 2.6 at (x) to

(‘I’x+f+1 Tx+2f+g_7> Vatsta—y '\I/ac+f+z,yj+17’y/rx+2f+9—2“/—1,

which would then instead correspond to a term that begins with the crossings
\IIZ_bJr(;_q,T”_b_QW_?’. Then apply Corollary 2.6 in the same way as above
to pull \Ilz_bﬂ;_vT"*b*Z'yf?’ to the top, giving ¥, 1797773 at the top of
the diagram which will contain the Garnir relation corresponding to the
node containing Z (in this case d > 1 thus the node containing n — ¢ — vy — 2

is either that containing o + p + a + z — v or to the right of it).

We may have Z € {1,..., z—~v—1} such that the node containing a+p+a+2

lies in a middle component and i44ptatz = fatpta—y—d—1- In this case,
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3.3. Skew homomorphisms George Witty

: —b—2y—2d—3 —b—2y—d—3
write Yo pra—brs—d—r T "7 Voipra—brs—y—a—1 T as

Tn—b—Zw—?d—lS R} Tn—b—2’y—2d—3

\Ila-l-p—&—a—b—i—é—d—'y a+pta—b+i—y—d—1

—b—2y—d—3
Wy _poy—2a—2 1T

and apply Lemma 2.7 to

n—b—2v—2d—3 U n—b—2v—2d—3

Votpra—btro—d—y T atpta—bto—ny—d—1T

(take z and g as in the application of Corollary 2.6). We deal with
the term beginning with aipra—p+5—y—a—1 in the same way as in
the original proof. In addition there will be terms beginning with

\I/a+p+a7b+6fdfy+zTn7b727*2d*3. Then apply Corollary 2.6 to

—b-2y—d—3
(q’a+p+a—b+6—7 T ) datpra—bto—d—y

—b—2y—2d-3
: \Ija+p+afb+6fd77+ZTn 7

since iaypratz 7 tatpta—y—d+1s - - - batpta—y, then apply Corollary 2.6 to
(Yatpravrs TP 02) | iprabrs—vt1 Vatprabrsyrz 17707217473
as tatptat+Z 7= latpta—y+1s---statpta, and then apply Corollary 2.6 to
(\I’aTBJqura_l) da—btor1 VYatpra—brotz $7170=7=d=3_ But now using the
fact that n—d = a+p+a+z2+6+1 we will have Wy qq 7 TOTPHaT2—772
at the top of the diagram, and either 141,144z Will be a row relation and
this is zero, or the node containing o + p + a + Z will be a Garnir node

(otherwise it is a removable node of a forbidden residue) this will contain

the corresponding Garnir relation g, (‘ a+pt+a+ 2 D

Now suppose that k£ > 0, then we wish to show that we can rewrite ¢ as
a composition of £k + 1 homomorphisms. When k£ = 0 this is trivially true, so
suppose that £ > 0. Let ¢ € {p+1,p+2,...,¢ — 1} be maximal so that the skew

shape (with residues intact) can be added to A\(®). Suppose that if we add the
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skew shape to [)\(5)] we obtain the diagram [1/(5)] and consider the multipartition
yi= (Au), AR AED e e @) u“)) '

Let u be the v-tableau defined by considering t* and moving the skew shape from
the gth component to the ¢th, keeping its tableau values intact. Then, noting
Remark 3.17, by induction we have that there is a homomorphism ¢ : S* — S¥

t

given by v o vt ¥, Similarly, we also obtain a homomorphism ¢y : S¥ — S*

given by v'" = v 9® where v is the p-tableau defined by considering ¢ and
moving the skew shape from the ¢th component to the pth.

Note that d(v) maps the entries of the skew shape in t# to the values of the
corresponding entries as they were in t”, whilst d(u) maps the entries of the skew
shape in ' to the values of the corresponding entries as they were in t*. Thus
performing d(u) followed by d(v) will map the entries of the skew shape in t#
to the values of the corresponding entries as they were in £}, and we have that
d(v)-d(u) = d(s) and this is a reduced expression, thus 9" - ¢* = ¢°. With this in
mind, @3 0 1 : S* — SH is given by ot o0t = 9% thus ¢ = gy 0 @y
Hence ¢ can be written as a composition of k£ + 1 homomorphisms as we wanted.

Finally, we shall describe the degree of ¢. By Proposition 1.34 we have
that deg (U‘st) = deg(s). We wish to compute deg (vwws) — deg (vtk) =
deg(s) —deg (t)‘). Using the recursive definition of the degree, the nodes containing
n,n—1,...,8+ ¢+ a-+ 1 in both tableaux contribute the same value to the

respective degrees. Hence

deg(s) — deg <f’\) = deg(s<g+qra+1) — deg (tiﬁ—&-q—i—a-i-l) :

Now, when calculating the change in degree due to those nodes within the skew
shape, most nodes will simply be of such a residue ¢ that there are m, addable
nodes below them and no removable nodes below them amongst the components
indexed by p+ 1,p+ 2,...,q. However, if such a node belongs to a positive or

negative diagonal, there will still be m, addable and no removable nodes below
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it amongst the components indexed by p+ 1,p+ 2,...,¢ — 1. In addition, in
any of the k components to which the skew shape of the same residues can be
added along with the component indexed by ¢, if the node in question lies in
a positive diagonal then there will in addition be an addable node of residue ¢,
whilst conversely if the node belongs to a negative diagonal then there will in
addition be an removable node of residue ¢.

Thus we find that as we count over the nodes in the skew shape, the degree is
obtained by summing (k+1)b with ), a,m,. The first summand arising due to the
additional addable or removable nodes corresponding to those in the positive or
negative diagonals, and the second arising simply from the miscellaneous addable

nodes amongst the components indexed by p+ 1,p+ 2,...,q — 1. Thus

deg(s) — deg (t’\) =(k+1)b+ Z a;m, + deg(s<z41) — deg (t)<\z+1)

L

where x + 1 is the least value present in the skew shape within the tableaux s and

t*. Then since S<z+1 and téx 41 are identical, we have that

deg(s) — deg (t)‘> =(k+1)b+ Z a,m,,

i.e. the degree of ¢ is (k+ 1)b+ Y, a,m,.
O

As before, we are now in the position to consider what happens when we move
two or more different skew shapes to form [u] from [A\]. We extend the hypothesis
of Corollary 3.10 to consider skew shapes instead of rows, and with this we obtain

another similar corollary.

Corollary 3.19. Let [ > 2 and suppose that A\, v1, vo and p are [-multipartitions
of n. Suppose that [u] is formed from [A] by moving two separate skew shapes.
Suppose (1] is formed from [\ by moving just one of the skew shapes, whilst [v]
is formed from [A] by moving just the other skew shape. Suppose that given one
of the skew shapes, the residues contained within it are not equal nor adjacent to

any of those contained within the other skew shape. Suppose that (A, v1), (A, v2),
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(v1, 1), (v2, 1) are all skew pairs. Then there are non-zero homomorphisms

Oy - SA — S oyt ST — SH,

Oavy SA — Sz, Ouop + SV2 — SH,

and we have that @, © Pxu, = Prop © Pav, 7 0.
In addition, if (A\,11) and (v1, 1) have degrees di and ds respectively, we have

that the degree of Yy, © Yxy, 15 di + da.

Proof. Since (A, v1), (A, 12), (v1,1), (v2, 1) are all skew pairs, by Corollary 3.18

we have that there are non-zero homomorphisms

Oy - SA — S oyt ST — SH,

Oy SA S, Qa1 SV — SH.

We shall label the tableau entries in the skew shapes being moved differently
to the labelling used in Theorem 3.14. Suppose the first skew shape being moved
has k rows, with r; nodes in each row (for j € {1,...,k}). We also label the first
node in row j of the shape as 3; + 1. Within £}, this skew shape will look as

follows:

Label nodes in the component to which the skew shape will be added to so that if

u is the tableau formed by moving the skew shape, we have

Pt = (‘Ijawzk Tﬁk+rk_1) iawqu +1000 (\110414‘7‘1 TIB1+T1_1> a4 (360)

for some aq,...,ay, where Zj = Zgzl r;j to ease notation.
Similarly we suppose that the second skew shape being moved has k' rows,
with 75 nodes in each row (for j € {1,...,k’}). We label the first node in row j

as B} + 1. If v is the tableau formed by moving this skew shape, we have

v o_ B, 4r,—1 B4 —1
(4 —(‘I’a;/JrE;/T K )i’a;/JrZ;/_lJrl """ (\I’a’ﬁZ’IT T ) e
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where Z; = Zgzl Ty

With this in mind, we can write

A v _ —
Py (vt ) =" <\Ilak+2k TﬁkJﬂk 1) ia;ﬁrzk_l +1 7700 (qloq-i-rl Tﬁl+r1 1) ¢a1+1

and
thy 2 By ,+r,—1
(,0)\1/2(?] )—'U (‘IJO‘;CI+Z;€/T BT )‘LOK;C,+Z;€/71+1“”
Il _q
. (\Ija,ﬁz,ﬂ\ﬁﬁ-m )\Lo/lJrl .
Without loss of generality, assume that 51 < 1. If 81 < o then we will in

fact have that S + rp < o} + 1 and so

P © Py = 0¥ (\I’a;‘;,+2;€, T%M;'_l) Yo, 450 41
(o P gt (P P s,
----- (Tatr 17477 Loy
— (\I,ak+szﬂk+rk—1) iak-&-zk,l-i-l
: (‘I’a1+m Tﬂﬁn_l) bayt1 - (‘I’a;ﬂrz;/ Tﬁéﬂrr;ﬂﬁl) Yo, 45 41

..... (\Ila’1+Z’IT61+r1_l>ia’1+1

= Py ©Prip
and we are done. Hence, assume that $; > o). Then we have multiple cases.

Case I: The skew shape containing ; is moved to a position above

the other skew shape in [y

In this case, we have that

J— //+ //_1
O pOPav, = (\IIO‘;CIJFZIHFZ;C/T/BIC Tk )¢a2,+zk+2;€/71+1
Bl +r!—1
'(‘I’aHZwZ’lT o )¢a3+2k+1

’ (‘I'akJer Tﬁlﬁ_m_l) iawZ;H 4100 (lIIa1+7"1 Tﬂﬁ_rl_l) J/a1+1
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whilst
Ouop © Pavg = (\Ilak""zk ']\/Bk+zk/ +7“k—1> \l/ak+zk71 41
: (\Ila1+r1 TBH_Z’CI +T1_1) \LCXH-I
6//+ //71
'<\II%I+Z;€/T KT >¢a;€l+2;€/71+1....
' (‘I’aa+zaTﬁ1”ﬂ)¢aa+1 :

Now observe that for v € {0,1,..., k" — 1}, if we have

Brtri—1
<‘1’a;,+z;/+szk M a5 S 41

,/, _ +7’//7 1
T k' —(v=1) " k' —(v—1) , /
ak/7(771)+2k+2k’—7+1

‘ (\Ija;cu(«/fl)+zgc/—('v—1) +2%
B+ o +ri—1
: <\pak+sz Ky Vot 41

‘ <\Ilal+r1 Tﬂﬁzkuv +r1_1> dog+1

5,’617 +7";€/7 -1
(\Ila;c’—w+zgf’—v T ’ ’ \La;e’—w—’_zgﬂ’—(ﬁﬁl) +1

fri—1
'(\I/a’1+r’1T61 ! )ia'1+1

then we can apply Lemma 2.13 to

<\Pak+2k Tﬁk—i_zk’—w +rk_l) \Lak‘FZk—l +1000 (\I’al+r1 Tﬁl—i_zk/_w +T1_1> *La1+1

4, -1
P ’Bk’—W K —y
( o ﬂ+Z§C/_7T ia;g_ﬁz;/_wﬂ)ﬂ

(take: T = oy, fZ =, ki = Q41 — O, (7, € {1,...,]{: — 1}), kk = Ck;c/_,y — ap +

Zk’—('y+1)7 h = ,r;g/ffy’ g1 = 61 - a;g/f»yu g = Bl - ﬁi—l — -1, (Z S {27 .- "k})a

t= 5,’4_7 — B — Z;c/_(wl) —7r1). Then I = iaj+2j,1+c for j € {1,...,k} and
. . s /

ce{l,..., f;}, whilst my = lof, 5%+ S (yan) for b€ {1,...,r,_ } and we

have that IZ —~ m; for admissible j, ¢ and b since the nodes of residues I% belong

to one of the moved sets of nodes whilst the nodes of residues my belong to the

other.
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3.3. Skew homomorphisms George Witty

After applying the lemma we have

(\Ila’ +X +2 Tﬂ’;/JrT;“ﬁl)ia’ OV EDPVINES
kT Ak k K T2k K —1
cee (‘Ila;,77+23€’77 +> % T’Bllg’—»y+r;c’—'y*1> \La;cu»y"'zk +Z;,7<7+1) +1
' (‘I’awzk Tﬁk+2§f’—(7+l) +T’“_1) bapty 41
) <\I/oz1+r1 T51+Z;“/—(7+1) +T1_1) dag+1

’ /
Tﬁk'—w+1>+”k'—(w+1>’1)¢

W , f .
( aﬁf’—(w+1)+zk’*(v+1) O‘;c’—(w+1)+zk’7(v+2) +1

+ri—1
<\IJO/1+TJ1T61 1 ~lfo/1+1 .

All we have in effect done is ‘replaced’” v with v + 1.
So apply the lemma repeatedly to the terms corresponding to (., © @xu,-

Eventually we obtain the expression for ¢, 0 @y, , thus ¥, 0 v, = Puu© Pr, -

Case II: The skew shape containing (3; is moved to a position below

the other skew shape in [y

In this case we have that

L, —1
Prip © Prvy = (‘II%/-FZ;,T@“ Tk >¢a2,+22171+1
. (‘I/a/1+T'1Tf31+T1—1) \Lo/lJrl . (\I}ak+ZkT5k+rk—1) *lfoék-*'qu RIS

. <\Ija1+r1 T/Bﬁ_rl_l) \La1+1

whilst

TﬂkJrZ;c/ +7"ch1> 1

Prop © Prvg = (‘I’ak+2;/ +> % gty + g 1

+3 -1
'(‘lloq-i-z;/-‘rm/]\ﬂl 2t )i
Br+ry—1
. (lI’Oé;C/'FZ;C/T KT )\1/04;/4‘2;@/_1‘5‘1

et —1
(W P L

011+Z;€/ +1
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Now observe that for v € {0,1,...,k — 1}, if we have

+> 0 1
Tﬁk S TR )*Lak+2§c/+zk_1+1'

Tﬁk—w—ﬁ{);@/ +""k—'y+1—1) !

(\Ilak“‘Z;C/ +2 %

’ (‘I/ak77+1+2;€/ + Zk—’y+1 ak77+1+Z;€/ +Zk—'y +1

. Butry =1\ ., ... Br+ri—1
(\I/a;,JrZﬁc,T S RS | Yo T2 Mg

Br—nytTE—y—1
']* vy Y ) iak,.y-i-zki(%q) +1

. <\I/a1+’r1 Tﬁl*H‘l*l) \l/oq—i—l

. <\Ijak*’y+zk——y

then we can apply Lemma 2.14 to

e A W By -1
(‘l’a;/@;IT S R s ST Vorr 177 Mt

e ~—1
. (wak7w+zk_7/]\ﬁk TRy )\Lak77+zk_’y_1 41

(take: z = of, fi =7}, ki = aj,; —aj, (i € {1,....,k = 1}), kx = ap—y — 0}, +
Zk—(’y—l—l)’ h = rkr, 9= Bory — Qhy — Zk—(v—‘,—l)? tr = B = Br—y — Tk
ti=p—pB_1—71_1,(i€{2,...,k})). Then I} = iag+zg_1+c for j e {1,...,K'}
and c € {1,..., f;}, whilst m; = iak—w+2§a+zk7<7+1) 4y forbe{l,...,r—,} and

we have that 12 — my, for admissible j, ¢, and b since the nodes of residues I

belong to one of the moved sets of nodes whilst the nodes of residues m; belong

to the other. After applying the lemma we have:

B+ +ri—1
1B 2k Tk >¢O¢k+2;/+zk71+1'

/I\/Bk—'yJFZ;C/ +1“k77*1) l

<\Ilak+2;€/ +2k
M ‘lj ! / 1
Uyt +Zk7'y gy +2 +zk7771 +
. Bt Y| e B+ -1
(‘I’a’k,+zﬁ S ROYIRS S VRS Varar T ) bat

Bl—(v+1) k= (y+1)—1 .
4 Pr—(y v Vo i+ +1

. (\I/a1+r1 T51+T1_1> ~La1+1

) (q}ak—(w+1)+zk—(w+1)

What we have in effect done is ‘replaced’ v with ~ + 1.

So apply the lemma repeatedly to the terms corresponding to ¢, © @xy, -

Eventually we obtain the expression for ¢,.,, 0 ©au,, thus ¢, .0V, = Prop © Prv,-
O
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3.3. Skew homomorphisms George Witty

We can again make an analogue to Corollaries 3.5 and 3.11, that is that if [u]
is formed from [A] by moving multiple skew shapes of nodes whose residues are
sufficiently spread apart, then we can move the rows in any order to get various

homomorphisms which always compose to give the same overall homomorphism.

Corollary 3.20. Letl > 2 and suppose that A and p are l-multipartitions of n.
Suppose that [u] is formed from [A] by moving m distinct skew shapes of nodes
S1,...,Sm, whose residues amongst the skew shapes are such that none are equal
or adjacent between any two given skew shapes.

Suppose that for each X C {1,...,m} we have an l-multipartition of n, vx,
such that [vg, . i) is formed from [A] by moving just the skew shapes Sy, ..., Si,.
In particular vg = X and vyy, .y = pt. Suppose that whenever |B\ Al =1, we
have that (va,vp) is a skew pair, whose corresponding homomorphism is vy -

Then there is a non-zero homomorphism ¢ : S* — S* and given any sequence
of sets @ = X9 C X1 € Xo,C -+ C X, ={1,...,m} we have that

o -

Y= Pux,, 1 vxm ©Prx, oV, T O Prxgrxg -

Proof. Without loss of generality suppose that the shape S, is above S, whenever
a<b LetY; ={1,2,...,5 forj€{0,....m}. Then@ =Yy CY1 C---C Y, =
{1,2,...,m}. By assumption we have [-multipartitions of n, vy;, and non-zero
homomorphisms Poy vy, for each j € {0,...,m — 1}. As in Corollary 3.19, we
may write oy vy (vtuyj ) as in (3.60) and then similarly to Corollary 3.11 the
product ¢, 1y OO Quy uy (vtA) will correspond to a reduced expression,
since in ¢, the smallest entry within S; is strictly greater than the largest entry
within S;_; for every j € {2,...,m}. Hence no strings will cross twice, and thus
as the associated tableau will be standard, the composition of homomorphisms is
not zero.

The rest of the proof is the same as that for Corollary 3.5, replacing the use
of Corollary 3.4 with Corollary 3.19. O

To conclude this section, we give a conjecture that is concerned with relaxing
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3.3. Skew homomorphisms George Witty

the conditions that define a skew pair. Given a partition A, write Ao Aif Aisa
partition formed form A by removing a node. Write A % X if there is a sequence
P Ao = A1 — -+ = Ay, = A for some m > 0. Now given a skew shape S of the

form [A \ p] whose nodes have associated residues, define the set Xg as follows:

Xg = {X | X is a non-empty connected skew shape with associated

residues from S of the form [A\ p] where A = X for some m > 0}

Now for l-multipartitions A and p, define (A, u)* to be a skew* pair if the require-
ments of Definition 3.16 are satisfied, except that amongst each component A(¢)
that are not of the £ components to which a skew shape of the same residues can
be added, there are no removable shapes X such that X belongs to Xg, where S
is the skew shape to be moved to form [u] from [A]. Then we have the following

conjecture, which is an adaptation of Corollary 3.18.

Conjecture 3.21. Suppose that (A, u)* is a skew™ pair. Let s be the u-tableau
defined by considering t* and moving the skew shape from the qth component to
the pth, keeping their values intact. Then there is a homomorphism ¢ : S» — SH

. A
given by v¥ — v Y5,

The difficulty in proving this conjecture relates to the fact that in proving
Theorem 3.14 we only ever rely on using terms arising from the bottom two rows
of the skew shape (i.e. we never utilise the term R in ¢°). When dealing with
skew™ pairs, we find that it is necessary to deal with terms arising from other rows
in addition to these, and given the already unwieldy nature of our combinatorics,
this would appear to be a step too far.

We also conjecture that there are similar adaptations of Corollaries 3.19 and
3.20. We give some examples below of homomorphisms which exist, but cannot
be proved to exist using Corollary 3.18 and instead fall under those covered by

the conjecture.

Example 3.22. Let e = 4, £ = (0,1,0), A = (2, (3),(4)) and p = ((4), (3),9).

Thenxs:{@,\om,\0\1\2\,\0\1\2\3\}andthereisahomomorphism
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3.4. Relaxing the diagonal residue condition George Witty

@ : 8 — S given by

0= ( o | [T213) | [aT5T617) ) = ( (AIE06L7) | (11218 | = )

Note that A contains a removable 3 node, but ¢ Xg. O

Example 3.23. Let ¢ = 4, k = (0,k2,0), A\ = (2,(1),(2,2)), and p =

A
((2,2),(1), ). Then Xg = { 0] [0]1] 7’ of1] [o1 }and then for any

kg # 0 there is a homomorphism ¢ : S* — S* given by

2[3 2[3
#=(o|m|i) ~ (sl D))

3.4 Relaxing the diagonal residue condition

We now exhibit some examples which demonstrate some possible effects when

relaxing the diagonal residue condition, that is, working with small e.

Example 3.24. Let e =3, A\ = ((1),(6,5)), p = ((4,3),(3,2)), « = (0,1). The

initial tableau t is

A 2[3]4[5]6]7]
t_( 819]10[11]12 >

Then there is exactly one non-zero homomorphism ¢ : S* — S* given by

A
ot 0t 4 20t

where

o ( [Ll516][7]|[2]3]4]
- 10/11/12 819

(o ( 1Ll2[3]4]|[5]6]7]
- 10/11[12 819 '

and

O

Note that the tableau s arises in the same way as we expect from Theorem 3.14,
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3.4. Relaxing the diagonal residue condition George Witty

however we also have a term indexed by the tableau t, and naively speaking this

is formed by acting on s by the permutation (2,5)(3,6)(4,7).

Example 3.25. Let e = 3, A = ((1),(7,6)), p = ((4,3),(4,3)), & = (0,0). The

initial tableau t* is

A 2[3]4]|5]6]|7]8]
¢ _( 9 |10[11[12]13|14 >

Then there is exactly one non-zero homomorphism ¢ : S* — S* given by

ot 0% 4 20t + 2% + 40°

where
o ( [Ll6]7]8]|[2[3]4]5]
12[13[14 9[10[11 ’
(o (11]6]7]8]|[2]3]4]5]
9[10[11 121314 ’
we ((1L1314]5]|[2]6]7]8]
12[1314 9[10]11 ’
and
oo ((1L1[3[4]5]]2]6]7]8]
9[10[11 121314 ‘

O

Similarly to the previous example, the tableau s arises as we expect, and we

have

t = 5(9,12)(10,13)(11, 14)
u = 5(3,6)(4,7)(6,8), and

v = 5(3,6)(4,7)(6,8)(9,12)(10, 13)(11, 14).

Example 3.26. Let e = 3, A = ((1),(9,8)), x = ((4,3),(6,5)), K = (0,1). The

initial tableau t* is

. 2[3]4|5]6]7][8]9]10]
t _( 11]12]13[14/15/16/17/18 )
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Then there is exactly one non-zero homomorphism ¢ : S* — S* given by

ot s 0 + 20t + 20" + 40° + 30™ + 60F

where
o ( [L18]9]to] | [2[3]4]5]6]7]
O\ [16]17]18 11]12[13[14]15 ’
(o ( LLi8]9f10/ | [2]3]4]5]6]7]
13[14[15 11]1216[17]18 ’
we (11[516]7]| [2]3]4[8]9]10
~ o\ [16]17]18 11]12/13]14/15 ’
oo ( 1LI5]6]7]] [2][3]4]8]9[10
o\ [13]14]15 11]12[1617]18 ’
oo L12[3[4]] [5[6]7]8]9[10
16]17/18 11]12[13[14]15 ’
and
_( [1]2]3]4]| [5]6]7][8]9]10]
7 845 11]12[16[17]18 '

Again, the tableau s arises as we expect, and we have

t = 5(13,16)(14,17)(15, 18),

u = 5(5,8)(6,9)(7, 10),

b = 5(5,8)(6,9)(7,10)(13,16)(14,17)(15, 18),

w = (5,8)(6,9)(7,10)(2,5)(3,6)(4,7) = s(2,5,8)(3,6,9)(4,7,10), and

r=15(2,5,8)(3,6,9)(4,7,10)(13,16)(14,17)(15, 18).

These examples appear to exhibit a pattern in the images of the homomor-
phisms. However, if we work with larger components we see that this does not

work quite as nicely as in the last examples.

Example 3.27. Let e =3, A = ((3,2),(7,6)), p = ((6,5),(4,3)), K = (0,2). The
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initial tableau t* is

—_
[N]

& 3/ [6]7]8]9]10[11]12
415 13[14]15[16]17/18 '

Then there is exactly one non-zero homomorphism ¢ : S* — S* given by

o s 0% 4 200 4 2% 4 4°

where
oo (11][2]3]5[1112 | [6]7]8]9]
4[10/16]17]18 13]14[15 ’
c (11][2][3]51112 | [6]7]8]9]
4[10/13[14[15 16]17/18 ’
ue ((1112]3]518[9]| [610[11]12]
47161718 13[14[15 ’
and
oo ((11[2]3]5][8]9] 6]10[11]12]
4] 713]14]15 16/17/18

O

This time, none of the tableaux are of the ‘expected form’. However, note that

t = s(13,16)(14, 17)(15, 18),
u=5(7,10)(8,11)(9,12), and

v =s(7,10)(8,11)(9,12)(13,16)(14, 17)(15, 18),

displaying a similar relationship between the tableaux as before.

From a naive point of view, the tableau we expect (as in Theorem 3.14) is
prevented from appearing because there are now other nodes of the residues that
we are moving, that lie between the position where we remove these nodes in A(?)
and where we add them in ©™), and that in some cases we can move these to the
positions in x(!) before moving the nodes in the skew shape there.

The patten becomes obfuscated when we begin to deal with multipartitions

containing a component consisting of at least e rows, as in the following example:
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Example 3.28. Let e = 3, A = ((3,2,1),(7,6,5)), u = ((6,5,4),(4,3,2)), k =

(0,2). The initial tableau t* is

112]3]] [7]8]9]10[11]12[13|
= [4]5 14[15[16/17]18[19
6] 20[21/22[23[24

Then there is exactly one homomorphism ¢ : S* — S#, whose image consists of

16 terms and whose coefficients belong to the set {—4,—-2,1,2,4, }. O
A similar, but more explicit example is as follows.

Example 3.29. Let e = 3, A = ((1),(22,1)), u = ((23,1), (2%, 1)), K = (0,1). The

initial tableau t* is

Lan
>
I
=
—_
o]

There is exactly one non-zero homomorphism ¢ : S* — S* given by ot maps to:

Tl | 28 118 216 1[5 213
415 411 4111
913 31010 6|7
14015 | 5L7 + 510 | 213 |- slig | 213
6 812 = 14[15 00 14[15
— 10 — 16] — 16]
TE 216 TE 216 TE 219
3T | [4]8 - | [4]8 3= | [4[1L
+ 910] | +3 910 | -2 613
14 151 s i},} 21 Hais 180 L2l s
— 13 — 116 — 16]
51| [2]6 5 56
=] [4]1 aw 7111
+3 Srol | 12113 -1 S0l | 9013
T 14[15 T 1415
— 16] — 16

O

In the following Chapter, we will reinvestigate the pattern observed here in
the context of multipartitions within core blocks in level 2, and we will claim that

the preventions which restrict the pattern from occurring will not arise.
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Core blocks

. ITHIN the previous chapter we have demonstrated the existence of

certain homomorphisms between Specht modules. In this chapter, we

will use these homomorphisms to prove Theorem 4.26, which, provided
e is large enough, allows us to describe the entire set of dominated homomorphism
spaces between Specht modules that lie in core blocks when [ = 2. Once again, all
results will be independent of the characteristic of the base field IF. We shall first
need to state a few relevant definitions so that we can understand core blocks
precisely.

Let A be a finite-dimensional algebra over F, and suppose A = By ® - @ B,
is a decomposition of A into a direct sum of indecomposable two-sided ideals.
Then we call the B; the blocks of A. As remarked following Definition 1.14, the
blocks of ,%’jLA“ are given by the algebras %A”, that is, two Specht modules S*
and S* belong to the same block of #+ if and only if the multipartitions A and
w1 have the same content. We will say that a multipartition A lies in a block B of
AN if S lies in B.

Let A be a partition of n. The rim of [A] is defined to be the set of nodes

{G,7) e N TGE+1,5+1) € A}

For e € {2,3,4,...} define an e-rim hook to be a connected subset R of the rim
containing exactly e nodes such that [A] \ R is the diagram of a partition. If A has
no e-rim hooks, or if e = co, then we say that A is an e-core. If we can remove w
e-rim hooks from [A] to produce an e-core, then we say that A has e-weight w. In

particular, an e-core has weight 0.
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Note that given the abacus configuration for A, removing an e-rim hook
from [A] corresponds to sliding a bead up one row on the abacus. So an abacus
configuration for an e-core has all the beads pushed up the runners to their highest
possible positions. Using this we obtain the next result which demonstrates that

the definition of e-weight is well-defined.

Lemma 4.1. [Jam78b] [Mat99, Lemma 5.35] Let X\ be a partition. Then the

e-core and e-weight of A depend only on A and e.
Now we can state when two Specht modules lie in the same block of Hp 4(Sy,).

Theorem 4.2 (The Nakayama conjecture). [D.J87, Corollary 4.4] [JM97, Theo-
rem 4.29] Suppose that \ and p are partitions of n. Then the Specht modues S*
and S* belong to the same block of Hr 4(Sy) if and only if X and p have the same

e-core.

Of course, we wish to study core blocks for Ariki-Koike algebras as well as
KLR algebras. Due to Theorem 1.16, and since the theory we detail is the same
in both settings, we simultaneously develop both cases. We use the following

definition to extend the notion of an e-core to these algebras.

Definition 4.3. An [-multipartition A = (A, ... A®) is an e-multicore if A

is an e-core for each i € {1,...,1}.

Note that when e = oo, every multipartition is an e-core. For [ = 1, an
e-multicore is an e-core. There is also an analogous definition for the weight of
a multipartition, however as we will deal only with core blocks we shall not be
required to state the long setup. The relevant details are given in [Fay06] and
[FayO07].

As we have seen, the weight and core of a partition A\ play an important role
in determining the block that S* belongs to and its properties within Hr,g(Sn).
In particular, Theorem 4.2 states that two Specht modules S* and S* belong to
the same block if and only if A and p have the same core. However, for [ > 1 the
natural generalisation of this is not necessarily true; S* and S* may belong to

the same block yet A may be a multicore whilst y is not.
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Example 4.4. Let e = 4, x = (3,1) and consider A = ((3,12),(3)) and p =
((13),(5)). Then A and u have the same content and thus belong to the same
block, but A is a multicore whilst the second component of p has a removable

4-rim hook. O

In this chapter we study certain core blocks when [ = 2. Following the work
of Fayers in [Fay06] and [Fay07], we shall define core blocks for arbitrary [ and
use the results of the previous chapters in order to study homomorphisms within
these blocks.

Suppose A = (AW XD is a multicore and a = (a1,...,q;) € Z'. If e < 00
then we define bf;(A) to be the position of the lowest bead on runner i of the
abacus display for AY) with respect to a. In other words, bfj(A) is the largest
element of f3,,(A) that is congruent to ¢ modulo e.

Now we can state the definition of a core block for Ariki-Koike algebras (and

hence KLR algebras) using the following theorem.

Theorem 4.5. [Fay07, Theorem 3.1] Suppose e € {2,3,4,...} and that X is a
multipartition with S* lying in a block B of Hr40(Z/I1Z1&,). Let k be the

multicharge associated to this algebra. Then the following are equivalent.

1. X is a multicore, and there exists a = (ay,...,a;) € Z' such that a; = k;
mod e and integers oy, . ..,q_1 such that for eachi € I and j € {1,...,1},

b75(A) equals either a; or a; + e.
2. Fvery multipartition in B is a multicore.

Definition 4.6. Suppose B is a block of Hr q.0(Z/IZ1&,,). Then we say B is a

core block if

e ¢ € {2,3,4,...} and the conditions of Theorem 4.5 are satisfied for any A in
B, or

Example 4.7. Let ¢ = 4, k = (0,1), and let A = ((2,1),(1?)). The abacus

configuration for A is:
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A A2
0 1 2 3 0 1 2 3
Let B be the block containing S*. Then since
=4 B = 0,
no= 1 2 = 1
5 = —6, 50 = —2,
51 =L bz, = -5,
we may take ag = —4, a3 = 1, ap = —6 and a3 = —5 to see that B is a core

block. The other multipartitions in the block are ((2,2), (1)) and ((2), (1%)) with

respective abacus configurations

0 1 2

and
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4.1 Core blocks in level 2 and plus minus sequences

Now we will consider core blocks for Ariki-Koike algebras in level 2, i.e. when
{ = 2. In this section we shall use Theorems 4.14 and 4.15 that are from personal
communication with Lyle. They supplement results of Brundan and Stroppel
[BS11] and Hu and Mathas [HM10] which state that when e = oo or e > n, the
decomposition numbers are independent of the characteristic of the base field, no
matter the weight of the block.

To begin, let e < co and consider the abacus configuration for a partition A.
The set B,(\) used to define the abacus is an infinite set, and as such we have an
infinite amount of beads in the abacus configuration, in particular there is a point
where every row to the north of this point is completely full of beads. Instead we
can consider a truncated abacus configuration which has only finitely many beads
on each runner, which we associate to a multipartition by filling in all the rows
north of the highest beads with beads in every position.

Conversely, if we are given a partition A we can fix a truncated abacus
configuration associated to it. Let N be maximal so that x € ,(\) whenever
x < Ne. Then we define the truncated abacus configuration for A to be the
one corresponding to the set 5,(A\) N {Ne, Ne+1,...}. In the same way we can

associate an [-tuple of truncated abacus configurations to an [-multipartition.

Example 4.8. Let e =5, a = 1 and A\ = (12,10, 62,4,2,1), as in Example 1.25.
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Then we take N = —1, so that

Ba(A) N {=5,—4,-3,...} = {14,11,6,5,2, -1, -3, —5}

and the truncated abacus configuration is:

O

Now let A be a multipartition, e € {2,3,4,...}, K an e-multicharge, a =
(a1,...,a;) € Z! such that a; = k; mod e and define bf;(A) to be the number of
beads on runner i of the truncated abacus display for AU) with respect to a. Using
Theorem 4.5, we see that for A corresponding to S* in a core block, we have that
there are integers b, b1, ..., b.—1 such that for each i € I and j € {1,...,1}, b;‘j()\)
equals either b; or b; + 1. We call such an e-tuple (bg, b1, ...,be—1) a base tuple

for A. Adapting Theorem 4.5 we have the following result.

Proposition 4.9. Suppose | = 2, e € {2,3,4,...}, X is a multicore and k =
(k1,k2) is a 2-multicharge for Hy 40(Z/1Z1&,). Then S* lies in a core block
of Hr 4.0(Z)1Z2 &) if and only if there is a = (a1,a2) € Z? such that a; = K;
mod e and an abacus configuration for X such that |b%(\) — b% (N)| < 1 for each

1el.

Suppose [ = 2 and we have a base tuple B = (bg, b1, ...,be—1) for A lying in

a core block along with x and a as above. Then we define a total order < on
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{0,1,...,e—1} by
1<j<=b <bjorb =bjandi<j
and we let m be the permutation of {0, 1,...,e — 1} such that
7(0) < 7w(l) <--- < 7m(e—1).

Then define

;

+ bR (A) = bre (N = 1,

di =90 b2, (A) = bl (N) = 0,

— i b3, (0) = b% (A = -1,

and so for a multipartition A\, and e € {2,3,4,...} we get the plus minus sequence
d(N\) = (do,di, ..., de—1).

Naively, we obtain d(\) by ordering the runners so that a runner with a lower
base tuple entry precedes one with a greater entry, and if these are the same
then they are ordered from left to right. Then d; equals the symbol + if the ith
runner in this order contains one more bead in the second component than the
first, it equals the symbol — if this ¢th runner contains one less bead in the second
component than the first, and it equals 0 if this ¢th runner contains the same
number of beads in both components.

The reduced plus minus sequence cf()\) is obtained by removing all 0s and
recursively cancelling adjacent pairs —, + within the sequence d()\). If such a pair
—,+ can be cancelled in this way we say they are linked by an arc or call them
a linked pair, and draw an arc between them. Notation-wise, to distinguish a

reduced sequence d(\) from a sequence d(\) we also remove the commas.

Example 4.10. Consider the truncated abacus configuration for a multipartition

A given below
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0 1 2 3 4 ) 6 0 1 2 3 4 5 6

33129 392

with base tuple (2,1,4,3,1,1,1). Then © = (0,1,4)(2,5, 3,6) and

N
d()\> = (+7+7 0 + 7+707_)'

The reduced sequence is d(\) = (+ + +—). O

Note that when an entry of d()\) is zero, it is not clear as to whether the
number of beads on the corresponding runner is equal to the corresponding entry
of the base tuple, or if it is one more than it. Thus we cannot necessarily uniquely
construct a multipartition given just a plus minus sequence and a base tuple.
However, we can write O to signify that we intend the corresponding runner
to have ‘no’ extra bead, i.e. the number of beads on the runner is equal to the
corresponding entry of the base tuple, and O when the number of beads is one

more than the corresponding entry of the base tuple.

Example 4.11. Let e = 3 and B = (0,0,0). Then the following table illustrates

an example of the difference between Oy and 0p.
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d(N) Pair of abacuses Multipartition

0 1 2 0 1 2

(= 0N, +) l l 7 l (2,(2))
0 1 2 0 1 2
(_7037+) ) (gv(lg))

O

With this notation, since we can now determine the multipartition along with
its residues from the abacus, if we are given a plus minus sequence and a base

tuple we can calculate the corresponding multicharge «.

Proposition 4.12. Suppose we have a plus minus sequence and a base tuple
(bo, b1, ...,be—1) giving a truncated abacus configuration and a 2-multipartition
A= ()\(1)7 )\(2)). Let p be the number of plusses in the sequence, m be the number
of minuses, zn be the number of zeroes corresponding to no bead added and zp
be the number of zeroes corresponding to a bead added. Then the e-multicharge
k = (K1, Kk2) associated to A is given by
e—1
K1 EZbk—l—m+z3 mod e,

k=0
e—1

Ko = Zbk +p+ 2z mod e.
k=0
Proof. Suppose the truncated abacus configuration we obtain for A(¢) has beads

at positions Bj for j > 1, where position 0 is the position at the top left on runner

0 and the BJC-’S are ordered so that Bjc > B]C 41 for every j > 1. If the truncated
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abacus configuration has no beads then we let B{ = —1. These positions satisfy
BJC = BJC mod e.
Since by definition, ] = )\gc) — 1+ K¢, we have
ke =5 — /\gc) +1 mod e, for ce{1,2}.

Now let runner 7. be the runner with position Bf on it. If such a runner does

not exist then we have 3¢ = —1 and )\gc) = 0 hence k. = 0 mod e. Otherwise,

Bf =r. + (z — 1)e where z is the number of beads on runner r.. To find )\gc), we
need to count all the empty spaces preceding the bead at position Bf

Define ¢ as follows:

1, if the entry of the — 4 sequence corresponding to runner r. is a +,
6 pu—

0, if the entry of the — + sequence corresponding to runner r. is a — .

First, consider when ¢ = 1. Then ] = r; + (b,, — 6)e. We can write )\gl) as

1
A =530 b+ 1= 8)+ > (b, — b —6) — (e — 1 —11),
( J
where the first sum is over all ¢ such that b; corresponds to a 4+ or a Oy runner,
the second is over all j such that b; corresponds to a — or a Op runner. The third
summand accounts for those empty spaces in the e — 1 — ry positions greater than
Bll that have been overcounted. Grouping terms we have
e—1

)\gl):brle—Zbk+p+zN—5e—e+1+r1
k=0
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and so

515311—)\§1)+1
e—1
;rl+brle—6e—bme—|—2bk—p—zN+5e—|-e—1—r1+1

k=0
1

bp+e—p—2zn

)
|

o
Il
- o

b, +m+ zp
0

b
I

modulo e.

Now consider when ¢ = 2. Then 32 = ry + (b, + 6 — 1)e. We can write )\52) as

2
A =Sy —bi = 14 0) + > (b, — b +6) — (e — 1 —12),
( J
where the first sum is over all 7 such that b; corresponds to a + or a Og runner,
the second is over all j such that b; corresponds to a — or a Op runner. Grouping

terms we have

e—1
brze—Zbk—p—ZB—i-(Se—e—Fl—i-rg
k=0
and so
/1253%—)\52)—1—1
e—1
E7“2+b7~2€—|—5€—6—b7«26—|—25k+p—|—23—5€+€—1—T2+1
k=0
e—1
EZbk-i-p—i—zB
k=0

modulo e.

With this, we can note the following.

Remark 4.13. Given a plus minus sequence d(\) and a base tuple B, we can

extract a value for n based on the associated A, a value for e from the numbers
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of runners on the abacuses, and a value for k by Proposition 4.12. Thus given a

base field F we can uniquely define an algebra #~ based solely on d()\) and B.

It turns out that the sequence d()\) is incredibly useful, and holds a lot of

information about the core block that S* lies in.

Theorem 4.14. [Lyle] Let A be a multipartition arising from a plus minus
sequence. Then X is Kleshchev if and only if CZ()\) consists only of plusses, or only

of minuses, or is empty.

Given a multicore A lying in a core block, we obtain all the other multipartitions
in the block by permuting the plusses and minuses in the sequence d(\) to obtain
other multicores with respect to the same base tuple.

Suppose A is a multicore, Kleshchev, and lying in a core block with plus minus
sequence d(A), and that p is a multicore also lying in the same core block where
d(u) is obtained from d(A) by swapping each pair in some subset of pairs —, +
that are each linked by an arc to obtain 4, —. Then we say that u is formed from
A by a process of arcs, and write A —~ p. Any Kleshchev multicore A is formed
from itself by a trivial process of arcs so A —~ A. This notion allows us to state the

graded decomposition number for the relevant Specht and irreducible modules.

Theorem 4.15. [Lyle] Let A\ and p be multicores lying in the same block with
M\ Kleshchev. Then [S*: D) # 0 <= X\ —~ pu. Moreover, if \ ~ u, then
[St: DA, = v where i is the number of —,+ pairs that have been swapped to

obtain d(u) from d(X).

Example 4.16. Let e = 3, and consider the abacus configuration

0 1 2 0 1 2
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which corresponds to the multicore A = ((1?), (2)) with base tuple (2,1,2) and
multicharge x = (0,1). We have d(\) = (+, —,+) and so d()\) = (4) hence A
is Kleshchev. To get the other multicores in the block we permute the plusses

and minuses in d()\). So we will have p with d(u) = (—,+,+), d(p) = (+) and

v with d(v) = (+,4+,—), d(v) = (+ + —). More precisely, p is the Kleshchev

multipartition (&, (2,1?)) with abacus configuration

0 1 2 0 1 2

and v is the (not Kleshchev) multipartition ((3,1), @) with abacus configuration

0 1 2 0 1 2

We see that © —~ A by swapping one —, 4 pair:

2
d(lu’) = ( B + 7+) whilst (+7 _7+) = d()‘)a
and A —~ v by swapping one —, + pair:
2
d(A) = (+, —, + ) whilst (+,+,—) = d(v).

Hence using Theorem 4.15, we obtain the decomposition matrix for the multicores
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in the block:

D# DA
St 1 0
SM w 1
SY | 0 v

4.2 Homomorphisms within core blocks

Let e € {2,3,4,...} and suppose from now on that we have the base tuple
B =(0,0,...,0). Then if we have a bipartition A given by a plus minus sequence
d(\), we must have that the components of A (and all other multipartitions
in the corresponding block) obey the diagonal residue condition. Thus we can
use Theorem 3.14 to find homomorphisms between Specht modules in the block
containing A\. We first exhibit some combinatorics related to our plus minus
sequence using the Russian convention for drawing partitions, and then exhibit a
result of Hu and Mathas [HM10] in this setting.

Given the diagram of an [-multicomposition A:
A ={(r,e;m) e NxNx{1,...,1} | e <A™}

we can draw its diagram in the Russian convention by drawing each node as a
box, with the r coordinate increasing from south-east to north-west and the ¢
coordinate increasing from south-west to north-east. For example, the Russian

convention diagram of ((2,2,1),(2),(3,1)) is drawn as

. 6)

Now given our bipartition A\ and its plus minus sequence d(\), we can construct
paths corresponding to the two components of A by reading along the plus minus

sequence. To draw the path for A(), whenever we encounter a — we draw a
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line \_ whilst for + we draw . To draw A\?) we do the opposite: for — draw
/ and for + draw \. For either component, if we encounter a zero we draw
N\ if this corresponds to a bead (i.e. it is a Op), or draw  if it does not
(i.e. it is a On). We can place the path for A1) in a ‘trough’ of e lines long,
consisting of at first #(minuses) + #(bead zeroes) lines of the form \ followed
by #(plusses) + #(no bead zeroes) lines of the form . We place the path for
A2 in a ‘trough’ of e lines long, consisting of #(plusses) + #(bead zeroes) lines
of the form \ followed by #(minuses) + #(no bead zeroes) lines of the form /.

This constructs the diagram for A since if we observe the abacus corresponding
to the first component plus minus sequence, every time we encounter a minus
(or a bead zero) this corresponds to a bead which corresponds to the end of a
row (which may be empty), whilst every time we encounter a plus (or a no bead
zero) this corresponds to an empty runner on the abacus which corresponds to a
column. Similarly we obtain the diagram of the second component since the roles
of the plus and minus swap with respect to where we place beads on the abacus,

whilst the roles of the zeroes stay fixed.

Example 4.17. Let e = 13, and d(\) = (—,—,0p,—,+,—,0n, +,+, —, 0B, +, +).
The path for A() is:

The path for A(M) sits in a trough whose left hand side is 7 lines long and whose

right hand side is 6 lines long, which is:

giving:
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Meanwhile, the path for A?) is:

and this sits in a trough whose left hand side is 7 lines long and whose right hand

side is 6 lines long, which is:

giving:
O

We can pair up edges of the path in an analogous way to how we pair entries
of the plus minus sequence. If a pair —, 4 is linked by an arc in the plus minus
sequence, we link the corresponding edges of the second component of the tableau
by a tile. To be precise, starting at the node adjacent to the edge labelled by the
—, if this is also adjacent to the edge labelled by the + we are done and our tile
consists of just the one node. Otherwise, we also incorporate the node north-east
of this, unless this is already within another tile, in which case we incorporate the
node south-east of this into the tile. We then repeat this until we reach the node
adjacent to the edge labelled by the 4. Note that in practice, we must pair up
the edges by starting with those —, + pairs that are contained within other pairs

and then work outwards.

Example 4.18. We exhibit the tiling for A(?) as in the previous example.
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O

Now, if we swap a linked —,+ pair in d(\), we obtain a new plus minus
sequence which will correspond to a bipartition u. Using the path construction
of the Russian convention diagram, we see that to obtain u(!) we add the tile
corresponding to the —, + pair in A2 to A1), whilst to obtain x( we remove

this tile from \(®).

Example 4.19. If d(u) = (+,—,05,—,+,—,0n,+,+,—,0p,+, —) (i.e. we have
swapped the outer —, + pair in the previous d(\)), then the shape of p is as

follows:

O

For any such p obtained by swapping some linked —, + pairs, we can construct
a p-tableau s from ¢ by considering values of the corresponding tiles in t* and
simply filling in the tiles of y with the same values as they had in t*. In this way,
we construct a standard p-tableau whose residue sequence is the same as that of
t*. In fact, due to Hu and Mathas, the following result tells us that this is the only

such tableau with s> t*. Let e be large enough so that A and p obey the diagonal
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residue condition, and define Std* () := {s € Std(u) | s> and res(s) = res(t*)}.
We will say that a tableau t is regular if its entries increase along the diagonals
in each component (recall that the kth diagonal of component m consists of the

nodes (7, ¢, m) such that r — ¢ = k).

Proposition 4.20. [HM10, Lemma B1 & Corollary B2] Suppose that A and p
are 2-multipartitions of n and let e be large enough so that \ and p both obey the

diagonal residue condition. Then #Std*(u) < 1.

Proof. Suppose that t € Std*(x) such that t > t* (otherwise t = t and we are
done). Note that the tableau t is uniquely determined by its residue sequence
and the sets (Y and ?). Let X be the set of nodes in u( \ A1) that are either
(horizontally, vertically, or diagonally) adjacent to a node in A or are in the
first row or the first column of u"). Let A := {t(z) | z € X}. Define t4 to be
the unique regular tableau with res(t) = res(t}) such that t1(41) = tM\ A and
tf) =t U A. In other words, we form t4 from t by moving the numbers in A
from the first component of t to the second without changing their ‘shape’, whilst
‘sliding’ numbers along the diagonals in order to fill in the gaps from where A was
in the first component and create gaps for A in the second component. As t and

t* are both standard we must have that t4 is standard.

Now we show how we can uniquely form t given only A and p. We have
that A\ and p uniquely determine the set X, and so they also uniquely determine
Shape(t4). Note that Shape(ta) < ¢ and so by induction #Std*(Shape(ts)) < 1.
The basis case of the induction is that #Std*(\) = 1, and any tableau in Std*(v)
for some v must have been formed using the above construction in reverse, hence

there is only at most one candidate for such a standard tableau. In particular,

given the tableau t4, we can recover t. Thus #Std*(u) < 1. O

Example 4.21. Consider the plus minus sequence (—, —, —, +, —, +,+, —, +, +)

associated to the multipartition A = ((3,1), (52,42, 3)). We exhibit A below with
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the tiling made clear in A2,

The tableau t is as follows:

ool

Let u = ((5,4,22,1),(4,3%,1)) be the multipartition corresponding to the plus
minus sequence d(p) = (+,—,+,—, —, +,+, —, +, —), obtained from that for A by
swapping some —, + pairs linked by arcs.

The u-tableau t is as follows:

The set X consists of the red nodes, and A = {8,9,11,12,13,15,16,19,23}. In

this case, t4 is the tableau:

O

Now we wish to determine the homomorphisms between Specht modules
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indexed by bipartitions arising from plus minus sequences. We will need the

following definition.

Definition 4.22. Suppose A and p are [-multipartitions of n. If ¢ €
Hom , x. (S*,5"), we say that ¢ is dominated if o) € (v° | s € Std (u))p.
We write DHom 1, (S)‘, 5’“) for the space of dominated homomorphisms from

SA to SH.

Due to the first part of the following theorem (which we state for arbitrary [)
we have that when e # 2 and k1 # kg it will be enough to concern ourselves with

studying dominated homomorphisms.

Theorem 4.23. [F'S16, Theorem 3.13] Suppose e # 2 and that ki,...,K; are
distinct, and A and p are [-multipartitions of n. Then the set DHom , A, (SA, S“)
is equal to Hom , (S)‘,S“). Hence Hom (S)‘,S“) # {0} only if X < p,

Hom A (SA, S)‘) is one-dimensional and S* is indecomposable.

Example 4.24. The following two examples demonstrate what happens upon

relaxing the hypotheses of Theorem 4.23.

1. Let e = 2,1 =1, A = (2) and p = (1,1). Then there is a non-zero

t

homomorphism ¢ : S* — S*, v¥ — fu"A, but this is not a dominated

homomorphism.

2. Let e = 3, take k = (1,1), A = (2,(2)), p = ((2),9). Then there is

tH %

a non-zero homomorphism ¢ : S* — S* o — o', but this is not a
dominated homomorphism. Note that A corresponds to d(\) = (—,0x,+)

whilst d(u) = (+,0n, —) for the base tuple B = (0,0,0).
Note that both of these homomorphisms are in fact isomorphisms. %

Let us again suppose that we have the base tuple B = (0,0,...,0) and a
bipartition A given by a plus minus sequence d(A). We wish to find bipartitions
p so that Hom . (8*,5#) # {0}. Of course, we will only need to consider
bipartitions p that belong to the same block as A. So in order to find the

bipartitions A and p such that DHom ,,1. (A, 5#) # {0} we will first need to
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find the sets Std*(x) that are non-empty. Define a tile of nodes to be a finite set
of nodes that can be ordered as { N1, No, ..., Ni} such that given N; = (r,¢c,m),
we have Nj1q € {(r+1,¢,m), (r,c+ 1,m)}. The following proposition allows us
to disregard many different bipartitions u for a given A. Note that here we are in
effect utilising our combinatorial setting in order to adapt [HM10, Theorem B3]

to our needs.

Proposition 4.25. Let e € {2,3,4,...} and suppose we have a base tuple B =
(0,0,...,0). Suppose also that \ and p are obtained from plus minus sequences
d()\) and d(p). Then if Std*(u) # @ then d(p) is obtained from d()\) by swapping

some —,+ pairs that are linked by arcs in d(\).

Proof. Let t € Std*(y). Then following the construction in Proposition 4.20, we
can form t from a tableau t4 by sliding some nodes from the second component
to the first. By induction, assume that d(Shape(ts)) is obtained from d(\) by
swapping some —, + pairs that are linked by arcs in d(\) (the base case being when
Shape(ts) is just A). So we wish to show that d(u) is formed from d(Shape(ta))
by swapping some —, + pairs that are linked by arcs in d()).

Note that since Std*(i) # @, A and p must lie in the same block. d(\) and
d(p) must contain the same number of plusses and minuses. Consider d(u). In
order to recover Shape(t4) we need to remove some tiles of nodes, that are adjacent
to A, Removing a tile from [1¢] will correspond to swapping the positions of a +
and a — in d(u), where + occurs before the —. We cannot swap any + and —
corresponding to a tile which also occur in the exact same positions as in d(\),
since no such tile can have its rightmost (in the Russian convention) residue being
equal to that of a residue at the end of a row of ()| as we would then be removing
nodes from A" which is not allowed as we must have that A(!) is contained within
p),

From now on, we refer to the + and — to be swapped as a backwards pair.
Consider the entries of d(u) that fall between the backwards pair. We must have
that amongst these entries, there are the same number of —’s and +’s, since

otherwise the tile removed from the first component of p will not be the same
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as that added to the second component to form Shape(ts). Not only this, but if
these entries correspond to any nodes, these nodes will sit ‘above’ (in the Russian
convention) the tile corresponding to the backwards pair, and so these entries
will pair up as either a pair 4+, — that was a linked —, + pair in d()), or as a pair
—, + that corresponds to a linked —, + pair in d(A). But so this means that the
backwards pair +, — must be the result of swapping a pair —, 4+ that is linked by
an arc in d(\).

Thus d(u) arises from d(Shape(t4)) by swapping some pairs —, + that were
linked by an arc in d(\), hence by induction, the whole of d(u) arises by swapping

some such pairs —, + in d(\). O

So we now need only consider those 1 whose plus minus sequence d(u) arises
from that of A by swapping —, +, pairs that are linked by arcs. Suppose that we
obtain d(u) by swapping linked pairs —, + along with all linked pairs —, + that
are contained within these pairs when reading the plus minus sequence. We shall
denote this by writing A = y. Trivially, we have A= \. If y £ A, then A= p will
correspond to removing skew shapes from the right hand component and adding
them to the left hand component. Now we can state the main theorem of this

chapter.

Theorem 4.26. Let e € {2,3,4,...} and suppose we have the base tuple B =
(0,0,...,0). Suppose that X\ and p are obtained from plus minus sequences d(\)
and d(p) respectively, and that %LA“ is the uniquely determined algebra as in

Remark 4.13. Then

Dimp (DHomféAn (SA,S“)) )t e

0  otherwise.

Moreover, when this dimension equals 1, we can explicitly describe the homomor-
phism in DHom A, (S)‘, S“) and its degree is equal to the number of —, + pairs

swapped to obtain p from A.

Proof. If A= p, then by Proposition 4.20 we can construct a unique standard
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tableau so that using Corollary 3.18 we have that there is exactly one non-
zero dominated homomorphism from S* to S*. When p = A, the only such
homomorphism from S* to itself is the trivial homomorphism.

Now suppose that we do not have A= p, and so in order to obtain d(u) we
have to swap a linked pair —, 4+ but do not swap some linked —, 4+ pair that is
contained within this pair. Then in view of the tile construction from above, we
will have that there is a unique p-tableau s € Std)‘(,u), that is constructed by
removing some tiles from the second component of t* and adding them to the first
component, without also removing every tile that sits above them (in the Russian
convention). But then there will be some value r in the moved tiles such that
r 4+ 1 belongs to an unmoved tile, and that v, is a row relation for S*. However,
v %1, # 0 since swapping  and r + 1 in s still gives us a standard p-tableau.
Thus there is no non-zero dominated homomorphism from S* to S* in this case.

Now we are left with proving the statement about calculating the degree. So
first suppose that A= and that we swap just one linked —, 4+ pair to obtain
d(p), then we have moved one tile from the second component of A to the first.
Note that in the language associated to Corollary 3.18, any tile contains one more
positive diagonal than negative diagonals hence the base degree associated to a
tile will be 1.

If we instead are required to swap a linked —, + pair along with any completely
contained linked —, 4+ pairs then note that each completely contained pair will
simply add 1 to the associated base degree, as the corresponding tile will have
one more positive diagonal than negative diagonals and these will line up directly
with positive and negative diagonals associated with the outer —, + pair.

Thus the degree of a homomorphism S* — S* will be equal to the number of

linked —, + pairs that are swapped. ]

We are now able to put everything we have done together in order to compute
every homomorphism space between the Specht modules lying in a core block of a
level 2 KLR algebra when e € {3,4,5,...} and k1 # k2. Adapting Theorem 4.26

in light of Theorem 4.23 we have the following.
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Theorem 4.27. Suppose the assumptions of Theorem 4.26 hold, and further
suppose that e # 2 and that the number of plusses in d(\) or d(u) is not equal to

the number of minuses. Then k1 # Ko and so we have that

Dimg (Hom%% (S)\? su)> i

0 otherwise.

Given a plus minus sequence d(\) corresponding to some multipartition A, we
shall write S to mean S*. For the following example we shall exhibit how when
e € {3,4,5,...} and k1 # K2 we can compute the entire set of homomorphism

spaces between Specht modules in a core block for which B = (0,0,...,0).

Example 4.28. Let d(\) = (—,—,—,+,+), e =5, B=(0,0,0,0,0). Then the
decomposition matrix for the corresponding block is shown in Table 4.1. Using the
facts we have outlined above, we can complete Table 4.2. We can fill in most of
the homomorphism table purely on the basis that homomorphisms only arise from
swapping linked —, 4+ pairs. The only two entries that we have to worry about
are those that related are related to homomorphisms (=% — §l=+—+-)
and SC——+H+t7) & §H=+=7) Note that in the former case, when d(u) =

(=, +,—,+,—), we have that t* is:

whilst the unique tableau t in Std*(u) is:

P @

and a row relation for S* that does not annihilate v vt is 5. We can follow a
similar argument for the latter case, and thus the two entries of the homomorphism

table in question are both zero. O
In the case that the entries of the multicharge are not all distinct, we cannot
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‘4G 0} .G woiy swsiydiowowoy jo 9okds 9} JO UOISUSWIP PopelId oY) SI /i ST JUIpRay UWN[0d pue T ST SUIPRIY MOI

asoym A1yue o], “((+ ‘4 ‘—‘—‘—))p 03 Surpuodser10d ¥o0[q oY} 10] seoeds WSIYAIOWOWOY JO UOISUSWIP PIPRIS 1) MOYS 03 d[qR], :g'F 9[RL,
T 0 0 0 0 0 0 0 0 0 (= ==+4)
a 1 0 0 0 0 0 0 0 0 — ==t
0 @ T 0 0 0 0 0 0 0 (=4 ="=4)
0 0 a T 0 0 0 0 0 0 (+='==4)
0 a 0 0 1 0 0 0 0 0 (= =4+
0 e a 0 o 1 0 0 0 0 (=4 =4
0 0 e @ 0 o 1 0 0 0 (== 4*)
z? 0 0 0 0 a 0 1 0 0 (= '+ =)
0 0 0 0 0 e a a I 0 (4= 4imimy
0 0 0 0 2 0 0 0 o T (+ 4= = =)
e 2 B I Gl N e I € o N I e e N I G L e N I € e e T I G e T I G e G )

. ¢S] qumu uoryisoduwosop popelId o1} SN ST T ST Furpesy]
MOI pue fi ST SUIPRSY UWN[OD 9SOYM AIJUD O], "s00uanbos + ‘— 9s0Y) 0} PojeIdosse SO[NPOW J[(IDNPALIT 9} 0F PUOdSOIIOd SMOI oYY JS[IYM
seouanbos + ‘— 9501} 03 pajeIdosse sompout JYPadg jussardol summniod oy T, (Y )p 03 Surpuodseriod Joo[q o1} 10j XLy uoljsodmwosd( 1§ 9[qe],

0 P a 0 a T 0 0 0 0 (=4 —pm)

0 0 e® @ 0 o T 0 0 0 (== 4)

? a 0 0 0 a 0 1 0 0 (=++==)

0 0 0 0 0 e a a T 0 (=4 =)

0 0 0 0 " o 0 0 o T (1= =)
(= =) | (= =) | (C ) | (Rt ) | () | () | (R ) () | (B ) | (R )
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(= —=++) | (—+—H) | (—+H+) | ==+ | =+ | (++ =)
(= =+, +) 1 v 0 0 0 v?
(= 4, — +) 0 1 v v w2 0
(=454, —) 0 0 1 1 v 0
(+,—, —+) 0 0 1 1 v 0
(+, =+, —) vt 1 0 0 1 v
(22 =2 =) v? vt 0 0 0 !

Table 4.3: Table of graded dimensions of homomorphism spaces for the block
corresponding to d((—, —,+,+)). The entry whose row heading is « and column
heading is y is the graded dimension of the space of homomorphisms from S* to
SY.

claim that every homomorphism is a dominated homomorphism, and so in turn we
cannot determine the possible standard tableaux in the image of a homomorphism
as we could when considering ‘sliding tiles’. In general, we are thus unable to

determine the entire set of homomorphism spaces precisely without checking each

tableaux individually.

Example 4.29. Let d(\) = (—,—,+,4+), e = 4, B = (0,0,0,0,0). Then an
example of a homomorphism which is not a dominated homomorphism is ¢ :

St—=H) 5 (=) given by

(=) = (519

The homomorphism table for the associated block is shown in Table 4.3. O

4.3 Different base tuples

We now detail some examples of homomorphisms between Specht modules that
arise from plus minus sequences for base tuples other than just (0,0,...,0), and
discuss a potential pattern seen in the images of these homomorphisms. It will be
useful to refer back to Chapter 3, Section 3.4.

Firstly, we note simply that if we have a base tuple other than (0,0,...,0)

then our homomorphisms may not be indexed by a single tableau.

Example 4.30. Let e = 3, d(\) = (—, —, +), d(p) = (—,+,—) and B = (0,0, 2).
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The initial tableau t* is

3[4]5]6]7]8]
= [1]2]] [9]10[1112
13]14

t

There is a homomorphism ¢ : S* — S* given by v * 5 v + 20t where

112]6]7]8]|[3]4]5]
s= | [0[11]12 9
14 13
and
112]3[4]5]|[6]7]8]
t= | [1011[12 9]
14 13

O

The tableau s arises in the same way as we expect, but we also have a term
indexed by the tableau t, and this is formed by acting on s by the permutation
(3,6)(4,7)(5,8).

Next, note that if we make the differences between the base tuple entries

bigger, we obtain even more terms in the image of a homomorphism.

Example 4.31. Consider the setup of the previous example but now suppose

that B = (0,0,3). Then the initial tableau t* is

7[8]910[11]12[13]14]
1]12]3]4]| [15[16[17]18]19]20
56 21/22/23/24
25/26

=

There is a homomorphism ¢ : S* — S* given by

o s ® + 20t + 20" + 40"

where
1]2]3]41213[14] | [7]8]9]10[11]
< | (561181920 15[16[17
22/23/24 21 ’
126] 125)
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1]2]3]4]9]10[11] | | 7][8]12[13]14]
(| [5]6[18[19]20 151617

22[2324 21] ’

126] 125)

1]2]3]41213[14) | [7]8]910]11]
ue | p]6]1516]17 18[19]20

22[2324 21] ’

126] 25)

and

1]2]3]4]9]10[11] | [7]8]12[13]14]
o— | [516115[1617 18[19/20

22[2324 21|

126] 25)

Similarly, to before, we obtain the tableau s as expected and then

t = s(9,12)(10, 13)(11, 14),
u =s(15,18)(16,19)(17,20), and

b = 5(9,12)(10, 13)(11, 14)(15, 18)(16, 19)(17, 20).

Note that v* and v* both have coefficient 2, whilst v® has a coefficient of 4.

In the previous two examples, we may observe the same pattern in the
coefficients that was also exhibited in Examples 3.24 — 3.26. Whereas some of the
other examples in Section 3.4 did not follow this pattern, we conjecture that in the
current setting this pattern will always appear. In an attempt to motivate this,
suppose that A\ and p are multipartitions arising from plus minus sequences with
some arbitrary base tuple B, and that A = p, where p is formed just by moving a
single i-node z in A (for some residue 7). It will be useful to consider the abacus
configurations of A and p here. First, consider A(?); then there are no removable
i-nodes above x in this component, since otherwise removing x will not leave an
e-core. Now consider A(V); there can be no removable i-nodes below where we
shall add z to form p(!), since otherwise we cannot add x in the first place. Thus
in terms of the naive point of view discussed at the very end of Section 3.4, there

are no removable i-nodes lying between the position from which node x is removed
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4.3. Different base tuples George Witty

and added, and so we expect that the ‘expected tableau’ will appear in the image.

If A= pu, where p is formed from A by moving a skew shape S, then we claim
that the restrictions of the abacus afforded by working with such multipartitions
ensure that the shapes in Xg cannot be removed from anywhere higher in the
second component, or from anywhere lower in the first component. Thus we
conjecture that we will always obtain homomorphisms which arise in the same
way as the examples above, following a pattern based around permuting sets of e
entries, and moreover that these homomorphisms are the only ones that arise, so

that we have the following:

Conjecture 4.32. Theorem 4.26 holds for any arbitrary base tuple.
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