
Changing Software Development

Practice: A Case Study of DevOps

Adoption

Stephen John Jones

A thesis submitted for the degree of

Doctor of Philosophy

University of East Anglia

Norwich Business School

October 2020

This copy of the thesis has been supplied on condition that anyone who consults it is

understood to recognise that its copyright rests with the author and that use of any

information derived therefrom must be in accordance with current UK Copyright Law.

In addition, any quotation or extract must include full attribution.

©

i

Abstract

DevOps, a portmanteau of development and operations, is a Software

Engineering approach to emerge in industry, with a goal to rapidly

develop and deploy good quality software. It has seen increased re-

search attention in recent years with most studies focusing exclusively

on tools used for DevOps or attempts to universally de�ne it. This has

led to a misunderstanding of DevOps alongside di�ering de�nitions,

and therefore this research argues that a universal de�nition should

not be sought.

A focus group of practitioners evaluated existing de�nitions with the

�ndings further tested in a questionnaire to the wider DevOps com-

munity. The output of this informed a 14 month case study of DevOps

adoption in a medium sized UK organisation. A pragmatic approach

was taken to study what DevOps meant for the organisation and its

impact on employees and other business functions.

This research contributes to theory by identifying the core attributes

of DevOps, and by using a job crafting theoretical lens to under-

stand the organisational change required to implement DevOps and

elucidating how individuals change their work identity as they adopt

DevOps practices and processes. In particular, this research �nds that

Software Developers are natural Job Crafters, especially if a�orded the

freedom to do so. This research contributes methodologically by using

multiple methods, and in particular a longitudinal qualitative diary

study over 14 months with a very low attrition rate. This was achieved

through using tools that participants use in their work to record their

experiences of DevOps implementation. Finally, this research makes a

practical contribution by developing the building blocks of attributes

that organisations should consider within their speci�c context and

by developing an interdisciplinary framework that takes account of

both the software development process and the associated manage-

ment implications of adopting and implementing DevOps.

Access Condition and Agreement

Each deposit in UEA Digital Repository is protected by copyright and other intellectual property rights,
and duplication or sale of all or part of any of the Data Collections is not permitted, except that material
may be duplicated by you for your research use or for educational purposes in electronic or print form.
You must obtain permission from the copyright holder, usually the author, for any other use. Exceptions
only apply where a deposit may be explicitly provided under a stated licence, such as a Creative
Commons licence or Open Government licence.

Electronic or print copies may not be offered, whether for sale or otherwise to anyone, unless explicitly
stated under a Creative Commons or Open Government license. Unauthorised reproduction, editing or
reformatting for resale purposes is explicitly prohibited (except where approved by the copyright holder
themselves) and UEA reserves the right to take immediate ‘take down’ action on behalf of the copyright
and/or rights holder if this Access condition of the UEA Digital Repository is breached. Any material in
this database has been supplied on the understanding that it is copyright material and that no quotation
from the material may be published without proper acknowledgement.

ii

Contents

List of Figures vi

List of Tables viii

Dedication and Acknowledgements x

List of Papers xiii

1 Introduction 1

1.1 Background . 3

1.2 Research Problem . 4

1.3 Research Aims and Questions . 6

1.4 Methodology Overview . 7

1.5 Research Contribution . 8

1.6 Thesis Structure . 9

2 Methodology 11

2.1 Introduction . 13

2.2 Research Purpose, Philosophy and Approach 13

2.2.1 Research Philosophy . 15

2.2.2 Evaluation of Positivism, Constructivism and Pragmatism 15

2.2.3 Philosophical Stance and Approach Taken 18

2.3 Research Strategy, Technique and Time Horizon 19

2.3.1 Experiment . 20

2.3.2 Surveys . 20

2.3.3 Case Studies . 21

2.3.4 Research Strategy Selection and Justi�cation 25

iii

2.3.5 Technique Choices and Time Horizon 26

2.3.6 Overview of the Empirical Work in this Thesis 27

2.4 Method for Exploring the De�nition of DevOps 29

2.4.1 Focus Group . 29

2.4.2 Questionnaire Survey . 34

2.4.3 Data Analysis . 37

2.5 Method for Exploring the Adoption of DevOps 40

2.5.1 Open Format Diary Study 42

2.5.2 Pilot Study and Abductive Reasoning of Job Crafting . . . 42

2.5.3 Semi-Structured Interviews 46

2.5.4 Data Analysis . 52

2.6 DevOps Systematic Review . 55

2.6.1 Introduction to Systematic Literature Reviews 55

2.6.2 Protocol . 57

2.6.3 Limitations . 64

2.7 Summary of Methodology . 64

3 Literature Review 66

3.1 Introduction to the Literature Review 68

3.2 Origins of Software and Software Engineering 68

3.2.1 The Software Crisis and Software Engineering 70

3.2.2 Summary of Section . 75

3.3 DevOps . 75

3.3.1 What is DevOps? . 76

3.3.2 Organisational DevOps Adoption 79

3.3.3 DevOps Research Agenda 87

3.3.4 Summary of Section . 89

3.4 Introduction to Job Crafting . 90

3.4.1 DevOps and Job Crafting 93

3.4.2 Summary of Section . 96

3.5 Summary of Literature Review 96

4 Focus Group and Survey Findings 99

iv

4.1 Introduction . 101

4.2 Focus Group Findings . 101

4.2.1 Framework for Contextually De�ning DevOps 101

4.2.2 Focus Group Evaluation of Agreed De�nitions 108

4.3 Questionnaire Findings . 109

4.3.1 Conceptual Attributes - Exploratory Factor Analysis . . . 109

4.3.2 Conceptual Attributes - Inter-rater Agreement 110

4.3.3 Evaluation of Focus Group Produced De�nitions 111

4.4 Summary of Focus Group and Questionnaire Findings 114

5 Case Study of Anglia Farmers Ltd. 115

5.1 Case Study Introduction and Overview 117

5.1.1 Justi�cation for Case Study Selection 118

5.1.2 Structure of Case Study 118

5.1.3 Overview of Case Study Data 119

5.2 Case Study Time Period A . 122

5.2.1 Perceptions of DevOps . 123

5.2.2 Impact of Legacy Software Maintenance 123

5.2.3 Goals of DevOps Adoption 126

5.2.4 Change and Culture . 126

5.2.5 Role of Senior Management in DevOps 131

5.2.6 DevOps Driven Job Crafting 133

5.3 Time Period B . 134

5.3.1 Impact of Legacy Software Maintenance 135

5.3.2 Change and Culture . 136

5.3.3 Role of Senior Management in DevOps 139

5.3.4 Key Personnel Loss . 141

5.3.5 DevOps Driven Job Crafting 142

5.3.6 Transformation of Work Identities 144

5.4 Time Period C . 146

5.4.1 Emergence of DevOps Practice at AF 147

5.4.2 Impact of Legacy Software Maintenance 152

5.4.3 Business Process Re-Engineering 153

v

5.4.4 Role of Senior Management in DevOps 155

5.4.5 DevOps Driven Job Crafting 157

5.4.6 Change and Culture . 160

5.5 Summary of the Case Study . 163

6 Discussion and Conclusion 166

6.1 Overview of the Discussion and Conclusion 168

6.2 De�ning DevOps . 169

6.3 Organisational Adoption of DevOps 173

6.3.1 Case Study of DevOps Adoption at Anglia Farmers 173

6.3.2 DevOps Driven Job Crafting 181

6.3.3 Theoretical Implications for Job Crafting 185

6.4 Conclusion and Answers to Research Questions 187

6.4.1 Answers to Research Questions 189

6.5 Theoretical Contributions . 194

6.5.1 Contribution One: How to De�ne DevOps 194

6.5.2 Contribution Two: Abstract Model of DevOps 195

6.5.3 Contribution Three: Application of Job Crafting Theory to

DevOps . 195

6.6 Methodological Contributions . 196

6.6.1 Contribution One: Advocation of Lethbridge et al.'s (2005)

Multi-Method Recommendation 196

6.6.2 Contribution Two: Utilisation of Contextual Tools for Data

Collection . 197

6.7 Management Recommendations 199

6.8 Research Limitations . 199

6.9 Future Research . 200

References 202

Appendices 216

Appendix 1: Focus Group Itinerary . 217

Appendix 2: Focus Group Photos . 218

Appendix 3: Specimen Questionnaire 220

vi

Appendix 4: Markdown and Plain Text Diary Templates 224

Appendix 5: Protocol for Entrance Interviews 227

Appendix 6: Protocol for Mid-Study Interviews 230

Appendix 7: Protocol for Exit Interviews 232

Appendix 8: Ada Lovelace, Babbage's Analytical Engine and Note G . 234

Appendix 9: Systematic Literature Review Bibliography 235

Appendix 10: De�nition Response Themes 238

Appendix 11: Specimen Theme Coding for Case Study 240

Appendix 12: Case Study Theme and Quote Index 242

Appendix 13: Specimen DevOps Engineer Job Description 255

Glossary 257

List of Figures

1.1 DevOps Venn diagram . 4

1.2 DevOps meme . 6

1.3 Thesis structure . 10

2.1 Flow of Research Considerations 14

2.2 Research Map . 28

2.3 Types of questionnaire . 34

2.4 Diary study process using Bitbucket and Markdown 45

2.5 Forms of interview . 48

2.6 Multi-Interview plan for Anglia Farmers Ltd. 50

2.7 Key stages of a Systematic Literature Review 56

2.8 Process for the DevOps Systematic Literature Review 58

2.9 Cumulative frequency of peer-reviewed DevOps publications . . . 61

3.1 Waterfall model . 72

vii

3.2 Scrum framework of software development 74

3.3 DevOps Lifecycle . 84

3.4 Model of job crafting . 92

3.5 Technical and Social Challenges of Continuous Deployment 94

4.1 Conceptual attribute framework for DevOps 102

4.2 Model of the team factor of DevOps conceptual attributes 110

4.3 Themes for focus group de�nition one 113

4.4 Themes for focus group de�nition two 113

5.1 Anglia Farmers Ltd. logo and o�ces 117

5.2 Anglia Farmers Case Study Structure and Timeframe 119

5.3 Frequency of primary themes from the Anglia Farmers study . . . 122

5.4 IT operations and software development hierarchy at AF 131

5.5 AFI, AFI RESTful Service and Harrier 135

6.1 Illustrating the Focus Group's output 170

6.2 Iterative DevOps Process and Harmonisation Model 176

6.3 DevOps driven job crafting and work identity transformation propo-

sition for software developers . 183

6.4 DevOps driven job crafting and work identity transformation propo-

sition for IT operations . 184

viii

List of Tables

2.1 Comparison of Constructivism, Pragmatism and Positivism 17

2.2 Focus group participants . 30

2.3 Focus group hosts . 31

2.4 Focus group exercise one tasks . 31

2.5 Weights for Weighted Cohen's Kappa 38

2.6 Kappa Statistic Strength of Agreement 38

2.7 UK Government de�nition of business size 39

2.8 Techniques for research involving Software Engineering professionals 41

2.9 Diary Study participant overview at Anglia Farmers Ltd. 43

2.10 Types of Interview . 47

2.11 Interview participation at Anglia Farmers Ltd. 50

2.12 Artefacts to aid in qualitative data analysis 53

2.13 Set themes for analysis of diary and interview data 54

2.14 Systematic Review Search Strings 60

2.15 Growth of peer-reviewed DevOps literature by year 60

2.16 Grey Literature strategy for the DevOps SLR 63

3.1 De�nitions of DevOps present in the Literature 78

3.2 DevOps capabilities and enablers 81

3.3 Management practices for operational backbone and digital ser-

vices platform assets . 82

3.4 Research Agenda set out for DevOps 88

3.5 Types of job crafting. 91

4.1 Agreed grouped conceptual attributes of DevOps 104

4.2 Participant Selected Literature De�nitions 106

ix

4.3 Dismissed Literature De�nitions of DevOps 107

4.4 Weighted Kappa values on attributes between UK and Non-UK

respondents . 111

4.5 Questionnaire respondent preference on focus group produced def-

initions . 112

5.1 Merged and regrouped themes . 121

6.1 Focus Group Participants' De�nition One 170

6.2 Focus Group Participants' De�nition Two 171

6.3 DevOps capabilities and enablers 172

x

Dedication

Dedicated to and in memory of my beloved son, Micah George Jones,

who was born sleeping on 04 Oct 2015 at 19:15. He was, and still is,

the driving force of my will to succeed in all things I undertake.

The world may never notice The little one we long for

If a Snowdrop doesn't bloom, Was swiftly here and gone.

Or even pause to wonder But the love that was then planted

If the petals fall too soon. Is a light that still shines on.

But every life that ever forms, And though our arms are empty,

Or ever comes to be, Our hearts know what to do.

Touches the world in some small way Every beating of our hearts

For all eternity. Says that we love you.

- author: unknown.

Love bears all things, believes all things,

hopes all things, endures all things.
- 1 Corinthians 13:7 (ESV)

xi

Acknowledgements

This work was the most challenging intellectual undertaking of my life. It

was �lled with challenges including a life changing road tra�c accident in

June 2018, which almost cost me my life let alone my PhD when I was in

the �nal stages of writing this thesis. I would like to dedicate this small

section to a some outstanding individuals and organisations, the support

of whom has been invaluable.

Mrs. Claire Jones

Your continued support and love for me means so much. You have been

through so much and nearly lost me in 2018. You are as much my best friend

as you are my wife, I hope this work makes you proud. I look forward with

optimism to the next big chapter in our lives and marriage.

Professor Fiona Lettice (UEA) and Dr Joost Noppen (BT)

Without your guidance or support throughout this long and eventful jour-

ney, there is no way I would have �nished my research. I view you both

as mentors, let alone supervisors. You have enthused me with research

and encouraged me to explore it further. I have fallen in love with Busi-

ness Management and Software Engineering as research disciplines. I have

enjoyed learning from you both and discovering the researcher in me.

Dr David Cutting, Dr Sultan Al-Khatib andMr Adam Ziolkowski

We had some great times over the years studying under Joost's supervision

and without your fellowship and humour, it would not have been the same.

Thank you guys for your support and the occasional (frequent in Dave's

case) insult and verbal abuse. In the end and despite our best e�orts, we

all failed to disappoint Joost; although Dave, you did come close!

Professor Ana Sanz Vergel (UEA)

I am very grateful for your constant encouragement with my research. I

remain greatly inspired by you following your keynote talk in the Norwich

Business School doctoral colloquium. Thank you very much for your con-

tinued support and inspiration throughout! Me gustaria en esta ocasión

agradecerle su interes, apoyo y ayuda a lo largo de mi trabajo.

xii

Norwich Business School and School of Computing Sciences

It has been a privilege to study and undertake teaching within both schools.

Thank you for providing the facilities that greatly helped provide a con-

ducive environment for undertaking this work.

Anglia Farmers Ltd.

Thank you for o�ering me the opportunity and privilege to work with you

to undertake my research and to present the �ndings.

East Anglian Air Ambulance and East of England Ambulance

Without your timely intervention in June 2018, I would not be in this

position now. You not only saved my life, but also my greatest academic

achievement. Words cannot even begin to express my gratitude.

Addenbrooke's, Papworth and Colman Hospital

You helped me through one of the darkest periods of my life. While the re-

covery will take years, I am grateful for the amazing care and rehabilitation

therapy I have received from you.

Mr Dom Davis, Mr Jason Gibbs and Tech Marionette Ltd.

Thank you so much for providing me a desk in your o�ce and for the

conducive environment to help me manage my fatigue levels, work on this

thesis as well allow me to explore and reinvigorate my technical skills and

re-engage in the Norwich tech network. Taken together, this contributed

not only to my ongoing recovery but also the completion of this work.

SOUL Church

Thank you for being supportive, accommodating and for being able to make

use of your cafe to complete writing tasks as well as to re-explore my faith.

I have become fond of your amazing co�ee and home made lunches.

Almighty God

You have been my strength throughout this entire process and have been

a source of comfort in those times I felt hopeless. It is my great desire that

this thesis helps to advance the knowledge of DevOps and brings you glory.

xiii

List of Papers

Published:

Jones, S., Noppen, J., and Lettice, F. (2016). Management Challenges for DevOps Adop-

tion within UK SMEs. In Proceedings of the 2nd International Workshop on Quality-

Aware DevOps, July 21 2016, Saarbrücken, Germany, pages 7�11. ACM

In Progress:

Jones, S., Zimpel-Leal, K., Lettice, F. and Noppen, J. DevOps: A Framework for Con-

textual De�nition.

Jones, S., Lettice, F., Noppen, J. and Zimpel-Leal, K. Changing Software Develop-

ment Practice: What DevOps Means For Organisations.

Jones, S., Noppen, J., Lettice, F., Davis, D. The DevOps Particular: Comparing Prac-

tice in a Startup, SME and Large Business.

Jones, S., Sanz Vergel, A., Lettice, F. and Noppen, J. Job Crafting in Software En-

gineering: A Qualitative Study.

Jones, S., Lettice, F. and Noppen, J. Peeling the Research Onion to map and guide

longitudinal studies in Software Engineering.

CHAPTER 1. INTRODUCTION 1

Chapter 1

Introduction

"DevOps shows how we optimize the IT value stream, converting

business needs into capabilities and services that provide value for

our customers�

� Gene Kim

CHAPTER 1. INTRODUCTION 2

Overview of Chapter 1: Introduction

Section 1
Background

Section 3
Research Aims and

Questions

Section 5
Proposed Research

Contribution

Section 6
Thesis Structure

Section 4
Methodology Overview

Research questions

Overview of the empirical
activities for this research

Section 2
Research Problem

Interdisciplinary contribution:
Business Management;
Computer Science; and
Software Engineering

Background and
overview of Agile

and DevOps

Lack of interdisciplinary
empirical research

CHAPTER 1. INTRODUCTION 3

1.1 Background

Software development methods tend to focus solely on the software development

teams. One signi�cant development in the late 20th century was the Agile ap-

proach to software development, which advocates team empowerment through an

iterative and incremental approach, and tackled many of the issues around slow,

linear or siloed approaches encountered with early software development [�mite

et al., 2010]. In the early 21st century, the manifesto for Agile software develop-

ment was published [Beck et al., 2001], with focus placed on four core values:

Individuals and Interactions over processes and tools

Working Software over comprehensive documentation

Customer Collaboration over contract negotiation

Responding to Change over following a plan

However, once software is developed within an organisation, it is typically passed

to an Information Technology (IT) operations or support team, who become re-

sponsible for its deployment, ongoing maintenance and provision of support. This

approach still leads to organisational silos, introducing further socio-cultural and

socio-technical issues between both functions, such as a blame culture [Hussaini,

2014; Loukides, 2012; Mohamed, 2015; Tseitlin, 2013], communication di�culties

[Bass et al., 2013; Hussaini, 2014] and delays in producing and deploying software

updates [Chen, 2015; Hussaini, 2014].

Industry is increasingly moving towards the integration of both software devel-

opment and IT operations functions to avoid some of these problems. This in-

tegration is core to DevOps, which places a major emphasis on high levels of

collaboration between software development and IT operations functions [Cook

et al., 2012; Erich et al., 2014; Hussaini, 2014; Kantsev, 2017; Loukides, 2012]

(see �gure 1.1).

DevOps is a portmanteau of Development and Operations, which originated

within web development organisations as a response to satisfying increasing de-

CHAPTER 1. INTRODUCTION 4

Figure 1.1: DevOps is often represented as a Venn diagram [Kantsev, 2017]

mand for the rapid development and deployment of good quality software [Liu

et al., 2014]. Furthermore, it is argued that the functional integration of software

development and IT operations can potentially bring big bene�ts to organisa-

tions from the rapid delivery of new features and updates to existing software

through improvements to business IT infrastructure and process harmonisation

[Claps et al., 2015; Liu et al., 2014].

1.2 Research Problem

Existing contributions to the DevOps knowledge are mostly focused on technical

aspects speci�cally with the various tools associated to it. As such, much of the

literature appears positioned within the Computer Science academic discipline.

There is also an overall lack of empirical research on what DevOps adoption

means for an organisation.

However, one of the largest issues with the published literature is how DevOps

can be de�ned. Although there is no shortage of de�nitions, DevOps appears

di�cult to de�ne [Smeds et al., 2015]. Loukides [2012] is cited by many authors

in their attempts to de�ne DevOps, but despite the detail o�ered, fails to provide

a single de�nition [Smeds et al., 2015]. Dyck et al. [2015] argue that existing

CHAPTER 1. INTRODUCTION 5

de�nitions for DevOps lack clarity and do not especially distinguish it from other

software engineering approaches.

Dyck et al. [2015] also argue that many de�nitions fail to distinguish DevOps

from release engineering. Dyck et al. [2015, 3] de�ne release engineering as �a

software engineering discipline concerned with the development, implementation

and improvement of processes to deploy high-quality software reliably and pre-

dictably�. The key point that Dyck et al. [2015] argue, is that a release engineer

can only function to this de�nition if, and only if, decent communication and

information �ows exist between all involved with the development, deployment

and maintenance of software and infrastructure.

Dyck et al. [2015, 3] therefore attempt to de�ne DevOps universally as an �or-

ganizational approach that stresses empathy and cross-functional collaboration

within and between teams - especially development and IT operations - in software

development organizations, in order to operate resilient systems and accelerate

delivery of changes.�

The notion of poor collaboration between development and IT operations is also

picked up by Hosono [2012, 330], where DevOps is de�ned as a �practice aimed at

repairing the schism between the two teams�. It can only be assumed that Hosono

[2012] is referring to software development and IT operations teams. Moreover,

this de�nition postulates that both functions exist as silos, and that perpetual

con�ict exists between them (see �gure 1.2).

Nevertheless, it is common knowledge that organisational silos can lead to con�ict

and schisms [Diamond et al., 2004; Tseitlin, 2013]. However, Hosono [2012] does

not provide any evidence of a signi�cant schism between software development

and IT operations, and where DevOps is solely aimed at closing such schisms.

This thesis explores several de�nitions found in the literature, but they mostly

appear secondary, derived from non-peer reviewed sources, such as web pages and

blogs, rather than by empirical means or peer-reviewed sources. Additionally, and

critically, a lack of methodological transparency and rigour compounds the issue.

For instance, Dyck et al. [2015] o�er very little transparency of the process leading

CHAPTER 1. INTRODUCTION 6

Figure 1.2: A meme used to comically illustrate blame passing between software
development and IT operations [Roche, 2013, 39].

to their universal de�nition, or the level of rigour they employed.

Furthermore, some de�nitions appear inconsistent and con�icted. For instance

Hosono [2012] focuses on con�ict, whereas Császár et al. [2013] stress that DevOps

is about practice and performance. A list of de�nitions discovered in the literature

are presented in Chapter 3 (see table 3.1), and taken together, the de�nitions

presented illustrate the di�culty in de�ning DevOps.

1.3 Research Aims and Questions

Given that organisations are increasingly reliant on software within their oper-

ations and that DevOps is concerned with the development and deployment of

CHAPTER 1. INTRODUCTION 7

software systems, the primary aim of this thesis is to understand what DevOps

is, how it is adopted by organisations and what it means for them. This thesis

positions DevOps as an interdisciplinary topic covering Business Management,

Computer Science and Software Engineering.

This research aims �rstly, to identify and present a review of DevOps research

from academic and industrial sources. Secondly, to identify core attributes of De-

vOps and provide a framework which can be used to help develop a de�nition, or

validate an existing one. Finally, this research seeks to pragmatically identify and

explore the business management challenges associated with adopting DevOps by

means of a longitudinal case study of a UK organisation adopting DevOps. The

following questions are posed to drive this research:

1. How can DevOps be de�ned?

2. Why do organisations adopt DevOps?

2a. What are the perceived performance or strategic bene�ts?

2b. How is DevOps di�erent to other approaches for software development?

2c. Are anticipated performance gains from its implementation realised?

3. How does DevOps adoption in�uence software development processes?

3a. What changes are required to the organisation and management of

software development processes to enable DevOps?

4. How do software development and IT operations roles, tasks, skills, tools

and work identity change as DevOps is adopted within an organisation?

1.4 Methodology Overview

This PhD research is divided into two distinct phases. The �rst phase explores the

de�nition of DevOps, taking a mixed methods approach, including a focus group

CHAPTER 1. INTRODUCTION 8

of DevOps practitioners, and a questionnaire to the wider DevOps practitioner

community. The focus group considers existing de�nitions already present in

the literature, but also seeks to identify and investigate attributes any DevOps

de�nition should consider. The questionnaire is used to validate the focus group's

output and help to re�ne a thematic analysis used in the second phase of this

research.

The second and main phase, is a longitudinal case study over a 14 month period to

explore the actual adoption of DevOps within a medium-sized UK based business,

with a particular focus on the management challenges and implications. This

is accomplished through an inductive multi-method qualitative approach using

an open re�ection diary study and semi-structured interviews with managers,

software developers and IT systems administrators.

1.5 Research Contribution

This thesis bridges the disciplinary gap between Business Management, Computer

Science and Software Engineering in the study of DevOps. Firstly, the thesis

provides a literature review of relevant literature and identifying key overlapping

themes.

The literature lacks any longitudinal studies of DevOps adoption. This thesis

provides a case study of a medium sized UK business adopting DevOps for the

development and deployment of a business critical software system. De�ning

DevOps has been problematic since it emerged as a topic. This overlaps with

Agile when it too �rst emerged. This thesis does not o�er a universal de�nition

for DevOps. However, it does provide both management and technical attributes

that any de�nition should consider.

The literature also postulates DevOps as being a harmonisation of two functions,

software development and IT operations. Yet this thesis provides a second possi-

bility of DevOps realisation where no total harmonisation occurs. From the case

study, DevOps is achieved by the software developers through drastic changes

CHAPTER 1. INTRODUCTION 9

in team dynamic, work identity and function. This in turn was driven by job

crafting, predominately observed with software developers to a point where in-

dividuals changed the way they identify at work. This research is the �rst to

show the role that job crafting plays in the adoption of DevOps in a software

development context, therefore o�ering a further contribution to the job crafting

literature.

1.6 Thesis Structure

This thesis is presented over a number of chapters as illustrated in �gure 1.3,

which also shows the inputs and outputs for each chapter.

Chapter one begins the thesis by introducing DevOps and sets out the agenda of

this PhD research. Chapter two details the research methodology and precedes

the literature review in order to provide the methodological approach and context

for the systematic literature review presented in Section 3.3.

Additionally, chapter two discusses abductive reasoning around job crafting fol-

lowing the piloting of diaries and interviews used for the case study presented

in chapter �ve. A review of literature is provided in chapter three, which in-

cludes a narrative overview of software, its origins and why it is important in

business management research. A systematic review of the DevOps literature is

then provided followed by an overview of job crafting theory.

Chapter four presents the �ndings from a focus group and questionnaire sur-

vey regarding the de�nition of DevOps. Chapter �ve puts forward an overview of

themes derived from qualitative data collected over 14 months when following An-

glia Farmers Ltd.'s adoption of DevOps, of which a case study is also presented.

Chapter six discusses the �ndings of this research and synthesises them with the

literature before o�ering a conclusion, outlining the theoretical and methodolog-

ical contributions this research makes. Practical recommendations are provided

alongside acknowledged limitations of this research before directions about future

interdisciplinary work on DevOps are put forward.

CHAPTER 1. INTRODUCTION 10

Method contribution:
Longitudinal research

with software engineers

Chapter 2:
Methodology

Chapter 3:
Literature Review

Chapter 4:
Focus Group and Survey

Findings

Chapter 5:
Case Study

Chapter 6:
Discussion and Conclusion

Chapter 1:
Introduction

Explore definition
of DevOps

Pilot study abductive
reasoning: Job crafting

Literature Findings:
- Evolution of software engineering
- DevOps systematic review
- Overview of job crafting theory

Contextual DevOps
definition framework

Thematic analysis themes

Justified research
strategy for underlying
Pragmatic approach

Interdisciplinary context of DevOps,
research questions and purpose

Model for DevOps adoption

Method and protocol for
DevOps systematic review

Figure 1.3: Structure of this thesis with chapter inputs and outputs.

CHAPTER 2. METHODOLOGY 11

Chapter 2

Methodology

"We are trying to prove ourselves wrong as quickly as possible,

because only in that way can we �nd progress.�

� Richard Feynman

CHAPTER 2. METHODOLOGY 12

Overview of Chapter 2: Methodology

Section 1
Introduction

Section 3
Research Strategy, Technique

and Time Horizon

Section 5
Method for Exploring the

Adoption of DevOps

Section 6
DevOps Systematic Review

Section 4
Method for Exploring the

Definition of DevOps

Section 2
Research Purpose, Philosophy

and Approach

Section 7
Summary of Methodology

Philosophy, Approach and Strategy Justification

Empirical Work

Justification and protocol for
systematic review of DevOps

literature

Method for exploring how DevOps is
defined

Method for DevOps adoption case
study

Appraised justification for purpose, pragmatic philosophy, research strategy, techniques
and time horizon

CHAPTER 2. METHODOLOGY 13

2.1 Introduction

This chapter provides a detailed discussion of the methodology for this research,

including philosophical considerations, principles, procedures and processes, all

of which form a guideline to studying DevOps, within an industrial context. In

addition, the methodological choices are appraised and discussed, to address the

research questions.

In particular, this chapter �rstly discusses the research considerations, justifying

why a pragmatic stance is taken, what the purpose of the research is and the

subsequent strategy employed. Fieldwork instruments are introduced, including

a mixed method approach of a focus group and questionnaire designed to explore

the de�nition of DevOps. This helps to �ne tune a qualitative diary study and

semi-structured interviews for a 14 month case study exploring DevOps adoption

at Anglia Farmers Ltd. (AF)1. The chapter then provides details about the

systematic component of the literature review as well as the protocol for it.

2.2 Research Purpose, Philosophy and Approach

Saunders et al. [2011, 42] argue the importance of clear purpose by the metaphor-

ical position of "contracting with your client" in the manner that it would simply

be unthinkable to carry out any research in such a manner without any clear

purpose or proposal. With the research philosophical stance and subsequent ap-

proaches established, the next item to discuss is the overarching purpose for the

research, which in addition to making a contribution, may be "to explore, to de-

scribe and/or to explain" [Robson and McCartan, 2016, 39]. Before stating the

purpose for this research, each position is brie�y appraised.

Exploratory research seeks new insights into phenomena and discovering what is

happening and why, through the asking of questions and appraising phenomena

in a new light [Saunders et al., 2011]. While such inquiry can be qualitative or

1http://www.angliafarmers.co.uk/ accessed: June 2017

http://www.angliafarmers.co.uk/

CHAPTER 2. METHODOLOGY 14

quantitative in nature, the former approach is generally favoured given the focus

on new areas of research [Robson and McCartan, 2016].

Descriptive research focuses on the accurate representation of events, persons

and/or situations. It can be either qualitative or quantitative in nature but

requires comprehensive previous knowledge of the subject [Zikmund et al., 2013].

Descriptive research can therefore contribute much greater insights on existing

topics [Robson and McCartan, 2016].

The eponymous explanatory research focuses on the subject, seeking to explain

any relationships between it and any other variables [Saunders et al., 2011]. Ex-

planatory research can be qualitative or quantitative in nature.

The scoping of the DevOps topic continually in�uenced the research purpose by

pushing it further down an exploratory road. DevOps is a relatively young topic

in industry, but also in academic research where it is still new in Computer Science

research, and is largely untouched in the Business Management discipline.

This section will discuss the philosophical considerations and research approach.

The in�uence of philosophy and its subsequent views for the entire research

project is illustrated in �gure 2.1, and forms the basis for the structure of this

section.

6. Data
Collection

and
Analysis
Methods

1. Philosophy 2. Approach 3. Strategy 4. Choices 5. Time Horizon

Positivism

Pragmatism

Constructivism

Deductive

Inductive

Experiment

Survey

Case Study

Grounded
Theory

Ethnography

Mono-
Method

Mixed
Methods

Multi-
Method

Cross
Sectional

Longitudinal

Figure 2.1: Non-exhaustive �ow of research considerations derived from Gill and
Johnson [2010]; Robson and McCartan [2016]; Saunders et al. [2011].

CHAPTER 2. METHODOLOGY 15

2.2.1 Research Philosophy

It is prudent to begin by discussing the philosophical debates present in the Social

Sciences and the �mutually exclusive relationship between method and philoso-

phy� [Knox, 2004, 119]. As such, concerns over research strategy and data col-

lection methods are secondary in nature to those of the underlying philosophical

stance [Guba et al., 1994]. This section will brie�y discuss the ontological and

epistemological concerns of Positivism, Constructivism and Pragmatism.

2.2.2 Evaluation of Positivism, Constructivism and Prag-

matism

The philosophical views of Positivism and Constructivism have opposing ontology,

or views on reality and epistemology, or what is considered acceptable knowledge

of said reality [Robson and McCartan, 2016; Saunders et al., 2011]. Pragmatism

is a third philosophical view which can accept both the views of Positivism and

Constructivism where such views allow the job to be done. Therefore, Prag-

matism o�ers a potential philosophical middle ground [Robson and McCartan,

2016].

Positivism asserts that reality is objective and exists externally to the individual,

meaning it can be measured through scienti�c method [Saunders et al., 2011].

As such, empiricism is commonplace with a reliance on quantitative methods

within the Positivist view [Robson and McCartan, 2016]. Although coupled with

scienti�c method, Positivists take the view that all collected data and observa-

tions must be objective and have no in�uence from the researcher, making a

further assertion that science is value-free. Positivist research therefore typically

contributes to theory building through the deductive approach [Saunders et al.,

2011].

On the other hand, and in contrast, Constructivism is an interpretive view assert-

ing that the nature of reality is mentally constructed by an individual's experience

and knowledge through cognitive and social interaction processes [Saunders et al.,

CHAPTER 2. METHODOLOGY 16

2011; Young and Collin, 2004]. Thus, Constructivist researchers generally strug-

gle with and reject any notion of an objective reality [Robson and McCartan,

2016]. Favouring the collection of data from social interactions and observations

in a natural context, Constructivism seeks to understand what is happening and

why. Therefore, Constructivists employ strategies that favour qualitative enquiry,

including case studies, ethnography and interviews.

Seeking a "middle ground between philosophical dogmatism and scepticism",

Pragmatism strongly advocates there to be `no one correct way' [Robson and

McCartan, 2016, 29]. Pragmatism therefore asserts that the single most impor-

tant determinant of any ontology or epistemology one adopts falls around the

research question itself [Robson and McCartan, 2016; Saunders et al., 2011]. As

such, Pragmatists base methodological decisions around what they feel is com-

patible with their own values, which are derived culturally, which is the reality

for many researchers investigating social and behavioural topics [Teddlie, 2005].

For the Pragmatist researcher, it means that, for instance, a deductive approach

could be taken for one research question, whereas an inductive approach is taken

for another. Table 2.1 provides a summary breakdown of the key di�erences

between Positivism, Constructivism and Pragmatism. The �rst of these di�er-

ences is the research approach, which further underpins the strategy and methods

utilised within any research.

A deductive approach involves the testing of theoretical propositions which the

research strategy and accompanying methods are speci�cally designed for [Saun-

ders et al., 2011]. Typically, hypothesis testing and large samples of quantitative

data are favoured, with outcomes examined and the theoretical proposition in

question accepted, rejected and/or revised [Robson and McCartan, 2016].

C
H
A
P
T
E
R
2
.
M
E
T
H
O
D
O
L
O
G
Y

17
Positivism Constructivism Pragmatism

Approach - Deductive - Inductive - Deductive and/or Inductive

Assertions - Objective reality.

- Researcher independence.

- Science is value free.

- Causal analysis leading to law-
like generalisations.

- Subjective reality which is so-
cially constructed.

- Researcher part of observation.

- Empathetic stance to science.

- Unique and subjective under-
standing held by participants.

- Objective and Subjective Real-
ities.

- Action over Philosophising

- Advocates human experience.

- Endorses fallibalism and provi-
sional truths.

Strategies - Controlled hypothesis formula-
tion and testing

- Rigid and highly structured

- Emphasis on quanti�able ob-
servations

- Minimal research structure.

- Develop studies through ongo-
ing induction from the data.

- Emphasis on observing phe-
nomena in its natural setting.

- Eclectic and Pluralist.

- Endorses practical empiricism
to determine what works.

- Value-oriented approach de-
rived from culture.

Method
Preference

- Generation of quantitative
data through large samples

- Rigour and validity

- Generalisation

- Generation of qualitative data
through smaller samples

- Trustworthy interpretation and
triangulation

- Contextual understanding

- Generation of qualitative
and/or quantitative data.

- Human enquiry analogous to
experimentation and scienti�c
enquiry.

Table 2.1: Comparative overview of Positivist, Constructivist and Pragmatist philosophical views (adapted from Guba
et al. [1994], Gill and Johnson [2010], Saunders et al. [2011] and Robson and McCartan [2016]).

CHAPTER 2. METHODOLOGY 18

On the contrary, an inductive approach is far more focused on developing theory

as a result of the research activities [Saunders et al., 2011]. While hypothesis

testing can still be undertaken within inductive research, it will typically come

following data collection instead of before it. As such, inductive studies may refer

to hypothesis generation, as opposed to hypothesis testing. Theory is developed,

or informed following research activities [Robson and McCartan, 2016].

2.2.3 Philosophical Stance and Approach Taken

Saunders et al. [2011, 109] make the point that �which is better depends on the

research questions�. They continue, further adding that researchers would be

deluding themselves if they believed their research questions fell perfectly into

one speci�c philosophical domain; and this PhD research is no di�erent.

This PhD research adopts a Pragmatic philosophical stance given the selection

of appropriate positions in order to answer each research question [Robson and

McCartan, 2016]. It therefore also assumes there is no one right or correct stance

or approach to take [Saunders et al., 2011]. As discussed previously, pragmatism

places the research questions at the centre when making decisions concerning

the approach and subsequent strategy, method choices and time horizons. The

research questions for this PhD project are de�ned below:

1. How can DevOps be de�ned?

2. Why do organisations adopt DevOps?

2a. What are the perceived performance or strategic bene�ts?

2b. How is DevOps di�erent to other approaches for software development?

2c. Are anticipated performance gains from its implementation realised?

3. How does DevOps adoption in�uence software development processes?

3a. What changes are required to the organisation and management of

software development processes to enable DevOps?

CHAPTER 2. METHODOLOGY 19

4. How do software development and IT operations roles, tasks, skills, tools

and work identity change as DevOps is adopted within an organisation?

This research seeks answers to how DevOps is de�ned along with what would

constitute as a core attribute of it. As this portion of the research is taking

existing propositions and testing them, a Positivist deductive approach was taken

in answering the �rst research question.

The most substantial portion of this research is the investigation of actual DevOps

adoption within an organisation. For this, a Constructivist inductive approach

was taken, placing premise on �the particular� [Stake, 1994, 38], in this case

DevOps, and most importantly, the human experience within it. This approach

is appropriate for the remaining research questions given the emphasis on studying

the often diverse and di�ering perspectives of the participants [Stake, 1995, 2000]

rather than the experimental study of tools used in such roles, a common theme

within the existing academic and industrial DevOps literature.

2.3 Research Strategy, Technique and Time Hori-

zon

This section appraises and discusses potential research strategies, data collection

techniques and time horizon, and their methodological �t with the underlying

research purpose, philosophy and approach which was outlined and discussed in

section 2.2.

Saunders et al. [2011, 600] de�ne the research strategy as the "general plan of

how the researcher will go about answering the research question(s)". Thus the

research strategy guides the researcher throughout the project, underpinning the

choice and justi�cation of data collection methods. In pragmatic research, the

strategy links methods to the purpose and ultimately, the questions.

There are a range of research strategies, including experiment, survey, case study,

CHAPTER 2. METHODOLOGY 20

grounded theory and ethnography, which are brie�y set out before those chosen for

this PhD research are justi�ed according to their �t with the purpose, philosophy,

approach and research questions set out previously.

2.3.1 Experiment

The experiment research strategy, while well applied within social sciences, in

particular Psychology, originates from the natural sciences, where the core pur-

pose is the study of causality between observed variables [Saunders et al., 2011].

Typical experiment research within the social sciences involves grouping partic-

ipants into two types of group. Firstly, an experimental or intervention group,

whereby the variables under observation are manipulated, and, secondly, a con-

trol group, where they are not, thus enabling the di�erence to be observed and

reported [Saunders et al., 2011].

As a strategy for exploratory and explanatory research purposes, experiments

can provide answers to how and why questions. However, research activities are

typically conducted under highly controlled and/or laboratory conditions. As a

deductive strategy, hypothesis testing is typical with experiments, and thus the

results, by virtue of the controlled conditions from which they were produced, are

unlikely to bear much resemblance with the real world nor be feasible for many

Businesses Management topics [Robson and McCartan, 2016; Saunders et al.,

2011].

2.3.2 Surveys

Often associated with the deductive approach, the survey strategy is popular

in business management research as it can answer the "who, what, where, how

much and how many questions" and is therefore well suited for exploratory and

descriptive research purposes [Saunders et al., 2011, 144]. Surveys allow for the

collection of both qualitative and quantitative data, although the latter can be

collected from large samples e�ciently.

CHAPTER 2. METHODOLOGY 21

With collected quantitative data, analyses can be undertaken using descriptive

and inferential statistical techniques [Saunders et al., 2011]. Combined with sam-

pling, the survey strategy o�ers a degree of control over the research process, but

not necessarily to the extent that experiments do, and can potentially produce

results which are representative of a population through generalisation.

While enabling large amounts of data to be collected, the survey strategy can

have limitations in the breadth of that data, as opposed to other strategies.

2.3.3 Case Studies

A case study can be de�ned as �an in-depth exploration from multiple perspec-

tives of the complexity and uniqueness of a particular project, policy, institution,

programme or system in a `real life' context� [Simons, 2009, 21]. As a research

strategy, the case study enjoys wide application across a variety of academic disci-

plines [Thomas, 2011], and is especially established within Business Management

research [Welch et al., 2011], proving exceptionally popular with qualitative re-

searchers [Piekkari et al., 2009]. As such, the case study makes for an excellent

strategy for both exploratory and explanatory research [Saunders et al., 2011].

However, there is ongoing philosophical debate around case studies, which this

section will attempt to summarise.

Thomas [2011, 512] o�ers a concise breakdown of any case study into two con-

stituent parts, the �subject� and �object�. The subject refers to the case itself

[Thomas, 2011], the �phenomenon in its natural context� [Piekkari et al., 2009,

569] or �the particular� [Stake, 1994, 238]. The object refers to the context in

which the subject is studied [Thomas, 2011], and therefore o�ering the �means of

interpreting or placing� the subject in context [Thomas, 2011; Wieviorka, 1992].

However, the object or �boundary� is the subject of philosophical discussion

[Piekkari et al., 2009, 572]. The rhetoric of this discussion revolves around Pos-

itivist arguments that the boundary should be set and �xed [Eisenhardt, 1989;

Piekkari et al., 2009; Wieviorka, 1992; Yin, 2013] as opposed to Constructivists

CHAPTER 2. METHODOLOGY 22

who advocate a �exible approach depending on the observations of the subject

[Piekkari et al., 2009; Stake, 1994; Thomas, 2011].

As a research strategy in Business Management research, the case study can be

attributed to Kathleen Eisenhardt [1989] and Robert Yin [2013]. First published

in 1984, Platt [1992, 44] applauds Yin's work as the �best known modern work� on

the case study. Eisenhardt builds on Yin's work, but with a speci�c di�erences:

Eisenhardt has an academic focus on theory building using a single case, while

Yin utilises multiple cases in a more practical manner, aiding with policy making

and consulting [Piekkari et al., 2009].

While the case study has become �an increasingly popular and relevant research

strategy� [Eisenhardt and Graebner, 2007, 30], it is fraught with criticism es-

pecially around its application and the dominant Positivist philosophical under-

tones, which in turn in�uence research through data collection and analysis meth-

ods [Piekkari et al., 2009].

Piekkari et al. [2009] argue that the case study requires greater understanding,

and more importantly, a fuller grasping of the disciplinary context within which

the case study is being utilised. Furthermore, Piekkari et al. [2009], based around

philosophical positioning, categorise the case study into three distinct categories:

Positivist; interpretivist and critical realist. However, only in recent years have

interpretevist and critical realist case studies emerged.

Above all, Piekkari et al. [2009] argue that these philosophical undertones, while

seemingly arcane, do matter in case study research. For instance, case studies

have been utilised to �rstly, inductively develop theory, followed by using them

again to deductively and empirically test the developed theory, thus completing

a cycle [Eisenhardt and Graebner, 2007]. This usage of the case study merely

�constitutes a means to an end� [Piekkari et al., 2009, 5], failing to consider any

questions in the causality inherent of Positivist approaches to theorizing [Ragin,

1992, 1997].

Constructivists such as Stake [1994, 238] take a di�erent view, arguing that the

aim of the case should be the �study of the particular�. This assertion of the case

CHAPTER 2. METHODOLOGY 23

study's aim involves �understanding of human experience� [Stake, 1995, 38], which

Stake considers the main purpose of any theorizing which can be distinguished

epistemologically, at least, from causal explanation [Piekkari et al., 2009].

The data used to construct a case study can be collected through a variety of

methods. As such, it is necessary for the researcher to triangulate the data

collection so as to "ensure the data are telling you what you think they are

telling you" [Saunders et al., 2011, 146].

Grounded Theory

Grounded theory arose in 1967 from the work of Glaser and Strauss [2017], and

has often been oversimpli�ed in attempts to de�ne it as �the best example of

inductive research� [Robson and McCartan, 2016; Saunders et al., 2011, 148].

Instead, Saunders et al. [2011] argue grounded theory should be considered as

a means to building theory by combining deductive and inductive approaches,

which can be particularly well suited to both explaining and predicting behaviour

[Robson and McCartan, 2016].

Put simply, grounded theory asserts that theory is generated from the data [Glaser

and Strauss, 2017] and that its collection begins without a prior formation of any

theoretical framework [Saunders et al., 2011]. It is argued that grounded theory is

by no means theory testing and that in order to draw conclusions and theoretical

insight, data should be collected at a conceptual level [Suddaby, 2006].

Indeed, Suddaby [2006] continues with drawbacks for grounded theory in that

it is often falsely assumed to be easy to do. Robson and McCartan [2016, 163]

pick up on similar drawbacks, where they claim grounded theory is �by no means

an easy option, and not to be undertaken lightly�. Additionally, Robson and

McCartan [2016, 162] dismiss that no prerequisite theoretical ideas are necessary,

arguing that it �is not possible to start a research study without some pre-existing

theoretical ideas and assumptions�. This supports the argument from Saunders

et al. [2011] that adopting a grounded theory strategy is neither an excuse nor

CHAPTER 2. METHODOLOGY 24

reason to ignore appraising existing literature.

Suddaby [2006, 640] claims �the seamless craft of a well-executed grounded theory

study, however, is the product of considerable experience, hard work, creativity

and, occasionally, a healthy dose of good luck�. These points are echoed by both

Robson and McCartan [2016] and Saunders et al. [2011, 149] supporting the view

that grounded theory is messy and far from perfect [Suddaby, 2006], necessitating

researchers to �develop tacit knowledge of, or feel for, their data�.

Ethnography

Ethnography owes its existence to anthropology, and is very much rooted within

the inductive approach to research [Saunders et al., 2011]. Researchers adopting

an ethnographic strategy are concerned with describing and interpreting culture

and social structures observed within a group of individuals, doing so by im-

mersing themselves as much as possible within that group and associated culture

[Robson and McCartan, 2016].

Thus, ethnography is a research strategy that is inherently longitudinal given the

time commitment required to undertake such studies [Saunders et al., 2011]. As

with case studies, ethnographic research focuses on phenomena in context, but

considerably di�ers given case study research still uses speci�c and prescribed

techniques for data collection of which, ethnography asserts such methods are

too simplistic to fully capture the complexities within social contexts [Saunders

et al., 2011].

The term �naturalism� is applied to ethnographic studies, whereby the researcher

is �rstly, not only an active participant, but also conducts direct observation of

other participants [Saunders et al., 2011, 150]. Saunders et. al. add that the

naturalism can become confused given its meaning in Positivist research, where

it is connected to the use of scienti�c methods and models in research.

Ethnography can be an e�ective strategy for descriptive and exploratory research

purposes, and can be especially potent for deep description of the phenomena

CHAPTER 2. METHODOLOGY 25

as well as the culture and context within which it occurs [Geertz, 1973; Robson

and McCartan, 2016]. However, ethnography is criticised with concerns that the

researcher-participant relationship is too close, potentially giving rise to issues

with the integrity, quality and validity of the research being undertaken [Robson

and McCartan, 2016]. Logistics are another issue with ethnographic research

in the social sciences as researchers �rst need to locate a setting or group that

will allow su�cient access and over a potentially long period of time [Robson

and McCartan, 2016; Saunders et al., 2011]. Furthermore, researchers need to

build trust with each participant [Saunders et al., 2011] in addition to a solid

understanding of the setting, including any informalities and jargon, let alone

�specialist concepts used when talking about socio-cultural systems� [Robson and

McCartan, 2016, 157].

While mitigative action can be taken to preserve research integrity, namely in the

form of detailed, high-quality notes and records of researcher-participant interac-

tion [Emerson et al., 2011], such action only adds to the inherent time consuming

nature of ethnography [Robson and McCartan, 2016; Saunders et al., 2011]. Thus

Saunders et al. [2011, 150] adds that researchers should, in addition, �develop

strategies to cope with being both a full member of the social context in which

the research is set, as well as undertaking the research�.

Taken together, ethnography represents an incredibly �exible and potentially

powerful research strategy for studying phenomena in context, but may be very

di�cult for new researchers given the risks, especially with regards to ethics and

integrity, and as such should never be taken lightly [Robson and McCartan, 2016].

2.3.4 Research Strategy Selection and Justi�cation

While these strategies can fall under a deductive or inductive approach, Saun-

ders et al. [2011] argue that no research strategy should be considered inferior

or superior to another. Aside from the systematic literature review, two distinct

phases researching DevOps are de�ned and linked to the research questions. Fur-

thermore, the research questions aid in determining the strategy [Robson and

CHAPTER 2. METHODOLOGY 26

McCartan, 2016], be�tting of the pragmatic philosophical undertones for the re-

search within this PhD thesis, with each phase adopting a di�erent strategy as

outlined in the following paragraphs.

A survey strategy was selected for answering the question of �How can DevOps

be de�ned?� (RQ1). The survey strategy allows for the controlling of research

activities, which was desired for answering RQ1. An experiment strategy also

o�ers control, but to the degree where it would be too limiting in this research.

The case study strategy was selected for answering the remaining research ques-

tions (RQ2, RQ3 and RQ4). The literature highlights a distinct lack of research

on the realities of DevOps in organisations. As a phenomenon, DevOps can be

studied within the context it occurs and over time, therefore from a pragmatic

perspective, the case study is a good methodological �t for answering these re-

search questions. While data collection methods are outlined in this chapter, the

case study allows for both mixed or multi-method techniques, thus allowing a

researcher to analyse data by means of triangulation, where the researcher uses

�multiple sources to enhance the rigour of the research� [Robson and McCartan,

2016, 171].

Ethnography would also o�er a good methodological �t, especially with regard to

understanding the social processes connected to DevOps adoption in an organ-

isational context. However, logistically the commitment Ethnography demands

was neither possible for the researcher nor organisation in this PhD research.

2.3.5 Technique Choices and Time Horizon

Three technique choices for data collection are available, mono-method, mixed-

method and multi-method. Each technique can be applied to one of two time

horizons, cross-sectional or longitudinal.

Mono-method, as its name implies is the technique of applying a single method

for collecting and analysing data. It is especially common in experiment research

strategies [Saunders et al., 2011].

CHAPTER 2. METHODOLOGY 27

The mixed-method technique utilises multiple methods, but where the type of

data they acquire is di�erent, namely quantitative and qualitative. Whereas the

multi-method technique, while similar, acquires data of the same type [Saunders

et al., 2011].

The time horizon refers to the overall picture the research shows. Saunders et al.

[2011, 155] phrases the following question to eloquently explain the time horizons

choice: �Do I want my research to be a snapshot taken at a particular time, or do

I want it to be more akin to a diary or a series of snapshots to be a representation

of events over a given period?� Thus, the time horizon in research falls into

two categories: Cross-Sectional, where the research o�ers a snapshot of the topic

being studied at a given time, or Longitudinal, where the research o�ers insight

into the topic over a given period, thus time can become a variable of the research

too.

For this PhD research, phase one, looking at the de�nition of DevOps is mixed

methods and cross-sectional as it considers both qualitative and quantitative data

collection and analysis methods. Whereas phase two, investigating the adoption

of DevOps will be undertaken over a fourteen month period, but collecting and

analysing qualitative data from both open format diaries and interviews, therefore

making it multi-method and longitudinal.

2.3.6 Overview of the Empirical Work in this Thesis

The research presented within this thesis is exploratory in purpose with a prag-

matism philosophical stance taken. This enables the research to be undertaken

in two phases, designed in a manner which follows a deductive and inductive

approach. Moreover, this research seeks to avoid dogmatic philosophical argu-

ments, treating the approaches and strategies for their merits and applying them

appropriately.

The �rst phase investigates the de�nition of DevOps and takes a predominately

deductive approach due to the usage of de�nitions already present in the literature

CHAPTER 2. METHODOLOGY 28

(see section 3.3.1), which are utilised in a focus group of DevOps practitioners.

The output of the focus group is then used within a questionnaire sent to par-

ticipants within the DevOps community. This cross-sectional mixed methods

approach produced both qualitative and quantitative data.

The second, and larger phase of the research studied the adoption of DevOps

within a medium sized business. An inductive approach was taken here utilising

the case study strategy, albeit from a Constructivist view, drawing on the works

of Stake [1994] rather than the Positivist in�uences of Eisenhardt [1989] and Yin

[2013]. Large amounts of qualitative data are collected through a diary study and

a series of semi-structured interviews over a period of fourteen months.

The design of this research and how it maps from philosophy to time horizons

can be seen in �gure 2.2.

6. Data
Collection

and
Analysis
Methods

1. Philosophy 2. Approach 3. Strategy 4. Choices 5. Time Horizon

Positivism

Pragmatism

Constructivism

Deductive

Inductive

Experiment

Survey

Case Study

Grounded
Theory

Ethnography

Mono-
Method

Mixed
Methods

Multi-
Method

Cross
Sectional

Longitudinal

i) Defining
DevOps

ii) Adopting
DevOps

Questionnaire

Focus Group

Semi-Structured
Interviews

Diary Study

Figure 2.2: Research map for the constituent parts of the project.

The following sections outline and discuss the methods for data collection relevant

to the element of the research they were utilised within. In addition, a systematic

review of the DevOps literature is undertaken, forming a core component of the

literature review, presented in chapter 3. The review method and protocol is

presented in section 2.6.

CHAPTER 2. METHODOLOGY 29

2.4 Method for Exploring the De�nition of De-

vOps

As introduced in section 1.1, a clear issue presenting itself in the literature is

how DevOps is de�ned. While there is no shortage of de�nitions proposed for

DevOps, it remains di�cult to de�ne given a lack of consistent de�nitions [Dyck

et al., 2015].

For the purposes of this PhD, a deductive and mixed-method study consisting of

a focus group and questionnaire was undertaken to explore the de�nition prob-

lem with industrial insight. Additionally, with the seeming di�culty in de�ning

DevOps, this research aimed to establish a base line theoretical position in order

to study DevOps in context.

2.4.1 Focus Group

A focus group, is a type of group interview, and as its name implies, speci�cally

focuses on a particular issue [Saunders et al., 2011], in this case the de�nition of

DevOps. A focus group relies upon interaction between the participants, enabling

a consensus on the topic to be reached.

The objectives of the focus group in this research are threefold; �rstly, to identify

and agree on a set of core conceptual attributes which can inform any de�nition

of DevOps. Secondly, to produce a new, or validate an existing de�nition for

DevOps using the previously agreed attributes. Thirdly, to provide a means to

assist in �ne tuning the research activities to be undertaken when exploring the

adoption of DevOps through a case study.

In line with the philosophy taken, the objectives will be met predominately

through group activity, discussion and brainstorming. To meet these objectives,

the focus group was structured into two exercises, with the participants split into

two groups.

CHAPTER 2. METHODOLOGY 30

Participant recruitment was restricted to individuals who identi�ed as having

done, or currently work in a DevOps environment (perceived or otherwise) and

have done so for two or more years. The group was made up of individuals from

a range of roles within software engineering and IT departments.

A total of 12 practitioners were invited from a number of national and interna-

tional organisations, seven of whom actually participated (see table 2.2). Ad-

ditionally, the supervisory team assisted the PhD researcher in the facilitation

of the focus group (see table 2.3). The PhD researcher oversaw the group, in-

troducing each task and keeping timings, having no direct involvement with the

participants when undertaking their tasks. The other two members of the super-

visory team were each assigned to a group and were there to aid by means of

scribing notes and ensuring the group maintained focus on the task. An agenda

for the focus group is provided in appendix 1 on page 217.

Position/Role Organisation Size Sector Group

Systems Developer University of
East Anglia

Large Education 1

Head of Research
Computing

University of
East Anglia

Large Education 2

Chief Technology
O�cer

Tech Marionette Micro Tech 1

DevOps Engineer Worldpay Large Finance 1

Senior Architect in
Technology Operations

Worldpay Large Finance 2

Software Development
Manager

Anglia Farmers Medium Agriculture 1

Senior DevOps
Contractor

Unboxed
Consulting

Small Tech 2

Table 2.2: Participants of the DevOps focus group.

CHAPTER 2. METHODOLOGY 31

Name Position/Role Institution

Steve Jones PhD Researcher University of East Anglia

Fiona Lettice Professor in Innovation Management University of East Anglia

Joost Noppen Principal Researcher BT

Table 2.3: Hosting and facilitation team for the Focus Group.

2.4.1.1 Exercise One - Agree Core Conceptual Attributes of DevOps

The aim of this exercise is to identify and agree on a set of core conceptual at-

tributes. This exercise is divided into three tasks, each with speci�c sub-objectives

(see table 2.4). Two groups of participants (as set out in table 2.2) undertook the

same tasks within this exercise.

Title Description

1 Silent Brainstorm Individual task to produce as many at-
tributes of DevOps as possible. Timeboxed
to 15 minutes.

2 Intra-Group feedback, dis-
cussion and prioritisation

Feedback and discussion within groups on
the attributes produced previously. Assign
a priority as �high�, �medium� and �low�
(H,M,L).

3 Inter-group feedback, dis-
cussion and prioritisation

Feedback and discussion across both groups
on prioritised attributes. Both groups to
agree a �nal, joint set of attributes.

Table 2.4: Tasks making up exercise one of the focus group.

For the silent brainstorm task, each participant was provided with post-it notes

to write attributes on. The small size of the post-it notes encouraged concise

answers and ease of moving into the following tasks.

For the intra-group feedback task, each group was provided a pre-prepared A1

sheet of paper with three columns drawn out: �H� (High), �M� (Medium) and

�L� (Low). Additional blank A1 sheets were made available to each group if

requested. Attributes produced in the previous tasks were discussed within each

CHAPTER 2. METHODOLOGY 32

group with an emphasis on �rstly, agreeing the attribute and secondly, prioritising

it by placing it within the relevant column on the prepared sheet (see appendix

2 on page 218).

In the �nal task of the �rst exercise, both groups came together with their list

of prioritised attributes, to discuss, agree and prioritise an inter-group set of core

conceptual attributes. A new, prepared A1 sheet of paper was provided for the

�nal attributes to be placed. The �nal agreed list of prioritised attributes was

given to the primary researcher to be included within the second exercise following

a short break.

2.4.1.2 Exercise Two - De�ning DevOps

With exercise one producing an agreed set of core conceptual attributes of De-

vOps, exercise two would focus on how DevOps is de�ned. The aim of this

exercise is for each group to produce a de�nition for DevOps using the previously

agreed attributes as a guide.

During a short break, the research team prepared the venue by placing nine

de�nitions on the wall on one side of the room (see appendix 2 on page 218).

These de�nitions are all taken from the literature (see table 3.1). Each de�nition

was placed within a pre-prepared A1 sheet divided into two columns to represent

the positives (+) and negatives (-) respectively.

Two approaches were designed to accomplish this exercise, with each group being

assigned one each. Group one undertook the task of evaluating existing de�nitions

in order to validate or derive a new de�nition based around the agreed attributes.

Conversely, group two were asked to produce a new de�nition from scratch.

For the evaluation of existing de�nitions, group one were asked to score and/or

discard any they uniformly disagreed with. This was accommodated by another

section at the bottom of each A1 sheet.

The PhD researcher oversaw the exercise, maintained timing and did not interact

CHAPTER 2. METHODOLOGY 33

with the groups. The two members of the supervisory team continued to facilitate

the same group as before, acting as scribes and taking notes.

The �nal output of the focus group were prioritised attributes and two de�nitions

of DevOps. These would subsequently serve as input for further study through a

questionnaire, as outlined in the next section.

2.4.1.3 Focus Group Limitations

Compared to other methods of data collection, a focus group has control impli-

cations over the data collected. This is due to the researcher having less control

as compared to an interview, but also the open ended nature of such an activity.

Furthermore, the sample of participants is small, thus potentially introducing

problems in drawing generalisations from the data. Additionally, focus groups by

their nature, are collective, and therefore a limitation is that any output is by

virtue, collective [Robson and McCartan, 2016]. This is by no means a problem

if the research seeks collective views, however, additional methods need to be

considered if seeking individual outputs. For this research, a questionnaire was

utilised following the focus group in order to consider individual views.

Focus groups need clear boundaries, and possibly moderators, with regards to the

topic being discussed in order to prevent digression [Saunders et al., 2011]. As

such, the focus group was structured into two speci�c exercises, both concerning

the de�nition of DevOps. Additionally, the PhD researcher involved the super-

visory team to act as moderators within the focus group, steering participant

discussions and assisting with tasks such as note taking. This helped the primary

researcher maintain impartiality during the exercises as well as continued focus

on the core topic.

Another argument given by Saunders et al. [2011] is that of participant motiva-

tion. When involving business people in research activities, there often has to

be some form of bene�t for them. All of the participants desired to meet others

involved with DevOps elsewhere, a situation which was leveraged by the PhD

CHAPTER 2. METHODOLOGY 34

researcher where following the focus group activities, a networking lunch was

provided along with a presentation about DevOps from one of the participants.

2.4.2 Questionnaire Survey

The term questionnaire is generic, referring to all data collecting techniques where

individuals provide responses to the same set of questions in a prescribed order

[De Vaus, 2013]. While questionnaires are typically self-administered, i.e. where

completion is undertaken independently, Saunders et al. [2011] and Gill and John-

son [2010] also assert that they can be administered by means of telephone or

where an interviewer is present (see �gure 2.3).

Figure 2.3: Types of questionnaire grouped by how they are administered
[Saunders et al., 2011, 363].

Questionnaires are often used when researchers adopt the survey strategy and

they work well for descriptive or explanatory research purposes especially for

attitude and opinions [Saunders et al., 2011].

In this PhD research, a questionnaire is utilised to supplement the research ac-

tivities undertaken within the focus group. This involved taking the output of

the focus group and gauging the opinion of DevOps practitioners, but at an in-

dividual, rather than collective level [Robson and McCartan, 2016].

The focus group agreed on a total of 17 conceptual attributes of DevOps and

produced two de�nitions. While this was a collective output, as discussed in the

focus group limitations section, an internet mediated questionnaire was developed

and sent to DevOps practitioners asking them to state their agreement with the

CHAPTER 2. METHODOLOGY 35

17 attributes and to specify a preference for one de�nition. In addition, they were

asked to comment on each de�nition from both a positive and negative stance.

The overall and primary objective of the questionnaire was not to draw any

�nal conclusions, but rather to explore agreement and/or disagreement with the

attributes and de�nitions produced by the focus group. Moreover, the attributes

would serve as set themes within the second element of the research project,

exploring actual DevOps adoption in an organisation. The questionnaire was

therefore a mechanism to �ne tune an instrument for the analysis of a large

quantity of qualitative data later in the project.

Questionnaire Structure and Distribution

The questionnaire was developed using Google Forms1 and divided into four sec-

tions. The �rst section captured information regarding the respondent's opinions

on DevOps, including 17 conceptual attributes identi�ed and agreed by the focus

group. Attribute questions within this section were also presented in a di�erent

order to each respondent.

The second and third sections asked each respondent to indicate a preference

for one de�nition and what they perceived, both positively and negatively about

each. Finally, the fourth section captured information about the participant

including Job Title and if they are UK based or not. Of the 17 questions requiring

completion, a total of 12 required a closed answer. Thus �ve questions within

the questionnaire captured qualitative data around the positives and negatives of

each de�nition and the job title of the respondent. A specimen questionnaire is

provided in appendix 3 on page 220.

While Google Forms enabled the development of the questionnaire, it also al-

lowed for easy electronic distribution. This was achieved through various local

tech communities, including SyncNorwich2 and Norfolk Developers3. In addition,
1Forms is part of the Google Drive suite (https://drive.google.com accessed: Jun 2017)
2https://www.meetup.com/syncnorwich accessed: Jun 2018
3https://www.norfolkdevelopers.com accessed: Jun 2018

https://drive.google.com
https://www.meetup.com/syncnorwich
https://www.norfolkdevelopers.com

CHAPTER 2. METHODOLOGY 36

social media was utilised, in particular, an item was posted within the LinkedIn

pulse outlet, speci�cally asking DevOps practitioners to spare around 10 minutes

to complete the questionnaire. As such, the researcher attempted to target indi-

viduals working within software development and IT systems support roles where

DevOps is being practised and/or adopted as much as possible. The questionnaire

was left live for a period of one month, and achieved 83 complete responses.

Limitations

It is acknowledged that questionnaires are much harder to produce and collect

data with than they would appear [Gill and Johnson, 2010; Saunders et al., 2011]

and di�cult to entirely decouple the e�ects caused by length, topic and method

of administration [De Vaus, 2013].

A recurring consideration for researchers undertaking questionnaires is that of

sample size [Gill and Johnson, 2010]. Saunders et al. [2011, 581] adds that in

experimental research, it is necessary to calculate a �precise minimum sample

size�. In this research, the population is unknown, rendering it impossible to

calculate a minimum sample size. Secondly, and perhaps more crucially, the

research strategy employed was not that of experimentation.

Additional mitigation to these limitations is the adoption of a mixed methods

approach when dealing with this data. As has been previously stated, the ques-

tionnaire also contained questions of a qualitative nature, necessitating a di�erent

approach to the analysis. Thus, the questionnaire survey results did not wholly

rely on quantitative approaches. Furthermore, the questionnaire instrument is a

minor component of this overall study and was utilised to provide an initial set of

themes for the later thematic analysis on qualitative data as part of a 14 month

longitudinal study detailed further on in this chapter.

CHAPTER 2. METHODOLOGY 37

2.4.3 Data Analysis

While cross-sectional, both qualitative and quantitative data were produced by

the focus group and questionnaire survey. In this section, techniques for analysing

the data are presented.

Quantifying Agreement on DevOps Attributes and De�nition

The attributes identi�ed by the focus group were presented within questions 1.6,

1.7, 1.8 and 1.9 of the questionnaire. As agreement was sought from each respon-

dent, a test for inter-rater agreement was undertaken using the Kappa coe�cient.

Given the reach of the questionnaire survey, the domicile of respondents (Ques-

tion 4.2: UK or Non-UK based) is considered. To achieve this, Cohen's Weighted

Kappa is utilised and outlined in the following paragraphs.

Cohen's Weighted Kappa considers agreement and disagreement across two raters

[Cohen, 1968], as represented by the following formula:

κw = 1−
∑k

i=1

∑k
j=1wijpoij∑k

i=1

∑k
j=1wijpeij

po = observed agreement.

pe = chance agreement.

i = matrix row.

j = matrix column.

w = weighting.

The �rst thing to occur is the calculation of a matrix containing expected values

or chance agreement �gures which are obtained by multiplying the total rows by

the total columns before dividing it by the total number of observations.

The weighted kappa coe�cient takes into its calculation a predetermined matrix

of weights (see table 2.5), which allow for calculation of disagreement, taking into

account the chance and observed agreement. Weights are either linear, where

CHAPTER 2. METHODOLOGY 38

the di�erence between categories has the same importance; and quadratic where

di�erence between categories varies in importance.

Linear Weights 1 0.75 0.50 0.25 0

Quadratic Weights 1 0.937 0.75 0.437 0

Table 2.5: Linear and quadratic weights for calculating weighted Cohen's Kappa
across �ve categories.

In this analysis, linear weightings were used, given that there was no di�erence

in importance between the categories. Kappa is then calculated as 1 minus the

product of observed agreement before being summed with the product of the

corresponding weights. Finally, the totals are divided by the product of chance

agreement corresponding to the weights.

The value of Kappa is always less than or equal to 1, which according to Landis

and Koch [1977], can be interpreted into six strengths of agreement as shown in

table 2.6.

κ Strength of Agreement

< 0.00 Poor

0.00 − 0.20 Slight

0.21 − 0.40 Fair

0.41 − 0.60 Moderate

0.61 − 0.80 Substantial

0.81 − 1.00 Almost Perfect

Table 2.6: Kappa statistic strength of agreement [Landis and Koch, 1977, 165].

In determining an inter-rater agreement with regards to the size of the organ-

isation a respondent works for, the weighted kappa coe�cient cannot be used

given its limitation to two raters. In this case, responses were grouped into four

raters based on the size of the organisation by number of employees, as de�ned

by the UK government de�nition of organisation size (see table 2.7.) The aim

of this analysis was to gauge what level of agreement there was in relation to

organisation size.

CHAPTER 2. METHODOLOGY 39

Size No. of Employees

Micro ≤ 9

Small 10 - 49

Medium 50 - 249

Large ≥ 250

Table 2.7: UK Government de�nition of business size [Rhodes, 2016, 5]

For each attribute, the following propositions are considered:

P0 Agreement on the DevOps conceptual attribute is not di�erent according

to domicile.

P1 Agreement on the DevOps conceptual attribute di�ers according to domi-

cile.

Elaboration Analysis

Elaboration analysis is a broad term for a number of methods utilised in the

analysis of quantitative data typically gathered from within survey strategies,

allowing the researcher to �explore the e�ects of other variables� [Robson and

McCartan, 2016, 433]. One such methods of analysis undertaken for this PhD

research is factor analysis.

Originating from Psychology, factor analysis branches from multivariate analysis,

focusing on identifying any latent covariance and correlation between variables

[Lawley and Maxwell, 1962]. As a method of analysis, factor analysis comes in

two forms: con�rmatory factor analysis (CFA) and exploratory factor analysis

(EFA).

Robson and McCartan [2016] outline factor analysis as a tool to making sense of

correlations between a number of variables. Thus Robson and McCartan [2016,

436] de�ne factors as �hypothetical constructs developed to account for the in-

tercorrelations between the variables�. Subsequently, factor analysis o�ers the

CHAPTER 2. METHODOLOGY 40

researcher a means to turning a large and potentially unwieldy number of vari-

ables into a smaller number of easily manageable and understandable factors.

While CFA is a technique to verify factors, EFA, as it's name implies, is used

to explore the data and identify potential factors arising from the correlation

between variables [Robson and McCartan, 2016]. Therefore, EFA always begins

with a generated correlation matrix between the variables. Robson and McCartan

[2016] also state the number of variables should not exceed the number of respon-

dents, and there should be �ve times the number of respondents to variables for

reliably estimating these underlying factors.

An EFA will be undertaken with the agreements over 17 DevOps conceptual at-

tributes (variables) considered by questionnaire respondents. The EFA began

with producing a correlation matrix to aid in identifying strong correlations,

which were further tested for signi�cance. A CFA was undertaken on the iden-

ti�ed factors for the purpose of veri�cation by assessing how well the variables

loaded. Finally, a Cronbach's Alpha test for reliability was conducted [DeVellis,

2016], as de�ned in the formula:

α = (k
k−1)(1−

∑k
i=1 σ

2
yi

σ2x
)

Where:

k = number of components.

σ2
z = variance of observed scores.

σ2
y = variance of component i

2.5 Method for Exploring the Adoption of De-

vOps

Little research has focused on the actual adoption of DevOps within an organisa-

tion, and what this means for both software engineering and IT support profes-

sionals. This component of the PhD research aims to study, in depth, the e�ects

CHAPTER 2. METHODOLOGY 41

and implications for both the business and software engineering functions as a

result of DevOps adoption.

Lethbridge et al. [2005] argue that a multiple method approach to data collection

is important when capturing information from software engineering profession-

als. Lethbridge et al. [2005] outline two techniques of data collection to consider

when undertaking software engineering research (see table 2.8). This research

adopts the approach advocated by Lethbridge et al. [2005] in order to capture

data pertaining to revealing insight and understanding with regards to meth-

ods and processes, in addition to rich longitudinal and real-time insights for any

phenomena under investigation.

However, careful considerations of method and design is needed to minimise or,

if possible, avoid the so called �Hawthorne E�ect� where participants deliberately

change behaviour as result of being directly observed [Lethbridge et al., 2005,

317].

Technique Method Examples Description

Inquisitive Focus groups;
Interviews;
Questionnaires;
Conceptual modelling;

Good for providing general understand-
ing and insights into methods and pro-
cesses. Data collected generally o�ers
point in time and cross-sectional insights.

Observational Diary studies;
Direct observation;
Document analysis;
Analysis of tool usage;

Can provide in-depth and real-time in-
sights regarding any phenomena under
investigation. Data collected generally
o�ers rich and longitudinal insights.

Table 2.8: Inquisitive and Observational techniques for research involving
software engineering professionals, adapted from Lethbridge et al. [2005, 313].

This section outlines a 14 month, multi-method study at Anglia Farmers Ltd.

(AF), a medium sized organisation adopting DevOps. The study combines both

the inquisitive and observational technique as highlighted by Lethbridge et al.

[2005] with the objective of understanding DevOps within the context of the

organisation, as well as any methods and processes in place. To accomplish this,

a qualitative diary study is supported by a series of semi-structured interviews,

CHAPTER 2. METHODOLOGY 42

designed to probe deeper into insights that emerge from the diaries.

2.5.1 Open Format Diary Study

Diary studies are a method for the capturing of data at regular intervals, focusing

on the actual participants and their behaviour within a situational context, whilst

minimising the e�ects of actual observations [Carter and Manko�, 2005] and

therefore reducing the �Hawthorne E�ect� [Lethbridge et al., 2005, 317].

Diary studies are most often structured methods designed to gather quantitative

data [Ohly et al., 2010], but can however take an open format where the partic-

ipant uses their own words, thus generating qualitative data [Poppleton et al.,

2008].

An open format diary study covering a 14 month period, starting in January 2016

and ending in March 2017, was undertaken within the Software Development

and IT Operations functions at AF. The diary study was qualitative and open

re�ection allowing for participants to report on events and experiences within

the context and time frame of which they happen. This approach can therefore

contribute to reducing retrospective bias [Reis and Gable, 2000], yet be ideal for

exploratory research [Lethbridge et al., 2005].

Participants were asked to provide a diary every two weeks. In addition, a se-

ries of semi-structured interviews supplemented the diary study, as outlined in

section 2.5.3.

Table 2.9 provides an anonymised overview of the participants within AF through-

out the diary study.

2.5.2 Pilot Study and Abductive Reasoning of Job Crafting

A pilot diary study was undertaken by a senior software developer at AF in June

and July 2015, with a total of �ve open format diaries written. Initial analysis of

CHAPTER 2. METHODOLOGY 43

Position/Role Department Diaries

Software Development Manager Software Development 16

Senior Software Developer Software Development 22

Senior Software Developer Software Development 24

Software Developer Software Development 5

Software Developer Software Development 4

Software Developer Software Development 5

Software Developer Software Development 9

Test Analyst Software Development 3

Test Analyst Software Development 0

Business Analyst Software Development 18

Systems Administrator IT Operations 3

Systems Administrator IT Operations 4

Head of Group Operations Senior Management 0

Total Diaries: 113

Table 2.9: Diary study participant overview at AF.

the data showed not only the e�ectiveness of using Bitbucket1 as a repository for

submitted diaries, but revealed unexpected links with the theory of job crafting

(see Wrzesniewski and Dutton [2001]). In particular, large amounts of task and

cognitive job crafting were evident in the diaries, which were further con�rmed

in a debrie�ng of the pilot study with the participant.

This abductive �nding quickly became a focus of the study, providing a solid

anchoring with business management theory and thus adding weight to the ar-

gument that DevOps is not exclusively a Computer Science topic. Section 3.4

gives a brief introduction and overview of the theory of job crafting. Additionally,

potential barriers with regards to using new tools in the adoption of DevOps were

evident.

The data collected during the pilot study was also considered within the analysis
1https://bitbucket.org/ accessed: Jun 2018

https://bitbucket.org/

CHAPTER 2. METHODOLOGY 44

of diary and interview data collected during the main study.

Manner of Data Collection

The researcher wanted to consider the individual participants within their envi-

ronments when applying methods and techniques as asking individuals to commit

to a 14 month study is no small task. Such consideration is especially pertinent

with software engineering professionals [Lethbridge et al., 2005]. As such, the

diary study was designed around the tools used on a daily basis by software de-

velopers at AF, in this case, Bitbucket, which is software platform developed by

Atlassian Software1, and is widely used for the version management of source

code in software development projects.

Bitbucket accomplishes this through the git2 protocol. Git works through the

staging and committing of updated content which is then pushed to the repository.

As such diaries were �committed and pushed� to the repository for easy researcher

access (see �gure 2.4) but also to the rest of the team, thus in keeping with the

Constructivist view of knowledge generated through social processes. The added

bene�t is that the diary study harnesses existing processes and skills typically

utilised day to day by the participants.

The diary templates participants were provided were written using Markdown3,

a lightweight markup language which is easy to read and write. Markdown �les

are easily identi�ed by the extension `.md'. Markdown is a markup language, and

o�ers the bene�t of often being rendered within a web browser in conjunction with

a platform such Bitbucket. For software development professionals, Markdown is

often the format for which documentation such as installation guides and readme

�les are written. The template provided to the participants, along with guiding

questions used is provided in appendix 4 on page 224.

While this mechanism proved useful, and indeed engaged software developers,
1https://www.atlassian.com/ accessed: May 2017
2https://git-scm.com/ accessed: May 2017
3https://daringfireball.net/projects/markdown/ accessed: Jun 2017

https://www.atlassian.com/
https://git-scm.com/
https://daringfireball.net/projects/markdown/

CHAPTER 2. METHODOLOGY 45

Bitbucket

Participant

Researcher

git
push

git
pull

git
push

git
pull

qu
es
tio

ns
.m
d

Interviews

Diaries Inform

diary.m
d

Figure 2.4: Process of using Bitbucket for submitting open re�ection markdown
diaries with participants at AF.

participants within the IT Operations function at AF neither use Bitbucket, nor

have the necessary expertise to use it. As such, diary collection from them was

a more manual undertaking, generally via e-mail submissions to the researcher.

In this case, the diaries were committed to the Bitbucket repository by the re-

searcher, with the prior permission of the participants.

While the majority of diaries were open and viewable by all participants through

the Bitbucket repository, some diaries were submitted privately and directly in

order to retain anonymity. This was down to participant request and often where

more sensitive things were discussed within them. These diaries were never com-

mitted to the repository but still considered in the analysis process, as outlined

in section 2.5.4.

CHAPTER 2. METHODOLOGY 46

Limitations

Gaining insight into individuals, their roles and what this means on a day to day

basis in software engineering environments, diaries make for a potentially excellent

choice in method [Lethbridge et al., 2005]. However, there are limitations needing

consideration, especially if the time horizon is longitudinal.

The �rst consideration is participant attrition, where participants may submit di-

aries infrequently or stop altogether. In this study, some attrition was observed,

namely from the AF software development team. Upon investigation, the partic-

ipants concerned generally felt what they would be contributing `would not be

of interest' subsequently believing they were wasting the researcher's time. How-

ever, they did not formally withdraw from the study and willingly participated

in the interviews. As such, the researcher attempted several remedies for them,

including transcribing verbal diaries, by means of recording re�ection according

to the guiding questions. Thus, these so called verbal diaries had more in common

with an interview and were not completed independently by the participant.

While these verbal diaries provided some remedy, they added logistical complex-

ity to the project. A total of four participants resorted to the verbal approach,

meaning 17 diaries in total were submitted in this fashion. The researcher did

however run the transcribed diaries past each participant, with them providing

agreement before they were added to the repository (or kept private as per par-

ticipant desire). While not ideal, this method did enable data to be captured and

kept said participants engaged with the study.

2.5.3 Semi-Structured Interviews

Saunders et al. [2011, 318] cite Kahn and Cannell [1957] in de�ning interviews

as the �purposeful discussion between two or more people�. Interviews can be

undertaken in a formal or informal manner [Gill and Johnson, 2010].

In practical application, they can be categorised into three types, namely struc-

CHAPTER 2. METHODOLOGY 47

tured, semi-structured and unstructured [Robson and McCartan, 2016; Saunders

et al., 2011]. Interviews can be a rich source of data given the potential to probe

and follow up on answers, especially in face-to-face situations [De Vaus, 2013]. Ta-

ble 2.10 provides an overview of each interview category, along with the research

purpose for which it is suited.

Type Format Suitability Data

Structured
interviews

Fixed Questionnaire Descriptive
Explanatory

Quantitative

Semi-structured
interviews

Flexible questions
themes

Exploratory
Explanatory

Qualitative
Unstructured
interviews

non-directive Exploratory

Table 2.10: Types of interview with links to research purpose derived from
Saunders et al. [2011].

Structured interviews are standardised, and generally involve the interviewer di-

rectly administering a questionnaire comprising a predetermined set of questions

[Saunders et al., 2011]. There is little to no room for �exibility, so interview-

ers would read questions precisely as they are written and ideally in the same

tone of voice with all participants. Responses tend to be predetermined options,

therefore structured interviews would typically produce quantitative data.

Semi structured interviews may follow some elements of the structured interview,

but do not conform to a standard [Saunders et al., 2011]. Aside from a list

of questions, semi-structured interviews may also include themes to explore, en-

abling �exibility for the interviewer to adjust the order, add or even omit questions

as necessary [Robson and McCartan, 2016; Saunders et al., 2011]. As a result,

each semi-structured interview is unique given the ability for the interviewer to

make adjustments as the discussion evolves. They produce qualitative data, usu-

ally recorded by an audio recording and/or through note taking [Saunders et al.,

2011].

By de�nition the opposite of structured, unstructured interviews are informal and

non-standardised with no prede�ned questions or themes [Saunders et al., 2011].

CHAPTER 2. METHODOLOGY 48

They allow for in-depth discussion but the interviewer would still need to steer

this discussion in relation to what they seek to explore. As with semi-structured,

unstructured interviews are unique to each participant and produce qualitative

data which, as with semi-structured interviews, would be recorded and/or written

[Saunders et al., 2011].

With the three categories of interviews introduced, the actual interview itself can

take many more forms including, but not limited to: interviewer-administered

questionnaires; face-to-face; telephone; and group-based interviews (see �gure 2.5).

Indeed, focus groups, as explored in the previous sections of this thesis are a type

of group-based interview.

Figure 2.5: Forms of interview grouped by how they are conducted, adapted
from Saunders et al. [2011, 321].

Semi-Structured Interviews to Supplement Diary Study

To supplement and support the diary study, and applying Lethbridge et al.'s

(2005) recommendations of a multi-method technique when dealing with soft-

ware engineering professionals, four semi-structured interviews are undertaken

with each participant during the study. The purpose of these interviews is to

capture more detailed information, especially with regards to methods and pro-

cesses around DevOps adoption. Additionally, the interviews further explore the

participant as an individual within these processes, enabling the researcher to

further probe insights emerging within the diaries submitted by the participant

CHAPTER 2. METHODOLOGY 49

being interviewed.

While the semi-structured approach makes each interview unique to the partic-

ipant, some degree of structure was established. The interview structure was

piloted and re�ned with two software developers at Rainbird1, a small technology

company based in London and Norwich, UK.

The following paragraphs will now outline the location of the interviews for par-

ticipants, along with the levels of preparation undertaken. Unlike the diary study,

interview recordings and transcriptions were stored privately and away from Bit-

bucket.

Conducting the Interviews

AF kindly allowed the use of meeting rooms at their o�ces in Honingham Thorpe,

Norfolk. This helps minimise disruption to the organisation, yet o�ers conve-

nience for participants, who also had ready access to amenities. Each participant

was made aware of the interview around two weeks in advance and was aware

that any previously submitted diaries were examined and potentially probed.

Prior to the interview commencing, the researcher will engage in small talk with

the participant, getting to know them better and discussing shared interests,

especially with subjects related to technology in general. The aim of this is to put

the participant at ease, generate rapport and to project an informal atmosphere

for interview itself.

Participants are interviewed up to four times over the fourteen month period (see

�gure 2.6). Given the time commitment involved, alternate interview scenarios

have been planned and considered, as illustrated by the three alternate paths.

Such scenarios included sta� starting with or leaving the organisation and those

where circumstances were prohibitive. For instance, it is only possible to interview

a Senior Manager at AF twice in the period of study.
1http://rainbird.ai/ accessed: Jun 2017

http://rainbird.ai/

CHAPTER 2. METHODOLOGY 50

Entrance
interview

Mid-study
interview 1

Mid-study
interview 2

Exit
 interview

Beginning of the
diary study

Four to five
months after start
of the diary study

Nine to ten months
after start of diary

study

End of diary study

Alternate 1

Alternate 3Alternate 2

14 Months

Figure 2.6: Multi-Interview plan for participants at AF over a fourteen month
period.

All participants, at the very least, have an entrance and exit interview, and these

were considered the most important of all. By the end of the study, a total of 44

semi-structured interviews will have been conducted with participants from AF

(see table 2.11).

Position/Role Department Interviews

Software Development Manager Software Development 4

Senior Software Developer Software Development 4

Senior Software Developer Software Development 3

Software Developer Software Development 4

Software Developer Software Development 4

Software Developer Software Development 4

Software Developer Software Development 3

Test Analyst Software Development 3

Test Analyst Software Development 2

Business Analyst Software Development 3

Systems Administrator IT Operations 4

Systems Administrator IT Operations 4

Head of Group Operations Senior Management 2

Total Interviews: 44

Table 2.11: Interview participation at AF.

CHAPTER 2. METHODOLOGY 51

The purpose of the entrance interviews is to discuss their initial perceptions about

DevOps, how they see their role at AF, including how it compares to previous

ones and what they do on a daily basis. While more structured than others, the

entrance interviews are informal and the discussion su�ciently �exible, allowing

the researcher to probe, add, change or remove questions as they deemed �t. The

entrance interviews typically take 30 - 40 minutes to complete. A generic protocol

for the entrance interviews is provided in appendix 5 on page 227.

The mid-study interviews have fewer initial questions, instead, focusing on prob-

ing entries of interest from submitted diaries. They are to also enable the re-

searcher to check in with each participant individually, and investigate diary

absences and address any concerns they have with the research. These are typi-

cally shorter than the entrance interviews, taking between 25 and 35 minutes to

complete. Given the study length, participants have two mid-study interviews

planned. A generic protocol for the mid-study interviews is provided in appendix

6 on page 230.

The exit interview concludes the diary study and a�ords the opportunity to de-

brief each participant individually. Aside from some speci�c questions, the exit

interviews continue to probe participant submitted diaries. As such, these in-

terviews are slightly longer, taking between 40 and 60 minutes to complete. A

generic protocol for the exit interviews is provided in appendix 7 on page 232.

Limitations

Interviews can provide a good insight, but not necessarily a full and accountable

observation of what happens in software development environments [Lethbridge

et al., 2005], and thus limit the longitudinal time horizon taken with the study

as a whole. The interviews outlined in this section are designed to supplement

and support a diary study.

Taken together, the interviews and diary study constitute a multi-method ap-

proach, which Lethbridge et al. [2005] argue is necessary to acquire the fuller

CHAPTER 2. METHODOLOGY 52

picture in such environments. Furthermore, the interviews act as a control mech-

anism for the diary study, which in turn fuels the discussion points.

Saunders et al. [2011] warns that with non-standardised interviews, interviewer

bias is an ever present danger, which can be mitigated by a good recording of

the interview. Fortunately, all participants were happy with the interview being

recorded, and this was accomplished with an Olympus DM670 voice recorder,

with each recording transcribed in an intelligent verbatim manner, namely, omit-

ting `erms' and `ahs', which were deemed to not add anything; long pauses, were

however transcribed as was laughter. Additionally, the interview transcriptions

aided in a thematic analysis, in conjunction with the diaries as is outlined in

section 2.5.4.

2.5.4 Data Analysis

Both Saunders et al. [2011] and Robson and McCartan [2016] highlight that the

analysis of qualitative data, even in relatively small amounts can very easily over-

whelm researchers. Robson and McCartan recommend four possible artefacts (see

table 2.12) which can potentially aid researchers in keeping track of qualitative

data, and the key things within it.

All four of Robson and McCartan's suggested artefacts are applied, with some

modi�cations. By the nature in which the Mid-Study and Exit Interviews probed

participant diaries, they necessitate the ongoing analysis and interim reporting of

these diaries, therefore providing an implicit bene�t through the inherent appli-

cation of the document sheets and interim summary. Furthermore, the adoption

of these artefacts, while laborious, will enable ongoing analysis of large quantities

of qualitative data.

A thematic analysis is an approach to analysing qualitative data, which can be

applied in a Constructivist manner whereby events, realities and meanings can

be derived from discourse captured within a sociocultural context [Robson and

McCartan, 2016]. Coding is key to undertaking thematic analyses, and Robson

CHAPTER 2. METHODOLOGY 53

Activity Description

Session Summary Summarising the key points on what has been obtained. As
the name implies, this can be a very useful activity for ses-
sional research activities, such as interviews, focus groups and
observations.

Document Sheets Like with session summaries, but applied instead to each doc-
ument allowing the technique to be applied to non-sessional
activities such as diaries.

Memoing An overarching term that applies to capturing anything
throughout the research project. This is a useful technique
for abductive reasoning and capturing ideas, views and any
other intuition through all stages of analysis.

Interim Summary As the name implies, this is an attempted summary of �nd-
ings at a speci�c point in time. The interim summary allows
the researcher to consolidate what has been found, to poten-
tially highlight what needs to be found and how these relate
to the research questions.

Table 2.12: Rundown of recommended artefacts which can aid in the analysis of
qualitative data according to Robson and McCartan [2016, 467].

and McCartan [2016, 467] de�ne these as �passages of text or other data items

such as the parts of pictures that, in some sense, exemplify the same theoretical or

descriptive idea�. These codes are subsequently grouped into a smaller number

of `themes', also referred to as �categorisation of meanings� [Saunders et al.,

2011, 490], relating to the research questions. These themes or categories can

be prede�ned ahead of the analysis (set themes) or they can emerge (emergent

themes) during [Robson and McCartan, 2016].

For this PhD research, a thematic analysis of the qualitative data collected from

the interviews and diary study was applied, using both set and emergent themes.

The set themes (see table 2.13) were derived from the output of the focus group

and questionnaire exploring the de�nition of DevOps, with an emphasis placed on

management themes. Additionally, the three types of job crafting as put forward

by Wrzesniewski and Dutton [2001] were set themes.

To fully account for themes, and in keeping with the exploratory purpose of this

CHAPTER 2. METHODOLOGY 54

Theme Description

Decision Making Any and all aspects of management decision making
within a software engineering environment.

Ownership The concept of taking ownership of the development of
speci�c features within a software system either individu-
ally or collectively.

Responsibility The concept of taking responsibility for the development
of speci�c features within a software system either indi-
vidually or collectively. Particular emphasis is placed on
the notion of shared responsibility from development to
deployment of software.

Measurability/Metrics The focus on metrics measuring the success of the De-
vOps approach being employed by the organisation.

Accountability The provision and/or recognition of accountability for
actions taken within a software engineering environment.

Task Crafting Any instances where participants change the task bound-
aries of their roles and/or role meanings change as a re-
sult of tasks.

Relationship Crafting Any instances where participants rethink their relation-
ships with colleagues, seeing their role as a part of an
integrated whole.

Cognitive Crafting Any instance where participants examine and rethink
their role as more than just delivering outputs.

Table 2.13: Set themes for use within a thematic analysis of qualitative diary
and interview data collected at AF

research, emergent themes were explored in addition to the set themes. While

software packages such as NVivo can potentially help in such analyses, the the-

matic analysis was undertaken manually. Additionally, interrelated themes were

identi�ed, especially linking job crafting with the management and software en-

gineering themes. Interpretation of the �ndings is presented within a case study,

providing a narrative of DevOps within the context of AF as well as highlighting

the temporal aspects of the study.

CHAPTER 2. METHODOLOGY 55

Case Study Formation and Boundary

Adopting the Constructivist view of Stake [1994, 38] where the case study is

the �study of the particular�, a qualitative case study was written concerning

DevOps adoption within AF. The case study boundary can therefore be de�ned,

but in no ways ��xed� as the Software Development and IT Operations functions,

within which DevOps is being adopted as part of AF's new approach to software

development.

2.6 DevOps Systematic Review

A literature review's purpose is the coherent presentation of key �ndings from rel-

evant primary studies, to a wider academic and practitioner audience [Tran�eld

et al., 2003]. However, the ubiquity and availability of literature can create prob-

lems for researchers [Jesson et al., 2011], especially when dealing with a �mass of

often contradictory evidence� [Tran�eld et al., 2003, 207].

2.6.1 Introduction to Systematic Literature Reviews

Having roots in healthcare and medical research [Biolchini et al., 2005; Greenhalgh

et al., 2005; Tran�eld et al., 2003], the Systematic Literature Review (SLR), often

shortened to `Systematic Review' can be de�ned as �a comprehensive review of

literature which di�ers from a traditional literature review in that it is conducted

in a methodical (or systematic) manner, according to a pre-speci�ed protocol to

minimise bias, with the aim of synthesising the retrieved information� [Dempster,

2011, 15].

In short, the SLR is a meticulous and methodologically explicit secondary study

activity [Clarke, 2011; Kitchenham, 2004], di�ering considerably from the tra-

ditional (inductive and deductive) approaches employed for reviewing literature

[Hanley and Cutts, 2013; Jesson et al., 2011; Tran�eld et al., 2003]. The ad-

CHAPTER 2. METHODOLOGY 56

vantage for researchers is that the SLR can be a powerful research instrument

given its inherent rigour, structure and reproducibility owing to its methodolog-

ical transparency [Hanley and Cutts, 2013; Kitchenham, 2004; Tran�eld et al.,

2003].

Published SLRs are often observed having multiple authors [Jesson et al., 2011],

suggesting a SLR would be a considerable (but not necessarily impossible) task

for an individual. Undertaking a SLR (see �gure 2.7) is typically a linear activity

[Jesson et al., 2011]. The �rst stage is to scope the area of study, de�ning the

review questions and producing the protocol which will drive the SLR. Following

this, literature is searched, screened and documented according to the protocol,

before more thorough analyses of each item's quality is undertaken. Data is

then extracted from included items and synthesised, resulting in a coherent and

critically written review document [Hanley and Cutts, 2013].

Figure 2.7: Overview of the key stages of a SLR, derived from Hanley and Cutts
[2013, 4], Clarke [2011, 64] and Jesson et al. [2011, 103-104]

Application in Management and Software Engineering Research

Despite its roots in Medicine [Jesson et al., 2011], the SLR has been successfully

utilised in both the Management and Software Engineering disciplines [Biolchini

et al., 2005; Kitchenham et al., 2009; Tran�eld et al., 2003].

CHAPTER 2. METHODOLOGY 57

While the process of undertaking a SLR is fundamentally the same (see �gure 2.7),

the strict application and rigid adherence to a pre-de�ned protocol, may render

SLRs counter-productive in management [Tran�eld et al., 2003] and software en-

gineering [Kitchenham et al., 2009]. As such, the protocol-driven search and in-

clusion activities are criticised for compartmentalising the review, leading to bias,

the very thing SLRs aim to prevent [Greenhalgh et al., 2005]. However, Tran-

�eld et al. [2003] argue the protocol-driven search is a key attribute of the SLR,

and that disciplines such as Business Management, which are often exploratory,

can overcome these limitations by not excluding researcher intuition, knowledge,

networking and serendipity. Indeed these aspects can be easily included within a

SLR, supplementary to the protocol.

2.6.2 Protocol

Following initial scoping revealing a general lack of research activity on DevOps

prior to 2010, a SLR is undertaken to appraise the growing DevOps literature.

The SLR process follows a protocol, which considers the application of a SLR

outside of the Medicine discipline. As such, the �nal protocol draws heavily from

the work of Biolchini et al. [2005] and Greenhalgh et al. [2005]. It also incor-

porates the recommendations by Tran�eld et al. [2003] and Kitchenham [2004],

allowing for researcher knowledge, networking, snowballing and serendipity in lo-

cating relevant literature. Thus further accommodating the exploratory nature

of Business Management and Software Engineering research (see �gure 2.8).

The �nal deliverable of the SLR is twofold. Firstly, this section was developed

to serve as a methodological overview, providing transparency and reproducibil-

ity. Secondly, a detailed and comprehensive review of the found literature is

conducted, written up and presented in section 3.3.

The purpose of the review is to provide a collated overview of the DevOps litera-

ture and to explore its application within the Business Management and Software

Engineering disciplines. The review aims to advance the discussion on DevOps,

given the need for further research, for what is an emerging topic, as concluded

CHAPTER 2. METHODOLOGY 58

Figure 2.8: Process for the SLR on DevOps

by Erich et al. [2014].

Initial Scoping Searches for DevOps

In the �rst instance, the term �DevOps� was searched in 2015 with the initial

results from Scopus producing 220 peer-reviewed items. The �rst of these items

was published in 2010, but has increased to 1842 publications by the end of 2019.

Google Scholar, unsurprisingly, produced the most items in the initial scoping

CHAPTER 2. METHODOLOGY 59

search, followed by Scopus. While Google Scholar is an attractive option, it was

not selected as a primary source for literature in this review. Instead, Scopus was

selected given it o�ers the same search functionality and customisation options

that Google does. Furthermore, Scopus has an interface with UEA's library and

so also produces a list of items it holds (or can access via interlibrary lending).

While Scholar indexes many of the main publishers, as well as grey literature

(see section 2.6.2 for more details on grey literature inclusion), Scopus has a far

stronger focus on peer-reviewed literature. Nevertheless, Google Scholar is useful

for locating further literature for the vast majority of items found.

The SLR seeks answers to the following questions:

1. How can DevOps be de�ned?

2. How does DevOps a�ect the organisation?

3. What is the current research agenda for DevOps?

Searching, Screening and Documentation of DevOps Literature

Initial keyword and terms were identi�ed, forming the basis of the search strings

used for the review. These terms were chosen given the previously de�ned review

questions and the output of the de�nition research activities (see section 2.4).

In total, 14 strings (see table 2.14) were used to search the title, abstract and

keywords of items on Scopus1 given that it indexes many publishers, including:

ACM; Elsevier; Emerald; IEEE; Springer and Wiley. The term �DevOps� is

integral, and was included in every search string.

Although all strings produced results, much of the results in later searches are

duplicates already discovered previously. In addition, some of the search strings

utilised phrase searching, as denoted by the use of double quote (� �) charac-

ters. This enabled a more precise search, especially with terms such as `deci-
1https://www.scopus.com/ accessed Jun 2020

https://www.scopus.com/

CHAPTER 2. METHODOLOGY 60

Search String

DevOps DevOps AND Agile
DevOps AND De�nition DevOps AND �Software Development�
DevOps AND �Software Engineering� DevOps AND Infrastructure
DevOps AND Business Management DevOps AND Strategy
DevOps AND Culture DevOps AND �Decision Making�
DevOps AND Metrics DevOps AND Ownership
DevOps AND Accountability DevOps AND Responsibility

Table 2.14: Strings used to search for peer-reviewed DevOps literature using Scopus.

sion making', `software development' and `software engineering'. Despite being

largely dominated by computing and software engineering research, published

peer-reviewed research on DevOps drastically increased from 2015 (see table 2.15

and �gure 2.9).

2010 2011 2012 2013 2014 2015 2016 2017 2018 2019

1 11 14 20 49 125 232 326 485 579

Table 2.15: Peer-reviewed DevOps literature found on Scopus by year.

Each item of literature found is recorded on a spreadsheet, allowing for the capture

of additional data about the item as it progresses through the process. Addition-

ally, a bibliography is kept with each item given a unique reference for ease of

future citation. Again, Google scholar was instrumental in quickly providing ci-

tations in the correct syntax, although accuracy was ensured by applying manual

corrections to the bibliography as needed.

Quality Appraisal

In total 87 peer-reviewed items were shortlisted for quality assessment, with 35

selected for inclusion in the �nal review. The majority of rejected items were

tool demonstration papers and initial analysis shows that DevOps is emerging in

the literature; more evidently so within Computer Science. However, very little

appears to be written about DevOps within the Business Management literature.

CHAPTER 2. METHODOLOGY 61

Figure 2.9: Cumulative frequency of peer-reviewed DevOps literature published
from 2010 to 2019 inclusive.

Irrespective of how individual literature items are discovered, each is still subject

to the same quality appraisal, which in this case, is broken down into two distinct

phases. The �rst phase assesses the language, quality of writing and clarity

of the item, with the second considering the research methods, ontology and

epistemology.

Only items written in English are considered, and the log was updated to track

how much of the item was read in order to understand the general message it

was conveying. The publication outlet was evaluated independently of its re-

spective discipline. This is done using the Chartered Association of Business

Schools (CABS)1 ratings or impact factors. This thesis seeks to present DevOps

as an interdisciplinary topic covering Business Management, Computer Science

and Software Engineering. By omitting any discipline, the review questions would

be out of scope, and as such would potentially compromise the review's integrity.
1https://charteredabs.org/ accessed: May 2017

https://charteredabs.org/

CHAPTER 2. METHODOLOGY 62

However, while data on the outlet's rating is collected, the review itself did not

discriminate purely on this rating. Indeed, disciplines consider ratings very dif-

ferently with the CABS rating taking precedence within Business Management

whereas the impact factor is prime consideration for Computer Science and Soft-

ware Engineering. Sticking to one discipline's rating scheme may fail to consider

relevant research published in outlets rated high in the other discipline.

Furthermore it is argued that a Journal or Conference rating, can and often

does, implicitly in�uence a researcher given their perceptions of quality may be

determined around this rating alongside other factors including author notoriety

[Tran�eld et al., 2003]. As such, and irrespective of research philosophy, such

in�uence should not a�ect the appraisal of relevant, peer-reviewed literature.

Following on from the previous quality assessment stage, and continuing to fol-

low recommendations from Tran�eld et al. [2003], the research methods should

be meticulously scrutinised in conjunction with the stated research question(s).

As such, only primary studies are considered for the review. Where items are

literature reviews, they are excluded at this stage. An exception is made if the

literature review was a component of a primary study, as such the review section

of the item is considered, but only for a contextual assessment of the primary

study and associated research methods, where applicable. While excluded, peer-

reviewed literature reviews are still counted in a meta analysis of found literature.

This is to provide an indication on how well reviewed the DevOps literature is

Grey Literature Inclusion

As illustrated in previous sections, DevOps is an emerging �eld with a growing

body of peer-reviewed literature. Industry on the other hand could be described

as the tip of the spear with DevOps, with a huge and diverse amount of industrial

literature available. As such, this already sizeable body of grey literature should

not be dismissed, �rstly because much of it is grounded in the sense that DevOps

is predominantly being led by industrial adoption. Secondly, Adams et al. [2015,

187] argue that the �average lag� of about four years from publication to prac-

CHAPTER 2. METHODOLOGY 63

titioner application is another key justi�cation for including grey literature. It

follows that the exclusion of such content may jeopardise the completeness of the

literature search.

A search for grey literature in systematic reviews reveals numerous articles across

all disciplines that have successfully incorporated grey literature. However, a clear

and explicit strategy for handling grey literature is required. Such a strategy has

been adapted from Adams et al. [2015] as outlined in table 2.16, sitting well with

the earlier considerations from Tran�eld et al. [2003].

Strategy Description

Authority and Reputation The authority of the publishing institution, for
example, for example, chartered institutes, rep-
utable industrial sources, leading blogs

Expert Recommendation Includes suggestions by prominent DevOps au-
thors, speakers and practitioners.

Snowballing Typically backward snowballing citations from
both peer-reviewed and non-peer-reviewed items.

Table 2.16: Grey Literature strategy, adapted from Adams et al. [2015].

Data Extraction, Synthesis and Write Up

Literature items that clear the quality appraisal are considered �included� within

the review. The next stage is to extract the key data from the literature item,

which would include the research questions, further method details, key �ndings

and any calls for further work, where applicable. Extracted data were anal-

ysed and synthesised, identifying key themes and concepts which would progress

through to the methodology, research questions and design.

The synthesis stage enables the identi�cation of research gaps and interdisci-

plinary themes across business management, computer science and software en-

gineering. Additionally, this enables the precise re�nement of the objectives and

subsequent focus of research activities, selection of appropriate methods and par-

CHAPTER 2. METHODOLOGY 64

ticipant recruitment, pertinent to the project. Finally, the review was written

up for inclusion in this thesis, as a systematic DevOps component of the overall

literature review chapter.

2.6.3 Limitations

While a SLR can o�er a powerful research instrument for appraising relevant lit-

erature, it is acknowledged that the undertaking of the SLR in this PhD research

has limitations with one researcher leading to potential subjectivity and bias with

reviewing literature. A mitigation to this limitations is to undertake such reviews

with other researchers, thus helping to minimise any bias or subjective appraisals

on quality.

2.7 Summary of Methodology

In this chapter, the research methodology of this PhD project has been presented.

The PhD research is exploratory in purpose, taking a pragmatist philosophical

position with both deductive and inductive approaches.

DevOps is a nebulous and di�cult to de�ne term, and as such, a cross sectional,

mixed method study was de�ned under the survey research strategy with the

aim of exploring the de�nition of DevOps. The study involved a focus group

of DevOps practitioners as well as a questionnaire survey designed to test the

output of the focus group. The resulting quantitative data were analysed by

means of inter-rater agreement and elaboration analysis, involving exploratory

and con�rmatory factor analysis. These results are presented in chapter 4 on

page 99.

Additionally, a longitudinal, multi-method study following a case study strategy

was undertaken to explore DevOps adoption in a medium sized UK business.

This study was conducted over a 14 month period, and utilised an open format

CHAPTER 2. METHODOLOGY 65

diary study with a series of interviews, speci�cally designed to probe insights from

submitted diaries. As a result, a large quantity of qualitative data were collected

and analysed using a thematic approach. Abductive reasoning following a pilot

study revealed job crafting as a theoretical lens, and as such, the three types of

job crafting as proposed by Wrzesniewski and Dutton [2001] were included as

themes for analysis. The case study is available in chapter 5 on page 115. As

part of the overall Literature Review, a SLR of DevOps literature was outlined

and discussed along with a protocol to drive it.

CHAPTER 3. LITERATURE REVIEW 66

Chapter 3

Literature Review

"The more I study, the more insatiable do I feel my genius for it to

be.�

� Ada Lovelace

CHAPTER 3. LITERATURE REVIEW 67

Section 1
Introduction to the
Literature Review

Section 2
Origins of Software and

Software Engineering

Section 4
Introduction to Job Crafting

Section 5
Summary of the
Literature Review

Section 3
DevOps

Overview of Chapter 3: Literature Review

Systematic Literature Review

Wider interdisciplinary
context for DevOps

Wider interdisciplinary context for job
crafting in software engineering

Review protocol and guiding questions:

1. How can DevOps be defined?
2. How does DevOps affect the organisation?
3. What is the current research agenda for

DevOps?

Presented and discussed in Chapter 2:
Methodology, Section 2.6 (pp. 56-65)

Definitions of DevOps
Limited empirical studies of
organisations adopting DevOps
Research Agenda

Theory of job crafting

Abductive reasoning of job crafting

Discussed in Chapter 2: Methodology,
Section 2.5.2 (pp. 43-45)

CHAPTER 3. LITERATURE REVIEW 68

3.1 Introduction to the Literature Review

This chapter comprises three main sections, starting with section 3.2, which pro-

vides a brief overview of the origins and evolution of software and its development

from the late 18th, 19th and 20th centuries. This also considers the business man-

agement implications of software development, and in turn, setting the context

for DevOps.

Section 3.3 focuses exclusively on DevOps, providing a systematic literature re-

view (SLR) which seeks to examine the growing body of DevOps literature. The

aim of this core component of the chapter is to bridge the disciplines of Business

Management, Computer Science and Software Engineering as well as explore what

DevOps is, what it means for organisations and what, if any, interdisciplinary re-

search agenda exists. The method and protocol for the SLR is available in the

Methodology chapter of this thesis (see section 2.6).

Section 3.4 introduces and provides an overview of the theory of job crafting

and its potential application to DevOps research, following abductive reasoning

during the pilot diary study (see section 2.5.2).

Finally, a summary brings together the key insights from the literature indicating

how they assist with informing the design of this PhD research.

3.2 Origins of Software and Software Engineering

Software can be de�ned as a set of programmed instructions which are executed

by a computer for speci�c tasks, and is often simply referred to as a `program'.

Software varies in both scope and complexity, from a simple one line script to out-

put a line of text to complex safety critical systems. Today, software is ubiquitous

and applied in many areas including business, healthcare and transport.

The origins of software can be traced back to the late 18th and 19th centuries with

the �rst examples of programming, including the works of Joseph Marie Jacquard

CHAPTER 3. LITERATURE REVIEW 69

(1752-1834) and Augusta Ada King (1815-1852), better known as Ada Lovelace

[Randell, 1994]. Inventor, mathematician and mentor to Lovelace, Charles Bab-

bage (1791-1871) was inspired by the work of Jacquard when he designed the

Analytical Engine in 1837 [Fuegi and Francis, 2003], making it one of the �rst

designs for a general purpose computer. Lovelace recognised that aside from

numbers, the Analytical Engine could manipulate symbols [Lovelace, 1843]. Sub-

sequently, she wrote what is considered to be the �rst computer program which

was a recursive algorithm to compute Bernoulli Numbers, referred to as `Note G'

(see appendix 8 on 234). `Note G' was never implemented due to the Analyti-

cal Engine never being built to full-scale [Fuegi and Francis, 2003]. Nevertheless,

symbolic logic remains a foundational concept of computer programming meaning

Lovelace is recognised as one of the earliest programmers [Hollings et al., 2018].

Almost a century later, the work of Alan Turing (1912-1954) at Bletchley Park

was instrumental in breaking the German Enigma during the Second World War.

It was at this time that Turing shaped his own theories with regards to Computer

Science and Software [Turing, 1937, 2009]. Turing was inspired by Lovelace's

work, and laid the foundations for Computer Science as an academic and practical

discipline [Hally, 2005].

In the decades following the end of the Second World War, Computer Science has

both accomplished, and had much demanded of it. Development of the transistor

enabled computer systems to evolve at a staggering rate, unlocking potential

beyond the limits of previous valve and vacuum tube based systems [Friedman

and Cornford, 1989]. While the transistor ushered in a new era for Computer

Science, computers remained prohibitively expensive for most.

Nevertheless, businesses began to utilise the power o�ered by computers, initially

for relatively simple data processing but increasingly for more powerful and com-

plex applications [Barrow, 1999]. This not only necessitated businesses to create

their own software, but also to adapt their management approaches as technology

application in business continued to evolve in both scale and scope [Friedman and

Cornford, 1989].

CHAPTER 3. LITERATURE REVIEW 70

3.2.1 The Software Crisis and Software Engineering

In the 1960s, Intel co-founder Gordon Moore [1965] made a prediction that the

number of transistors within integrated circuits will double every two years, and

will continue to do so for the foreseeable future. This prediction, colloquially

known as `Moore's Law', means that the power of computers will increase rapidly.

As the decade continued, computational power increased by several magnitudes,

which subsequently enabled software to increase in scale and scope [Dijkstra,

1972]. However, software development at this time was typically undertaken by

skilled individual programmers, often referred to as hackers.

These individuals usually worked alone, lacking any structure to their work with

little to no documentation rendering it di�cult for others to maintain any pre-

viously developed software [Ince, 1988]. A lot of dependence was placed on this

early software and the costs for redevelopment were often �nancially unfeasible,

yet the challenges presented from its use and maintenance remain to this day

[de Vasconcelos et al., 2017]. Indeed, Anquetil et al. [2007] report that 40 to 60

percent of maintenance e�ort is spent on understanding software.

With software increasing in complexity yet lacking any formal approach, the

maintenance of developed software became a major problem to be tackled. This

was subsequently labelled the �Software Crisis� or �Software Gap� during the First

NATO Software Engineering Conference in 1968 [Randell, 1996, 70].

In re�ecting on engineering and science at NASA during the Apollo program

Rayl [2008] states that Margaret Hamilton, who is well known for her work on

the Apollo on-board �ight software, �developed the building blocks for modern

"software engineering", a term Hamilton coined�. While Computer Science is

concerned with the study of design, theory and experimentation with computers,

Software Engineering on the other hand is multi-disciplinary, yet purely con-

cerned with software and the systematic application of engineering principles to

developing it [Sommerville, 1992].

Although much discussion focused around the actual performance of software and

CHAPTER 3. LITERATURE REVIEW 71

user expectations, Randell [1996] argue the consequences of software failure are

increasing in severity for organisations. Larger, more complex or safety critical

software systems where loss of life could be one such consequence, exacerbates

the magnitude of software failure.

Furthermore, the Software Crisis was linked to increasing complexity in processes

for developing software and advances in computer hardware. Problems mani-

fested with software not being delivered because of projects running over time

and budget; developed software was ine�cient and of low quality; requirements

and speci�cations were not met and left unful�lled. Boehm [1988, 61] brie�y

summarises the earliest approach to software development as a �code-and-�x�

model. This describes the act of writing code and only �xing problems if and

when they occurred. No prior requirements analysis was undertaken. Boehm

[1988] also claims that much of the software developed was a structural mess

becoming increasingly expensive to maintain or was outright rejected by users.

The Traditional Approach

A proposed solution to the Software Crisis was a �metamorphosis in the practice

of software production� [Randell, 1996, 73]. Hamilton and Zeldin [1976, 9] also

argue that �formalized methodology� was crucial to software reliability.

In the late 1960s and early 1970s, the �rst structured frameworks for software

development emerged, with Waterfall becoming the most known of these [Bell and

Thayer, 1976; Royce, 1970]. Under Waterfall, software development is prescribed

a series of linear stages (see �gure 3.1), beginning with analysis and ending with

maintenance. It asserts that software development activity can only move forward

once all of the current stage activities are complete.

Waterfall always begins with analysis, where the requirements of the proposed

software are gathered from stakeholders before being examined in detail. The re-

quirements are formalised in a speci�cation which may also be prioritised, forming

a basis for designing the software. Again, detailed analyses are undertaken on

CHAPTER 3. LITERATURE REVIEW 72

Requirements
Analysis

Design

Implementation

Testing

Maintenance

Figure 3.1: The Waterfall model, adapted from [Sommerville, 1992, 5].

the requirements and speci�cation, leading to a comprehensive design which can

then be implemented. Following implementation, testing occurs which will seek to

verify the software works according to the speci�cation and to validate it against

stakeholder expectations. Finally, the software is operated and maintained where

additional issues that arise are dealt with through support or addressing technical

issues.

Waterfall became a widely used framework for software development as it ap-

peared to tackle many of the di�culties encountered previously, especially with

e�ectively capturing requirements and using these to guide software development

[Boehm, 1988; Smidts et al., 1998].

Agile

By the late 20th century, Waterfall was acknowledged to have critical �aws,

with many projects overrunning and producing unsatisfactory deliverables [Ru-

bin, 2012]. The Standish Group1 are well known for publishing their `Chaos

Reports', which report high levels of failure with traditional software develop-

ment approaches. There is wide debate amongst researchers on the validity of

these reports with critics focusing their arguments on the lack of methodological
1https://www.standishgroup.com/ accessed: Dec 2019

https://www.standishgroup.com/

CHAPTER 3. LITERATURE REVIEW 73

transparency [Eveleens and Verhoef, 2010; Glass, 2006; Jørgensen and Moløkken-

Østvold, 2006]. However, this does not detract the rigidity of Waterfall, render-

ing it assumptive of human behaviour. Therefore it is often unable to cater for

complex and rapidly changing requirements present in the majority of software

development projects [Bell and Thayer, 1976; Boehm, 1988]. As a result, Water-

fall can subsequently introduce technical failures in software itself [Smidts et al.,

1998].

Brooks [1987] acknowledges Moore's Law as a suitable predictor for hardware

advances, but he argues it does not apply to the development of software, given

it does not advance in such the same manner. Brooks [1987, 11] put this down

to the speed in technological advances where �the anomaly is not that software

progress is so slow, but that computer hardware progress is so fast�. However, the

complexity and scale of software does increase in following hardware developments

[Bosch and Bosch-Sijtsema, 2010]. Critically, Brooks [1987, 11] argues there is

no silver bullet, neither technical nor managerial, that can eliminate the issues

caused by increased complexity of software; a theme which Hamilton [2018] also

mentions.

Brooks [1987] does however, advocate an iterative and incremental approach to

developing software, with the 1990s seeing the emergence of various iterative and

incremental methods, including but not limited to, Dynamic Systems Develop-

ment Method (DSDM), Scrum and Extreme Programming (XP). As the name

implies, these methods focus around a concept of frequent and short iterations

of activity, thus breaking down a software development project into a number of

smaller parts and therefore di�ering considerably to Waterfall. Figure 3.2 pro-

vides an overview of the Scrum framework, showing how work is broken down

into backlogs and how time-boxed iteration is core to all activity, resulting in a

viable deliverable.

At the beginning of the 21st century, seventeen software developers met to discuss

these emerging iterative and incremental methods. The Manifesto for Agile soft-

ware development was published as a result [Beck et al., 2001], formalising Agile

as an approach to software development. Agile promotes team empowerment and

CHAPTER 3. LITERATURE REVIEW 74

24hrs

< 1 month

Product Backlog Sprint Backlog Sprint Working Software
Increment

Figure 3.2: The Scrum framework, derived from Rubin [2012, 17].

self-organisation with a strong focus on collaboration and communication while

following four core values [�mite et al., 2010]:

Individuals and Interactions over processes and tools.

Working Software over comprehensive documentation.

Customer Collaboration over contract negotiation.

Responding to Change over following a plan.

It is important to note that while greater emphasis is placed on the bold points

above, some believe Agile dismisses everything else [Brown, 2013]. Beck et al.

[2001] do not however dismiss processes, tools, documentation, contracts and

planning; but rather argue that while often a necessity, they should not take

precedence.

Agile was a welcome means to overcome the limitations of traditional approaches

to software engineering. However, the organisational adoption of Agile proved

di�cult for many years, particularly in large organisations and software develop-

ment teams [Qumer and Henderson-Sellers, 2008]. Agile does however work well

for smaller, co-located teams of typically less than ten developers [Boehm and

Turner, 2003]. Bosch and Bosch-Sijtsema [2010] also found that smaller software

development projects have bene�ted most from implementing Agile approaches.

Discussion is ongoing in the literature concerning adoption of Agile practice,

CHAPTER 3. LITERATURE REVIEW 75

but several developments have arisen. In particular, how Agile works across

distributed teams, its adoption for large-scale software development [Bosch and

Bosch-Sijtsema, 2010] and its in�uence on business success [Martini et al., 2013].

3.2.2 Summary of Section

In comparison to other disciplines, Software Engineering is relatively young. Nev-

ertheless, and alongside Computer Science, it has made signi�cant contributions,

as evidenced with the ubiquity of software today.

Early software development generally lacked any form of structure or method.

The Software Crisis was precipitated by the wider consequences of the increasing

complexity of software and a general lack of any formal approach to develop-

ing it. In response, early software development approaches were recognised and

adopted, including Waterfall followed by iterative and incremental approaches

such as Scrum. Eventually formalised under the heading of Agile, iterative and

incremental methods have gained greater popularity, but traditional approaches

such as Waterfall continue to be used as well.

Over time, e�ort has been made to ensure that software could be developed more

systematically while minimising risk. Although Waterfall and Agile approaches

were key developments, a new approach has recently emerged, called DevOps,

which is explored further in section 3.3.

3.3 DevOps

This section builds upon the previous overview of how software engineering has

evolved. As section 3.2 concluded, DevOps has emerged as a recent approach to

software development. This section provides a more detailed overview of DevOps

through a systematic review (SLR) of DevOps literature, published within the

last decade following a protocol and guiding questions set out in section 2.6. A

CHAPTER 3. LITERATURE REVIEW 76

total of 35 publications were included in the review (see appendix 9 on page 235).

The review �rstly focuses on how DevOps is currently de�ned before looking

into what DevOps means for organisations as well as the discipline and practice

of Software Engineering. Finally, the current agenda for DevOps research is

explored and highlighted before a summary is provided.

3.3.1 What is DevOps?

DevOps appears di�cult to de�ne, with many unclear, ambiguous and sometimes

contradictory de�nitions [Dyck et al., 2015; Smeds et al., 2015]. According to

Roche [2013], perspectives of DevOps are based upon one of two themes. Firstly,

DevOps as a role with respective job descriptions and titles, for example, DevOps

Engineer (see appendix 13 on page 255) and, secondly, DevOps as an emerging

concept that addresses the needs and demands of modern software development.

Furthermore, Roche [2013] argues that these themes are polarised, with one gener-

ally disagreeing with the other. Ghezzi [2017] argues that DevOps practice is not

mature, often informal and unstructured; while Fokaefs et al. [2017, 25:2] claim

DevOps �eliminates the concept of a software life-cycle as a system undergoes

changes with no interruptions to consumers�.

Another view is that DevOps di�ers from Agile given its focus also includes

quality and operations alongside development, whereas Agile focuses on develop-

ment [Gupta et al., 2017]. Yet, a contradictory view from Fokaefs et al. [2017]

claims DevOps is solely focused on software development. Veres et al. [2019,

106] conclude that DevOps is a �concept that eliminates the barriers between

traditionally isolated groups of developers and experts who operate the system,

integrating them into a single complex team.�

With a myriad of di�ering and often contradictory perspectives of DevOps, it is

a term seemingly di�cult to de�ne [Smeds et al., 2015]. Nine de�nitions were

discovered in the literature (see table 3.1). Most of these de�nitions share themes

of team harmonisation, automation and the rapid deployment of software, but

CHAPTER 3. LITERATURE REVIEW 77

each de�nition has a slightly di�erent emphasis and form. Despite the frequency

of research output increasing, DevOps remains under-represented in the literature

and in need of a clearer de�nition [Airaj, 2017; Fitzgerald and Stol, 2017; Gupta

et al., 2017].

C
H
A
P
T
E
R
3
.
L
IT
E
R
A
T
U
R
E
R
E
V
IE
W

78
De�nition and Source

1 �The `DevOps' approach to system administration introduces best practises from software engineering�.
[Obstfeld et al., 2014, 577]

2 �A set of practices intended to reduce the time between committing a change to a system and the change being
placed into normal production, while ensuring high quality�. [Bass et al., 2015, 4]

3 �DevOps is a movement within software engineering that professes to bring software developers and operations
sta� (those in charge of infrastructure, quality control, packaging, and release of software products) in close align-
ment, to ensure harmonious tasking and smooth transition of project artefacts through interoperable processes
and tools�. [Cois et al., 2014, 2]

4 �The DevOps movement addresses the gap between developers and operational teams in enterprise networks by
borrowing techniques from agile programming practices, building tools that automate well-known manual steps�.
[Császár et al., 2013, 456]

5 �A cultural movement combined with a number of software related practices that enable rapid development�.
[Walls, 2013, 1]

6 �A set of engineering process capabilities supported by certain cultural and technological enablers�. [Smeds et al.,
2015, 170]

7 �A practice aimed at repairing the schism between the two teams.� [Hosono, 2012, 330]

8 �DevOps is an evolution in thinking with regards how IT services are delivered and supported. It is a continua-
tion of some of the predecessor work in the areas of continuous integration and application life cycle management
(ALM); therefore, it is rooted in the agile philosophy, which also attempts to bridge the traditional organizational
process divide between development and operations teams�. [Mohamed, 2015, 51]

9 �DevOps is an organization approach that stresses empathy and cross-functional collaboration within and be-
tween teams - especially development and IT operations - in software development organizations, in order to op-
erate resilient systems and accelerate delivery of changes�. [Dyck et al., 2015, 3]

Table 3.1: De�nitions of DevOps present in literature.

CHAPTER 3. LITERATURE REVIEW 79

3.3.2 Organisational DevOps Adoption

Frequently changing requirements, contexts and market conditions are typical

drivers for the rapid development and release of software. Despite Agile ap-

proaches enabling software developers to better respond to change, completed

software is often passed to an IT Operations function, which deals with its re-

lease and support [Lapham, 2014; Mohamed, 2015]. Being able to rapidly release

good quality software is a major motivator for many organisations [Bass et al.,

2015]. It is this �unexploited potential of an IT division to increase value for

the overall organisation� that Pass and Ronen [2014, 80] refer to as the �software

value gap". Koilada [2019] claims that organisations adopting DevOps are early

adopters. Furthermore, Koilada [2019] argues DevOps facilitates business model

restructuring due to architecture innovation which it enables.

3.3.2.1 Continuing Evolution of Software and Development Approaches

Software also continues to evolve, with the emergence of microservice architec-

tures which seeks to decompose software applications into individual constituent

services which make up a whole. Thus microservices, as their name implies, are

typically small software components, easing overall maintenance and complexity

[Ranchal et al., 2015]. Microservices are becoming particularly common in cloud-

based applications such as those o�ered by AirBnB and Net�ix [Oliveira et al.,

2016].

While the granularity and maintainability of microservices can be attractive,

it can be very di�cult to decompose a legacy software system into a series of

microservices. Legacy software is still predominant in many organisations [Chen,

2017]. Moreover, Chen [2017, 82] argues that these systems are �usually not

amenable� to Continuous Deployment and therefore it is very di�cult to adopt

a DevOps approach in dealing with them [Lwakatare et al., 2019]. Put simply,

Chen [2017] refers to the process of software development itself and how a culture

can be determined by the methods and technology used.

CHAPTER 3. LITERATURE REVIEW 80

Therefore, organisational culture plays a part in this problem too as organisations

often not only �nd it di�cult to move on from such systems, but also from

the processes and cultures of software development and maintenance which have

formed around them [Airaj, 2017; Chen, 2017; McLarnon et al., 2014; Roche,

2013; Sebastian et al., 2017].

While DevOps can positively transform software development productivity and

e�ciency, it does this through organisational change [Pass and Ronen, 2014].

Ghezzi [2017, 9] argue that change �is often viewed as an afterthought rather

than as a foundation principle� when considering the development of software.

This is already evident with the numerous studies and reviews of traditional

approaches to development available in the literature. However, change has to go

beyond simply implementing new requirements within the software itself.

Managers also need to consider the impact such changes may have on the or-

ganisation, its operations and processes, especially where software is of strategic

importance. Subsequently, management practice itself needs to evolve and adapt

to changing conditions in order to accommodate and respond to change arising

from software development activities [Sebastian et al., 2017].

DevOps seeks to mitigate issues introduced by such change through the functional

harmonisation of both software development and IT operations.

3.3.2.2 DevOps and Digital Transformation

Continuing development and evolution of technology represents both an opportu-

nity and threat for organisations. From the mid 1990s to the present day, software

has changed substantially arising from infrastructure technological developments

[Roche, 2013]. However, driven by Agile, and its ability to scale, software de-

velopment methods and practices have continued to evolve too [Kneuper, 2017;

Lapham, 2014; Roche, 2013].

While the de�nitions of DevOps vary, Smeds et al. [2015] have identi�ed a number

of capabilities and enablers with DevOps (see table 3.2). These are broken down

CHAPTER 3. LITERATURE REVIEW 81

to three distinct categories.

Capabilities refers to technical processes which includes continuous integration

and release of software. However, Smeds et al. [2015] argue that these are carried

out continuously, needing constant feedback to inform them. But alone, these are

not su�cient for DevOps adoption, but rather need the support of a compatible

organisational culture with shared goals, ways of working and good communi-

cation to support increased automation of any process [Lwakatare et al., 2019].

Therefore a number of cultural and technological enablers are presented, which

Smeds et al. [2015] argue should work in harmony with the capabilities.

Capabilities

Continuous Planning
Collaborative and continuous development
Continuous integration and testing
Continuous release and deployment
Continuous infrastructure monitoring and optimization
Continuous user behaviour monitoring and feedback
Service failure recovery without delay

Cultural Enablers

Shared goals, de�nition of success, incentives
Shared ways of working, responsibility, collective ownership
Shared values, respect and trust
Constant e�ortless communication
Continuous experimentation and learning

Technological Enablers

Build automation
Test automation
Deployment automation
Monitoring automation
Recovery automation
Infrastructure automation
Con�guration management for code and infrastructure

Table 3.2: DevOps capabilities and enablers [Smeds et al., 2015, 171].

In a study investigating how large organisations tackle the challenges of digi-

tal transformation, Sebastian et al. [2017, 199] identi�ed two distinct strategies,

namely, �customer engagement� and �digitized solutions�, which can help guide

such organisations through technology-driven change or �digital transformation�.

Business strategy has evolved to leverage the opportunity presented by tech-

nology advancements, and Sebastian et al. [2017, 201] argue that an Operational

CHAPTER 3. LITERATURE REVIEW 82

Backbone and Digitial Services Platform are �two technology-enabled assets� (see

table 3.3) critical in the successful execution of strategy.

Operational Backbone Digital Services Platform

Management
Objective

Business e�ciency and tech-
nology reliability

Business agility and rapid
innovation

Architecture
Principles

Standardized end-to-end
business processes; trans-
parency into systems; data
access

Plug-and-play business and
technology components

Data Single source of truth for
transactional data

Massive repositories of sen-
sor/social media/purchased
data

Key Processes Roadmaps; architecture re-
views

Cross-functional develop-
ment; user-centred design

Delivery Method Fast Waterfall / regular soft-
ware releases/SaaS adoption

Agile and DevOps; use of
MVP (minimum viable prod-
uct) concepts and constance
enhancements

Funding Major project / program
investments

Continuous funding by busi-
ness owners

Table 3.3: Management practices for operational backbone and digital services
platform assets, taken from Sebastian et al. [2017, 205].

Sebastian et al. [2017] state �the operational backbone supports e�ciency and

operational excellence� and �the digital services platform supports business agility

and rapid innovation�. Of particular interest to this thesis is the identi�cation

of �Agile and DevOps� in the delivery method portion of the Digital Services

Platform asset. This has arisen from observing two organisations, Permanente

and Amazon Web Services (AWS), who have adopted a DevOps approach for

the continuous delivery of software, resulting in substantially reduced innovation

cycle times.

Further support comes from Chen [2017] and Sun et al. [2016], who both argue

that Continuous Delivery (CD) and Continuous Integration (CI) bring huge ben-

e�ts to organisations. CD and CI refer to the concepts of developing software in

CHAPTER 3. LITERATURE REVIEW 83

short cycles of usually one month or less, testing it and ensuring it can be reliably

released at any time. It follows that both CD and CI are intrinsic to DevOps

practise [Gupta et al., 2017; Karl et al., 2016; Sun et al., 2016], and Sebastian

et al. [2017, 205] argue such approaches �will become a competitive necessity� as

time progresses. Furthermore, Karl et al. [2016] argue that DevOps also applies to

underlying infrastructure which includes hardware platforms, servers and so on.

Therefore, a holistic view of DevOps should not limit it to just the development

of software.

Taken together, Sebastian et al. [2017] suggest that both assets should overlap the

chosen strategy. However, from a Software Engineering perspective it is di�cult

to perceive how both assets can work in harmony given Sebastian et al. [2017, 205]

state that �some interviewees mentioned that their traditional Waterfall approach

is evolving to a more collaborative, scaled down fast Waterfall�. The notion of

�fast Waterfall� as part of an Operational Backbone is especially confusing due

to the non-iterative nature of such approaches when considering the iterative

and incremental nature of Agile and DevOps. Nevertheless, Sebastian et al.

[2017] also suggest regular software releases and Software as a Service (SaaS) as

other possible delivery methods, which are arguably better aligned with Agile

and DevOps [Chen, 2017; Gupta et al., 2017; Kneuper, 2017; Takimoto et al.,

2016].

According to Takimoto et al. [2016, 8], DevOps forms an �integrated lifecycle

from service planning and development to implementation and operation�, which

is continuous in nature (see �gure 3.3). Such perspectives support the notion

that �IT industry professionals work together on all phases of the life cycle of

an information technology product, from design and testing to deployment and

operation.� [Veres et al., 2019, 106]

In this illustration, DevOps is shown as a iterative and functional harmonisation

of software development and IT operations, where each works in tandem. This

also suggests a collaboration between functions, highlighting where CD and CI

�t into the cycle. Subsequently, neither function replaces the other, but rather

adds support where capabilities, cultural and technological enablers are key to

CHAPTER 3. LITERATURE REVIEW 84

realising DevOps [Smeds et al., 2015]. Taken together, Takimoto et al. [2016] and

Smeds et al. [2015] o�er a view that DevOps revolves around the transformation of

core business systems, the utilisation of Agile processes and technical capabilities

including, network abstraction and virtualisation; which also includes underlying

infrastructure [Karl et al., 2016; Sill, 2015].

Figure 3.3: DevOps lifecycle outlined by Takimoto et al. [2016].

Another aspect of DevOps is that of various metrics and reporting which are

argued to be a critical component [Dennehy and Conboy, 2017; Kim et al., 2016].

While important, metrics arising from DevOps practice are unique and as such

may be di�cult to repeat with machine learning techniques [Sun et al., 2016].

In the example set out by Takimoto et al. [2016], analysis of potentially large

amounts of data should be continually undertaken, of which the output informs

business process. Subsequently, Takimoto et al. [2016] argue that DevOps has

the potential to generate big data, and should consider challenges such as how it

is captured, stored and analysed, in order to better inform the business and thus

enable a practice of continuous service improvement.

Tools have also received much research attention and are crucial enablers of De-

vOps [Airaj, 2017; Smeds et al., 2015; Wettinger et al., 2016]. Many conference

and workshop papers are focused exclusively on DevOps tools, yet much of this

CHAPTER 3. LITERATURE REVIEW 85

research lacks insight on their application in context [Dennehy and Conboy, 2017].

Numerous tools are available [Wettinger et al., 2017], however, many are propri-

etary rendering it di�cult to integrate and combine with other tools being utilised

[Wettinger et al., 2016]. Furthermore Wettinger et al. [2016] argue standards must

play a greater role to tackle this problem, with the Topology and Orchestration

Speci�cation for Cloud Applications (TOSCA) being cited as one such standard

to emerge. With DevOps becoming a preferred approach, Sill [2015, 74] argues

that standards are necessary, especially to reduce the impact of complexity, and

to �identify a common approach that can be reused�. Additionally, Sill [2015,

72] asserts that the adoption of new standards is in itself a di�cult endeavour,

especially within a context of �rapid technological change�. Some of the most

commonly referenced tools include:

� Ansible

� AWS

� Azure

� Bitbucket

� Chef

� Digital Ocean

� Docker

� GitHub

� GitLab

� Hipchat

� Jenkins

� Jira

� Kubernetes

� Mercurial

� Logstash

� Prometheus

� Puppet

� Travis

� Trello

� Vagrant

While these tools are commonly used as examples, it is important to note that

they are by no means exclusive to DevOps.

3.3.2.3 Cultural Implications

Much of the published literature on DevOps has taken a technical focus, over-

looking the e�ects it has on culture. This is not surprising given most DevOps

research is within the Computer Science and Software Engineering disciplines.

CHAPTER 3. LITERATURE REVIEW 86

However, relatively recent research within the Business Management and Infor-

mation Systems disciplines, focuses increased attention on the cultural impacts

of DevOps adoption [Gupta et al., 2017; Sebastian et al., 2017].

As Agile practice and frameworks have evolved, software development has be-

come an activity which is socially embedded given the increased emphasis on

inter-team collaboration, shared values and knowledge [Dennehy and Conboy,

2017; Wettinger et al., 2017]. However, one of the biggest barriers facing or-

ganisations is that of organisational silos and that it is typical that �most IT

services are organised in silos� [Airaj, 2017, 2]. Such silos have arisen from the

1990s whereby infrastructure was substantially di�erent and where IT Operations

handled contact with users of developed software [Roche, 2013].

While DevOps aims to bring newly developed software into production rapidly

without sacri�cing quality, Kneuper [2017, 79] argue that a �notoriously di�cult

interaction between development and operations" needs to be tackled. Further-

more, Wettinger et al. [2017, 282] argue that �collaboration is a key aspect for

implementing DevOps practices and continuous delivery in particular because di-

verse experts such as developers and operations personnel are involved and thus

need to collaborate".

Therefore a collaborative emphasis on process is required alongside shared goals

in order to tackle the barrier between software development and IT operations

[McLarnon et al., 2014; Wettinger et al., 2017]. However, such collaboration may

challenge existing sociotechnical systems within the organisation, as McLarnon

et al. [2014, 371] also argue that DevOps heralds a �paradigm shift that is changing

how systems administration is viewed in relation to the other functions of a

business, particularly in software development�. Yet, software developers need to

adapt as well, with Feitelson et al. [2013] highlighting how Facebook encourages

a �perpetual development mindset�, which is the practice of committing software

regularly and often, but with increased emphasis on code quality.

Wettinger et al. [2016] argue that tools have emerged to attempt to help the

cultural divide between Software Development and IT Operations. But tools are

CHAPTER 3. LITERATURE REVIEW 87

just one part of a solution with many components, as Dennehy and Conboy [2017]

argue that management should become familiar with the processes and tooling

in use by others.

Moreover, Roche [2013] argues that the lack of universal de�nition for DevOps is

aiding in polarising views on what it means. On one hand, DevOps is viewed as

a job or role, which Roche [2013] argues is an adaptation from an existing role.

Such a position �ts with the notion of job crafting where employees reshape the

boundaries of their jobs [Wrzesniewski and Dutton, 2001], which is overviewed

in section 3.4. On the other hand, DevOps is a response to emerging needs in

software development and support environments, which Roche [2013] claims is

being driven by infrastructure advancements.

While DevOps maintains a key focus on software development, Fokaefs et al.

[2017] argue that the cultural dimensions of DevOps take it beyond software de-

velopment and IT operations teams, necessitating a strategic and cultural align-

ment from management. A similar argument is made from Fitzgerald and Stol

[2017, 176] where they coin the term �BizDev� stating that �the link between

business strategy and software development ought to be continuously assessed

and improved�. A similar term of �BizOps� is coined by Fokaefs et al. [2017], who

de�nes it as the need for managers to align strategy, and preferably integrate

the business with DevOps. Fokaefs et al. [2017] also argue that existing DevOps

research is focused on software development activities, and therefore fails to con-

sider the impact such activity can have on the business. However, Fokaefs et al.'s

[2017] research is limited to software development activity within a cloud context

and the authors have acknowledged their work has limitations which may hinder

the generalisation of their �ndings beyond that context.

3.3.3 DevOps Research Agenda

DevOps is a relatively recent and fast moving phenomenon to emerge within

both industrial and academic literature [Airaj, 2017; Fitzgerald and Stol, 2017;

Kneuper, 2017; Roche, 2013].

CHAPTER 3. LITERATURE REVIEW 88

Fitzgerald and Stol [2017] have identi�ed a number of issues, and put forward

a research agenda. This is presented where research questions need to consider

three categories based on the views of stakeholders. These are: Business Strategy;

Development; and Operations (see table 3.4).

Business Strategy Development Operations

Feature analytics Continuous evolution and maintenance
of software systems

Usage and prediction of
product features

Continuous planning Highly �exible architectures to enable
continuous evolution

Sustaining customer
trust in a product

BizDev concurrent hardware and continuous
software engineering and radical ap-
proaches to re-engineering a product

DevOps

Table 3.4: Research agenda adapted from Fitzgerald and Stol [2017, 187].

With feature analytics, Fitzgerald and Stol [2017] focus on the nature of informa-

tion required by senior management for the planning and evaluation of features.

This is necessary for software features to evolve and is informed by usage metrics.

Continuous planning is inherent to the continuous delivery of product features

[Takimoto et al., 2016; Wettinger et al., 2017], but speci�c focus is needed on

how projects are aligned with business strategy and how software is designed,

considering business requirements and how it will be continuously delivered while

building and sustaining customer trust. Finally, Fitzgerald and Stol [2017, 176]

put forward the notion of �BizDev�, but argue there is an expectation mismatch

between development and other areas of the business, which needs to be tack-

led. While Fitzgerald and Stol [2017] mention DevOps, it focuses on identifying

barriers that prevent direct collaboration between Software Development and IT

Operations. Nevertheless, when taken together with Wettinger et al.'s (2017)

research, an argument can be put forward that collaboration must go beyond

software development and IT operations, involve management, and that this col-

laboration is critical for DevOps.

CHAPTER 3. LITERATURE REVIEW 89

3.3.4 Summary of Section

DevOps is an emergent topic of research, building on previous developments and

theories in Software Engineering. However, DevOps is di�cult to de�ne, with po-

larised perspectives of it being either a concept or role. Multiple de�nitions exist,

some of which are contradictory. Common themes of DevOps do appear around

automation, change, collaboration, culture, process, and quality. Therefore this

research will aim to identify a set of conceptual attributes and attempt to clarify

a de�nition of DevOps, using the literature and input from practitioners.

While important for realising concepts of automation and CI, the heavy research

focus on tools potentially overlooks wider implications of DevOps, which includes

the strategic impacts it can have on an organisation. Although tools can be

enablers, they alone are not DevOps.

Many organisations are reliant on legacy software systems which can have a mul-

titude of maintainability issues. Many of these legacy systems are a potential

barrier to DevOps adoption and due to the manner of processes within which

they were developed, render them very di�cult to bring into a DevOps approach.

Furthermore, microservice software architectures are becoming increasingly pop-

ular and appear to �t well with DevOps. However, decomposing legacy software

systems into microservices is a di�cult undertaking.

As adopting DevOps can introduce signi�cant scale of change for organisations,

there is a critical need to link business, technical and software development strate-

gies. This potentially means DevOps and organisational change are not mutually

exclusive phenomena. As such it is important to also consider the wider socio-

cultural and sociotechnical implications that DevOps adoption could inherently

introduce to an organisation. In conclusion, and despite the heavy technical

focus on tools, it follows that DevOps is not exclusively a Computer Science

and Software Engineering phenomenon. Rather, there is a substantial Business

Management component that remains in great need of further empirical research.

Therefore this PhD research will address the gaps in understanding DevOps adop-

tion from a Business Management perspective.

CHAPTER 3. LITERATURE REVIEW 90

3.4 Introduction to Job Crafting

The purpose of this section is to provide an overview of job crafting theory, which

arose as a strong theme from abductive reasoning following a pilot of the diary

study conducted for this PhD research. Additionally, the notion of work identity

is introduced, de�ned and linked to job crafting. A summary is o�ered outlining

the role job crafting will play as a theoretical lens for the case study of DevOps

adoption undertaken for this PhD research.

Ilgen and Hollenbeck [1991, 173] state a job consists of a �set of task elements

grouped together under one job title and designed to be performed by a single

individual�. In their seminal research, Wrzesniewski and Dutton [2001, 179] de�ne

job crafting as �the physical and cognitive changes individuals make in the task

or relational boundaries of their work. Thus, job crafting is an action, and those

who undertake it are job crafters". It follows, that tasks and relationships are

critical to the employee-employer relationship, with job crafting focusing on an

individual job holder's shaping of these boundaries. Wrzesniewski and Dutton

[2001] propose that job crafting occurs at three levels: task, relationship and

cognitive (see table 3.5).

Task job crafting occurs when an employee makes changes to their job's task

boundaries. Wrzesniewski and Dutton [2001] argue that this happens through

changes to the scope, type or quantity of job tasks employees choose to do, and

in doing so, a di�erent job is created to what was prescribed in the formal job

speci�cation.

Relationship is the second form of job crafting, where an employee changes how

they interact with others in the workplace. Wrzesniewski and Dutton [2001] state

that this form of job crafting involves employees choosing with whom and how

frequently they want to interact with others which can also help determine the

quality of any interaction. The change to the job occurs as a result of employees

altering the nature of their relationships through changing their level of involve-

ment with others at work [Wrzesniewski and Dutton, 2001].

CHAPTER 3. LITERATURE REVIEW 91

The third form of job crafting proposed by Wrzesniewski and Dutton [2001] is cog-

nitive, which occurs when the cognitive task boundaries of their job are changed

by an employee. This can occur in many ways, but Wrzesniewski and Dutton

[2001, 185] argue that it �likely involves employees' altering how they parse the

job - viewing it either as a set of discrete work tasks or as an integrated whole".

Such changes to how they perceive their job can radically and fundamentally

change how an employee approaches it. Wrzesniewski and Dutton [2001] use the

example of a nurse engaging in cognitive job crafting whereby they did not per-

ceive their role to be just about delivering high-quality technical care, but rather

about advocacy and providing holistic care for patients.

Job crafting Description E�ect on Meaning of Work

Task Changing the scope, type and
quantity of job tasks

Work is e�cient completed in a
more timely fashion.

Relationship Changing quality and/or
amount of interaction with oth-
ers encountered in the job

Job meaning changes so em-
ployees see their job as a vital
part of an integrated whole.

Cognitive Changing cognitive task bound-
aries, taking responsibility for
information and insigni�cant
tasks

Fundamental change to how
an employee perceives and ap-
proaches their job.

Table 3.5: Task, relationship and cognitive job crafting, adapted from
Wrzesniewski and Dutton [2001, 185].

Wrzesniewski and Dutton [2001, 186] argue that job crafting has the potential

to shape an employee's �work identity�, which refers to how an employee de�nes

themself in the workplace. Through job crafting, employees take action to actively

mould, shape and rede�ne their jobs, through the changing of task boundaries,

adjusting the relationships between tasks and their colleagues, and changing their

view of the job they do.

Figure 3.4 shows a model proposed by Wrzesniewski and Dutton [2001], showing

�ve distinct stages of job crafting and illustrating the in�uences and e�ects it can

have. Motivation is the �rst stage, where an employee is generally motivated by

a need which may be work or socially derived.

C
H
A
P
T
E
R
3
.
L
IT
E
R
A
T
U
R
E
R
E
V
IE
W

92
Motivations Job crafting practicesModerating variables Specific effects General effects

Perceived opportunity to
job craft

Individual
orientation toward

work

Motivational
orientation

Motivation for Job Crafting

Need for control over job
and work meaning

Need for positive self-
image

Need for human connection
with others

Changing task boundaries

Changing conitive task
boundaries

Changing relational
boundaries

Alter with whom one
interacts with at work

Alter nature of
interactions at work

Alter view of work as
discrete parts or whole

Alter type of job tasks

Alter number of job tasks
Changes the design

of the job

Changes the social
environment at work

Job features

Changes the meaning of
the work

Changes one's work
identity

Figure 3.4: Model of job crafting showing how it can in�uence work identity, adapted from [Wrzesniewski and
Dutton, 2001, 182].

CHAPTER 3. LITERATURE REVIEW 93

With a motivation, an employee would then perceive what opportunity there is

to actually job craft which in turn would be in�uenced by their intrinsic orien-

tations toward their work. Wrzesniewski and Dutton [2001] argue job crafting

is primarily an individual activity and an employee decides when and in what

manner they reshape the boundaries of their job. Berg et al. [2010] argue that it

is also a socially embedded phenomenon, focusing on an employee's perception

of their position in the organisation's hierarchy. Berg et al. [2010] further argue

this in�uences an employee's decision to job craft. Taken together, this exam-

ple of employee perception would sit well with the moderating variables within

Wrzesniewski and Dutton's [2001] job crafting model.

These moderating variables are followed by actual job crafting taking place, where

the employee actively alters their tasks, relationships and view of their work. The

speci�c e�ects of job crafting can be twofold, where an employee changes the

design of their job and also the social environment at work. Finally, this can lead

to more general and longer term e�ects such as what work means to the employee,

and how they identify themselves at work. The model also presents job crafting

as an iterative phenomenon.

3.4.1 DevOps and Job Crafting

There is little in depth research on job crafting in software engineering envi-

ronments, but developers regularly face change due to innovation and technology

evolution, which improves the environment within which they work [Chilton et al.,

2005]. With DevOps being a recent phenomenon to emerge, there are no studies

which apply job crafting within these environments.

What would motivate a software development or IT operations employee to job

craft? In their study involving technology workers, including some software de-

velopers, Tims et al. [2014] linked employee self-e�cacy with performance and in

turn, a higher likelihood of job crafting. Furthermore, Mäkikangas et al. [2017]

argue job crafting is not necessarily exclusive to individuals, but rather must be

considered from an individual, team and organisational level.

CHAPTER 3. LITERATURE REVIEW 94

However, Chilton et al. [2005] argue that the cognitive style of a software devel-

oper and perceived demand within this environment can a�ect their work identity.

Mattarelli and Tagliaventi [2012] add that individual and collective job crafting

may be as a response to change and perceptions of how employees identify them-

selves at work as a result. While job crafting may impact an employee's work

identity, changes to it can also be a trigger for job crafting to occur [Wrzesniewski

and Dutton, 2001]

Claps et al. [2015] identi�ed 20 technical and social challenges an organisation can

face when adopting continuous deployment (CD) (see �gure 3.5). This may be

relevant to consider for DevOps, as CD is one constituent of it [Chen, 2015; Claps

et al., 2015], and also for job crafting given changing team roles and responsibil-

ities were presented as a challenge, which could lead to employees crafting their

jobs as a result [Mattarelli and Tagliaventi, 2012] and subsequently generating a

new work identity [Wrzesniewski and Dutton, 2001].

Figure 3.5: Technical and social adoption challenges when implementing the
continuous deployment of software [Claps et al., 2015, 26].

Claps et al. [2015] argue that organisations need to be well prepared in order to

manage the scale of change and challenges CD will introduce, both socially and

CHAPTER 3. LITERATURE REVIEW 95

technically. This argument sits well with the proposition that DevOps accom-

plishes the transformation of software development through organisational change

[Pass and Ronen, 2014]. Moreover, this change needs to be at the forefront of

management and not merely viewed as an afterthought [Ghezzi, 2017]. The social

challenges of changing team roles and team coordination add support to the ar-

gument that job crafting is socially embedded and that an employee's perception

of where they �t into the organisational hierarchy can in�uence whether they job

craft or not [Berg et al., 2010]. Sebastian et al. [2017] argue that management

practices also needs to evolve in order to deal with software development related

change [Sebastian et al., 2017].

Subsequently, managers should be included in any study concerning DevOps

adoption as they too could engage in job crafting.

The agile approach to software development has helped keep pace with the de-

mands of organisations and the increasing complexity of software. However, Agile

has had limited focus on software development functions, failing to consider what

happens with software after it has been developed [Gohil et al., 2011]. Gohil et al.

[2011, 262] therefore argue that for an organisation to be �truly agile", the agile

approach needs to move beyond software development to include other business

functions, including IT Operations, in order to consider the various sub-systems

of software, namely, the underlying infrastructure.

While Gohil et al. [2011] put forward the suggestion that agile practices are

applied to IT operations, DevOps goes further with harmonising Software Devel-

opment and IT Operations functions [Allman, 2012; Liu et al., 2014; Loukides,

2012; Mohamed, 2015; Tamburri et al., 2015]. Either approach would necessitate

substantial change, but DevOps potentially reshapes the work environment with

a new culture emerging as new relationships are built [Walls, 2013]. It follows

that work identities may also change as a result [Wrzesniewski and Dutton, 2001].

Despite some research on job crafting in Software Development, further exploratory

work is needed to better understand how employees engage in job crafting activity,

especially with the continued evolution of process and technology.

CHAPTER 3. LITERATURE REVIEW 96

3.4.2 Summary of Section

Job crafting was theorised by Wrzesniewski and Dutton [2001] to explain how,

why and in what manner an employee actively makes changes to their job. Three

forms of job crafting are proposed: task; relationship; and cognitive. The concept

of work identity is also put forward to describe how an employee identi�es themself

in their place of work. Wrzesniewski and Dutton [2001] argue that an employee's

work identity can be changed as a result of job crafting.

Although widely studied, job crafting has seen limited application in the context

of software development. This research will utilise job crafting as a theoretical

lens to understand how and why IT Operations employees and software developers

change their job boundaries as DevOps is adopted by the organisation. Finally,

Berg et al. [2010] argue job crafting is socially embedded which potentially links to

the social challenges put forward by Claps et al. [2015] (2015), meaning DevOps

therefore has a management component. This PhD research will include managers

and also explore the management implications of DevOps.

3.5 Summary of Literature Review

This chapter had three aims: Firstly, to provide a narrative overview of how

software and software engineering emerged, and to set the context for DevOps.

Secondly, to provide a systematic review of current DevOps research and iden-

tify any problems and de�ciencies with it. This was accomplished by following

the protocol outlined in section 2.6. Thirdly and �nally, due to the abductive

reasoning from the pilot study (see section 2.5.2), the theory of job crafting was

introduced and overviewed for its application to this research and software engi-

neering in general.

Emerging as a discipline during the 20th century, Software Engineering has roots

in the �rst examples of programming from the late 18th and 19th centuries, with

early pioneers including Joseph Marie Jacquard (1752-1834) and Ada Lovelace

CHAPTER 3. LITERATURE REVIEW 97

(1815-1852). Although a comparatively young discipline, Software Engineering

has made some major contributions over the last century. Early approaches to

developing software were lacking in structure and method, leading to the `soft-

ware crisis' [Randell, 1996] and the subsequent emergence of the �rst structured

approaches. Software development continued to evolve with the emergence of

iterative and incremental approaches, eventually formalised as Agile [Beck et al.,

2001]. The emergence of DevOps heralds a potential paradigm shift in process as

it extends beyond software development activity to include IT operations.

The systematic review of the DevOps literature presents DevOps as an emerging

and growing �eld of research from 2010. However, much of the literature is

dominated by a focus on tools, rather than a holistic view of how DevOps is

adopted and a�ects organisations and those working in Software Engineering

roles.

While many de�nitions have been put forward, DevOps is di�cult to de�ne,

with inconsistent, con�icted and polarised de�nitions [Dyck et al., 2015; Roche,

2013; Smeds et al., 2015]. While there appears to be general agreement that

DevOps can harmonise two traditional organisational silos, the literature also

suggests DevOps extends the Agile approach beyond software engineering, to

include IT operations. The literature especially highlights the practices of CI

and CD to be intrinsic to DevOps, which would inherently involve both software

development and IT operations functions. Furthermore, Takimoto et al. [2016]

present a DevOps lifecycle model, showing DevOps to be iterative in nature.

Moreover, it is argued that organisational change is inherent to DevOps [Pass and

Ronen, 2014], but this is often viewed as an afterthought [Ghezzi, 2017]. Sebastian

et al. [2017] argue that managers must be proactive in dealing with such change

due to the impact it can have on the organisation, particularly where software is

critical to its operation.

However, despite the frequency of peer-reviewed literature on DevOps increas-

ing over the decade, de�ciencies remain in interdisciplinary empirical research

activity, particularly with regards to what DevOps means to an organisation.

CHAPTER 3. LITERATURE REVIEW 98

Job crafting is a theory to explain how and why employees make changes to their

jobs [Wrzesniewski and Dutton, 2001]. Although there is some limited job crafting

work with software developers [Tims et al., 2014], no studies have explored job

crafting and DevOps. Taken together with the argument that software developers

and IT professionals regularly face change in their roles [Chilton et al., 2005], job

crafting o�ers a useful theoretical lens given the inherent impacts DevOps could

have on employees and organisational culture.

Therefore, taking together the �ndings within the literature review and the pilot

study, this PhD research will explore how DevOps can be de�ned and undertake

a longitudinal empirical study in order to explore why an organisation would

adopt DevOps. The research will seek to identify what the perceived bene�ts of

DevOps adoption are, and if they are realised. As the literature has highlighted

links between DevOps and organisational change, this research will also seek

to explore the extent of any DevOps driven change. Finally, job crafting will

be applied as a theoretical lens to understand the multi-faceted nature of the

changes and e�ects that DevOps practice has on employees.

CHAPTER 4. FOCUS GROUP AND SURVEY FINDINGS 99

Chapter 4

Focus Group and Survey Findings

"Currently, DevOps is more like a philosophical movement, not yet

a precise collection of practices, descriptive or prescriptive.�

� Gene Kim

CHAPTER 4. FOCUS GROUP AND SURVEY FINDINGS 100

Section 1
Introduction

Section 2
Focus Group Findings

Section 4
Summary

Section 3
Questionnaire Findings

Overview of Chapter 4: Focus Group and Survey Findings

Method for Focus Group

Presented and discussed in Chapter 2:
Methodology, Section 2.4.1 (pp. 29-33)

Exploring how DevOps is defined

Method for Questionnaire

Presented and discussed in Chapter 2:
Methodology, Section 2.4.2 (pp. 34-41)

Contextual definition framework
for DevOps

Two new definitions of DevOps

Conceptual attributes of
DevOps

CHAPTER 4. FOCUS GROUP AND SURVEY FINDINGS 101

4.1 Introduction

This chapter presents the �ndings from a focus group and questionnaire, which

explored the de�nition of DevOps. The outputs from the focus group were a set

of 17 conceptual attributes and two de�nitions of DevOps based on them. This

output was also tested in a questionnaire survey to gauge wider agreement and

to help inform a 14 month case study of DevOps adoption.

4.2 Focus Group Findings

The focus group was structured into two exercises, the �rst of which participants

discussed what they would consider to be attributes of DevOps. In the second

exercise, participants were asked to create two de�nitions; one from scratch and

the other derived from existing de�nitions in the literature.

The literature shows that DevOps appears di�cult to universally de�ne (see

section 3.3). In exploring this, the �rst focus group exercise was to identify and

agree on a set of conceptual attributes of DevOps. Participants worked in two

groups for this, as described in section 2.4.1.

Exercise two once again had participants working in one of two groups, this time

to attempt to de�ne DevOps using the attributes agreed in exercise one as a

guide. One de�nition was created from scratch, while the other was derived from

de�nitions found within peer-reviewed literature.

4.2.1 Framework for Contextually De�ning DevOps

The output from exercise one of the focus group was a set of 17 conceptual

attributes of DevOps. A consensus between the participants was found, resulting

in the attributes being agreed and placed within four groups (see table 4.1 and

�gure 4.1).

CHAPTER 4. FOCUS GROUP AND SURVEY FINDINGS 102

Business Driven Goals and Outcomes

Informed
Decision Making

Time

Quality Simplicity /
Granularity

Reduced Cost

Multi-Disciplinary Teams

Accountability

Responsibility

Decision Making Ownership

Skills

Streamlined Processes, Tools, Approaches and Principles

Automation

Data Analytics

Change Control Configuration
Management

Service
Management

DevOps

Information

Measureability /
Metrics Observability

Feedback

Feedback

Figure 4.1: Conceptual attribute framework for DevOps

The focus group participants discussed and appraised the attributes, placing them

into four distinct groups.

The streamlined processes, tools, approaches and principles group includes the

conceptual attributes of Automation, Change Control, Con�guration Manage-

ment, Data Analytics and Service Management. Participants agreed these are

critical for organisations to consider when adopting DevOps. Furthermore, con-

tinuous integration and deployment are considered within the Automation at-

tribute.

Multi-disciplinary teams, focuses on both individual employees and teams. How-

ever teams are structured in an organisation, they must operate as a collaborating

multi-disciplinary unit, with shared ownership and mutual accountability. Par-

ticipants also agreed that Decision Making, Responsibility and Skills are crucial

to consider for any team engaging in DevOps.

Finally, participants agree that feedback and learning is key to the successful

adoption of DevOps. Therefore, the fourth category was Information and con-

tained the attributes of Observability and Measureability/Metrics.

CHAPTER 4. FOCUS GROUP AND SURVEY FINDINGS 103

Continuous feedback is critical to DevOps with a feedback arrow shown between

the groups of attributes so as to enable continuous improvement and allow the

DevOps process to evolve.

The grouped conceptual attributes and feedback loop of DevOps o�ers a frame-

work for managers to help holistically de�ne DevOps but within the context it

is adopted. A crucial �nding, which is also shown in the framework, was the

agreement that DevOps should be considered and driven from a strategic level.

Therefore, the business driven goals and outcomes group includes Informed De-

cision Making, Quality, Reduced Cost, Simplicity/Granularity and Time.

Finally, the framework was then utilised by the focus group participants to pro-

duce two new de�nitions of DevOps; one from scratch and the other derived from

nine existing de�nitions in the literature. The �nal focus group activity was an

evaluation and appraisal of both de�nitions, which is presented in section 4.2.2.

C
H
A
P
T
E
R
4
.
F
O
C
U
S
G
R
O
U
P
A
N
D
S
U
R
V
E
Y
F
IN
D
IN
G
S

104
Group Attribute Description

Streamlined
Processes,
Tools,
Approaches
and
Principles

Automation Automation of testing, deployment and infrastructure provision.

Change Control Controlling the pace of software and organisational change.

Con�guration Management Con�guration and provisioning of necessary IT infrastructure.

Data Analytics The analysis of performance and run time data.

Service Management Seamless management of software and support services.

Multi-
Disciplinary
Teams

Accountability Mutual accountability to colleagues, including managers.

Decision Making Joined up thinking and team owned decisions.

Ownership Employees taking ownership of software development and release.

Responsibility Promotion and emphasis of shared responsibility across roles.

Skills Enabling individuals to acquire new knowledge and skills.

Business
Driven
Goals and
Outcomes

Informed Decision Making Strategic decisions being informed by continuous feedback.

Quality Quality of both developed software products and processes.

Reduced Cost Value improvement by delivering working software sooner.

Simplicity/Granularity Promotion of leaner, streamlined and more e�cient processes.

Time Reducing lead time for software to be released to users

Information
Measurability/Metrics Data concerning software, process, performance and usage.

Observability Transparency of software engineering and operating processes.

Table 4.1: Conceptual attributes of DevOps with descriptions, as agreed by the focus group participants.

CHAPTER 4. FOCUS GROUP AND SURVEY FINDINGS 105

4.2.1.1 Focus Group De�nition One - From Scratch

The �rst de�nition was produced from scratch, but utilised the conceptual at-

tributes as a guide.

�DevOps is a continuous improvement methodology that uses a set of tools, stream-

lined and automated processes, and empowered, multi-disciplinary teams to de-

liver, operate and inform business outcomes.�

With de�nition one, participants placed great emphasis on DevOps ultimately

having business driven goals and outcomes, therefore going beyond tools. This

also opens up the cultural and soft-skills aspect that comes with people. Partici-

pants also agree that teams should be multi-disciplinary in a DevOps environment

with management enabling them to develop necessary skills and culture.

Finally, and most critical, is the emphasis on a continuous feedback loop based

on measurement and observability. Participants agreed that DevOps has the

potential to unlock a wealth of data which serves not only to provide feedback at

a strategic level, but can also enable continuous improvement. All participants

agree that continuous feedback is critical to the success of DevOps in any setting.

4.2.1.2 Focus Group De�nition Two - Literature Derived

Unlike the �rst, the second de�nition was derived from those put forward in

peer-reviewed literature. The participants were provided with nine de�nitions

(see table 3.1), which were discovered through a systematic review of the DevOps

literature. Participants were instructed to evaluate each de�nition and ultimately

produce a new one from these while utilising the previously agreed conceptual

attribute framework as a guide. A new de�nition of DevOps derived from the

work of Bass et al. [2015], Mohamed [2015] and Dyck et al. [2015] (see table 4.2)

was proposed:

�DevOps is an evolution in how IT services are delivered and supported. It stresses

cross functional collaboration to bridge the organisational process divide between

CHAPTER 4. FOCUS GROUP AND SURVEY FINDINGS 106

development and operational teams. It aims to reduce the time between commit-

ting a change to a system and the change being placed into production.�

De�nition

Two: �A set of practices intended to reduce the time between committing a change
to a system and the change being placed into normal production, while ensuring
high quality� [Bass et al., 2015, 4]

Eight: �DevOps is an evolution in thinking with regards how IT services are deliv-
ered and supported. It is a continuation of some of the predecessor work in the ar-
eas of continuous integration and application life cycle management (ALM); there-
fore, it is rooted in the agile philosophy, which also attempts to bridge the tradi-
tional organizational process divide between development and operations teams�
[Mohamed, 2015, 51]

Nine: �DevOps is an organizational approach that stresses empathy and cross-
functional collaboration within and between teams - especially development and
IT operations - in software development organizations, in order to operate resilient
systems and accelerate delivery of changes� [Dyck et al., 2015, 3]

Table 4.2: Participant selected de�nitions of DevOps from the literature.

In evaluating literature de�nition two [Bass et al., 2015], participants agreed

that it o�ered a good abstract point of view. In particular, no focus on speci�c

roles or methods, but instead emphasising the speed of getting commits into

production was welcomed. Additionally, participants perceived the de�nition

implied software development and IT Operations as functions rather than speci�c

teams. Quality was considered a positive, however, participants did report the

term �high quality� was ambiguous.

De�nition eight's [Mohamed, 2015, 51] statement of DevOps as an �evolution in

thinking with regards to how IT services are delivered and supported� was espe-

cially well received by participants as it alludes to change in both software de-

velopment and IT operations functions. Further more, the evolutionary meaning

from this de�nition sits well with how DevOps can tackle traditional silos of both

functions. While positively received by participants, de�nition eight was deemed

to over-focus on speci�c approaches. Moreover, it was agreed that DevOps is

inherently an Agile approach and therefore de�nition eight need not mention this

explicitly.

CHAPTER 4. FOCUS GROUP AND SURVEY FINDINGS 107

De�nition nine's [Dyck et al., 2015] focus on culture, people and teams was pos-

itively received by the participants. Positive comparisons were drawn with the

de�nition o�ered by Bass et al. [2015], where both appear complimentary. Fur-

thermore, participants agreed with Dyck et al.'s (2015) reference to promoting

empathy.

All remaining de�nitions were dismissed, as shown in table 4.3.

De�nition

One: �The `DevOps' approach to system administration introduces best practises
from software engineering� [Obstfeld et al., 2014]
Comments: Limited and too vague to glean any meaning.

Three: �DevOps is a movement within software engineering that professes to bring
software developers and operations sta� (those in charge of infrastructure, quality
control, packaging, and release of software products) in close alignment, to ensure
harmonious tasking and smooth transition of project artefacts through interopera-
ble processes and tools� [Cois et al., 2014]
Comments: Good it alludes to change, but takes a narrow view and is too ver-
bose to glean any additional meaning.

Four: �The DevOps movement addresses the gap between developers and opera-
tional teams in enterprise networks by borrowing techniques from agile program-
ming practices, building tools that automate well-known manual steps� [Császár
et al., 2013]
Comments: Reference to process and automation are positive. However, there are
no goals or drivers and seems to imply there is always a `gap'. Finally, the term
�borrowing� purports DevOps is not agile.

Five: �A cultural movement combined with a number of software related practices
that enable rapid development� [Walls, 2013]
Comments: Cultural view of DevOps is interesting, but otherwise the de�nition is
very limited and vague.

Six: �A set of engineering process capabilities supported by certain cultural and
technological enablers� [Smeds et al., 2015]
Comments: Vague and with very little meaning.

Seven: �A practice aimed at repairing the schism between the two teams.�
[Hosono, 2012]
Comments: Limited and negative assertion of a �schism� between teams, which is
not always the case.

Table 4.3: Literature de�nitions of DevOps dismissed by participants.

CHAPTER 4. FOCUS GROUP AND SURVEY FINDINGS 108

4.2.2 Focus Group Evaluation of Agreed De�nitions

With the two de�nitions created, the focus group participants re-convened as

one group to evaluate both. Starting with de�nition one, participants praised its

business focus with wide agreement that DevOps needs to be driven by business

goals and outcomes. Secondly, the emphasis on empowering a multi-disciplinary

team was well regarded by participants.

However, some participants felt that including `tools' in this de�nition detracts

from its value. Additionally, the overlap with culture was too implicit, with

participants agreeing that culture should be more explicitly visible within the

de�nition.

De�nition two's use of the term `evolution' was positively received participants.

They felt this helped showcase DevOps as something that continually changes,

therefore illustrating the inherent transitional context of DevOps. Additionally,

participants felt that empathy was implied as a key element to facilitate `cross-

functional collaboration'.

While the second de�nition was received as well as the �rst, participants agreed

the de�nition contained a negative connotation of the word `divide'. Therefore

they felt it asserted barriers were always present between software development

and IT operations functions.

Finally, and most critically, all participants of the focus group agreed that De-

vOps is, universally at least, very di�cult to de�ne, thus concurring with previ-

ous literature in de�ning DevOps [Dyck et al., 2015]. However, the participants

expressed that DevOps realisation is ultimately going to di�er between organisa-

tions. Therefore, the focus group concluded that using the conceptual attribute

framework as a guide (see �gure 4.1), managers, IT Operations professionals and

software developers can de�ne DevOps in the context of its adoption rather than

rely on any attempted universal de�nition.

CHAPTER 4. FOCUS GROUP AND SURVEY FINDINGS 109

4.3 Questionnaire Findings

The outputs of the focus group, namely the conceptual attributes and two de�-

nitions, were placed into a questionnaire survey which was completed by a total

of 83 anonymous respondents within the wider DevOps community.

Each respondent was asked to state their agreement on each conceptual attribute

previously agreed, in addition to evaluating the two de�nitions produced in the

focus group.

4.3.1 Conceptual Attributes - Exploratory Factor Analysis

Analysis of the questionnaire data revealed that the responses were spread with

none of the focus group de�ned conceptual attribute groups loading well. Sub-

sequently, each conceptual attribute was considered separately through an Ex-

ploratory Factor Analysis (EFA) to identify any latent relationships within the

data.

One such factor was found with `Decision Making', `Ownership' and `Responsi-

bility'. While all three of these conceptual attributes were part of the �Team�

group in the framework, they loaded well when not including `Accountability'

and `Skills'. As a result, the factor was simply de�ned as Team.

A Cronbach's Alpha test was performed to validate the resulting model producing

an α value of 0.76 and average variance of 0.53.

The Team model was then used as a predictor with each of the remaining at-

tributes in a regression test. This produced two further results showing �Mea-

surability/Metrics� and �Accountability� are in�uenced by the team factor (see

�gure 4.2).

CHAPTER 4. FOCUS GROUP AND SURVEY FINDINGS 110

Figure 4.2: Model of the team factor of DevOps conceptual attributes showing
the positive in�uence on Accountability and Measureability/Metrics.

4.3.2 Conceptual Attributes - Inter-rater Agreement

While the previous analysis revealed four team attributes to be important, this

does not suggest the others should be dismissed. To examine these further, the

inter-rater agreement of the attributes using Cohen's Weighted Kappa (κw) was
sought.

As outlined in the earlier methodology chapter, the κw statistic is being used

to determine agreement by respondent domicile, in this case, between UK and

Non-UK based respondents. The value of κw is interpreted using the strengths

of agreement outlined by Landis and Koch [1977].

Overall, there is generally good agreement with the conceptual attributes. How-

ever, Simplicity/Granularity, Automation, Change Control, Reduced Cost, Ser-

vice Management and Observability showed statistical signi�cance with moderate

or substantial strengths of agreement (see table 4.4), thus the null proposition is

rejected.

CHAPTER 4. FOCUS GROUP AND SURVEY FINDINGS 111

Attribute κw Strength Sig.

Simplicity/Granularity 0.648 Substantial *

Automation 0.603 Substantial *

Change Control 0.681 Substantial *

Reduced Cost 0.521 Moderate *

Service Management 0.507 Moderate *

Observability 0.483 Moderate *

Quality 0.468 Moderate N.S

Ownership 0.459 Moderate N.S

Measurability/Metrics 0.375 Fair N.S

Responsibility 0.375 Fair N.S

Informed Decision Making 0.366 Fair N.S

Accountability 0.34 Fair N.S

Skills 0.308 Fair N.S

Time 0.268 Fair N.S

Decision Making 0.268 Fair N.S

Data Analytics 0.110 Slight N.S

Con�guration Management 0.068 Slight N.S

p * < 0.05, ** < 0.01, *** < 0.001

Table 4.4: κw values on attributes between UK and Non-UK respondents with
strength according to Landis and Koch [1977].

4.3.3 Evaluation of Focus Group Produced De�nitions

Respondents were asked to specify a preference for either the �rst or second

de�nition previously created in the focus group. The second de�nition, which

was derived from the literature was preferred by a greater number of respondents

(see table 4.5). However a χ2 value of 0.766 was calculated, where p = 0.38. As

such there appears to be no signi�cance over de�nition preference.

CHAPTER 4. FOCUS GROUP AND SURVEY FINDINGS 112

De�nition Respondents %

One (produced from scratch) 34 41%

Two (derived from literature) 49 59%

Table 4.5: Questionnaire respondent preference on focus group produced
de�nitions

4.3.2.1 Themes Derived from De�nitions

Respondents were also asked to provide positive and negative comments for each

de�nition. Given the varying nature of the qualitative responses, they were in-

terpreted and coded into a single word or phrase, with a complete list of themes

from each de�nition provided in appendix 10 on page 238. In both de�nitions

respondents were positive towards the focus on team and culture. Conversely,

it was felt both de�nitions were limited, failing to capture the full essence of

what respondents believe DevOps is; and contained buzzwords throughout. Thus

these results further echo the focus group �ndings that DevOps is better de�ned

in context. Figures 4.3 and 4.4 provide an overview of coded positive and negative

theme frequency for each de�nition.

De�nition one's focus on Automation and Multi-Disciplinary Teams was received

well by respondents. While business outcomes were considered positive, there

was an almost equal frequency of respondents feeling this was also a negative.

Finally, respondents liked the concise, simple and succinct wording this de�nition

provided.

While lacking the focus on automation, respondents felt de�nition two was much

more focused on collaboration, especially between di�erent functions. In addition,

there was a positive response to DevOps being about time reduction, process and

delivery. Moreover, the idea that DevOps is an `evolutionary' concept sat well

with some respondents. De�nition two was also criticised for being more verbose

and perceived as `academic' to most respondents, as well as lacking any focus on

automation. The notion of DevOps as an `evolution' was positively received by

some respondents, but others viewed it negatively too.

CHAPTER 4. FOCUS GROUP AND SURVEY FINDINGS 113

Figure 4.3: Frequency of positive and negative themes for de�nition one.

Figure 4.4: Frequency of positive and negative themes for de�nition two.

CHAPTER 4. FOCUS GROUP AND SURVEY FINDINGS 114

4.4 Summary of Focus Group and Questionnaire

Findings

In this chapter, the results of a focus group and questionnaire survey exploring

the de�nition of DevOps were presented.

The focus group identi�ed and agreed a set of 17 conceptual attributes, o�ering

a framework for contextual de�nitions of DevOps. Furthermore, two de�nitions

were proposed, one designed from scratch and the other derived from existing

literature de�nitions. Focus group participants did however agree that DevOps

is di�cult to de�ne, at least universally.

However, the survey responses showed no distinct preference for either de�ni-

tion with respondents providing di�erent positive and negative feedback on both.

With the DevOps attributes, the inter-rater agreement results revealed a good

overall strength of agreement. Additionally, an exploratory factor analysis re-

vealed a factor with the questionnaire responses concerning the team grouping of

conceptual attributes. Following further analysis, and con�rmation of the model,

these results suggest decision making, ownership and responsibility within the

team have a positive in�uence upon accountability and measurability/metrics in

a DevOps context.

Analysis and �ndings from the focus group and questionnaire data on DevOps

de�nitions were used to help design the case study presented in chapter 5. The

conceptual attributes of Simplicity/Granularity, Automation, Change Control,

Reduced Cost, Service Management and Observability showed statistical signi�-

cance and were used to �ne tune the thematic analysis undertaken for the quali-

tative case study of DevOps adoption at Anglia Farmers Ltd. This was especially

helpful in guiding focus on the non-technical themes that emerged as important

through this part of the research.

CHAPTER 5. CASE STUDY OF ANGLIA FARMERS LTD. 115

Chapter 5

Case Study of Anglia Farmers Ltd.

"Case studies are analyses of persons, events, decisions, periods,

projects, policies, institutions, or other systems that are studied

holistically by one or more methods.�

� Gary Thomas

CHAPTER 5. CASE STUDY OF ANGLIA FARMERS LTD. 116

Section 1
Introduction

Section 2
Overview of Case Study Data

Section 4
Summary of the Case Study

Overview of Chapter 5: Case Study of Anglia Farmers Ltd.

Presented and discussed in Chapter 2: Methodology:

Semi-Structured
Interviews

Section 2.5.1 (pp. 42-46) Section 2.5.3 (pp. 47-52)

Diary Study

Section 3
Case Study Narrative

DevOps Conceptual
Attributes

Presented and discussed in Chapter 4:
Focus Group and Survey Findings

(pp. 99-114)

Themes
(Set and Emergent)

CHAPTER 5. CASE STUDY OF ANGLIA FARMERS LTD. 117

5.1 Case Study Introduction and Overview

In this chapter, a case study is presented which follows DevOps adoption at

Anglia Farmers Ltd (AF). AF is the UK's largest agricultural purchasing group

with over 150 employees, thus falling into the medium sized business category

according to Rhodes [2016].

Figure 5.1: AF's logo and o�ces in Honingham Thorpe, Norfolk

At the core of AF's business operations is a software system called AFI. AFI is

used by AF as an information system to record details of its customers, purchases

and invoices. Additionally, customers can login to the system themselves to view

this information as well as any relevant industrial information aggregated by AFI.

AFI is over a decade old and its development was outsourced. Yet, despite being

legacy software, AFI is a critical component of AF's operation. AF maintained

a single software developer for the provision of localised software maintenance,

although most development work was outsourced. In addition, AF has an `IT

Operations and Support' team comprising two systems administrators who pro-

vide and maintain the infrastructure needed for hosting AF's software as well as

day-to-day end-user IT support for AF's employees.

Despite being critical to the continuity of business for AF, AFI is considered �no

longer �t for purpose� by senior management. Therefore, AF's senior managers

took the decision to develop a replacement for AFI, but were keen to ensure

the quality of the replacement system was of a much higher standard. This was

followed up with a decision to develop the replacement internally, resulting in AF

appointing a Software Development Manager, with experience of Agile software

development. Subsequently AF initially employed an additional four software

CHAPTER 5. CASE STUDY OF ANGLIA FARMERS LTD. 118

developers and one test analyst to develop �Harrier�, the intended replacement

system for AFI.

The software development manager �rst explored DevOps in 2015 with a view to

enhancing development practice at AF. Of particular attraction was the contin-

uous deployment and release to the business of developed Harrier features.

5.1.1 Justi�cation for Case Study Selection

AF were selected for the case study of DevOps adoption because of their decision

to insource software development activity for the new Harrier system. While De-

vOps was not initially considered, the software development manager appointed

by AF intended to adopt a DevOps approach to Harrier's development following

their own research into it. This in turn links AF as an appropriate case study

organisation for answering research questions 2, 3 and 4 (see section 1.3). Fur-

thermore, there was a large degree of convenience given AF are based locally

to the researcher and that AF and all participants were happy to commit to 14

months of study.

5.1.2 Structure of Case Study

An overview of the qualitative data and thematic analysis undertaken is provided

in section 5.1.3, before the main case study narrative begins in section 5.2.

This case study follows DevOps adoption at AF over 14 months from January

2016 to March 2017 inclusive, with the narrative presented over three distinct

`time periods' as illustrated in �gure 5.2. These were derived following the sched-

uled semi-structured interviews which occurred in January 2016, May 2016, De-

cember 2016 and March 2017. Quotes are taken and presented from the respective

time period within the case study narrative. Additionally, a reference to the qual-

itative data is given, with a pre�x of I or D, denoting it being from a diary or

interview respectively.

CHAPTER 5. CASE STUDY OF ANGLIA FARMERS LTD. 119

Figure 5.2: Structure and timeframe of the AF case study.

The case study's phenomenon in context is DevOps with the boundary set to

the Software Development (Dev), IT Operations and Support (Ops) and related

management functions at AF. It does not consider other departments at AF other

than where they have been explicitly mentioned by participants. Therefore, the

case study maintains focus on exploring DevOps adoption at AF while considering

the wider activities of Dev, Ops and management.

While AF have agreed to be named in this thesis, each participant in the study

has been anonymised to retain their con�dentiality. Therefore where participants

are mentioned, they are referred to as `P1', `P2' etc. An index of quotes taken

from the qualitative case study data is provided in appendix 12 on page 242.

5.1.3 Overview of Case Study Data

A thematic analysis was conducted on the qualitative data acquired from 13

participants over a 14 month period of study at AF. The data were collected

through open re�ection diaries and a series of semi-structured interviews.

Eight set-themes were previously de�ned following the earlier analysis of focus

group and questionnaire data concerning the conceptual attribute framework. In

particular, themes were set from the conceptual attributes following the question-

naire inter-rater agreement analysis. Additionally, task, relationship and cogni-

tive job crafting were de�ned as set-themes given the abductive reasoning which

identi�ed these during the pilot diary study.

Moreover, as this research is exploratory in purpose, it considered a total of 24

CHAPTER 5. CASE STUDY OF ANGLIA FARMERS LTD. 120

themes during the study:

� Automation

� Accountability

� Business Management

� Cognitive Crafting

� Collaboration

� Continuous Integration

� Control

� Culture

� Decision Making

� Knowledge Management

� Legacy Systems

� Measurability / Metrics

� Ownership

� Planning

� Process

� Quality

� Relationship Crafting

� Release

� Resistance

� Responsibility

� Task Crafting

� Technical Debt

� Transformation

� Work Identity

Through the diary study and semi-structured interviews, a large quantity of qual-

itative data were collected and analysed according to the method put forward in

section 2.5.4. Themes were coded from the data in a manner that captured the

time, participant and any secondary, tertiary or overlapping themes, therefore

taking into account the sociocultural and sociotechnical context. For each theme,

raw text was extracted from transcripts and a summary provided. A specimen

example of these coded themes can be found in appendix 11 on page 240.

Given the large quantity of data, three rounds of coding were undertaken with

the aim of consolidating the data. The �rst round resulted in a total of 609 theme

instances comprised of 211 diary and 398 interview themes.

The data were then consolidated in the second round, where duplicate and over-

CHAPTER 5. CASE STUDY OF ANGLIA FARMERS LTD. 121

lapping theme instances were addressed through merging. At this point the `Tech-

nical Debt' theme was discarded as it had few instances which when analysed and

interpreted o�ered no speci�c insight or value to the study. By the end of the

second round, a total of 442 theme instances were recorded, comprising 170 diary

and 272 interview themes.

The �nal round of coding further consolidated the data, with 12 themes re-coded

or discarded entirely (see table 5.1). The �nal result of the data coding was a total

of 415 recorded themes, comprising 153 from diaries and 262 from interviews.

Theme Description

Accountability Merged with Responsibility. Both used interchangeably.

Automation Occurred as a secondary or tertiary theme.

Control Merged with Ownership.

Task Crafting Abstracted within a new primary theme called 'Job
Crafting'. Each type was recorded as a secondary or
tertiary theme accordingly.

Relationship Crafting

Cognitive Crafting

Measurability/Metrics Occurred as a secondary or tertiary theme.

Planning Discarded due to low frequency always secondary or ter-
tiary to Culture.

Quality Occurred as a secondary or tertiary theme.

Resistance Occurred as a secondary or tertiary theme.

Technical Debt Discarded given low frequency with little value.

Transformation Occurred as a secondary or tertiary theme.

Table 5.1: Third round theme coding, consolidation and merging

Figure 5.3 illustrates the �nal frequency of themes coded from the data. Some

themes were more apparent depending on the data collection method. For in-

stance, the themes of Culture, Process and Work Identity had greater prominence

from interview data whereas Collaboration, Ownership and Decision Making were

more apparent from diary data. Furthermore, Job Crafting, while slightly more

frequent in diary data, is close to parity with both data collection methods.

CHAPTER 5. CASE STUDY OF ANGLIA FARMERS LTD. 122

Figure 5.3: Frequency of �nal themes coded the from data collected at Anglia
Farmers Ltd.

5.2 Case Study Time Period A

Covering the months of January to April 2016 inclusive, this section presents

initial perceptions of DevOps, and what it means for AF. In addition, the main-

tenance activities on the legacy AFI system are explored, including the impacts

this has on DevOps practice.

Cultural aspects of DevOps are also explored in this section, including the rela-

tionship between the Dev and Ops teams. Finally, some job crafting was observed

within Dev, which is explored further.

CHAPTER 5. CASE STUDY OF ANGLIA FARMERS LTD. 123

5.2.1 Perceptions of DevOps

While the software developers employed at AF are familiar and comfortable work-

ing within a Scrum framework (see section 3.2.1), there is no consistent de�nition

of DevOps within the team. While they had heard of the term, individual per-

ceptions of DevOps were generally limited to three things: change, responsibility

and deployment.

On the subject of change, participants state that they see DevOps as both in�u-

encing and directly a�ecting how they work. P10 states that it is �blurring the

lines between what constitutes development work and ongoing support, deployment

and management of the real estate� (I06). By `real estate', P10 is referring to the

physical IT infrastructure at AF. There is general consensus amongst the soft-

ware developers that DevOps means both Dev and Ops would need to work more

closely with each other, resulting in individual responsibilities becoming shared.

P10 also picks up on the idea of Dev and Ops integration. They state: �re-

sponsibilities will merge and become everyone's responsibility� (I06). P8 believes

DevOps was all about the organisation cutting back: �It's all to do with money

and saving numbers... that's what I believe it is. If they can save money on

support or programmers by doing something, they will � (I46).

Senior managers at AF are more concerned with who is responsible for what in

DevOps, although they had �never heard of the term until recently.� (I78). It is

also stated that that DevOps has �been driven more from our development team�

(I79), indicating that DevOps at AF is a Dev led endeavour.

5.2.2 Impact of Legacy Software Maintenance

As already set out, AF is reliant on a legacy software system, AFI, and has been

for at least 10 years. Yet senior managers believe that AFI is end of life and no

longer �t for purpose (I03). There was an attempt to update AFI and give it fresh

life, but its quality rendered this very di�cult to do. �The lack of architecture

CHAPTER 5. CASE STUDY OF ANGLIA FARMERS LTD. 124

meant you couldn't tease it apart and there were no layers... so you couldn't take

this layer out and replace it, or I'll take this thing out and there would be a nice

clean interface here that I could implement di�erently. So, it was a bit of a mess,

and the decision was taken to re-write it� (I05). The decision to develop Harrier

was therefore a result of the source code and architectural quality of AFI.

Yet due to its business-critical nature, AFI had to continue running during Har-

rier's development. This necessity also came with the ongoing requirement to

undertake maintenance activities for AFI where necessary. Furthermore, an in-

terface between AFI and Harrier needed to be developed in order to ensure data

continuity.

However, this requirement to maintain AFI and the interface with Harrier in-

troduced issues for both Dev and Ops. Firstly, AFI maintenance was generally

reactive and was not formally included in Scrum sprints. Referring to sprints,

P1 states �I think AFI has been kept out of that. It seems (AFI), very... well I

wouldn't even call it Waterfall, rather a `do it as it comes' very reactive, I don't

know what the word is for that to be honest. They're not doing it in an Agile

way� (I20). This also resulted in additional management issues, as the software

developers disliked having to do any work on AFI.

P10 outlines the resentment amongst software developers with regards to AFI

work. �Certainly when certain people were working on AFI predominately, there

was a bit of resentment . . . like I'm not actually on the new project, and everyone

else is getting to do this new, exciting stu� and they're stuck doing all this legacy

Visual Basic (VB) code, which no one really likes� (I02). Aside from the older

technology being used for AFI, P10 once again raises the issues of working with

bad quality source code and the di�culty of integrating this maintenance into the

incremental approach taken for Harrier's development. �The main problem with

it is there is no separation of concerns... you can't pull one part out and replace

it with another. You can't do incremental changes, so if you pull one part out...

it's like tugging on threads, and it all starts to unravel" (I02).

Frustrated with the disruption that AFI maintenance work causes them, P8 de-

CHAPTER 5. CASE STUDY OF ANGLIA FARMERS LTD. 125

scribes it like having to constantly change caps. �Yes, as I'm learning the new

technologies, I'm having to put myself into `learning mode' and then, for exam-

ple, when something has gone wrong with AFI or something hasn't gone right

in testing, I have to then, take that cap o� then try and get my head back into

the other mode, and the swapping just takes a little bit of time. Obviously, when

you're learning, things go out of your head and when you come back, you're like,

well what was I actually trying to do and that's the hardest part, it really is when

you're trying to learn. If I knew it all, it wouldn't be too bad, but learning it and

swapping about is di�cult� (I45).

AFI maintenance is being undertaken in a reactive and traditional manner with

some stark contrasts drawn with how development for Harrier is undertaken. P4

indicates, there was no agile approach with software development before Harrier.

�I remember when I �rst started it was sort of do this, deploy it and hope it works.

Yeah, hope for the best! It really was like that.� (I23).

Yet there was an appetite to improve the process and to ensure Harrier is de-

veloped in a much better manner. Commenting on the lack of Continuous Inte-

gration (CI) and lack of automated testing in AFI, P1 draws lessons for Harrier.

�The contrast is marked - no CI, few unit tests - and shows how important get-

ting that build pipeline up and running really is. Thinking about environments

and how to deploy code quickly to them is something that needs to happen right

at the start of the development process� (D19).

Such lessons may be valuable though as Harrier is a direct replacement, rendering

it necessary to replicate functionality already present in AFI. However, given both

the quality and technology di�erences with both systems, delays were introduced

as complexity was overlooked. P3 re�ects on this in their diary. �Optimistically,

I had hoped that this would take an extra week to deliver but there was far more

to it than I had anticipated (i.e. there was far more going on in AFI that needed

to be replicated on Harrier than I assumed) and it has ended up being an extra

3 weeks in total � (D39). Moreover and crucially, P4 identi�ed that the process

of DevOps needs to thought through and automated testing, CI and deployment

needs to happen from the start.

CHAPTER 5. CASE STUDY OF ANGLIA FARMERS LTD. 126

5.2.3 Goals of DevOps Adoption

The fundamental goals for adopting DevOps at AF is not only to develop Harrier,

but to ensure it is of superior quality to AFI. P7 does suggest that just developing

a better quality system doesn't make it DevOps, but being able to continuously

deploy developed Harrier features to the business is attractive. �A lot of it is

not really DevOps, in that we're producing a much better system than we have

currently, but the ability to deliver that system and keep it running is a big thing�

(I42).

In order to meet these goals, P7 does point to the necessity of shared responsibility

from both Dev and Ops. �I'm looking for automation down the pipeline, so

I'm expecting the responsibility of the two teams will be to keep this automated

pipeline running all the time with a fairly equal responsibility but obviously with

an emphasis on Dev not to introduce crappy code that breaks it, and Ops to not

�ddle with security settings without thinking it through� (I41).

Additionally, and aside from sharing responsibility with Dev for the DevOps

process, Ops are still required to provide more general IT support to the rest of the

business, and as such are a crucial part of AF, as P6 has observed. �A developer's

never going to go and install a monitor for someone in the business, they (Ops)

will always do that� (I34). P9 provides insight that Dev actively collaborates with

Ops to some extent with Harrier's development. �We sometimes involve them at

the starting point of any project for what would be the project requirements in

terms of the technologies and hardware and everything� (I49). However, P10 see

Ops having a far greater role with releases. �I don't see them being involved in

the actual sprint which is developer focused. But I could see them being involved

in the release� (I10).

5.2.4 Change and Culture

Connections to Agile development approaches were also drawn as P6 not only

talks about work �ow, but also change. �DevOps, how we develop as Operations

CHAPTER 5. CASE STUDY OF ANGLIA FARMERS LTD. 127

I guess, how the Developers all work together, how we deploy, how we redeploy

and stu�. It's all Agile, at least my take on it.� (I30). They argue that �anybody

who's come from an old school approach to developing software might not em-

brace it initially� (I32). The meaning of `old school' is a reference to traditional

approaches to software development, such as Waterfall (see section 3.2.1).

P3 acknowledges that �AF has employed third party developers� (I79) in the past,

and Harrier is �the �rst time we've done a big project with in house development

and the team that we obviously have� (I79). This brings to light the scale of

change for AF, with it being �a learning curve for senior management in the

business� (I79).

However, P10 indicates that DevOps related change is a scary prospect. Speaking

about blurring the lines of responsibility, they state they �always had comfort

from the fact that there's a certain point you're not responsible for your work

any more� (I06). They continue in outlining that mistakes are opportunities for

learning and therefore important for developers to embrace. �If you don't live

with your mistakes as a developer, you don't really improve as a developer � (I06).

Yet, P1 also believes the process of any change will be slow at AF owing to the

culture, and potential politics with a third party as well as managers across the

business. �The whole Azure thing, the whole third party who used to manage the

servers. I think there's a lot of politics there too, that holds stu� up. It will be

slow because there will be resistance from di�erent managers and people who won't

necessarily make the decision. Because they know the people in those companies,

and you're much more likely to do business with a friend, than do it a new way.

The `I've been using him for 10 years' mentality� (I19).

Despite this, change is evident according to P6. �I can see that there is change

at AF, de�nitely since I've been here... and how we work and how we get the

business involved in every decision we make because it's going to save time and

money� (I33). Moreover, P7 sees Dev taking much more of a lead with traditional

Ops work. �The upshot is that Dev will lead all the deployment and con�guration

work except where Ops are needed to make changes that Dev do not have access

CHAPTER 5. CASE STUDY OF ANGLIA FARMERS LTD. 128

to, e.g. DNS settings� (D12).

Such Dev led deployment and con�guration work would mean utilising new tools,

which P6 doesn't see as a bad thing. �Just going to make my CV better aren't they,

surely? Unless they build or get a robot to completely do my job and completely

automate everything. I'm going to learn from it, and I think they need a tester.

As good as Developers' code may be, there's always going to be integration and

look and feel issues you know. So, it's only going to improve my skills.� (I35).

Here, DevOps is a potential opportunity for professional development. P6 also

perceives that AF will bene�t from DevOps induced change too. �Business will

be able to work quicker, they won't have system issues. They should be able to

process more orders, things over the phone because the system will be better, they'll

be able to get more work done in their working day, so it's certainly going to mean

that we (AF) can take more business� (I36).

Referred to as magic by P1, this process of automation occurred and worked �rst

time. �So the actual release procedure worked really well on the 24th. <name

omitted> made a release bullet point list of about 12 things, <name omitted>

handled anything data migration wise. I took the website o�ine, pressed my git

�ow button in source tree and the magic happened � (D43).

5.3.3.1 Cultural Issues Between Dev and Ops

Prior to 2015, the software development team did not formally exist. Following

AF's decision to bring software development in-house, there was one team which

included software developers and systems administrators. However, both teams

have been formally split, resulting in a �view of `ours and theirs' and `theirs and

ours' � (I38). Additionally, P3 believes that a that a silo culture exists between

Dev and Ops. �There are still silos of Dev and Ops. I think... short of bringing

someone in a DevOps role who bridges both parts, which potentially could cause

more problems as you bring three people to the table. At least with two people

you can kind of knock their heads together and agree that sits there and that sits

there... which sometimes is what it's almost felt like� (I80). Furthermore, a third

CHAPTER 5. CASE STUDY OF ANGLIA FARMERS LTD. 129

party provider still supplies physical infrastructure to AF, raising �politics of how

they �t in; what's their view of what we're trying to do; what their view is of

working in the cloud � (I38).

Generally, the Ops view of DevOps is positive. P12 states they �would like to see it

happen� (I51). The view of DevOps is largely focused around communication and

collaboration between both functions as they bring necessary yet very di�erent

skill sets. A further comment of �there's not very many people who will actually

do both� (I51), illustrates a particularly niche overlap of any speci�c DevOps role.

Another key thing considered in the Ops view is that of physical co-location. The

dev and ops teams are located within the same area of the building, with adjacent

desks. They make the argument that cross-communication during normal working

activities does occur which P12 believes can aid in any collaboration between the

two teams. �I might be talking to my colleague, they might be listening... or they

might be talking and you hear what they're doing... and you go that's not going

to work straight away.You can hear what they're actually saying and vice-versa�

(I53).

Another consideration is the understanding of each others roles, as P12 believes

that misunderstanding of roles can form a barrier. �My colleague, he's a bit more

old school, so he might take an approach di�erent to say <name omitted>, who

has these new ideas. Or it could be that development do not fully understand what

Operations is doing and vice-versa. We don't fully understand each other's roles

yet and there has never been any full clear de�nition on who is responsible for or

should take ownership of what bits� (I65).

Ops at AF have taken a large degree of ownership and responsibility for the

provision and support of software systems, including AFI and other Microsoft

applications. P12 states that �in house, we maintain it, we look after it, if any-

thing goes wrong, it's our fault and we protect it and do anything with it� (I67).

With Dev considering Microsoft Azure for hosting Harrier, P13 highlights a po-

tential change for Ops as they have always looked after and supported both the

hardware and software at AF. Furthermore, these systems have been hosted in-

CHAPTER 5. CASE STUDY OF ANGLIA FARMERS LTD. 130

house at AF with Ops having always been responsible for them. �Development

are very eager to get cloud bits and bobs going and they're saying we'll pay the

money, we'll get Microsoft to sort it out for us <name omitted> has been looking

after them for the past 5 years anyway, they're his baby, and now they want to

throw them out of the window and go, we'll get a new baby. I think it's more about

the protecting of his server and he wants to still be able to maintain it himself,

than for us lot to sit there in the corners loose limbed and pay Microsoft. They are

his pets, that's how I'd perceive it. A server is a server, once you start naming

them, then you get sentimental � (I67).

Yet, there are also perceptions that Ops are moving more towards supporting

hardware. P6 comments �I think IT support, maybe a year ago, would have

been split Hardware / Software. But I think now, they're mainly moving, shifting

towards the Hardware. When the issues get raised they run all the systems and

do what they want. Obviously, they'll look at the ticket and then if they can �x

it, they'll �x it. If they can't, they assign it to our team� (I31).

Increasingly evident with DevOps is its inherent overlap with change and the

necessity to manage it. P7 appears to have taken a lead in advocating DevOps

adoption at AF. They are also �pushing through the agenda and feeling ahead

to see where it meets resistance and trying to then break that resistance down

individually� (I39). �The agenda is to communicate the developer architecture

vision to operations and what tools and processes are needed to make sure this

works on Azure.� (D05). In addition, P7 is seeking buy-in from senior managers

with regards to the Azure platform for Harrier. They have been conducting

analysis activities with di�erent departments at AF. As such, they feel �there is

no outright opposition, it's more just inertia due to their own observations of a

`default position of sit tight because this has always worked, even though it's a bit

messy' � (I43).

In addition to seeking buy in from departments around AF, e�ort has been made

to ensure communication regarding both Harrier and the development process

occurs with departments either directly or indirectly through an internal devel-

opment blog. P7 claims they are �slowly winning people round to this new way

CHAPTER 5. CASE STUDY OF ANGLIA FARMERS LTD. 131

of doing it� (I44).

5.2.5 Role of Senior Management in DevOps

In most organisations there is typically some degree of hierarchical structure em-

ployed, AF is no di�erent. Figure 5.4 depicts the management hierarchy at AF

within the boundary of this case study, showing that Dev report to the soft-

ware development manager, who in turn reports to the head of group operations.

However, Ops report directly to the same senior manager.

Software
Development

Team

IT
Operations

Team

Software
Development

Manager

Head of
Group Operations

Figure 5.4: Observed reporting structure at AF within the case study boundary.

This hierarchy creates an issue as IT Operations can have as much in�uence on

the DevOps process as the Software Development Manager, and have a higher

reporting line than the software development team. Coupled with earlier ac-

knowledgements that DevOps is developer led, a senior manager re�ects that it is

CHAPTER 5. CASE STUDY OF ANGLIA FARMERS LTD. 132

like being between �two main characters who don't always see eye to eye. I have

to listen to <name omitted> from a support point of view and knowing there are

some things he can setup that <name omitted> isn't 100% aware of. There are

some things from <name omitted> from a development point of view that's in

his language, and it's almost like I'm sat in the middle as a layman (I81). In the

same interview, they state that their approach is very much that of a layman and

that they try to �read it as this without trying to bring any technical terms to it�

(I81). The characters referred to are the software development manager and one

systems administrator.

AF was also observed interacting with the local technology community too. In

aiding the continuing professional development of the software developers, AF

enabled and funded Dev to attend `NorDevCon', a two day software develop-

ment conference, hosted by Norfolk Developers1. While DevOps was a topic on

the conference agenda, a presentation by a speaker from Aviva was of particular

interest. P7 relates this talk with DevOps at AF, especially points the speaker

made about DevOps needing commitment from senior managers if it is to be

successfully adopted. �He gave a really interesting talk, some of which really res-

onated with me regarding the situation at AF. Most interesting was his view that

commitment from senior management is essential for the success of creating a

DevOps working environment. Without that commitment, no matter how proac-

tive the development team is, the barriers between Dev and Ops are not going to

come down on their own.� (D28).

The theme of senior management commitment is also picked up by P13, who

believes that the organisational culture at AF needs to change if this is to be

addressed. �Our managers and the managers of them maybe don't respect or

understand what we talk about all the time. That's another barrier above us,

which can be a con�ict. So that culture has to change there at some point, and

it's not about if it has to change, but it has got to change� (I69).

1https://www.norfolkdevelopers.com/

https://www.norfolkdevelopers.com/

CHAPTER 5. CASE STUDY OF ANGLIA FARMERS LTD. 133

5.2.6 DevOps Driven Job Crafting

Senior management buy-in was continually sought in order to recruit a Business

Analyst (BA) given both the size of AF and the development team. Pressure had

been placed on P7 as they had to also undertake what analysis activities they

could. �With the size of the team we've got now, there is a place for a full time

business analyst, and I've tried to argue that one. I've won the argument, but

it's never transpired and hence one of the reasons I'm doing so much business

analysis as it needs doing� (I37).

The objective was more addressed to Azure Stack, a variant of Azure which AF

can host itself, but had yet to be released. In relating to the senior managers, they

were conscious to ensure communication was of a non-technical nature. �After

doing some reading up on Azure Stack (brings Azure cloud technology and bene�ts

to on premises) I decided to run this past the senior developers, <name omitted>

and the Ops team. I set up a meeting in a room with a TV and we watched a

couple of Microsoft-produced videos on Azure Stack that were mainly non-technical

in nature � (D41).

The buy-in and involvement of Ops was one of P7's main objectives. With the

consideration of Microsoft Azure as a platform for hosting Harrier, and attempts

to involve Ops, P7 later states that �Ops are not pro-actively looking to get in-

volved in the Harrier roll out'" (D17), producing a potential barrier to the De-

vOps adoption.

However, there is a strategic element to P7's dealings with Ops. In particular, P7's

approach to achieving buy-in around the organisation (I44), harnesses <name

omitted>'s desire to learn and acquire new skills. Indeed, they comment: �Last

week <name omitted> went on a three day PowerShell course. Mainly this was

for him to become more productive in his current job. We have told him that these

skills are transferable to Azure Power Shell and could be very useful in helping

us automate much of our environments. Next time <name omitted>, <name

omitted>, <name omitted> and myself are in we will talk this through and see if

there is any interest in <name omitted> doing Azure PowerShell work � (D25).

CHAPTER 5. CASE STUDY OF ANGLIA FARMERS LTD. 134

In using Azure, Dev have undertaken tasks typically associated with Ops. P1

notes that this is potentially harmful for promoting any collaboration with Ops.

�I do feel if Ops were more helpful on the Azure side we would be nearly a sprint

ahead by now. I think the mistake we made was doing Azure ourselves. We are

now seen as able to do it for now, but keep having to do more and more. A better

approach would have been to have had early requirements supported by manage-

ment on the Ops team. I think our technical intrigue as developers has actually

hurt us here� (D31). While evidence of Dev collectively job crafting through

tasks, the re�ection here emphasises the potentially negative consequences such

actions can have.

The pattern of Dev undertaking perceived Ops tasks continues as P1 describes

the tasks they've undertaken, which would have traditionally been performed by

Ops. �I made all the Azure web apps, Azure Power Shell Runbooks, added a

con�g transform to each micro-service, added projects to Jenkins, Hipchat rooms,

I think that's the big stu�. No Ops involvement was required � (D38).

However, there are instances where issues addressed by developers have been

communicated to Ops for their future bene�t. One such example is concerning

the provisioning of development environments on workstations and laptops. �New

laptop is here and has 16GB RAM, i7 and SSD. Seems a lot faster so far. What

was interesting was <name omitted> got Ops to install a list of software. All was

as expected except for SQL Server. We wanted Express with Management Studio,

but got just Management Studio. So I �xed that myself and gave Ops the correct

.exe to use for the rest of the teams' laptops� (D54).

5.3 Time Period B

From May to December 2017, the relationship between Dev and Ops deteriorates.

However, during this period a DevOps practice begins to emerge at AF.

The commitment of senior management becomes a prominent concern among the

participants, alongside how the organisation, and in particular, the Development

CHAPTER 5. CASE STUDY OF ANGLIA FARMERS LTD. 135

team can cope with losing key individuals. This is down to two members of the

development team giving notice of their departure from AF.

Meanwhile, maintenance work on AFI remains disruptive not only for Dev, but

also Ops, despite this work reducing in volume. Instances of job crafting are in-

creasing with both Dev and Ops. This is also explored alongside software devel-

opers believing their job roles are changing and their work identities transforming

as a result.

5.3.1 Impact of Legacy Software Maintenance

Maintenance activity on AFI continues to be an ongoing necessity. A phased roll-

out of Harrier is evident, necessitating development of an interface referred to as

the `AFI RESTful Service' to ensure data consistency between the two systems.

�We have to communicate data from Harrier back to AFI, so there's that side of

things and having to get it back the whole time. So, the single point of orders is

within AFI. We call it the AFI RESTful service, and it sits here. It has some

APIs that Harrier can hit, and it updates the AFI database� (I77) (See �gure 5.5).

Figure 5.5: The AFI RESTful service ensures data consistency between Harrier
and AFI.

While necessary for data consistency across both AFI and Harrier, the AFI REST-

ful service does however add another software component to maintain. Despite

this, the biggest perceived challenge appears to be the limitations with practice

when moving between Harrier and AFI. As the development team moves forward

with DevOps, P1 is concerned about the mindset connected to the manner in

which the legacy system was developed. They are keen on �getting everybody

thinking in a much cleaner mindset, you know they're used to doing quite dirty

hacks in AFI. So, getting them thinking about this is a clean project, we'll do it

CHAPTER 5. CASE STUDY OF ANGLIA FARMERS LTD. 136

in a clean way... that kind of thing.� (I74). This is also to preserve the quality

and practice undertaken with Harrier development.

Yet, AFI maintenance work does appear to be reducing in volume, much to

the delight of P9. �I am now working more on Harrier than AFI. It has been

particularly good to apply my skills with XML to Harrier too. The overall workload

on AFI seems to have drastically reduced. In turn, I feel much happier to be

working on Harrier than AFI now � (D67). P8 also feels that AFI just wasn't

worth spending much time on, citing its age, technology and quality as frustrating,

placing limitations on what they can do. �AFI is 10 years old, so it has its own

things to do what you can do. Harrier has much more new things which you can

do things in a much quicker and nicer way. It's just not worth spending as much

time on AFI. It is frustrating, because you know you can do things better, but

there is the case on quality and time periods� (I90).

Ops on the other hand share many of Dev's frustrations with AFI. Di�culties for

them include having to produce workarounds for end users, which are becoming

increasingly common as Harrier continues to be rolled out in phases. P12 thinks

about the workload for Ops, hoping Harrier will eliminate the need for these

workarounds. �There's ways round and <name omitted> has to �nd what users

can't do. Harrier, I'm hoping, will eliminate that. So to a certain extent, my

theory is that Harrier will make <name omitted> be able to do other things,

rather than fa�ng around with AFI/Harrier. Call it Harrier, whatever you like.

Harrier will hopefully replace the problems you have to deal with AFI. Then he

would have time to do other things� (I104).

5.3.2 Change and Culture

The relationship between Dev and Ops appears to have degenerated to a point

where there is very limited communication between both. P12 notes that Harrier

releases have �trickled� but comments: �we've had nothing to actually support or

a conversation or document to say this is what we've done, we're handing that

over to you� (I101). Dev are providing support at this stage for those currently

CHAPTER 5. CASE STUDY OF ANGLIA FARMERS LTD. 137

using Harrier, despite the P7's comments that Ops �are now trained on Harrier

and are starting to take support calls� (D58).

Frustrated by the lack of communication and where Ops stands, P12 appears to

be viewing this from the traditional AFI scenario, where developed software is

passed to them. �If you haven't handed it to us, how are we supposed to deal with

it?! You carry on and support it, until you �nish it or send us exactly what you

want us to support� (I101). �Harrier is well from a build and needs to be done by

development and then handed over � (I102).

Commenting on communication, and regarding DevOps, P13 metaphorically de-

scribes the Dev-led aspect of it at AF. �The only reason we hear about DevOps

is through <name omitted>, but he doesn't manage Operations. I feel at the mo-

ment, <name omitted>'s got one size shoe that he wants DevOps to �t, and we're

not Cinderella. I feel like in his mind, he knows what he wants for DevOps, but

that might be di�erent to how we see it at the moment. I feel we're not commu-

nicating enough to get any vision across. Although I wouldn't want to class us as

ugly sisters... but yes. Regrettably, at the moment, I don't feel DevOps has moved

as far forward as I would have liked it to� (I105).

It is not all negative, as P13 respects the approach that has been taken, they

feel there is bias towards Dev. Moreover, P13 believes senior management are

not doing enough to moderate this. �There's de�nitely been approaches towards

it, but myself and <name omitted> are involved in development meetings. We've

tried to involve them (Dev) in some of our bits as well, but it seems to be at the

moment the idea of <name omitted>'s idea of DevOps to what we would like it

to be is slightly di�erent. Our manager isn't moderating that, so it's almost like a

free for all. I think senior management and above, including the CEO... I think

their role should not be just to moderate it, but to show by example. If they don't

understand it or show interest, it will never motivate us to look at it� (I105).

Conversely, P1 believes DevOps has led to an improved process with knock-on

quality improvements of the software being written. �The Harrier project is better

because we embrace DevOps, and you know, we think about it as developers, and

CHAPTER 5. CASE STUDY OF ANGLIA FARMERS LTD. 138

it makes our software a lot easier to write and you know, our releases have so

far been a lot cleaner. So it's de�nitely improved things� (I73). Yet, they share

the same concerns as Ops when it comes to senior management involvement. P1

also feels this may be down to senior managers not seeing the value of DevOps

in the same manner as the Dev team does. �I'm not sure that they're sold on the

value of it in the same way that the developers are. I don't know why, but I think

<name omitted> takes the lead on it really, rather than anybody above� (I73).

Furthermore, it appears there is some perceived hostility too. P8 comments on an

encounter they had with Ops when asking about server upgrades. �The last time

I tried to do anything on the Operations side, or put my nose in I got shouted at.

I just asked Operations about some upgrades and if they've upgraded one of the

servers to HTTPS, and I got moaned at saying its my responsibility, and then he

goes, that for this I go to him, so what am I meant to do then? � (I89).

Potentially compounding these issues is Ops having to move desks due to the

space being needed by the Dev team due to the appointment of another software

developer and a Business Analyst (BA). P13 believes that the desk move has

worsened communication. �I think there is now much less communication between

Dev and Ops following <name omitted> and myself having to move desks due to

lack of space, given the appointment of a BA and additional Software Developer �

(D64). Moreover, there is less involvement with senior management too and a

feeling that P7 lacks interest in Ops. �Our weekly meetings with <name omitted>

have also ceased, and at present, have not resumed. <Name omitted> also stated

to me that he does not feel it relevant for him to sit in meetings with us and <name

omitted>, where we discuss Ops speci�c and facility tasks� (D64). This has led

to Ops feeling their input is not valued, nor do they feel in the loop with updates

that would potentially impact them. �While I agree that some development tasks

are not relevant to us, I feel we do need to know if anything will a�ect the network,

AFI or user experience� (D64).

Although DevOps at AF may be Dev-led, P10 re�ects that Ops should not simply

be cast aside, despite the perception of them not wanting to be involved. �On

the one hand, if Ops have the attitude that we don't want to get involved, then it

CHAPTER 5. CASE STUDY OF ANGLIA FARMERS LTD. 139

kind of makes it easier for us so long as senior management say well �ne, they're

not getting involved, then Dev can do what they want to do, and you can't object

to it. It makes our life easier in some respects, as we get to pick and choose the

things we want to do in terms of tools, techniques, processes and stu� � (I100).

The quality of Harrier doesn't appear to be a�ected, and is noted by Ops. In

praising the quality and performance of Harrier so far, P12 appears ambivalent

about Ops involvement. They state: �with Harrier, Ops hasn't been involved too

much, which I think has been a good and bad thing. I guess it's not working

towards DevOps, but if there's nothing to �x, they are kind of doing it on their

own stead. Realistically, to us, they are controlling it, and we don't have much

input. To my eyes, it looks good, it performs well and from what I can see, the

users are happy with it� (I90).

However, P6 believes that Ops are such an integral part of AF that they simply

cannot be excluded as they also o�er substantial expertise and would be the �rst

port of call for supporting Harrier's end users. �But, I think as they're such an

integral part of the company when it comes to �elding user queries and those kind

of problems and things like that and the general day-to-day running of the o�ce,

they've got to be onboard, certainly with releases and what's going out. They need

to know where to look through logs and things like that so they can relay better

information to us. If they're going to be a �rst port of call to users coming in, if

they know where the logs are, what the services are and what features are a�ected,

they can say this things come in, here's the relevant log entries, just as a basic

example� (I100).

5.3.3 Role of Senior Management in DevOps

In time period A of this case study, a hierarchical structure (see �gure 5.4) was

reported. P13 re�ects on this structure, believing it to be a problem. �I think

the reason it hasn't gone as well as we'd like it, is that both Dev and Ops should

report to the same manager (I105). In addition, a dominant view on DevOps

from senior management revolved around the individual responsibilities. There

CHAPTER 5. CASE STUDY OF ANGLIA FARMERS LTD. 140

appears to be a mismatch of opinions, as P6, referring to the two separate teams,

argues that senior managers should be the ones to de�ne where responsibilities lie.

�Senior management need to specify the principle responsibilities of those di�erent

groups. It's all well and good saying its DevOps and it's combined, but there's two

separate teams there who do things in di�erent ways. So I think management's

job is to specify where the dividing line is, even though with DevOps there's not

supposed to be a dividing line� (I93).

With time often very limited for senior managers, they are making key decisions

which also include the infrastructure and tooling being used for Harrier. P6 states

that senior management are �broadly on board with the whole Azure platform,

they're looking at doing this on-premises version which hasn't been released yet

which Microsoft are looking to release later this year � (I94). It is important to

note that while Harrier will be deployed initially to Azure cloud, the decision

from senior management places emphasis on the release and installation of Azure

Stack within AF, thus adhering with the organisational culture of keeping as

much in-house as possible.

The decision regarding Azure also sits very well with Ops. Despite having had no

previous experience or exposure to Azure, P12 feels �it's very similar to running

a server, very much the same principle but you go about it in a di�erent way�

(I103). They continue, believing this would be a good thing for AF too, while

explicitly stating their preference to Azure Stack. �I think it sounds a good thing.

Because it's all lumped into one. It's one interface where you can do everything

in one lump rather than �shing yourself around the server or creating the roles,

where they are already there. And to me, looking at it, I would de�nitely have

Azure running the same interface with us. But I'm more prone to having it

internally than externally� (I103).

P11 comments on how delays in these decisions result in delays to releasing Har-

rier. �It is tricky to get time with <name omitted>, as they are also so busy

supporting the business. <Name omitted> being our proxy, the key stakeholder

in how AF is wanting the new system to be built does cause delay in readying

work in time for Dev sprints. This of course will also cause signi�cant delay

CHAPTER 5. CASE STUDY OF ANGLIA FARMERS LTD. 141

to release� (D81). P6 echoes the concerns of P11 on delays in decisions having

knock on impacts. �We're waiting on stu�... we've waited for decisions and to

have various sign o� meetings. We can't progress further until things are signed

o� from higher up� (I88).

The participants feel that senior management need to take a much more involved

role within DevOps. Another issue is where responsibility for software develop-

ment and the DevOps approach should sit within the AF organisational structure.

5.3.4 Key Personnel Loss

By the end of this time period, AF had to deal with an especially pressing issue.

Up to now, the release process for Harrier has fallen largely on P1. This individual

has announced they are leaving AF due to relocation and taking a new role. �I've

taken a job with Muddy Boots Software. They have 3 creaky codebases and want

to bring in someone to oversee bringing DevOps and CI into their organisation,

alongside a more micro-services type architecture. They've basically made a role

for me, which is awesome� (D88). Additionally, P6 is also leaving to embark on

a freelance career. P10 re�ects on this and the potential impact this will have on

Harrier development. �So we are losing two of our team - one to relocation, the

other to contracting lucrativeness. The former is the real concern, as he has by

and large owned a lot of the Azure related work within the team� (D93).

While the departure of P1 and P6 is a situation perceived not to be uncommon

in software development teams, the perceived skill loss concerns P10 the most.

More importantly, they re�ect on the ease and dangers of relying on one person

for speci�c tasks and expertise. �I guess this highlights how easy it is to rely on

one person to get certain tasks done; when you are in full-�owing Dev mode, you

don't stop to consider how certain things are getting achieved, just that they are

getting achieved. So, this poses a bit of a problem for us in that we need to cover

the impending skills loss. Ideally we will spread the responsibility across the team

this time, and avoid a future repeat of this situation. But, alas, I fear this dance

is performed in many development teams, over and over again� (D94).

CHAPTER 5. CASE STUDY OF ANGLIA FARMERS LTD. 142

This aroused a sudden emphasis on capturing as much knowledge regarding the

release procedures and other aspects that P1 was working on. �My focus this

last week had been about handing over as much knowledge as possible. To help

with this <name omitted> allowed me to bring a handful of tickets into this and

next sprint that I know will be particularly di�cult or stretching in Ember terms.

Other focus is on passing across some Azure and Jenkins experience� (D95). It is

evident from this that the Agile process itself was somewhat a�ected with speci�c

tasks being drawn across two sprints. Furthermore, the knowledge management

challenges with regards to DevOps were exacerbated due to the limited time

before P1's departure. Invariably though, it leaves a void within the Dev team

concerning Harrier releases.

5.3.5 DevOps Driven Job Crafting

While instances of job crafting activity appear to have increased, the strategy of

to encourage greater involvement from P13 through using their desire to learn

new skills appears to have back�red. While they attended a power shell training

course, which AF had funded, P13 feels there was a misunderstanding and false

expectation of what this would mean. �I've been on a power shell training course.

On the three day course I learned power shell. An interesting fact as I went to

that to learn about active directory, exchange and group policy. But I think the

impression for DevOps is that I'd be able to use that skill for Azure as well. So

I think there was a bit of miscommunication there. I think <name omitted>

expected me to come back and use power shell straight away for Azure. But the

three day course didn't even touch on Azure. I've now got a book, with a big bit

at the back of it, which is full of Azure� (I108).

Perhaps this was a step too far as P13 re�ects and relates this to previous expe-

riences of programming when at college, which they disliked. Nevertheless, their

desire to learn new skills remains. �So, as I see more of this within Azure, it

puts me o� a bit where I see the simple couple of commands for active directory

for reactivating an account or changing a list of active users or active computers

CHAPTER 5. CASE STUDY OF ANGLIA FARMERS LTD. 143

running on the W32, then that's the thing I'm interested in. If it opens up in

the future, I wouldn't mind delving into it. As a person, I've always wanted to

learn more. But for my professional need, I feel I don't need that at the moment.�

(I108).

At this stage, job crafting appears be ubiquitous within Dev. Following dealing

with an issue on the Azure platform, where a Microsoft software update a�ected

the infrastructure used for Harrier development, P1 re�ects on this and in par-

ticular, why they were the one to address the issues caused. �I am guessing

Microsoft updated the portal overnight and we didn't have something required in

that version. Anyway the big question is why did I handle this? Its a virtual

machine (VM). There are no scripts here and I was using a user interface with

the Microsoft guy. Nothing about being a developer helped here. I �xed it because

I want our nice front-end CI running again. We should reassert our push with

higher management to be handing management of the Operating Systems (OS)

and Azure to Ops� (D60). Again, a sense of frustration can be interpreted from

this refection, where it is felt that Ops should be handling issues such as these.

However, job crafting is evident with Ops, where they have taken responsibility

for provisioning the `Azure Reference' site, which is used for the testing and

demonstration of Harrier by Dev. �<Name omitted> and <name omitted> from

the development team have been giving assistance to myself and <name omitted>

on how to start and stop the Azure reference site. This is essentially the version

of Harrier which is used for both testing and demonstration purposes. We can

control this through commands, but in particular through the Hipchat tool used by

the development team� (D76). Until now, the relationship between Dev and Ops

has been cold. Now, P13 comments about socialising well with the Dev team

as well as joining them and others in team building days. �Additionally, we are

socialising well with the development team, and are looking forward to attending

a crazy golf team building day with them and others in the business� (D77).

The `Harrier Implementation Group' was a suggestion to senior management from

P7 to further involve them in Harrier's development and to coordinate activities

such as user acceptance testing and training. �I suggested to <name omitted>

CHAPTER 5. CASE STUDY OF ANGLIA FARMERS LTD. 144

that a Harrier Implementation Group be set up to manage the roll-out of Harrier.

We have our �rst meeting later this week. The group's responsibilities include

User Acceptance Testing (UAT), training and platform - the last two of which

normally are the responsibility of <name omitted> and <name omitted> respec-

tively� (D90). A senior manager leads the group, and its members are made up

from key individuals from across the organisation, including Dev and Ops.

Concerns have been raised regarding the limitations of AF's infrastructure, espe-

cially its internet connection. Further job crafting was exhibited by Dev as they

explored this issue in collaboration with senior managers, including the CEO.

However, P7 links back to the consequences of delays in decision making, as they

argue a critical decision on the hosting of Harrier needs to be made. �There is

still no further progress on a hosting decision as <name omitted> has not yet

arranged for InTouch to come in and talk through our options. My feeling is

that the only sensible option would be on-premise while our Internet connection

is anything but bullet-proof. Surprisingly, at my last meeting with him, the CEO

seemed to be encouraging us to look at the cloud option - I think the 'serviced

platform' idea is appealing� (D92).

With the internet connection limitations becoming clearer, Dev and Ops appear

to be settling on the direction of using Azure Stack. This potentially overlaps with

the earlier observation from P12 indicating their preference was for internal host-

ing (I103). Perhaps Ops have been considering the limited internet connection

from the start and aware of its limitations more than Dev or senior management

had been previously?

5.3.6 Transformation of Work Identities

As DevOps practice continues to evolve within AF, developers are also beginning

to see their roles di�erently. P10 comments that it feels odd to be just a software

developer now. �My focus in the intervening time has been almost exclusively on

software development. The two largest features of AFI - ordering and invoicing -

are in the process of being implemented in Harrier. The time I would have spent

CHAPTER 5. CASE STUDY OF ANGLIA FARMERS LTD. 145

giving consideration to Ops issues, is instead being used to work with our BA. In

a way this is a more traditional take on being a software developer, and it now

feels a bit odd � (D69).

Another interesting observation was that of P10 who feels DevOps comes with

a greater time demand on developers. �<Name omitted> has largely taken over

the Ops side of things, though I feel a sense of frustration at having to step away

from a number of open issues. I think this highlights the extra demand on time

that DevOps places on a developer. At present, I don't feel I can devote time

to everything and still deliver on the development side of things� (D70). This

indicates a change occurring at a team level, where developers now, as observed

by others, undertake perceived Ops tasks.

Re�ecting on what their role entails, P4 comments on their achievements with

the front-end of Harrier. �Getting the Cascading Style Sheet (CSS) working on

the front end was a big achievement for me too. I like to get involved in all

aspects of Harrier, so the back end work is another string in my bow � (D65).

Having previously identi�ed themselves as a front-end developer, P4 appears

greatly motivated and self-actualised by the Harrier project. Now they appear

to moving beyond the their original role which focused exclusively on front-end

features by working on the back-end as well. �On re�ection though, I am de�nitely

getting to learn, play with and apply new technologies as part of the overall delivery

objective of Harrier. I still have a huge desire to continue learning too. Also, as

I have generally always been a front-end developer this is new, given its back-end

functionality, as such, I have been writing more C#� (D82).

Furthermore, P4 appears to have developed a sense of ownership for the devel-

opment of Harrier features. This is being driven primarily by their intellectual

curiosity and desire to learn, investigate new technology and acquire additional

skill. �I've been working on an invoice pdf converter for Harrier. This essentially

involves the conversion of Extensible Markup Language (XML) into a pdf invoice.

Again, this is very new to me and the �rst time I've ever looked into such func-

tionality. Nonetheless, it is great fun and has led me to investigating looking at

FO.net(a C# library) as a possible avenue to developing a solution� (D83).

CHAPTER 5. CASE STUDY OF ANGLIA FARMERS LTD. 146

While initially frustrated with the switching between both front-end and back-

end development tasks, P8 also sees their role and subsequent identity at work

di�erently. �I am starting to �nd that the feature stories I work on are involving

elements of both front and back end work. Subsequently, I no longer see myself as

a front end developer, but rather a full stack developer, and I believe this makes

me a much better developer � (D84). Not only does P8 see this as a bene�t to

their own development, they �nd it very satisfying and of particular bene�t to

AF too. �I also enjoy being able to move between both and I believe this bene�ts

the business too, that operating in a full stack manner is more e�cient. I also

like the change too, if I did purely front-end for instance, I would probably end up

getting bored � (D85).

5.4 Time Period C

The �nal time period of this case study spans from December 2017 to the end of

March 2018, when the research �eld work ended. DevOps at AF has become a

Dev-led endeavour. While initially not involved, Ops have taken ownership and

responsibility for providing support, not only to end-users, but also to Dev. While

the relationship between Dev and Ops appears to have improved and become more

collaborative, it becomes clear that the DevOps practice to emerge was coupled to

Microsoft's Azure platform. This leaves DevOps at AF with an uncertain future

following a senior management decision to cease using Azure.

Much to the relief of Dev and Ops, maintenance work on AFI has drastically

reduced, albeit not gone entirely. Thus disruption caused by undertaking nec-

essary work on legacy software has minimised. However, with the necessity of

supporting two systems through a phased roll-out, the workload and pressure has

increased for Ops.

Finally, job crafting is again explored across Dev and Ops. In particular, the BA

appears to have catalysed the improving relationship between Dev and Ops. Ad-

ditionally, transformation of work identities are explored, along with the in�uence

CHAPTER 5. CASE STUDY OF ANGLIA FARMERS LTD. 147

that job crafting has had on them.

5.4.1 Emergence of DevOps Practice at AF

P12 states Dev and Ops to be �two separate departments, not working together as

such� (I134). However, they also acknowledge the Dev-led approach is working;

�at the moment it is working so we've actually got the basis so we know what's

happening, we can actually get the updates from there which allows changing, we

can con�gure to them, which we are getting� (I249).

P10 also re�ects on the Dev-led DevOps practice which has emerged at AF. �It's

ended up with the development team, taking on Ops' responsibility rather than Ops

getting involved more in Dev, but we do include them in release notes, and things

like that. We give them visibility of what's coming up, so they should know what's

coming down the pipe for releases� (I110). Supporting this view, P2 states that

�the software team are doing the releases generally with Harrier � (I118). P11 goes

further, highlighting the roles being undertaken by both. �we've got a support

team that should be supporting the �oor and then we have our development team

that is actually building, delivering and releasing the software out to the system,

to the clients� (I234).

P5 puts forward the notion that DevOps is all about software developers becom-

ing self-su�cient. �DevOps is where a team of developers become self-su�cient in

terms of their IT operation (I172). In the context of AF, they describe DevOps

as �a blending, a melding of the typical operations skills with the software develop-

ment skills, certainly in Anglia Farmers, with a view to making us self-su�cient

and more e�cient (I172).

P5 makes the argument that Dev's `self-su�ciency' at AF means they � look after

their own destiny, they have their own capabilities to build, release, manage their

environments, make their kit work and make sure they've got an environment

that does what they need it to. I think a lot of this is about Dev taking on the

Operations for their own environments� (I122).

CHAPTER 5. CASE STUDY OF ANGLIA FARMERS LTD. 148

Supporting P5's argument on DevOps enabling self-su�ciency, P7 cites limited

involvement from Ops, and much less from senior management. �So I think it's

been exclusively Developer-led, and the involvement of Operations has been fairly

small. We've made an e�ort but it hasn't particularly been seized upon, and I

think <name omitted>'s got other priorities so there was no real forcing of the

issue, so it's just naturally �owed in a very Developer-led way� (I127).

However, not all developers necessarily engage in the perceived DevOps practice.

P1 describes DevOps as a multi-disciplinary practice that does not always appeal

to all software developers. In these re�ections, P1 also reveals a transformation in

how they identify at work, referring to themself as a `Devopeler', indicating their

enjoyment of a role which involves both Dev and Ops related tasks. �DevOps is

the bit that some Devs like to do and some Devs don't. If people like to do it then

they enjoy that grey line between operations and development, and enjoy setting

up servers, scripts and all the kind of things that are somewhere in the middle.

I'm a Devopeler, a Dev who does DevOps so sure, yeah. Whereas it's become

apparent that some Devs don't want to do DevOps, and like just avoid it as much

as they can at least from a Dev track.� (I147).

As the study has progressed, there is generally wide agreement regarding DevOps

at a cultural level. Communication and collaboration are critical, not just between

Dev and Ops, but also senior managers.

Further progressing their feelings on DevOps, P5's comments support the multi-

disciplinary view of DevOps that P1 has, alongside a view that cultural uniformity

between Dev and Ops is crucial for increasing collaboration.. �It means bring-

ing together the two disciplines of Development and IT Ops, making them work

closer together hopefully to get economies of scale, insight and cultural uniformity

so there's more cooperation and collaboration� (I120). This cultural uniformity

extends beyond Dev and Ops though, as P10 believes senior managers can facili-

tate the culture and allow Dev and Ops to try things, knowing that sometimes it

won't work. �They have to give us the space to try it, the approaches that DevOps

entails. They have to accept that sometimes we're gonna fail, because this is new

to us� (I113). On re�ection, this credits the underlying culture of the organisa-

CHAPTER 5. CASE STUDY OF ANGLIA FARMERS LTD. 149

tion as it accommodated DevOps by a�ording su�cient freedom for Dev and Ops

to explore, derive a process and shape their roles be�tting of the organisation's

goals.

P13, while citing communication improvements between Dev and Ops, also feels

�senior management should have played a bigger part� (I143). While acknowledg-

ing that distinct Dev and Ops departments exist, P2 agrees that Dev and Ops are

working well together. �There are de�nitely still two very distinct departments,

but yeah, I think we work well together � (I154). Re�ecting on the improved re-

lationship between Dev and Ops, P7 places it down to a cultural shift with the

focus on shared goals. �It's the working together of people doing development tasks

and operations tasks to keep the common goal of software, as it's being produced,

being brought out into the production environments in a kind of way of working

together � (I193).

Describing it as joined up thinking, P3 believes AF now has a working DevOps

practice. �We've achieved it by I guess bringing two separate roles more closer

in terms of the way that we've gone about the Harrier project. From earlier days

they viewed life completely separately and I believe now they are much more joined

up in thinking� (I162). In referring to previous re�ections on `strong characters',

P3 also believes progress has been made. �I would say it's pretty fully joined up.

It's thought through. I would use the word collaborative. There are still strong

characters. I don't so much think that an intermediate is required. Whilst they're

strong characters they've learned how to channel their views and actually both see

the end goals� (I170).

On the theme of joined up thinking, P13 also believes DevOps will �build up

communication between the Development team and Operations team, to collabo-

rate on more projects and work � (I261). This perspective of DevOps is shared by

P12, who believes �it's a collaboration between two di�erent departments work-

ing together � (I248). Despite P12's reservations over the previous desk move for

Ops, located away from Dev, communication between Dev and Ops has improved

with P13 re�ecting on the desk move enabling an objective view. �I think the

communication between Development and Operations has improved slightly. In

CHAPTER 5. CASE STUDY OF ANGLIA FARMERS LTD. 150

some ways Operations moving a little bit further away from Development has

given us almost an out of the box view of it, and allowed discussion between both

Operations and Development to be a little bit smoother � (I139).

P3 believes there has been a change in mindset, observing the changes evident

with Dev and Ops. �I think there's been a change in mindset, in working on an

inclusive basis rather than an exclusive basis. I'm actually quite impressed how

mature they've all been. I've not had to bang heads together, I've just had to sort

of say, `This will only work if you guys can make it work' and I think they've

realised that themselves that `it's going to cause me problems and if it causes me

problems... Well actually if we just talk' � (I163).

The involvement of Ops has also been re�ected on by P7, suggesting Dev and

Ops are working well together and no senior management arbitration has been

necessary. �It was just frustration down the line that we didn't really �nd a way

of working together on anything other than �rst line support which I think, to be

fair, we've now found a way� (I202). The diaries and interviews suggest that the

relationship between Dev and Ops has drastically improved out of the necessity

to provide support for Harrier as it gets released to more departments at AF. P7

hints at ownership and responsibility play a big part in the solution. �I think the

problem then is it leads to, `well we've tried this and we've tried this and we've

tried this and it's all sort of, no we can't do it' so therefore we don't really try

to engage particularly with things we've been told. We don't want to engage with

that so I think we've found this nice balance at the moment with �rst line support,

they're both quite happy with that. I think <name omitted> said explicitly that's

where it starts and ends. So we both know where we are. So the frustration is

now gone.� (I202). Despite their physical separation, a shared goal exists with

both Dev and Ops communicating, collaborating and supporting each other, and

therefore delivering a holistic software development and support service to AF.

CHAPTER 5. CASE STUDY OF ANGLIA FARMERS LTD. 151

5.4.1.1 DevOps Practice Coupled to Tools

While evident that Anglia Farmers established a DevOps practice, it appears

that Microsoft Azure underpins the self-su�ciency and cultural change of the

Dev team. Ultimately though, the Azure cloud solution was abandoned as senior

managers are more favourable towards Azure Stack, the self-hosted version. How-

ever, the ongoing delay in Azure Stack's release meant the decision was taken to

cease using Azure altogether, in favour of Microsoft IIS, a self-hosted alternative.

P1 perceived this may already be an upcoming problem. �I think Azure Stack is

going to be delayed until next summer, so it's not going to meet the time frames

for phase 2 for us, so it's not an option any more� (I152).

P7 laments on the senior management decision and what it means for DevOps

with the perception of things going back to where they began. �We then looked

into Azure Stack which seemed that we could continue with the DevOps model

that we had already developed (i.e. DevOps within the Development team with

Support overseeing security). Unfortunately, this was not to be due to the delay

in the Azure Stack roll out. Instead, some new hardware is on order to host

Harrier internally. This more or less puts us back to where we were with AFI in

terms of DevOps responsibilities between Development and Operations� (D150).

Moreover and crucially, the diaries and interviews reveal that the DevOps practice

established has been moulded around the Azure platform, thus giving rise to P7's

negative outlook.

Also re�ecting on the consequences, P8 believes a backward step will be taken.

�If we have Azure the Developers were dealing with it, but as they're going back

to in-house now, it's going to go back to Support, so technically they're in the

same position as when they started � (I210). Sceptically, P10 feels the decision is

likely to be long term. �I foresee us remaining on in-house hardware for a number

of years, as the subsequent costs and e�ort of moving will always be weighed up

in light of other business development needs (when you have a working platform,

feature development will always take priority)� (D115).

Claiming culture will once again become a major challenge in migrating to Mi-

CHAPTER 5. CASE STUDY OF ANGLIA FARMERS LTD. 152

crosoft IIS web server, P10 perceives two possible scenarios. One of these scenar-

ios will build on the collaborative culture that has emerged, while the other is a

reformation of silos. �This will require Support and Development to work closely

together to monitor and maintain the environment. Culturally, this would be the

most challenging path to take, but may provoke the most change in how the two

sides currently work. Or it could devolve into a living nightmare of passing the

blame and fence building, but hey, best to be positive in our outlook � (D116).

5.4.2 Impact of Legacy Software Maintenance

Although the decreasing frequency and low impact of AFI work has had a positive

e�ect for Dev, the opposite is true for Ops. With Phase 1 of Harrier deployed to

some departments at AF, P12 re�ects on the impact of providing support on two

systems. �There's certain departments who are using Harrier and other people

are still using AFI to do the exact same thing, which, I know that is moving

over slowly but surely. You have a di�erential between working with AFI and

then when you were explaining it, only to �nd out they're not actually using AFI,

they're using Harrier � (I137).

While support is being provided, the workload for Ops appears to have increased,

with other areas potentially su�ering as a result. Commenting on providing

support for AFI, P13 likens it to �re�ghting and patching a sinking ship. �I think

AFI, because of how much �re�ghting you have to do, can take up quite a bit of

time. You're patching a sinking ship when a new ship's being built, so you think,

well, what's the point? � (I146).

On the same topic, P12 cites AFI's dated technology as the main cause for support

requests. �If you didn't have to deal with AFI, in theory, it should be easier because

we're going up the ladder with Harrier. AFI is out of date, so in theory you may

not get as many problems with Harrier as you would with AFI. So if it wasn't

there I would say that probably there would be less queries� (I137).

CHAPTER 5. CASE STUDY OF ANGLIA FARMERS LTD. 153

5.4.3 Business Process Re-Engineering

While the amount of AFI maintenance activity saw a sharp decline during this

time period, it remains necessary to maintain the legacy AFI system. Of the tasks

being undertaken, P8 shares that these were minor and did not interrupt their

working on Harrier. �I did have to look at the RESTful web service for AFI in

order to investigate why a few things were not working. In the end, there was an

issue involving the wrong environment being used and issues around usernames

and such. Thankfully, this was a relatively easy �x and did not interrupt my

Harrier work. Otherwise, there has been no other AFI work � (D98). Similar

sentiments are shared by P4, which sits in agreement with P8's re�ections. �Sadly,

I had to do a couple of AFI tasks, but thankfully these were small and did not

interfere much with my Harrier work � (D99).

While not interfering so much with Harrier work, the quality standards of AFI

are far lower according to P4. �When we develop something on AFI, as long as

it works, it doesn't matter how it's done� (I125). Conversely, and using AFI as

an example, P8 believes that a high quality of source code is important in any

environment. �Code quality matters in any environment. If it becomes unman-

ageable or too complicated instead of taking �ve minutes to �x, it takes �ve days.

So that's the situation with AFI, to actually do anything took you longer to undo

the bugs that the change caused! � (I214). Concerns regarding quality, mindsets

and practice between AFI and Harrier were also previously re�ected on by P1 in

Time Period B of this case study.

P11 also identi�ed major problems with regards to the business process within

the invoicing department, which is similar to earlier re�ections about how Ops

have provided support to help users create workarounds to problems AFI could

not o�er a solution for. These issues included signi�cant manual processing of

invoices as AFI lacked functionality to process them initially. �Well, I was shocked

actually they were doing so many workarounds outside the system in order to get

the information into the system, and that's what was shocking. But then, when

you're trying to build Harrier to encompass all the rules, you can kind of feel why

they're doing everything out of the system, because there's so many business rules

CHAPTER 5. CASE STUDY OF ANGLIA FARMERS LTD. 154

based around that we're now having to program and actually put into Harrier,

whereas in AFI it wasn't there at all.� (I237).

P3 also echoed the clarity this has given senior management to AFI's limitations.

�It was built to process invoices that were correct, not to process every invoice

whether it was correct or wrong and that's the subtle di�erence I guess� (I166).

AF's solution to these limitation was to increase sta�ng levels within the invoic-

ing department, something which P3 also comments on, following deriving a more

streamlined process as a result of DevOps, which has potential strategic impacts

with substantial long term savings for AF. �I envisage in a year's time that any-

body who retires or decides to leave in the invoice o�ce we won't be replacing and

it will be a key driver for the business in terms of keeping costs of the operation

down� (I166).

While occasional AFI maintenance remains necessary, the intention is to switch

AFI o�. P3 says, �Well we're still reliant on AFI at the moment. It still is, as

far as I'm concerned, the point of truth. Obviously when we release phase two,

Harrier becomes the point of truth� (I171). Therefore the next release of Harrier

will potentially be the pivotal point where it replaces AFI as the primary system

in use at AF.

Nevertheless, and in considering continuity, P5 re�ects on the limitations of exter-

nal infrastructure. �When the internet goes down at the minute, we would su�er.

With the legacy system, it will still chug along� (I190). While true in the case of

Harrier hosted on a cloud based platform, the decision to host Harrier in-house

was primarily down to issues concerning AF's limited internet connectivity. P10

also comments on the future of AFI, forseeing some necessary upcoming work,

which may be the last on the legacy system. �There's de�nitely a set of AFI work

coming but it'll be a temporary thing and then at some point it'll be switched o�

or it'll just be left alone probably for historical reasons� (I233).

CHAPTER 5. CASE STUDY OF ANGLIA FARMERS LTD. 155

5.4.4 Role of Senior Management in DevOps

There continue to be perceptions of little to no senior management involvement,

yet they are by no means dormant. P11 explains that senior managers are making

decisions with regards to how they want Harrier developed. But this can be

frustrating for Dev, who would like to have more input into these decisions. �They

are making the decisions on what we're doing, how they want the system to be

built and how they want the system to work and just specifying any additional

rules that we don't know. It would be nice to have more input on the bigger areas

of making the decisions, but yeah, senior management doesn't really worry too

much about it� (I236). These senior management decisions a�ect the nature of

the system, its development and support.

Going further, P7 feels that DevOps is meaningless to senior managers and that

they care just for Harrier being successfully developed and released. �Outside

of <name omitted>, DevOps means nothing to any senior manager. I think

<name omitted>'s got a lot going on, which so long as software is being produced

and released, I don't think that the e�ciency of it is high up on their priorities�

(I129). P11 illustrates the potential consequences of this limited involvement.

�The person who holds all the information needs to be involved basically, but it

does worry us because we're not able to move certain areas forward until we've

got various answers and time, because the person who has all those answers has

very tight time. It will delay the project completely and if we want to keep moving

forward and try to hit some kind of deadline, then we need more involvement�

(I238).

It is evident within the diaries and interviews that there is a perceived detachment

from DevOps by AF's senior management. While P13 feels both Dev and Ops

understand the potential bene�ts DevOps can bring, they believe that senior

managers do not. �I think maybe both Development and Operations understand

how much DevOps can help us but I don't think that senior managers or higher

managers up there do. Obviously the business as a whole will probably have no

idea what DevOps is as a grand scheme, because at the end of the day why would

they? It only a�ects our two teams. But I think the lack of talking about it and

CHAPTER 5. CASE STUDY OF ANGLIA FARMERS LTD. 156

for example ourselves, Development and <name omitted> speaking to <name

omitted> about it. I don't think <name omitted> understands how much it could

help us as a business. I don't think they fully understand what their responsibility

could be with DevOps in that role� (I273).

While Dev and Ops appreciate that time is often limited for senior managers, they

feel their involvement is often reactive. For instance, P11 believes there is some

involvement from senior management, but this is often reactive following demos

of Harrier development work. �They're starting to engage, but I think it's from

the demo. So as soon as they've seen what we actually have done, what we've

actually produced, they've become more involved and want to see the end of it�

(I247). Illustrating a need for more pro-active involvement, P11 hopes for senior

managers to become more involved and make key decisions therefore helping to

avoid project delays. �I'm hoping there's enough loud noises now being made by

our manager to say, `we need support', `we need help', `we need decisions and

they need to get involved'. So now they're doing that. It's really late though. It

needed to have been done at the point when we were jumping up and down back in

December. We needed that involvement then. Now we've just delayed the project

and unfortunately we also cut it in scope� (I247).

5.4.4.1 The DevOps Champion

Progressing further from P13's feelings that senior managers should be more

proactively involved comes the perception that DevOps was championed by the

software development manager. While P13 exhibits a warm and positive at-

titude to the manner in which the software development manager pushes and

promotes DevOps, they feel this would always be an inherently biased approach,

irrespective of whether they were Dev or Ops. �Because like any manager the �rst

responsibility is to their own team so �rst of all they're always going to look to see

how can they improve their team's e�ciency and how it would bene�t them. So I

feel naturally that would always play bias towards whoever, even if the champion

was in Ops' team, it'd be the complete opposite. The Ops champion would always

favour their team, clearly.� (I143).

CHAPTER 5. CASE STUDY OF ANGLIA FARMERS LTD. 157

However, P13 also looks favourably on the BA as a `DevOps Champion' due to

perceived impartiality inherent of their role. �They might take a better approach

to being a champion, because they seem to communicate better with myself and

<name omitted>, rather than <name omitted>, and may have a more impartial

take on both teams� (I272).

Also apparent is the wider e�ect DevOps has on the organisation's culture, with

P7 indicating the organisational culture is one of the biggest challenges to over-

come. �The main challenge is to get the key people in the business to sort of

buy into this work�ow at the right time and not to say, `I haven't got time', `I'm

too busy' or need to sort of be there. So it's to get people outside the immediate

DevOps type environment to buy into it working. I think they certainly like it

when we do it. It's certainly not how it works currently� (I206).

5.4.5 DevOps Driven Job Crafting

Additionally, job crafting has continued to occur within Dev, in particular where

individuals are seeing beyond the departmental boundary of their roles. For

instance, P4 now undertakes tasks outside of the original remit of their role �I

used to be predominantly working on front-end features and slowly moving on to

back-end features� (I186). In addition to task, P4 is engaging in relationship

and cognitive job crafting as well given they express that the work they do is

for the bene�t of others. �While an enjoyable undertaking, it was challenging

too, as this was the �rst time I worked with the invoicing team, and mainly due

to the di�ering terminology. The system they presently use is a bit chaotic, I

believe Harrier will signi�cantly improve things for them� (D100). P8 has similar

re�ections although their focus on producing high quality work which makes

other peoples' lives easier at work. �I feel I am still improving my skills across

the stack and am feeling positive about this. I maintain my focus on producing

quality software and continue to be thorough in my approaches. On re�ection, I

like to think that what I produce makes others' lives easier. Additionally, when

you see people using your software, and appreciate it, it feels good. This extends

CHAPTER 5. CASE STUDY OF ANGLIA FARMERS LTD. 158

to other developers too, because good quality code is far easier to pick up (D113).

While identifying themselves as a developer still, P10 re�ects on the broadening

view of what it means to them. �I'm still not a front end developer, I'm still

not an expert at infrastructure, but I kind of take that view of all of it. I feel it's

my responsibility to at least understand what the impact is at those stages and

what the trade-o�s are for accommodating those bits of the system� (I117). This

transformation of work identity is by no means isolated, evidenced by previous

re�ections from other developers regarding their roles. P4 also shares that their

role at AF has seen them progress from working exclusively on the front end to

working across the development stack. �For me personally, it feels great that my

development work column is currently clear and helping with others. On re�ec-

tion, I feel I have come a long way since starting with AF; before I was strictly

user interface (UI), but now like working with new technologies and working on

di�erent things. I also feel empowered to put forward my own ideas� (D157).

Moreover P4 seeks the buy in of managers with regards to issues they perceive

with the user interface of Harrier, indicating that they possess particular skill

with this. �One gripe I do have is that I wish the way the UI is coded, in that

it needs improving. This is something I have spoken to <name omitted> about,

and I feel I have skill with UIs. I think he is onboard with the idea. In particular,

I feel we need to code the UI to cater for multiple screen sizes� (D111).

From observations in this case study, the building of relationships was a pivotal

component of the job crafting that occurred at AF. While the improved rela-

tionship between Dev and Ops is evident, there is an emotional element should

such relationships end, as evident in P13's poignant re�ection on recent Dev

departures. �On a more personal note, I was very sad to hear that both <name

omitted> and <name omitted> were leaving. I valued the relationship and friend-

ship I had with <name omitted> especially, and as a group we have had many

social nights out which I'm sure everyone will miss. I look forward to attending

the Developer leaver's meal � (D103).

CHAPTER 5. CASE STUDY OF ANGLIA FARMERS LTD. 159

Job Crafting Bene�ts Being Felt

The job crafting at AF has led to bene�ts, which are being felt and re�ected on.

P9, who previously worked purely on backend functionality views working on the

new technology both �challenging� and �exciting� (I133). Not only are individ-

uals acquiring new knowledge and skills, AF are bene�ting from more rounded

skill sets and Dev and Ops employees gaining greater understanding of the organ-

isation. P13 speci�cally mentions the bene�t of gaining greater business insight

into AF's operations and the role DevOps has played in this. �I've learnt more

business knowledge through understanding how Development work in their team.

I understand DevOps is meant to help prevent con�ict between two big teams like

this and understanding and appreciating their views and concerns compared to

our views and concerns, and seeing where there's a compromise with that� (I142).

P5 also re�ects on expanding beyond the original remits of their roles, and shows

agreement with P13 about having a greater awareness. �I get into a role and I

start to expand out to areas where I feel competent. I'll certainly o�er anything

I've got and part of that just happens to be an awareness of how things are done

elsewhere� (I177).

With Harrier use increasing within AF, P2 shares their experience of interacting

with users in the business with an objective of addressing issues experienced,

something which never happened previously. �As more and more people in the

company are starting to use Harrier we're seeing more live bugs appear, a minimal

amount, but there has been some. On two occasions I've interacted with people

outside of my team to get more information about it to do some debugging at

their PC where it's happening. I expect this to happen more and more, which is a

good thing rather than hearing it second-hand not seeing it happen for yourself �

(D160).

Ultimately, any business can reap such bene�ts in terms of its workforce, but in

the context of AF, DevOps may be the driver due to the organisational change

that came with it. While being mainly based around exploration of tools and

technology, P10 indicates that the underlying culture is an enabler, given the

CHAPTER 5. CASE STUDY OF ANGLIA FARMERS LTD. 160

freedom they were a�orded to try things. �We feel like we've got a bit more

freedom to go and � `We want to switch on this feature and have a look and see

what it does'. Even though we're going to end up hosting in-house, we're still

using the cloud for development and testing, which is great because that frees up

a lot of bottlenecks in our development process� (I222).

5.4.6 Change and Culture

While this case study reports a vastly improved relationship between Dev and

Ops, a substantial degree of relationship building between the two departments

was the result of the BA's ongoing involvement and communication with Ops.

Despite not having a positive start, P11 has become the interface between Dev

and Ops. �They usually go through me if we need anything between Dev and

Support� (I245).

Seeking access to training documentation, P11 re�ects on a moment of con�ict

with one member of Ops. �Unfortunately a conversation with one member of

Support was rudely interrupted by the other. I �nished the conversation and

walked o�. Having previously worked in Support, the customer was always more

important than current tasks at hand. Quite upset by this, however the Support

member I was talking to did pop to my desk to complete the conversation� (D114).

Re�ecting on their own experience working in a support role, P11 concludes with

the view that it is critical for Ops to be approachable, and goes a long way.

�Approachability of Support is very important, developing good reputation and

con�dence with customers they are supporting can go a long way to making an

e�cient workplace� (D114).

Nevertheless, this did not sway P11 from interacting with Ops. Following brief

con�ict with a member of Ops when querying a raised support ticket, P11 reveals

an openness from Ops. �Surprisingly the support member then comes back and

provides further training to me on the �le stream application. I suspect because

I was pleased when I achieved what I needed to achieve on the initial request,

it might have inspired them to want to help more. Later that day, the second

CHAPTER 5. CASE STUDY OF ANGLIA FARMERS LTD. 161

member of support shares access to the Harrier training guide with this support

member which is a surprise as they have not taken any interest in Harrier up

until this point (D133).

Perceiving their role to also have become key in enabling DevOps to work at AF,

P13 feels that P11 is a crucial communication interface between Dev and Ops. �I

think I've become by default, uno�cially the communication bridge between Ops

and Development, so I have quite a key role because that means I can communicate

with Development in a very diplomatic way and also vice versa. If they have

requests then obviously they can come to me and come to <name omitted>. So I

think my role's been quite key in actually making sure DevOps works between the

two areas� (I262).

Further exploration of P13's perceptions point to a very positive and clear rela-

tionship development with the BA. Speaking warmly, P13 feels they communicate

best with this person, and is very thankful to them. �I think the person I �nd

I communicate best with is <name omitted>, because they are very business-

minded. I think both our mind-sets are very similar. I have a lot more knowledge

of AF as a whole compared to them at the moment, because they're still relatively

new, so they come to me for advice on AF, but they're really good at explaining

what a good process is and how we can actually implement that. <Name omitted>

is very good at just getting the point across straight away for myself and <name

omitted> to understand � (I263).

Sharing P13's view of improved communication, P12 also speaks favourably of

the BA. �I think the communication has come on a lot more. I want to see it

improve because it's hard work getting information out if you don't actually have

the conversation in the �rst place, but yes, it does, it's �owing. But I do think a

lot of the �ow is from <name omitted>� (I257). Prior to the BA's arrival, much

of the analysis workload was undertaken by P7. Acknowledging the additional

workload this created, P12 appreciates the burden placed on P7. �The role asked

too much for what they were put in place to do in the �rst place� (I260).

While DevOps can deliver working software rapidly, users remain the common

CHAPTER 5. CASE STUDY OF ANGLIA FARMERS LTD. 162

denominator. P11 feels that greater rapport, not just with users, but also Ops can

only help with the uptake of released software. �Encouragement of use of software

has not been handled great, would have been good to see some �oor walking as such

of support to just help with issues as they happened. This would help to build a

better rapport with users and Support� (D124).

Re�ecting on the overall Ops role, P12 comments on the necessity for Ops to

support Dev and how they can only support users if they �rst support Dev with

implementing the software. �The only other way we work from the Development

team is providing they have whatever they need to actually do the job. That's how

I see it full stop. We support everybody within this building. But the aspects that

they're actually doing are a small part, or if you like Harrier, is a small part of

the whole business unit we support. But they need to give us the information to

what they actually build so we can support it and support them to actually do it

in the �rst place� (I259). P12's re�ections here demonstrates a substantial sense

of ownership of the software support process at AF as well as hinting that there

may no longer be silos of Dev and Ops.

DevOps Driven Transformation

At a team level, there is evident change within Dev as P10 states they have taken

all responsibility for provisioning their environments. �We've taken all responsi-

bility for setting up our own integration environments, testing environments, like

provisioning stu� in the cloud for that, and basically having more of an eye on

how our whole system hangs together and how you can replicate all those parts

somewhere else if we need another environment� (I111).

This sits well with the earlier comments from P7 and P5 regarding the self-

su�ciency of the Dev team. Extending to other roles, such as testing, P5 outlines

software developers and testers collaborate in a DevOps environment too. �I

do have to build test data, test environments, but more I'm specifying to the

Developers to help me build my environment. I'm certainly not a Developer with

development skills. I have programmed in the past, I can do it, but they're quicker,

CHAPTER 5. CASE STUDY OF ANGLIA FARMERS LTD. 163

better and I don't want to go and mess up something by building something not as

good as they could do� (I123). Such collaboration is noted by P10, who has noticed

a shift in individual attitudes, highlighting a greater sense of responsibility and

shared ownership overall. �I think people are more willing to get involved in kind

of �xing problems wherever they happen to arise, so people aren't like, `Ooh, I

don't touch that bit of the system' or, `I don't deal with the Azure bit'. Everyone

kind of feels quite happy to take responsibility for various bits of it (I115).

P3 views the improved skill and collaborative working of Dev in a very positive

light too. �Personally I think the skill set of the whole team has gone up and

that's mainly through the feedback via call requests and this gives the opportunity

to share some skills and knowledge and techniques between say new employees

and existing ones who haven't been on the system before. So I think that's very,

very positive� (I212).

P2 also notes their role has changed as they have also picked work involving more

collaboration with Ops. �After learning a lot about the Ops side of the department

from the handover with <name omitted>, I'm back on to primarily development,

but handling the releases and candidate cutting as <name omitted> used to do.

My role has changed so I that I can �ll the role that <name omitted> left behind.

I have more responsibility and am much more involved with Ops (D108). P12 also

has a new view on their role as they re�ect on their now better understanding of

DevOps at AF. �I always understood my job role was, `I'm Operations, they're

Development, that's a clear-cut line'. Where now I understand what DevOps

is, you kind of see how actually both are kind of intertwined together. And it

obviously depends how much you deal with them, so I'm a bit more open minded

than I used to be� (I145).

5.5 Summary of the Case Study

Over a period of 14 months, AF's adoption of DevOps for the development of

Harrier, the intended replacement system for AFI was studied. From the case

CHAPTER 5. CASE STUDY OF ANGLIA FARMERS LTD. 164

study alone, it is clear that DevOps is substantially more than just a technical

phenomenon. Links to business management were rapidly discovered from the

�rst time period, in addition to observed instances of job crafting amongst the

software developers.

These themes continue in the second time period, where Dev and Ops are ac-

knowledged to exist as organisational silos. Additionally, an already fractious

relationship between both appeared to be deteriorating. However, perceptions of

limited and reactive senior management involvement was a prominent concern to

both Dev and Ops. This became critical especially as anxiety set in from losing

two key individuals from Dev.

In the end though, these barriers were for the most part overcome, with a greater

collaborative relationship between the Dev and Ops functions emerging. New

strategies were implemented and a BA was employed, who played a crucial role

in bringing both functions together as a cohesive whole. For instance, a shared re-

sponsibility for infrastructure requirements emerged with Ops working alongside

Dev in beginning to automate much of the process of testing and deploying Har-

rier. As this collaboration grew, a single multi-disciplinary team emerged, thus

breaking down the previously observed organisational silos. At the same time,

collective and individual job crafting led to employees seeing transformations in

their work identities, moving beyond the remits of what they were originally em-

ployed for. The organisation therefore bene�ted given the inherent mitigation of

key person reliance. Furthermore, this job crafting was also actively encouraged

by AF as the project progressed, realising the positive bene�ts it brought about.

While it became clear that an increasingly streamlined DevOps practice had

emerged, it had a critical weakness being coupled to the workings of and focus

on the Microsoft Azure platform. A senior management decision to cease using

Microsoft Azure exposed this weakness and the inherent danger of coupling be-

tween process and tool. As a result, anxiety set in amongst Dev and Ops, leaving

an uncertain future for DevOps at AF.

In conclusion, the AF case study reveals DevOps to be an interdisciplinary phe-

CHAPTER 5. CASE STUDY OF ANGLIA FARMERS LTD. 165

nomenon, and far greater than just the various tools used. While the DevOps

practice that emerged at AF was primarily led by Dev, it was ultimately driven

by business objectives, delivered by a multi-disciplinary team and fuelled by con-

tinuous feedback across both functions. Senior management involvement was a

critical factor throughout the study and this needs to be pro-active if DevOps

is to be successfully adopted. However, dependence on Microsoft Azure was a

critical weakness of the DevOps practice which emerged. Therefore, this case

study ultimately informs that an organisation should ensure process and tools

are decoupled, and therefore not allow any tool to shape the way it does DevOps.

Rather, any process should be system and tool agnostic so as to avoid the po-

tentially catastrophic management and technical issues of allowing technology to

determine any practice that emerges.

CHAPTER 6. DISCUSSION AND CONCLUSION 166

Chapter 6

Discussion and Conclusion

"We can only see a short distance ahead, but we can see plenty there

that needs to be done."

� Alan Turing

"The worthwhile problems are the ones you can really solve or help

solve, the ones you can really contribute something to. No problem

is too small or too trivial if we can really do something about it."

� Richard Feynman

CHAPTER 6. DISCUSSION AND CONCLUSION 167

Section 1
Overview of the Discussion and

Conclusion

Section 3
Organisational Adoption of

DevOps

Overview of Chapter 6: Discussion and Conclusion

Presented in Chapter 4: Focus Group
and Survey Findings (pp. 99-114)

Questionnaire
Results

Focus Group
Results

Section 2
Defining DevOps

Discussion

Anglia Farmers Ltd.
Case Study

Literature Review
Findings

Presented in Chapter 5: Case Study
of Anglia Farmers Ltd. (pp. 115-164)

Section 4
Conclusion and Answers to

Research Questions

Conclusion

Section 5
Theoretical Contributions

Section 6
Methodological Contributions

Section 7
Practical Recommendations

Section 8
Research Limitations

Section 9
Future Research

Presented in Chapter 3:
Literature Review (pp. 66-98)

Presented in Chapter 1:
Introduction. (pp. 6-7)

Research Questions

CHAPTER 6. DISCUSSION AND CONCLUSION 168

6.1 Overview of the Discussion and Conclusion

This PhD research set out to explore what DevOps is, and how it is adopted by an

organisation. The results of this research show DevOps to be interdisciplinary,

primarily concerned with the rapid development and deployment of software,

which it achieves through changes to the organisation, job roles and strategy.

Therefore, DevOps has a substantial Business Management component.

In this chapter, the results from the focus group and questionnaire exploring the

de�nition of DevOps (see chapter 4) are discussed and synthesised with �ndings

from the literature. The discussion then moves onto the case study of DevOps

adoption at Anglia Farmers Ltd. (AF) (see chapter 5). The discussion of the case

study considers the �ndings on how DevOps is de�ned but more importantly, it

considers the business management implications based on AF's experience and

what it meant for the organisation's software development and support processes.

This includes discussion on the organisational changes experienced by AF in ad-

dition to the observed transformations of work identities as a result of job craft-

ing. Throughout the discussion, the results are synthesised with the literature

reviewed in chapter 3, to move the discussion to a conclusion.

In the conclusion, the research questions posed earlier in the thesis are revisited

and a summary of the key research �ndings is presented alongside the theoret-

ical contributions this research makes to the DevOps knowledge. Additionally,

methodological contributions for undertaking longitudinal empirical research with

IT and software development practitioners are presented. Management recom-

mendations are also o�ered in addition to acknowledging the research limitations.

Finally, this thesis is brought to a close with the proposal for further Business

Management and Software Engineering research avenues on DevOps.

CHAPTER 6. DISCUSSION AND CONCLUSION 169

6.2 De�ning DevOps

Early research activities through the review of published literature suggested

that DevOps is a di�cult term to de�ne universally. Roche [2013], claims the

perspectives of DevOps are based upon one of two themes. Firstly, DevOps as a

role with respective job descriptions and titles, for example DevOps Engineer (see

appendix 13 on page 255). The other views DevOps to be an emerging concept

that addresses the needs and demands of modern software development.

Roche [2013] argues that these themes are polarised, with one generally disagree-

ing with the other. Support is added as Ghezzi [2017] argue that DevOps practice

is not mature, often informal and unstructured; while Fokaefs et al. [2017, 25:2]

claim DevOps �eliminates the concept of a software life-cycle as a system under-

goes changes with no interruptions to consumers�.

It is argued that existing de�nitions for DevOps are unclear, ambiguous and

sometimes contradictory [Dyck et al., 2015; Smeds et al., 2015], in turn further

confusing what DevOps is and therefore exacerbate the challenge of successfully

adopting it. Smeds et al. [2015] argue that the adoption of DevOps is not straight-

forward and the results from this research add support to Smeds et al.'s argument.

In this PhD research, the de�nition of DevOps was explored through a focus

group and questionnaire survey with practitioners. Being able to de�ne DevOps

was a key and overarching theme necessary to explore it in context through the

case study presented in this thesis.

Overall, focus group participants agreed that DevOps is a contextual phenomenon,

meaning how it is realised for one organisation di�ers from another. However, a

set of conceptual attributes that are core to DevOps, irrespective of context were

agreed upon. Therefore, this research puts forward these attributes as a concep-

tual framework to help inform any de�nition of DevOps, taking into account the

wider impacts and in�uences beyond the development, deployment and support

of software. Participants also de�ned four distinct but non-hierarchical categories

of which the conceptual attributes of DevOps were placed into. Crucially, they

CHAPTER 6. DISCUSSION AND CONCLUSION 170

agreed that DevOps must be driven by business goals but also continuously in-

formed through a feedback loop (see �gure 6.1). The value this framework brings

to organisations is a guide to de�ning what DevOps means in their own context.

Business Driven Goals and Outcomes

Informed
Decision Making

Time

Quality Simplicity /
Granularity

Reduced Cost

Multi-Disciplinary Teams

Accountability

Responsibility

Decision Making Ownership

Skills

Streamlined Processes, Tools, Approaches and Principles

Automation

Data Analytics

Change Control Configuration
Management

Service
Management

DevOps

Information

Measureability /
Metrics Observability

Feedback

Feedback

Figure 6.1: Illustration of the Focus Group's output of seventeen core
conceptual attributes of DevOps.

Using the conceptual attributes they agreed, the focus group participants pro-

duced two de�nitions; one from scratch (see table 6.1) and the other derived

following an evaluation of de�nitions discovered in the literature (see table 6.2).

Focus Group Participants' De�nition One

�DevOps is a continuous improvement methodology that uses a set of tools, stream-
lined and automated processes, and empowered, multi-disciplinary teams to deliver,
operate and inform business outcomes.�

Table 6.1: Focus group participants' de�nition of DevOps created from scratch.

De�nition one o�ers a more abstract view of DevOps which is based around the

conceptual attribute categories. Conversely, de�nition two o�ers a more granular

view focusing on DevOps as an evolution for the delivery of IT services, of which

cross-functional collaboration between software developers and IT operations em-

CHAPTER 6. DISCUSSION AND CONCLUSION 171

Focus Group Participants' De�nition Two

�DevOps is an evolution in how IT services are delivered and supported. It stresses
cross functional collaboration to bridge the organisational process divide between
development and operational teams. It aims to reduce the time between commit-
ting a change to a system and the change being placed into production.�

Table 6.2: Focus group participants' de�nition of DevOps derived from Bass
et al. [2015]; Dyck et al. [2015]; Mohamed [2015].

ployees is important. Finally, it provides the example of a software change being

placed into a production system as quickly and reliably as possible.

Both de�nitions have overlapping themes as multi-disciplinary teams and cross-

function collaboration can be argued as the same thing. De�nition two's example

of the rapid deployment of software changes can be linked to de�nition one's

explicit mention of automation, as this would be the means in how this is ac-

complished. However, de�nition one explicitly mentions the business links and

impacts DevOps has, which de�nition two only alludes to with the focus on IT

service delivery.

The focus group output was further tested using a questionnaire which was sent

to the wider DevOps community. While the questionnaire respondents showed

no overall agreement with either de�nition, there was strong agreement with

the conceptual attributes, especially Automation, Change Control, Observability,

Reduced Cost, Service Management and Simplicity/Granularity. Taken together,

the results of this portion of the PhD research therefore strengthens arguments

that DevOps is di�cult to universally de�ne and its application is unique to the

organisational contexts it is adopted within [Dyck et al., 2015; Smeds et al., 2015].

Smeds et al. [2015] put forward a number of capabilities and enablers of DevOps

(see table 6.3). When taken together with the conceptual attributes produced

by this research, Smeds et al.'s (2015) work is taken further, positioning how

DevOps is an interdisciplinary topic and is not isolated to just the development,

deployment and support of software. Rather, DevOps involves the wider organ-

isation, being driven by its goals and culture. Therefore a continuous feedback

CHAPTER 6. DISCUSSION AND CONCLUSION 172

mechanism involving managers throughout is critical to DevOps.

Furthermore, the conceptual attributes alongside Smeds et al.'s (2015) capabili-

ties and enablers, illustrate how DevOps can potentially contribute to building a

culture of continuous service improvement. This would happen across the organ-

isation through analysing metrics produced by software development activity in

addition to continuous feedback [Dennehy and Conboy, 2017; Kim et al., 2016;

Takimoto et al., 2016], but as seen within the AF case study, senior management

commitment and involvement in DevOps is critical for this to happen.

Capabilities

Continuous Planning
Collaborative and continuous development
Continuous integration and testing
Continuous release and deployment
Continuous infrastructure monitoring and optimization
Continuous user behaviour monitoring and feedback
Service failure recovery without delay

Cultural Enablers

Shared goals, de�nition of success, incentives
Shared ways of working, responsibility, collective ownership
Shared values, respect and trust
Constant e�ortless communication
Continuous experimentation and learning

Technological Enablers

Build automation
Test automation
Deployment automation
Monitoring automation
Recovery automation
Infrastructure automation
Con�guration management for code and infrastructure

Table 6.3: DevOps capabilities and enablers [Smeds et al., 2015, 171].

Tools associated with DevOps have received substantial research attention. This

research illustrates while tools are an important consideration, they are just a

small part of the bigger picture of DevOps and therefore neither advocates nor

discourages any speci�c tool. Indeed, tools have a crucial role in the technical

enabling of practice. But there is inherent danger of forming any reliance on

speci�c tools or allowing them to in�uence and dictate any process, therefore

coupling the process to tools. This is further discussed in section 6.3.1, speci�c

to the case study at AF.

CHAPTER 6. DISCUSSION AND CONCLUSION 173

In short, the results from this research encourages any de�nition of DevOps to

be made within the context of the organisation adopting it, while considering the

conceptual attributes shown in �gure 6.1.

6.3 Organisational Adoption of DevOps

In the world today software is ubiquitous and the needs of its users are often

diverse and ever changing. The Agile approach to software development has been

instrumental in making progress with addressing these issues, which were �rst

encountered during the so called �software crisis� in the late 20th century [Randell,

1996, 70]. However, the emphasis has shifted with organisations motivated to

not just deliver good quality software, but to do so in a rapid and continuous

manner [Bass et al., 2015]. This �ts well with the research from Pass and Ronen

[2014, 80] and their argument of the �software value gap� which they de�ne as

the �unexploited potential for an IT division to increase value for the overall

organisation�.

6.3.1 Case Study of DevOps Adoption at Anglia Farmers

6.3.1.1 Why Did Anglia Farmers Adopt DevOps?

With software development activity for the legacy AFI software previously out-

sourced, senior managers at AF decided to bring the development of Harrier in

house given concerns over the quality of the software. This decision was imple-

mented by the appointment of a software development manager, who in turn

recruited a team of developers with experience working within an agile software

engineering environment.

The software development manager became a driving force behind adopting De-

vOps. The perceived performance bene�t for the organisation was the rapid

delivery of developed software which was of a good and usable quality. Senior

CHAPTER 6. DISCUSSION AND CONCLUSION 174

managers identi�ed the strategic bene�ts and positive cost implications through

analysing the metrics the DevOps approach was producing, further reinforcing

the business management link, especially when it comes to decision making and

planning [Fitzgerald and Stol, 2017].

6.3.1.2 Fluidity to Adjust Software Development Approach

Going beyond anticipated performance gains at AF, DevOps enabled the organ-

isation to rapidly adapt its software development approaches in order to accom-

modate varying levels of complexity across departments within the business. For

instance, the invoicing department was revealed to have many uncertainties, se-

vere limitations with its use of the legacy system and no clear direction on its

business processes. Yet, AF's DevOps process was able to readily facilitate a

Kanban method for the analysis and development of invoicing features within

Harrier. This �exibility of approach resulted in key requirements being identi�ed

and Harrier features being developed according to these. Furthermore, and more

crucially with involvement from senior managers, DevOps enabled the business

process for invoicing to be re�ned and streamlined, resulting in a signi�cant re-

duction in wastage and identi�cation of potential signi�cant cost savings in the

long term, thus informing strategic decision making.

Therefore, the AF case study o�ers support to the argument that such processes

can promote operational excellence and greater strategic synergy [Sebastian et al.,

2017]. DevOps at AF also included Continuous Deployment (CD) and Continu-

ous Integration (CI), which while covered heavily in software engineering research,

Chen [2017] and Sun et al. [2016] argue that both bring huge bene�ts to organ-

isations too. AF realised these bene�ts through both a continuously improving

development approach and being able to get software features into production

rapidly and reliably.

CHAPTER 6. DISCUSSION AND CONCLUSION 175

6.3.1.3 Strategic Bene�ts

DevOps appeared to readily move beyond the locus of software development

at AF, proving to be highly �exible while providing continuous feedback which

enabled senior managers to identify issues in, and accordingly re�ne business

process. In addition, analysis of the metrics produced by the DevOps process

provided valuable insights and informed strategic decision making. Referring to

the invoicing department, one senior manager shared their pleasure with the dra-

matic impacts DevOps has had in the re�ning of business process. Furthermore,

the same manager projected that AF will not only recover the costs of recruiting

an in house software development team, but will see a positive return. Ultimately,

senior management attributes this result to the wider impacts DevOps has had,

coupled with the ability to unlock and analyse a wealth of metrics, thus gen-

erating knowledge which has led to greater business performance and deploying

better quality software.

The case study of AF reveals a positive return for the organisation from both

bringing software development in house and the DevOps process which evolved for

the development of Harrier. The invoicing department has severe limitations with

the manner in which the legacy AFI system processed invoices; so AF increased

sta� levels to compensate. Thus this research supports the argument that �it can

be di�cult to fully automate deployment process due to context factors, such as

the existence of legacy technologies� [Lwakatare et al., 2019, 228].

The methodological �uidity of DevOps allowed the developers to change their

working method speci�cally for the invoicing department to allow for in depth

business analysis and requirements gathering. This in turn resulted in senior

managers seeing �rst hand the ine�ciencies of the invoicing department and the

limitations of AFI. Subsequently, the invoicing business process was streamlined

with Harrier developed speci�cally to meet the needs identi�ed. This links well

and supports the argument from Pass and Ronen [2014], that IT has a potential to

increase value for the overall organisation. In AF's case, this was strategic value

with the facilitation of streamlining business process and the potential realisation

of substantial long term savings. Furthermore, this highlights the value that a

CHAPTER 6. DISCUSSION AND CONCLUSION 176

Business Analyst (BA) can bring to software development functions as well as

organisations.

The AF case study also highlights the inherent relationship that DevOps has

to the discipline of business management, in that DevOps should have a strate-

gic alignment with the organisation [Dennehy and Conboy, 2017; Fitzgerald and

Stol, 2017; Fokaefs et al., 2017]. This also �ts well with the previous section about

how DevOps is de�ned, and that business goals should drive and be informed by

any DevOps practice. Taken together, this research adds strength to the argu-

ment that DevOps is an interdisciplinary topic in both application and research.

Moreover, the alignment with business should also be continually assessed and

improved, through continuous learning, as put forward by Fitzgerald and Stol

[2017, 176].

Synthesised with Takimoto et al.'s [2016] model, the results of this research pro-

poses an abstract model of DevOps, taking into account how organisational de-

cision making, goals and strategy are a major driver (see �gure 6.2).

Business Driven Goals
and Outcomes

Operate

Deploy

FeedbackBuild Feedback
Plan

Release

Streamlined Processes,
Tools, Approaches and

Principles

Multi-Disciplinary Team
Development Function

Code

Test

IT Operations Function

Monitor

Figure 6.2: Iterative process of DevOps and harmonisation model derived from
the results of this research and Takimoto et al. [2016].

While the adoption of DevOps was not AF's primary driver for the development of

Harrier, the organisation did experience bene�ts such as good levels of automation

arising from a combination of the Microservices architecture and DevOps prac-

tice with Harrier's development. While Koilada's (2019) case study organisation

CHAPTER 6. DISCUSSION AND CONCLUSION 177

innovated as a result of DevOps, the AF case study argues that commercial inno-

vation is context dependent. Nevertheless, it does indicate DevOps is a potential

process innovation, thus alluding to further study in this area.

This research postulates the view of software development and IT operations

being represented as functions of a multi-disciplinary team or unit, rather than

speci�c and separate departments or teams [Veres et al., 2019]. So for instance,

individuals with roles in these functions which can include: business analysts,

infrastructure engineers, managers, software developers, systems administrators

and testers work collaboratively as a cohesive whole, taking a shared ownership

and responsibility for meeting an agreed common set of goals that have a strategic

alignment with the organisation [Dennehy and Conboy, 2017; Fitzgerald and

Stol, 2017; Fokaefs et al., 2017]. While this collaborative mindset was argued

as necessary by McLarnon et al. [2014], the focus was limited to shared goals for

only software developers and systems administrators.

The relationship between software development and IT operations is a common

theme in the literature, and what Kneuper [2017, 79] describes as a relation-

ship with �notoriously di�cult interaction�. This research supports arguments

that the relationship between software development and IT operations functions

can be di�cult. Furthermore, the �ndings from this research argue that senior

management should also be considered in the relationship between software de-

velopment and IT operations, given this appeared critical for AF. In short, and

from a socio-cultural and socio-technical perspective, issues around the relation-

ship between these business functions need to be tackled, especially in a medium

sized organisation such as AF, in order for DevOps to be adopted successfully.

While this research argues that some understanding of each stage in the DevOps

process depicted in �gure 6.2 is necessary, individuals would still specialise at

speci�c stages; but they would also be able to assist elsewhere if necessary. For

example, a systems administrator may specialise in more traditional IT operations

tasks such as infrastructure, deployment and operation of developed software with

the provision of end user support. Within DevOps, they may also work more

closely with software developers in order to write small applications or scripts

CHAPTER 6. DISCUSSION AND CONCLUSION 178

to automate the provision of, and deployment of developed software to run-time

environments. As observed at AF, planning and release involved the software

developers, systems administrators and a senior manager, who communicated the

business goals and desired outcomes. In turn, this stage is inherently informed

by feedback from all other stages in addition to the processing and evaluation

of various metrics collected during previous iterations. The information these

analyses provided enabled DevOps to evolve in order to accommodate the business

objectives and requirements of AF.

Figure 6.2 also shows the nature of this feedback as a continuous loop working

alongside each stage of the DevOps model. Therefore, continuous feedback as a

�capability and enabler� of DevOps [Smeds et al., 2015, 171] is too limited. In-

stead, this research argues that continuous feedback is both a central and critical

component of any DevOps implementation. Further support for this argument

can be drawn from the discussion in section 6.2, where focus group participants

explored how DevOps is de�ned and implemented.

Likewise, a software developer could engage directly with end users when they

encounter issues with deployed software, thus providing support which could tra-

ditionally be provided by a systems administrator. In the case of AF, this was

observed whereby a systems administrator could not o�er a solution to issues

being experienced by users of Harrier. Rather than simply pass o� the problem

to software developers, as is typically the case where �most IT services are organ-

ised in silos� [Airaj, 2017, 2], a business analyst and software developer became

directly involved and worked collaboratively with the systems administrator to

observe the issue in context. While such observed collaboration is by no means

exclusive to DevOps, it does add support that it is linked to core business system

transformation and the utilisation of Agile process, technical capabilities, exper-

tise and skills [Karl et al., 2016; Sill, 2015; Smeds et al., 2015; Takimoto et al.,

2016]. Moreover, a collective ownership and shared responsibility for problems

was exhibited, which Smeds et al. [2015, 171] argue is a "cultural enabler" of De-

vOps. The result of this observed collaboration led to problems being identi�ed,

a solution implemented and deployed in the next release of Harrier.

CHAPTER 6. DISCUSSION AND CONCLUSION 179

The continuous nature of DevOps across functions means any development work

on new features or solutions to experienced problems are not only rapidly imple-

mented, built and tested, but also continuously released and deployed to users.

The very nature of the continuous delivery of software can enable the provision

of timely and e�ective support from the IT operations function, therefore adding

value through "continuous service improvement (CSI)" [Takimoto et al., 2016,

9]. Collectively, DevOps has a strategic component for organisations, highlight-

ing the value IT can potentially add to the organisation, thus addressing the

so-called `software value gap' [Pass and Ronen, 2014, 80].

While AF adopted DevOps for internal software development activities, the re-

sults and literature o�er support for the argument that approaches such as De-

vOps could indeed become "a competitive necessity" [Sebastian et al., 2017, 205],

thus shifting the focus to not just delivering good quality software, but being able

to delivery it rapidly and reliably too. This concurs with the argument from Bass

et al. [2015], claiming that competition is as a major motivation for organisations

to adopt DevOps.

While the conceptual and abstract view of DevOps was generally well received at

AF [Jones et al., 2016], the results of this research show that adopting DevOps

is not straightforward and is a long-term activity, especially for a medium or

large organisation [Lwakatare et al., 2019]. AF quickly realised the substantial

change, cultural and job role implications which DevOps introduced, especially

for software developers and IT operations functions, which section 6.3.2 discusses

further.

Another key �nding to emerge was that pro-active engagement from senior man-

agers was critical to the successful adoption of DevOps. There were times at

AF where participants felt senior management could have had much more input,

especially where there were disagreements and resistance. Without the business

input and con�ict resolution such individuals in the organisation can provide,

the level of DevOps induced change could potentially lead to projects failing and

intensify existing organisational silos [Airaj, 2017]. Moreover, the results add sup-

port to the argument that DevOps has a strategic component [Sebastian et al.,

CHAPTER 6. DISCUSSION AND CONCLUSION 180

2017] and that it should not just be about developing software and nothing else

[Karl et al., 2016].

6.3.1.4 Danger of Tool/Process Coupling

In software engineering, coupling means how interdependent software constituents

are; in other words, how close one part of the software is connected to another.

High levels of coupling means more e�ort is required for maintenance activity

which also carries greater risk. Highly coupled software was one of the major

factors of the �software crisis� in the late 20th century [Randell, 1996, 70]. How-

ever, it goes further as culture and practice can be formed around the manner

in which software is developed, including a reliance on speci�c tools. This forms

a high degree of coupling between tools and process, which can jeopardize any

software development project and be increasingly di�cult and risky to alleviate

[Airaj, 2017; Chen, 2017; McLarnon et al., 2014; Roche, 2013; Sebastian et al.,

2017].

Previously in this thesis, a collection of conceptual attributes for DevOps were

identi�ed and discussed (see section 6.2). These attributes were evident at AF,

especially through the increased automation of software testing and deployment,

greater control of change as a result of software development activity and the

eventual realisation of reduced operating costs. Furthermore, the microservices

architecture which made up the Harrier system o�ered greater simplicity and

granularity to software development and maintenance activity. While Microsoft

Azure played an important part in enabling greater levels of automation with

software deployments, it was also a critical weakness of DevOps at AF. This

resulted from a cultural di�erence between the software developers, IT operations

and senior management. While used to great e�ect by the software developers,

Azure played a big in�uence on how DevOps evolved at AF, thus becoming highly

coupled.

A management decision to cease using Azure became the biggest threat to the

tool-coupled DevOps practice which had emerged at AF. At the end of the re-

CHAPTER 6. DISCUSSION AND CONCLUSION 181

search �eldwork, DevOps practice was disrupted, leaving it with an uncertain

future and delays to Harrier's roll-out due to the entire process having evolved

from the manner developers worked with Azure.

Nevertheless, this research does not dismiss the role tools play, indeed they play a

crucial role in realising DevOps. Ultimately though this research strongly argues

that tools must not be the locus of DevOps. Rather, DevOps should be a concep-

tual approach and tool agnostic. Put simply, this means that any DevOps process

should not be determined by the tools being used and it should be possible to

change tools with minimal disruption.

6.3.2 DevOps Driven Job Crafting

Earlier in this thesis, job crafting was introduced as a theory in business manage-

ment de�ned as �the physical and cognitive changes individuals make in the task

or relational boundaries of their work� [Wrzesniewski and Dutton, 2001, 179].

Task crafting occurs when an employee makes changes to their job's task bound-

aries, namely the scope, type or quantity of job tasks employees choose to do.

Relationship crafting occurs when an employee makes changes to who they inter-

act with in the workplace and the quality of any interaction. Finally, cognitive

crafting occurs when the boundaries of their job are changed by an employee,

altering how they �parse the job� in the sense that they either view it as a �set of

discrete work tasks or as an integrated whole� [Wrzesniewski and Dutton, 2001,

185] .

The concept of �Work Identity� refers to how employees de�ne themselves in the

workplace, for which Wrzesniewski and Dutton [2001, 186] argue job crafting has

the potential to shape. Because of the actions employees take to rede�ne and

shape their jobs it can therefore change the way they de�ne themselves in the

workplace. Furthermore, job crafting is argued to be socially embedded [Berg

et al., 2010] and is not necessarily exclusive to individuals, but may occur at a

team or organisational level too [Mäkikangas et al., 2017]. Changes to how they

CHAPTER 6. DISCUSSION AND CONCLUSION 182

perceive their job can radically and fundamentally change how an employee ap-

proaches it and can be linked to motivations around self-e�cacy and performance,

as was identi�ed by Tims et al. [2014].

The term `stack' is used to describe how various pieces of software which make

up a system interact. Traditionally, software development roles focus on one

area of the stack such as back-end or front-end. However, software developers in

particular are regularly faced with technological change and innovation [Chilton

et al., 2005]. Full stack developers go beyond this traditional remit, focusing

development activity across all parts of the stack. Software developers at AF were

originally employed to work on either back-end or front-end software development.

AF's adoption of DevOps, together with senior management encouragement to

explore their roles, appeared to drive job crafting for the software developers.

This was observed in the �rst instance as task crafting, where software developers

took a holistic approach and responsibility to develop features across the stack,

thus reshaping the boundary of their job and becoming movers of the Harrier

project [Wrzesniewski and Dutton, 2001]. Additionally, developers began to see

their work not just about delivering output as per their original job descriptions.

Instead, they began to perceive their work identity as Full Stack Developers,

where their work focuses on both front-end and back-end software development.

This also �ts with cognitive job crafting as the software developers assumed a

holistic responsibility and ownership for the development of entire features for

Harrier.

Relationship crafting was observed as software developers perceived their work

on Harrier was a vital part of the organisation [Wrzesniewski and Dutton, 2001],

and therefore began to collaborate more with end users, IT operations and senior

management. Likewise, the same was true for IT operations and one senior

manager, especially when it came to collaborating for development decisions and

addressing complex end-user support queries.

As job crafting continued at AF, one software developer's work identity trans-

formed a second time when they considered themself to be a `Devopeler', making a

CHAPTER 6. DISCUSSION AND CONCLUSION 183

speci�c reference to this meaning they are a software developer that engages with

DevOps practice. This employee was observed to have greater perception of their

job having a greater collaborative involvement with IT operations in addition

to performing tasks, such as automating infrastructure provisioning, continuous

integration and software deployment. Cognitive job crafting was apparent too as

this individual saw their job role as being much more than that of just writing

software, but rather taking more ownership and responsibility for the release,

deployment and support of the software as well [Wrzesniewski and Dutton, 2001]

(see �gure 6.3).

Back End

Front End

Software Development Job Crafting and Transformation of Work Identity

Devopeler

Task Crafting
Relationship Crafting

Cognitive Crafting

Task Crafting
Relationship Crafting

Cognitive Crafting

2nd TransformationSoftware
Developer

Full Stack
Developer

1st Transformation

Figure 6.3: DevOps driven job crafting and work identity transformation
proposition for software developers.

Based on the case study of DevOps at AF, a `Devopeler' is a natural evolution

in work identity from a full stack developer. Therefore, this thesis puts forward

that the perceived job role as a `Devopeler', while inherently cross-functional and

full stack, includes tasks and relationships outside of the traditional remit for

software developers.

No distinct transformation of work identity was observed for the systems admin-

istrators. However, following the job crafting observed at AF, this thesis argues

that systems administrators have the same potential to job craft and thus form

a new work identity as a result of DevOps. One systems administrator, en-

gaged in task and relationship job crafting, moved beyond the traditional remit

of deployment and support, thus working in increasing collaboration with soft-

ware developers to automate the provision of IT infrastructure and deployment

of software.

CHAPTER 6. DISCUSSION AND CONCLUSION 184

As the AF case study progressed, the systems administrators were undertaking

tasks aligning with the duties expected of a DevOps Engineer (see appendix 13 on

page 255), which is a job role many organisations have been observed recruiting

for in the last decade. While no work identity transformation was observed within

IT operations, this research proposes that job crafting would not simply cease, but

occur along similar lines to software developers, potentially leading to a further

work identity change to a `Devopeler' or something similar whereby they see

their role having greater collaboration and cross-functional working with software

developers (see �gure 6.4).

IT Operations Job Crafting and Transformation of Work Identity

Devopeler
DevOps
Engineer

Systems
Administrator

Task Crafting
Relationship Crafting

Cognitive Crafting

2nd Transformation

Task Crafting
Relationship Crafting

Cognitive Crafting

1st Transformation

Figure 6.4: DevOps driven job crafting and work identity transformation
proposition for IT operations.

While appendix 13 o�ers an example of what is required in a DevOps Engineer

role, there appears to be little distinction and precision on what the role and

title means, despite it gaining more ubiquity in recent years. Therefore this

research postulates that the contextual de�nitions of DevOps also applies to any

associated job roles within the organisation's context. However, arising from the

AF case study, the term `Devopeler' is new and implies an integration of software

development and IT functions.

The observed task and relationship crafting at AF challenges the common percep-

tion of what the IT Operations function is and means, therefore o�ering strong ev-

idence that DevOps intrinsically tackles issues around organisational silos [Airaj,

2017; Kneuper, 2017]. Ultimately though, job crafting was a positive side e�ect

for AF's adoption of DevOps, which was driven by overarching organisational

goals, greater emphasis on collaboration and shared responsibility for the rapid

development, deployment and support of software.

CHAPTER 6. DISCUSSION AND CONCLUSION 185

This research strongly argues that continuous deployment is a cornerstone con-

stituent of any DevOps implementation. Claps et al.'s(2015) model highlights

a number of technical and social adoption challenges of continuous deployment,

which include changing team roles and coordination, thus are inherent to De-

vOps. The case study of DevOps at AF was the �rst to apply job crafting in a

software engineering environment where DevOps has been adopted. Moreover,

job crafting serves as a good theoretical lens to observe in particular the business

management implications of DevOps. Furthermore, the AF case study shows the

job crafting which occurred was socially embedded in that it also occurred at a

team level [Berg et al., 2010], and was not in any way inhibited by managers.

6.3.3 Theoretical Implications for Job Crafting

These �ndings have several implications for job crafting. As a theoretical lens,

job crafting aided in explaining the nature and motives for the changes software

developers at AF made to their roles, and the resulting transformations to their

work identities.

Wrzesniewski and Dutton [2001] maintain a neutral position as to whether job

crafting is good or bad for organisations. The case study of DevOps adoption

at AF supports this position as job crafting was not suppressed by managers

and therefore a�ording software development and IT operations employees the

freedom to explore what DevOps meant for their roles as well as the organisation.

Aside from being able to acquire new skills and do things they would have not

done under the original remit of their roles, employees strongly felt that senior

managers should not be completely hands o�, especially where key decisions need

to be made.

Overall, the job crafting observed in this research while not negative, does con-

�rm that it can lead to transformation of an employees' work identity and pro-

vide a degree of self-actualisation. All of the software developers for instance

saw themselves as full stack developers, and enjoyed leaning new technology and

applying new knowledge and skills to their work on Harrier, despite originally

CHAPTER 6. DISCUSSION AND CONCLUSION 186

being employed to either develop software on the back-end or front-end of the

stack. Furthermore, a second work identity change occurred when one developer

considered themself a `Devopeler'. This also adds support for Berg et al.'s [2010]

argument that job crafting can occur beyond an individual level.

The scale of change introduced as a result of adopting DevOps may constitute a

substantial challenge, and this research supports the argument from Claps et al.

[2015] that organisations need to be well prepared for this. Furthermore, support

is o�ered for Pass and Ronen's [2014] proposition that DevOps transforms the

manner in which software is developed, deployed and supported through changes

a�ecting the entire organisation. Job crafting plays a major role in these changes

as they e�ect team roles and coordination, thus presenting a social adoption

challenge [Claps et al., 2015], which must be viewed proactively by managers,

rather than as an afterthought [Ghezzi, 2017].

What motivates an employee to job craft can vary considerably. While the soft-

ware developers at AF expressed a desire to learn, acquire new skills and expe-

rience new technology, there was a perception that IT operations were not inter-

ested in collaborating with software developers, especially during early phases of

Harrier's development. This in turn motivated software developers to further un-

dertake perceived IT operations tasks so as to successfully automate deployment

of the �rst Harrier builds.

For some software developers, the desire to improve performance through au-

tomation and acquire new knowledge and skills appeared to be a motivation for

them job craft. As such, this �nding adds support to arguments from Tims et al.

[2014] that employee self-e�cacy is a major motivation for job crafting, espe-

cially amongst IT workers and software developers. Furthermore, much of the

job crafting appeared to be in response to the DevOps driven change at AF,

therefore adding support for Mattarelli and Tagliaventi's [2012] argument that it

can also be in response to change that job crafting can occur.

CHAPTER 6. DISCUSSION AND CONCLUSION 187

6.4 Conclusion and Answers to Research Ques-

tions

The disciplines of Computer Science and Software Engineering can trace their

roots back to the work of 18th, 19th and 20th century pioneers including Joseph

Marie Jacquard, Charles Babbage, Ada Lovelace, Alan Turing and Margaret

Hamilton [Hally, 2005; Hamilton and Zeldin, 1976; Lovelace, 1843; Randell, 1994;

Turing, 2009]. During the 20th century, the �rst methods for Software Engi-

neering emerged in response to the increasingly unmaintainable early software,

colloquially referred to as the software crisis. While the traditional approach in

Software Engineering provided a structure and method for the development of

software, the Agile approach was formalised at the beginning of the 21st cen-

tury, with the publication of the Agile Manifesto [Beck et al., 2001]. This was

in response to iterative and incremental methods to developing software, which

emerged in order to tackle issues around methodological rigidity and software

complexity associated with the traditional approach.

Although relatively young and perpetually changing disciplines, Computer Sci-

ence and Software Engineering have contributed much. One such contribution

is DevOps and this PhD research has explored what it means and how it im-

pacts an organisation adopting it. This research has shown that to understand

the adoption of DevOps, there is a need to synthesise di�erent disciplines and

in particular, apply theories and practice from Business Management, Computer

Science and Software Engineering.

De�ning DevOps is di�cult although this research puts forward an abstract model

(see �gure 6.2) comprising a set of conceptual attributes (see �gure 6.1) which any

de�nition of DevOps should consider. This framework builds upon the previous

work from Takimoto et al. [2016] and Smeds et al. [2015] by highlighting and

including the interdisciplinary nature of DevOps. Additionally, a key component

of the DevOps framework is the necessity of a continuous feedback loop. This

proved critical for AF in their adoption of DevOps.

CHAPTER 6. DISCUSSION AND CONCLUSION 188

The AF case study o�ers a view into how software development an IT operations

roles evolve in response to DevOps adoption in the organisation. While this re-

search is contextual and therefore di�cult to generalise, the results o�er both a

longitudinal and empirical insight, highlighting the key challenges and opportu-

nities DevOps can bring to an organisation. Moreover, the organisational culture

at AF served as an enabler to the observed job crafting. This provided a useful

theoretical lens highlighting how software developers and IT operations employ-

ees reshaped their job roles, which was driven by DevOps. Two transformations

of work identity was seen with software developers identifying themselves as `full

stack developers' and one calling themself a `Devopeler' following them crafting

their job further, undertaking tasks such as automating infrastructure provision-

ing and deployment of software, which they perceived were IT operations tasks.

Taking together the results of this research and �ndings from the literature, it

is concluded that DevOps drives organisational change at both a socio-cultural

and socio-technical level. From the case study, job crafting played a pivotal

role in the changes observed with the emergence of a DevOps practice. The

feedback loop depicted in �gure 6.2 was critical for successful DevOps adoption

in addition to being an enabler of continuous improvement and thus helping

to overcome these challenges. Therefore, management must not be excluded

from any view on DevOps given the intrinsic socio-cultural and socio-technical

change it introduces to software development and IT operations functions. At

AF, employees were not suppressed or hindered by managers when exploring and

crafting their roles. Although there were organisational silos observed and some

resistance to DevOps initially, the ongoing job crafting catalysed the removal

of these silos. Subsequently, a collective team identity formed, with a holistic

multi-functional practice and a set of shared goals.

The literature is heavily populated with the study of various tools associated with

DevOps. While AF explored several tools, one in particular became a big focus.

However, allowing DevOps practice to be shaped by a particular tool or platform

is a critical risk, potentially coupling the process. AF discovered this following a

management decision to cease using Microsoft Azure, which the DevOps practice

had evolved around. It is argued that DevOps should be tool agnostic, thus it

CHAPTER 6. DISCUSSION AND CONCLUSION 189

must never be coupled to, or allowed to be determined by a speci�c tool.

6.4.1 Answers to Research Questions

In this section, the research questions originally posed in section 1.3, which drove

this exploratory and pragmatic study on DevOps, are revisited.

1. How can DevOps be de�ned?

2. Why do organisations adopt DevOps?

2a. What are the perceived performance or strategic bene�ts?

2b. How is DevOps di�erent to other approaches for software development?

2c. Are anticipated performance gains from its implementation realised?

3. How does DevOps adoption in�uence software development processes?

3a. What changes are required to the organisation and management of

software development processes to enable DevOps?

4. How do software development and IT operations roles, tasks, skills, tools

and work identity change as DevOps is adopted within an organisation?

6.4.1.1 How can DevOps be de�ned?

DevOps is di�cult to universally de�ne, although this research proposes a frame-

work of seventeen conceptual attributes in section 6.2, which can guide in the

creation of any contextual de�nition. These attributes are grouped into four cat-

egories: Business Driven Goals and Outcomes; Multi-Disciplinary Teams; Stan-

dardised Processes, Tools, Approaches and Principles; and Information.

However, any contextual de�nition must take into credence the interdisciplinary

nature of DevOps, and therefore not limit it to the technical aspects of developing

software and the managing business IT infrastructure.

CHAPTER 6. DISCUSSION AND CONCLUSION 190

6.4.1.2 Why do Organisations Adopt DevOps?

Both the literature and results of this research suggest that DevOps carries an

economic bene�t for organisations seeking to rapidly develop and deploy software

of a good level of quality. In considering the overall research �ndings from the

AF case study and the literature, it is clear that while DevOps is inherently

Agile, it di�ers considerably from other approaches to software development. For

instance, DevOps takes the Agile approach beyond the development of software

by including other business functions, namely IT operations, especially with the

deployment and support of software. Thus traditional IT operations tasks such as

infrastructure management and systems administration become embedded into a

DevOps pipeline thus, forming a constituent of the software life cycle.

There were a number of performance gains realised by AF as a result of DevOps.

The rapid deployment of perceived better quality software was the most noticeable

as well as empowering senior managers to address issues within critical business

functions. The example of AF's invoicing department and resulting business

process re-engineering highlights this impact. In this instance, DevOps enabled an

approach to be taken when dealing with especially complex software requirements

for a business critical function, for which the legacy system o�ered no solution

for. The involvement of senior managers enabled issues with business process as

well as legacy software to be identi�ed and addressed as a result.

However, there are risks too, as AF discovered �rst hand. Allowing the formation

of any dependence on particular tools must be avoided, especially where this

determines process. Ultimately, the risk this presents is that DevOps becomes

coupled to the use of a particular tool, meaning it can also become the single

point of failure. In the case of AF, this was demonstrated with a reliance placed

on the Microsoft Azure cloud platform. A management decision was taken to

cease using it, leaving substantial insecurity and uncertainty for the future as a

process had evolved around the use of Azure.

CHAPTER 6. DISCUSSION AND CONCLUSION 191

6.4.1.3 How does DevOps Adoption In�uence Software Development

Processes?

Senior managers at AF desired greater control and quality in the development of

Harrier, the intended replacement for their legacy AFI software system which was

developed through outsourcing. AF brought software development in-house by

employing a Software Development Manager and a team of Software Developers.

DevOps was emergent at AF, being driven primarily by the software developers.

Senior managers allowed it to emerge which inherently provided a great deal of

autonomy for the software developers.

Software development was undertaken at AF through an Agile approach, namely

Scrum, with two week sprints. DevOps in�uenced this process by introducing the

need to consider the deployment and support of software developed during each

sprint and releasing it to end users. These activities involved AF's IT Operations

function and two systems administrators who had always deployed any developed

software and provided support to its users. As the software developers continued

to explore DevOps, there was observed resistance from IT Operations to become

involved.

Change is therefore intrinsic to DevOps, and impacts the wider organisation, thus

necessitating a need to manage change. This sits well with the focus group and

survey output where change control was agreed as being an attribute of DevOps.

However, and most critically, organisations seeking to adopt DevOps must be

prepared to deal with change, some of which may be seismic in scale. Bringing

software development in house was a substantial change for AF. IT Operations

were used to being given developed software to then deploy and support. By

bringing this function together with software development, resistance and cultural

issues between both teams were evident. Although kept informed, the Systems

Administrators felt their input was not valued by the Software Developers, who in

turn believed the former were not interested. However, both teams felt that senior

management involvement in the whole process was crucial for both identifying

requirements and soothing the cultural issues which emerged.

CHAPTER 6. DISCUSSION AND CONCLUSION 192

One interesting observation at AF was the reactive use of di�erent software devel-

opment methods for when requirements became especially complex. While Scrum

was the primary framework utilised for developing Harrier, the invoicing depart-

ment was revealed to have very complex requirements and was in a state of �ux,

rendering Scrum too rigid. The Software Developers desired greater �exibility to

deal with this and were able to follow a Kanban framework for that department

only. This �uidity in adjusting the software development framework enabled these

challenges to be overcome while keeping Harrier development within a DevOps

pipeline. In addition, it also led to senior management identifying signi�cant

operational issues and thus they were able to successfully re-engineer business

processes for invoicing, leading to some potentially signi�cant cost savings for the

organisation.

It can be concluded that DevOps in�uences software development processes by

facilitating adaptability in methodological approaches to developing software.

Critically, DevOps can enable development activity to provide highly visible and

tangible bene�ts to the organisation as a result. Moreover, it is argued that De-

vOps, while not a speci�c software development method in itself, is a mindset

which extends beyond software developers to also include other IT functions and

management by encapsulating development methods and seeking to harmonise

IT, management and software development functions, with a set of shared goals.

DevOps therefore requires a cultural alignment between managers, software de-

velopers and IT employees.

6.4.1.4 How do Software Development and IT Operations Roles,

Tasks, Skills, Tools and Work Identity Change as DevOps is Adopted

Within an Organisation?

As DevOps was adopted at AF, some changes were observed with job roles. Job

crafting was prevalent with the Software Developers, with all seeing their identity

at work di�erent as a result. Initially, the Software Developers were employed

to work on a particular part of the software stack, but as they continued to Job

Craft in response to DevOps, they were working on both back-end and front-end

CHAPTER 6. DISCUSSION AND CONCLUSION 193

features. As time progressed, they all began to identify themselves at work as

Full Stack Developers. However, a further change was also observed when one

Software Developer referred to themself as a `Devopeler', as they had also began

undertaking typical IT Operations tasks, such as deployment and the provisioning

of infrastructure.

One Systems Administrator was observed working more collaboratively with the

Software Developers as they began to automate the provisioning of infrastructure

for the Software Developers to use. While no speci�c work identity change was

observed, the tasks being undertaken appeared synonymous with the responsibil-

ities and tasks seen in DevOps Engineer roles (see appendix 13 on page 255).

Job crafting was also observed with a Business Analyst becoming a peacemaker

between IT Operations and Software Development. Notably, this is where the

biggest change in socio-culture was observed, where it went from being adver-

sarial to collaborative. The Software Developers and Systems Administrators

actively engaged and collaborated with each other following a set of shared goals.

Furthermore, this extended to social activities between them outside of the work-

place. One participant was also seen as a `champion' of DevOps, as they strived

to support others and carry forward a vision for what this would mean for AF.

Ultimately, these changes were a result from adopting DevOps, and by allowing

both the Software Developers and Systems Administrators to engage in job craft-

ing, senior management at AF were able to cultivate a workplace environment

conducive to DevOps and had encouraged employees to explore their roles and

adapt.

In answering this question, it is clear from the case study that Software Devel-

opment and IT Operations job roles can change substantially due to DevOps.

Yet, these changes are not necessarily negative, as shown by the bene�ts AF were

realising. Overall, DevOps requires joined up thinking across the organisation for

it to work. Therefore, this thesis concludes that DevOps is an interdisciplinary

topic, from both a practical and theoretical perspective.

CHAPTER 6. DISCUSSION AND CONCLUSION 194

6.5 Theoretical Contributions

This section outlines the key contributions this PhD makes to the knowledge

of DevOps. Firstly, the theoretical contributions are outlined followed by the

methodological contribution this research also makes.

6.5.1 Contribution One: How to De�ne DevOps

Agile software development practice emerged in the late 20th century in re-

sponse to the growing problems arising from traditional software development

approaches. A further shift of focus came with the deployment and operation

of developed software, so therefore DevOps is inherently Agile, contradicting ar-

guments by Gupta et al. [2017] which limit Agile only to software development

activity. Additionally, this research opposes the argument from Fokaefs et al.

[2017], where they claim DevOps is solely focused on software development. The

case study of AF presented in this thesis shows DevOps intrinsically a�ects the

wider organisation and therefore takes the very nature of Agile beyond software

development functions.

Although previous research has attempted to de�ne DevOps [Bass et al., 2015;

Cois et al., 2014; Császár et al., 2013; Dyck et al., 2015; Hosono, 2012; Mohamed,

2015; Obstfeld et al., 2014; Smeds et al., 2015; Walls, 2013], the scope and focus

of these de�nitions di�ers considerably. This research explored these di�erent

de�nitions with practitioners and software development experts, and there was

limited consensus or agreement on a single de�nition. However, the research did

�nd that there are 17 core attributes (see �gure 6.1), of which 6 were found to

be statistically signi�cant.

These core attributes are a key contribution of this research as they encapsulate

the key aspects of DevOps, and can be used to guide organisations in developing

their own context-speci�c de�nition.

A further contribution of this research is to identify that a universal de�nition

CHAPTER 6. DISCUSSION AND CONCLUSION 195

of DevOps should not be sought, as organisational contexts vary and therefore

context-speci�c de�nitions are needed.

6.5.2 Contribution Two: Abstract Model of DevOps

The main contribution this PhD research makes builds upon the model for De-

vOps proposed by Takimoto et al. [2016] and was discussed in section 6.3.

Most importantly, this new model (See �gure 6.2) for DevOps takes into account

the core conceptual attributes agreed by practitioners including how organisa-

tional decision making, goals and strategy are both in�uenced by and drivers of

DevOps.

This model of DevOps treats IT Operations and Software Development as spe-

ci�c functions which form constituents of a wider, multi-disciplinary team. As

with Agile practice, DevOps is presented to be iterative but business goals ulti-

mately drive it. Approaches, tools and processes are represented as they do act

as enablers, but are by no means central to DevOps as they should be �uid and

able to be adapted in response to feedback. As observed at AF, the approach for

software development was able to be adjusted from Scrum to Kanban for some

features at one point in response to development feedback.

Finally, the model advocates a continuous and cross-functional feedback loop,

which this research argues is both central and necessary for process transparency,

therefore critical to successful DevOps adoption.

6.5.3 Contribution Three: Application of Job Crafting The-

ory to DevOps

This research is the �rst to apply job crafting [Wrzesniewski and Dutton, 2001] as

a theoretical lens within a software engineering environment adopting DevOps.

This aided in the identi�cation of where and why participants were actively chang-

CHAPTER 6. DISCUSSION AND CONCLUSION 196

ing the boundaries of their jobs.

The case study of AF highlights that DevOps was a driver of job crafting as it

became necessary for participants to engage beyond the original remits of their

roles at work. Although this research acknowledges that generalising the case

study �ndings is di�cult, the results do suggest that job crafting comes naturally

to Software Developers where they are a�orded the opportunity to job craft.

Additionally, job crafting o�ered a key theoretical insight into the observed trans-

formation in how participants viewed their own identity and that of their col-

leagues at work. Within the case study, two transformations of work identity

were observed, especially with software developers, where each perceived their

work identity as that of a �Full Stack Developer�, while one participant perceived

that they had become a �Devopeler�, in speci�c reference to how DevOps practice

was leading to changes in what they do at work. It is concluded therefore that

AF's adoption of DevOps enabled and encouraged the participants to job craft,

in terms of their identity, relationships with their colleagues as well as their tasks

and responsibilities.

6.6 Methodological Contributions

Although the theoretical contribution to the knowledge on DevOps is the most

important output of this research, there are some methodological outputs too.

These strengthen existing arguments and recommendations when undertaking

research in a similar context or setting.

6.6.1 Contribution One: Advocation of Lethbridge et al.'s

(2005) Multi-Method Recommendation

A multiple method approach to data collection is strongly argued as necessary

by Lethbridge et al. [2005] when capturing information from software engineer-

CHAPTER 6. DISCUSSION AND CONCLUSION 197

ing professionals. This is to enable a researcher to capture both detailed cross

sectional insights and information on process in addition to a deep longitudinal

view that reveals both socio-cultural and socio-technical details.

While the longitudinal nature of this research and the open format of the diaries

contributed to some participant attrition, the multi-method approach recom-

mended by Lethbridge et al. [2005] greatly aided in mitigating this risk. Further-

more, supporting a diary study with interviews, not only produced much more

data, but proved invaluable for three additional reasons.

Firstly, these interviews allowed the opportunity to probe for more details with

regards to particular things arising in a participant's diary, thus resulting in a

greater depth of data being collected.

Secondly, the interviews inherently acted as a means of control for the whole

study, enabling participants and the researcher to discuss topics such as diary

collection and how they were feeling about the research.

Finally, and linked with the second bene�t, the interviews were an excellent tool

in limiting any potential damage from attrition due to lack of diaries submitted.

As such, this PhD research advocates the multi-method approach recommended

by Lethbridge et al. [2005], especially when undertaking any longitudinal research

involving Software Developers and IT professionals.

6.6.2 Contribution Two: Utilisation of Contextual Tools

for Data Collection

While the multi-method approach recommended by Lethbridge et al. [2005] was

a success in its own right, this PhD research went further with speci�c methods

of data collection.

For instance, tools such as Bitbucket, which the participants use everyday, was

utilised to great e�ect in enabling a good continuity of data collection without

CHAPTER 6. DISCUSSION AND CONCLUSION 198

proving distracting over a 14 month period. Participants commented favourably

about the manner of how diaries were collected, speci�cally praising how easy it

was for them by using the tools they use on a daily basis.

Bitbucket enabled more frequent and detailed diary entries while aiding in the

reduction of attrition, a common risk of any diary study. Additionally, the re-

searcher �exibility was appreciated, especially for participants who did not use

these tools.

The diaries were also accessible to all participants through Bitbucket and formed a

method to document the process of adopting DevOps. From a research philosoph-

ical perspective, such a method of data collection sits well with the ontological

view of Constructivism, where the knowledge of reality is socially constructed.

While this can carry the drawback of being too open, especially where more

sensitive topics would be discussed, it was mitigated by allowing participants to

send such diary entries privately and directly to the researcher and away from

Bitbucket.

Finally, and of bene�t to AF, was the inherent knowledge management bene�ts

this brought. As the Bitbucket repository was owned by them, it served as a very

useful resource for organisational learning, enabling the re�ection on change and

process driven by DevOps.

In short, this PhD research advocates a Pragmatic approach to undertaking re-

search with Software Developers and IT professionals by not just following the

recommendations of Lethbridge et al. [2005], but also considering a greater open-

ness to the manner of data collection. In particular, researchers should have some

understanding of the context of their research topic and where applicable, con-

sider utilising tools used by participants on a daily basis in order to collect data.

Put simply, this means making engagement with the research process easy and

�exible for participants.

CHAPTER 6. DISCUSSION AND CONCLUSION 199

6.7 Management Recommendations

As AF discovered, adopting DevOps is not straightforward. Aside from socio-

cultural and socio-technical considerations localised to software development and

IT functions, the impacts will be felt across the organisation. Based on the AF

case study, this section outlines some practical recommendations to organisations

adopting DevOps.

Firstly, and referencing Brooks's [1987] original argument, DevOps is not a silver

bullet solving all software development challenges. Organisations considering De-

vOps should carefully appraise it at a conceptual level taking both the attributes

this research proposes alongside the capabilities, cultural and technological en-

ablers put forward by Smeds et al. [2015].

Secondly, change is intrinsic to DevOps and this research recommends manage-

ment involvement to both manage the change and de�ne business processes, es-

pecially if they change as a result. Furthermore, the AF case study provides ev-

idence that active management involvement with DevOps is important for both

being informed and driven by organisational goals as well as to inform decision

making at di�erent levels. Furthermore, the senior management involvement at

AF enabled the organisation to address de�ciencies in business process which the

DevOps approach helped to identify.

Finally, any DevOps approach must not be determined or locked to speci�c tools.

As AF found out through an initial reliance on Microsoft Azure, such a high

degree of process and tool coupling can create a potential single point of failure.

6.8 Research Limitations

The limitations of each research method were discussed in detail within chapter

2. However, this PhD thesis acknowledges the limitations of case studies, and in

particular that the �ndings from this research are subjective to the boundary of

CHAPTER 6. DISCUSSION AND CONCLUSION 200

the case study and as such are di�cult to generalise. While o�ering a detailed

longitudinal insight into DevOps adoption by a medium sized organisation, this

case study of DevOps is ultimately unique to AF.

Furthermore, the Pragmatic and Constructivist research philosophies acknowl-

edge the researcher has an intrinsic in�uence within the study. While the re-

searcher was not embedded into the case, as would have been the case with an

Ethnographic research strategy, the methodology took a multi-method approach

based on recommendations from Lethbridge et al. [2005] to in a bid to capture

detailed insights while mitigating risks such as retrospective bias.

6.9 Future Research

Much of the existing DevOps literature places a focus on tools. While the lit-

erature review of this thesis contained a systematic component, a meta analysis

was not undertaken. Therefore, as the DevOps literature grows, further system-

atic reviews should be undertaken, complete with meta analyses to quantify its

growth across the Business Management, Computer Science and Software Engi-

neering disciplines and to help develop an interdisciplinary agenda to guide future

research.

The research undertaken in this thesis o�ers a detailed and longitudinal insight of

the adoption of DevOps by an organisation. While an abstract model for DevOps

has been proposed, the next step would be to further test this model with small

and large organisations in order to determine how generalisable it is.

The AF case study revealed DevOps to have a large business management com-

ponent which would bene�t from further research attention with focus on or-

ganisational behaviour and operations management. Furthermore, as a new and

emerging process with the potential to produce and deploy software quickly, De-

vOps could be studied as a potential process innovation. A key �nding from the

AF case study revealed DevOps is by no means easy or straightforward for an

organisation to adopt. Therefore, further work could be carried out, considering

CHAPTER 6. DISCUSSION AND CONCLUSION 201

the conceptual attributes, organisational capabilities, cultural and technical en-

ablers [Smeds et al., 2015] to determine if an organisation is in a position where

it could realistically adopt DevOps. An output of this work could potentially

be a maturity model for DevOps which would link to the notions of continuous

service improvement and organisational learning. Furthermore, can risk models

be developed to help guide organisations through DevOps adoption?

The AF case study also revealed DevOps to inherently accelerate change in the

organisation. Further research should be undertaken to understand the manage-

ment implications of such rapid change driven by DevOps. While the impact

of DevOps on change is a clear �nding of this research, it revealed job crafting

and changes to work identity occurred as well. Further study speci�cally on job

crafting within a DevOps environment should be undertaken to consider:

� To what extent does DevOps driven change drive job crafting?

� Is job crafting an intrinsic factor in successful DevOps adoption?

� Are changes in work identity indicators of DevOps practice?

This research has provided an in-depth study of DevOps adoption by a medium

sized business in the UK. However, as DevOps is a relatively new topic from both

a practical and research perspective, there are many opportunities to further im-

prove our understanding of this multi-disciplinary topic from di�erent disciplines

and organisational contexts.

202

References

Adams, J. (2019). Senior DevOps engineer. Read Business Information

via. LinkedIn Jobs, available at: https://www.linkedin.com/jobs/view/

1453870168/, accessed Sep 2019.

Adams, R., Jeanrenaud, S., Bessant, J., Denyer, D., and Overy, P. (2015).

Sustainability-Oriented Innovation: A Systematic Review. International Jour-

nal of Management Reviews, pages 180�205.

Airaj, M. (2017). Enable cloud DevOps approach for industry and higher educa-

tion. Concurrency and Computation: Practice and Experience, 29(5).

Allman, E. (2012). Managing technical debt. Communications of the ACM,

55(5):50�55.

Anquetil, N., de Oliveira, K. M., de Sousa, K. D., and Dias, M. G. B. (2007).

Software maintenance seen as a knowledge management issue. Information and

Software Technology, 49(5):515�529.

Barrow, P. D. M. (1999). Investigating Stakeholder Evaluation within Rapid Ap-

plication Development. PhD thesis, School of Information Systems, University

of East Anglia.

Bass, L., Je�ery, R., Wada, H., Weber, I., and Zhu, L. (2013). Eliciting operations

requirements for applications. In Proceedings of the 1st International Workshop

on Release Engineering, pages 5�8. IEEE.

https://www.linkedin.com/jobs/view/1453870168/
https://www.linkedin.com/jobs/view/1453870168/

REFERENCES 203

Bass, L., Weber, I., and Zhu, L. (2015). DevOps: A Software Architect's Per-

spective. Addison-Wesley Professional.

Beck, K., Beedle, M., Van Bennekum, A., Cockburn, A., Cunningham, W.,

Fowler, M., Grenning, J., Highsmith, J., Hunt, A., Je�ries, R., et al.

(2001). Manifesto for agile software development. available at: http:

//agilemanifesto.org/ accessed: Apr 2018.

Bell, T. E. and Thayer, T. A. (1976). Software Requirements: Are They Really

a Problem? In Proceedings of the 2nd international conference on Software

engineering, pages 61�68. IEEE.

Berg, J. M., Wrzesniewski, A., and Dutton, J. E. (2010). Perceiving and respond-

ing to challenges in job crafting at di�erent ranks: When proactivity requires

adaptivity. Journal of Organizational Behavior, 31(2-3):158�186.

Biolchini, J., Mian, P. G., Natali, A. C. C., and Travassos, G. H. (2005). Sys-

tematic Review in Software Engineering. System Engineering and Computer

Science Department COPPE/UFRJ, Technical Report ES, 679(05).

Boehm, B. and Turner, R. (2003). Balancing agility and discipline: A guide for

the perplexed. Addison-Wesley Professional. Indiana, USA.

Boehm, B. W. (1988). A spiral model of software development and enhancement.

Computer, 21(5):61�72.

Bosch, J. and Bosch-Sijtsema, P. (2010). Coordination between global agile teams:

From process to architecture. In �mite, D., Moe, N. B., and Ågerfalk, P. J.,

editors, Agility Across Time and Space, pages 217�233. Springer.

Brooks, F. P. (1987). No Silver Bullet Essence and Accidents of Software Engi-

neering. Computer, 20(4):10�19.

Brown, D. D. (2013). Five agile ux myths. Journal of Usability Studies, 8(3):55�

60.

http://agilemanifesto.org/
http://agilemanifesto.org/

REFERENCES 204

Carter, S. and Manko�, J. (2005). When participants do the capturing: the role

of media in diary studies. In Proceedings of the SIGCHI conference on Human

factors in computing systems, pages 899�908. ACM.

Chen, L. (2015). Continuous delivery: Huge bene�ts, but challenges too. Soft-

ware, IEEE, 32(2):50�54.

Chen, L. (2017). Continuous delivery: overcoming adoption challenges. Journal

of Systems and Software, 128:72�86.

Chilton, M. A., Hardgrave, B. C., and Armstrong, D. J. (2005). Person-job

cognitive style �t for software developers: The e�ect on strain and performance.

Journal of Management Information Systems, 22(2):193�226.

Claps, G. G., Svensson, R. B., and Aurum, A. (2015). On the journey to contin-

uous deployment: Technical and social challenges along the way. Information

and Software Technology, 57:21�31.

Clarke, J. (2011). What is a Systematic Review? Evidence Based Nursing,

14(3):64�64.

Cohen, J. (1968). Weighted kappa: Nominal scale agreement provision for scaled

disagreement or partial credit. Psychological Bulletin, 70(4):213�220.

Cois, C. A., Yankel, J., and Connell, A. (2014). Modern DevOps: Optimizing soft-

ware development through e�ective system interactions. In Professional Com-

munication Conference (IPCC), 2014 IEEE International, pages 1�7. IEEE.

Cook, N., Milojicic, D., and Talwar, V. (2012). Cloud management. Journal of

Internet Services and Applications, 3(1):67�75.

Császár, A., John, W., Kind, M., Meirosu, C., Pongrácz, G., Staessens, D.,

Takacs, A., and Westphal, F.-J. (2013). Unifying cloud and carrier network: Eu

fp7 project unify. In Utility and Cloud Computing (UCC), 2013 IEEE/ACM

6th International Conference on, pages 452�457. IEEE.

REFERENCES 205

de Vasconcelos, J. B., Kimble, C., Carreteiro, P., and Rocha, Á. (2017). The appli-

cation of knowledge management to software evolution. International Journal

of Information Management, 37(1):1499�1506.

De Vaus, D. (2013). Surveys in social research. Routledge, 6th edition. Abingdon.

Dempster, M. (2011). A Research Guide for Health and Clinical Psychology.

Palgrave Macmillan.

Dennehy, D. and Conboy, K. (2017). Going with the �ow: An activity theory

analysis of �ow techniques in software development. Journal of Systems and

Software, 133:160�173.

DeVellis, R. F. (2016). Scale development: Theory and applications, volume 26.

Sage, 4th edition.

Diamond, M., Allcorn, S., and Stein, H. (2004). The surface of organizational

boundaries: A view from psychoanalytic object relations theory. Human Rela-

tions, 57(1):31�53.

Dijkstra, E. W. (1972). The Humble Programmer. Communications of the ACM,

15(10):859�866.

Dyck, A., Penners, R., and Lichter, H. (2015). Towards de�nitions for release en-

gineering and DevOps. In Release Engineering (RELENG), 2015 IEEE/ACM

3rd International Workshop on, pages 3�3. IEEE.

Eisenhardt, K. M. (1989). Building theories from case study research. Academy

of management review, 14(4):532�550.

Eisenhardt, K. M. and Graebner, M. E. (2007). Theory building from cases:

Opportunities and challenges. Academy of management journal, 50(1):25�32.

Emerson, R. M., Fretz, R. I., and Shaw, L. L. (2011). Writing ethnographic

�eldnotes. University of Chicago Press. Chicago: IL.

REFERENCES 206

Erich, F., Amrit, C., and Daneva, M. (2014). A mapping study on cooperation

between information system development and operations. In 15th Interna-

tional Conference on Product-Focused Software Process Improvement (PRO-

FES) 2014, Helsinki, Finland, pages 277�280. Springer.

Eveleens, J. L. and Verhoef, C. (2010). The rise and fall of the chaos report

�gures. IEEE software, 27(1):30�36.

Feitelson, D. G., Frachtenberg, E., and Beck, K. L. (2013). Development and

deployment at Facebook. IEEE Internet Computing, 17(4):8�17.

Fielding, R. T. (2000). Architectural styles and the design of network-based soft-

ware architectures. PhD thesis, University of California, Irvine Doctoral dis-

sertation.

Fitzgerald, B. and Stol, K.-J. (2017). Continuous software engineering: A

roadmap and agenda. Journal of Systems and Software, 123:176�189.

Fokaefs, M., Barna, C., and Litoiu, M. (2017). From DevOps to BizOps: Eco-

nomic sustainability for scalable cloud applications. ACM Transactions on

Autonomous and Adaptive Systems (TAAS), 12(4):25.

Friedman, A. L. and Cornford, D. S. (1989). Computer Systems Development:

History Organization and Implementation. John Wiley & Sons, Inc.

Fuegi, J. and Francis, J. (2003). Lovelace & babbage and the creation of the

1843'notes'. IEEE Annals of the History of Computing, 25(4):16�26.

Geertz, C. (1973). The interpretation of cultures. Basic Books. New York.

Ghezzi, C. (2017). Of software and change. Journal of Software: Evolution and

Process, 29(9).

Gill, J. and Johnson, P. (2010). Research methods for managers. Sage, 4th edition.

London.

Glaser, B. and Strauss, A. L. (2017). Discovery of grounded theory: Strategies

for qualitative research. Routledge. Oxon.

REFERENCES 207

Glass, R. L. (2006). The standish report: does it really describe a software crisis?

Communications of the ACM, 49(8):15�16.

Gohil, K., Alapati, N., and Joglekar, S. (2011). Towards behavior driven oper-

ations (bdops). In Advances in Recent Technologies in Communication and

Computing (ARTCom 2011), 3rd International Conference on, pages 262�264.

IEEE.

Greenhalgh, T., Peacock, R., et al. (2005). E�ectiveness and E�ciency of

Search Methods in Systematic Reviews of Complex Evidence: Audit of Pri-

mary Sources. BMJ, 331(7524):1064�1065.

Guba, E. G., Lincoln, Y. S., et al. (1994). Competing paradigms in qualitative

research. Handbook of qualitative research, 2(163-194):105.

Gupta, V., Kapur, P., and Kumar, D. (2017). Modeling and measuring attributes

in�uencing DevOps implementation in an enterprise using structural equation

modeling. Information and Software Technology, 92:75�91.

Hally, M. (2005). Electronic brains: stories from the dawn of the computer age.

Joseph Henry Press. Washington DC.

Hamilton, M. (2018). The Language as a Software Engineer. available at: https:

//www.youtube.com/watch?v=ZbVOF0Uk5lU accessed: May 2020.

Hamilton, M. and Zeldin, S. (1976). Higher order software�a methodology for

de�ning software. IEEE Transactions on Software Engineering, SE-2(1):9�32.

Hanley, T. and Cutts, L. (2013). What is a Systematic Review? Counselling

Psychology Review, 28(4):3�6.

Hollings, C., Martin, U., and Rice, A. (2018). Ada Lovelace: The Making of a

Computer Scientist. Bodleian Library, University of Oxford. Oxford, UK.

Hosono, S. (2012). A DevOps framework to shorten delivery time for cloud

applications. International Journal of Computational Science and Engineering,

7(4):329�344.

https://www.youtube.com/watch?v=ZbVOF0Uk5lU
https://www.youtube.com/watch?v=ZbVOF0Uk5lU

REFERENCES 208

Hussaini, S. W. (2014). Strengthening harmonization of development (dev) and

operations (ops) silos in it environment through systems approach. In Intelli-

gent Transportation Systems (ITSC), 2014 IEEE 17th International Conference

on, pages 178�183. IEEE.

Ilgen, D. R. and Hollenbeck, J. (1991). Job design and roles. In Dunnette, M.

and Hough, L., editors, Handbook of Industrial and Organizational Psychology,

pages 165�207. Consulting Pyschologists Press.

Ince, D. (1988). Software development: Fashioning the baroque. Oxford University

Press, Inc.

Jesson, J., Matheson, L., and Lacey, F. M. (2011). Doing your Literature Review:

Traditional and Systematic Techniques. Sage. London.

Jones, S., Noppen, J., and Lettice, F. (2016). Management Challenges for DevOps

Adoption within UK SMEs. In Proceedings of the 2nd International Workshop

on Quality-Aware DevOps, July 21 2016, Saarbrücken, Germany, pages 7�11.

ACM.

Jørgensen, M. and Moløkken-Østvold, K. (2006). How large are software cost

overruns? a review of the 1994 chaos report. Information and Software Tech-

nology, 48(4):297�301.

Kahn, R. L. and Cannell, C. F. (1957). The dynamics of interviewing; theory,

technique, and cases. Wiley. Oxford, UK.

Kantsev, V. (2017). Implementing DevOps on AWS. Packt Publishing Ltd.

Karl, H., Dräxler, S., Peuster, M., Galis, A., Bredel, M., Ramos, A., Martrat,

J., Siddiqui, M. S., Van Rossem, S., Tavernier, W., et al. (2016). DevOps for

network function virtualisation: an architectural approach. Transactions on

Emerging Telecommunications Technologies, 27(9):1206�1215.

Kim, M., Mohindra, A., Muthusamy, V., Ranchal, R., Salapura, V., Slominski,

A., and Khalaf, R. (2016). Building scalable, secure, multi-tenant cloud services

on ibm bluemix. IBM Journal of Research and Development, 60(2-3):8:1�8:12.

REFERENCES 209

Kitchenham, B. (2004). Procedures for Performing Systematic Reviews. Keele,

UK, Keele University, 33(2004):1�26.

Kitchenham, B., Brereton, O. P., Budgen, D., Turner, M., Bailey, J., and

Linkman, S. (2009). Systematic literature reviews in software engineering -

A systematic literature review. Information and software technology, 51(1):7�

15.

Kneuper, R. (2017). Sixty years of software development life cycle models. IEEE

Annals of the History of Computing, 39(3):41�54.

Knox, K. (2004). A researcher's dilemma-philosphical and methodological plu-

ralism. The Electronic Journal of Business Research Methods, 2(2):119�128.

Koilada, D. K. (2019). Business model innovation using modern devops. In 2019

IEEE Technology Engineering Management Conference (TEMSCON), pages

1�6.

Landis, J. R. and Koch, G. G. (1977). The Measurement of Observer Agreement

for Categorical Data. Biometrics, 33(1):159�174.

Lapham, M. A. (2014). Software sustainment�now and future. CrossTalk,

27(1):33�36.

Lawley, D. N. and Maxwell, A. E. (1962). Factor analysis as a statistical method.

Journal of the Royal Statistical Society. Series D (The Statistician), 12(3):209�

229.

Lethbridge, T. C., Sim, S. E., and Singer, J. (2005). Studying software engi-

neers: Data collection techniques for software �eld studies. Empirical software

engineering, 10(3):311�341.

Liu, Y., Li, C., and Liu, W. (2014). Integrated solution for timely delivery of cus-

tomer change requests: A case study of using DevOps approach. International

Journal of U-& E-Service, Science & Technology, 7(2):41�50.

Loukides, M. (2012). What is DevOps? O'Reilly. Sebastopol, USA.

REFERENCES 210

Lovelace, A. (1843). Notes by AAL (augusta ada lovelace). Taylor's Scienti�c

Memoirs, pages 666�731. Lovelace's translation of Menabrea together with her

"Notes" are also available online at: http: // www. fourmilab. ch/ babbage/

sketch. html .

Lwakatare, L. E., Kilamo, T., Karvonen, T., Sauvola, T., Heikkilä, V., Itkonen,

J., Kuvaja, P., Mikkonen, T., Oivo, M., and Lassenius, C. (2019). Devops in

practice: A multiple case study of �ve companies. Information and Software

Technology, 114:217�230.

Mäkikangas, A., Bakker, A. B., and Schaufeli, W. B. (2017). Antecedents of daily

team job crafting. European Journal of Work and Organizational Psychology,

26(3):421�433.

Martini, A., Pareto, L., and Bosch, J. (2013). Improving businesses success by

managing interactions among agile teams in large organizations. In Interna-

tional Conference of Software Business, pages 60�72. Springer.

Mattarelli, E. and Tagliaventi, M. R. (2012). How o�shore professionals' job

dissatisfaction can promote further o�shoring: Organizational outcomes of job

crafting. Journal of Management Studies, 52(5):585�620.

McLarnon, B., Robinson, P., Milligan, P., and Sage, P. (2014). An iterative

approach to trustable systems management automation and fault handling.

Journal of Network and Systems Management, 22(3):366�395.

Mohamed, S. I. (2015). DevOps shifting software engineering strategy Value based

perspective. ISOR Journal of Computing Engineering (ISOR-JCE), 17(2):51�

57.

Moore, G. E. (1965). Cramming more components onto integrated circuits. Elec-

tronics, pages 114�117.

Obstfeld, J., Knight, S., Kern, E., Wang, Q. S., Bryan, T., and Bourque, D.

(2014). Virl: the virtual internet routing lab. In Proceedings of the 2014 ACM

conference on SIGCOMM, pages 577�578. ACM.

http://www. fourmilab.ch/babbage/sketch.html
http://www. fourmilab.ch/babbage/sketch.html

REFERENCES 211

Ohly, S., Sonnentag, S., Niessen, C., and Zapf, D. (2010). Diary studies in

organizational research. Journal of Personnel Psychology, 9(2):79�93.

Oliveira, F., Eilam, T., Nagpurkar, P., Isci, C., Kalantar, M., Segmuller, W.,

and Snible, E. (2016). Delivering software with agility and quality in a cloud

environment. IBM Journal of Research and Development, 60(2-3):10:1�10:11.

Pass, S. and Ronen, B. (2014). Reducing the software value gap. Communications

of the ACM, 57(5):80�87.

Piekkari, R., Welch, C., and Paavilainen, E. (2009). The case study as disciplinary

convention: Evidence from international business journals. Organizational re-

search methods, 12(3):567�589.

Platt, J. (1992). �case study� in american methodological thought. Current

Sociology, 40(1):17�48.

Poppleton, S., Briner, R. B., and Kiefer, T. (2008). The roles of context and

everyday experience in understanding work-non-work relationships: A qualita-

tive diary study of white-and blue-collar workers. Journal of Occupational and

Organizational Psychology, 81(3):481�502.

Qumer, A. and Henderson-Sellers, B. (2008). A framework to support the eval-

uation, adoption and improvement of agile methods in practice. Journal of

Systems and Software, 81(11):1899�1919.

Ragin, C. C. (1992). Introduction: cases of" what is a case?"(pp. 1-17). In Ragin,

C. C. and Becker, H. S., editors, What is a case?: Exploring the foundations

of social inquiry, pages 1�17. Cambridge University Press, Cambridge.

Ragin, C. C. (1997). Turning the tables: How case-oriented research challenges

variable-oriented research. Comparative social research, 16:27�42.

Ranchal, R., Mohindra, A., Manweiler, J. G., and Bhargava, B. (2015). RADical

strategies for engineering web-scale cloud solutions. IEEE Cloud Computing,

2(5):20�29.

REFERENCES 212

Randell, B. (1994). The origins of computer programming. IEEE Annals of the

History of Computing, 16(4):6�14.

Randell, B. (1996). The 1968/69 NATO Software Engineering Reports. History

of Software Engineering, page 37.

Rayl, A. J. S. (2008). NASA Engineers and Scientists-Transforming Dreams

Into Reality. available at: https://www.nasa.gov/50th/50th_magazine/

scientists.html accessed: May 2020.

Reis, H. T. and Gable, S. L. (2000). Event-sampling and other methods for

studying everyday experience. In Reis, H. T. and Judd, C. M., editors, Hand-

book of research methods in social and personality psychology, pages 190�222.

Cambridge University Press, Cambridge.

Rhodes, C. (2016). Business Statistics. House of Commons Library, avail-

able at: http://researchbriefings.files.parliament.uk/documents/

SN06152/SN06152.pdf, accessed: Mar 2017.

Robson, C. and McCartan, K. (2016). Real World Research. Wiley, 4th edition.

Chichester.

Roche, J. (2013). Adopting DevOps practices in quality assurance. Communica-

tions of the ACM, 56(11):38�43.

Royce, W. W. (1970). Managing the development of large systems: Concepts and

techniques. In 9th International Conference on Software Engineering, pages

328�38. ACM.

Rubin, K. S. (2012). Essential Scrum: A practical guide to the most popular Agile

process. Addison-Wesley. Michigan, USA.

Saunders, M. N., Saunders, M., Lewis, P., and Thornhill, A. (2011). Research

Methods for Business Students. Prentice Hall, 5th edition. Harlow.

Sebastian, I. M., Ross, J. W., Beath, C., Mocker, M., Moloney, K. G., and

Fonstad, N. O. (2017). How big old companies navigate digital transformation.

MIS Quarterly Executive, 16(3):197�213.

https://www.nasa.gov/50th/50th_magazine/scientists.html
https://www.nasa.gov/50th/50th_magazine/scientists.html
http://researchbriefings.files.parliament.uk/documents/SN06152/SN06152.pdf
http://researchbriefings.files.parliament.uk/documents/SN06152/SN06152.pdf

REFERENCES 213

Sill, A. (2015). Emerging standards and organizational patterns in cloud com-

puting. IEEE Cloud Computing, 2(4):72�76.

Simons, H. (2009). Case study research in practice. SAGE publications.

Smeds, J., Nybom, K., and Porres, I. (2015). DevOps: a de�nition and per-

ceived adoption impediments. In International Conference on Agile Software

Development, pages 166�177. Springer.

Smidts, C., Stutzke, M., and Stoddard, R. W. (1998). Software reliability mod-

eling: an approach to early reliability prediction. IEEE Transactions on Reli-

ability, 47(3):268�278.

Sommerville, I. (1992). Software Engineering. Addison-Wesley, 4th edition. New

York.

Stake, R. E. (1994). Case studies. In Denzin, N. K. and Lincoln, Y. S., editors,

Handbook of qualitative research, pages 236�247. Sage, Thousand Oaks, CA.

Stake, R. E. (1995). The art of case study research. Sage, Thousand Oaks, CA.

Stake, R. E. (2000). Case studies. In Denzin, N. K. and Lincoln, Y. S., editors,

Handbook of qualitative research, pages 435�454. Sage, Thousand Oaks, CA,

2nd edition.

Suddaby, R. (2006). From the editors: What grounded theory is not. Academy

of Management Journal, 49(4):633�642.

Sun, D., Fu, M., Zhu, L., Li, G., and Lu, Q. (2016). Non-intrusive anomaly detec-

tion with streaming performance metrics and logs for DevOps in public clouds:

a case study in aws. IEEE Transactions on Emerging Topics in Computing,

4(2):278�289.

Takimoto, M., Komine, H., and Tamura, K. (2016). Network DevOps solution

for creating new network services. FUJITSU Sci. Tech. J, 52(2):8�12.

Tamburri, D. A., Kruchten, P., Lago, P., and van Vliet, H. (2015). Social debt in

software engineering: insights from industry. Journal of Internet Services and

Applications, 6(1):1�17.

REFERENCES 214

Teddlie, C. (2005). Methodological issues related to causal studies of leader-

ship: A mixed methods perspective from the usa. Educational Management

Administration & Leadership, 33(2):211�227.

Thomas, G. (2011). A typology for the case study in social science following a

review of de�nition, discourse, and structure. Qualitative inquiry, 17(6):511�

521.

Tims, M., Bakker, A. B., and Derks, D. (2014). Daily job crafting and the self-

e�cacy - performance relationship. Journal of Managerial Psychology, pages

490�507.

Tran�eld, D. R., Denyer, D., and Smart, P. (2003). Towards a methodology for

developing evidence-informed management knowledge by means of systematic

review. British Journal of Management, 14:207�222.

Tseitlin, A. (2013). The antifragile organization. Communications of the ACM,

56(8):40�44.

Turing, A. M. (1937). On Computable Numbers, with an Application to the

Entscheidungsproblem. J. of Math, 58:345�363.

Turing, A. M. (2009). Computing Machinery and Intelligence. In Parsing the

Turing Test, pages 23�65. Springer. Originally published by Turing in 1950.

Veres, O., Kunanets, N., Pasichnyk, V., Veretennikova, N., Korz, R., and Leheza,

A. (2019). Development and operations - the modern paradigm of the work of

it project teams. In 2019 IEEE 14th International Conference on Computer

Sciences and Information Technologies (CSIT), volume 3, pages 103�106.

Walls, M. (2013). Building a DevOps Culture. O'Reilly. Sebastopol, USA.

Welch, C., Piekkari, R., Plakoyiannaki, E., and Paavilainen-Mäntymäki, E.

(2011). Theorising from case studies: Towards a pluralist future for interna-

tional business research. Journal of International Business Studies, 42(5):740�

762.

REFERENCES 215

Wettinger, J., Breitenbücher, U., Falkenthal, M., and Leymann, F. (2017). Col-

laborative gathering and continuous delivery of DevOps solutions through

repositories. Computer Science-Research and Development, 32(3-4):281�290.

Wettinger, J., Breitenbücher, U., Kopp, O., and Leymann, F. (2016). Streamlin-

ing DevOps automation for cloud applications using TOSCA as standardized

metamodel. Future Generation Computer Systems, 56:317�332.

Wieviorka, M. (1992). Case studies: History or sociology. In Ragin, C. and S,

B. H., editors, What is a case? Exploring the foundations of social inquiry,

pages 159�172. Cambridge University Press, Cambridge.

Wrzesniewski, A. and Dutton, J. E. (2001). Crafting a job: Revisioning employees

as active crafters of their work. Academy of Management Review, 26(2):179�

201.

Yin, R. K. (2013). Case study research: Design and methods. Sage, 5th edition.

Young, R. A. and Collin, A. (2004). Introduction: Constructivism and social

constructionism in the career �eld. Journal of vocational behavior, 64(3):373�

388.

Zikmund, W. G., Babin, B. J., Carr, J. C., and Gri�n, M. (2013). Business

Research Methods. Cengage Learning, 9th edition. Mason, OH.

�mite, D., Moe, N. B., and Ågerfalk, P. J. (2010). Coordination between global

agile teams: From process to architecture. In Agility Across Time and Space.

Springer.

216

Appendices

APPENDICES 217

Appendix 1: Focus Group Itinerary

09:00 Registration, Tea/Co�ee and Networking.

09:15 Welcome and Overview (S Jones / F Lettice / J Noppen).

09:20 Exercise 1 � Discuss and agree on conceptual attributes of DevOps in sub-

groups.

10:00 Feedback and discussion with whole group.

10:20 Tea/Co�ee and Networking.

10:40 Exercise 2 � Evaluate/Produce de�nitions based on agreed conceptual in

sub-groups.

11:30 Feedback and discussion with whole group � agree on �nal de�nition.

12:00 Endnote: �Hi, I'm a Devopeler!� (Dom Davis).

12:15 Q&A, Closing Remarks and Finish (S Jones / F Lettice / J Noppen).

12:25 Lunch and Networking.

APPENDICES 218

Appendix 2: Focus Group Photos

Figure 6.5: Example of a set of prioritised attributes of DevOps as undertaken
by participants within group 2.

APPENDICES 219

Figure 6.6: Researcher placing DevOps de�nitions on the wall.

DevOps: Towards an industry grounded definition.
This work seeks to examine the ongoing problem of defining DevOps, and forms a major constituent
of a doctoral research project at the University of East Anglia. This very short survey seeks to
capture the opinion on two definitions produced in conjunction with industrial partners actively
practising DevOps.

The survey is structured into four main sections and should take no more than 10 minutes to
complete.

If you have any questions regarding this survey, the nature of the research being conducted, would
like to know more or are potentially interested in participating in further DevOps research, please
contact:

- Steve Jones (primary researcher): stephen.j.jones(at)uea.ac.uk
- Fiona Lettice (supervisor): f.lettice(at)uea.ac.uk
- Joost Noppen (supervisor): j.noppen(at)uea.ac.uk.

Many thanks for your time and consideration in completing this short survey.

*Required

1. You and your views on DevOps
This section seeks to know more about the organisation you work for, and your agreement on
concepts potentially related to DevOps.

1. 1.1 How old is the organisation/business your work for? *
Mark only one oval.

 0 - 3 years

 4 - 9 years

 10 - 20 years

 21 - 50 years

 50 or more years

 Don't Know

2. 1.2 How many employees does the organisation/business you work for have? *
Mark only one oval.

 0 - 10

 11 - 20

 21 - 50

 51 - 100

 101 - 249

 250 or more

 Don't Know

APPENDICES 220

Appendix 3: Specimen Questionnaire

3. 1.3 What sector is the organisation/business within? *
Mark only one oval.

 Private

 Public

 Non-Profit/Charity

 Don't Know

4. 1.4 Why does the organisation/business develop software? *
Mark only one oval.

 For profit

 For internal use

 Both of the above

5. 1.5 In your opinion, is DevOps a methodology? role? both? or something else? *
Mark only one oval.

 Methodology

 Role

 Both

 Don't Know

 Other:

6. 1.6 Do you agree or disagree that the following approaches/concepts are important in
DevOps? *
Mark only one oval per row.

Strongly Agree Agree Neither Disagree Strongly Disagree

Automation
Change Control
Configuration Management
Data Analytics
Service Management

7. 1.7 Do you agree or disagree that the following team aspects are important in DevOps? *
Mark only one oval per row.

Strongly Agree Agree Neither Disagree Strongly Disagree

Accountability
Decision Making
Ownership
Responsibility
Skills

APPENDICES 221

8. 1.8 Do you agree or disagree that the following business outcomes are important in
DevOps? *
Mark only one oval per row.

Strongly Agree Agree Neither Disagree Strongly Disagree

Reduced cost
Informed Decision Making
Quality
Simplicity/Granularity
Time

9. 1.9 Do you agree or disagree that the following information aspects are important in
DevOps? *
Mark only one oval per row.

Strongly Agree Agree Neither Disagree Strongly Disagree

Measurability / Metrics
Observability

2. DevOps - Definition Evaluation
Please examine the following two definitions and proceed to answer the question below indicating
your preference.

Definition 1

"DevOps is a continuous improvement methodology that uses a set of tools, streamlined and
automated processes, and empowered, multi-disciplinary teams to deliver, operate and inform
business outcomes."

Definition 2

"DevOps is an evolution in how IT services are delivered and supported. It stresses cross functional
collaboration to bridge the gradational organisational process divide between development and
operational teams. It aims to reduce the time between committing a change to a system and the
change being placed into production."

10. 2.1 Which definition do you prefer? *
Mark only one oval.

 Definition 1

 Definition 2

3. Your Comments on the Definitions
In the next two questions, please provide up to three positive and three negative comments for each
definition. This can be as simple as list of words, or paragraphs if you prefer. The definitions are
repeated below for your convenience:

Definition 1

"DevOps is a continuous improvement methodology that uses a set of tools, streamlined and
automated processes, and empowered, multi-disciplinary teams to deliver, operate and inform
business outcomes."

APPENDICES 222

11. 3.1 - Definition 1 - Positives *

12. 3.2 - Definition 1 - Negatives *

Definition 2

"DevOps is an evolution in how IT services are delivered and supported. It stresses cross functional
collaboration to bridge the gradational organisational process divide between development and
operational teams. It aims to reduce the time between committing a change to a system and the
change being placed into production."

13. 3.3 - Definition 2 - Positives *

14. 3.4 - Definition 2 - Negatives *

4. Nearly there...
Just a few more questions, mainly focusing on your role, and how it fits into DevOps.

15. 4.1 What is your current job title? *

APPENDICES 223

APPENDICES 224

Appendix 4: Diary Template and Guide Questions

Markdown Diary Template

DevOps Study - AF and UEA

Diary Kept by: <your name >

Entry Title

Date: _[Date of Diary Entry]_

<content here >

Entry Title

Date: _[Date of Diary Entry]_

<content here >

Entry Title

Date: _[Date of Diary Entry]_

<content here >

APPENDICES 225

Plain Text Diary Template

DevOps Study - AF and UEA

Diary Kept by: <your name >

<Entry Title >

Date: <date >

<content here >

<Entry Title >

Date: <date >

<content here >

<Entry Title >

Date: <date >

<content here >

APPENDICES 226

Guide Questions for Diary Study

Participants are encouraged to consider these questions in their re�ective diaries,

but not to necessarily answer each question in every entry.

� What are you doing di�erently because of the new DevOps approach being

taken?

� Have you changed the way in which you do your tasks?

� Have you taken on any new tasks or projects?

� Have you changed the way in which you see your role in the organisa-

tion?

� Have you taken the initiative to work with di�erent people in the

organisation?

� What has been happening at work today/this week?

� What went well at work today/this week and why?

� What have been the key challenges at work today/this week and why?

� Any breakthroughs, personal and/or team achievements?

� How is the DevOps approach smoother/better, bumpier/worse or no di�er-

ent than previous approaches to software development you've used?

� How does it compare to agile processes (e.g. Scrum)?

� How does it compare to traditional non-agile processes (e.g. Water-

fall)?

� What do you think you or your team, manager(s) and or organisation as a

whole need to do or learn to make the DevOps approach work better?

1. (Open) You’ve given your job title as <job title>, can you tell me more about what you do in
this role at <organisation>?

a. (Probe) What is the most enjoyable thing about working for <organisation>?
b. (Probe) What is the most challenging part of your role here?
c. (Closed) (Managers) is this your first management role?

i. (If no) When did you first manage other people?

Notes for Question 1:
Consider paraphrasing a listed output and be sure to check the individuals role.

2. (Open) What did you do prior to joining <organisation>?
a. (Probe) How different was this role to the one you now do here?

Notes for Question 2:
Consider splitting the sub question if necessary to consider roles in different firms.

3. (Closed) Going back to your job role at <organisation>, are you aware that <organisation> is
adopting “DevOps”?

a. Probe: What does “DevOps” mean to you?

Notes for Question 3a:
The aim is to probe what knowledge they possess about DevOps, this may need additional
thinking on the spot with sharp follow-up questions to answers.

b. (Closed) Have you worked in a DevOps environment previously?
i. (Probe) (If Yes) How experienced do you feel with regards to DevOps?
ii. (Probe) (If Yes) How does it compare to the DevOps approach being

adopted by <organisation>?
iii. (Probe) (Both) How do you feel about <organisation>’s adoption of DevOps?
iv. (Probe) (Managers) How does management differ between DevOps and

non-DevOps approaches?

c. (Closed) (Managers) Do you feel your developers and operations staff require
additional skills for successfully working in a DevOps environment?

i. (Probe) What skills in particular?
ii. (Probe) What skills do they already possess?
iii. (Probe) When recruiting Developers/IT Operations, what skills and

experience do you look for?

Notes for Questions 3b and 3c:
Interesting to glean if the manager feels DevOps is a role or approach. Only ask iii if they are
actively involved in recruitment, and also be careful not to “lead” with this question though.

d. (Open) What tools would you associate with DevOps?
i. (Probe) What does <tool> do?
ii. (Closed) (Managers) Does <organisation> have any preference to open

source or propriety tools?

APPENDICES 227

Appendix 5: Protocol for Entrance Interviews

Notes for Question 3d:
Consider paraphrasing a listed output. Ask them to give an overview of specific tools as a means
to seeing what they actually know.

e. (Open) What do you believe Development Staff/IT Operations (ask as appropriate)
staff to do in their day to day job roles in a DevOps environment?

i. (Probe) How does this differ from a non-DevOps environment?
ii. (Probe) What (if any) cultural barriers exist by your perception?
iii. (Probe) (Managers) What management challenges does this raise?

Notes for Question 3e:
This question needs to be targeted at opposites… i.e. Devs need to be asked about Ops and
Vice Versa. Managers can be asked about both, especially if they are not specific to say Dev or
Ops themselves.

4. (Open) What does the notion of “Infrastructure as Code” mean to you?
a. (Probe) Who is it relevant too? IT Operations? Developers? Management?
b. (Probe) (If unknown / don’t know) What do you perceive it to be / mean?

Notes for Question 4:
Do NOT explain what is meant by “infrastructure as code” if the participant doesn’t know.
Instead, ask them to provide their perception or what they believe it could mean on face value. If
they don’t know, do not spend long on this question.

5. (Closed) Do you see your role changing as <organisation> further embraces DevOps?
a. (Probe)(if yes) In what ways do you perceive it changing?
b. (Probe) Do you see the culture at <organisation> changing too, if so, in what ways?
c. (Probe) Who is responsible for software deployment and maintenance at

<organisation>?

6. (Open) In what ways do you perceive DevOps is bringing or will bring change to
<organisation>?

a. (Probe) How do you feel such change would affect you?
b. (Probe) (Managers) Who would be affected by any change?
c. (Probe) (Managers) How well do you feel <organisation> copes with change?
d. (Probe) (Managers) What (if any) strategies do you have with regards to handing

DevOps related change?
e. (Probe) Where do you perceive the impact of DevOps associated change will occur

within <organisation>?
f. (Probe) (Developers) What methods did <organisation> use previously for Software

Development?
g. (Probe)(IT Operations) How was infrastructure managed at <organisation> prior to

DevOps adoption?

Notes for Questions 5 and 6:
Questions 5 and 6 may well be answered in tandem, so be aware. It would also be good to
gauge perceptions too.

APPENDICES 228

7. (Open) What is the perceived benefit(s) that DevOps will bring to <organisation>?

Notes for Question 7:
This is a critical question – be sure to at least ask this before finishing.

The final three questions are relaxed, and are designed to allow the participant an opportunity to
directly raise any questions or concerns with the research in the privacy of the interview.

8. How do you feel with regards to this research?

9. Do you have any questions or concerns regarding the research project?

10. Do you have any other questions or things you wish to discuss?

Notes for Question:
Questions 8 and 9 and 10 are a chance for the participant to ask any question they may have
and to find out further information.

End of Interview checklist:

 Thank the participant for their time and insights.

 Reiterate the options on the consent form – in particular, double check if they wish to

receive a transcript or the recording of the interview.

 Outline the next steps…
o Diary Study
o Transcriptions
o Mid-Term Interviews
o Exit Interview

 Ensure participant has contact details (provide a business card if possible).

APPENDICES 229

1. What does DevOps mean to you?
a. (Probe) How has <organisation> has taken a DevOps approach?

i. Have you noticed any improvements? If so, what?
b. (Probe) In your opinion, describe the role that senior management play in DevOps?

Notes for Question 1:
Capture views on DevOps and its adoption. Probe for discussion.

2. (Open) In your opinion, how has development progressed since the last interview?
a. (Probe) What has been the most challenging aspects?
b. (Probe) What has gone well?
c. (Probe) What, if anything, has gone wrong?
d. (Closed) (Managers) What, if any, management challenges have arisen?

i. How have you mitigated these challenges?

Notes for Question 2:
Capture individuals perceptions on the progress. Probe for discussion.

3. (Closed) Are you still having to maintain <legacy system>?
a. (Probe) What challenges does this introduce, if any?
b. (Probe) How would things be different if you did not have to deal with <legacy

system>?
c. (Probe)(Manager) How many developer hours, on average, are being taken up with

work on <legacy system>?
i. How does this impact on Harrier development?

Notes for Question 3:
Probing the the impact of legacy system maintenance on development activities where
applicable. This is especially relevant for Anglia Farmers, given the AFI system and the potential
impact to Harrier development.

Probing of participant’s diary entries.

Discuss themes and topics of interest arising from the participants submitted diaries

APPENDICES 230

Appendix 6: Protocol for Mid-Study Interviews

The final three questions are relaxed, and are designed to allow the participant an opportunity to
directly raise any questions or concerns with the research in the privacy of the interview.

4. How do you feel with regards to this research?

5. Do you have any questions or concerns regarding the research project?

6. Do you have any other questions or things you wish to discuss?

Notes for Questions 4, 5 and 6:
Questions 5 and 6 and 7 are a chance for the participant to ask any question they may have and
to find out further information.

End of Interview checklist:

 Thank the participant for their time and insights.

 Reiterate the options on the consent form – in particular, double check if they wish to

receive a transcript or the recording of the interview.

 Outline the next steps…
o Diary Study
o Transcriptions
o Mid-Term Interview 2 (for Anglia Farmers)
o Exit Interview

 Ensure participant has contact details (provide a business card if possible).

APPENDICES 231

1. What does DevOps mean to you?
a. (Probe) How has <organisation> has achieved DevOps?
b. (Probe) Where did you fit in to the DevOps approach?
c. (Probe) What has this meant for <new system development> and <legacy system

maintenance> (if applicable)?
d. (Probe) Has anything gone wrong, if so, what and why?
e. (Probe) How often is <organisation> releasing new features into production?

i. (Probe) How has this changed since <start of study period>?
f. (Probe) How does management feature in <organisation’s> DevOps approach?

Notes for Question 1:
Capture views on DevOps and the adoption of it at the organisation. This needs to ask how it
has achieved this. In particular, probe legacy system maintenance with AF participants.

2. (Closed) Has your role changed since <start of study period>?
a. (Probe) (If yes) How and in what ways?
b. (Probe) How has <Software Development> / <IT operations> function/team changed

since <start of study period>?
c. (Probe) Has their been any integration with <other function> in terms of DevOps and

if so, in what ways?

Notes for Question 2:
About probing the work identity – how has this changed? Also look into their perceptions of the
team – has it changed? How?. Probe for function/team level changes – especially
transformative.

Probing of participant’s diary entries.

Discuss themes and topics of interest arising from the participants submitted diaries

3. (Open) How has Working for <Organisation> compared to working in your previous
role(s)?

4. (Close) Do you feel your time at <Organisation> has helped if you go into a DevOps
environment elsewhere?

a. (Probe) In what sense?

Notes for Questions 4 and 5:
Caputring remarks on what the organisation has implemented to how this has helped develop
the participant professionally. Probe for discussion.

APPENDICES 232

Appendix 7: Protocol for Exit Interviews

The final three questions are relaxed, and are designed to allow the participant an opportunity to
directly raise any questions or concerns with the research in the privacy of the interview.

5. How do you feel with regards to this research?

6. Do you have any questions or concerns regarding the research project?

7. Do you have any other questions or things you wish to discuss?

Notes for Questions 5, 6 and 7:
Questions 5 and 6 and 7 are a chance for the participant to ask any question they may have and
to find out further information.

End of Interview checklist:

 Thank the participant for their time and insights.

 Reiterate the options on the consent form – in particular, double check if they wish to

receive a transcript or the recording of the interview.

 Outline the next steps…
o Diary Study conclusion
o Transcriptions
o Feedback

 Ensure participant has contact details (provide a business card if possible).

APPENDICES 233

APPENDICES 234

Appendix 8: Ada Lovelace, Babbage's Analytical

Engine and Note G

Figure 6.7: 1840 portrait of Ada Lovelace by Alfred E. Chalon and trial model
of Babbage's Analytical Engine, Science Museum, London [Hollings et al., 2018].

Figure 6.8: Note G, Lovelace's algorithm to compute Bernoulli Numbers using
the Analytical Engine [Hollings et al., 2018].

APPENDICES 235

Appendix 9:

Systematic Literature Review Bibliography

ID Reference

slr01 Gupta, V., Kapur, P., and Kumar, D. (2017). Modeling and measuring attributes in-

�uencing DevOps implementation in an enterprise using structural equation modeling.

Information and Software Technology, 92:75�91

slr02 Dennehy, D. and Conboy, K. (2017). Going with the �ow: An activity theory analysis of

�ow techniques in software development. Journal of Systems and Software, 133:160�173

slr03 Fokaefs, M., Barna, C., and Litoiu, M. (2017). From DevOps to BizOps: Economic

sustainability for scalable cloud applications. ACM Transactions on Autonomous and

Adaptive Systems (TAAS), 12(4):25

slr04 Ghezzi, C. (2017). Of software and change. Journal of Software: Evolution and Process,

29(9)

slr05 Wettinger, J., Breitenbücher, U., Falkenthal, M., and Leymann, F. (2017). Collaborative

gathering and continuous delivery of DevOps solutions through repositories. Computer

Science-Research and Development, 32(3-4):281�290

slr06 Chen, L. (2017). Continuous delivery: overcoming adoption challenges. Journal of Sys-

tems and Software, 128:72�86

slr07 Airaj, M. (2017). Enable cloud DevOps approach for industry and higher education.

Concurrency and Computation: Practice and Experience, 29(5)

slr08 Fitzgerald, B. and Stol, K.-J. (2017). Continuous software engineering: A roadmap and

agenda. Journal of Systems and Software, 123:176�189

slr09 Sebastian, I. M., Ross, J. W., Beath, C., Mocker, M., Moloney, K. G., and Fonstad,

N. O. (2017). How big old companies navigate digital transformation. MIS Quarterly

Executive, 16(3):197�213

slr10 Kneuper, R. (2017). Sixty years of software development life cycle models. IEEE Annals

of the History of Computing, 39(3):41�54

slr11 Karl, H., Dräxler, S., Peuster, M., Galis, A., Bredel, M., Ramos, A., Martrat, J., Siddiqui,

M. S., Van Rossem, S., Tavernier, W., et al. (2016). DevOps for network function vir-

tualisation: an architectural approach. Transactions on Emerging Telecommunications

Technologies, 27(9):1206�1215

APPENDICES 236

slr12 Sun, D., Fu, M., Zhu, L., Li, G., and Lu, Q. (2016). Non-intrusive anomaly detection

with streaming performance metrics and logs for DevOps in public clouds: a case study

in aws. IEEE Transactions on Emerging Topics in Computing, 4(2):278�289

slr13 Takimoto, M., Komine, H., and Tamura, K. (2016). Network DevOps solution for creating

new network services. FUJITSU Sci. Tech. J, 52(2):8�12

slr14 Wettinger, J., Breitenbücher, U., Kopp, O., and Leymann, F. (2016). Streamlining De-

vOps automation for cloud applications using TOSCA as standardized metamodel. Fu-

ture Generation Computer Systems, 56:317�332

slr15 Oliveira, F., Eilam, T., Nagpurkar, P., Isci, C., Kalantar, M., Segmuller, W., and Snible,

E. (2016). Delivering software with agility and quality in a cloud environment. IBM

Journal of Research and Development, 60(2-3):10:1�10:11

slr16 Kim, M., Mohindra, A., Muthusamy, V., Ranchal, R., Salapura, V., Slominski, A., and

Khalaf, R. (2016). Building scalable, secure, multi-tenant cloud services on ibm bluemix.

IBM Journal of Research and Development, 60(2-3):8:1�8:12

slr17 Ranchal, R., Mohindra, A., Manweiler, J. G., and Bhargava, B. (2015). RADical strate-

gies for engineering web-scale cloud solutions. IEEE Cloud Computing, 2(5):20�29

slr18 Sill, A. (2015). Emerging standards and organizational patterns in cloud computing.

IEEE Cloud Computing, 2(4):72�76

slr19 McLarnon, B., Robinson, P., Milligan, P., and Sage, P. (2014). An iterative approach to

trustable systems management automation and fault handling. Journal of Network and

Systems Management, 22(3):366�395

slr20 Lapham, M. A. (2014). Software sustainment�now and future. CrossTalk, 27(1):33�36

slr21 Pass, S. and Ronen, B. (2014). Reducing the software value gap. Communications of the

ACM, 57(5):80�87

slr22 Roche, J. (2013). Adopting DevOps practices in quality assurance. Communications of

the ACM, 56(11):38�43

slr23 Feitelson, D. G., Frachtenberg, E., and Beck, K. L. (2013). Development and deployment

at Facebook. IEEE Internet Computing, 17(4):8�17

slr24 Hosono, S. (2012). A DevOps framework to shorten delivery time for cloud applications.

International Journal of Computational Science and Engineering, 7(4):329�344

slr25 Obstfeld, J., Knight, S., Kern, E., Wang, Q. S., Bryan, T., and Bourque, D. (2014).

Virl: the virtual internet routing lab. In Proceedings of the 2014 ACM conference on

SIGCOMM, pages 577�578. ACM

slr26 Bass, L., Weber, I., and Zhu, L. (2015). DevOps: A Software Architect's Perspective.

Addison-Wesley Professional

APPENDICES 237

slr27 Cois, C. A., Yankel, J., and Connell, A. (2014). Modern DevOps: Optimizing software

development through e�ective system interactions. In Professional Communication Con-

ference (IPCC), 2014 IEEE International, pages 1�7. IEEE

slr28 Császár, A., John, W., Kind, M., Meirosu, C., Pongrácz, G., Staessens, D., Takacs, A.,

and Westphal, F.-J. (2013). Unifying cloud and carrier network: Eu fp7 project unify.

In Utility and Cloud Computing (UCC), 2013 IEEE/ACM 6th International Conference

on, pages 452�457. IEEE

slr29 Smeds, J., Nybom, K., and Porres, I. (2015). DevOps: a de�nition and perceived adoption

impediments. In International Conference on Agile Software Development, pages 166�

177. Springer

slr30 Walls, M. (2013). Building a DevOps Culture. O'Reilly. Sebastopol, USA

slr31 Mohamed, S. I. (2015). DevOps shifting software engineering strategy Value based per-

spective. ISOR Journal of Computing Engineering (ISOR-JCE), 17(2):51�57

slr32 Dyck, A., Penners, R., and Lichter, H. (2015). Towards de�nitions for release engineering

and DevOps. In Release Engineering (RELENG), 2015 IEEE/ACM 3rd International

Workshop on, pages 3�3. IEEE

slr33 Lwakatare, L. E., Kilamo, T., Karvonen, T., Sauvola, T., Heikkilä, V., Itkonen, J., Ku-

vaja, P., Mikkonen, T., Oivo, M., and Lassenius, C. (2019). Devops in practice: A multiple

case study of �ve companies. Information and Software Technology, 114:217�230

slr34 Veres, O., Kunanets, N., Pasichnyk, V., Veretennikova, N., Korz, R., and Leheza, A.

(2019). Development and operations - the modern paradigm of the work of it project

teams. In 2019 IEEE 14th International Conference on Computer Sciences and Infor-

mation Technologies (CSIT), volume 3, pages 103�106

slr35 Koilada, D. K. (2019). Business model innovation using modern devops. In 2019 IEEE

Technology Engineering Management Conference (TEMSCON), pages 1�6

APPENDICES 238

Appendix 10: De�nition Response Themes

De�nition One - Positive Themes

Accurate Delivery Productivity Enhancement
Agile Empowered Quality

Aspirational Impactful Responsibility
Automation Information Role

Broad Methodology Simple
Business Outcomes Metrics Streamlined

Clear Mindset Structure
Collaboration Multi-Disciplinary Teams Succinct

Concise Non-Technical Tools
Continuous Improvement Operational Work Flow

Culture Pertinent

De�nition One - Negative Themes

No Accountability No Continuous Delivery No Ownership
Automation No Culture No Reducing Time
No Behaviour Empowered Silos

Business Outcomes Limited Streamlined
Buzzwordy Management Focus Technical

No Collaboration Methodology No Testing
Complex Multi-Disciplinary Teams Tools

Continuous Improvement Operational Vague

APPENDICES 239

De�nition Two - Positive Themes

Accurate Evolution Reducing Time
Breaking Silos Goal Resources

Bridge Informative Role
Business Outcomes Innovative Simple

Collaboration IT Services Skills
Communication Measured Support

Continuous Improvement Non-Prescriptive Team
Culture Non-Technical Technical
Delivery Organisational Process Technology
E�ciency Prediction

De�nition Two - Negative Themes

No Accountability No Continuous Delivery No Ownership
Academic Idiotic No Process
Adversarial IT Services No Quality
Archaic ITIL No Streamlining

Assumptive Limited No Testing
Buzzwordy Management Focus No Tools
Change Meaningless Obfuscatory
Clunky Metrics Operational

Collaboration Misrepresentative Opinionated
Complex No Automation Short

Development No Behaviour Too Speci�c
Disjointed No Business Value Unfocused
Division No Communication Vague
Evolution No Culture Verbose
Frustrating No Delivery
Generic No Empowerment

A
P
P
E
N
D
IC
E
S

240
Appendix 11: Specimen Theme Coding for Case Study

ID P. Theme S. Theme T. Theme Date P Summary Raw Text

I33 Culture Decision
Making

Measure-
ability

12/01/2016 P6 Culture shift already evident
with Dev team

I've seen it change since I've been here. So, a couple of the de-
velopers have never used Jira, and now we're using it everyday to
managed our workload. I can see that there is change at AF, de�-
nitely since I've been here... and how we work and how we get the
business involved in every decision we make because it's going to
save time and money.

I39 Job
Crafting

Rela-
tionship
Crafting

Culture 12/01/2016 P7 Dealing with resistance by
trying to buy-in individuals
to the DevOps agenda

I'm basically pushing through the agenda that I've got and feeling
ahead to see where it meets resistance and trying to then break
that resistance down individually.

I46 Process Culture Continuous
Integration

12/01/2016 P6 DevOps from the tester -
deployment and operations is
the focus

I think its like a structure or guidelines of sorts. But DevOps is
deployment and, something . . . that stands out for me... how we
deploy and I guess if I said Agile... is that a cop out? DevOps is
an agile approach? Yes, DevOps, how we develop as Operations I
guess, how the Developers all work together, how we deploy, how
we redeploy and stu�. It's all Agile, at least my take on it.

I03 Legacy
Systems

Business
Man-

agement

25/01/2016 P10 DevOps will bring improved
process, quality and greater
accountability for the devel-
oper

I think there's a roadmap that Jon would have, and I think there's
certain would like to have and nice to have features on AFI. But I
think mostly that is either done or is being pushed into Harrier as
a feature. So he would de�nitely have a bigger and more accurate
view of where AFI is. But I think there is an understanding in the
business that it is end of life.

D25 Job
Crafting

Rela-
tionship
Crafting

Automa-
tion

23/02/2016 P7 Reaching out to P13 and
providing necessary training
and support. Strategic
element in the relationship
crafting by leveraging P13's
intellectual curiosity.

Last week <participant 13> went on a three day PowerShell course.
Mainly this was for him to become more productive in his current
job. We have told him that these skills are transferable to Azure
Power Shell and could be very useful in helping us automate much
of our environments. Next time <participant 3>, <participant
12>, <participant 13> and myself are in we will talk this through
and see if there is any interest in <participant 13> doing Azure
PowerShell work

D43 Respon-
sibility

Release 04/04/2016 P1 Responsibilities in release
procedure

So the actual release procedure worked really well on the 24th. Jon
made a release bullet point list of about 12 things, Nitesha handled
anything data migration wise. I took the website o�ine, pressed
my git�ow button in source tree and the magic happened.

I89 Culture Respon-
sibility

03/05/2016 P8 Hostile response from Ops
- subsequently put P8 o�
doing anything with Ops or
infrastructure related tasks

The last time I tried to do anything on the operations side, or put
my nose in I got shouted at. I just asked Operations about some
upgrades and if they've upgraded one of the servers to the HTTPS
and I got moaned at saying it's my responsibility, and then he goes,
that for this I go to him, so what am I meant to do then?

D54 Job
Crafting

Rela-
tionship
Crafting

Task
Crafting

11/05/2016 P1 New laptop, Ops error but
P1 recti�ed and provided
solution to Ops

New laptop is here and has 16GB RAM, i7 and SSD. Seems a lot
faster so far. What was interesting was <P7> got OPs to install
a list of software. All was as expected except for SQL Server. We
wanted Express with Management Studio, but got just Management
Studio. So I �xed that myself and gave OPs the correct exe to use
for the rest of the team's laptops.

A
P
P
E
N
D
IC
E
S

241
ID P. Theme T. Theme T. Theme Date P Summary Raw Text

D65 Job
Crafting

Cognitive
Crafting

11/08/2016 P4 Re�ecting that undertaking
back end work was good for
him

Getting the CSS working on the front end was a big achievement
for me too. I like to get involved in all aspects of Harrier, so the
back end work is another string in my bow.

D93 Ownership Respon-
sibility

Control 20/10/2016 P10 Key Person Reliance - One
individual who is leaving
owned a lot of the Azure
work

So we are losing two of our team - one to relocation, the other to
contracting lucrativeness. The former is the real concern, as he
has by and large owned a lot of the Azure related work within the
team.

D100 Job
Crafting

Rela-
tionship
Crafting

Release 03/11/2016 P4 P4 not only enjoying the
work across the stack, but
also considering how his
contributions can make a
positive di�erence for a
department he has never
worked with before.

I have completed the invoice feature I was working on previously.
While this has yet to be released (although it is now in the pipeline
for release), a demo has been given to the end users with favourable
reactions and the feeling this will make things much easier for
them. It was good to learn and apply the new technology previ-
ously mentioned in my diary to feature. While an enjoyable under-
taking, it was challenging too as this was the �rst time I worked
with the invoicing team, and mainly due to the di�ering termi-
nology. The system they presently use is a bit chaotic, I believe
Harrier will signi�cantly improve things for them.

I118 Release Process 06/12/2016 P2 Dev team handling releases
of Harrier now

I think basically the software team are doing the releases generally
with Harrier and, I think, the Ops team, I'm not quite sure what
they do, but I think they do a little bit of SQL and stu� to help
out, and that sort of thing, so it's a bit of cross over on both parts.

D115 Culture Decision
Making

Business
Man-

agement

15/12/2016 P10 Application of DevOps
principles - Development and
IT Support to work closer -
most challenging, culturally.

We host on IIS (Microsoft's webserver product). This will require
Support and Development to work closely together to monitor
and maintain the environment. Culturally, this would be the most
challenging path to take, but may provoke the most change in how
the two sides currently work. (Or it could devolve into a living
nightmare of passing the blame and fence building, but hey, best to
be positive in our outlook.)

D124 Business
Man-

agement

Process 13/01/2017 P11 Migrating users to Harrier
from AFI not well handled

Encouragement of use of software has not been handled great,
would have been good to see some �oor walking as such of support
to just help with issues as they happened. This would help to build
a better rapport with users and support.

I212 Knowledge
Man-

agement

Transfor-
mation

16/02/2017 P8 Team-level transformation
in knowledge management
where new members can
access easily existing knowl-
edge.

Personally I think the skill set of the whole team's gone up and
that's mainly through the feedback via call requests and this gives
the opportunity to share some skills and knowledge and techniques
between say new employees and existing ones who haven't been on
the system before. So I think that's very, very positive.

I154 Culture 20/03/2017 P2 Silos - but not necessary 'si-
los` - they do work together

There are de�nitely still two very distinct departments, but yeah,
I think we work well together. I wouldn't necessarily say it's a
problem.

I172 Culture 20/03/2017 P5 DevOps culture - self-
su�cient team - blending
of functions

DevOps is where a team of developers become self-su�cient in
terms of their IT operation. It's a blending, a melding of the
typical operations skills with the software development skills,
certainly in Anglia Farmers, with a view to making us self-su�cient
and more e�cient.

Case Study Time Period A – Diary Index

ID Themes Raw Text

D05 Job Crafting The agenda is to communicate the developer architecture vision to operations and what
tools and processes are needed to make sure this works on Azure.

D12 Ownership The upshot is that "Dev" will lead all the deployment and configuration work except where
"Ops" are needed to make changes that Dev do not have access to (e.g. DNS settings).

D17 Job Crafting Ops are not proactively looking to get involved in the Harrier rollout.

D19 Legacy Systems;
Continuous
Integration

The contrast is marked - no CI, few unit tests - and shows how important getting that
build pipeline up and running really is. Thinking about environments and how to deploy
code quickly to them is something that needs to happen right at the start of the
development process.

D25 Job Crafting;
Automation

Last week <name omitted> went on a three day PowerShell course. Mainly this was for
him to become more productive in his current job. We have told him that these skills are
transferable to Azure PowerShell and could be very useful in helping us automate much
of our environments. Next time <name omitted>, <name omitted>, <name omitted> and
myself are in we will talk this through and see if there is any interest in <name omitted>
doing Azure PowerShell work

D28 Job Crafting He gave a really interesting talk, some of which really resonated with me regarding the
situation at AF. Most interesting was his view that commitment from senior management
is essential for the success of creating a DevOps working environment. Without that
commitment, no matter how proactive the development team is, the barriers between dev
and ops are not going to come down on their own.

D31 Job Crafting;
Responsibility

I do feel if OPs were more helpful on the Azure side we would be nearly a sprint ahead
by now. I think the mistake we made was doing Azure ourselves. We are now seen as
able to do it for now, but keep having to do more and more. A better approach would
have been to have had early requirements supported by management on the OPs team.
I think our technical intrigue as developers has actually hurt us here.

D38 Job Crafting;
Continuous
Integration

I made all the azure web apps, Azure Power Shell runbooks, added a config transform
to each microservice, added projects to Jenkins, Hipchat rooms, I think that's the big stuff.
No OPs involvement was required.

D39 Legacy Systems;
Decision Making;

Measurability /
Metrics

Optimistically, I had hoped that this would take an extra week to deliver but there was far
more to it than I had anticipated (i.e. there was far more going on in AFI that needed to
be replicated on Harrier than I assumed) and it has ended up being an extra 3 weeks in
total.

D41 Job Crafting After doing some reading up on Azure Stack (brings Azure cloud technology and benefits
to on premises) I decided to run this past the senior developers, <name omitted> and the
Ops team. I set up a meeting in a room with a TV and we watched a couple of Microsoft-
produced videos on Azure Stack that were mainly non-technical in nature.

D43 Responsibility;
Release

So the actual release procedure worked really well on the 24th. <name omitted> made a
release bullet point list of about 12 things, <name omitted> handled anything data
migration wise. I took the website offline, pressed my Gitflow button in source tree and
the magic happened.

D54 Job Crafting New laptop is here and has 16GB RAM, i7 and SSD. Seems a lot faster so far. What was
interesting was <name omitted> got OPs to install a list of software. All was as expected
except for SQL Server. We wanted Express with Management Studio,but got just
Management Studio. So I fixed that myself and gave OPs the correct exe to use for the
rest of the teams laptops.

APPENDICES 242

Appendix 12: Case Study Theme and Quote Index

Case Study Time Period A – Interview Index

ID Themes Raw Text

I02 Culture;
Legacy Systems;

Quality

Certainly, when certain people were working on AFI predominately, there was a bit of
resentment ... like I’m not actually on the new project, and everyone else is getting to do
this new, exciting stuff and they’re stuck doing all this legacy Visual Basic (VB) code,
which no one really likes.

The main problem with it is there is no separation of concerns... you can’t pull one part
out and replace it with another. You can’t do incremental changes, so if you pull one part
out... it’s like tugging on threads, and it all starts to unravel"

I03 Legacy Systems But I think there is an understanding in the business that it is end of life.

I05 Decision Making;
Quality;

Legacy Systems

The lack of architecture meant you couldn’t tease it apart and there were no layers... so
you couldn’t take this layer out and replace it, or I’ll take this thing out and there would be
a nice clean interface here that I could implement differently. So, it was a bit of a mess,
and the decision was taken to re-write it.

I06 Responsibility;
Culture;
Process

Blurring the lines between what constitutes development work and ongoing support,
deployment and management of the real estate. Responsibilities will merge and become
everyone’s responsibility. Always had comfort from the fact that there’s a certain point
you’re not responsible for your work anymore. If you don’t live with your mistakes as a
developer, you don’t really improve as a developer.

I10 Process;
Culture

I don’t see them being involved in the actual sprint which is developer focused. But I could
see them being involved in the release.

I19 Culture;
Responsibility;

Resistance

The whole Azure thing, the whole third party who used to manage the servers. I think
there’s a lot of politics there too, that holds stuff up. It will be slow because there will be
resistance from different managers and people who won’t necessarily make the decision.
Because they know the people in those companies, and you’re much more likely to do
business with a friend, than do it a new way. The ’I’ve been using him for 10 years’
mentality.

I20 Legacy Systems;
Process;
Quality

I think AFI has been kept out of that. It seems (AFI), very... well I wouldn’t even call it
Waterfall, rather a ‘do it as it comes’ very reactive, I don’t know what the word is for that
to be honest. They’re not doing it in an Agile way.

I23 Work Identity;
Legacy Systems

I remember when I first started it was sort of do this, deploy it and hope it works. Yeah,
hope for the best! It really was like that.

I30 Process;
Culture;

Continuous
Integration

DevOps, how we develop as Operations I guess, how the Developers all work together,
how we deploy, how we redeploy and stuff. It’s all Agile, at least my take on it.

I31 Process;
Responsibility

I think IT support, maybe a year ago, would have been split Hardware / Software. But I
think now, they’re mainly moving, shifting towards the Hardware. When the issues get
raised they run all the systems and do what they want. Obviously, they’ll look at the ticket
and then if they can fix it, they’ll fix it. If they can’t, they assign it to our team.

I32 Culture;
Process;

Anybody who’s come from an old school approach to developing software might not
embrace it initially.

I33 Culture;
Decision Making;

Measurability /
Metrics

I can see that there is change at AF, definitely since I’ve been here... and how we work
and how we get the business involved in every decision we make because it’s going to
save time and money.

APPENDICES 243

I34 Culture;
Resistance;

Work Identity

A developer’s never going to go and install a monitor for someone in the business, they
(Ops) will always do that.

I35 Work Identity;
Automation;
Continuous
Integration

Just going to make my CV better aren’t they, surely? Unless they build or get a robot to
completely do my job and completely automate everything. I’m going to learn from it, and
I think they need a tester. As good as Developers’ code may be, there’s always going to
be integration and look and feel issues you know. So, it’s only going to improve my skills.

I36 Quality;
Measurability /

Metrics

Business will be able to work quicker; they won’t have system issues. They should be
able to process more orders, things over the phone because the system will be better,
they’ll be able to get more work done in their working day, so it’s certainly going to mean
that we (AF) can take more business.

I37 Job Crafting With the size of the team we’ve got now, there is a place for a full time business analyst,
and I’ve tried to argue that one. I’ve won the argument, but it’s never transpired and hence
one of the reasons I’m doing so much business analysis as it needs doing.

I38 Culture;
Resistance

So, there’s a view of ‘ours and theirs’ and ‘theirs and ours. Then there’s the whole politics
of the third party infrastructure management company: how they fit in; what’s their view
of what we’re trying to do; what their view is of working in the cloud.

I39 Job Crafting;
Culture

Pushing through the agenda and feeling ahead to see where it meets resistance and
trying to then break that resistance down individually.

I41 Responsibility;
Automation;

Culture

I’m looking for automation down the pipeline, so I’m expecting the responsibility of the
two teams will be to keep this automated pipeline running all the time with a fairly equal
responsibility but obviously with an emphasis on Dev not to introduce crappy code that
breaks it, and Ops to not fiddle with security settings without thinking it through.

I42 Culture;
Transformation

A lot of it is not really DevOps, in that we’re producing a much better system than we
have currently, but the ability to deliver that system and keep it running is a big thing.

I43 Culture;
Resistance

There is no outright opposition, it’s more just inertia due to their own observations of a
‘default position of sit tight because this has always worked, even though it’s a bit messy.

I44 Job Crafting Slowly winning people round to this new way of doing it.

I45 Legacy Systems;
Knowledge

Management

Yes, as I’m learning the new technologies, I’m having to put myself into ‘learning mode’
and then, for example, when something has gone wrong with AFI or something hasn’t
gone right in testing, I have to then, take that cap off then try and get my head back into
the other mode, and the swapping just takes a little bit of time. Obviously, when you’re
learning, things go out of your head and when you come back, you’re like, well what was
I actually trying to do and that’s the hardest part, it really is when you’re trying to learn. If
I knew it all, it wouldn’t be too bad, but learning it and swapping about is difficult.

I46 Business
Management

It’s all to do with money and saving numbers... that’s what I believe it is. If they can save
money on support or programmers by doing something, they will.

I49 Process;
Culture

We sometimes involve them at the starting point of any project for what would be the
project requirements in terms of the technologies and hardware and everything.

I51 Culture Would like to see it happen. There’s not very many people who will actually do both.

I53 Culture;
Business

Management

I might be talking to my colleague; they might be listening... or they might be talking and
you hear what they’re doing... and you go that’s not going to work straight away. You can
hear what they’re actually saying and vice-versa.

I65 Culture;
Responsibility

My colleague, he’s a bit more old school, so he might take an approach different to say
<name omitted>, who has these new ideas. Or it could be that development do not fully

APPENDICES 244

understand what Operations is doing and vice-versa. We don’t fully understand each
other’s roles yet and there has never been any full clear definition on who is responsible
for or should take ownership of what bits.

I67 Ownership;
Culture

In house, we maintain it, we look after it, if anything goes wrong, it’s our fault and we
protect it and do anything with it.

Development are very eager to get cloud bits and bobs going and they’re saying we’ll
pay the money, we’ll get Microsoft to sort it out for us <name omitted> has been looking
after them for the past 5 years anyway, they’re his baby, and now they want to throw
them out of the window and go, we’ll get a new baby. I think it’s more about the protecting
of his server and he wants to still be able to maintain it himself, than for us lot to sit there
in the corners loose limbed and pay Microsoft. They are his pets, that’s how I’d perceive
it. A server is a server, once you start naming them, then you get sentimental.

I69 Culture;
Resistance

Our managers and the managers of them maybe don’t respect or understand what we
talk about all the time. That’s another barrier above us, which can be a conflict. So that
culture has to change there at some point, and it’s not about if it has to change, but it has
got to change.

I78 Responsibility;
Process

Never heard of the term until recently... last 12 months. To me it means the link between
writing some software and how its going to be deployed on the system... and who takes
responsibility. So it's really trying to define the roles.

I79 Knowledge
Management;
Responsibility;

Process

Been driven more from our development team. Historically, AF has employed third party
developers, it’s the first time we’ve done a big project with in-house development and the
team that we obviously have. So I guess it’s a learning curve for senior management in
the business.

I80 Responsibility;
Decision Making;

Business
Management

There are still silos of Dev and Ops. I think... short of bringing someone in a DevOps role
who bridges both parts, which potentially could cause more problems as you bring three
people to the table. At least with two people you can kind of knock their heads together
and agree that sits there and that sits there... which sometimes is what it’s almost felt like

I81 Job Crafting;
Resistance

Two main characters who don’t always see eye to eye. I have to listen to <name omitted>
from a support point of view and knowing there are some things he can setup that <name
omitted> isn’t 100% aware of. There are some things from <name omitted> from a
development point of view that’s in his language, and it’s almost like I’m sat in the middle
as a layman, I read it as this without trying to bring any technical terms to it.

Case Study Time Period B – Diary Index

ID Themes Raw Text

D58 Responsibility <Name omitted> and <name omitted> are now trained on Harrier and are starting to take
support calls.

D60 Job Crafting I am guessing Microsoft updated the portal overnight and we didn’t have something
required in that version. Anyway the big question is why did I handle this? It’s a virtual
machine (VM). There are no scripts here and I was using a user interface with the
Microsoft guy. Nothing about being a developer helped here. I fixed it because I want our
nice front-end CI running again. We should reassert our push with higher management
to be handing management of the Operating Systems (OS) and Azure to Ops.

D64 Culture I think there is now much less communication between Dev and Ops following <name
omitted> and myself having to move desks due to lack of space, given the appointment
of a BA and additional Software Developer.

APPENDICES 245

Our weekly meetings with <name omitted> have also ceased, and at present, have not
resumed. <name omitted> also stated to me that he does not feel it relevant for him to sit
in meetings with us and <name omitted>, where we discuss Ops specific and facility
tasks.

While I agree that some development tasks are not relevant to us, I feel we do need to
know if anything will affect the network, AFI or user experience.

D65 Job Crafting Getting the Cascading Style Sheet (CSS) working on the front end was a big achievement
for me too. I like to get involved in all aspects of Harrier, so the back end work is another
string in my bow.

D67 Legacy Systems I am now working more on Harrier than AFI. It has been particularly good to apply my
skills with XML to Harrier too. The overall workload on AFI seems to have drastically
reduced. In turn, I feel much happier to be working on Harrier than AFI now.

D69 Work Identity My focus in the intervening time has been almost exclusively on software development.
The two largest features of AFI - ordering and invoicing are in the process of being
implemented in Harrier. The time I would have spent giving consideration to Ops issues,
is instead being used to work with our BA. In a way this is a more traditional take on being
a software developer, and it now feels a bit odd.

D70 Work Identity <Name omitted> has largely taken over the Ops side of things, though I feel a sense of
frustration at having to step away from a number of open issues. I think this highlights the
extra demand on time that DevOps places on a developer. At present, I don’t feel I can
devote time to everything and still deliver on the development side of things.

D76 Job Crafting <Name omitted> and <name omitted> from the development team have been giving
assistance to myself and <name omitted> on how to start and stop the Azure reference
site. This is essentially the version of Harrier which is used for both testing and
demonstration purposes. We can control this through commands, but in particular
through the Hipchat tool used by the development team.

D77 Job Crafting Additionally, we are socialising well with the development team, and are looking forward
to attending a crazy golf team building day with them and others in the business.

D81 Decision Making;
Accountability

It is tricky to get time with <name omitted>, as they are also so busy supporting the
business. <name omitted> being our proxy, the key stakeholder in how AF is wanting the
new system to be built does cause delay in readying work in time for Dev sprints. This of
course will also cause significant delay to release.

D82 Work Identity;
Job Crafting

On reflection though, I am definitely getting to learn, play with and apply new technologies
as part of the overall delivery objective of Harrier. I still have a huge desire to continue
learning too. Also, as I have generally always been a front-end developer this is new,
given its back-end functionality, as such, I have been writing more C#.

D83 Job Crafting I’ve been working on an invoice pdf converter for Harrier. This essentially involves the
conversion of Extensible Markup Language (XML) into a pdf invoice. Again, this is very
new to me and the first time I’ve ever looked into such functionality. Nonetheless, it is
great fun and has led me to investigating looking at FO.net(a C# library) as a possible
avenue to developing a solution.

D84 Work Identity;
Transformation

I am starting to find that the feature stories I work on are involving elements of both front
and back end work. Subsequently, I no longer see myself as a front end developer, but
rather a full stack developer, and I believe this makes me a much better developer.

APPENDICES 246

D85 Job Crafting;
Transformation

I also enjoy being able to move between both and I believe this benefits the business too,
that operating in a full stack manner is more efficient. I also like the change too, if I did
purely front-end for instance, I would probably end up getting bored.

D88 Knowledge
Management;

I’ve taken a job with Muddy Boots Software. They have 3 creaky codebases and want to
bring in someone to oversee bringing DevOps and CI into their organisation, alongside a
more micro-services type architecture. They’ve basically made a role for me, which is
awesome.

D90 Collaboration;
Job Crafting

I suggested to <name omitted> that a Harrier Implementation Group be set up to manage
the roll-out of Harrier. We have our first meeting later this week. The group’s
responsibilities include User Acceptance Testing (UAT), training and platform - the last
two of which normally are the responsibility of <name omitted> and <name omitted>
respectively.

D92 Job Crafting There is still no further progress on a hosting decision as <name omitted> has not yet
arranged for InTouch to come in and talk through our options. My feeling is that the only
sensible option would be on-premise while our Internet connection is anything but bullet-
proof. Surprisingly, at my last meeting with him, the CEO seemed to be encouraging us
to look at the cloud option - I think the ’serviced platform’ idea is appealing.

D93 Ownership;
Responsibility;

Control

So we are losing two of our team - one to relocation, the other to contracting
lucrativeness. The former is the real concern, as he has by and large owned a lot of the
Azure related work within the team.

D94 Knowledge
Management;
Ownership;
Business

Management

I guess this highlights how easy it is to rely on one person to get certain tasks done; when
you are in full-flowing Dev mode, you don’t stop to consider how certain things are getting
achieved, just that they are getting achieved. So, this poses a bit of a problem for us in
that we need to cover the impending skills loss. Ideally we will spread the responsibility
across the team this time, and avoid a future repeat of this situation. But, alas, I fear this
dance is performed in many development teams, over and over again.

D95 Knowledge
Management;

Release;
Responsibility

My focus this last week had been about handing over as much knowledge as possible.
To help with this <name omitted> allowed me to bring a handful of tickets into this and
next sprint that I know will be particularly difficult or stretching in Ember terms. Other
focus is on passing across some Azure and Jenkins experience.

Case Study Time Period B – Interview Index

ID Themes Raw Text

I73 Process;
Quality;

Business
Management

The Harrier project is better because we embrace DevOps, and you know, we think about
it as developers, and it makes our software a lot easier to write and you know, our
releases have so far been a lot cleaner. So it’s definitely improved things.

I’m not sure that they’re sold on the value of it in the same way that the developers are. I
don’t know why, but I think <name omitted> takes the lead on it really, rather than
anybody above.

I74 Legacy Systems;
Process;
Quality

Getting everybody thinking in a much cleaner mindset, you know they’re used to doing
quite dirty hacks in AFI. So, getting them thinking about this is a clean project, we’ll do it
in a clean way... that kind of thing.

I77 Legacy Systems;
Process

We have to communicate data from Harrier back to AFI, so there’s that side of things and
having to get it back the whole time. So, the single point of orders is within AFI. We call
it the AFI RESTful service, and it sits here. It has some APIs that Harrier can hit, and it
updates the AFI database.

APPENDICES 247

I88 Release;
Process

We’re waiting on stuff... we’ve waited for decisions and to have various sign off meetings.
We can’t progress further until things are signed off from higher up.

I89 Culture;
Responsibility

The last time I tried to do anything on the Operations side, or put my nose in I got shouted
at. I just asked Operations about some upgrades and if they’ve upgraded one of the
servers to HTTPS, and I got moaned at saying it’s my responsibility, and then he goes,
that for this I go to him, so what am I meant to do then?

I90 Legacy Systems With Harrier, Ops hasn’t been involved too much, which I think has been a good and bad
thing. I guess it’s not working towards DevOps, but if there’s nothing to fix, they are kind
of doing it on their own stead. Realistically, to us, they are controlling it, and we don’t
have much input. To my eyes, it looks good, it performs well and from what I can see, the
users are happy with it.

AFI is 10 years old, so it has its own things to do what you can do. Harrier has much
more new things which you can do things in a much quicker and nicer way. It’s just not
worth spending as much time on AFI. It is frustrating, because you know you can do
things better, but there is the case on quality and time periods.

I93 Responsibility;
Business

Management

Senior management need to specify the principle responsibilities of those different
groups. It’s all well and good saying its DevOps and it’s combined, but there’s two
separate teams there who do things in different ways. So I think management’s job is to
specify where the dividing line is, even though with DevOps there’s not supposed to be
a dividing line.

I94 Decision Making;
Culture

They’re broadly on board with the whole Azure platform, they’re looking at doing this on-
premises version which hasn’t been released yet which Microsoft are looking to release
later this year.

I100 Culture;
Process

On the one hand, if Ops have the attitude that we don’t want to get involved, then it kind
of makes it easier for us so long as senior management say well fine, they’re not getting
involved, then Dev can do what they want to do, and you can’t object to it. It makes our
life easier in some respects, as we get to pick and choose the things we want to do in
terms of tools, techniques, processes and stuff.

But, I think as they’re such an integral part of the company when it comes to fielding user
queries and those kind of problems and things like that and the general day-to-day
running of the office, they’ve got to be onboard, certainly with releases and what’s going
out. They need to know where to look through logs and things like that so they can relay
better information to us. If they’re going to be a first port of call to users coming in, if they
know where the logs are, what the services are and what features are affected, they can
say this things come in, here’s the relevant log entries, just as a basic example.

I101 Process;
Culture;

Resistance

We’ve had nothing to actually support or a conversation or document to say this is what
we’ve done, we’re handing that over to you. If you haven’t handed it to us, how are we
supposed to deal with it?! You carry on and support it, until you finish it or send us exactly
what you want us to support.

I102 Process;
Legacy Systems

Harrier is well from a build and needs to be done by development and then handed over.

I103 Culture;
Control

It’s very similar to running a server, very much the same principle but you go about it in
a different way.

I think it sounds a good thing. Because it’s all lumped into one. It’s one interface where
you can do everything in one lump rather than fishing yourself around the server or
creating the roles, where they are already there. And to me, looking at it, I would definitely
have Azure running the same interface with us. But I’m more prone to having it internally
than externally.

APPENDICES 248

I104 Legacy Systems;
Process

There’s ways round and he has to find what users can’t do. Harrier, I’m hoping, will
eliminate that. So to a certain extent, my theory is that Harrier will make <name omitted>
be able to do other things, rather than faffing around with AFI/Harrier. Call it Harrier,
whatever you like. Harrier will hopefully replace the problems you have to deal with AFI.
Then he would have time to do other things.

I105 Business
Management;

Culture;
Resistance

The only reason we hear about DevOps is through <name omitted>, but he doesn’t
manage Operations. I feel at the moment, <name omitted>’s got one size shoe that he
wants DevOps to fit, and we’re not Cinderella. I feel like in his mind, he knows what he
wants for DevOps, but that might be different to how we see it at the moment. I feel we’re
not communicating enough to get any vision across. Although I wouldn’t want to class us
as ugly sisters... but yes. Regrettably, at the moment, I don’t feel DevOps has moved as
far forward as I would have liked it to.

There’s definitely been approaches towards it, but myself and <name omitted> are
involved in development meetings. We’ve tried to involve them (Dev) in some of our bits
as well, but it seems to be at the moment the idea of <name omitted>’s idea of DevOps
to what we would like it to be is slightly different. Our manager isn’t moderating that, so
it’s almost like a free for all. I think senior management and above, including the CEO...
I think their role should not be just to moderate it, but to show by example. If they don’t
understand it or show interest, it will never motivate us to look at it.

I think the reason it hasn’t gone as well as we’d like it, is that both Dev and Ops should
report to the same manager.

I108 Job Crafting;
Work Identity

I’ve been on a power shell training course. On the three day course I learned power shell.
An interesting fact as I went to that to learn about active directory, exchange and group
policy. But I think the impression for DevOps is that I’d be able to use that skill for Azure
as well. So I think there was a bit of miscommunication there. I think <name omitted>
expected me to come back and use power shell straight away for Azure. But the three
day course didn’t even touch on Azure. I’ve now got a book, with a big bit at the back of
it, which is full of Azure.

So, as I see more of this within Azure, it puts me off a bit where I see the simple couple
of commands for active directory for reactivating an account or changing a list of active
users or active computers running on the W32, then that’s the thing I’m interested in. If it
opens up in the future, I wouldn’t mind delving into it. As a person, I’ve always wanted to
learn more. But for my professional need, I feel I don’t need that at the moment.

Case Study Time Period C – Diary Index

ID Themes Raw Text

D98 Legacy Systems I did have to look at the RESTful web service for AFI in order to investigate why a few
things were not working. In the end, there was an issue involving the wrong environment
being used and issues around usernames and such. Thankfully, this was a relatively easy
fix and did not interrupt my Harrier work. Otherwise, there has been no other AFI work.

D99 Legacy Systems;
Process

Sadly, I had to do a couple of AFI tasks, but thankfully these were small and did not
interfere much with my Harrier work.

D100 Job Crafting;
Release

While an enjoyable undertaking, it was challenging too, as this was the first time I worked
with the invoicing team, and mainly due to the differing terminology. The system they
presently use is a bit chaotic, I believe Harrier will significantly improve things for them.

D103 Job Crafting;
Culture

On a more personal note, I was very sad to hear that both <name omitted> and <name
omitted> were leaving. I valued the relationship and friendship I had with <name omitted>

APPENDICES 249

especially, and as a group we have had many social nights out which I’m sure everyone
will miss. I look forward to attending the Developer leaver’s meal.

D108 Work Identity;
Transformation

After learning a lot about the Ops side of the department from the handover with <name
omitted>, I’m back on to primarily development, but handling the releases and candidate
cutting as <name omitted> used to do. My role has changed so I that I can fill the role
that <name omitted> left behind. I have more responsibility and am much more involved
with Ops.

D111 Job Crafting;
Quality

One gripe I do have is that I wish the way the UI is coded, in that it needs improving. This
is something I have spoken to <name omitted> about, and I feel I have skill with UIs. I
think he is onboard with the idea. In particular, I feel we need to code the UI to cater for
multiple screen sizes.

D113 Job Crafting;
Quality

I feel I am still improving my skills across the stack and am feeling positive about this. I
maintain my focus on producing quality software and continue to be thorough in my
approaches. On reflection, I like to think that what I produce makes others’ lives easier.
Additionally, when you see people using your software, and appreciate it, it feels good.
This extends to other developers too, because good quality code is far easier to pick up.

D114 Culture Unfortunately a conversation with one member of Support was rudely interrupted by the
other. I finished the conversation and walked off. Having previously worked in Support,
the customer was always more important than current tasks at hand. Quite upset by this,
however the Support member I was talking to did pop to my desk to complete the
conversation.

Approachability of Support is very important, developing good reputation and confidence
with customers they are supporting can go a long way to making an efficient workplace.

D115 Culture;
Decision Making;

Business
Management

I foresee us remaining on in-house hardware for a number of years, as the subsequent
costs and effort of moving will always be weighed up in light of other business
development needs (when you have a working platform, feature development will always
take priority.

D116 Culture This will require Support and Development to work closely together to monitor and
maintain the environment. Culturally, this would be the most challenging path to take, but
may provoke the most change in how the two sides currently work. Or it could devolve
into a living nightmare of passing the blame and fence building, but hey, best to be
positive in our outlook.

D124 Business
Management;

Process

Encouragement of use of software has not been handled great, would have been good
to see some floor walking as such of support to just help with issues as they happened.
This would help to build a better rapport with users and Support.

D133 Job Crafting;
Culture

Surprisingly the support member then comes back and provides further training to me on
the file stream application. I suspect because I was pleased when I achieved what I
needed to achieve on the initial request, it might have inspired them to want to help more.
Later that day, the second member of support shares access to the Harrier training guide
with this support member which is a surprise as they have not taken any interest in Harrier
up until this point.

D150 Ownership;
Transformation

We then looked into Azure Stack which seemed that we could continue with the DevOps
model that we had already developed (i.e. DevOps within the Development team with
Support overseeing security). Unfortunately, this was not to be due to the delay in the
Azure Stack roll out. Instead, some new hardware is on order to host Harrier internally.
This more or less puts us back to where we were with AFI in terms of DevOps
responsibilities between Development and Operations.

APPENDICES 250

D157 Job Crafting;
Transformation

For me personally, it feels great that my development work column is currently clear and
helping with others. On reflection, I feel I have come a long way since starting with AF;
before I was strictly user interface (UI), but now like working with new technologies and
working on different things. I also feel empowered to put forward my own ideas.

D160 Job Crafting As more and more people in the company are starting to use Harrier we’re seeing more
live bugs appear, a minimal amount, but there has been some. On two occasions I’ve
interacted with people outside of my team to get more information about it to do some
debugging at their PC where it’s happening. I expect this to happen more and more,
which is a good thing rather than hearing it second-hand not seeing it happen for yourself.

Case Study Time Period C – Interview Index

ID Themes Raw Text

I110 Process;
Responsibility

It’s ended up with the development team, taking on Ops’ responsibility rather than Ops
getting involved more in Dev, but we do include them in release notes, and things like
that. We give them visibility of what’s coming up, so they should know what’s coming
down the pipe for releases.

I111 Job Crafting;
Responsibility

We’ve taken all responsibility for setting up our own integration environments, testing
environments, like provisioning stuff in the cloud for that, and basically having more of an
eye on how our whole system hangs together and how you can replicate all those parts
somewhere else if we need another environment.

I113 Culture;
Business

Management

They have to give us the space to try it, the approaches that DevOps entails. They have
to accept that sometimes we’re gonna fail, because this is new to us.

I115 Responsibility;
Transformation;

Process

I think people are more willing to get involved in kind of fixing problems wherever they
happen to arise, so people aren’t like, ‘Ooh, I don’t touch that bit of the system’ or, ‘I don’t
deal with the Azure bit’. Everyone kind of feels quite happy to take responsibility for
various bits of it.

I117 Job Crafting;
Transformation

I’m still not a front end developer, I’m still not an expert at infrastructure, but I kind of take
that view of all of it. I feel it’s my responsibility to at least understand what the impact is
at those stages and what the trade-offs are for accommodating those bits of the system.

I118 Release;
Process

The software team are doing the releases generally with Harrier.

I120 Culture;
Business

Management

It means bringing together the two disciplines of Development and IT Ops, making them
work closer together hopefully to get economies of scale, insight and cultural uniformity
so there’s more cooperation and collaboration.

I122 Culture;
Process

Look after their own destiny, they have their own capabilities to build, release, manage
their environments, make their kit work and make sure they’ve got an environment that
does what they need it to. I think a lot of this is about Dev taking on the Operations for
their own environments.

I123 Job Crafting;
Culture

I do have to build test data, test environments, but more I’m specifying to the Developers
to help me build my environment. I’m certainly not a Developer with development skills. I
have programmed in the past, I can do it, but they’re quicker, better and I don’t want to
go and mess up something by building something not as good as they could do.

I125 Legacy Systems;
Quality

When we develop something on AFI, as long as it works, it doesn’t matter how it’s done.

APPENDICES 251

I127 Process;
Transformation;

Culture

So I think it’s been exclusively Developer-led, and the involvement of Operations has
been fairly small. We’ve made an effort but it hasn’t particularly been seized upon, and I
think <name omitted>’s got other priorities so there was no real forcing of the issue, so
it’s just naturally flowed in a very Developer-led way.

I129 Business
Management;

Process;
Culture

Outside of <name omitted>, DevOps means nothing to any senior manager. I think
<name omitted>’s got a lot going on, which so long as software is being produced and
released, I don’t think that the efficiency of it is high up on their priorities.

I133 Job Crafting; I’ve never worked and I’m not that much expert in the front end, so it’s new learning same
time is challenging and also sometimes it’s like … need help kind of thing. But yeah, it’s
exciting.

I134 Culture Two separate departments, not working together as such.

I137 Legacy Systems;
Process

There’s certain departments who are using Harrier and other people are still using AFI to
do the exact same thing, which, I know that is moving over slowly but surely. You have a
differential between working with AFI and then when you were explaining it, only to find
out they’re not actually using AFI, they’re using Harrier.

If you didn’t have to deal with AFI, in theory, it should be easier because we’re going up
the ladder with Harrier. AFI is out of date, so in theory you may not get as many problems
with Harrier as you would with AFI. So if it wasn’t there I would say that probably there
would be less queries.

I139 Culture;
Business

Management;
Process

I think the communication between Development and Operations has improved slightly.
In some ways Operations moving a little bit further away from Development has given us
almost an out of the box view of it, and allowed discussion between both Operations and
Development to be a little bit smoother.

I142 Job Crafting;
Business

Management

I’ve learnt more business knowledge through understanding how Development work in
their team. I understand DevOps is meant to help prevent conflict between two big teams
like this and understanding and appreciating their views and concerns compared to our
views and concerns, and seeing where there’s a compromise with that.

I143 Culture;
Business

Managemet

Senior management should have played a bigger part.

Because like any manager the first responsibility is to their own team so first of all they’re
always going to look to see how can they improve their team’s efficiency and how it would
benefit them. So I feel naturally that would always play bias towards whoever, even if the
champion was in Ops’ team, it’d be the complete opposite. The Ops champion would
always favour their team, clearly.

I145 Work Identity;
Transformation

I always understood my job role was, ‘I’m Operations, they’re Development, that’s a clear-
cut line’. Where now I understand what DevOps is, you kind of see how actually both are
kind of intertwined together. And it obviously depends how much you deal with them, so
I’m a bit more open minded than I used to be.

I146 Legacy Systems;
Job Crafting

I think AFI, because of how much firefighting you have to do, can take up quite a bit of
time. You’re patching a sinking ship when a new ship’s being built, so you think, ‘Well,
what’s the point?

I147 Work Identity;
Transformation;

Culture

DevOps is the bit that some Devs like to do and some Devs don’t. If people like to do it
then they enjoy that grey line between operations and development, and enjoy setting up
servers, scripts and all the kind of things that are somewhere in the middle. I’m a
Devopeler, a Dev who does DevOps so sure, yeah. Whereas it’s become apparent that
some Devs don’t want to do DevOps, and like just avoid it as much as they can at least
from a Dev track.

APPENDICES 252

I152 Decision Making;
Measurability /

Metrics

I think Azure Stack is going to be delayed until next summer, so it’s not going to meet the
time frames for phase 2 for us, so it’s not an option any more.

I154 Culture There are definitely still two very distinct departments, but yeah, I think we work well
together.

I162 Culture We’ve achieved it by I guess bringing two separate roles more closer in terms of the way
that we’ve gone about the Harrier project. From earlier days they viewed life completely
separately and I believe now they are much more joined up in thinking.

I163 Culture;
Business

Management

I think there’s been a change in mindset, in working on an inclusive basis rather than an
exclusive basis. I’m actually quite impressed how mature they’ve all been. I’ve not had to
bang heads together, I’ve just had to sort of say, ‘This will only work if you guys can make
it work’ and I think they’ve realised that themselves that ‘it’s going to cause me problems
and if it causes me problems... Well actually if we just talk.

I166 Process;
Quality;

Measurability /
Metrics

It was built to process invoices that were correct, not to process every invoice whether it
was correct or wrong and that’s the subtle difference I guess.

I envisage in a year’s time that anybody who retires or decides to leave in the invoice
office we won’t be replacing and it will be a key driver for the business in terms of keeping
costs of the operation down.

I170 Culture I would say it’s pretty fully joined up. It’s thought through. I would use the word
collaborative. There are still strong characters. I don’t so much think that an intermediate
is required. Whilst they’re strong characters they’ve learned how to channel their views
and actually both see the end goals.

I171 Legacy Systems;
Release

Well we’re still reliant on AFI at the moment. It still is, as far as I’m concerned, the point
of truth. Obviously when we release phase two, Harrier becomes the point of truth.

I172 Culture DevOps is where a team of developers become self-sufficient in terms of their IT
operation.

A blending, a melding of the typical operations skills with the software development skills,
certainly in Anglia Farmers, with a view to making us self-sufficient and more efficient.

I177 Job Crafting;
Work Identity

I get into a role and I start to expand out to areas where I feel competent. I’ll certainly
offer anything I’ve got and part of that just happens to be an awareness of how things are
done elsewhere.

I186 Work Identity;
Transformation

I used to be predominantly working on front-end features and slowly moving on to back-
end features.

I190 Legacy Systems;
Quality

When the internet goes down at the minute, we would suffer. With the legacy system, it
will still chug along.

I193 Culture;
Process;
Release

It’s the working together of people doing development tasks and operations tasks to keep
the common goal of software, as it’s being produced, being brought out into the
production environments in a kind of way of working together.

I202 Culture;
Resistance

It was just frustration down the line that we didn’t really find a way of working together on
anything other than first line support which I think, to be fair, we’ve now found a way.

I think the problem then is it leads to, ‘well we’ve tried this and we’ve tried this and we’ve
tried this and it’s all sort of, no we can’t do it’ so therefore we don’t really try to engage
particularly with things we’ve been told. We don’t want to engage with that so I think we’ve
found this nice balance at the moment with first line support, they’re both quite happy

APPENDICES 253

with that. I think <name omitted> said explicitly that’s where it starts and ends. So we
both know where we are. So the frustration is now gone.

I206 Culture;
Resistance

The main challenge is to get the key people in the business to sort of buy into this
workflow at the right time and not to say, ‘I haven’t got time’, ‘I’m too busy’ or need to sort
of be there. So it’s to get people outside the immediate DevOps type environment to buy
into it working. I think they certainly like it when we do it. It’s certainly not how it works
currently.

I210 Culture;
Business

Management

If we have Azure the Developers were dealing with it, but as they’re going back to in-
house now, it’s going to go back to Support, so technically they’re in the same position
as when they started.

I212 Knowledge
Management;

Transformation

Personally I think the skill set of the whole team has gone up and that’s mainly through
the feedback via call requests and this gives the opportunity to share some skills and
knowledge and techniques between say new employees and existing ones who haven’t
been on the system before. So I think that’s very, very positive.

I214 Legacy Systems;
Quality

Code quality matters in any environment. If it becomes unmanageable or too complicated
instead of taking five minutes to fix, it takes five days. So that’s the situation with AFI, to
actually do anything took you longer to undo the bugs that the change caused!

I222 Job Crafting We feel like we’ve got a bit more freedom to go and – ‘We want to switch on this feature
and have a look and see what it does’. Even though we’re going to end up hosting in-
house, we’re still using the cloud for development and testing, which is great because
that frees up a lot of bottlenecks in our development process.

I233 Legacy Systems;
Business

Management

There’s definitely a set of AFI work coming but it’ll be a temporary thing and then at some
point it’ll be switched off or it’ll just be left alone probably for historical reasons.

I234 Process We’ve got a support team that should be supporting the floor and then we have our
development team that is actually building, delivering and releasing the software out to
the system, to the clients.

I236 Decision Making;
Business

Management

They are making the decisions on what we’re doing, how they want the system to be built
and how they want the system to work and just specifying any additional rules that we
don’t know. It would be nice to have more input on the bigger areas of making the
decisions, but yeah, senior management doesn’t really worry too much about it.

I237 Legacy Systems;
Quality;
Process

Well, I was shocked actually they were doing so many workarounds outside the system
in order to get the information into the system, and that’s what was shocking. But then,
when you’re trying to build Harrier to encompass all the rules, you can kind of feel why
they’re doing everything out of the system, because there’s so many business rules
based around that we’re now having to program and actually put into Harrier, whereas in
AFI it wasn’t there at all.

I238 Process;
Decision Making

The person who holds all the information needs to be involved basically, but it does worry
us because we’re not able to move certain areas forward until we’ve got various answers
and time, because the person who has all those answers has very tight time. It will delay
the project completely and if we want to keep moving forward and try to hit some kind of
deadline, then we need more involvement.

I245 Culture They usually go through me if we need anything between Dev and Support.

I247 Job Crafting They’re starting to engage, but I think it’s from the demo. So as soon as they’ve seen
what we actually have done, what we’ve actually produced, they’ve become more
involved and want to see the end of it.

APPENDICES 254

APPENDICES 255

Appendix 13: Specimen DevOps Engineer Job De-

scription

Example job description for a DevOps Engineer, taken from an advert posted by

Adams [2019]

Key Accountabilities/Responsibilities:

� Designing and developing scripts/tools for Continuous Integration and Deployments.

� Designing and developing automation templates/tools for infrastructure provisioning,

con�guration & change management.

� Building and deploying web applications to dev/test/prod environments.

� Automating con�guration management, infrastructure and application deployments in a

toolset such as Puppet.

� Own, manage and improve our release process. Focus on scale and e�ciency.

� Work with Operational and Development groups to drive the most optimal solutions.

� Work in a fast-paced dynamic environment.

� Create and maintain documentation for the solutions provided.

� Communicate with stakeholders and peers from di�erent areas of our Businesses, tailoring

messages to the targeted audience.

� Work with Engineers and Analysts on software builds and deployment troubleshooting.

� Demonstrate thorough understanding of major system components (i.e., storage systems,

Linux kernel, UNIX kernel, UNIX �le system, and Windows infrastructure).

� Con�gure controls; install and troubleshoot applications.

� Work closely with relevant Technology groups to re�ne system monitoring and reporting.

� Collaborate with the test team to ensure test validation and release management prin-

ciples are upheld.

� Apply problem-solving skills to support assignments.

� Diagnose system performance problems.Promote and support agile working and DevOps

methodology.

� Develop scripts for execution of commonly used processes and automation of simple

tasks.

APPENDICES 256

� Creation, execution, documentation and completion of tasks, changes, and requests.

� Collaboration and teamwork; actively develop strong, supportive and collaborative work-

ing relationships.

� Apply technical expertise to support strategic decisions and thought leadership.

� Support Development teams using development tools, products and processes.

� Continue expanding and improving our DevOps delivery pipeline.

Experience/Skills Required:

� Well versed in Puppet or Ansible

� Experienced in using GitLab

� Experienced in infrastructure as code tools, such as Terraform (including XML and JSON

type con�gurations)

� Terraform

� Experienced in automated build and deployments using Jenkins / GitLab CI

� Programming / Scripting (PowerShell, Bash, or Python)

� Jira; Con�guration, Administration and Scripting skills

� Working knowledge of containers (Docker, Kubernetes etc)

� Operating Systems including Windows, Linux/UNIX

� Enterprise level networking (TCP/IP, VPNs, SFTP, Proxy, Firewalls)

� Strong communication and collaboration skills

� Excellent problem solving skills

� Experience with end to end Continuous Integration and Continuous Deployment pipelines

Glossary 257

Glossary

Abductive Reasoning A form of logical inference starting with an observation before seeking

to �nd the simplest and probable explanation for it.

Agile An umbrella term for a set of methods and principles where solutions evolve as a re-

sult of the collaboration between customers and developers in self-organising and cross-

functional teams.

API An `Application Programming Interface' is a set of functions and procedures that enable

a software applications to access the features or data of another.

Axiology The study of the nature of value and valuation, including the kind of things that

are valuable.

Back-End Developer A software developer who implements core and computational logic

components of a software system that are indirectly accessible to users through a front-

end.

Case Study A research strategy involving the empirical investigation of phenomena within

its natural or real-life context.

Constructivism Ontological position asserting that reality is subjective and a mental con-

struct by individuals through cognitive and social interraction processes.

Continuous Deployment (CD) A process of minimising lead time in the delivery of soft-

ware. For example, the time between a line of code being written to that same line of

code behind deployed as part of live software.

Continuous Integration (CI) The practice of merging source code into a shared branch fre-

quently, often several times a day, for the purposes of automated testing and identi�cation

of issues.

Coupling Describes the interdependance of software components. It is often referred to how

easy software maintenance can be, as in the case of loose couping. Conversely, highly

coupled software is often considered far more di�cult and risky to maintain.

Glossary 258

Deductive Approach An approach that tests theoretical propositions through employing a

speci�cally designed research strategy and subsequent methods for such testing.

DevOps A portmanteau of `development' and `operations', speci�cally referring to an organ-

isation's software development and IT operations functions.

Eptistemology The branch of philosophy that studies the nature of knowledge and what

constitutes acceptable knowledge in a �eld of study.

Fallibilism A principle that postulates empirical knowledge can be acceptable even if it is

unable to be proven with certainty.

Front-End Developer A software developer who implements components of a software sys-

tem that are directly accessible to users.

Full Stack Developer A software developer who works across both the front-end and back-

end when implementing features within a software system.

Git (Software Engineering) A widely used protocol for the version management of software

source code, allowing the coordination of work on multiple �les across multiple people

and teams.

Git Add A git command used include a recent change to the `staging area', indicating to

Git that you intend to include said change in the next commit. This is also known as

`staging' and is always the precursor for using the Git Commit command.

Git Commit A git command used to `commit' added or `staged' changes to the project on

the developer's computer. A single commit can include one or more staged changes.

Git Pull A git command used to retrieve and merge the latest source from the remote repos-

itory (server) with the version a developer is working with locally on their computer.

Git Push A git command used to send and merge committed changes from a developer's

computer to the remote repository. One or more commits can be included in a single

Git Push command.

Inductive Approach An approach that develops theory as a result of research activity.

IT Operations A branch of Operations Management concerned with the continuity of busi-

ness IT infrastructure and provision of support (helpdesk service) for both hardware and

software issues.

Job Crafting A theory proposed by Amy Wrzesniewski and Jane Dutton [2001] that describes

the ways in which employees customise their jobs by the active changing of tasks, rela-

tional and cognitive boundaries of their work.

Glossary 259

Kanban An increasingly popular cyclical Agile framework and work�ow solution for dealing

with especially complex or chaotic user requirements in software engineering projects.

Strongly associated with Toyota and with roots in lean manufacturing, Kanban places

emphasis on demand and available capacity in addition to the simple and clear visuali-

sation of work�ows.

Markdown Lightweight markup language speci�cally taking an easy to read plain text format,

converting it to HTML when rendered by a web browser.

Microservice A software development technique and architecture which arranges a software

application as a collection of loosely coupled services.

Mixed-Method Research The employing of both qualitative and quantitative methods of

data collection and analysis either at the same time or in sequence.

Multi-Method Research The employing of either more than one qualitative or more than

one quantitative method of data collection and analysis.

Ontology Branch of philosophy that studies the nature of reality or being.

Positivism Ontological position asserting that reality is objective and external to an individ-

ual. The epistomology asserts that social realities can be externally measured through

a deductive approach involving highly structured methods, including hypothesis testing,

leading to law-like generalisation.

Pragmatism Ontological position arguing that research questions are the most important

determinant of the research philosophy and subsequent approach and strategy taken.

Provisional Truth The belief that knowledge, meaning and truth is tentative and subject to

change both over time and at any time.

Research Approach Generic term referring to a deductive or inductive approach.

Research Philosophy Overarching term concerning the nature of reality (ontology) as well

as the development and nature of knowledge (epistemology) in relation to research. The

research philosophy taken often dictates the approach, strategy, data collection methofd

and time horizons of a research project.

Research Strategy The general plan underpinning the manner in which a researcher will go

about answering their research questions.

RESTful Representational State Transfer (often shortened to REST) is an architectural prin-

ciple with web applications allowing the requesting and receiving of data. First de�ned

within the PhD work of Roy Fielding [2000].

Glossary 260

Retrospective Bias The position of seeing an event after it has happened as having been

predictable; also known as hindsight bias.

Scrum A well de�ned Agile software development framework credited to Ken Schwaber and

Je� Sutherland [Rubin, 2012]. Scrum is widely used in the development of software,

where developer activities are timeboxed into small sprints (usually over a matter of

weeks) with the goal of producing either a working software artifact or viable increment.

Software Crisis A period in the mid 20th century coined to describe the lack of any for-

mal approaches to software development despite additional problems introduced from

increasing complexity, maintenance and technological innovation.

Triangulation Involving and using multiple sources so as to enhance the rigour of research

activities.

Waterfall First structured software development approached credited to Royce [1970]. Wa-

terfall denotes a linear and rigid series of steps which must be completed in order. It

was widely adopted but also heavily criticised for its rigidity and presumption of user

behaviour.

	List of Figures
	List of Tables
	Dedication and Acknowledgements
	List of Papers
	1 Introduction
	1.1 Background
	1.2 Research Problem
	1.3 Research Aims and Questions
	1.4 Methodology Overview
	1.5 Research Contribution
	1.6 Thesis Structure

	2 Methodology
	2.1 Introduction
	2.2 Research Purpose, Philosophy and Approach
	2.2.1 Research Philosophy
	2.2.2 Evaluation of Positivism, Constructivism and Pragmatism
	2.2.3 Philosophical Stance and Approach Taken

	2.3 Research Strategy, Technique and Time Horizon
	2.3.1 Experiment
	2.3.2 Surveys
	2.3.3 Case Studies
	2.3.4 Research Strategy Selection and Justification
	2.3.5 Technique Choices and Time Horizon
	2.3.6 Overview of the Empirical Work in this Thesis

	2.4 Method for Exploring the Definition of DevOps
	2.4.1 Focus Group
	2.4.2 Questionnaire Survey
	2.4.3 Data Analysis

	2.5 Method for Exploring the Adoption of DevOps
	2.5.1 Open Format Diary Study
	2.5.2 Pilot Study and Abductive Reasoning of Job Crafting
	2.5.3 Semi-Structured Interviews
	2.5.4 Data Analysis

	2.6 DevOps Systematic Review
	2.6.1 Introduction to Systematic Literature Reviews
	2.6.2 Protocol
	2.6.3 Limitations

	2.7 Summary of Methodology

	3 Literature Review
	3.1 Introduction to the Literature Review
	3.2 Origins of Software and Software Engineering
	3.2.1 The Software Crisis and Software Engineering
	3.2.2 Summary of Section

	3.3 DevOps
	3.3.1 What is DevOps?
	3.3.2 Organisational DevOps Adoption
	3.3.3 DevOps Research Agenda
	3.3.4 Summary of Section

	3.4 Introduction to Job Crafting
	3.4.1 DevOps and Job Crafting
	3.4.2 Summary of Section

	3.5 Summary of Literature Review

	4 Focus Group and Survey Findings
	4.1 Introduction
	4.2 Focus Group Findings
	4.2.1 Framework for Contextually Defining DevOps
	4.2.2 Focus Group Evaluation of Agreed Definitions

	4.3 Questionnaire Findings
	4.3.1 Conceptual Attributes - Exploratory Factor Analysis
	4.3.2 Conceptual Attributes - Inter-rater Agreement
	4.3.3 Evaluation of Focus Group Produced Definitions

	4.4 Summary of Focus Group and Questionnaire Findings

	5 Case Study of Anglia Farmers Ltd.
	5.1 Case Study Introduction and Overview
	5.1.1 Justification for Case Study Selection
	5.1.2 Structure of Case Study
	5.1.3 Overview of Case Study Data

	5.2 Case Study Time Period A
	5.2.1 Perceptions of DevOps
	5.2.2 Impact of Legacy Software Maintenance
	5.2.3 Goals of DevOps Adoption
	5.2.4 Change and Culture
	5.2.5 Role of Senior Management in DevOps
	5.2.6 DevOps Driven Job Crafting

	5.3 Time Period B
	5.3.1 Impact of Legacy Software Maintenance
	5.3.2 Change and Culture
	5.3.3 Role of Senior Management in DevOps
	5.3.4 Key Personnel Loss
	5.3.5 DevOps Driven Job Crafting
	5.3.6 Transformation of Work Identities

	5.4 Time Period C
	5.4.1 Emergence of DevOps Practice at AF
	5.4.2 Impact of Legacy Software Maintenance
	5.4.3 Business Process Re-Engineering
	5.4.4 Role of Senior Management in DevOps
	5.4.5 DevOps Driven Job Crafting
	5.4.6 Change and Culture

	5.5 Summary of the Case Study

	6 Discussion and Conclusion
	6.1 Overview of the Discussion and Conclusion
	6.2 Defining DevOps
	6.3 Organisational Adoption of DevOps
	6.3.1 Case Study of DevOps Adoption at Anglia Farmers
	6.3.2 DevOps Driven Job Crafting
	6.3.3 Theoretical Implications for Job Crafting

	6.4 Conclusion and Answers to Research Questions
	6.4.1 Answers to Research Questions

	6.5 Theoretical Contributions
	6.5.1 Contribution One: How to Define DevOps
	6.5.2 Contribution Two: Abstract Model of DevOps
	6.5.3 Contribution Three: Application of Job Crafting Theory to DevOps

	6.6 Methodological Contributions
	6.6.1 Contribution One: Advocation of Meth-Lethbridge2005's (Meth-Lethbridge2005) Multi-Method Recommendation
	6.6.2 Contribution Two: Utilisation of Contextual Tools for Data Collection

	6.7 Management Recommendations
	6.8 Research Limitations
	6.9 Future Research

	References
	Appendices
	Appendix 1: Focus Group Itinerary
	Appendix 2: Focus Group Photos
	Appendix 3: Specimen Questionnaire
	Appendix 4: Markdown and Plain Text Diary Templates
	Appendix 5: Protocol for Entrance Interviews
	Appendix 6: Protocol for Mid-Study Interviews
	Appendix 7: Protocol for Exit Interviews
	Appendix 8: Ada Lovelace, Babbage's Analytical Engine and Note G
	Appendix 9: Systematic Literature Review Bibliography
	Appendix 10: Definition Response Themes
	Appendix 11: Specimen Theme Coding for Case Study
	Appendix 12: Case Study Theme and Quote Index
	Appendix 13: Specimen DevOps Engineer Job Description

	Glossary

