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Abstract 
 

Photodynamic therapy (PDT) involves the use of a photosensitiser drug which, when 

activated by visible light, causes the formation of cytotoxic singlet oxygen and subsequent 

cell death. Photosensitisers are hydrophobic and notoriously hard to deliver 

intravenously, but their attachment to gold nanoparticles has been found to overcome 

this issue. These nanoparticles can also be functionalised with directing ligands which can 

actively target the photosensitisers to lung cancers.  

Herein, we investigate three classes of targeting moieties for the delivery of gold 

nanoparticles (AuNPs) functionalised with a zinc phthalocyanine photosensitiser (C11Pc) 

and polyethylene glycol (PEG) to lung cancers: peptides, antibodies and small molecules.  

Two epidermal growth factor receptor (EGFR) targeting peptides were investigated as 

targeting moieties, with the composition of the peptide, coupling agents and solvent 

systems found to effect the singlet oxygen production and phototoxicity of the resulting 

nanoparticles. Excitingly, targeted phototoxicity was observed in EGFR overexpressing 

cell lines for one of these constructs, with 7% cell viability observed at 200 nM. 

An investigation into the most efficient conjugation strategies for the addition of either 

an anti-EGFR or anti-HER2 antibody to C11Pc-PEG-AuNPs led to the exploration of 

both random chemical and protein based site-specific antibody conjugation. While no 

phototoxicity was observed, this led to the exploration of Fc binding peptides for site-

specific antibody conjugation to gold nanoparticles. 

Folic acid was investigated for the delivery of C11Pc-PEG-AuNPs to folate receptor 

alpha expressing lung cancers. Folic acid is a known quencher of singlet oxygen so steps 

towards a protease cleavable sequence were undertaken to allow for the cleavage of this 

directing ligand intracellularly, allowing for the switch on of the photodynamic activity in 

lung cancer cells. 
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1.1 Photodynamic therapy 

Photodynamic therapy (PDT) for cancer involves the combination of a photosensitiser 

and light to produce singlet oxygen within cancerous cells, which ultimately leads to cell 

death. A photosensitiser is a molecule that mediates a reaction to light, and in the case of 

PDT this is the conversion of molecular triplet oxygen (3O2) into highly reactive singlet 

oxygen (1O2) via the promotion of an electron. The overall aims of PDT are to produce a 

cancer treatment that is minimally invasive, has few side effects (the only side effect being 

photosensitivity), has no lifetime dose limitations and kills cancerous cells within one 

treatment.1,2 

During the photodynamic process, light of a specific wavelength is absorbed by a 

photosensitiser, exciting the molecule from the ground state, S0 (
1PS), to an excited state, 

S1 (
1PS*). The lifetime of 1PS* is in the nanosecond range, meaning there is limited time 

for quenching to occur when the molecule is in this state.3 The molecule can leave this 

excited state via three pathways; a radiative path where the excess energy is lost as 

fluorescence, through internal conversion to the ground state or through intersystem 

crossing (ISC) to the excited triplet state, 3PS*. Photosensitisers have high ISC quantum 

yields and therefore many of the molecules cross from 1PS* to 3PS*. While molecules can 

leave this excited state through radiative decay (phosphorescence), the excited triplet state 

has a lifetime in the range of micro- to milliseconds which gives enough time for 

quenching and chemical interactions to occur.4 From this point two pathways can be 

followed, both ultimately leading to cell death. For a type I reaction, the photosensitiser 

excited state is quenched via electron transfer or physical deactivation by oxygen, forming 

free radicals and reactive oxygen species by oxidising organic substrates in the immediate 

vicinity. This generally occurs when there is a high concentration of photosensitiser or 

when the cell is hypoxic.2 Type II reactions occur via energy transfer to 3O2 which then 

causes the excitation of oxygen, producing the 1O2 excited state.5 A simplified Jablonski 

diagram of the photodynamic process can be seen in Figure 1.1. Type I and II reactions 

will occur simultaneously, and the ratio depends on the photosensitiser, the oxygen 

concentration, the substrates present and the subcellular localisation of the 

photosensitiser. Generally, type II reactions are responsible for the majority of the 

phototoxicity in PDT.5 
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Figure 1.1: Simplified Jablonski diagram of the photodynamic process. Fluor. = fluorescence, Phos. = 
phosphorescence, ISC = intersystem crossing 

 

1O2 is extremely reactive and damages subcellular organelles, stimulating the apoptotic 

and necrotic pathways which cause cell death.6 Photosensitisers can also accumulate 

within blood vessels and cause vascular damage during PDT treatment which leads to 

tumour hypoxia and subsequent cell death.7 Singlet oxygen has a lifetime of under 0.04 

µs and a radius of action of less than 0.02 µm.8 Human cells have a diameter of 10-100 

µm, meaning 1O2 cannot diffuse more than a cells length. This means PDT has the 

potential to be a very specific cancer treatment if cancer cells can be preferentially targeted 

over normal healthy cells.  

 

1.1.1 Photosensitisers for PDT 

Ideal photosensitisers for PDT are isomerically pure, have good stability, have a high 

molar extinction coefficient between 650-800 nm, have a high quantum yield for singlet 

oxygen, have no dark toxicity, interact preferentially with cancer cells and clear relatively 

quickly from normal tissue.9,10 The majority of reported photosensitisers are hydrophobic 

aromatics as they fulfil many of these criteria. 

The wavelength at which photosensitisers absorb is very important for the efficacy of the 

treatment. Below 650 nm, haemoglobin and other naturally occurring chromophores in 

the body absorb strongly and would interfere with the absorbance of the 

photosensitiser.11 The penetration of light through the body also increases with increasing 

wavelength so photosensitisers with higher absorption maxima can be used to treat cancer 
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at lower depths. However, above 800 nm, the photosensitiser may no longer have the 

energy to convert triplet oxygen to singlet oxygen; the conversion requires approximately 

92 kJ/mol which is equivalent to a wavelength of 1274 nm.12   

First-generation photosensitisers are derived from hematoporphyrin derivative (HpD), a 

mixture of partially unidentified monomeric, dimeric and oligomeric porphyrin 

structures.13 HpD is not isomerically pure, meaning it is not an ideal photosensitiser. 

Photofrin® (Figure 1.2), was developed from partially purified HpD, resulting in an 

isomerically pure first-generation photosensitiser which is approved for clinical use.14,15  

 

Figure 1.2: Structure of Photofrin®, a mixture of polymerised porphyrins. n= 0-6 repeating units 

 

 Photofrin® is a mixture of polymerised porphyrins that are water soluble, which leads to 

ease of administration. Photofrin® exhibits high efficacy for tumour destruction and 

negligible dark toxicity.16 Another well-known first-generation photosensitiser approved 

for clinical use is protoporphyrin IX (PpIX, Figure 1.3), generally administered through 

treatment with 5-aminolaevulanic acid (ALA), a precursor in the biosynthetic pathway for 

the formation of PPIX, itself a precursor to haem.17  
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Figure 1.3: The structure of ALA and its conversion to PpIX 

 

While these compounds possess interesting properties, the main issue with first 

generation photosensitisers is their retention time within the body. Photofrin® is retained 

in the body for 6-8 weeks post injection, and the prolonged light sensitivity is undesirable 

as it effects quality of life. Furthermore, first generation photosensitisers exhibit poor 

selectivity, so large doses are required for effective treatment, alongside relatively low 

extinction coefficients, which means prolonged light exposure is required for effective 

treatment.18,19 The peak absorbance of both PPIX and Photofrin®, and thus their 

activation wavelength, is at ca. 630 nm20 which largely overlaps with sunlight, increasing 

the chances of an adverse reaction if the patient were to be exposed to light. The low 

wavelength for excitation also means that there is low penetration into human tissue; 

Photofrin® is only effective to a depth of 0.5 cm with ALA restricted to a depth of 0.2 

cm.21 These issues led to the development of second-generation photosensitisers with the 

aim of improving these adverse characteristics. 

Second-generation photosensitisers are generally based on substituted porphyrins, 

chlorins and phthalocyanines, the structures of which are shown in Figure 1.4. These 

structures absorb intensely at higher wavelengths than first generation photosensitisers, 

have higher selectivity, are well characterised with high purity, are retained by the body 

for a shorter period of time and generally have a higher singlet oxygen quantum yield.  
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Figure 1.4:  Core structures of a porphyrin (purple), a chlorin (green) and a phthalocyanine (blue) 

 

Second generation porphyrins tend to be substituted with groups that increase the molar 

extinction coefficient and move the absorption peak of the molecule to higher 

wavelengths. An example of these substituted porphyrins is meta-

tetrahydroxyphenylporphyrin (mTHPP, Figure 1.5a). mTHPP shows a higher singlet 

oxygen quantum yield than Photofrin® and therefore is seen to be 25-30 times as effective 

as this first-generation photosensitiser. Its molar extinction coefficient is an order of 

magnitude higher than that of unsubstituted porphyrins and it absorbs at a slightly higher 

wavelength of 650 nm.22  

Chlorin photosensitisers include chlorin e6 (Ce6, Figure 1.5c) and meta-

tetrahydroxyphenylchlorin (mTHPC, Figure 1.5b). Ce6 shows an absorbance maximum 

at 662 nm,  a high molar extinction and is rapidly eliminated from the body.23 mTHPC is 

a synthetic chlorin clinically approved for PDT that absorbs light at 652 nm. It differs 

from mTHPP by the reduction of a double bond within the porphyrin structure. This 

reduction causes a red shift in the absorption and increases the strength of this 

absorbance. mTHPC has a high singlet oxygen quantum yield and is retained within the 

body for up to two weeks.21,22 

 

Figure 1.5: The structures of a) mTHPP, b) mTHPC and c) Ce6. The reduced double bond that differs the structure 
of mTHPP and mTHPC is highlighted in blue 
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Phthalocyanines are attractive photosensitisers due to their high extinction coefficient, in 

general two orders of magnitude higher than that of Photofrin®. Many phthalocyanines 

applied to PDT also contain a central diamagnetic metal, such as Zn2+or Al3+, which 

greatly increases the singlet oxygen quantum yield.24 A range of phthalocyanines are 

currently undergoing clinical trials for applications as second generation photosensitisers 

including a silicon(IV) phthalocyanine known as Pc4 (Figure 1.6a) and zinc(II) 

phthalocyanines (ZnPcs, Figure 1.6b). Pc4 absorbs very strongly at 670 nm and ZnPcs 

have strong absorptions around 700 nm. A mixture of sulphonated aluminium 

phthalocyanines, known as Photosens® (Figure 1.6c), is approved in Russia for the 

treatment of a variety of cancers including skin, stomach and breast cancers.25,26 

Photosens® is a rare example of a hydrophilic photosensitiser. Generally, the best 

photosensitisers for PDT are hydrophobic as they tend to show higher singlet oxygen 

quantum yields and the hydrophobicity leads to an accumulation in the hydrophobic 

regions of cells, assisting with their uptake from the blood stream. Hydrophobic 

photosensitisers also tend to have better selectivity; they show a ratio of 7:1 

tumour:normal cell accumulation compared to a 2:1 ratio seen for hydrophilic 

photosensitisers.12,27 

 

Figure 1.6: The structures of a) Pc4, b) ZnPc and c) Photosens® 

 

1.1.2 Non-small cell lung cancer and PDT 

Lung cancer as a whole is the third most common cancer in the UK and the most 

common cause of cancer related death. In 2018, 1.7 million deaths were attributed to lung 

cancer worldwide.28  Survival rates for lung cancer are shockingly low, with only 32% of 

patients surviving for one or more years, 10% for five or more years and only 5% survive 

for ten years or more.29 Lung cancer has two main subtypes: small-cell lung cancer (SSLC) 
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and non-small cell lung cancer (NSCLC). Approximately 85% of lung cancer cases within 

the UK are NSCLC, which can be further divided into four groups; squamous cell 

carcinoma, adenocarcinoma, large-cell carcinoma and ‘others’. Adenocarcinoma and 

squamous cell carcinoma are by far the most common types of NSCLC, making up ca. 

40% and 25% of all lung cancer cases, respectively.30 

The high mortality rates for lung cancer have two main contributing factors: it is hard to 

diagnose at an early stage, with many cases being discovered after the cancer has 

metastasised, and the fragility of the lungs makes surgical resection of the tumour difficult. 

Currently the most common treatment for lung cancer is surgical resection,31 yet many 

patients are not able to undergo this procedure as it compromises lung function. If a lung 

carcinoma is in a position where it compromises breathing itself, it is too dangerous to 

undergo surgery. Any patient with reduced lung function cannot have surgery as it will 

cause the loss of too much lung function and result in a very poor quality of life; thus, 

leaving chemotherapy and radiotherapy as the main viable treatment options.32 

Photodynamic therapy is preferable to surgery, chemotherapy and radiotherapy as it 

results in less collateral damage. PDT was first applied to NSCLC in 1982 by Hayata et al. 

using hematoporphyrin derivative.33 Photofrin® has since become the main 

photosensitiser approved for lung cancer treatment. Early-stage lung cancers have been 

treated with Photofrin® with complete response rates in ca. 78% of cases.34–36 It was 

observed that the response rate was related to the size of the tumour; patients with 

tumours smaller than 0.5 cm showed a 94% complete response rate, tumours 1-2 cm in 

size had an 80% complete response rate, and tumours larger than 2 cm had a much lower 

complete response rate of 44%.35 These results are not unexpected as the efficacy of PDT 

depends on the ability of light to penetrate the tumour, and the light necessary to activate 

Photofrin® (630 nm) can only penetrate approximately 0.5 cm through human tissue.21 

While promising results have been obtained using Photofrin®, significant side effects such 

as erythema, fibrosis and cicatricial stenosis, the narrowing of ducts due to the build-up 

of scar tissue,34,35 have been observed due to the lack of selectivity of this first generation 

photosensitiser. As second-generation photosensitisers have been seen to increase the 

selectivity of PDT, an investigation into other photosensitisers may reduce these side 

effects, while providing a significant response rate. Second-generation photosensitisers, 

however, are notoriously hydrophobic and so their delivery to NSCLC is challenging. To 

counter this, a water-soluble delivery system is required and recent advances in 
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nanotechnology have highlighted nanoparticles as highly efficient and selective delivery 

vehicles for photosensitisers.  

 

1.2 Nanomedicine and cancer therapeutics 

Over 100 years ago, Paul Ehrlich described the concept of a ‘magic bullet’ for 

chemotherapy, in which drugs can be delivered directly to their desired target, removing 

devastating off-target effects.37 While there are many ways to go about the development 

of a ‘magic bullet’, one such method is that of nanotechnology and nanomedicine, an 

emerging field of cancer therapeutics involving sub-micrometre delivery vehicles (1-100 

nm) to transport the desired therapeutic to its target. Nanomedicine involves the use of 

nanoparticles, with their nanoscale size providing significantly altered physical, chemical 

and biological properties from that of the bulk material, with these altered properties 

favourable for their use as delivery vehicles.  

Nanoparticles have been shown to display passive targeting towards tumours through the 

enhanced permeability and retention (EPR) effect (Figure 1.7).38 The EPR effect occurs 

due to the fact that tumours have a high demand for blood flow to provide the necessary 

nutrients and oxygen for their uncontrolled cell growth. As they rapidly expand in size, 

tumours form new blood vessels to provide for this excess need, and these blood vessels 

tend to be poorly formed and ‘leaky’. As nanoparticles are relatively large in size compared 

to natural small molecules and growth factors, they rarely pass through the walls of 

properly formed blood vessels in normal tissue. The leaky vasculature in tumours, 

however, allows for the passage of nanoparticles through their walls and leads to an 

accumulation of nanoparticles in the tumour. Tumours also display poor lymphatic 

drainage meaning that the nanoparticles that pass through into the tumour via the leaky 

blood vessels are not carried away as efficiently from cancerous tissue as from normal 

tissue, increasing this accumulation in tumours. This passive accumulation of 

nanoparticles in cancerous tissues highlights their ability to act as ‘magic bullets’. 
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Figure 1.7: The passive targeting of nanoparticles towards tumours through the EPR effect. The small size of 
nanoparticles means they cannot pass through the walls of blood vessels in healthy tissue, but the ‘leaky’ 
vasculature in tumours allows for nanoparticles to penetrate through the blood vessels and to accumulate in the 
tumour 

 

A second benefit of nanoparticles is their large surface area to volume ratio, meaning that 

one nanoparticle can carry a large quantity of a payload to their target, providing a very 

attractive method for drug delivery. This large surface area also allows for the attachment 

of multiple different payloads to one nanoparticle, allowing for their co-delivery to a 

target, which has many therapeutic benefits. Diagnostic tools can also be attached to 

nanoparticles alongside payloads to elicit a theranostic effect, where the nanoparticle 

system can be used to diagnose and treat cancers simultaneously.39,40 Nanoparticles have 

been seen to improve stability, solubility and circulatory half-lives of drugs, along with 

improved drug efficacy.41–43 They have also been designed to release their payload upon 

internalisation into cancerous cells due to an internal stimulus such as pH or a reducing 

environment, restricting drug release to within cancer cells and improving the 

pharmacokinetics of a drug.44,45 The benefits of nanoparticle delivery systems highlight 

their applicability for the delivery of payloads to cancers.   

 

1.3 Gold nanoparticles as drug carriers 

Many types of nanoparticle have been developed for drug delivery, including liposomes, 

polymeric nanoparticles, quantum dots, carbon dots, upconverting nanoparticles and 

inorganic nanoparticles. Inorganic structures include gold, silver, silica, iron oxide and 

copper sulphide nanoparticles. While these all have their benefits, gold nanoparticles 

(AuNPs) highlight themselves as ideal drug carriers; they are chemically inert and 

minimally toxic, meaning they can pass through the body without eliciting any adverse 

reactions.46,47 For intravenous use as drug carriers, AuNPs are often coated in a layer of 

Normal tissue Tumour 
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polyethylene glycol (PEG) ligands. PEG is clinically approved for intravenous use and its 

amphiphilic nature stabilises nanoparticles within biological media, making AuNPs 

dispersible within aqueous environments. PEG also increases the circulatory half-life of 

AuNPs by blocking the adsorption of opsonins and serum proteins, which enable the 

uptake and clearance of nanoparticles through the reticuloendothelial system.  

The surface of AuNPs is easily functionalised through the formation of strong gold-

sulphur (Au-S) bonds that will spontaneously form through thiol surface adsorption. Au-

S bonds are non-labile and results in AuNPs that are stable to physiologically relevant pH 

and salt concentrations.48 The synthesis of AuNPs involves the reduction of Au(III) to 

Au(0), which initiates the nucleation of AuNPs. Tight control over the reaction 

conditions means that the size and shape of AuNPs can be selected and varied to fit the 

desired purpose. Different nanostructures are beneficial for different purposes, and their 

uptake and potential therapeutic properties vary from shape to shape. The ability to form 

these different structures is a benefit of AuNPs and this is not possible with other 

nanosystems. The synthesis of AuNPs of differing shapes, such as nanosquares, nanostars 

(AuNSs) and nanorods (AuNRs, Figure 1.8) is usually completed through a seeded 

growth method. Here, small AuNPs are synthesised, generally 4-5 nm in size, and the 

addition of these seeds to Au(III) solutions containing different reducing and capping 

agents can influence the shape of the nucleated nanosystems.49  

 

Figure 1.8: Examples of AuNPs shapes. a) nanospheres or nanoparticles (AuNPs), b) nanosquares, c) 
nanobranches or nanostars (AuNSs), and d) nanorods (AuNRs) [adapted from ref. 50] 

 

The strength of the reducing agent has a strong influence on the size of the AuNPs 

produced. For example, the use of a strong reducing agent such as sodium borohydride 

(NaBH4) results in sub-10 nm AuNPs, whereas for larger AuNPs a milder reducing agent 

such as trisodium citrate is commonly used. The synthesis of AuNPs also relies on the 

presence of a stabilising agent, and the choice of stabilising agent can influence the size 

and shape of the resulting AuNPs through steric hindrance, and reduce the polydispersity 
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of the synthesised AuNPs.51–53 For example, the addition of thiolated ligands upon 

reduction of Au(III) leads to the formation of strong Au-S bonds that cap the 

nanoparticles at a small and relatively monodisperse size, but control over the gold:ligand 

ratio determines the exact size of the AuNPs synthesised.54  

AuNPs display a strong surface plasmon resonance (SPR) due to the oscillation of 

electrons upon exposure to light. AuNPs absorb visible light with extinction coefficients 

orders of magnitude higher than those of many strongly absorbing organic dyes, and this 

SPR band is dependent on the size and shape of the AuNPs.55 This provides a unique 

property to AuNPs as the strong absorption of light means that the nanoparticle itself 

can be used as a therapeutic agent. When AuNPs are irradiated with light matching the 

wavelength of their SPR band they rapidly heat and can destroy cells through 

photothermal ablation, known as photothermal therapy (PTT).56  

The biocompatibility, lack of cytotoxicity, stability, ease of synthesis and functionalisation, 

passive targeting and the unique SPR properties of AuNPs highlight their potential as 

delivery systems for cancer therapeutics. 

 

1.4 Active targeting of gold nanoparticles for cancer therapeutics 

While passive targeting of AuNPs relying on the EPR effect has been extensively 

explored, as the interest in personalised medicine has grown in recent years, the focus has 

turned towards the active targeting of gold nanoparticles to a particular site. Active 

targeting of AuNPs involves the attachment of a targeting moiety, specific towards a 

desired surface receptor, onto the nanoparticle surface, alongside the payload. In cancer, 

the targeting moiety used often recognises a receptor that is overexpressed by tumour 

cells, but examples also exist of AuNPs targeted towards receptors that are cryptic or not 

expressed on healthy cells. A plethora of targeting moieties have been explored and these 

can be split into the general categories of antibodies, proteins, peptides, aptamers, 

carbohydrates and small molecules. 

 

1.4.1 Antibody directed gold nanoparticles 

1.4.1.1 IgG antibodies 

When the idea of actively targeting nanoparticles towards a known oncogene was first 

imagined, antibodies presented themselves as an ideal targeting moiety. Antibodies are 
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highly specific towards a receptor, to which they display an extremely high affinity. While 

there are many types of antibodies, most antibodies used for therapeutics are IgG 

antibodies. IgG antibodies have a Y-shaped structure consisting of a constant (Fc) region 

that is unchanged in all IgG antibodies and a variable (Fab) region that is unique to each 

antibody. This Fab region contains two antigen recognition sites, as shown in Figure 1.9. 

Antibodies are usually produced in animal models and therefore they can elicit an immune 

response within the human body, however the high affinity of antibodies towards a very 

specific target has resulted in an extensive interest in using them as targeting moieties for 

AuNPs. 

  

Figure 1.9: Structure of an IgG antibody, showing the heavy (purple) and light (pink) chains, the variable Fab 
domain, the constant Fc domain and the antigen binding sites 

 

The development of antibodies as clinically approved therapeutics in their own right may 

have encouraged the development of antibody-AuNPs. The antibodies trastuzumab and 

cetuximab have been clinically approved to target HER2 overexpressing breast cancers57 

and EGFR overexpressing colorectal cancer respectively.58 As these antibodies are 

clinically approved, their affinity to their target has already been validated and therefore 

they have both been extensively investigated for the targeted delivery of AuNPs. For 

example, cetuximab and trastuzumab have been used to direct AuNPs towards cancers 

for enhanced radiotherapy.59–61 AuNPs can act as radiosensitisers, increasing the effect of 

radiation therapy on tumours as they release photoelectrons and Auger electrons upon 

irradiation with X-ray and near-IR radiation.62 Along with these clinically approved 

antibodies, a number of other antibodies have been used to deliver AuNP-conjugated 

radiosensitisers to a range of different targets. Antibody functionalised AuNPs have also 

been extensively studied for targeted PTT of a multitude of cancers.63–65 Consistently, 

increased cytotoxicity and selective uptake of these targeted AuNPs is observed.  
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Antibody-functionalised AuNPs were first used for the targeted delivery of anticancer 

agents in 2008, when gemcitabine (Gem) was delivered to pancreatic adenocarcinoma by 

cetuximab-functionalised AuNPs with increased cytotoxicity observed over non-targeted 

Gem-AuNPs.66 Since then, AuNPs have been used to deliver chemotherapeutic drugs 

such as doxorubicin (Dox) and oxaliplatin. These chemotherapeutic drugs are either 

bound to the AuNP core via reversible Au-N bonds, adsorbed to the core through 

hydrophobic interactions or are conjugated onto PEG ligands (Figure 1.10) to form a 

mixed monolayer on the nanoparticle surface alongside the antibody. Chemotherapeutic 

drugs have also been adsorbed into the AuNP core itself.67–69  

 

Figure 1.10: Structure of Ab directed Dox (blue) AuNPs, with both the payload and antibody conjugated through 
a PEG (black) linker [adapted from ref. 67] 

 

Few examples exist of conjugating the delivered drug onto the antibody itself, potentially 

due to the relative fragility of antibodies and the relative ease of conjugating payloads to 

the nanoparticle over the antibody. One example of this is the addition of the radionuclide 

131I to cetuximab post-conjugation of this antibody onto AuNPs for 

radioimmunotherapy.70 The decision to radiolabel the antibody itself likely stems from 

the fact that radiolabelled cetuximab has been extensively investigated as an agent for 

radioimmunotherapy. These AuNPs were seen to display a targeted decrease in cell 

viability of A549 cells, with this cytotoxicity higher than that of 131I at the same dosage,70 

highlighting the ability of AuNPs to increase the potency of a payload. 

While many different antibody conjugated AuNP systems have been reported, the vast 

majority of them rely on common chemistry for the addition of the antibody to the 

nanoparticle system. Firstly, most of these nanosystems are stabilised with a thiolated 

linker such as a PEG chain, which is highly water soluble and approved for medical use. 
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These PEG chains are often terminated with a carboxylic acid or activated succinimidyl 

ester for the addition of an antibody through the formation of random amide bonds with 

free amine residues on the surface of the antibody. While many variants of these linkers 

exist, summarised in Table 1.1, the chemistry of the antibody conjugation is identical.  

Table 1.1: Summary of coupling agents used to conjugate antibodies onto AuNPs 

Coupling 
agent(s) 

Linker Notes 

EDC/NHS or 
sulfo-NHS 

HS-PEG-COOH61,71–76 NHS and sulfo-NHS vary in water 
solubility, but the conjugation 

chemistry is identical. (sulfo)-NHS acts 
to stabilise the activated carboxylic 

acid formed by EDC, before random 
amide bonds are formed with antibody 

amines 

HOOC-PEG-COOH67 

11-mercaptoundecanoic acid77 

EDC DSPE-PEG-COOH69 
No stabilising ester formed but forms 

the same random amide bonds as 
EDC/NHS 

Succinimidyl 
valerate (SVA) 

Orthopyridyl disulphide 
(OPSS)-PEG-SVA59,60,78 

OPSS is a disulphide that reacts with 
the Au core. SVA contains an NHS-
ester, forming random amide bonds 

Succinimidyl ester 
N-succinimidyl-S-

acetylthiopropionate68,70 

NHS ester linkage to form random 
amide bonds. Acetylthiopropionate 

can then be reduced for thiol addition 
to AuNP 

Bis(sulfosuccinimi
dyl)suberate (BS3) 

HS-amine polymer79 
Linker with two sulfo-NHS termini to 

link amines. Random amide bonds 
formed to antibody 

Hydrazide (HS)2-PEG-hydrazide80 

Hydrazide reacts with activated 
COOH to give hydrazine. Reactivity is 

random towards carbonyls on 
antibody 

pH adjustment None64 
pH reduced below isolelectric point of 

Ab to encourage electrostatic 
interactions 

 

This ubiquity of functionalisation chemistry, while concentrations of both coupling 

agents and antibody may need to be varied depending on the desired system, perhaps 

highlights the versatility of antibodies as targeting agents for AuNPs. It can be imagined 

that, if the same process is used for antibody conjugation time and time again, antibodies 

can be switched in and out to target the same system to any oncogene required. While 

most conjugates in the literature use some variation of this amide bond formation 

involving lysines on the antibody, a PEG linker terminated in a hydrazide can be used, 
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which allows for the cross-linking of AuNPs with carboxylic acids on the surface of 

antibodies.80 This chemistry, while utilising different residues on the antibody is still 

completely random and may lead to even more variations as there are on average more 

carboxylic acids present on antibodies than amines.81  

The uptake of antibodies into cells often relies on receptor mediated endocytosis. This 

process provides a target-specific internalisation mechanism for Ab-AuNPs; however the 

conjugation of antibodies is notorious for altering their pharmacokinetics. It has been 

observed that the endocytosis of cetuximab-AuNPs is in fact accelerated from that of 

free cetuximab, and the mechanism by which this endocytosis occurs is altered upon 

conjugation. This altered internalisation mechanism leads to differing subcellular 

localisation between cetuximab and its resulting gold nanoconjugate.82 It is also observed 

that not all antibodies are internalised upon receptor binding. It is still under debate 

whether trastuzumab is internalised upon binding to HER2,83,84 however it has been 

shown that the internalisation of trastuzumab is increased upon cross-linking, possibly 

due to multivalent binding. HER2 overexpressing cells show increased internalisation of 

trastuzumab-AuNPs compared to non-conjugated trastuzumab at the same 

concentration.78 These reports highlight a key consideration for the synthesis of antibody-

AuNPs; the kinetics and uptake of the antibody is likely to be altered upon conjugation. 

While in the reported examples these alterations appear to be beneficial for increased 

uptake, this may not always be the case and the pharmacokinetics of conjugated 

antibodies may warrant further investigation to help select the best antibodies possible 

for delivering AuNPs to the corresponding target.  

While antibodies display high affinity towards their target, this affinity relies on the 

antigen binding sites remaining non-functionalised and unhindered. The majority of 

reports of antibody functionalised AuNPs rely on completely random amide bond 

formation for the addition of the antibody, which may result in some of the active sites 

of the antibody being in or near the nanoparticle surface and thus, reducing the binding 

ability of these conjugates. It has been shown that protein G, an Fc region binding 

protein, can be used to control the orientation of an antibody on the AuNP surface and 

therefore to maintain optimal activity.85 While no comparison is made to AuNPs 

conjugated with antibody without the presence of protein G, there is increased uptake of 

these EGFR targeted AuNPs compared to a non-targeted control and selective PTT is 

observed.66,85 This perhaps provides a sensible alternative to commonly used antibody 
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functionalisation techniques if the desired activity is not observed, however protein G is 

immunogenic and therefore it may provide other complexities.  

 

1.4.1.2 Antibody fragments and nanobodies 

While antibodies present such high affinity towards receptors, their size inhibits their 

penetration into tumours. This has led to the investigation of antibody fragments as 

targeting moieties. The reduction of the disulphide bonds between the heavy chains of 

an antibody yields two functional antibody fragments. Notable for AuNPs, these antibody 

fragments possess free thiols which can bind to the gold core. This conjugation strategy 

also ensures the active site of the antibody is pointing away from the gold core and thus, 

is accessible. The conjugation of EGFR antibody fragments to AuNPs for PTT displayed 

cytotoxicity upon irradiation that varied with EGFR expression.63 While the use of 

antibody fragments reduces the size of the targeting moiety attached to the AuNPs, these 

half-antibodies still display an immunogenic effect upon the body due to the presence of 

the Fc region. Antibody fragments known as Fab fragments have been developed to 

remove the Fc region, simultaneously reducing the size of the antibody and forming a 

non-immunogenic targeting moiety. Interestingly, there are no examples of the use of Fab 

fragments to target therapeutic AuNPs for drug delivery, and research into this area may 

provide promising results. 

While antibody fragments have been investigated to account for the sheer size of 

antibodies, nanobodies are even smaller than antibody fragments and have recently gained 

extensive attention as targeting moieties. Camelids possess IgG antibodies that consist of 

only heavy chains and are 2/3rd of the size of human IgGs (Figure 1.11).86 These camelid 

heavy-chain antibodies possess a variable domain that can be cloned and expressed in 

bacteria to give a monomeric, single-domain antigen-binding antibody fragment, named 

a nanobody for its small size (Figure 1.11).87 Nanobodies are ca. 15 kDa, 1/10th of the 

size of an antibody, and therefore display higher tumour penetration. Alongside this, they 

are non-immunogenic and display higher stability than antibodies.88 
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Figure 1.11: (L-R) human IgG consisting of two heavy chains (purple) and two light chains (pink), camelid IgG 
heavy-chain Ab with variable recognition domains (green), single-domain nanobody derived from the variable 

domain of a camelid IgG 

  

An anti-HER2 nanobody has been shown to selectively target gold nanostars (AuNSs) 

towards HER2 positive ovarian cancer. The nanobody is shown to selectively internalise 

into HER2 overexpressing SKOV3 cells, with targeted PTT observed.89 This nanobody 

was modified in production to express a cysteine residue on the C-terminus to allow for 

site-specific attachment onto AuNSs through a maleimide. Both antibody fragments and 

nanobodies provide solutions to the issues of antibody penetration into solid tumours. 

Further work is needed, however, to confirm the benefit of these targeting moieties, with 

studies to compare the uptake, selectivity and tumour penetration of these fragments to 

that of whole antibodies. 

 

1.4.2 Protein directed gold nanoparticles 

The use of other proteins as targeting agents is relatively unexplored compared to the 

wealth of research into antibody targeted therapies. Proteins selected as targeting moieties 

are either natural ligands for a receptor or lectins – carbohydrate binding proteins often 

isolated from fruit or vegetables. It is perhaps understandable that native protein ligands 

towards receptors have not been excessively explored as targeting moieties as, by nature 

of their abundance in the human body, there will be a large number of competing ligands 

that are not carrying AuNPs. These proteins will display the same affinity towards the 

desired receptor and possibly lead to a reduced targeting efficiency. That said, the use of 

human proteins and growth factors removes any immunogenic response towards these 

AuNPs and may be worth exploring. One growth factor that has been exploited for 

targeted AuNP therapy is the epidermal growth factor (EGF) which has been used to 

target AuNPs towards epidermal growth factor receptor overexpressing breast cancer. A 

disulphide bond in EGF was reduced to allow for its attachment onto AuNPs, then the 

EGF itself was radiolabelled with 111In (Figure 1.12). These nanoconjugates showed high 
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uptake into EGFR overexpressing breast cancer cells and minimal uptake into cells with 

low EGFR expression. A competition assay with non-conjugated EGF showed that this 

uptake was due to EGF recognition by the cells and EGFR selective cytotoxicity was 

observed.90  

 

Figure 1.12: The functionalisation of AuNPs with 111In radiolabelled EGF through disulphide reduction 

 

The protein transferrin has been shown to target gold nanorods (AuNRs) towards 

transferrin receptor expressing lung cancers. While transferrin directed AuNRs carrying 

doxorubicin displayed lower cytotoxicity than doxorubicin alone, the cytotoxicity of these 

transferrin targeted AuNRs was selective towards transferrin receptor expressing cells, 

and toxicity was shown to vary with the concentration of transferrin receptor expressed 

by cell lines.91  

While these examples use the receptors’ native proteins, the use of recombinant proteins 

has been explored. Employing mutations and variations to wild type proteins for a ligand 

can advantageously alter their characteristics and lead to enhanced properties for these 

recombinant proteins over the body’s native proteins. For example, a recombinant 

fibroblast growth factor 1 (FGF1) was engineered with four point mutations to protect 

FGF1 against proteolysis and therefore increase its circulatory half-life over that of native 

FGF1. FGF1 targets all four variations of the fibroblast growth factor receptor that are 

overexpressed in many cancers including lung cancer.92 FGF1 was also altered to attach 

a short peptide chain to the N-terminus containing a cysteine for conjugation onto 

AuNPs, and the native cysteine in the protein was removed to allow for site specific 

conjugation onto the AuNPs. FGFR negative cells were transfected with FGFR and the 

uptake of these nanocarriers confirmed to be due to endocytosis by FGFR. These AuNPs 

were used for PTT, with photothermal cytotoxicity only observed in FGFR expressing 

cell lines.93 The benefits of this recombinant protein over native FGF1, however, have 
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not been explored in this research as no comparison has been made to the native ligand 

to determine the advantage of this increased circulatory half-life. 

Lectins are more commonly used for biosensors than for targeted cancer therapies, 

however the lectin Jacalin has been employed to target a zinc phthalocyanine towards 

Thomsen-Friedenreich antigen (T-antigen) expressing cells for photodynamic therapy. 

The T-antigen is expressed in ca. 90% of cancers and is usually cryptic on healthy cells. 

Jacalin was conjugated onto a PEG shell through random amide-bond formation and 

cytotoxicity was observed in T-antigen expressing cells, whereas non-conjugated AuNPs 

displayed negligible cytotoxicity. To determine the selectivity of these nanoconjugates, 

the AuNPs were incubated with methyl-α-D-galactopyranoside, a glycoprotein that 

expresses the T-antigen. Pre-incubation with this glycoprotein decreases the 

photodynamic activity of the conjugate and suggests the activity is due to uptake of these 

nanocarriers through the Jacalin.74,94 Jacalin is non-immunogenic, and its affinity towards 

the ubiquitously oncologically expressed T-antigen makes it a very attractive targeting 

moiety. Jacalin has, however, been shown to bind to carbohydrate moieties on IgA 

antibodies, which may explain the lack of investigation into its use as a targeting ligand.95,96 

 

1.4.3 Peptide directed gold nanoparticles 

Peptides are relatively short polymers of amino acids that can be fully characterised and 

chemically synthesised to a designed specification. While they generally display lower 

affinity towards receptors than antibodies and other proteins, peptides are gaining 

attention as targeting moieties due to their simplicity and rapid uptake kinetics. Many 

examples of using peptides to target AuNPs towards various cancers for imaging have 

been reported in the literature,97–102 while surprisingly few examples exist of peptide-

directed AuNP-based cancer therapeutics. 

Peptides have been used to direct AuNPs carrying cytotoxic payloads to their targets. 

Pancreatic ductal adenocarcinoma (PDAC) has been targeted using a plectin-1 targeting 

peptide (KTLLPTP). Plectin-1 is expressed on the surface of PDAC but only within the 

cytoplasm of healthy cells. The modification of this peptide with a tyrosine and a cysteine 

residue (KTLLPTPYC) allows for the use of this peptide to simultaneously reduce 

gold(III) chloride under basic conditions to initiate the nucleation of AuNPs (Tyr), and 

to cap the resulting nanoparticles with the thiol side chain of cysteine. This addition of a 

dipeptide that simultaneous nucleates and caps AuNPs is a unique modality for peptides 
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over all other targeting agents. These AuNPs were further functionalised with the 

chemotherapeutic drug gemcitabine (Gem), which adsorbs to the AuNP core through 

hydrophobic interactions, as well as forming a reversible Au-N bond. These AuNPs show 

higher cytotoxicity towards PDAC cell lines than Gem alone and display excellent 

selectivity for PDAC cells over healthy tissue in mouse models.103 This use of the YC 

dipeptide to simultaneously nucleate and cap AuNPs has also been used to form AuNPs 

for use as radiosensitisers. These AuNPs are targeted towards αvβ3 integrin expressing 

cells through the cyclic peptide c(RGD) (Scheme 1.1).104 

 

Scheme 1.1: the synthesis of cRGD directed AuNPs using a YC dipeptide (blue) to nucleate and cap the AuNPs 
[adapted from ref. 104] 

 

RGD, and its cyclic derivative c(RGD), can be used to direct AuNPs to a wide variety of 

cancers as αvβ3 integrin is expressed by proliferating endothelial cells involved in 

angiogenesis.105 The enhanced rate of angiogenesis in cancerous tissues means there is a 

high expression of αvβ3 integrin in most endothelial cancers. RGD is possibly the most 

well-known targeting peptide and this tripeptide highlights the ability to produce very 

small targeting peptides towards receptors while maintaining selectivity. Both RGD and 

cRGD have been shown to selectively direct AuNPs towards a variety of cancers, where 

these AuNPs can act as radiosensitisers.106,107 c(RGD) has been used to deliver siRNA to 

cervical cancer models to silence E6, an oncoprotein that inactivates p53. The cRGD 

peptide is conjugated to a PEG-poly-lysine block copolymer, which is utilised to bind the 

siRNA through steric repulsion and ionic parings. Here, the ligand itself acts as the drug 

carrier and increased siRNA is observed intracellularly for cells treated with cRGD 

functionalised siRNA-AuNPs over cRAD functionalised siRNA-AuNPs; a substituted 

peptide sequence used as a control. The targeting ability of cRGD was further confirmed 

by pre-incubating cells with cRGD before the addition of cRGD-siRNA-AuNPs, with a 

much lower siRNA uptake observed.108  

The peptide CRGDK is specific towards neuropilin-1 (Nrp-1), a transmembrane 

glycoprotein that acts as a co-receptor for many ligands and regulates the internalisation 



1.4.3 Peptide directed gold nanoparticles 

 

22 
 

of membrane receptors. CRGDK has been used to direct AuNPs carrying the therapeutic 

peptide p12 (TSFAEYWNLLSP) towards Nrp-1 expressing breast cancers,109 and 

CRGDK-AuNPs carrying a platinum(IV) (Pt(IV)) agent have been directed towards 

prostate cancers (Scheme 1.2). 110  p12 inhibits the binding of MDM2/MDMX to p53, a 

tumour suppressor, but it cannot penetrate the cell membrane, while Pt(IV) acts as a 

chemotherapeutic. Increased cytotoxicity was observed with increased Nrp-1 expression, 

and pre-treatment of cells with an Nrp-1 antibody resulted in reduced uptake of these 

nanoparticles, confirming the CRGDK peptide is targeting these AuNPs towards Nrp-1 

overexpressing cells,109,110 highlighting the ability of short peptide sequences to selectively 

target an oncogenic receptor. 

 

Scheme 1.2: Synthesis of CRGDK (blue) directed AuNPs carrying a Pt(IV) payload (pink). Ligands are conjugated 
to glutathione capping agent through EDC/NHS 

 

The EGFR targeting peptide GE11 (YHWYGYTPQNVI) has been used to deliver 

AuNPs carrying the photosensitiser Pc4 to EGFR overexpressing glioblastoma cells. 

PEG-AuNPs were synthesised and conjugated with GE11 before Pc4 was adsorbed onto 

the surface of the AuNP. These nanoconjugates displayed minimal dark toxicity and 

significant phototoxicity in glioblastoma cells. Interestingly, it was found that few 

nanoparticles were accumulating within the cells, however the concentration of Pc4 

internalised by these cells was seen to be dependent on the binding of GE11. Pre-

incubation of the cells with GE11 reduced uptake of Pc4 into these glioblastoma cells, 

and therefore it was hypothesised that while the AuNPs themselves were not being 

internalised. It is thought that the increased interaction of these directed AuNPs with the 

surface of glioblastoma cells allows for the Pc4 to desorb from the nanoparticle and 

accumulate within glioblastoma cells.111,112 As these nanoparticles are designed to pass 

through the blood brain barrier (BBB), it is vital that their size is maintained as small as 

possible. The relatively small size of peptides over antibodies and other proteins is 
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beneficial here, and GE11 shows an affinity for the EGFR receptor only 10-fold lower 

than that of its natural ligand EGF, highlighting the applicability of peptides as targeting 

agents. 

The small size and fully characterised structure of peptides provides a benefit over 

antibodies and other proteins. The relative stability of peptides over antibodies and other 

proteins means they can either be conjugated to linkers after their attachment to AuNPs 

or before their use for ligand exchange. Again, as with antibodies and other proteins, the 

use of EDC/NHS and their derivatives is very popular for peptide conjugation. As 

peptides are synthetically produced, their structures can be easily modified for attachment 

of reactive moieties. This allows for the attachment of thiols through cysteine residues 

that have been used to conjugate peptides directly to the gold core or to conjugate a 

peptide onto a linker. A summary of reported peptide conjugation techniques is listed in 

Table 1.2. Most notably, the use of peptides allows site specific conjugation of the 

targeting moiety to AuNPs. This ensures that the peptides are attached to the AuNPs in 

a way that maintains their binding capability towards their target.  

Table 1.2: Reported methodologies for peptide conjugation to AuNPs 

Coupling 
agent(s) 

Linker Notes 

EDC/(sulfo)-
NHS 

Tiopronin109 

AuNPs capped with linkers then 
peptides conjugated onto AuNP 

system 

Glutathione110 

HS-PEG-COOH111,112 

EDC HS-PEG-COOH106 

None HS-PEG-NHS113,114 
Peptide conjugated to PEG, then 

used in AuNP synthesis mixture as 
capping agent 

SPDP Chitosan115 
Peptide conjugated to Chitosan, 
then added to AuNPs through 

ligand exchange 

Maleimide 
Adamantane (Ad)-PEG-

maleimide107 
Peptide added to linker before 
ligand exchange onto AuNPs 

Cysteine None106 
AuNPs synthesised then peptide 

added through Au-S bond by 
ligand exchange 
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1.4.4 Aptamer directed gold nanoparticles 

Aptamers are short, single stranded DNA or RNA sequences selected from a random 

pool of oligonucleotides. They form secondary structures through complementary base 

pairings that allow for selective binding towards specific receptors, proteins and small 

molecules (Figure 1.13), with an affinity for their target close to that of an antibody. 116,117 

 

Figure 1.13: Aptamers as targeting moieties: the folding of aptamers through complementary base pairings results 
in secondary structures that are highly specific towards target receptors [reproduced from ref. 118] 

 

Aptamers can be chemically synthesised and easily modified to improve their 

pharmacokinetics and stability, and therefore, since their development in the 1990s, have 

been viewed as an attractive alternative to antibodies.119 The synthetic production of 

aptamers means that most reports of aptamer-functionalised AuNPs use thiolated 

aptamers for direct attachment to the gold core (Figure 1.14), however one example does 

exist of amide bond formation to a PEG shell.120 

 

Figure 1.14: Generic structure of aptamer-directed AuNPs. Aptamers are generally attached directly to the gold 
core, with the payload loaded onto the aptamer 

 

A plethora of aptamers have been designed for various targets, however only a select few 

of these have been applied to the delivery of AuNPs. The most widely explored aptamer 

for AuNP targeting is AS1411 – a 26-base guanine rich aptamer that targets nucleolin, a 

phosphoprotein overexpressed by cancerous cells. Nucleolin is expressed on the nucleus 

of healthy cells, but malignant mutation often leads to the translocation of this receptor 
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onto the surface of cancerous cells. The guanine rich sequence of AS1411 leads to the 

formation of a G-quadruplex structure that is selective towards nucleolin. AS1411 induces 

an anti-proliferative effect within cells itself, and this in combination with its targeting 

ability increases the efficacy of a therapy. AS1411 has been used for the delivery of AuNPs 

for PTT,120 radiotherapy121 and to deliver AuNPs carrying Dox with nucleolin selective 

cell death observed.122 As AS1411 forms a G-quadruplex in the presence of potassium, 

the aptamer can be used to bind the photosensitiser N-methylmesoporphyrin IX (NMM), 

a G-quadruplex DNA binding ligand. The thiolation of this aptamer allows for its direct 

addition to the surface of AuNPs and these nanoconjugates were seen to be selectively 

internalised by cancer cells overexpressing nucleolin, with no uptake observed in 

nucleolin negative normal cell lines.123 This example is particularly interesting as it utilises 

the aptamer sequence not only as a targeting moiety but also as a drug carrier. A second 

example of this involves the conjugation of the photosensitiser chlorin e6 (Ce6) to the 

aptamer sgc8c, a protein tyrosine kinase 7 (PTK7) selective aptamer, to selectively target 

it towards leukaemia cell lines. Ce6 is conjugated to the 3’-end of the sgc8c aptamer, 

which is conjugated to a poly-T chain at the 5’-end, which, in turn, is conjugated to a 

sgc8c complementary DNA (cDNA) sequence. The sgc8c cDNA is further conjugated 

to a gold nanorod (AuNR). This means that in the absence of PTK7, the sgc8c is 

hybridised with the cDNA sequence, holding Ce6 close to the AuNR and quenching its 

fluorescence. Upon binding to PTK7, the sgc8c forms a hairpin, losing affinity for its 

complementary sequence and moving the Ce6 away from the AuNR, ‘switching on’ its 

fluorescence and therefore its photodynamic activity, as shown in Figure 1.15. Significant 

targeted photodynamic activity was observed in PTK7 expressing cells, with increased 

cytotoxicity observed in combination with PTT.124  
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Figure 1.15: Activatable Ce6 AuNR targeted towards leukaemia cells through sgc8c aptamer [reproduced from 
ref. 124] 

 

As aptamers are oligonucleotides, chemotherapeutic drugs that act by intercalating DNA 

can also intercalate these aptamers. Dox is a reversible DNA intercalator and therefore 

can be delivered to its target by binding to aptamers, notably by sgc8c and A9, a prostate 

specific membrane antigen (PSMA) specific aptamer.125,126 Here, AuNPs act as delivery 

systems to increase the concentration of payload delivered – multiple drug-aptamer 

complexes can be delivered at once, increasing the potency of one ligand finding its target. 

This effect has also been observed with the HER2 aptamer HApt; a trimeric aptamer that 

displays cytotoxicity towards HER2 overexpressing breast cancers by cross-linking HER2 

receptors and sorting them for degradation. The attachment of this aptamer onto gold 

nanostars (AuNSs) has been shown to increase its uptake and therefore the therapeutic 

value of HApt.127  

Aptamers, while successful targeting moieties when used individually, have also been used 

in combination to target multiple receptors on a specific cancer and therefore increase 

the selectivity towards these cells. AS1411 has been utilised for targeting AuNPs in 

conjunction with sgc8c, highlighting one of the advantages of aptamers as targeting 

moieties. As aptamers can be synthetically designed and built to a desired specification, a 

polyvalent aptamer system can be designed containing both AS1411 and sgc8c.128 The 

formation of a polyvalent aptamer for dual targeting displays remarkable benefits over 

the attachment of two individual targeting moieties as the ratio of these targeting ligands 



1.4.5 Carbohydrate directed gold nanoparticles 

 

27 
 

can be completely controlled with no concerns that one aptamer may have a higher 

affinity for AuNPs than another. I could be possible that ligands baring multiple 

aptamers, or an uneven ratio of two aptamers could be synthesised to further increase the 

number of receptors targeted or alter the ratio of the targeting ligands in a very controlled 

manner. This polyvalent aptamer was attached to AuNPs through electrostatic 

interactions, followed by the addition of daunorubicin (Dau), a DNA intercalating 

chemotherapeutic. A small amount of Dau binds to the aptamer due to its DNA 

intercalating ability; however, the majority is bound to the AuNP surface through 

electrostatic interactions. These AuNPs displayed selective cytotoxicity towards cancer 

cell lines expressing both nucleolin and PKT7. A synergistic effect was observed for the 

use of this polyvalent aptamer over AuNPs targeted with just the sgc8c aptamer,128 

highlighting a benefit of these chemically synthesised targeting moieties.  

 

1.4.5  Carbohydrate directed gold nanoparticles 

Cancer cells have been found to differentially express lectins on their surface compared 

to healthy cells,129 and the affinity of carbohydrates towards these lectins can be exploited 

to target these cells.130 The use of carbohydrates as targeting moieties for AuNP-based 

therapeutics is a new concept, with literature exploring this possibility only disclosed 

within the last five years. As this is such a new field, very few carbohydrate ligands have 

been explored. 

Hyaluronic acid (HA, Figure 1.16a) is a naturally occurring polysaccharide consisting of 

a repeating unit of D-glucuronic acid and N-acetyl-D-glucosamine. HA selectively targets 

the CD44 receptor which is overexpressed by various cancers with a kD ≈ 0.3 nM.131 The 

polymeric structure of HA means that there are multiple free carboxylic acids that can be 

used for drug functionalisation and this has been exploited for the delivery of 

chemotherapeutic drugs and photosensitisers to their targets. A porphyrin photosensitiser 

has been conjugated onto HA alongside the fluorescent imaging agent cresyl violet and 

cystamine, which adds a thiol functional group for conjugation of this linker onto AuNPs 

(Figure 1.16b). Here, HA acts as both the linker and targeting moiety. When attached to 

AuNPs, the fluorescence of both the porphyrin and cresyl violet are quenched. Upon 

uptake by CD44 overexpressing cell lines, hyaluronidase enzymes can degrade the HA, 

releasing the attached fluorophores and allowing for both the imaging of CD44 

overexpressing cancers and their targeted PDT. The uptake and cytotoxicity of these 
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nanoconjugates was observed to be selective towards CD44 overexpressing cancer cell 

lines.132 The highly repeated sequence of the HA polysaccharide allows HA to act as both 

a linker and targeting moiety, as well as allowing for functionalisation with a variety of 

drugs without the loss of targeting ability, a unique property of these polysaccharide 

targeting moieties. The photosensitiser Pheophorbide-A and the chemotherapeutic drug 

metformin have both been conjugated onto HA with selective uptake observed in CD44 

overexpressing lung and liver cancers, respectively.133,134 

 

Figure 1.16: a) the repeating D-glucuronic acid & N-acetyl-D-glucosamine unit of hyaluronic acid (HA) and b) 
substituted HA ligand for AuNPs for the dual imaging and PDT of CD44 overexpressing cancer cells [adapted 
from ref. 132] 

 

While HA is sparsely described in the literature as a targeting agent for therapeutic 

AuNPs, it is by far the most investigated carbohydrate ligand. One of the few examples 

of alternative carbohydrate ligands is that of glucose, a monosaccharide that has been 

shown to bind to glucose transporter-1 (GLUT1) which is overexpressed by several 

cancer cells. Glucose functionalised AuNPs have been used to target siRNA carrying 

AuNPs towards GLUT1 overexpressing breast cancers. As glucose (Figure 1.17a) is a 

monosaccharide, the technique of conjugating drugs directly to the carbohydrate as used 

for HA cannot be utilised. Instead, this work builds a glucose-capped ligand containing a 

PEG chain, followed by a 40-unit poly-lysine (PLL) chain, and terminated in lipoic acid 

(Figure 1.17b). The PEG chain acts as a spacer, while the lipoic acid provides thiols for 

binding to the AuNP surface. The PLL chain acts to bind siRNA through electrostatic 

interactions as the PLK1 siRNA used in this study contains 40 negative charges. PLK1 

plays a vital role in the cell cycle of cancer cells and its knockdown leads to antitumour 

activity. This system was observed to specifically target GLUT1 overexpressing breast 
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cancer cells, with its specificity confirmed through a competition assay with the GLUT1 

inhibitor phloretin.135  

 

Figure 1.17: a) the structure of glucose and b) the attachment of glucose (blue) onto AuNPs through a PEG 
(green), PLL (pink) and lipoic acid (black) chain 

 

Lactose (Figure 1.18a), a disaccharide that is recognised by the lectin galectin-1, has also 

been investigated as a targeting moiety for AuNP-based cancer therapeutics. It has been 

used to target AuNPs carrying a phthalocyanine photosensitiser towards breast cancer 

cells for PDT. Lactose was conjugated onto a short, thiolated PEG linker (Figure 1.18b) 

and functionalised onto the gold core in a mixed monolayer with the photosensitiser. 

While uptake and phototoxicity is specific towards malignant breast cells, the uptake is 

not determined by the presence of galectin-1.136 This work, while demonstrating the 

possibility of the use of other carbohydrate based ligands as targeting moieties, requires 

further work to determine how this ligand is selectively targeting malignant cells.  

 

Figure 1.18: a) the structure of lactose and b) the attachment of lactose to an AuNP through a thiolated PEG 
linker 

 

1.4.6 Small molecule directed gold nanoparticles 

The final class of targeting moieties explored for AuNPs is small molecules, low 

molecular weight organic compounds that display affinity towards cell surface receptors. 

Benefits of small molecules include the fact that they are relatively cheap to synthesise 
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and generally display higher stability than the other targeting moieties discussed above. 

Due to their size, small molecules easily penetrate through tumours to deliver payloads 

to their target. 

Folic acid, also known as folate, is the most commonly utilised small molecule for targeted 

AuNPs. It is a natural ligand towards the folate receptors, which are only accessible to 

the blood stream on cancerous cells and therefore useful oncogenic targets. The structure 

of folic acid contains two carboxylic acids (Figure 1.19a) which can be used for 

conjugation onto AuNPs. Due to the small size of folic acid, it is not possible to use this 

ligand to carry the payload and to conjugate it onto the AuNP itself. Folate is most 

commonly conjugated onto a linker such as PEG or polyethylenimine (PEI, Figure 

1.19b) through amide bonds for attachment onto AuNPs; however, examples of using 

electrostatic interactions to bind folate to AuNPs do exist.137  

 

Figure 1.19: a) The structure of folic acid and b) the conjugation of folic acid (blue) onto PEI (black) functionalised 
AuNPs  

 

Covalently bound folic acid has been used to deliver AuNPs carrying siRNA, 

photosensitisers and chemotherapeutic drugs to various cancers.138–140 The use of folic 

acid-AuNPs to deliver chemotherapeutics often relies on electrostatic interactions 

between the drug, such as Dox, and the surrounding ligands, such as pectin. The release 

of Dox from these AuNPs has been shown to increase at lower pH due to the protonation 

of the negatively charged pectin shell and therefore a loss of the electrostatic interaction. 
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The pH of tumour cells is pH 5.4, compared to 7.4 of the blood-stream, so this is a 

favourable characteristic for drug release in the tumour site. While in this case the AuNPs 

act solely as a delivery system, an increased cytotoxicity is observed for AuNP bound Dox 

compared to that of free Dox.141 As well as increasing the potency of chemotherapeutic 

effects, AuNPs allow for combination therapies between chemotherapeutics and PTT, 

with the synergistic effect resulting in increased cytotoxicity, and the folate ligand 

providing selectivity towards folate receptor positive tumours.140,142 Interestingly, for the 

development of folate-targeted AuNP therapies, there are many examples that display 

increased cytotoxicity upon the addition of folic acid,139,141 however no control folate 

receptor negative cell line or competition assay is run to prove that this increase in 

cytotoxicity is indeed receptor mediated and selective towards folate receptor 

overexpressing cancers. To assess the true benefits of folate-targeting AuNPs it is vital 

that the selectivity of these nanoconjugates is fully assessed, as this increase in cytotoxicity 

may be due to increased passive penetration and therefore these approaches may not 

provide any gain over non-targeted AuNPs. 

While most examples of small molecule targeted AuNP therapies use folate as their 

targeting moiety, examples exist using other small molecules. Anisamide is known to bind 

to the sigma receptor which is overexpressed in prostate cancer and has been used to 

deliver AuNPs carrying siRNA to their target. Anisamide (Figure 1.20a) is a synthetically 

produced small molecule derived from anisole, a naturally occurring molecule found in 

aniseed oil.143 The use of anisamide highlights another advantage of small molecules – 

they can be easily modified through structure-activity relationship studies to optimise 

their binding towards a target and remove unnecessary complexities from molecules that 

are not involved in the binding to a receptor. As with folic acid, anisamide lacks 

conjugation sites, meaning the siRNA is attached through electrostatic interactions with 

a PEI coating on the gold core (Figure 1.20b). The anisamide itself is synthesised by 

conjugating anisic acid to PEI ligands on these nanoparticles. For siRNA delivery, non-

covalent attachment appears to be the most efficient delivery system as the siRNA can 

diffuse away upon internalisation by cancerous cells where the pH is decreased, and the 

PEI becomes deprotonated. Anisimide-AuNPs-siRNA are shown to trigger apoptosis 

due to mRNA knockdown, with this cytotoxicity observed to be receptor mediated.144,145  
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Figure 1.20:  The structures of a) anisamide and b) anisamide (blue) conjugated onto AuNPs through PEI (black), 
with the siRNA payload (green) electrostatically coordinated to the PEI coating 

 

α- and β-bicalutamide (Figure 1.21) are antiandrogens, small molecules known to bind 

the androgen-sensing G protein coupled receptor GPRC6A and the membrane androgen 

receptor (MAR), both expressed by prostate cancers. These antiandrogens are currently 

clinically used for chemotherapy of prostate cancer; however, their attachment onto 

PEGylated AuNPs has shown selective cytotoxicity in MAR/GPRC6A positive chemo-

resistant prostate cells.146 In the work reported, the use of a selective chemotherapeutic 

drug as the targeting moiety for AuNP delivery displays the benefits of AuNPs as delivery 

vehicles. This ability of AuNP conjugation to increase the uptake of already selective 

chemotherapeutic drugs through multivalent binding is a very attractive prospect.  

 

Figure 1.21: Structures of a) α-bicalutamide (blue) and b) β-bicalutamide (pink) AuNPs, conjugated through a 

PEG linker (black) 
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1.4.7 Gold nanoparticles with multiple targeting modalities 

The multivalency of AuNPs provides the opportunity to functionalise them with multiple 

directing moieties to target multiple receptors, and these targeting moieties do not have 

to be of the same class. Gold nanostars (AuNSs) have been functionalised with a mixed 

monolayer of the aptamer A10 and the peptide DUP-1 (Figure 1.22). A10 is PSMA 

specific and DUP-1 binds to an unknown sight on prostate carcinomas. It was found that 

the combination of these targeting modalities allowed for selective targeted PTT of 

prostate cancers, regardless of their PSMA expression.147  

 

Figure 1.22:  Gold nanostars functionalised with a DUP-1 peptide and the aptamer A10 for the photothermal 
therapy of prostate cancers 

 

AuNPs carrying the ribosome inactivating protein curcin have been targeted towards 

glioblastoma using a combination of folic acid and an anti-transferrin antibody. 

Glioblastomas overexpress both the FRα and the transferrin receptors. Increased uptake 

was observed for the dual targeted AuNPs compared to AuNPs functionalised with just 

folic acid, highlighting the benefit of dually targeting these nanocarriers. Selective 

cytotoxicity was observed in glioblastoma cells, and the use of curcin was seen to display 

a synergistic cytotoxicity when delivered by AuNPs that were subsequently used for 

PTT.148 These examples highlight the benefits of targeting multiple receptors to either 

widen the therapeutic value of an AuNP system to a higher percentage of a certain cancer 

type, or to use the synergistic targeting abilities of two moieties to increase specificity 

towards a target. Most importantly here, these results show that these targeting modalities 

can be mixed and matched to enhance the targeting ability of AuNPs without interfering 

with each other, allowing for a large variety in targeting combinations to establish the best 

possible treatment for specific cancers.
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1.5 Conclusion and future outlook 

Non-small cell lung cancer (NSCLC) is the leading cause of cancer related deaths 

worldwide. Current treatment options involve surgery, chemotherapy or radiotherapy, all 

of which cause significant damage to the lungs and have devastating side effects. 

Photodynamic therapy is a cancer treatment that is relatively non-invasive with minimal 

side effects, and for these reasons it could improve the quality of life for NSCLC patients. 

The photosensitiser Photofrin® has been used to treat NSCLC to good effect, with a 

complete response rate of ca. 78% observed. While this is a positive result, the lack of 

selectivity of Photofrin® has been connected to side effects such as erythema, fibrosis and 

cicatricial stenosis. Photofrin® is a first-generation photosensitiser and is known to show 

increased retention in the body. The development of second-generation photosensitisers 

has led to a reduction in retention in the body and improved singlet oxygen quantum 

yields. These photosensitisers may provide favourable characteristics for the PDT of 

NSCLC. Second-generation photosensitisers, however, are notoriously hydrophobic and 

difficult to deliver intravenously. While many delivery systems have been explored for the 

delivery of hydrophobic photosensitisers, perhaps the most exciting of these is the use of 

gold nanoparticles (AuNPs). 

AuNPs present themselves as ideal drug carriers due to their biocompatibility, easy 

functionalisation with various ligands, their easily tuned size and shape and their enhanced 

absorption characteristics due to their SPR. While AuNPs display passive targeting 

towards tumours through the EPR effect, with the current trend in developing 

personalised medicines, the active targeting of AuNPs towards tumours is growing in 

popularity. Oncogenes expressed on the surface of cancer cells can be directly targeted 

by antibodies, proteins, peptides, aptamers, carbohydrates and small molecules, and their 

attachment onto AuNPs leads to selective uptake through receptor mediated endocytosis. 

The benefits and disadvantages of these targeting moieties is summarised in Table 1.3. 
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Table 1.3: A summary of the advantages and disadvantages of different targeting moieties for targeted AuNP-
therapeutics 

Targeting moiety Advantages Disadvantages 

Antibodies 

Extremely high selectivity 
and affinity towards 

receptors, relatively long 
circulatory half-life 

Low tumour penetration, can elicit 
immune response, sensitive to pH 

and temperature, expensive to 
produce, not well chemically defined, 

random conjugation unless 
specifically engineered, crosslinking 

can occur 

Proteins 
High affinity towards 

receptors 

High competition from native 
proteins, sensitive to pH and 

temperature, random conjugation 
unless specifically engineered, 

crosslinking can occur 

Peptides 

Rapid uptake kinetics, high 
penetration, synthetic hence 

easy to modify, easy and 
well-defined conjugation 

sites 

Lower affinity towards receptors, can 
be rapidly degraded by peptidases 

Aptamers 

Extremely high affinity 
towards receptors and 

selectivity, synthetic hence 
easy to modify, payloads can 
be conjugated to the ligand, 

can be therapeutic 

Low stability in circulation, lower 
penetration than peptides, 

carbohydrates and small molecules, 
hard to target hydrophobic or 
negatively charged receptors 

Carbohydrates 

High affinity, synthetic so 
can be modified, payloads 
can be conjugated to the 

ligand 

Recognised by multiple receptors so 
some specificity lost, synthesis much 
more taxing than peptides and small 

molecules 

Small molecules 

High circulatory half-life, 
high penetration, synthetic 
so easy to modify, can be 

therapeutic 

Lower affinity towards receptors 

 

Antibodies are most commonly conjugated onto AuNPs through water soluble ligands, 

with the payload conjugated to the core instead of the antibody itself (Figure 1.23a). 

Antibodies are perhaps the most widely investigated targeting moiety to functionalise 

AuNPs due to their extremely high selectivity and affinity towards their target receptors. 

The use of antibodies is, however, expensive compared to most other targeting moieties 

and they display low tumour penetration due to their large size. Antibody fragments and 

nanobodies are now widely investigated to combat this low penetration, however this 

decrease in size reduces the circulatory lifetime.  
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Figure 1.23: Generic structures of a) antibody and b) aptamer directed AuNPs 

 

Aptamers display receptor affinity close to that of an antibody and due to this they 

highlight themselves as a very good alternative to antibodies. Aptamers display higher 

stability than antibodies towards organic solvents and pH which is ideal for the synthesis 

of nanocarriers. They are also chemically synthesised which allows for easier modification 

and characterisation than antibodies, and payloads can be directly attached to these 

targeting moieties (Figure 1.23b). These synthetic targeting moieties allow for the 

synthesis of ligands baring multiple targeting moieties, which could allow for the targeting 

of multiple receptors with one nanocarrier. Aptamers can themselves elicit anti-tumour 

effects, and therefore can act as both a targeting moiety and a drug. Payloads can also be 

directly attached to aptamers without effecting their affinity to a receptor, providing an 

alternative method for payload delivery on AuNPs as they do not have to be directly 

bound to the gold core. While these benefits highlight aptamers as a highly beneficial 

targeting moiety, they display low stability in circulation due to nucleases in blood 

plasma.149 Due to the inherent negative charge of aptamers, they cannot be developed to 

target receptors that display negatively charged surfaces, providing severe limitations to 

these targeting moieties.   

Protein ligands are also investigated as targeting moieties, displaying a high affinity 

towards their target. The synthesis of therapeutic protein-AuNPs usually involves the 

protein and payload separately conjugated to the core through linkers (Figure 1.24a). 

Their affinity towards receptors is generally lower than that of antibodies and aptamers 

and their relative abundance in the body perhaps reduces their efficacy as there is a lot of 

natural competition for a binding site.  



1.5 Conclusion and future outlook 

 

37 
 

 

Figure 1.24: Generic structures of a) protein and b) peptide directed AuNPs 

 

The low penetration of antibodies and other proteins into tumours has led to the 

investigation of peptides as targeting moieties. While peptides generally show a lower 

affinity towards the target receptor, the small size of peptides means they display rapid 

uptake into targeted cells and high penetration into tumours, and this uptake is also higher 

than that of aptamers. The small size of peptides means they can be synthesised, which 

allows for ease of modification and control over the binding of these peptides onto 

nanocarriers (Figure 1.24b). This allows for site-specific conjugation of peptides onto 

AuNPs and ensures that the amino acids vital for receptor binding remain exposed, a 

benefit over antibodies and proteins where the conjugation onto AuNPs is completely 

random and these binding sites could be blocked. Peptides are also more stable towards 

pH and organic solvents than antibodies, which increases the ease of synthesis of peptide 

targeted nanocarriers. While their uptake and versatility is high, peptides display a low 

circulatory half-life due to peptidases in blood plasma,150 and their half-life is similar to 

that of aptamers. 

The expression of lectins on the surface of cancerous tissue has recently led to the 

investigation of carbohydrates as targeting moieties for AuNPs. Carbohydrate ligands are 

either attached directly to the gold core or conjugated through linkers (Figure 1.25a). 

Carbohydrates display high affinities towards their targets and, while their synthesis is 

taxing, they can be modified to fit the desired purpose prior to attachment onto a 

nanocarrier system. Highly polymeric carbohydrates such as hyaluronic acid allow for the 

attachment of payloads onto the targeting ligand itself and, as with aptamers, this provides 

an interesting alternative to directly binding a payload to the gold core, which may display 

significant advantages for some payloads. The relative lack of investigation into these 
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targeting moieties means that it is hard to conclude on the impact these ligands may have, 

however some carbohydrates display affinity towards multiple receptors, and this can 

decrease the efficacy of carbohydrate directed therapeutics and lead to off-target effects.  

 

Figure 1.25: Generic structures of a) carbohydrate and b) small molecule directed AuNPs 

 

Small molecules are low molecular weight organic compounds that display increased 

circulatory stability over other targeting moieties as they are not degraded by peptidases 

or nucleases found in the blood stream. Due to the size of small molecules, they have 

limited conjugation sites, so both the small molecules and payloads tend to be conjugated 

onto AuNPs through linkers (Figure 1.25b). The size of small molecules means that they 

generally display high tumour penetration, and small molecules can themselves illicit a 

therapeutic effect upon internalisation. Small molecules, however, generally display a 

lower affinity and selectivity towards their target than antibodies, proteins and aptamers. 

While each of these targeting modalities presents their own unique characteristics and 

advantages (Table 1.3) there is very little work comparing the ability of these modalities 

to deliver AuNPs. This lack of comparison makes it difficult to conclude whether the 

benefits of one targeting moiety outweigh the disadvantages of another, and to continue 

to push this field forward, comparisons between different targeting modalities for the 

same receptor are needed to determine the most effective approach.    

 

1.6 Thesis outline 

The research in this thesis investigates targeting moieties for the delivery of 

phthalocyanine-gold nanocarriers to non-small cell lung cancer. Firstly, in chapter 2, 

peptides were investigated for the delivery of AuNPs to EGFR overexpressing NSCLC 
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cell lines. Two EGFR targeting peptides were investigated and modified for efficient 

conjugation onto AuNPs. This work lead to the investigation of optimum synthetic 

conditions for the synthesis of peptide-phthalocyanine AuNPs, followed by comparison 

of the singlet oxygen production and phototoxicity of the produced nanoconjugates. The 

selectivity of the successful nanoconjugates towards EGFR overexpressing NSCLC cell 

lines was determined. 

Chapter 3 describes an investigation into conjugation strategies for the addition of 

antibodies onto phthalocyanine-gold nanocarriers. The chemical conjugation strategies of 

EDC/NHS and maleimide-thiol were investigated, before the use of adaptor proteins 

and their peptide mimics for Fc-selective antibody conjugation was explored.   

The use of folic acid as a targeting agent is explored in chapter 4.  An investigation into 

coupling chemistries and synthetic manipulations of folic acid was carried out to ensure 

folate was conjugated onto phthalocyanine-gold nanocarriers in its active form. Folic acid 

was shown to quench the singlet oxygen production of these phthalocyanine-AuNPs, so 

steps towards a protease cleavable linker were taken to produce a folate-directed system 

in which the photodynamic activity would be ‘switched on’ intracellularly. Finally, 

chapter 5 gives a detailed description of the materials, instruments and experimental 

procedures used throughout this research. 
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2.1 Introduction 

 The overexpression of receptors in cancer 

The transformation of cells from normal to malignant often involves the mutation of 

genes for receptors that encourage proliferation, survival, angiogenesis and migration. 

The upregulation of genes encoding for these receptors leads to the overexpression of 

receptors on the surface of cancer cells.1 While these receptors encourage the rapid and 

uncontrolled growth of tumours, the overexpression of receptors differentiates cancerous 

cells from normal cells. Targeted therapies often take advantage of the high density of 

surface receptors on malignant cells to encourage uptake of cancer treatments specifically 

into these cells. Surface receptors overexpressed on non-small cell lung cancers 

(NSCLCs) include the epidermal growth factor receptor (EGFR), fibroblast growth 

factor receptor 1 (FGFR1), discoidin domain receptor 2 (DDR2) and neurotrophic 

tyrosine kinase receptor (NTKR). EGFR and NTKR are overexpressed on ca. 60%2 and 

ca. 3%3 of NSCLCs respectively, while FGFR1 and DDR2 are limited to squamous cell 

carcinomas, where they are expressed by ca. 20%4 and ca. 4%5 of carcinomas respectively.6 

Due to the ubiquity of EGFR overexpression in NSCLCs, this receptor presents itself as 

a desirable target for delivering photosensitisers directly to non-small cell lung cancers. 

 

 The epidermal growth factor receptor 

The EGFR is a receptor tyrosine kinase found to be overexpressed in many human 

epithelial cancers, such as lung, prostate, ovarian, colorectal, bladder and head and neck 

carcinomas.2,7 It is a member of the ErbB family, which consists of four proteins: EGFR 

(ErbB-1), HER2 (ErbB-2), HER3 (ErbB-3) and HER4 (ErbB-4). These proteins are 

similar in their basic structure but differ in their tyrosine kinase activity.8 EGFR itself is a 

170 kDa plasma membrane glycoprotein mainly found on cells of epithelial origin, 

consisting of a cysteine-rich extracellular region, an uninterrupted kinase domain and 

multiple autophosphorylation sites clustered at a C-terminal tail.9,10 In healthy tissue, it 

moderates cell growth, survival, adhesion, migration and differentiation. The extracellular 

region binds to ligands such as epidermal growth factor (EGF) and transforming growth 

factor α (TGFα) to form a 2:2 receptor:ligand complex.11 Homodimers and heterodimers 

can form between EGFR and other members of the ErbB family. The formation of these 

dimers (Figure 2.1), leads to cross-phosphorylation between tyrosine residues within the 

EGFR, forming docking sites for signalling complexes such as effector and adaptor 
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proteins. These signalling complexes dissociate and stimulate a cascade of cellular 

pathways.  

 

Figure 2.1: Activation of EGFR by ligands such as EGF leads to the formation of an active dimer and the activation 
of downstream processes controlling cell survival, proliferation, migration and differentiation 

 

To terminate the signal, endocytosis occurs, absorbing the EGFR dimer into the cell.  

Within the cell, the EGFR, and any other members of the ErbB family used to form a 

heterodimer, are either recycled back to the surface or degraded. One of the many 

pathways modulated by the EGFR is that of cell proliferation and cell maintenance by 

the inhibition of apoptosis.12 By overexpressing EFGR on the cell surface, carcinomas 

can maintain uncontrolled cell growth, and therefore the overexpression of EGFR is seen 

as a poor prognostic marker for survival and an essential driving force for aggressive cell 

growth. The high frequency of EGFR overexpression in NSCLC has led to the receptor 

being extensively investigated as a target for cancer treatments.13–15  

 

 Targeting the EGFR 

As the EGFR presents itself as such a lucrative target, many therapies have been designed 

to directly target this receptor. Much of the research into targeting the EGFR revolves 

around the use of monoclonal antibodies or tyrosine kinase inhibitors (TKIs). Both of 

these treatment methods have been successful, leading to clinically approved drugs.16,17  

TKIs for targeting the EGFR include gefitinib and erlotinib which are both approved for 

the treatment of NSCLC.18,19 These TKIs inhibit the ATP-binding pocket on the C-

terminus of EGFR, blocking the downstream signalling20,21  and induce cell death by 

triggering apoptosis.22 While these drugs have been seen to efficiently treat NSCLC, 
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resistance towards TKIs rapidly develops, and both gefitinib and erlotinib are only seen 

to be effective in patients for one year of treatment.23 These mutations have led to the 

development of second generation TKIs, including afitinib in 2013,24 however mutations 

towards second generation therapies were quickly developed, leading to the design and 

approval for the third generation TKI osimertinib in 2018.25 This rapid development of 

resistance to TKIs is not ideal for development of a drug as new mutations seem to arise 

as quickly as TKIs are developed. These TKIs act upon a pocket of the EGFR found 

intracellularly, so TKIs are not ideal for the development of targeting moieties to direct 

treatments to EGFR overexpressing NSCLC.  

Antibodies towards the EGFR are directed towards the external section of the receptor 

and therefore are a more relevant drug type for this work. EGFR targeted antibodies such 

as cetuximab and panitumumab have been approved for treatment of metastatic 

colorectal cancer,26,27 and cetuximab is also approved for head and neck squamous cell 

carcinoma,28 either as stand-alone treatments or in combination with chemotherapeutic 

drugs. These antibodies display a higher affinity towards EGFR than its natural ligands 

and prevent the activation of tyrosine kinases, inhibiting the activation of downstream 

signalling that promotes cell proliferation. They also promote the internalisation of the 

EGFR by receptor mediated endocytosis and the degradation of the receptor. While 

panitumumab is a human monoclonal antibody, cetuximab is a chimeric human-mouse 

antibody, and as such can promote antibody-dependent cell mediated cytotoxicity.29 

These antibodies display good activity towards the EGFR, however these current 

approved therapies rely on the antibody itself for activity towards EGFR expressing 

cancers. The conjugation of drugs onto antibodies is not a trivial task and antibody drug 

conjugates towards EGFR are yet to gain clinical approval.  

Antibody drug conjugates (ADCs) combine the specificity of antibodies towards a target 

receptor with the cytotoxicity of an attached drug to selectively deliver a payload. The 

overexpression of EGFR in many epithelial cancers has meant that EGFR has been 

widely investigated as a target for ADCs30–33 and the development of EGFR ADCs has 

led to several clinical trials.34,35 ADCs carrying photosensitisers as their payload are 

collectively known as photoimmunotherapeutics. Photoimmunotherapy has been 

reported using a number of photosensitisers conjugated onto cetuximab, panitumumab 

and other EGFR antibodies.36–38 It has been found that the hydrophobic nature of most 

photosensitisers leads to aggregation of antibodies upon conjugation. To counter this, 

water soluble linkers such as PEG chains have been used to increase the solubility of the 
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system.39 Hydrophilic photosensitisers such as IR700, while poor photosensitisers in their 

own right, have been conjugated onto EGFR antibodies (Figure 2.2, 2.1). Their 

hydrophilicity prevents aggregation of the antibody, and the targeting ability of the 

antibody internalises the photosensitiser, increasing its efficiency.40   

 

Figure 2.2: Structure of an IR700 photoimmunoconjugate 

 

EGFR antibodies have also been used to deliver nanoparticles carrying photosensitisers 

for photodynamic therapy. EGFR antibodies have been used to deliver a wide range of 

nanoparticles, including gold nanoparticles, quantum dots, liposomes and polymeric 

nanoparticles, with excellent selectivity observed.41–45 Nanoparticles have the ability to 

carry large quantities of a photosensitiser and this photosensitiser does not have to be 

conjugated directly to the antibody. Nanoparticles such as liposomes or polymeric 

nanoparticles can encapsulate a hydrophobic photosensitiser, meaning the attached 

targeting antibody is only subjected to the hydrophilic surface of the nanocarrier. 

Inorganic nanoparticles such as gold, iron oxide and copper sulphate use solubilising 

ligands such as PEG or amphiphilic polymers to increase their water solubility and the 

antibodies are attached directly to these water soluble moieties.46–48 This increased 

hydrophilicity is favourable for the stability of antibodies and presents a benefit over 

photoimmunotherapeutics. 

While antibodies have been widely investigated as targeting agents for photodynamic 

therapy, their complex and often unknown structure makes their conjugation to 
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photosensitisers or delivery vehicles difficult to control and the characterisation of the 

resulting conjugate challenging. The most common conjugation strategy relies on the 

presence of surface amines in lysine residues to couple antibodies to their target. A typical 

IgG antibody has ca. 10 lysines on its surface49 and it is very difficult to control which, if 

any, of these lysines will react, or whether any lysine residues in the active site of an 

antibody will be involved in this conjugation. The conjugation of a drug to an antibody is 

also never uniform, with some antibodies in a batch carrying more drugs than others,50 as 

demonstrated in Figure 2.3. In fact, variation between zero and eight drugs per antibody 

has been observed in the clinically approved ADC Trastuzumab Emtansine, which is 

reported to have a drug to antibody ratio of 3.5.51 This variability in conjugation means it 

is questionable whether the same dosage of payload is delivered in each treatment, and 

different levels of conjugation can slightly alter the pharmacokinetics and tissue 

distribution of an antibody.52  

 

Figure 2.3: Example of the heterogeneity of ADCs. Here, this mixture of ADCs has an average drug (red) to 
antibody (blue) ratio of 2 

 

Antibodies are also very sensitive to pH, organic solvents and temperature and they show 

low penetration into solid tumours due to their large size. These problems have led to the 

investigation of simpler, smaller targeting moieties that show specificity towards their 

target, such as peptides. 

 

 Peptides as targeting agents 

Peptides are short chains of amino acids that can be manually synthesised with a known 

sequence. They are relatively cheap and simple to synthesise, can be fully characterised, 

are non-immunogenic and are relatively robust compared to antibodies, thus provide an 

attractive alternative to antibodies. Cell-targeting peptides can be specifically designed for 

a receptor based on its natural ligand (such as EGF for EGFR) or from the crystal 

structure of a receptor. Less specific techniques such as combinatorial libraries and phage 

display can be used to design and screen a large number of peptides against a target 
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receptor. EGF itself has been isolated and used to deliver phthalocyanines to tumours,53 

however this relatively complex growth factor (6 kDa) still results in many of the same 

conjugation issues as antibodies. The use of peptides as targeting agents is a relatively new 

field of research and their fast diffusion rates and ease of modification has led to a 

growing interest in their applicability. Peptide drug conjugates (PDCs) are an emerging 

field of therapeutics, carrying cytotoxic payloads to their target through the specificity of 

a peptide. PDCs have been designed for a range of targets, displaying excellent uptake 

into cells alongside high drug loading and good biocompatibility.54–57 PDCs also have the 

advantage of defined conjugation sites and simple analysis, meaning a homogeneous, fully 

characterised drug is produced, usually with peptide and payload in a 1:1 ratio. 

While peptides have been designed for a wide variety of targets, interestingly there are 

few diverse examples of peptides as targeting agents for the delivery of photosensitisers. 

The conjugation of a photosensitiser to a peptide can increase its hydrophilicity, and often 

a soluble linker such as PEG is inserted between the photosensitiser and the targeting 

peptide to further increase the hydrophilicity of the conjugate58,59 increasing their 

applicability for delivery. The cyclic peptide cRGD, a ligand for αvβ3 integrin, has been 

used to deliver porphyrins and chlorins and is the most explored peptide for 

photosensitiser delivery.59–63 Peptide-photosensitiser conjugates directed towards 

neuropilin-1,64 gastrin releasing peptide receptors65 and EGFR66–68 have also been 

described.  The peptide RGD and its cyclic derivative cRGD were first reported over 20 

years ago69,70 and have been staple examples of  targeting peptides in the literature ever 

since. αvβ3 integrin is overexpressed by proliferating endothelial cells involved in 

angiogenesis but has limited expression in normal cells71 so it can be used as a target for 

a wide variety of cancers. cRGD displays high selectivity towards αvβ3 integrin, and this 

wealth of understanding of the binding and selectivity of cRGD, alongside the ubiquity 

of αvβ3 integrin expression in tumours, may have led to preference towards cRGD for 

targeting photosensitisers.  

Peptides have also been investigated as targeting agents for nanoparticles. Again, cRGD 

has been extensively investigated for the successful targeted delivery of a wide variety of 

nanoparticles.72,73 A wide range of peptides have been used to target nanoparticles towards 

tumours, including a range of EGFR targeting peptides. Interestingly, while there are 

many reports of EGFR peptide targeted nanoparticles, there are only two examples of 

using EGFR-targeted peptides for the delivery of nanoparticles for PDT.74–76 
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 Peptides for targeting the EGFR 

To date, four peptides have been reported for EGFR targeting: GE11, D4, QRHKPRE 

and AEYLR. The most investigated of these peptides, GE11 (YHWYGYTPQNVI), was 

discovered using a phage display library and has subsequently been used by many groups 

to target the EGFR,74,75,77–79 including the delivery of phthalocyanine-based peptide drug 

conjugates (Figure 2.4a, 2.2).66 GE11 has been shown to bind specifically to EGFR and 

displays a dissociation constant (kd) of ca. 22 nM, which is only 10-fold lower than that of 

EGFR’s natural ligand EGF. It shows no mitogenic activity while being easily internalised 

by cells overexpressing EGFR.77 GE11 has been employed for delivering micelles and 

gold nanoparticles carrying the photosensitiser Pc4 to EGFR overexpressing cells with 

enhanced uptake and phototoxicity observed for these targeted nanocarriers.74,76  

 

Figure 2.4: Structures of  a)  the phthalocyanine-GE11 PDC, consisting of a phthalocyanine (blue), linker (black) 
and GE11 (pink) and b) the phthalocyanine-D4 PDC consisting of a phthalocyanine (blue), linker (black) and D4 
(pink) 

 

Peptide D4 (LARLLT) was identified using computer assisted design from a virtual 

peptide library, using the crystal structure of EGFR to dock the peptide into a surface 

pocket80 and has also been used to deliver phthalocyanine-PDCs (Figure 2.4b, 2.3). 

GE11 and D4 have been compared as targeting agents to deliver a phthalocyanine or 
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BODIPY (Figure 2.5a) for fluorescent imaging of EGFR positive tumours, and for the 

delivery of the photosensitiser mesoporphyrin IX (Figure 2.5b). 66,67,81 The peptides were 

linked to the photosensitisers through PEG chains to increase solubility. The shorter 

peptide D4 was found to be internalised much more readily by human cell lines than 

GE11 due to its higher hydrophilicity, with the GE11-BODIPY complex observed to 

aggregate at concentrations above 10 µM.81 A difference in uptake of these conjugates 

was observed depending on the cellular expression of EGFR, highlighting that both 

peptides are selectively targeting the EGFR. 67 

 

Figure 2.5: Structures of a) BODIPY and b) mesoporhyrin IX 

 

Both QRHKPRE and AEYLR are relatively newly discovered EGFR targeting peptides. 

QRHKPRE was identified from a phage display library and was found to bind to the 

extracellular domain of EGFR with a kd of 50 nM,82 approximately twice that of GE11. 

This peptide has been used for fluorescent imaging83 and has been conjugated onto iron 

oxide nanoparticles for targeted magnetic resonance imaging (MRI).84 QRHKPRE has 

been used to target a zinc phthalocyanine towards colorectal cancer with high selectivity 

towards EGFR overexpressing cancers observed (Figure 2.6a, 2.4).83 AEYLR was 

derived from the major autophosphorylation site Y117385 on the EGFR and was initially 

designed as a tyrosine kinase inhibitor before its targeting ability was determined. It has 

been shown to co-localise with EGFR in human non-small cell lung cancer86 and has 

been used to target liposomes  and the fluorophore cyanine 7 (Cy7, Figure 2.6b, 2.5) 

towards EGFR expressing tumours in a mouse model.87 AEYLR was shown to have a 

higher binding affinity towards EGFR than D4 and the binding of AEYLR was shown 

to be specific towards EGFR expressing cell lines.86 Minimal work has been done using 
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this new EGFR peptide, but the stronger binding of AEYLR to the EGFR over D4 

makes it an attractive targeting agent. 

 

Figure 2.6: Structures of a) phthalocyanine-QRHKPRE PDC, consisting of a phthalocyanine (blue), linker (black) 
and QRHKPRE (pink) and b) Cy7-AEYLR conjugate for imaging, consisting of Cy7 (blue) and AEYLR (pink) 

 

All four of these EGFR directing peptides show potential for the development of EGFR-

directed gold nanocarriers for PDT. As only GE11 has previously been explored for the 

targeted delivery of gold nanoparticles, D4, QRHKPRE and AEYLR present an 

opportunity to develop novel nanocarriers for photodynamic therapy. D4 and AEYLR 

are of particular interest due to their short length, increasing ease of synthesis, and their 

high uptake into EGFR overexpressing cells. 

 

2.2 Summary and chapter aims 

The EGFR has been validated as a receptor for targeted treatments on NSCLC through 

current clinically relevant therapies. Its overexpression in ca. 60% of NSCLC cases has 

made it an extensively investigated receptor. Antibodies have been comprehensively 

investigated as targeting moieties with a lot of success, however the sensitivity of 

antibodies towards pH, temperature and solvents, along with the relative difficulty of 

controlling their conjugation limits their use as targeting agents. 
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Peptides display selective binding towards their target receptor and are more stable, 

cheaper to synthesise and more easily characterised than antibodies. Recently, possibly 

due to the difficulties of forming ADCs, a greater focus has been applied to PDCs as drug 

delivery systems. Four peptides that show selective binding to EGFR (GE11, D4, 

AEYLR and QRHKPRE) have been described in the literature. While no comparison 

has been made between QRHKPRE and the other EGFR targeting peptides, it has been 

reported that AEYLR shows a higher binding affinity towards EGFR than D4, which in 

turn shows higher uptake into cells than GE11. AEYLR, D4, QRHKPRE and GE11 

have all been used to deliver payloads to EGFR overexpressing cell lines, with selective 

uptake observed. While PDCs and nanoparticle conjugates have been formed with these 

peptides, only GE11 and D4 have been explored for targeted photodynamic therapy. 

Furthermore, only GE11 has been investigated for delivery of nanoparticles carrying a 

photosensitiser. Since GE11 has been seen to be less efficient for uptake than D4 and 

AEYLR, investigating these peptides as targeting moieties for the delivery of 

nanoparticles is an exciting prospect. 

In this chapter the peptides D4 and AEYLR were investigated as targeting moieties for 

phthalocyanine gold nanoparticles. Firstly, these peptides were modified to obtain the 

functionalities necessary for conjugation onto nanoparticles, then their ability to bind to 

EGFR overexpressing cells assessed. These peptides were then conjugated onto thiolated 

PEG (HS-PEG-COOH), before forming peptide-C11Pc-PEG-AuNPs. The synthesis of 

these nanoparticles was optimised before they were assessed for their ability to produce 

singlet oxygen, and the phototoxicity of these peptide-directed phthalocyanine-gold 

nanoparticles was assessed. 

 

2.3 Results and discussion 

 Peptide selection and synthesis 

As described in section 2.1.5, four peptides targeting EGFR have been reported. Of 

these, it is reported that AEYLR has the highest affinity for EGFR, followed by D4, 

GE11, and then QRHKPRE. AEYLR and D4 are also more attractive than GE11 due 

to their much shorter length, and therefore more accessible synthesis. All the reported 

data highlights AEYLR as the most attractive targeting peptide, however, there is only 
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one report of AEYLR as a targeting ligand for EGFR so both AEYLR and D4 were 

investigated in this study. 

To synthesise these targeting peptides, fluorenylmethyloxycarbonyl (Fmoc) solid phase 

peptide synthesis (SPPS) was utilised. SPPS involves the growth of a peptide chain on a 

solid support or resin. The use of a solid resin means that many equivalents of reagents 

can be used in the synthesis of these peptides to drive couplings to completion, and then 

remaining reagents are simply washed away. This process allows for the quick, efficient 

and clean synthesis of peptides. Most resins are polystyrene beads and are functionalised 

with a linker to allow the growth of the peptide. A plethora of different resins with 

different linkers exist to allow for the desired functionality upon cleavage. For the peptide 

synthesis described throughout this thesis, rink amide MBHA resin was used. This resin 

has an acid labile linker, which forms a terminal amide on the C-terminus upon cleavage. 

This provides a neutral, non-reactive terminus to the synthesised peptides. Rink amide 

MBHA resin is purchased with an Fmoc protecting group on the linker. Fmoc is a base 

labile protecting group that can be removed by treatment of the resin with the base 

piperidine, leaving a free amine upon cleavage. Fmoc SPPS involves the use of Fmoc 

protected amino acids, preventing the formation of polymers of the same amino acid. 

Any amino acids with reactive functionalities in their side chains are protected with acid 

labile protecting groups, such as tert-butyl (tBu) for acids and 2,2,4,6,7-

pentamethyldihydrobenzofuran-5-sulfonyl (pbf) for amines, so these will remain 

protected throughout the peptide synthesis and prevent any unwanted reactions on amino 

acid side chains. Once Fmoc deprotection has been completed, five equivalents of the 

next Fmoc-protected amino acid is added to the resin, alongside five equivalents of the 

coupling agent and ten equivalents of N,N-diisopropylethylamine (DIPEA). DIPEA is a 

non-nucleophilic base that acts as a proton scavenger and activates the carboxylic acid. 

As it is non-nucleophilic, it does not compete with the amine nucleophile. Throughout 

this thesis two coupling agents were utilised. Peptides synthesised by hand used the 

coupling agent N-[(Dimethylamino)-1H-1,2,3-triazolo-[4,5-b]pyridin-1-ylmethylene]-N-

methylmethanaminium hexafluorophosphate N-oxide (HATU) and peptides synthesised 

on the automatic peptide synthesiser used a mixture of N,N,N′,N′-Tetramethyl-O-(1H-

benzotriazol-1-yl)uronium hexafluorophosphate (HBTU) and 1-hydroxybenzotriazole 

hydrate (HOBt). The structures of HATU, HBTU and HOBt are given in Figure 2.7.  
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Figure 2.7: The structures of a) HATU, b) HBTU and c) HOBt 

HATU is a more efficient coupling agent and is favoured for difficult couplings, but 

HBTU has a higher stability in DMF so is selected as a coupling agent for automatic 

peptide synthesis where large volumes of coupling agents are prepared for use over long 

periods of time. HATU and HBTU are similar in structure, however HATU is an 

azabenzotriazole derivative whereas HBTU is a benzotriazole derivative, as shown in 

Scheme 2.1, and HBTU contains a urea whereas HATU contains a guanidine. While 

these differences exist, their chemistry for amide bond formation is much the same. The 

general mechanism of both coupling agents is demonstrated in Scheme 2.1 using HATU. 

The carboxylic acid of an amino acid is deprotonated by DIPEA, allowing for a 

nucleophilic attack on the carbocation on the coupling agent. This leads to an elimination 

of the azabenzotriazole, 2.6. This in turn can attack the electrophilic carbonyl centre of 

2.7 and eliminate tetramethylurea. The resulting activated ester, 2.8, is attacked by the 

nucleophilic amine on the terminal amino acid of the growing peptide chain, 2.9, releasing 

the azabenzotriazole and forming an amide bond. This additional basic nitrogen in 

HATU is thought to increase the efficiency of the amidation compared to that of HBTU, 

resulting in a lower level of racemisation. HBTU is used in conjunction with HOBt to 

prevent racemisation of amino acids. HBTU is more basic than HATU and can 

deprotonate the α-position of amino acids,88 so HOBt is used to form an equilibrium with 

HBTU to limit the concentration of free active HBTU present in the reaction. 
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Scheme 2.1: The mechanism for amide bond formation using HATU 

 

Once peptide synthesis is complete, the peptide can be removed from the resin by the 

addition of acid. In the case of rink amide MBHA, a cleavage cocktail of 95% 

trifluoroacetic acid (TFA), 2.5% triisopropylsilane (TIPS) and 2.5% water is used. Rink 

amide MBHA requires a relatively high concentration of acid to cleave, and this acid also 

cleaves any acid labile protecting groups on the side chains of amino acids. The TIPS and 

water in the cleavage cocktail act as a free radical scavengers to prevent any unwanted 

side reactions with cleaved protecting groups.  

In this work, both AEYLR and D4 were modified slightly to make them fit for purpose 

as a directing ligand on gold nanoparticles. Both peptides were modified with a lysine 

residue on the N-terminus. As neither peptide contains a free amine in the side chains of 

their sequences, the addition of a primary amine through the lysine side chain provided 

an opportunity for site-specific conjugation using commonly used amide bond formation 

chemistry. These peptides were also modified with a fluorescent tag, fluorescein 

isothiocyanate (FITC), to allow for the determination of their binding to EGFR and their 

functionalisation onto gold nanoparticles.  

FITC can undergo self-elimination from a peptide, 2.12, under acidic conditions through 

a cyclisation with the neighbouring amino acid to give fluorescein thiazolinone, 2.14, and 

a truncated peptide, 2.15, as shown in Scheme 2.2. This elimination is driven by the 

formation of the thiazolinone, which can only be formed if the adjacent amino acid is an 

α-amino acid.  
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Scheme 2.2: elimination of FITC under acidic peptide cleavage conditions to give fluorescein thiazolinone and a 
truncated peptide 

 

To overcome this elimination, a β-alanine spacer was inserted into the sequence before 

the addition of FITC.89 Following these modifications, the two peptides built on the solid 

phase were FITC-βAAEYLRK (2.16) and FITC-βALARLLTK (2.17). The structures of 

these peptides are shown in Figure 2.8. 

 

Figure 2.8: The structures of a) FITC-βAAEYLRK (2.16) and b) FITC-βALARLLTK (2.17). The added lysine is 
highlighted in blue, the β-alanine spacer in pink and the FITC in green 
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2.16 and 2.17 were synthesised using SPPS as described above. Post cleavage, both 

peptides were purified by reverse-phase preparative HPLC, then their purity assessed by 

reverse-phase analytical HPLC. In some HPLC traces, two overlapping peaks are 

observed upon the cleavage of these peptides. Upon separation, these peaks show the 

same mass, both corresponding to the mass of the desired peptide. FITC, and its core 

structure fluorescein, are commonly depicted as a quinoid structure (2.21) with a 

carboxylic acid group. However, fluorescein and its derivatives possess seven prototropic 

forms (Figure 2.9) and under neutral conditions they can exist as three different 

structures; the quinoid structure (2.21), a lactone (2.22) or as a zwitterion (2.23).90 It is 

then possible that due to the presence of TFA in the HPLC solvents, cationic FITC (2.24) 

could also exist. The difference between the lactone structure and the open ring quinoid 

(and charged species thereof) is significant enough that it could lead to marginally 

different retention times on the HPLC, giving rise to this double peak. These peaks were 

separated, then run again through the HPLC and the second peak then reappeared, 

further confirming the likelihood of these being two prototropic forms of FITC. Due to 

this effect, these peaks were both collected and used as the pure peptide. The successful 

synthesis of 2.16 and 2.17 was confirmed using MALDI mass spectrometry and high 

resolution LCMS. 2.16 was found to have the desired m/z of 1236.4804, which 

corresponded to [M-H]- with a mass of 1236.5226. 2.17 was calculated to have a 

[M+2H]2+ mass calculated as 673.3235, and a m/z of 637.3260 was found. 
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Figure 2.9: Prototropic forms of fluorescein 

 

 Determination of receptor presence on cell lines 

To explore the targeting ability of these peptides towards EGFR present in non-small cell 

lung cancer, the EGFR overexpressing NSCLC cell line A54991 was investigated. To 

determine whether this cell line does indeed overexpress EGFR, flow cytometry was 

utilised. Flow cytometry involves the incubation of cells with a primary antibody specific 

to the receptor, in this case an anti-EGFR antibody. The cells are incubated alongside this 

antibody on ice to prevent internalisation of the receptors. Bovine serum albumin (BSA) 

is added to the PBS for all incubations to block any non-specific interactions between the 

antibody and the cell surface. Once incubated for one hour, the primary antibody is 

washed off and a fluorescently tagged secondary antibody is added and incubated on ice 

for one hour. This secondary antibody has affinity for the heavy chain of the primary 

antibody and is specific to the animal host that the primary antibody was cultured in. In 

this case a FITC-goat anti-mouse antibody was used as the primary antibody was cultured 
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in mice. The specificity of this secondary antibody towards the primary antibody, and not 

any part of the cell, means that only cells which the primary antibody has bound to will 

be fluorescently tagged, and in turn, only cells that possess the EGFR receptor will be 

tagged. The flow cytometer counts individual cells and measures the fluorescence 

intensity of each cell. This means that the fluorescence intensity of a sample can be used 

to compare the relative quantities of EGFR on the cell surface, as each secondary 

antibody binds 1:1 with a primary antibody. This means a higher fluorescence correlates 

to a higher density of EGFR on the surface. For each sample a negative control is run, 

with these cells incubated with BSA/PBS without the primary antibody, then the 

secondary antibody, to account for any background fluorescence. Figure 2.10a shows a 

large increase in the FITC fluorescence intensity of A549 cells when incubated with anti-

EGFR antibody and the FITC-tagged secondary antibody when compared to the negative 

control (31-fold increase in fluorescence, Table 2.1), showing a high amount of EGFR 

is present on this cell line. Due to the ubiquity of EGFR throughout epithelial cells, it is 

very difficult to find a cell line with no EGFR to use as a control cell line. The epithelial 

embryonic kidney cell line HEK29392 was found to show a 6.7-fold increase in 

fluorescence upon incubation with an anti-EGFR antibody compared to that of the 

control (Table 2.1), suggesting HEK293 cells (Figure 2.10b) have a much lower level of 

EGFR compared to A549 cells. This suggests that HEK293 cells should have a reduced 

uptake of EGFR targeted nanoparticles and can be used as a control. 

 

Figure 2.10: Flow cytometry histograms of a) A549 and b) HEK293 cells incubated with an anti-EGFR Ab then 
FITC-goat antimouse secondary Ab (purple) or just with the secondary Ab (blue) 
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Table 2.1: Mean fluorescence of A549 and HEK293 cells incubated with anti-EGFR antibody, then FITC-goat 
anti-mouse secondary Ab, or with the secondary Ab alone, and the fold increase in fluorescence upon addition of 
anti-EGFR antibody 

Cell line 
Average 

fluorescence, anti-
EGFR treated 

Average 
fluorescence, 

control 

Fold increase in 
fluorescence  

A549 924348.2 29837.9 31.0 

HEK293 176635.9 26198.8 6.7 

 

 Confirmation of peptide binding 

The binding of 2.16 and 2.17 was confirmed using fluorescence microscopy. A549 cells, 

shown to overexpress the EGFR receptor, were grown overnight in 96 well plates and 

incubated with 2.16 or 2.17 for one hour, alongside a fluorescein control. After washing 

with PBS, the cells were imaged, as shown in Figure 2.11.  

 

 

 

Figure 2.11: a) Bright field and b) fluorescence microscopy images of A549 cells incubated for 1 hour with 1) 

100 µM 2.16, 2) 100 µM 2.17 and 3) 100 µM fluorescein 
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A549 cells were seen to uptake both peptides, but not fluorescein, suggesting these 

peptides still bind to EGFR overexpressing cells post modification and that the 

fluorescein tag does not influence their uptake.  

 

 Cell viability assays 

To determine whether 2.16 or 2.17 affected cell viability, they were incubated alongside 

A549 and HEK293 cells for 72 hrs before the cell viability was assessed with the cell 

proliferation assay 3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-

sulfophenyl)-2H-tetrazolium (MTS). MTS is a yellow dye including a tetrazole that can be 

metabolised by dehydrogenases in live cells to produce a purple formazan product, 2.25, 

as shown in Figure 2.12.  

 

Figure 2.12: The conversion of MTS to formazan by dehydrogenases 

 

These dehydrogenases are only reductive in metabolically active cells, so the consumption 

of MTS can give a snapshot of the relative number of metabolically active cells within a 

well. Staurosporine is an antibiotic which is known to cause apoptosis in human cell lines 

so can be used as a positive control for cell death. Both 2.16 and 2.17 were seen to display 

neither agonistic nor antagonistic activity towards either cell line, as shown in Figure 

2.13. 
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Figure 2.13: Cell viability of a) A594 and b) HEK293 cells incubated with 2.16 (blue) or 2.17 (pink). St= positive 
control of staurosporine 

 

 Synthesis of a scrambled peptide to confirm targeting effect of 

AEYLRK 

The scrambled and substituted peptide FITC-RALEL has been described as a negative 

control for 2.16.87 The tyrosine residue in 2.16 has been shown to be vital for binding so 

in this negative control it is substituted for leucine. Again, as for 2.16 and 2.17, the 

structure of this peptide was modified with lysine at the N-terminus and β-alanine-FITC 

at the C-terminus. The resulting peptide FITC-βARALELK (2.26, Figure 2.14) was 

synthesised by solid phase peptide synthesis and the synthesis confirmed by high 

resolution mass spectroscopy; an m/z of 396.8570 was found, corresponding to 

[M+3H]3+, which was consistent with the calculated mass of 396.8551. 

 

Figure 2.14: Structure of FITC-βARALELK (2.26), with the added lysine residue shown in blue, the β-alanine in 
pink and the FITC in green 

 

To determine that 2.26 was no longer internalised by EGFR overexpressing cells, it was 

incubated alongside A549 cells and imaged using a fluorescent microscope. Figure 2.15 

shows A549 cells incubated with 2.26. No fluorescence is observed suggesting that this 

scrambled and substituted peptide is no longer recognised by EGFR and is not 

internalised by A549 cells. 
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Figure 2.15: a) Bright field and b) fluorescence microscopy images of A549 cells incubated with 100 μM 2.26 for 

one hour 

 

 Nanoparticle synthesis and characterisation 

2.3.6.1 Synthesis of peptide directed phthalocyanine-gold nanoparticles 

Throughout this thesis, the photosensitiser (1,1’,4,4’,8,8’,15,15’,18,18’,22,22’-

tetradecakisdecyl-25,25’-(11,11’dithiodiundecyl) diphthalocyanine zinc (C11Pc) has been 

used (Figure 2.16). This diphthalocyanine has been investigated as a photosensitiser, with 

its disulphide allowing for easy attachment onto AuNPs. Russell and co-workers have 

established an efficient synthesis for ca. 4 nm AuNPs functionalised with both C11Pc and 

PEG,93 with this mixed monolayer forming a water soluble nanocarrier, important as 

C11Pc itself is very hydrophobic.  

 

Figure 2.16: Structure of the C11Pc dimer 

 

Russell and co-workers have also found that the use of bifunctionalised HS-PEG-COOH 

allows for the easy addition of this PEG to the AuNPs through gold-sulphur bonds, and 

the carboxylic acid allows for further functionalisation of these AuNPs with targeting 

agents. The group has investigated the use of the lectin Jacalin and an anti-HER2 antibody 

for targeted therapy of the Thomsen-Friedenreich antigen, a ubiquitous cancerous marker 
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found in prostate cancer, and HER2 positive breast cancers respectively.94–96 Due to the 

relatively sensitive nature of proteins and antibodies, the conjugation of these onto 

AuNPs must occur post-synthesis of the core as proteins have a very low tolerance for 

organic solvents. The hydrophobicity of C11Pc means it is not soluble in aqueous media 

so the synthesis of these nanoconjugates must be completed in organic solvents, with the 

most efficient synthesis occurring in THF. There is currently no validated method to 

determine the concentration of antibodies or proteins on the surface of gold 

nanoparticles and the complex and unknown 3D structure of these synthesised 

nanoparticles makes it hard to predict how much of these targeting proteins are present 

on the surface of these nanoconjugates. 

As peptides are more robust than the previously used proteins, this provides the 

opportunity to have a tighter control over the directing group functionalisation of the 

nanoparticles. The carbodiimide mediated coupling of directing groups post nanoparticle 

synthesis used by Russell and co-workers is a very random event, limiting the efficiency 

of this reaction. As peptides can tolerate organic solvents, the peptide can be conjugated 

onto the PEG before the synthesis of the nanoparticles. It has been shown that the 

attachment of a directing group to the PEG prior to nanoparticle synthesis does not affect 

the nanoparticle synthesis.97 For the conjugation of 2.16 and 2.17 to HS-PEG-COOH, 

HATU/DIPEA coupling was utilised, using DMF as a solvent, with the reaction left 

overnight, giving 2.16-PEG (2.27) and 2.17-PEG (2.28). This coupling is very efficient 

and increases the confidence that the peptide is conjugating onto the PEG. Due to the 

polydisperse nature of the PEG, it is difficult to track this reaction, but due to the long 

timeframe of the reaction and the excess peptide added to the reaction, it can be assumed 

that this reaction goes to completion. This pre-functionalised PEG can be used directly 

in the synthesis of nanoparticles. A flow diagram for the synthesis and purification of 

peptide-functionalised C11Pc-PEG-AuNPs is shown in Figure 2.17. For the initial 

synthesis of these nanoconjugates, it was decided that a ratio of 50:50 PEG:peptide-PEG 

would be used as it has been reported that overcrowding nanoparticles with targeting 

groups can lead to a reduction in efficiency of this targeting.98  
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Figure 2.17: Flow diagram of the synthesis and purification of peptide-C11Pc-PEG-AuNPs 

 

The synthesis of 2.16-C11Pc-PEG-AuNPs (2.29) and 2.17-C11Pc-PEG-AuNPs (2.30) 

involved the mixing of C11Pc, PEG, peptide-PEG and HAuCl4 in anhydrous THF, 

followed by the addition of sodium borohydride in water under vigorous stirring. The 

sodium borohydride reduces the Au(III) to Au(0), leading to the formation of AuNPs by 

nucleation. The borohydride also reduces the disulphide in C11Pc, then the free thiols of 

C11Pc, PEG and peptide-PEG act as capping agents, forming very strong gold-sulphur 

bonds with the nanoparticles. This capping is completely random, so a mixture of 

nanoparticles is formed in the initial synthesis, including AuNPs with only C11Pc on the 

surface (C11Pc-AuNPs), AuNPs with only peptide-PEG on the surface (peptide-PEG-

AuNPs), AuNPs with only PEG on the surface (PEG-AuNPs), C11Pc-PEG-AuNPs and 

the desired peptide-C11Pc-PEG-AuNPs. This mixture also contains unreacted ligands 

(C11Pc, PEG and peptide-PEG) as these are added in a high excess to limit the size of 

the nanoparticles to ca. 4 nm. 

Once synthesised, the nanoconjugates were purified, first by addition of more THF. This 

led to the precipitation of any peptide-PEG-AuNPs or PEG-AuNPs that had formed in 

the synthesis as they have a much lower solubility in THF. These could be removed by 

centrifugation, giving a pellet of peptide-PEG-AuNPs and PEG-AuNPs. The 
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supernatant was removed, containing a mixture of C11Pc, PEG, peptide-PEG, C11Pc-

AuNPs, C11Pc-PEG-AuNPs and peptide-C11Pc-PEG-AuNPs. 

The supernatant containing this mixture was then dried under vacuum. PBS was added 

to the dry product to dissolve the desired nanocarriers with a mixture of C11Pc, peptide-

PEG and PEG on the surface. A mixture of C11Pc and C11Pc-AuNPs remained 

undissolved in the solution and were removed by centrifugation and syringe filtration.  

The resulting mixture was very yellow due to the presence of free peptide-PEG, so the 

nanoparticles were purified through Vivaspin 500 columns, collecting the nanoparticles 

and washing through any unconjugated PEG or peptide-PEG. The resulting nanoparticle 

pellet contained peptide-C11Pc-PEG-AuNPs (Figure 2.18) and was resuspended in PBS 

buffer.  

 

Figure 2.18: A 2D representation of peptide-C11Pc-PEG-AuNPs. A gold core is functionalised with C11Pc, PEG 
and peptide-PEG through stable gold-thiol bonds, forming a mixed monolayer 

 

There is a possibility that a small number of non-functionalised C11Pc-PEG-AuNPs were 

also synthesised and these would also be present in this pellet. In this work, these C11Pc-

PEG-AuNPs have not been separated from the peptide-C11Pc-PEG-AuNPs. In future 

work it may be possible to separate these conjugates by using the recognition of this 

peptide by EGFR to immobilise these nanoparticles on a resin or surface. The non-

functionalised C11Pc-PEG-AuNPs could then be washed away before eluting the 

peptide-C11Pc-PEG-AuNPs with excess peptide. A second methodology could involve 

the synthesis of a branched PEG linker with both conjugated and non-conjugated PEG 
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present, yet only one thiol (Figure 2.19, 2.31). This would mean that the concentration 

of peptide could be controlled by this linker and no AuNPs could be synthesised without 

directing peptide on their surface. 

 

Figure 2.19: Trimeric PEG linker for controlling peptide concentration on AuNPs but ensuring all nanoparticles 
are functionalised with peptide 

 

The resulting nanoparticles were characterised by UV-vis spectroscopy, as shown in 

Figure 2.20. The characteristic double peak spectrum of C11Pc was observed at 643 nm 

and 696 nm, and a second small peak at 495 nm showed the presence of FITC on these 

nanoconjugates, and therefore that the peptides were successfully conjugated to the 

nanocarriers. The UV-vis spectrum of AuNPs can also be used to determine their size 

due to a size-dependent surface plasmon resonance (SPR) band. It has been seen that 

very small AuNPs (ca. 3-4 nm) have a very weak SPR band, with AuNPs above 5 nm 

showing an intense SPR at ca. 520 nm.99,100 The lack of significant SPR band in the UV 

spectra of 2.29 and 2.30 suggests the synthesised nanoparticles are below 5 nm in size. 

  

Figure 2.20: UV-vis spectra of a) 2.29 and b) 2.30 in PBS  

 

2.3.6.2 Synthesis of control nanoparticles 

In order to assess the photodynamic activity of 2.29 and 2.30, a set of control 

nanoparticles were synthesised, as summarised in Table 2.2. Firstly, PEG-AuNPs were 

synthesised to act as a control for singlet oxygen production. As these nanoparticles are 
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not functionalised with a photosensitiser, they should not be able to convert triplet 

oxygen to singlet oxygen and therefore should not display any photodynamic activity. To 

synthesise PEG-AuNPs, a solution of PEG and gold chloride was reduced with sodium 

borohydride, forming a solution of brown nanoparticles. The resulting PEG-AuNPs were 

purified in Vivaspin 500 columns and resuspended in phenol-red free RPMI 1640 cell 

media for cell testing. The resulting nanoconjugates were characterised by UV-vis 

spectroscopy, as shown in Figure 2.21, and the resulting UV spectrum was characteristic 

of ca. 4 nm PEG-AuNPs.99 

Table 2.2: Summary of the synthesised control AuNPs  

Control 
AuNPs 

Reason for control 

PEG-AuNPs 
No photosensitiser or targeting moiety. Control for 

singlet oxygen production of photosensitiser 

FITC-PEG-
AuNPs (2.31) 

Only FITC attached. Control to determine if there is any 
photodynamic activity from the FITC tag 

2.16-PEG-
AuNPs 
(2.32) 

FITC and targeting ligand attached. Targeted control to 
determine if there is any photodynamic activity from the 

FITC tag 

C11Pc-PEG-
AuNPs 

Non-targeted phthalocyanine AuNPs. Control for effect 
of targeting peptide on singlet oxygen production and 

phototoxicity 

FITC-C11Pc-
PEG-AuNPs 

(2.33) 

Both potential photosensitisers but no targeting ligand. 
Control for whether peptide or FITC is encouraging 

internalisation 

 

 

Figure 2.21: UV-vis spectra of PEG-AuNPs in phenol red free RPMI 

 

As fluorescein has been shown to act as a photosensitiser,101 and other fluorescein 

derivatives such as Rose Bengal are commonly used photosensitisers,102,103 control FITC-

PEG-AuNPs (2.31) were synthesised to determine whether any activity of 2.29 or 2.30 
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was due to photosensitisation by FITC instead of due to the C11Pc photosensitiser itself. 

These nanoparticles were synthesised by functionalising PEG with 5-(3-(3-

aminopropyl)thioureido)-2-(6-hydroxy-3-oxo-3H-xanthen-9-yl) benzoic acid (Figure 

2.22, 2.34), before a solution of gold chloride was reduced with sodium borohydride  in 

the presence of a 50:50 mix of FITC-PEG:PEG. 2.31 were purified in Vivaspin 500 

columns and characterised by UV-vis spectrometry (Figure 2.23a). The characteristic 

UV spectrum of ca. 4 nm PEG-AuNPs was again observed, with a large peak at 495 nm, 

showing the presence of FITC on these nanoparticles. 

 

Figure 2.22: The structure of 5-(3-(3-aminopropyl)thioureido)-2-(6-hydroxy-3-oxo-3H-xanthen-9-yl) benzoic 
acid 

 

To further confirm that the FITC tag itself was not responsible for any photodynamic 

activity, 2.16-PEG-AuNPs (2.32) were synthesised. These nanocarriers were 

functionalised with the targeting peptide but no C11Pc photosensitiser. These conjugates 

would therefore show the same targeted uptake into EGFR overexpressing cell lines as 

2.29, and therefore can be used to assess if all the photodynamic activity observed in vivo 

is due to the phthalocyanine itself. 2.32 were synthesised by functionalising PEG with 

2.16, before a solution of gold chloride was reduced with sodium borohydride in the 

presence of a 50:50 mix of 2.16-PEG:PEG. These nanocarriers were purified by 

centrifugation in Vivaspin 500 columns, then the nanocarriers resuspended in phenol red 

free RPMI and the UV-vis spectrum recorded (Figure 2.23b). As with 2.31, a 

characteristic peak at 495 nm shows the presence of FITC on these nanocarriers, and the 

lack of an SPR band confirms these AuNPs to be below 5 nm in size. 
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Figure 2.23: UV-vis spectra of a) 2.31 and b) 2.32 in phenol red free RPMI 

 

Control C11Pc-PEG-AuNPs were synthesised following the method of Garcia-Calavia et 

al.96 to allow the comparison of the singlet oxygen production of 2.29 and 2.30 with 

previously reported AuNPs. These C11Pc-PEG-AuNPs also provided a non-directed 

control for phototoxicity assays to determine whether there was any increased 

phototoxicity upon peptide conjugation due to selective uptake of the nanocarriers. The 

UV-vis spectrum of the C11Pc-PEG-AuNPs is shown in Figure 2.24a, showing the 

characteristic double peak of C11Pc. 

 

Figure 2.24: UV-vis spectra of a) C11PC-PEG-AuNPs and b) 2.33 in phenol red free RPMI 

 

The final control AuNPs synthesised in this thesis were FITC-C11Pc-PEG-AuNPs 

(2.33). These AuNPs contained both the photosensitiser and the fluorescent tag which is 

conjugated on to the directing peptide in 2.29 and 2.30. While again providing a control 

for whether FITC induces a photodynamic effect, these nanocarriers also provided a 

control to determine that the targeted activity of 2.29 and 2.30 was due to the peptide 

sequences themselves, and not due to an increased uptake due to the presence of a large, 

hydrophobic tag. 2.33 were synthesised following the method described for the synthesis 
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of peptide-AuNPs (section 2.3.6.1) but FITC-PEG was used in the place of peptide-

PEG. The resulting UV-vis spectrum (Figure 2.24b) showed the characteristic peaks of 

both C11Pc and FITC, confirming their synthesis. 

 

2.3.6.3 Singlet oxygen production 

To determine whether the synthesised nanocarriers produce singlet oxygen as desired, the 

singlet oxygen probe 9,10-anthracenediyl-bis(methylene) dimalonic acid (ABMA) was 

used. ABMA is a fluorescent anthracene derivative which undergoes a photobleaching 

reaction upon exposure to singlet oxygen, forming a non-fluorescent 9,10-endoperoxide, 

2.35, as shown in Scheme 2.3. This means that the production of singlet oxygen can be 

tracked by a decrease in fluorescence of the anthracene probe.  

 

Scheme 2.3: Photobleaching reaction of ABMA, producing a non-fluorescent endoperoxide 

 

A 1 µM solution of 2.29 or 2.30 in PBS was mixed with ABMA in a cuvette and the 

fluorescence emission of ABMA recorded. The cuvette was then irradiated at 633 nm for 

30 minutes, with the 10 mW HeNe laser placed 50 cm away from the cuvette. The 

fluorescence emission of ABMA was recorded every five minutes and the effect of 

irradiation on the emission observed. The singlet oxygen production of 2.29 and 2.30 was 

compared to 1 µM non-targeted C11Pc-PEG-AuNPs, control PEG-AuNPs and PBS, 

with the singlet oxygen production summarised in Figure 2.25. The lifetime of singlet 

oxygen in aqueous solvents is very short so the production of singlet oxygen does not 

produce a large decrease in ABMA fluorescence. It was found that irradiation of PBS and 

PEG-AuNPs resulted in no photobleaching of ABMA, which is expected as no 

photosensitiser is present. Non-targeted C11Pc-PEG-AuNPs produced singlet oxygen, 

and over 30 minutes resulted in a 22% decrease in fluorescence. 2.29 also showed 
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significant singlet oxygen production, causing an 11% decrease. Surprisingly, 2.30 did not 

show production of singlet oxygen.  

  

Figure 2.25: Singlet oxygen production PBS (pink), 2.30 (green), PEG-AuNPs (black), 2.29 (purple) and C11Pc-
PEG-AuNPs (blue). All AuNPs were tested at 1 µM C11Pc with 1 µM ABMA 

 

The amino acids methionine, histidine, tryptophan and tyrosine are known to quench 

singlet oxygen production.104–106 This may contribute to the reduction in singlet oxygen 

production by C11Pc upon the addition of 2.16 to these nanoconjugates, however 2.17 

does not contain any of these amino acids.  

The emission spectrum of C11Pc does not overlap with the excitation spectrum of FITC, 

as shown in Figure 2.26, so there is no possibility of energy transfer between these two 

molecules accounting for the lack of singlet oxygen production. Photosensitisers can self-

quench when placed close together,107,108 so one explanation for the observed quenching 

of 2.30 is that the distribution of C11Pc on the surface of 2.30 may lead to the self-

quenching. As 2.30 were found to not produce singlet oxygen, these nanoconjugates were 

not investigated any further. 
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Figure 2.26: Fluorescence excitation spectra of a) C11Pc and c) FITC and fluorescence emission spectra of b) 

C11Pc and d) FITC ligands on 2.29 in PBS.   

 

2.3.6.4 Solvent variation 

While the synthetic procedure described in section 2.3.6 was initially successful, the 

formation of nanoparticles was found to be very temperamental, and with no obvious 

pattern to whether this reaction would proceed or not. Due to this, different conditions 

were attempted to try to optimise the synthesis of 2.29 and gain a more reliable method. 

Initially, the solvent system was investigated as the functionalised 2.16-PEG (2.27) did 

not appear to fully dissolve in THF. Due to this, both methanol and DMF were trialled 

as solvents, varying from just for the PEG, to the solvent for all but the C11Pc, as detailed 

in Table 2.3. 

The synthesis of 2.29 in methanol (method 4) resulted in nanoparticle formation, but the 

resulting solution was miscoloured. The solution appeared to be a mixture of 

nanoparticles and any purification attempts did not purify this solution, so this solvent 

system was discounted. The syntheses of nanocarriers in solely DMF (method 5) and 

using DMF to solubilise the 2.27 while keeping all other conditions the same (method 8) 

were successful, but only method 8 showed singlet oxygen production. The synthesis 

using DMF (method 5) resulted in a much higher concentration of phthalocyanine than 

either of the syntheses using THF (method 1 & 8). 
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Table 2.3: Synthesis conditions trialled for 2.29. All organic solvents were anhydrous 

Method 
2.27 coupling 

conditions 
AuNPs synthesis 

conditions 
Successful 
synthesis? 

Singlet 
oxygen 

production? 

1 
1.5 eq HATU, 12 

hrs, DMF 

C11Pc, 2.16-PEG, 
PEG and HAuCl4 in 
THF, NaBH4 in H2O 

Sporadically Yes 

2 
1.5 eq HATU, 12 

hrs, DMF 

C11Pc and HAuCl4 in 
THF, PEG and 2.16-

PEG in DMF, 
NaBH4 in H2O 

No - 

3 
1.5 eq HATU, 12 

hrs, DMF 

C11Pc in THF, PEG, 
2.16-PEG and 

HAuCl4 in DMF, 
NaBH4 in H2O 

No - 

4 
PEG-NHS, 12 

hrs, DMF 

C11Pc, PEG and 
HAuCl4 in THF, 2.16-

PEG, PEG in 
MeOH, NaBH4 in 

H2O 

Yes, but hard to 
purify 

- 

5 
1.5 eq HATU, 12 

hrs, DMF 

C11Pc in THF, PEG, 
2.16-PEG, HAuCl4 

and NaBH4 in DMF 
Yes No 

6 
PEG-NHS, 12 

hrs, DMF 

C11Pc, 2.16-PEG, 
PEG and HAuCl4 in 
THF, NaBH4 in H2O 

No - 

7 
1.5 eq HATU, 1 

hr, DMF 

C11Pc, 2.16-PEG, 
PEG and HAuCl4 in 
THF, NaBH4 in H2O 

No - 

8 
1.5 eq HATU, 15 

mins, DMF 

C11Pc, PEG and 
HAuCl4 in THF, 2.16-

PEG in DMF, 
NaBH4 in H2O 

Yes Yes 

 

To understand the impact of this, the concentration of C11Pc was compared to the 

estimated concentration of gold nanoparticles to determine how many photosensitisers 

were attached to a nanoparticle. The extinction coefficient for bare 4 nm nanoparticles 

has been determined at 450 nm.109 As FITC has absorbance at 450 nm, this value was 

used to estimate the extinction coefficient of AuNPs at 400 nm (4.78x106 M-1 cm-1), and 

this value was used to estimate the concentration of gold nanoparticles in solution. These 

calculated values are summarised in Table 2.4. The concentration of C11Pc on 2.29 

synthesised using method 5 was higher than that of method 1 and method 8. It is 

possible that this higher concentration leads to self-quenching of the photosensitiser, 

preventing the production of singlet oxygen. 
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Table 2.4: Estimation of the number of photosensitisers per AuNP in each of the successful synthetic conditions 

2.29 synthesis 
method 

C11Pc (μM) AuNPs (nM) 
Estimated number of 

C11Pc ligands per 
AuNP 

1 8.64 167.61 51 

5 10.04 173.39 58 

8 11.35 266.01 50 

 

Of all the conditions trialled, the only repeatable and successful conditions were those 

which involved shortening the peptide-PEG coupling time to 15 minutes and using 

anhydrous DMF instead of anhydrous THF for the addition of the peptide-PEG for the 

nanoparticle synthesis, keeping all other conditions the same (method 8). HATU is 

known to cause side reactions if left too long, so it is possible that allowing this reaction 

to proceed for longer than 15 minutes leads to too many unwanted side reactions, 

reducing the availability of the desired product. The addition of the conjugated PEG to 

the nanoparticle synthesis in anhydrous DMF overcomes the shortfall of the solubility of 

the 2.27. While the initial synthesis involving the addition of peptide-PEG in THF 

appeared successful, often the peptide-PEG would appear undissolved in THF, greatly 

due to the lack of solubility of the peptide itself in THF. The addition of just the 

conjugated PEG in DMF allowed for the complete dissolution of the peptide-PEG but 

maintained a solvent mix desirable for the nanoparticle synthesis – it was observed that 

the addition of both the conjugated and unconjugated PEG in DMF was unfavourable 

for the successful synthesis of these nanoconjugates. Table 2.5 compares the ratio of 

FITC to C11Pc attached to the nanoparticles in each solvent system (method 1 and 

method 8), and both reactions resulted in very similar ratios, suggesting the synthesis is 

producing nanoparticles with a comparable quantity of both C11Pc and directing peptide.  

Table 2.5: Ratio of FITC to C11Pc in examples of 2.29 synthesised using method 1 or method 8 

 C11Pc (µM) FITC (µM) Ratio FITC:C11Pc 

Method 1 2.62 1.83 1:1.4 

Method 8 2.33 1.94 1:1.2 

 

Upon dispersing 2.29 in PBS, the solution was very yellow, and upon centrifugation of 

these nanoparticles in Vivaspin 500 columns, it was found that much of this was due to 

unbound 2.27. To make sure all the free 2.27 was removed from the nanoparticles, three 
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different purification methods were trialled, with the resulting UV-vis spectra shown in 

Figure 2.27. Firstly, the nanocarriers were purified through Vivaspin 500 columns. With 

one wash, a significant quantity of unbound 2.27 was still present in the sample. The 

resulting pellets after one wash through Vivaspin 500 columns were purified through 

Zebaspin desalting columns with a MWCO of 7,000. This should retain all the free 

peptide and PEG in the resin and allow the nanoparticles to pass through. As expected, 

a strong yellow band could be seen in the resin of the desalting column and the collected 

nanoparticles still showed the presence of FITC, confirming the peptide had been 

conjugated onto the surface of the nanoparticles. It was found that washing the 

nanoparticles with PBS and purifying them through Vivaspin 500 columns a second time 

had also a similar effect, as seen in Figure 2.27, and for ease of purification this technique 

was used throughout this work.  

 

Figure 2.27: UV-vis spectra of 2.29 (method 8) after purification with Vivaspin columns x1 (green), Vivaspin 
columns x1 then Zebaspin desalting columns (pink) or Vivaspin columns x2 (blue)  

 

Once 2.29 (method 8) were purified, singlet oxygen studies were repeated on these 

nanoparticles to determine if there was any variability between the nanoparticles 

produced in these differing solvent systems. Figure 2.28 shows the singlet oxygen 

production of 2.29 synthesised using method 1 or method 8. There was no significant 

difference in singlet oxygen production observed between these synthetic conditions, 

suggesting this alternate solvent system did not affect the constituent parts of the 

produced nanocarriers, but allowed for more reliable synthesis. 
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Figure 2.28: Singlet oxygen of 2.29 synthesised using method 1 (blue) or method 8 (pink). Spectra were recorded 

with 1 µM C11Pc in PBS with 1 μM ABMA 

 

2.3.6.5 Coupling agent investigation 

Up until this point, HATU has been used as the coupling agent for conjugating PEG with 

2.16. HATU is a bicyclic uronium salt known as the ‘gold-standard’ of coupling agents, 

yet many other coupling agents exist with slightly different characteristics. These may be 

more favourable for this amide bond formation and result in a more efficient synthesis 

of the nanocarriers, so a series of coupling agents were trialled. The investigated coupling 

agents are summarised in Table 2.6. Initially, the equivalents of HATU to PEG were 

reduced to one, alongside one equivalent of DIPEA and one equivalent of peptide to 

minimise the chances of any polymerisation through the activation of the glutamic acid 

residue of the peptide by any free coupling agent. For every coupling agent trialled, all 

reagents were used in one equivalent. 

Firstly, the effect of the counterion was assessed using 2-(1H-benzotriazole-1-yl)-1,1,3,3-

tetramethylaminium tetrafluoroborate (TBTU). This benzotriazole derivative undergoes 

a similar mechanism for amide bond formation as HATU but has a borate counterion as 

opposed to the phosphonium counterion of HATU. (Benzotriazol-1-yloxy) 

tripyrrolidinophosphonium hexafluorophosphate (PyBOP), a second benzotriazole, was 

also trialled to determine the effect of steric bulk on the coupling. 
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Table 2.6: Summary of coupling agents trialled for conjugation of 2.16 to PEG and their ability to produce singlet 
oxygen. All coupling agents were used in 1 eq unless otherwise stated 

Coupling agent Structure 
Singlet oxygen 

produced? 

PyBOP 

 

A small amount 

HATU 1.5 eq 

 

Yes 

HATU  

 

Yes 

TBTU 

 

No 

COMU 

 

No 

EDC/NHS 

 

No 

DIC/Oxyma  

 

Yes 

CDI 

 

Yes 

 

Carbodiimides, a second class of coupling agents, were trialled to assess whether the 

benzotriazoles released through couplings with HATU or TBTU were influencing the 

synthesis of the nanocarriers. The positively charged carbodiimide N-(3-

dimethylaminopropyl)-N’-ethylcarbodiimide hydrochloride (EDC) is a very commonly 
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used coupling agent and activates carboxylic acids through the reactivity of the strained 

central carbon of the carbodiimide. EDC is commonly used in conjunction with N-

hydroxysuccinimide (NHS) which releases the urea product of EDC and forms an 

activated NHS-ester. Neutral carbodiimides were also considered to see if the positive 

charge of EDC influences its coupling. N,N’-diisopropylcarbodiimide (DIC) is a neutral 

carbodiimide which produces a urea byproduct with a much higher solubility than similar 

coupling agents such as N,N’-dicyclohexylcarbodiimide (DCC), meaning it was selected 

over DCC for ease of synthesis. Carbodiimides are often used in conjunction with 

Oxyma, an oxime that forms an active ester with the PEG carbonyl after activation with 

DIC. It prevents racemisation and has been seen to provide more efficient coupling than 

other additives such as HOBt.110 Due to its increase in the efficiency of the coupling, DIC 

was trialled in conjunction with Oxyma.  

The coupling agent COMU is an example of an immonium based coupling agent and was 

trialled to determine the effect of this moiety over uronium salts or carbodiimides. It is 

the equivalent of a morpholonium based immonium salt activated by Oxyma with a 

phosphonium counterion.111  

Carbonyldiimidazole (CDI) was the final coupling agent trialled and falls into a class of 

its own. CDI reacts with carboxylic acids under basic conditions to form an imidazole 

ester, a very good leaving group with reactivity comparable to an acyl chloride.112 This 

reaction is driven by the release of carbon dioxide and a second imidazole. An amine can 

displace the imidazole to yield an amide with minimal racemisation.  

Nanoparticles were successfully synthesised using peptide-PEG formed with each 

coupling agent following the optimised synthesis described in section 2.3.6.4, further 

confirming the effectiveness of this optimised synthetic procedure. Each conjugate was 

then screened for singlet oxygen production, comparing each reaction to the original 

coupling conditions with 1.5 equivalents of HATU. A solution of each conjugate was 

mixed with ABMA and irradiated for 20 minutes, with spectra recorded before and after, 

as shown in Figure 2.29. In this quick screen, DIC/Oxyma and CDI were the only 

coupling agents that showed promise for higher singlet oxygen production than that of 

the nanoconjugates synthesised with HATU. 
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Figure 2.29: Singlet oxygen screen of 2.29 synthesised using EDC/NHS (purple), COMU (dark blue), TBTU (light 

blue), 1 eq HATU (turquoise), PyBOP (red), 1.2 eq HATU (pink), CDI ( black) or DIC/Oxyma (green) as the 
coupling agent. All nanoparticles were screened at 0.1 µM C11Pc, 1 µM ABMA 

 

Larger batches of 2.29 were synthesised using DIC/Oxyma and CDI to couple 2.16 to 

the PEG, then a more in-depth analysis of their singlet oxygen production was completed. 

Nanoparticles from each synthesis were irradiated for 30 minutes in methanol alongside 

ABMA and the fluorescence of ABMA recorded every five minutes. The lifetime of 

singlet oxygen is longer in methanol than PBS so a larger decrease in ABMA is observed 

in methanol as there is an increased chance of the singlet oxygen reacting with ABMA. 

Figure 2.30 shows the singlet oxygen production of 2.29 (method 8), with a 43% 

decrease in ABMA fluorescence observed compared to a 10% decrease in PBS (Figure 

2.28), confirming the increased lifetime of singlet oxygen in methanol. 2.29 synthesised 

using DIC/Oxyma showed much lower singlet oxygen production than those synthesised 

with HATU, with the singlet oxygen production of these nanoconjugates unobservable 

in PBS, and AuNPs synthesised with CDI showed no significant singlet oxygen 

production. As neither of these conjugates displayed improved characteristics over those 

synthesised with HATU, these coupling conditions were not investigated any further. 

While these results show that the coupling agent used for the conjugation of 2.16 to PEG 

had no obvious effect on the synthesis of the nanoparticles, the coupling agent was seen 

to influence the ability of these nanoconjugates to produce singlet oxygen, with HATU 

seen to be the best coupling agent trialled in this screen.  
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Figure 2.30: Singlet oxygen production of MeOH (pink), 2.29 synthesised using HATU (blue), DIC/Oxyma (black) 
or CDI (green) to conjugate 2.16 to PEG in MeOH irradiated with 1 µM ABMA. All AuNPs were tested at 1 µM 
C11Pc 

  

 Phototoxicity of AuNPs 

2.3.7.1 Phototoxicity of peptide-conjugated C11Pc-PEG-AuNPs 

The phototoxicity of the 2.29 synthesised in THF/water (method 1) or 

THF/DMF/water (method 8) was tested in A549 EGFR overexpressing NSCLC cells. 

A549 cells were grown overnight in 96 well plates. 2.29 were then incubated alongside 

A549s for three hours, in foetal calf serum (FCS) free RPMI. The lack of FCS in the wells 

induces starvation and encourages the uptake of the nanoparticles into the cells. Cells 

were also treated with just FCS free RPMI and with staurosporine in FCS free RPMI to 

act as negative and positive controls for cell death respectively. After incubation, the cells 

were washed three times with PBS to remove any nanocarriers that had not been 

internalised, then complete RPMI (with FCS) was added to each well. The wells were 

then irradiated with a 10 mW 633 nm HeNe laser for six minutes per well, with the laser 

placed 50 cm above each well. After irradiation, the cells were incubated for 48 hours at 

37 °C, 5% CO2 before treatment with MTS to assess the cell viability. A second plate was 

treated in the same way, but not irradiated to act as a control for dark toxicity for the 

nanocarriers. 2.29 synthesised using both method 1 (Figure 2.31a) and method 8 were 

seen to have minimal dark toxicity in A549 cells below 250 nM. Interestingly, while 2.29 

synthesised using method 1 were seen to show significant cell death upon irradiation in 

a dose dependent manner, as shown in Figure 2.31a, those synthesised using method 8 

displayed no phototoxicity in A549 cells. This suggests that the solvent has a strong 
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influence on the composition of these nanoparticles, and that THF is the most favourable 

solvent for the formation of these peptide-targeted nanocarriers. 

 

Figure 2.31: MTS cell viability assays of a) & c) A549 and b) & d) HEK293 cells after 3 hr treatment with either 

2.29 (method 1) (a, b) or C11Pc-PEG-AuNPs (c, d). The cells were either kept in the dark (blue) or irradiated 
(green) at 633 nm for 6 minutes. St = positive control of staurosporine 

 

To determine the selectivity of 2.29, these nanocarriers were incubated with HEK293 

cells as these cells were seen to have a lower level of EGFR expression. HEK293 cells 

were treated with 2.29 under starvation conditions for three hours, then irradiated at 633 

nm for 6 minutes per well, or incubated in the dark, then the cell viability tested with 

MTS. Strangely, the nanocarriers appeared to have an anti-proliferative effect, so while 

there was no visual cell death, the MTS assay showed a decrease in cell metabolism due 

to a decrease in proliferation with increasing concentration of 2.29, as shown in Figure 

2.31b. Notably, no difference in cell viability was observed between irradiated and non-

irradiated cells, showing no cell death was observed due to the photodynamic activity of 

these nanocarriers, suggesting some targeting towards EGFR overexpressing cells may 

be occurring. To test this theory, HEK293 cells were incubated alongside 2.16, and 

fluorescence microscopy images showed negligible uptake of the peptide (Figure 2.32). 

This is in stark contrast to A549 cells which showed strong fluorescence after incubation 

with 2.16 (Figure 2.32 and Figure 2.11). Due to the low level of EGFR expression on 
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the surface of HEK293 cells, this suggests the uptake of 2.16 may be encouraged in 

EGFR overexpressing cells. 

 

Figure 2.32: a) bright field and b) fluorescence microscopy images of 1) A549 and 2) HEK293 cells incubated 
with 100 μM 2.16 for one hour. 1a and 1b are reproduced from Figure 2.11 

 

To further assess the targeting ability of these nanoconjugates, non-targeted C11Pc-PEG-

AuNPs were incubated with both A549 and HEK293 cells for three hours under 

starvation conditions, then the cells irradiated for six minutes per well. After 48 hours, an 

MTS cell proliferation assay displayed no photodynamic activity or dark toxicity for these 

non-targeted conjugated in either cell line, as shown in Figure 2.31c&d. This suggests 

that the selective phototoxicity observed is therefore due to increased uptake of 2.29 due 

to the recognition of 2.16 by EGFR.  

 

2.3.7.2 Phototoxicity of control AuNPs 

It is very unlikely that the FITC is being activated to produce singlet oxygen as the 

excitation of FITC is very sharp at 495 nm and would not be excited by a 633 nm laser. 

However, to determine that the phototoxicity is due to the activation of C11Pc as 

expected, each part of the nanocarrier system was sequentially screened intracellularly. A 

set of three different nanoconjugates without C11Pc were tested: PEG-AuNPs, FITC-

PEG-AuNPs (2.31) and 2.16-PEG-AuNPs (2.32). These represented nanoparticles with 
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no photosensitiser of any type, nanoparticles with just the FITC to determine whether 

there is any activity from the FITC, and nanoparticles with the targeting moiety and FITC. 

If FITC itself is acting as a photosensitiser and the peptide is targeting A549s, 2.32 should 

show some photodynamic activity. Nanoconjugates with C11Pc, but without 2.16 were 

also screened to determine if the peptide is having a targeting effect were also tested. 

These nanoconjugates were C11Pc-PEG-AuNPs and FITC-C11Pc-PEG-AuNPs (2.33).  

Each of these nanocarrier systems were incubated with A549s before irradiation as 

described in section 2.3.4. As 2.29 showed a strong photodynamic activity at 200 nM 

C11Pc with minimal dark toxicity in A549s, all AuNP C11Pc containing systems were 

tested at this concentration. Systems containing FITC were tested at 200 nM FITC to add 

a comparative concentration of this FITC photosensitiser. 2.16 itself was also tested as 

this carries a photosensitiser and the targeting moiety so could induce photodynamic 

killing itself. 48 hrs after incubation and irradiation, the cells were analysed for cell viability 

using an MTS assay. No cell death was observed for any of these nanoconjugates or 2.16 

itself, as shown in Figure 2.33, highlighting that C11Pc is indeed the photosensitiser 

causing the photodynamic activity, and suggesting that 2.16 is inducing cellular uptake.  
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Figure 2.33: Cell viability of non-irradiated (blue) and irradiated (green) A549 cells treated with a) media, b) 
2.16 c) PEG-AuNPs, d) 2.31, e) 2.32, f) C11Pc-PEG-AuNPs, g) 2.33  and h) staurosporine. All nanocarriers were 
tested at 200 nM C11Pc or FITC. 

 

 Nanoparticle binding by fluorescent microscopy 

As 2.29 synthesised using method 8 showed singlet oxygen production but surprisingly 

no cytotoxicity, fluorescent microscopy was used to determine whether these 

nanoparticles were being internalised by cells. 2.29 were incubated with A549 cells using 

the same conditions as in section 2.3.7.1 for the photodynamic cell viability assays. Again, 

serum free RPMI was used to encourage the uptake of the nanocarriers into the cells. 
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After three hours the cells were washed with PBS and imaged using a fluorescence 

microscope. Figure 2.34 shows the resulting images for A549 cells incubated with 5 µM 

2.29 (C11Pc), a concentration much higher than that needed to induce phototoxicity for 

2.29 synthesised using method 1. For method 8 there was no obvious uptake by A549s 

which may explain their lack of phototoxicity. 

 

Figure 2.34: a) bright field and b) fluorescent microscopy images of A549 cells incubated with 5 µM 2.29 (method 
8) for three hours in serum free RPMI 

 

2.4 Conclusion and future work 

In this chapter, two peptides, AEYLR and LARLLT, were selected as EGFR targeting 

ligands. Both peptides were modified with the addition of a terminal lysine residue to 

provide an amine for site-selective conjugation to gold nanocarriers and a fluorescent 

FITC tag to allow quantification of the peptide on the nanocarriers and to view the uptake 

of the resulting nanocarriers into cells. Post-modification, both peptides still displayed 

uptake into EGFR overexpressing A549 lung adenocarcinoma cells. These peptides were 

conjugated onto bifunctionalised HS-PEG-COOH through amide bonds and then the 

resulting conjugated PEG used to synthesise ca. 4 nm AuNPs functionalised with the 

photosensitiser C11Pc, peptide-PEG and non-conjugated PEG. Interestingly, the 

nanoparticles synthesised with 2.17, 2.30, showed no singlet oxygen production. This may 

be due to self-quenching of the photosensitiser, but further investigation is required to 

explain this phenomenon. To determine if the structure of the peptide has any effect on 

the singlet oxygen production, an alanine screen could be used to see if a change in the 

sequence of structure of the peptide reinstates the singlet oxygen production of these 

nanocarriers.  

2.29 (2.16-C11Pc-PEG-AuNPs) were synthesised in a THF/water mixture (method 1) 

and showed significant singlet oxygen production. While these results were encouraging, 
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these nanoconjugates synthesised in a THF/water mix were very temperamental and the 

synthesis hard to reliably repeat. Due to this, steps were taken towards the optimisation 

of the synthesis of these nanocarriers. Firstly, the solvent system was varied, and it was 

found that dissolving the peptide-PEG in DMF instead of THF (method 8), keeping all 

other solvents unchanged, resulted in a reliable and repeatable synthesis. A range of 

coupling agents were also investigated to determine whether HATU was the most 

efficient reagent for coupling the peptide onto PEG. Nanoparticles were successfully 

synthesised with a range of coupling agents, however nanocarriers synthesised with 

DIC/Oxyma or CDI to couple 2.16 to PEG showed a decrease in singlet oxygen 

production from that of nanoconjugates synthesised with HATU as the coupling agent, 

suggesting HATU is the best coupling agent for this synthesis. 

On incubation of 2.29 with EGFR overexpressing A549 cells, phototoxicity was observed 

in a dose dependent manner, with a cell viability of ca. 7% observed for cells treated with 

200 nM 2.29 synthesised in THF/water (method 1). Minimal dark toxicity was observed 

for these nanoconjugates, and no photodynamic activity was observed in HEK293 cells 

which do not overexpress EGFR, suggesting 2.29 are targeted towards EGFR 

overexpressing cell lines. Interestingly 2.29 synthesised in THF/DMF/water (method 8) 

showed identical singlet oxygen production to those synthesised in THF/water (method 

1), however no phototoxicity was observed upon incubation in A549 cells.  

As the 3D structure of these nanocarriers is not fully known, it is possible that the peptide, 

while confirmed to be conjugated to the nanocarriers, is buried in the nanoparticle corona 

and not in fact available on the surface of the nanocarriers for binding to the EGFR. To 

determine whether this is the case, shorter chain PEGs could be used to encourage the 

accessibility of the peptide. It has been shown that ca. 4 nm AuNPs functionalised with 

C11Pc and a PEG(3) chain are stable in aqueous environments97 and that shorter PEG 

chains encourage the PEG to remain brush-like on a nanoparticle surface,113 leaving the 

attached ligand accessible to the surrounding environment. For example, an NHS-

PEG(8)-disulphide dimer is commercially available and could be trialled to determine 

whether a shorter PEG will help with peptide availability. This PEG has the second 

advantage of being pre-activated for amide bond formation, meaning no coupling agent 

is needed, removing any influence these may have on the formation of these nanocarriers. 

Once the synthesis of these nanocarriers has been optimised, it is important that the 

concentration of peptide on the surface is varied to determine the optimum 
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concentration. It has been shown that the overcrowding of nanoparticle surfaces with 

directing ligands can in fact reduce the efficiency of their uptake98 so determining the 

optimum peptide concentration for these nanocarriers could further increase their 

potency for photodynamic therapy.  

There are very few examples of the use of peptides to actively target nanoparticles towards 

tumours for photodynamic therapy. The work presented in this chapter has highlighted 

the applicability of peptides as targeting moieties for the delivery of photosensitiser-

nanoconjugates and has demonstrated the potential of the peptide AEYLR for the 

selective delivery of nanocarriers to EGFR overexpressing non-small cell lung cancers. 
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3.1 Introduction 

3.1.1 Antibodies 

Antibodies are Y shaped glycoproteins secreted by B lymphocytes that are produced to 

selectively bind to a specific antigen. They consist of four polypeptide chains that form a 

constant region (Fc), a hinge region and a variable region (Fab), and this variable region 

contains antigen binding sites, as shown in Figure 3.1. Due to the Y shape of antibodies, 

each antibody contains two antigen binding sites, one at the top of each arm. 

 

Figure 3.1: The structure of an IgG antibody showing the antigen binding sites, the Fab region, the Fc region and 
the hinge region 

 

Antibodies are also known as immunoglobulins (Ig), and five classes of Ig are found in 

mammals: IgA, IgD, IgE, IgG and IgM (Figure 3.2), differing in the composition of their 

heavy chains. IgG antibodies are the most common of these isotypes and can be 

subdivided into subclasses due to polymorphisms in the Fc region of these proteins.1 IgG 

antibodies are ca. 150 kDa proteins, consisting of two light chains (ca. 25 kDa) and two 

heavy chains (ca. 50 kDa) held together by disulphide bonds and non-covalent 

interactions.2 As IgG antibodies are the most common class of antibody, they are the 

most extensively investigated class for targeted delivery, both of antibody-drug conjugates 

and nanoparticle systems. 

 

Figure 3.2: The structure of IgA, IgD, IgE, IgG and IgM antibodies 
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The use of antibodies to deliver gold nanoparticle (AuNP)-based therapeutics has been 

discussed in section 1.4.1. Interestingly, very few antibody conjugation methodologies 

have been investigated for the addition of antibodies onto AuNPs for therapeutics, while 

a wide range of conjugation techniques exist and their application to nanoparticles has 

recently been extensively reviewed.3 Current methodologies for conjugation of antibodies 

onto nanoparticles can be broadly split into non-covalent adsorption, covalent 

conjugation and protein-based conjugation. These different conjugation techniques each 

have their benefits and may be worth investigating to determine the most efficient 

conjugation technique for the synthesis of the desired nanoconstruct, and therefore the 

synthesis of nanocarriers with high therapeutic activity. 

 

3.1.2 Non-covalent antibody conjugation 

Antibodies can be adsorbed directly onto the surface of AuNPs, using a combination of 

hydrophobic and electrostatic interactions.4 AuNPs are commonly synthesised through a 

citrate reduction of HAuCl4, which results in a negatively charged gold core.5 Generally, 

antibody conjugation through adsorption will be performed at a pH above the isoelectric 

point of the antibody. This increases the number of positively charged residues on the 

antibody that can form electrostatic interactions with the gold core, as shown in Figure 

3.3a. Once the antibody is held close enough to the core, hydrophobic residues can 

interact with the core, and further strengthen the complex.4,6  

Non-covalent interactions have been used by a number of groups to functionalise 

nanoparticles with antibodies. These nanocarriers have been used for a range of 

applications including molecular probes, imaging and therapies, with successful targeting 

observed,6,7 but there can be issues with the specificity of these conjugates. For example, 

there is a possibility that other antibodies and proteins in the body could displace the 

chosen antibody (Figure 3.3b), resulting in non-targeted delivery. This concern has led 

to the community developing nanocarriers covalently bound to antibodies, removing the 

possibility of displacement.  
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Figure 3.3: a) The non-covalent binding of an antibody to a gold core relies on electrostatic and hydrophobic 
interactions between the negatively charged nanoparticle and positively charged residues on the antibody. b) Non-

covalent antibody conjugation allows for antibody exchange in vivo, leading to off-target effects 

 

3.1.3 Covalent antibody conjugation 

A plethora of covalent antibody conjugation techniques have been reported in the 

literature including, but not limited to, those summarised in Table 3.1. These techniques 

involve the reaction between a target functionality found on native antibodies and a 

reactive group attached to the molecule to be conjugated. For the bioconjugation of 

nanoparticles, this involves the functionalisation of a ligand with an antibody either before 

or after the attachment of the ligand onto the gold core. While carbonyls, hydroxyls and 

reactive carbons have been explored as conjugation targets, most commonly free amines 

or thiols on antibodies are utilised for bioconjugation and the popular use of these 

chemistries for the synthesis of antibody-conjugated nanoparticles highlights these 

moieties as good targets. The most commonly utilised methodologies for the conjugation 

of free amines and thiols are shown in bold in Table 3.1 and their applicabilty to 

nanoparticle bioconjugation is discussed further.  

 

 

 

 

 

 



3.1.3 Covalent antibody conjugation 

 

111 
 

Table 3.1: Functional groups and chemistries used in the literature for antibody conjugation. Those commonly 
investigated for antibody conjugation to nanoparticles are shown in bold [adapted from ref. 8] 

Target in antibody Reactive group Product 

Carboxylate 
Carbodiimides, carbonyldiimidazole Amides 

Diazoalkanes, diazoacetyl Esters 

Free amine 

N-hydroxysuccinimide, acyl azide, 
carbodiimides, anhydrides 

Amides 

Isocyanates, isothiocyanates (thio)urea 

Sulfonyl chlorides Sulfonamide 

Aldehydes Imine 

Epoxides 
Secondary 

amine 

Carbonates Carbamate 

Arylating agents Arylamine 

Imidoesters Amidine 

Free thiol 

Maleimide, halacetyl halide, alkyl halide, 
arylating agents, aziridine, acryloyl darivatives 

Thioether 

Pyridyl disulphides, 5-thio-2-nitrobenzoic acid 
Mixed 

disulphides 

Aldehyde/ketone 
Hydrazine Hydrazone 

Amines Imine 

Hydroxyl 

Epoxide, alkyl halide Ether 

Periodate Aldehyde 

Isocyanates, carbonyldiimidazole, N,N’-
disuccinimidyl carbonate 

Carbamate or 
urethane 

Reactive carbon on a 
phenol 

Diazonium Diazo bond 

 

3.1.3.1 Conjugation through amines 

Conjugation of antibodies to nanoparticles through free amines is the most common 

coupling reaction utilised, and carbodiimides, with formula RN=C=NR, are almost 

always used for this conjugation, yielding the formation of an amide bond.9 This family 

contains a plethora of molecules, with perhaps the most well-known being 

dicyclohexylcarbodiimide (DCC) and 1-ethyl-3-(3-dimethylaminopropyl)carbodiimide 

hydrochloride (EDC). DCC is not soluble in aqueous media, so EDC, which is water 

soluble, is the most commonly utilised coupling agent for antibody conjugation. The 

mechanism for EDC amide bond formation is shown in Scheme 3.1. This amide bond 
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formation is a dehydration reaction that involves the activation of a carboxylic acid 

through the carbodiimide nitrogen lone pair accepting a proton. Once activated, 3.1, the 

carboxylic acid can react with the central carbon of the carbodiimide, forming an activated 

o-acylisourea ester, 3.2. This activated carbonyl can then be attacked by nucleophiles, 

releasing an isourea, 3.3. Amines themselves can be used to attack this activated carbonyl, 

but more commonly N-hydroxysuccinimide (NHS), or its sulfonated derivative N-

hydroxysulfosuccinimide (s-NHS), is used to attack, forming an activated succinimidyl-

ester, 3.4. This molecule is more stable than the o-acylisourea ester and allows for 

purification before addition of the amine. Generally, the nanoparticle ligands will be 

activated with EDC/NHS, then excess coupling agents removed before the addition of 

the antibody to prevent the activation of carboxylic acids on the antibody which would 

lead to crosslinking and polymerisation.10 Once the succinimidyl ester has been formed 

and excess reagents removed, the target amine can be added, substituting for the 

succinimide and forming an amide bond.  

 

Scheme 3.1: The mechanism of EDC/NHS amide bond formation 

 

While the use of EDC/NHS is the most commonly investigated antibody conjugation 

chemistry for the formation of antibody-AuNP-based therapeutics, the synthesised NHS-

esters can be hydrolysed in the aqueous solutions necessary for antibody conjugation, 

limiting the efficiency to only 20%, meaning a high excess of antibody is often needed.11 
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IgG antibodies also contain ca. 80 lysine residues12 and EDC/NHS chemistry is not 

regiospecific, meaning conjugation may occur in the Fab region of the antibody, blocking 

its activity, as shown in Figure 3.4.13 

 

Figure 3.4: a) ideal EDC/NHS conjugation and b) the reality of EDC/NHS conjugation – the chemistry is not 
regiospecific so some antibodies may be linked through the Fab region and therefore lose specificity for the 
receptor 

 

3.1.3.2 Conjugation through thiols 

One method to try to increase selectivity of the conjugation is to use the thiols present 

on an antibody in the form of cysteine residues. On average, on a typical IgG antibody 

there are 32 cysteine residues,14 with only eight of these accessible under native 

conditions.15 These accessible cysteine residues are found as interchain disulphide bonds 

at physiological pH (Figure 3.5a).16 This reduction in the number of accessible reactive 

moieties compared to lysine residues presents thiol conjugation as a more regiospecific 

functionalisation methodology. Free cysteine residues can occasionally be present on an 

antibody and show reactivity, but often selective reduction of disulphides provides the 

free thiols for conjugation. Reagents such as tris(2-carboxyethyl)phosphine (TCEP) or 2-

mercaptoethylamine (2-MEA) can be used to reduce these disulphides to release thiols 

for conjugation.17 This reduction allows for further control over the conjugation, as the 

number of equivalents of reducing agent added to the antibody will determine how many 

disulphides are reduced.16 While it has been shown that interchain disulphides between 

the two heavy chains are more easily reduced than light chain-heavy chain disulphides,15 

this chemistry is not regiospecific, meaning random disulphides will be reduced, leading 

to a mixture of products, as shown in Figure 3.5b. Notably, these disulphides are not 

involved in antigen binding so the conjugation does not interrupt their recognition ability, 

however, if light chain-heavy chain disulphides are reduced, the Fab region of the 

antibody will be destroyed, leading to loss of receptor recognition. 
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Figure 3.5: a) The location of the interchain disulphides on an IgG antibody accessible for thiol conjugation and 
b) the antibody fragments formed upon reduction of one disulphide 

 

To conjugate these free thiols on an antibody to AuNPs, maleimides can be used as 

linkers. Maleimides selectively react with thiols between pH 6.5-7.5, undergoing a Michael 

addition to form a thioether bond, as shown in Figure 3.6a. While the reduction of 

disulphides allows for site-specific antibody conjugation, the reduction can destabilise the 

structure of an antibody. To counter this, re-bridging agents such as dibromomaleimides 

are commonly used for antibody conjugation to reinstate the stability of the disulphide 

bond into the conjugated antibody (Figure 3.6b).18,19 While thioethers are generally 

considered to be irreversible bonds, some reports have been shown these bonds to be 

reversible in environments containing high thiol content, leading to thiol exchange. Off 

target drug release has been observed for antibody-drug conjugates (ADCs) formed 

through maleimides,20 but ring opening reactions have been shown to stabilise this 

thioether bond.21,22 
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Figure 3.6: a) Michael addition of a thiol to a maleimide to form a thioether and b) dibromomaleimide bridges 
two thiols to reinstate stability of the reduced disulphide 

 

3.1.3.3 Conjugation through cross-linkers 

Other chemistries for thiol conjugation involve pyridyl disulphide cross-linkers such as 

succinimidyl 3-(2-pyridyldithio)propionate) (SPDP, Figure 3.7a) and pyridine 

dithioethylamine hydrochloride (PDEA, Figure 3.7b). These linkers contain a disulphide 

moiety that reacts with thiols in the antibody, forming a new disulphide and releasing 

pyridine-2-thione. The latter compound has a characteristic absorbance at 343 nm,23 

meaning the reaction can be monitored using UV-vis spectroscopy. Each cross-linker also 

possesses a reactive group on the opposite terminus of the molecule, with SPDP 

possessing an amine reactive succinimide and PDEA an amine terminus for crosslinking 

to carbonyls. Pyridyl disulphides show efficient conjugation to thiols and can be used to 

conjugate antibodies onto nanoparticles (Figure 3.7c).23 The formation of a disulphide 

is, however, less favourable for antibody conjugation than thioethers as this is a reversible 

bond. This opens up similar issues to non-covalent attachment as other proteins or 

antibodies could displace the desired antibody and lead to non-specific targeting. To 

counter this, SPDP is often used in conjunction with the maleimide containing cross-

linker succinimidyl 4-(N-maleimidomethyl) cyclohexane-1-carboxylate (SMCC). Here, 

the dithiol is reduced before addition of the maleimide containing linker, leading to the 

formation of the thioether, which is much more stable than the mixed disulphides 

otherwise formed.24,25 
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Figure 3.7: Structures of a) SPDP and b) PDEA. c) The addition of antibodies to nanoparticles through SPDP, 
releasing pyridine-2-thione 

 

SMCC (Figure 3.8a) is a heterofunctional crosslinker that contains a thiol reactive 

maleimide on one end of the molecule and an amine reactive succinimidyl-ester on the 

other and has been used to conjugate antibodies onto a variety of nanoparticles. 

Interestingly, most reports use the succinimidyl-ester to conjugate onto the antibody 

through amide bond formation and the maleimide to form a thioether bond to the 

nanoparticle surface.26,27 This surprisingly uses a less specific conjugation method for 

addition to the antibody, however perhaps this is favoured as no manipulation of the 

antibody is required. While SMCC is more commonly used in this manner, there are some 

examples of using the maleimide to conjugate the antibody.28,29 Generally, the 

succinimidyl-ester of SMCC is reacted with an amine, before purification, followed by the 

addition of the thiol. While the heterofunctionality of this linker is appealing, both 

succinimidyl-esters and maleimides are hydrolysed in aqueous media, so the two step 

cross-linking necessary for antibody conjugation using SMCC may be less efficient than 

other coupling agents.30 

Bis(sulfosuccinimidyl)suberate (BS3, Figure 3.8b) is a popular homofunctional cross-

linker consisting of a hexyl chain bifunctionalised with sulfosuccinimidyl esters, allowing 

for the cross-linking of two amine-functionalised molecules. The homofunctionality of 

BS3 means that a high excess of cross-linker must be added to a reaction to prevent 

aggregation of the nanoparticles instead of cross-linking between nanoparticles and an 

antibody. It has been observed, however, that aggregation of nanoparticles occurs upon 
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treatment of nanoparticles with a 10-fold excess of BS331 so this homofunctional cross-

linker may not be appropriate for the formation of antibody-functionalised nanoparticles. 

 

Figure 3.8: The structures of a) SMCC and b) BS3 showing amine reactive succinimides (blue) and thiol reactive 
maleimide (pink) 

 

3.1.3.4 Conjugation through click chemistry 

While the above examples of antibody conjugation utilise native functionalities in 

antibodies to bind to AuNPs, these chemistries can be used for the addition of further 

reactive moieties to increase the efficiency of antibody conjugation reactions. One 

example of this is the addition of alkyne moieties to antibodies through EDC/NHS 

chemistry for bioconjugation through click chemistry.11 Click chemistry describes a group 

of reactions that are high yielding, producing few, easily removable byproducts while 

using readily available reagents.32 The most common click reaction is that between an 

azide and an alkyne, catalysed by copper, forming a 1,4-triazole, as shown in Scheme 3.2. 

The copper catalysed click reaction involves the association of the Cu(I) catalyst with the 

alkyne, which subsequently replaces the alkyne proton and can coordinate to the 

positively charged nitrogen of the azide. This coordination leads to the formation of solely 

the 1,4-triazole. The azide and alkyne react to form a six membered ring, then rearrange 

to release the strain of the allene, giving the triazole with the copper complex still 

associated. The copper is replaced with a proton to yield the final triazole and regenerate 

the catalyst. Chemical modification of antibodies with alkynes through an NHS-PEG-

alkyne linker has been shown to be highly efficient and lead to higher antibody 

conjugation onto nanoparticles compared to conventional EDC/NHS chemistry.11 
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Scheme 3.2: Copper catalysed click reaction involving nanoparticle-immobilised azide and an alkyne 
functionalised antibody. These residues can be swapped and a click reaction would still occur 

 

While copper catalysed click chemistry is commonly employed, copper is toxic within 

cells so meticulous purification of the nanoparticles functionalised using this metal is 

necessary before any conjugates can be used in biological systems.33 One alternative to 

this toxic catalyst is the use of strain-promoted azide-alkyne cycloaddition (SPAAC). 

SPAAC commonly uses cyclooctyne derivatives which allow click chemistry to occur 

without the copper catalyst or extreme temperatures. Cyclooctyne consists of a strained 

eight membered ring with an alkyne moiety which makes it very reactive towards azides. 

Derivatives such as dibenzocyclooctyne (DBCO) have been designed to allow the use of 

this functionality for conjugation. DBCO has been used to conjugate antibodies onto 

quantum dots, as shown in Scheme 3.3. The DBCO moiety is conjugated onto the 

antibody through random amide bond formation before SPAAC allows for efficient 

conjugation of this antibody onto the quantum dot.30  

 

Scheme 3.3: SPAAC addition of a DBCO-conjugated antibody to a quantum dot-immobilised azide 

 

While random amide bond formation is again used to attach the linker onto the antibody, 

SPAAC has been seen to be a more efficient conjugation strategy than EDC/NHS. For 

example, the alternative SPAAC reagent bicyclononyne (Figure 3.9) has been used to 

conjugate an antibody onto PGLA nanoparticles. Bicyclononyne has been shown to 
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display an antibody conjugation efficiency of 18%, compared to just 6% for EDC/NHS 

chemistry. The bicyclononyne moiety in this work was attached to the antibody through 

disulphide reduction and bridging, combining the selectivity of disulphide conjugation 

with the efficiency of SPAAC.34  

 

Figure 3.9: The structure of the SPAAC reagent bicyclononyne 

 

While in the above examples SPAAC exhibited increased efficiency in antibody 

conjugation compared to EDC/NHS, the reactivity of cyclooctyne derivatives has been 

shown to greatly decrease with steric hindrance.35 Both antibodies and nanoparticles are 

large, complex structures so it is hard to predict how efficient SPAAC conjugation may 

be upon these systems. For example, it has been shown that SPAAC between antibody-

bound DBCO and a polymeric nanoparticle bound azide no longer proceeds under 

physiological conditions.36 Furthermore, SPAAC relies on the addition of these reactive 

moieties through non-regiospecific conjugation techniques, meaning there is a possibility 

of these antibodies being conjugated in a non-functional manner.   

 

3.1.4 Protein-based antibody conjugation 

While chemical conjugation methods are widely used and have been shown to be 

successful, frustrations with the non-specificity of many of these conjugation techniques 

has led the community to investigate more specific antibody conjugation strategies. The 

mutation of antibodies to site-specifically install reactive moieties or unnatural amino 

acids has been widely investigated, but this is very expensive, time consuming and requires 

specialist knowledge. A second methodology investigated to increase the regiospecificity 

of antibody conjugation is the use of adaptor proteins. Adaptor proteins contain protein 

binding motifs that can be used to regiospecifically couple antibodies to nanoparticles. 

Commonly investigated adaptor proteins include avidin, streptavidin and Fc binding 

proteins. 
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3.1.4.1 Biotin-(strept)avidin for bioconjugation  

The proteins avidin and streptavidin bind the small molecule ligand biotin through one 

of the strongest non-covalent biological interactions currently known.37 This strong 

interaction has been exploited for the conjugation of antibodies onto nanoparticles,38,39 as 

shown in Figure 3.10a. Generally, the nanoparticle surface is modified with avidin or 

streptavidin through covalent binding, using chemistries such as EDC/NHS. Here the 

non-specificity of this chemistry has less impact as avidin and streptavidin contain four 

biotin binding sites,40 meaning total loss of biotin binding activity upon covalent binding 

is very unlikely.  

 

Figure 3.10: a) The use of (strept)avidin-biotin to conjugate antibodies onto nanoparticles, b) the desired 
conjugation of biotin to an antibody and c) the conjugation of biotin through non-regiospecific bond formation can 
lead to the inhibition of antibody binding 

 

While the biotin binding ability of (strept)avidin is not lost by its covalent conjugation to 

nanoparticles, the complications with this technique arise from the tagging of an antibody 

with biotin. The biotinylation of antibodies relies on the chemical conjugation of biotin 

to residues on the antibodies surface, such as amines, carboxylic acids or thiols.41 As 

previously discussed, these methods are not regiospecific and can lead to loss of antibody 

activity, as shown in Figure 3.10b&c. Steps have been taken towards the specific 

conjugation of biotin to antibodies through hinge region disulphide reduction,42 but as 

discussed in section 3.1.3.2, this chemistry also leads to a mixture of products and some 

loss of active antibody. The use of (strept)avidin is remarkably more expensive than 

chemical conjugation, and its lack of significant advantage over chemical methods means 

that this technique is currently not a favourable methodology for antibody conjugation to 

nanoparticles.  
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3.1.4.2 Fc binding proteins for bioconjugation 

As described in section 3.1.1, antibodies consist of a variable (Fab) and constant (Fc) 

region. The Fc region is not involved in the binding of the antibody to its target, and 

therefore presents itself as the ideal binding site. Two proteins isolated from staphylococcus 

aureus and streptococcal G, protein A and protein G respectively, have been shown to 

specifically bind to the Fc region of IgG antibodies.43,44 These proteins have been used to 

regiospecifically bind antibodies to nanoparticles, resulting in nanoconjugates with 

antibodies all orientated with their active sites free for binding,45 as shown in Figure 3.11. 

An attractive feature of protein A or G based bioconjugation is the fact that the Fc region 

of IgG antibodies is conserved, meaning antibodies can be interchanged to deliver 

nanocarriers to any desired target, presenting a way to produce a universal system for 

delivery of a therapeutic to any desired location.  

 

Figure 3.11: Proteins A and G control the orientation of antibodies on nanoparticles by regiospecifically binding 
to the Fc region 

 

Protein A46,47 and protein G48,49  have both been successfully used to conjugate antibodies 

to nanoparticles, with selective uptake observed. While this controlled orientation 

conjugation ensures that all the attached antibodies have their antigen binding sites 

accessible, this conjugation is entirely non-covalent so antibody exchange may occur in 

vivo. Interestingly, it has been observed that the dissociation kinetics of an IgG antibody 

from protein A are slow enough that no antibody exchange occurs within an hour,50 but 

this time frame is not long enough to assess whether antibody exchange would occur if 

these nanocarriers were used as therapeutics. It is possible that an antibody could be 

cross-linked to protein A or G to prevent this dissociation in vivo, but there are no reports 

of this technique being utilised. A second consideration for the use of these Fc binding 

proteins is the addition of protein A or G onto the nanoparticle itself. This addition tends 

to involve the use of EDC/NHS (Scheme 3.4) or cross-linkers such as BS3, again raising 

questions about whether these conjugations could block the binding sites of the adaptor 

proteins, reducing the efficiency of this technique. 
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Scheme 3.4: The use of adaptor proteins A and G for antibody conjugation. Adaptor proteins are covalently 
conjugated onto nanoparticles, before mixing with antibodies where they form non-covalent interactions with the 
Fc region 

 

3.2 Summary and chapter aims 

Antibody conjugation to gold nanoparticles for therapeutics has thus far mainly focussed 

on the use of carbodiimides to form random amide bonds between lysine residues on an 

antibody and carboxylic acids on a linker. While this use of EDC/NHS chemistry has 

been seen to be very successful for antibody conjugation, its lack of regiospecificity means 

that antibodies may be conjugated onto nanoparticles in a way which prevents their ability 

to bind to the desired receptor, and therefore reducing the targeting ability of these 

nanoconjugates. Many other chemical conjugation strategies such as thiol conjugation, 

cross-linkers and click chemistry have been explored for antibody conjugation and each 

technique presents its own virtues. These alternate conjugation techniques are worth 

exploring since they may lead to increased conjugation efficiencies, leading to increased 

potency of the designed nano-therapeutic.  

Conjugation of antibodies to nanoparticles through thiols often involves the reduction of 

interchain disulphides within the hinge region of antibodies, with these free thiols able to 

react with maleimides or pyridyl disulphides on the nanoparticle surface. This chemistry 

is more specific than carbodiimide amide bond formation, but the reduction of these 

disulphides is hard to control. The reduction of interchain disulphides between light and 

heavy chains will destroy the antigen binding site of an antibody, leaving the conjugated 

antibody fragment inactive towards its target. 

Cross-linkers such as SMCC and BS3 have also been investigated for antibody 

conjugation. BS3 contains two amide reactive termini, but this cross-linker has been seen 

to cause aggregation of nanoparticles and is therefore unlikely to be a good option. SMCC 

possesses a thiol reactive terminus and an amine reactive terminus. This heterofunctional 

linker prevents the aggregation of nanoparticles upon addition, but as both maleimides
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 and succinimides are easily hydrolysed, the two-step conjugation necessary for this 

antibody addition leads to low conjugation. 

Click chemistry involves the reaction of an azide and an alkyne to form a 1,4-triazole. 

This chemistry can either be mediated by copper or use strained alkynes to promote 

copper-free SPAAC. SPAAC is a more popular methodology as copper is highly toxic. 

The efficiency of SPAAC, however, is greatly reduced by steric bulk, and the addition of 

reactive moieties to an antibody tends to involve non-regiospecific techniques such as 

EDC/NHS.  

Due to the lack of specificity of chemical-based conjugations, adaptor proteins have been 

investigated for site-specific antibody conjugation. Avidin and streptavidin display 

essentially non-reversible non-covalent binding towards biotin and this interaction has 

been exploited. The biotinylation of antibodies, however, involves chemical 

methodologies such as EDC/NHS so this expensive technique may not improve on 

current chemical conjugation methods. The Fc binding proteins protein A and protein G 

are known to specifically bind to the constant region of antibodies and can be used to 

bind antibodies in a set orientation with their antigen binding sites away from the 

nanoparticle surface. This ability to determine the orientation of an antibody on the 

surface of a nanoparticle is very appealing, but this interaction is non-covalent so antibody 

exchange may occur in vivo. 

This chapter aims to explore antibody conjugation techniques to produce antibody-

functionalised nanoparticles with the highest activity towards EGFR overexpressing non-

small cell lung cancer. The non-targeted nanocarriers discussed throughout this thesis, 

C11Pc-PEG-AuNPs, have previously been directed towards HER2 overexpressing 

breast cancer by attaching an anti-HER2 antibody onto the surface of these nanocarriers 

through EDC/NHS chemistry.51 Here, we expanded on this work by exploring the 

binding of an anti-EGFR antibody to these nanoparticles through EDC/NHS chemistry 

and thiol-maleimide couplings to determine the most efficient antibody conjugation 

technique. These conjugation techniques were chosen as the majority of the chemical 

conjugation strategies discussed in this chapter rely on one of these methods for the 

addition of reactive moieties.  

Along with this comparison of chemical conjugation strategies, the possibility to produce 

a nanoparticle system where the antibody could be easily interchanged to target any 

desired receptor led to the exploration of the use of Fc binding proteins. Here, the 
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use of protein G to site-specifically bind antibodies was investigated. While a current issue 

with the use of Fc binding proteins is their non-covalent binding, here we explored 

whether cross-linking of an antibody to protein G could form a stable conjugate with 

higher activity than current favoured chemical conjugation techniques. The use of 

random chemical conjugation strategies to conjugate protein G onto AuNPs led to the 

investigation of Fc binding peptides to eliminate the non-specificity of the addition of 

protein G, leading to the possibility of highly specific antibody conjugation to AuNPs. 

 

3.3 Results and discussion 

3.3.1 Functionalisation of C11Pc-PEG-AuNPs with anti-EGFR 

antibodies 

As antibodies are sensitive to organic solvents, and as the synthesis of the ca. 4 nm C11Pc-

PEG-AuNPs relies on tetrahydrofuran (THF), the functionalisation of C11Pc-PEG-

AuNPs with antibodies must be completed after the formation of the nanoparticles. The 

synthesis of C11Pc-PEG-AuNPs was completed as described in section 2.3.2, with the 

purified nanocarriers resuspended in MES buffer, pH 5.5. These nanocarriers were 

characterised by UV-vis and fluorescence spectrometry, with the resulting spectra shown 

in Figure 3.12. As described in section 2.3.2.2, this UV-vis spectrum confirmed the core 

of the resulting nanocarriers was below 5 nm due to the lack of an SPR band in the 

spectrum.
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Figure 3.12: a) UV-vis, b) fluorescence excitation and c) fluorescence emission spectra of C11Pc-PEG-AuNPs in 
MES buffer 

 

3.3.1.1 Antibody functionalisation through EDC/NHS chemistry 

The bi-functionalised HS-PEG-COOH used for the synthesis of C11Pc-PEG-AuNPs 

provides a free carboxylic acid at the terminus of the PEG for functionalisation with an 

antibody. The most common, and previously used,51–53 method for functionalisation of 

these nanocarriers is EDC/NHS chemistry, and therefore this was chosen as a starting 

point for the conjugation of anti-EGFR antibodies onto C11Pc-PEG-AuNPs. Currently, 

there are no validated methods for determining the antibody concentration on AuNPs. 

Gold has been shown to interfere with common colorimetric techniques such as 

bicinchoninic acid (BCA) assays54 and gold nanoparticles are known to quench the 

fluorescence of attached fluorophores,55 meaning fluorescent tagging cannot be 

confidently used for quantification. Due to these downfalls, proof of concept studies for 

EDC/NHS conjugation were completed using fluorescent tags to ensure that antibody 

conjugation to C11Pc-PEG-AuNPs would proceed using EDC/NHS. Here, these 

fluorescent tags were solely used for proof of principle, not for the quantification of 

antibody concentration. For this study, an anti-EGFR antibody was purchased from 

Abcam. Firstly, as the structure of this anti-EGFR antibody is unknown, it was tested for 

the presence of free lysine residues on its surface. Fluorescein isothiocyanate (FITC, 
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Figure 3.13a), is a fluorescent molecule known to spontaneously react with amines. FITC 

was mixed with the antibodies, allowing for conjugation of FITC to any accessible lysines, 

then the antibodies were purified through Zeba spin desalting columns (MWCO 7,000 

Da) to remove any unreacted FITC from the sample. The fluorescence of the collected 

FITC-antibodies, 3.7, was compared to the fluorescence of non-tagged antibodies, and a 

significant increase in fluorescence intensity was observed (Figure 3.13b), showing the 

binding of FITC to the antibodies and therefore the presence of lysine on their surface. 

 

Figure 3.13: a) The structure of FITC and b) the fluorescence excitation of 1 mg/mL FITC-EGFR-Ab (3.7, blue) 
and non-conjugated EGFR Ab (green) in PBS 

 

The functionalisation of C11Pc-PEG-AuNPs with antibodies with EDC/NHS involves 

the activation of the PEG carboxylic acids in MES buffer at pH 5.5, before the excess 

EDC/NHS is washed away and the desired antibody is added to the activated 

nanoparticles in PBS at pH 7.4.56 The activation of the PEG is carried out at pH 5.5 to 

minimise the rate of ester hydrolysis, a competing reaction in aqueous media that greatly 

reduces the efficiency of the antibody conjugation. To ensure that these reaction 

conditions indeed allow for the conjugation of the anti-EGFR antibodies onto C11Pc-

PEG-AuNPs, they were first tested with a second fluorescent tag. 5-carboxyfluorescein 

(5-FAM, Figure 3.14a) is a fluorescein derivative containing a free carboxylic acid that 

can act as a fluorescent model of the PEG carboxylic acid for conjugation to the anti-

EGFR antibodies. 5-FAM was activated using EDC/NHS in MES buffer at pH 5.5, then 

combined with anti-EGFR antibody in PBS at pH 7.4 and incubated for 6 hours at room 

temperature with occasional shaking. Excess 5-FAM was removed from the solution 

using Zeba spin desalting columns (MWCO 7,000 Da). The fluorescence of the 5-FAM-

antibody, 3.8, was compared to that of non-modified antibody, as shown in Figure 3.14b, 
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and a strong fluorescence was observed in the presence of 5-FAM, suggesting the 

EDC/NHS chemistry will allow functionalisation of the C11Pc-PEG-AuNPs with 

antibody using these buffer systems.  

    

Figure 3.14: a) The structure of 5-FAM and b) the fluorescence excitation of 1 mg/mL 5-FAM-EGFR-Ab (3.8, 
blue) and non-conjugated EGFR Ab (green) in PBS 

 

While the conjugation of 5-FAM to the antibody is a promising result, the complexity of 

a nanoparticle shell is not taken into account. The C11Pc-PEG-AuNPs used throughout 

this thesis have a completely unknown 3D structure and therefore it is not known how 

many of the terminal carboxylic acids on the PEG ligands functionalising the nanoparticle 

are accessible for conjugation. To explore this problem, a third fluorescein derivative, 5-

(3-(3-aminopropyl)thioureido)-2-(6-hydroxy-3-oxo-3H-xanthen-9-yl) benzoic acid (2.34, 

Figure 3.15a), was synthesised to form a fluorescein derivative with a terminal reactive 

amine group. 2.34 was used as a fluorescent mimic of the antibody to ensure that 

conjugation to C11Pc-PEG-AuNPs under the desired reaction conditions was possible. 

C11Pc-PEG-AuNPs were activated with EDC/NHS in MES buffer at pH 5.5 then, after 

centrifugation in Vivaspin 500 columns, mixed with 0.15 mg/mL 2.34 overnight in PBS. 

After conjugation, the resulting FITC-C11Pc-PEG-AuNPs (3.9) were purified through 

Vivaspin 500 columns to remove any unconjugated 2.34, then analysed by UV-vis 

spectroscopy. Here, a peak was observed at 495 nm corresponding to FITC, as shown in 

Figure 3.15b. This demonstrates that molecules can be conjugated onto the C11Pc-PEG-

AuNPs through EDC/NHS couplings, and therefore suggests that antibody conjugation 

under these conditions should be successful. 
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Figure 3.15: a) The structure of 2.34 and b) UV-vis of 3.9 in PBS showing a peak at 495 nm due to the presence 

of 2.34 

 

These proof of concept studies strongly suggested that the method planned for the 

attachment of antibody to C11Pc-PEG-AuNPs with EDC/NHS had a great potential. 

Therefore, post synthesis, C11Pc-PEG-AuNPs were treated with EDC/NHS and mixed 

with anti-EGFR antibody to give anti-EGFR-C11Pc-PEG-AuNPs (3.10). After 

conjugation, 3.10 were purified in Vivaspin 500 columns. UV-vis spectra of the washings 

(Figure 4.19a) showed the decrease in antibody in successive washes, with the third wash 

being almost free of antibody and therefore that non-conjugated antibody had been 

removed from the nanoparticle solution. Once the unbound antibody was removed, the 

nanoparticles were resuspended in PBS buffer and a UV-vis spectrum was recorded, as 

shown in Figure 3.16b. Unfortunately, due to the presence of an absorbance peak from 

the gold core at 254 nm, the absorbance maxima for antibodies, this UV-vis spectrum 

cannot be used to determine the presence of antibody on these nanocarriers. Further 

studies to confirm whether this conjugation was successful will be discussed in section 

3.3.2. 
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Figure 3.16: a) UV-vis spectra of sequential washings collected from the EDC/NHS functionalisation of C11Pc-
PEG-AuNPs with anti-EGFR Ab and b) the UV-vis spectrum of 3.10 in PBS buffer 

 

3.3.1.2 Antibody functionalisation through maleimide chemistry 

To explore the possibility of using thiols present on antibodies for conjugation, first the 

crosslinking agent pyridine dithioethylamine hydrochloride (PDEA) was explored. The 

amine terminus of PDEA was conjugated to C11Pc-PEG-AuNPs through EDC/NHS, 

then the washings collected and analysed by UV-vis spectrometry. Unfortunately, PDEA 

was found to be unsuitable for conjugation to these nanoparticle systems as the disulphide 

constituent immediately reacted with the gold core, shown by a release of pyridine-2-

thione upon addition to the nanoparticles. 

Due to this, the maleimide analogue 1-(2-aminoethyl)maleimide hydrochloride (Figure 

3.17, 3.11) was selected as a thiol reactive coupling moiety. The amine functionality of this 

molecule allows for the use of EDC/NHS chemistry to attach the maleimide to the 

nanoparticles.  

 

Figure 3.17: The structure of 1-(2-aminoethyl)maleimide hydrochloride 

 

Once the maleimide was conjugated to the PEG shell of the nanoparticles through 

EDC/NHS, giving mal-C11Pc-PEG-AuNPs, 3.12, anti-EGFR antibody was stirred 

overnight with nanoparticles, allowing for the reaction of free thiols with the maleimide 

present, yielding anti-EGFR-mal-C11Pc-PEG-AuNPs (3.13). These AuNPs were 
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purified through Vivapsin 500 columns and the removal of antibody was tracked using 

UV-vis spectroscopy. Figure 3.18 shows the sequential washings of 3.13 and the UV-vis 

spectrum of the purified AuNPs. Again, this spectrum cannot be used to confirm the 

conjugation of the antibody, and this will be discussed in section 3.3.2. 

 

Figure 3.18: a) UV-vis spectra of sequential washings collected and b) the UV-vis spectrum of 3.13 in PBS buffer 

 

As the presence of free thiols on the surface of antibodies is generally unlikely due to 

their preference at slightly basic pHs to form disulphides, the antibody was treated with 

TCEP prior to conjugation to partially reduce the disulphide bonds. It has been found 

that the addition of 2.75 equivalents of TCEP to an IgG antibody results in the reduction 

of two interchain disulphides,16 therefore 1.2 equivalents were used to aim  to reduce one 

disulphide to keep the conjugation as site specific as possible. The antibody was incubated 

with TCEP for 30 minutes, purified using Zeba spin desalting columns and immediately 

added to a solution of mal-C11Pc-PEG-AuNPs (3.12) to prevent re-oxidation of these 

thiols. This reaction was left to proceed overnight, then any unconjugated antibody was 

removed from the solution using Vivaspin 500 columns. Again, the removal of 

unconjugated antibody was tracked using UV-vis spectroscopy (Figure 3.19a), and after 

three PBS washes the resulting anti-EGFR-mal-C11Pc-PEG-AuNPs synthesised with a 

reduced disulphide (3.14) were resuspended in PBS and the UV-vis spectrum recorded 

(Figure 3.19b).  
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Figure 3.19: a) UV-vis spectra of sequential washings collected from the TCEP reduction-maleimide 
functionalisation of C11Pc-PEG-AuNPs with EGFR Ab and b) the UV-vis spectrum of 3.14 

 

3.3.2 Determination of antibody functionalisation 

To determine whether the antibody conjugation methods described in section 3.3.1 had 

worked, sodium dodecyl sulphate polyacrylamide gel electrophoresis (SDS-PAGE) was 

used.57 This technique allows for the separation of proteins by their molecular weight 

using an electrical current through a polyacrylamide gel. Smaller proteins are able to move 

faster through the gel and therefore separation occurs. Samples are mixed with the 

denaturant sodium dodecyl sulphate (SDS) which disrupts the tertiary structure of the 

antibody, and a reductant such as dithiothreitol (DTT) is added to reduce the disulphides 

within the antibody, dissociating the heavy and light chains, allowing them to run 

separately. The light chain of an antibody has an average molecular weight of 25 kDa and 

the heavy chain and average molecular weight of 50 kDa. The addition of a reductant to 

the nanoparticle systems will allow the breakdown of the antibody disulphides, releasing 

the chains of the antibody that are not covalently bound to the nanoparticle. The antibody 

chain that has been covalently bound to the nanoparticle, however, will remain 

conjugated and therefore display a much higher molecular weight and thus show less 

movement down the polyacrylamide gel. It is therefore possible to use this technique to 

determine the selectivity of a conjugation technique towards the different chains of an 

antibody; if only the heavy chain is conjugated to the nanoparticles, this band should be 

retarded on the gel and appear at retention equivalent to a much higher molecular mass. 

Throughout this work, an anti-EGFR antibody purchased from Abcam has been analysed 

and conjugated onto C11Pc-PEG-AuNPs to form 3.10, 3.13 and 3.14. Here, the 

conjugation of a second anti-EGFR antibody, produced by R&D systems, was also tested 

as this antibody has recently been reported to display selective uptake of liposomes by 

EGFR overexpressing lung cancer cell lines.58 This second antibody was conjugated to 
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C11Pc-PEG-AuNPs through EDC/NHS (3.15), a maleimide (3.16) and a maleimide after 

TCEP reduction (3.17), as described in section 3.3.1. 3.10 and 3.13-17 were concentrated 

(50-fold) in Vivapsin 500 columns, then heated to 100 °C with tris-glycine buffered SDS 

and DTT. Once the AuNP solutions had cooled, the samples were loaded onto a 4-12% 

polyacrylamide gel in 3-(N-morpholino)propanesulphonic acid (MOPS) SDS running 

buffer, alongside a molecular weight ladder. Controls of C11Pc-PEG-AuNPs and both 

antibodies were also treated with SDS and DTT and loaded onto the gel. The gel was run 

at 170 V for 75 min, then stained with Coomassie Blue which binds electrostatically to 

positive residues within proteins. A de-staining solution was used to remove excess dye 

from the gel and dark blue bands remained where protein was present. Figure 3.20 shows 

the resulting gel. The control of C11Pc-PEG-AuNPs (lane 2) shows a light blue streak 

due to the phthalocyanine, and this streak is present in each lane containing nanoparticles. 

The control antibody lanes (3 and 7) show two bands, one at approximately 25 kDa 

corresponding to the light chain of the antibody, and one at approximately 50 kDa 

corresponding to the heavy chain. In the case of the Abcam antibody, for each 

conjugation technique a faint band could be observed between 115 and 140 kDa (lanes 

4-6) which was not present for the free antibody (lane 3). This suggests that conjugation 

to the nanoparticles has occurred as a small amount of antibody shows a significant 

increase in molecular weight. Lanes 4-6 also display bands corresponding to the light and 

heavy chain of the control Abcam antibody. These bands are due to the fragmented 

antibody, but the relatively strong colour of these compared to the nanoparticle-

conjugated band suggests that there may also be some unconjugated antibody remaining 

in these samples. Interestingly, the R&D antibody shows the expected light and heavy 

chains for the free antibody (lane 7), but no bands are observed for any of the conjugated 

samples, suggesting these conjugations were either less successful than that with Abcam 

antibody or unsuccessful.  
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Figure 3.20: SDS-PAGE gel of antibody-functionalised AuNPs. Lane 1: MW ladder, 2: C11Pc-PEG-AuNPs, 3: 
Abcam antibody reference, 4: 3.10, 5: 3.13 6: 3.14, 7: R&D antibody reference, 8: 3.15, 9: 3.16 and 10: 3.17. 
Highlighted on lanes 4-6 is the faint band of high molecular weight corresponding to antibody conjugated to AuNPs  

 

3.3.3 Antibody binding to EGFR receptors 

The Abcam anti-EGFR antibody was used in chapter 2 to confirm the presence of 

EGFR on A549 cells and therefore is known to bind to the receptor. The ability of the 

antibody purchased from R&D systems to bind to the EGFR was tested using flow 

cytometry, as described in section 2.3.2. A549 and H292 cells, which are known to 

overexpress EGFR, were incubated on ice alongside the R&D antibody and BSA for one 

hour, then excess antibody was washed off. A FITC-tagged secondary antibody was then 

incubated with these cells on ice for a further hour and then washed off. Control cells 

were treated with BSA then the secondary antibody to account for any non-specific 

interactions between the secondary antibodies and the cells. The Abcam antibody was 

also tested against A549 (as in section 2.3.2) and H292 cells in this same manner. The 

flow cytometry data indicated that the Abcam antibody displayed binding to EGFR on 

both A549 and H292 cells, whereas the R&D antibody did not bind to the receptor, as 

no shift in fluorescence intensity is observed for the cells incubated alongside the antibody 

as compared to the control, as seen in Figure 3.21. This, alongside the weak binding of 

the antibody to nanoparticles, meant the R&D Systems antibody was not used any further 

in this work, and all the following results were collected using the Abcam anti-EGFR 

antibody. 
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Figure 3.21: Flow cytometry histograms of a) A549 and b) H292 cells treated with goat anti-mouse FITC 
secondary antibody (blue) or Abcam anti-EGFR antibody & goat anti-mouse FITC secondary antibody (purple). 
c) A549 and d) H292 cells treated with goat anti-mouse FITC secondary antibody (blue) or R&D anti-EGFR 
antibody & goat anti-mouse FITC secondary antibody (purple) 

 

3.3.4 Analysis of the singlet oxygen production of the anti-EGFR 

antibody conjugates 

Once the conjugation of antibody to 3.10, 3.13, and 3.14 was confirmed, these 

nanoparticles were tested for their ability to produce singlet oxygen. The nanoparticles 

were suspended in PBS, mixed with the singlet oxygen probe ABMA and irradiated for 

30 minutes at 633 nm, with fluorescence spectra recorded every five minutes. As seen in 

Figure 3.22, 3.10, 3.13, and 3.14 all displayed singlet oxygen production. The singlet 

oxygen production of these antibody functionalised AuNPs showed a slight decrease 

compared to that of the unconjugated C11Pc-PEG-AuNPs. This is likely because of the 

presence of tryptophan, methionine and histidine residues on the antibody which are 

known singlet oxygen quenchers.59–61  
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Figure 3.22: Singlet oxygen production of C11Pc-PEG-AuNPs (blue), 3.10 (pink), 3.13 (green) and 3.14 (purple) 
irradiated with 1 µM ABMA. All spectra recorded in PBS at 1 µM C11Pc 

 

3.3.5 Phototoxicity of antibody conjugated C11Pc-PEG-AuNPs 

Once the ability of these nanoconjugates to produce singlet oxygen was confirmed, they 

were tested for their phototoxicity in EGFR overexpressing lung cancer cells. As 

EDC/NHS is the most established conjugation strategy for antibody addition to AuNPs, 

3.10 were tested first to provide a reference point for comparison of these conjugation 

methods. 3.10 were incubated with A549 cells for three hours in serum free RPMI. After 

incubation, the cells were washed three times with PBS, then complete RPMI was added 

to each well. The cells were then irradiated for 6 minutes per well with a 633 nm HeNe 

laser placed 50 cm above the wells. A second plate was prepared in the same way but not 

irradiated to account for any dark toxicity. The cells were incubated for a further 48 hours, 

before an MTS assay was used to determine the cell viability. Staurosporine was used as 

a positive control for cell death, as described in section 2.3.3.1. While no dark toxicity 

was observed for these conjugates, unfortunately no phototoxicity was observed for 3.10 

at or below 200 nM, as shown in Figure 3.23a. 3.10 were tested at concentrations as high 

as 1.4 μM without any phototoxicity observed, and an increase in irradiation time from 

six to eight minutes per well was not seen to have any effect on the cell viability (Figure 

3.23b).   
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Figure 3.23: a) cell viability of A549 cells incubated with 3.10 for three hours then non-irradiated (blue) or 
irradiated at 633 nm for 6 min (green) and b) cell viability of A549 cells after incubation with 1.41 µM 3.10 for 
three hours and irradiation for either six or eight minutes with a  633 nm laser. Ctrl = non-treated A549 cells 
irradiated for six minutes at 633 nm 

 

As no cell death was observed in A549 cells, 3.10 were also tested in the H292 cell line to 

determine whether this lack of phototoxicity was cell-line dependent. 3.10 were incubated 

with H292 cells for three hours in serum-free RPMI, then cells were irradiated for six 

minutes with the laser placed 50 cm above the well, but no phototoxicity was observed. 

Overnight incubation of 3.10 with H292 cells in serum-free RPMI and increased light 

fluence rates were tested to attempt to induce a phototoxic response but no decrease in 

cell viability was observed under any of these conditions. 3.13 and 3.14 were also 

incubated with A549 and H292 cells for three hours before irradiation for six minutes per 

well. Again, no phototoxicity was observed for these conjugates, suggesting that the less 

random conjugation of the anti-EGFR antibody through thiols has not improved the 

targeting ability of these conjugates. 

 

3.3.6 Determination of antibody binding post conjugation 

So far, the ability of the Abcam anti-EGFR antibody to bind to the EGFR has been 

confirmed and the conjugation of this antibody to C11Pc-PEG-AuNPs through various 

conjugation techniques has been proven successful. As each of these conjugates has been 

shown to produce singlet oxygen, the next step was to confirm that these conjugation 

techniques have not destroyed the binding ability of the antibody due to the lack of 

regioselectivity of the reactions. To determine if the activity of the antibodies was 

maintained, FITC-PEG-AuNPs (2.31) were synthesised with a 50:50 ratio of FITC-

PEG:PEG, as described in section 2.3.2.2. These nanocarriers were functionalised with 

anti-EGFR antibody through EDC/NHS, a maleimide and through partial reduction 
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with TCEP before reaction with a maleimide, as described in section 3.3.1. A549 cells 

were incubated with these nanoconjugates for three hours alongside control 2.31. After 

washing to remove any unbound nanoparticles, the cells were imaged using a fluorescent 

microscope. For each sample and the control of 2.31, no fluorescence could be observed 

suggesting these nanocarriers were not binding to the EGFR on the surface of A549 cells. 

As evidence suggests the antibody is binding to the nanoparticles, and the antibody has 

activity before functionalisation, it is likely that the non-regioselective conjugation to this 

anti-EGFR antibody is affecting the activity of the antibody, rendering the resulting 

conjugates inactive towards the EGFR receptor. Antibody conjugation can affect the 

charge of an antibody, which in turn can affect the pharmacokinetics, stability and 

solubility.62 It is also possible that the formation of the conjugate occurs within the Fab 

region of the antibody, blocking the activity, or that the act of conjugation distorts the 

shape of the antibody, changing the shape of the recognition sites and destroying the 

antibody specificity. The possibility of the nanoparticle binding in the Fab region can be 

addressed by using site-specific conjugation which only allows conjugation to the Fc 

region of the antibody. 

 

3.3.7 Site-Specific antibody conjugation – using the Fc region 

While the addition of antibodies through a maleimide is more specific than the use of 

EDC/NHS chemistry, this chemistry is still non-regioselective and presents the same 

issue of lack of control over the region of the antibody that binds to the nanoparticle. 

The use of Fc binding proteins, as described in section 3.1.4.2, provides an opportunity 

for selective conjugation of antibodies through the constant region of antibodies, 

guaranteeing the antigen binding region of antibody remains free for receptor recognition.  

 

3.3.7.1 Protein G for site specific antibody conjugation 

For this work, an anti-HER2 antibody was selected as previous work by Russell and co-

workers has shown selective photodynamic therapy with this antibody.51,56,63 While HER2 

is only overexpressed in a small number of non-small cell lung cancer cases (ca. 15%),64,65 

the use of this anti-HER2 antibody allows for a proof of concept study that can be applied 

to more disease-relevant antibodies at a later date. The HER2 antibody in this study is a 

rat IgG2a antibody to which protein A displays no affinity,66,67 and therefore protein G 

was investigated for antibody conjugation. Initially, protein G was conjugated onto ca. 4 
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nm PEG-AuNPs through EDC/NHS chemistry as described in section 3.3.1.1, giving 

protein G-PEG-AuNPs (3.19). Again, this chemistry is non-regioselective and so it is 

hoped that the addition of protein G to these nanoparticles does not occur in the active 

site, allowing for further addition of an antibody. After addition of protein G, two 

methods were explored for the addition of antibody. Firstly, the antibody was non-

covalently bound to protein G. 3.19 were incubated with the anti-HER2 antibody in PBS 

(pH 7.4) for one hour, then purified by centrifugation in Vivaspin columns to remove 

any unconjugated antibody, giving anti-HER2-proteinG-PEG-AuNPs (3.20, Scheme 

3.5). 

 

Scheme 3.5: Non-covalent association of AuNP-bound protein G with an anti-HER2 IgG antibody, giving 3.20 

 

While the affinity of protein G for IgG2a antibodies should allow for the complexation 

of the antibody to protein G via the Fc region, the lack of covalent bond raises questions 

about the specificity of this nanoconstruct. It is possible that the anti-HER2 antibody 

may dissociate from protein G in vivo, allowing for other antibodies to conjugate to these 

nanocarriers and lead to targeting of unwanted receptors with these nanoparticles. 

To remove the possibility of the antibody dissociating from protein G in vivo, covalent 

conjugation of the antibody to protein G was attempted. Here, the cross-linker dimethyl 

pimelimidate dihydrochloride (DMP, Figure 3.24) was utilised.  

 

Figure 3.24: The structure of dimethyl pimelimidate dihydrochloride (DMP) 
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DMP has been used to cross-link antibodies to protein G immobilised on magnetic beads 

for the purification of antibodies,68,69 and therefore it is known that this cross-linker can 

be utilised to covalently bind protein G to an antibody. Protein G conjugated AuNPs, 

3.19, were incubated with anti-HER2 antibody in PBS (pH 7.4) for one hour to allow for 

the protein G to complex with the antibody. These AuNPs were then centrifuged in 

Vivaspin 500 columns to remove any non-bound antibody, and the AuNP pellet 

resuspended in triethanolamine buffer (pH 8.2) containing DMP. This approach utilises 

the non-covalent interactions between protein G and the antibody to hold the antibody 

in the desired conformation, before the cross-linking agent is added to solution, forming 

covalent bonds between the two molecules, as shown in Scheme 3.6. After 45 minutes, 

the nanoparticles were again centrifuged in Vivaspin 500 columns to remove any excess 

DMP, then resuspended in ethanolamine buffer (pH 8.2). The ethanolamine acts to cap 

any partially reacted DMP conjugated to either the antibody or protein G, removing this 

highly reactive group that could conjugate to biomolecules in vivo. These cross-linked 

nanoparticles, anti-HER2-DMP-proteinG-PEG-AuNPs (3.21), were again purified and 

resuspended in PBS. 

 

Scheme 3.6: Cross-linking of AuNP-bound protein G and an anti-HER2 IgG antibody with DMP 

 

SDS-PAGE was used to assess the outcome of these conjugation experiments. Samples 

of 3.19, 3.20 and 3.21 were prepared for SDS-PAGE as described in section 3.3.2. 

Controls of anti-HER2 antibody, PEG-AuNPs and protein G were also prepared by 

heating to 100 °C with tris-glycine SDS and DTT. The SDS-PAGE was run at 170 V for 

75 minutes in MOPS SDS running buffer, then stained with Coomassie blue to mark the 

protein bands on the gel. The resulting gel is shown in Figure 3.25. The control PEG-

AuNPs (lane 7), as expected, shows no protein content but this lane shows a brown 

smudge at the top of the gel due to the high concentration of AuNPs. The protein G 

control (lane 8) shows a strong band between 25 and 30 kDa. 3.19 (lane 6) also displayed 

this band and a brown smudge due to AuNPs but shows no protein band at a significantly 
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higher molecular weight. The blue smear in lane 6 may be indicative of some conjugation 

of protein G to the AuNPs, but the strong band at ca. 27 kDa is likely to be due to the 

presence of non-conjugated protein G.  

Interestingly, while the HER2 antibody (lane 4) shows the expected light and heavy chains 

at ca. 25 and 50 kDa, it also shows a third band at ca. 12 kDa which may indicate this 

antibody is contaminated. 3.20 (lane 3) shows the antibody bands but no protein G band 

and 3.21 (lane 2) unfortunately did not stain for any protein. It is possible that these 

samples were not concentrated enough to stain for protein on the gel and the bands 

observed in lane 3 are due to unconjugated antibody that has not been fully removed 

from the solution. The lack of AuNP smudge at the top of lanes 2 and 3 also support the 

theory that much less sample has been loaded into these lanes. To further assess whether 

these conjugations have been successful, these experiments need to be repeated with a 

much higher concentration of AuNPs loaded onto the gel. 

  

Figure 3.25: SDS-PAGE gel: lane 1: MW marker (kDa), 2: 3.21, 3: 3.20, 4: HER2 Ab, 5: HER2 Ab, 6: 3.19, 7: 
PEG-AuNPs, 8: protein G 

 

While protein G provides a method for specifically binding the Fc region of antibodies, 

this protein is still relatively complex and provides multiple conjugation sites for its 

addition to AuNPs. The addition of protein G still depends on random amide bond 

formation through EDC/NHS and therefore the Fc binding site of protein G may be 

affected by conjugation onto nanoparticles. It is also possible that protein G may invoke 
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an immune response in vivo as it is a foreign protein isolated from bacteria. Due to these 

concerns, research has led to the development of peptides that can bind to the Fc region. 

3.3.7.2 Peptide mimics of protein A/G – Fc-III 

The peptide Fc-III (DCAWHLGELVWC) has been described as an Fc binding cyclic 

peptide with high affinity towards the Fc region.70 In fact, its binding affinity has been 

shown to be only two-fold lower than that of protein A or G.70 It binds to the IgG Fc 

hinge region with a Kd of 185 nM.71 This peptide has benefits over protein A or G as it is 

likely to be non-immunogenic, it is much shorter and simpler to synthesise and it can 

easily be modified to fit a desired application. Different variations of the Fc-III peptide 

have been reported, including Fc-III-4c (CDCAWHLGELVWCTC), a double cyclic 

peptide which forms a tighter binding loop and therefore displays higher affinity towards 

the Fc region.71 Most notably, site specific modifications of the Fc-III peptide with the 

unnatural amino acid p-benzoylphenylalanine (Bpa, Figure 3.26) have shown that the 

substitution of the 10th amino acid in Fc-III (valine) to Bpa results in a peptide with high 

affinity towards the Fc region. The Bpa residue can react with methionine 252 in the 

constant region of an antibody under UV irradiation to form a covalent bond, thus 

covalently binding an antibody to its payload while specifically maintaining its 

conformation, leaving the Fab region free for binding. The diazirine based amino acids 

‘photo-Leu’ and ‘photo-Phe’ have also been tested for photo cross-linking to antibodies, 

but Bpa has been seen to be the most efficient photocrosslinker.72 

 

Figure 3.26: The structure of the unnatural amino acid p-benzoylphenylalanine (Bpa) 

 

In this work, the peptide Fc-III-Bpa (DCAWHLGELBpaWCT) was further modified 

with the addition of a glycine linker, providing a spacer between the peptide and the amine 

terminus that will subsequently be used to conjugate this peptide onto nanoparticles via 

the PEG linker, giving the peptide Gly-Fc-III-Bpa (GDCAWHLGELBpaWCT, 3.22, 

Figure 3.27). This peptide was synthesised by solid phase peptide synthesis, as described 

in section 2.3.1. The peptide was cleaved from the resin in 92.5:2.5:2.5:2.5 
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TFA:EDT:TIPS:H2O. 1,2-ethanedithiol (EDT) was added to the cleavage cocktail to 

prevent intermolecular disulphide formation, yielding polymers of 3.22. After cleavage, 

the peptide was stirred overnight in phosphate buffer, pH 8.0 at 35 °C to oxidise the 

cysteine residues and form the intramolecular disulphide. The peptide was highly diluted 

in phosphate buffer to prevent the formation of intermolecular disulphides. After the 

cyclisation of 3.22, the peptide was purified by preparative RP-HPLC and its synthesis 

confirmed by MALDI-ToF. 

 

Figure 3.27: The structures of a) Fc-III-Bpa and b) 3.22 with valine substituted for Bpa in the 10th position (pink) 
and the addition of glycine as a linker (blue) 

 

To attach 3.22 to the anti-EGFR IgG antibody used throughout this work, the peptide 

and antibody were mixed together in a 10:1 ratio in PBS buffer before irradiation for four 

hours using a Spot Lite SCL2-6 UV wand, then conjugation was investigated using SDS-

PAGE. A sample of unconjugated antibody was run as a control and compared to that 

of the irradiated sample. Unfortunately, no shift in mass was observed for either the light 

or heavy chains of the antibody. However, it is possible that the mass of the peptide 

would not result in an obvious increase in mass as 1.7 kDa is not a huge difference in 

protein mass compared to a heavy chain of 50 kDa. To further analyse the ability of 2 to 

bind the anti-EGFR antibody used in this work, a FITC-tagged derivative of 3.22 (FITC-

βADCAWHLGELBpaWCT, 3.23, Figure 3.28) was synthesised.  
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Figure 3.28: The structure of FITC-βADCAWHLGELBpaWCT (3.23) 

 

The fluorescence of this peptide could be used to determine whether it has been 

conjugated onto the antibody. 3.23 was mixed with the anti-EGFR antibody and 

irradiated for four hours in PBS. A second sample was irradiated for four hours in 20 mM 

histidine acetate buffer (pH 5.4) to determine the effect of pH on this addition. 5-

hydroxyindole was added to both reaction mixtures as it is known to protect antibodies 

from UV damage.72 A sample of each of these reaction mixtures was taken after two 

hours to track the reaction. After four hours of irradiation, samples were collected, 

precipitated in cold acetone and the pellet resuspended in PBS to concentrate the samples. 

SDS-PAGE of the resulting antibody samples was run at 200 V for 40 minutes. Control 

samples of the anti-EGFR antibody and a FITC-goat anti-mouse secondary antibody 

were also run. The FITC-tagged secondary antibody acted as a control for fluorescence 

and the anti-EGFR antibody was used to compare the relative weights of the antibody 

chains. The resulting gel was imaged for fluorescence, as shown in Figure 3.29a. As 

expected, the control FITC-secondary antibody displayed strong fluorescence (lane 3). 

Lanes 4-7, those containing irradiated antibody-3.23 mixtures, all showed a strong 

fluorescent band at the very bottom of the gel due to unconjugated peptide. Faint 

fluorescent bands could be observed in lane 7 (4 h irradiation in PBS) which, while present 

for both the light and heavy chains, could indicate some peptide conjugation to the 

antibody. The gel was then stained for protein using Coomassie blue, Figure 3.29b. The 
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fluorescent bands observed under irradiation were seen to align with the antibody bands 

stained with Coomassie blue. Unfortunately, the control anti-EGFR antibody (lane 2) did 

not stain for antibody bands and therefore this experiment would need repeating to assess 

whether any visible shift in heavy chain mass has occurred due to the possible conjugation 

of 3.23. The fluorescence of these bands is also very weak, so a higher concentration of 

antibody is needed to fully determine whether these bands are artefacts or conjugated 

antibody. Techniques such as LCMS may allow for further analysis of whether this 

peptide has indeed conjugated onto the antibody and allow for a drug-to-peptide ratio to 

be calculated. It would also be important to analyse whether this conjugation is specific 

to the heavy chain as desired or if this Bpa UV cross-linking is in fact somewhat 

unspecific. 

 

Figure 3.29: SDS-PAGE of antibody functionalisation with 3.23 a) under fluorescent light and b) after Coomassie 
staining. Lane 1: molecular weight marker, 2: anti-EGFR antibody, 3: FITC-goat anti-mouse secondary antibody. 
Lanes 4-7: antibody irradiated with 3.23 in 4: histidine acetate buffer 2 h, 5: histidine acetate buffer 4 h, 6: PBS 2 
h, 7: PBS 4 h. Highlighted on a) is the faint fluorescent bands observed in lane 7 

 

3.4 Conclusions and future work 

In this chapter, two chemical conjugation strategies for the addition of anti-EGFR 

antibodies onto gold nanoparticles were explored, with the produced conjugates 

summarised in Table 3.2. As there are currently no validated techniques for assessing the 

concentration of antibody on the surface of AuNPs, a proof of concept study with 

fluorescent tags was used to ensure that the conjugation of an antibody to C11Pc-PEG-

AuNPs via EDC/NHS chemistry would be successful. Once confirmed, two anti-EGFR 

antibodies were conjugated onto AuNPs using this method to give 3.10 and 3.15. These 

antibodies were also conjugated onto gold nanoparticles through thiol-maleimide 
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chemistry. Initially, C11Pc-PEG-AuNPs were conjugated with a maleimide, then mixed 

with the antibodies to allow for the conjugation of any free thiols on the antibody surface, 

giving 3.13 and 3.16. The reduction of disulphides for the addition of these antibodies 

was also trialled using TCEP. 1.2 equivalents of TCEP were used to attempt to reduce 

just one disulphide in these antibodies, before the resulting reduced antibodies were 

incubated with mal-C11Pc-PEG-AuNPs, giving 3.14 and 3.17. The conjugation of these 

antibodies was assessed using SDS-PAGE, then their ability to bind to the EGFR 

receptor assessed using flow cytometry. 3.10, 3.13 and 3.14 were seen to show antibody 

conjugated to their surface and the Abcam antibody used to synthesise these 

nanoconjugates was seen to bind to the EGFR receptor. 3.10, 3.13 and 3.14 all showed 

significant singlet oxygen production but disappointingly no phototoxicity in vitro.  

Table 3.2: Summary of the antibody conjugation techniques trialled and the activity of the produced 

nanoconjugates 

Conjugation 
type 

Coupling 
mechanism 

Antibody 
Confirmation of 
conjugation to 

AuNPs 

Photodynamic 
activity 

Random 
amide bond 

EDC/NHS Anti-EGFR Yes No 

Random thio-
ether 

Maleimide Anti-EGFR Yes No 

Hinge region 
thio-ether 

Disulphide 
reduction & 
maleimide 

Anti-EGFR Yes No 

Site-specific 
Protein G non-

covalent 
Anti-HER2 No - 

Site-specific 
Protein G 
covalent 

Anti-HER2 No - 

Site-specific 
Gly-Fc-III-Bpa 

(3.22) 
Anti-EGFR - - 

Site-specific 
FITC-Fc-III-Bpa 

(3.23) 
Anti-EGFR - - 

 

Fluorescent microscopy images suggested that these nanoconjugates were not being 

internalised by cells, suggesting that the conjugation of the antibody was affecting its 

affinity for EGFR. Assessment of whether this antibody is being internalised by A549 

cells both before and after conjugation with smaller systems such as dyes may shed some 

light on why these nanocarriers do not appear to be internalised. The investigation of 

different anti-EGFR antibodies may allow for the synthesis of anti-EGFR antibody-
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conjugated C11Pc-PEG-AuNPs that display phototoxicity in non-small cell lung cancer 

cell lines and allow for the comparison of the conjugation techniques tested in this study. 

This chapter also explored the use of protein G and its peptide mimic Fc-III-Bpa to site-

specifically conjugate antibodies to nanoparticles, as summarised in Table 3.2. Protein G 

was conjugated onto ca. 4 nm PEG-AuNPs through EDC/NHS amide bond formation, 

then mixed with an anti-HER2 antibody to allow for non-covalent bonding. To attempt 

to form a covalent bond between protein G and the antibody, the cross-linking agent 

dimethyl pimelimidate dihydrochloride (DMP) was utilised. SDS-PAGE unfortunately 

showed no evidence of antibody conjugation in this method. As protein G is a complex 

molecule that may induce an immune response, the peptide mimic Fc-III-Bpa was 

investigated. This peptide allows for the site-specific conjugation of the peptide onto a 

nanoparticle, and Bpa can be used to cross-link to a methionine residue in the Fc region 

of IgG antibodies under UV irradiation. The addition of a FITC-tag to this sequence 

(3.23) allowed for the visualisation of a small amount of conjugation between the peptide 

and the antibody using SDS-PAGE, but both the light and heavy chain of the antibody 

showed fluorescence, raising questions about the selectivity of this technique. Further 

studies with mass spectroscopy would confirm whether this fluorescence observed for 

the light band is an artefact or indeed the addition of the Fc peptide non-specifically. 

Once this is confirmed and the Bpa conjugation optimised, 3.22 can be conjugated onto 

AuNPs through the glycine linker, conjugated to an antibody, and the phototoxicity of 

these conjugates analysed. 

While Fc-III-Bpa has been shown to cross-link to antibodies under UV light, there has 

recently been two reports of site-specific antibody conjugation through the Fc region 

using other chemical modifications which do not require external stimulation to cross-

link. The first of these site-specifically altered the B domain of protein A with the non-

canonical amino acid 4-fluorophenyl carbamate lysine (FPheK, Figure 3.30a). They 

found that the substitution of Glu25 with FPheK allowed for cross-linking to Lys337 on 

IgG antibodies with efficiencies above 95%.73 While the large size of this B domain makes 

it undesirable for antibody conjugation, the binding site of this B domain is characterised, 

so it may be possible to build a peptide based on this to bind the Fc region of an antibody 

through FPheK with high efficiency. The second reported chemical conjugation involves 

the use of a cyclic Fc binding peptide GPDCAYHRGELVWCTFH. It has been found 

that the side chain of the arginine in this sequence points towards Lys248 in the Fc region 

of IgG antibodies, and the mutation of this arginine to a lysine allows for the addition of 
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the cross-linking agent disuccinimidyl glutarate, giving Lys-glutarate-succinimide (Figure 

3.30b). This cross-linker has been shown to specifically cross-link to Lys248 within 15 

minutes.74 Both of these cross-linking techniques may yield the desired conjugated IgG 

antibody more efficiently than the Fc-III-Bpa peptide and may be worth exploring. 

 

Figure 3.30: The structure of a) FPheK and b) Lys-glutarate-succinimide for cross-linking to the Fc region of 
IgG antibodies 

 

The work presented in this chapter shows that antibodies can be conjugated onto AuNPs 

through both EDC/NHS and maleimide-thiol chemistries, and with the right antibody a 

comparison between these conjugation techniques can be drawn. It also demonstrates the 

applicability of a methodology for selectively binding antibodies to AuNPs through the 

Fc region, despite the need for perfecting this conjugation technique.  As the Fc region 

is conserved in all IgG antibodies, this means that this conjugation technique can produce 

a universal methodology for the selective attachment of any IgG antibody to AuNPs. 
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4.1 Introduction 

4.1.1 Small molecules as targeting agents 

Small molecules tend not to be favoured as targeting moieties due to their relatively low 

binding affinity and poor substrate selectivity when compared to biological 

macromolecules such as antibodies. Antibody-drug conjugates can, however, be difficult 

to characterise, are generally heterogeneous as it is difficult to control the number of 

drugs attached to one antibody, and the site at which these drugs bind to the antibody is 

very difficult to control. Small molecules, defined as low molecular weight organic 

compounds, allow for the attachment of a specified number of drugs to a targeting agent 

with tightly controlled chemistry, allowing for a clearer picture of the structure of the 

conjugate. Small molecules have been used as targeting moieties for the delivery of gold 

nanoparticles, as described in section 1.4.6, with folic acid by far the most explored. Folic 

acid is non-immunogenic, relatively inexpensive and highly stable in physiological 

conditions, which highlights it as an attractive targeting moiety.  

 

4.1.2 Folic acid and its uptake in the human body  

Folic acid, also known as folate or vitamin B9, is a small molecule (MW 441.40 g mol-1) 

which, when reduced by dihydrofolate reductase to tetrahydrofolate, acts as a coenzyme 

for single-carbon transfers within a cell, allowing for the synthesis of nucleic acids and 

the metabolism of some amino acids.1 Folic acid cannot be synthesised by the human 

body, so it is imperative that efficient uptake occurs into human cells. In healthy tissue, 

three methods of uptake are possible: the reduced folate carrier, the proton-coupled folate 

transporter and the folate receptors. 

The reduced folate carrier is ubiquitously expressed throughout the body and is the major 

transport system for the uptake of reduced folates, such as 5-methyl tetrahydrofolate, at 

neutral pH.2 It is a member of the organic anion transporter family and allows uptake of 

folates through a counter-transport mechanism. These proteins have a relatively low 

affinity for folate (KM ≈ 1 µM) but their ubiquity means they are the main pathway for 

the uptake of reduced folates, yet they will not transport folic acid itself.3 

Proton-coupled folate transporter transports folic acid and reduced folates at acidic pH, 

optimally pH 5–5.5, encouraging the uptake of folate into the cell by producing an 

electrochemical gradient using a flow of protons out of the cell.4 The expression of the 
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proton-coupled folate transporter is mostly restricted to the kidneys, liver, spleen, 

placenta and small intestine, with limited levels expressed in other normal tissue.5 

Notably, its levels are much lower than the reduced folate carrier. Reduced folate carriers 

and proton-coupled folate transporters are responsible for the majority of the folate 

uptake in healthy tissue in the human body.4  

The third method by which folate can be absorbed into cells is the folate receptors. In 

humans, the folate receptors are a family of four proteins, known as folate receptor α 

(FRα or FOLR1), folate receptor β (FRβ or FOLR2), folate receptor γ (FRγ or FOLR3) 

and folate receptor δ (FRδ or FOLR4), that take up folic acid via receptor-mediated 

endocytosis.6 This process involves the cell engulfing a cluster of the receptor with the 

bound ligand in an intracellular sorting compartment, which becomes an endosomes and 

later a lysosome. These cellular structures contain an acidic environment and carry the 

ligand from the receptor into the cell, with the receptor itself being recycled back to the 

surface of the cell from the intracellular sorting compartment.7 FRα, FRβ and FRδ are 

38-40 kDa glycosylphosphatidylinositol-anchored membrane proteins whereas the FRγ 

protein is secreted.8,9 Little is known about the function or mechanism of FRγ, which is 

reported to be mainly secreted by hematopoietic tissue, but the other receptors are more 

widely studied.10 The folate receptors show a high affinity towards both folic acid and 

reduced folates (KD ≈ 0.1 nM),11 but their expression is limited throughout the body. FRα 

is commonly expressed in epithelial cells, whereas FRβ is expressed in hematopoietic 

tissue and by the placenta, and FRδ is expressed on T-cells.12–14  

 

4.1.3 The significance of folic acid in NSCLC 

As the lungs are primarily epithelial cells, the expression pattern of FRα is of note. In fact, 

the attractiveness of FRα for treatment of non-small cell lung cancer (NSCLC) goes even 

further; in healthy cells, epithelial cell walls are polarised and FRα is selectively expressed 

on the apical surface of these cells, meaning it is not accessible to blood-borne folate 

ligands.11,15 Upon mutation to cancerous cells, epithelial cells lose their polarity and FRα 

is expressed throughout the whole cell surface, as shown in Figure 4.1, accessible to any 

folate in the blood stream.16 This expression increases the ability of cancerous cells to 

uptake folic acid, which is vital for the aggressive proliferation of tumours.  
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Figure 4.1: Expression of FRα on lung epithelial cells. Expression is limited to the apical membrane on normal 

epithelial cells (L), but mutation to cancerous cells (R) depolarises the membrane and leads to expression on the 
basal membrane which is accessible to blood borne folate 

 

FRα has been found to be expressed on ca. 76%17 of lung adenocarcinomas and, more 

significantly, overexpressed on ca. 62%.18 The high level of overexpression of FRα in 

NSCLC highlights the appeal of this receptor as a target for treatments. The lack of this 

receptor on the basal surface of healthy lung cells enhances the selectivity of folate 

targeted drugs compared to other targets, which rely on an overexpression of the 

receptor, rather than an absence entirely. 

 

4.1.4 Folic acid as a targeting agent 

Folic acid (Figure 4.2) contains two carboxylic acids, one attached to the alpha carbon, 

and one to the gamma. These carboxylic acids can be used to conjugate folic acid to 

payloads and drug carriers, however, Low et al. demonstrated that the activity of folic acid 

towards the folate receptor is only maintained if conjugation occurs through the γ-

conjugate,19 and therefore any folate-directed payloads need to be conjugated through 

this γ-position. 

 

Figure 4.2: The structure of folic acid, highlighting the α and γ-carboxylic acids 
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4.1.4.1 Folic acid conjugated small molecule therapies 

Since the discovery of folic acid as a targeting agent and the expression of FRα on 

malignant cells, folate has been widely investigated as a targeting ligand for therapies. 

Chemotherapeutics, immunotherapeutics, and loaded nanoparticles have been delivered 

by folic acid, alongside gene therapies and RNA. Notably, four folate targeted small 

molecule therapies have entered clinical trials for various cancers,20 with Vintafolide 

(Figure 4.3, 4.1) the most promising of these to date.  

 

Figure 4.3: Structure of Vintafolide, consisting of DAVLBH (green), a self-immolative disulphide (pink), a water-
soluble peptide chain (black) and folic acid (blue) 

 

Vintafolide is a water-soluble conjugate of folic acid linked to desacetyl vinblastine 

monohydrazine (DAVLBH), a microtubule destabilising drug, through a water-soluble 

peptide linker and a self-immolative disulphide. Upon uptake into FRα expressing 

tumours, the reductive environment leads to the cleavage of the disulphide, and the self-

immolation of the linker leads to the release of DAVLBH (4.3), as shown in Scheme 4.1. 

Phase IIb clinical trials in NSCLC and phase III trials in ovarian cancer using Vintafolide 

in combination with chemotherapeutic drugs showed promising results in FRα-positive 

tumours, with a phase III trial in NSCLC ongoing.21,22 Unfortunately, progression-free 

survival rates were not high enough in ovarian cancer for this trial to progress further, 

but this, and the ongoing phase III trial in NSCLC, highlights folic acid as a viable 

targeting ligand for cancer treatment. 

 

Scheme 4.1: The reduction of the disulphide in Vintafolide leads to the self-immolation of the linker (pink) and the 
release of DAVLBH (green) 
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While it is agreed that only the γ-conjugate of folic acid is active, the activation of solely 

the γ-carboxylic acid is challenging. Most reports of folate conjugates use reagents such 

as N,N’-dicyclohexylcarbodiimide (DCC) and 2-(1H-Benzotriazole-1-yl)-1,1,3,3-

tetramethylaminium tetrafluoroborate (TBTU) to couple folic acid, relying on the higher 

reactivity of the γ-carboxylic acid.23–26 However, few reports describe the production of 

solely the γ-conjugate. Many groups then separate these isomers using chromatographic 

techniques, but the two isomers are separated by less than one minute on reverse-phase 

HPLC which makes the separation process challenging.27 Temperature control has been 

reported as a method for the selective formation of the γ-conjugate, but confusingly both 

cooling the reaction to 0 °C28 and heating to 30 °C29 have been reported to solely form 

the required isomer. 

Few reports exist of the chemical manipulation of folate to selectively conjugate through 

the γ-conjugate. The structure of folic acid can be split into two constituent parts: pteroic 

acid (4.4) and glutamic acid (4.5, Figure 4.4a). Folic acid has been manipulated to remove 

the glutamic acid and to reintroduce γ-methyl glutamate, allowing for the selective 

manipulation of the γ-carboxylic acid. This γ-ester is reacted with ethylenediamine to 

selectively produce 2-aminoethylfolic acid (4.6, Figure 4.4b) which can be further 

conjugated without modifying the α-carboxylic acid.30 

 

Figure 4.4:  a) The structure of folic acid split and its retrosynthesis into its constituents, pteroic acid (black) and 
glutamic acid (blue) and b) the structure of 2-aminoethylfolic acid 

 

A second method of selectively forming the γ-conjugate involves the use solid phase 

peptide synthesis. Fmoc-protected glutamic acid with the C-terminus tBu protected and 

a free side chain carboxylic acid (Fmoc-Glu-OtBu, 4.7) forces the conjugation to be 

through the γ-carboxylic acid. Upon deprotection of the amine, N10-trifluoroacetyl pteroic 
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acid (N10-TFA-pteroic acid, 4.8) can be conjugated through HATU/DIPEA coupling to 

give protected γ-conjugated folic acid on resin.31,32 The reagents used in this solid phase 

synthesis are shown in Figure 4.5. The chemical manipulation of folic acid, while 

requiring more synthetic work, has the benefit of ensuring all the synthesised folic acid 

conjugate is through the γ-conjugate, while temperature control can easily still result in a 

mixture if not controlled tightly enough. 

 

Figure 4.5: The structures of a) Fmoc-Glu-OtBu and b) N10-TFA-pteroic acid for solid phase preparation of γ-

conjugated folic acid 

 

4.1.4.2 Folic acid and PDT 

Folate has been employed as a targeting agent in PDT. The first report of folic acid as a 

targeting agent in PDT linked the photosensitiser tetraphenylporphyrin (TPP) to folic 

acid through alkyl and PEG linkers and selective uptake of the photosensitiser was 

observed in FRα overexpressing cells. The authors found that the nature of the linker 

changed the physical properties of the conjugate but not the affinity of folic acid to the 

receptor. The conjugates formed with a PEG linker displayed higher photodynamic 

activity than those synthesised with an alkyl linker, possibly due to the increased solubility 

that PEG provides to the structure.33,34 A range of porphyrins and chlorins have 

subsequently been conjugated to folic acid through PEG linkers.35,36 While PEG has a 

great benefit of increasing the water solubility of the conjugate, the direct conjugation of 

folic acid onto zinc phthalocyanines has also been shown to increase the water solubility 

of the photosensitiser.37 All of these conjugates were synthesised using DCC as the 

coupling agent and the α- and γ-conjugates were not separated. Although selective activity 

was observed, this leads to the question of whether the same quantity of the γ-conjugate 

is formed in each batch of these photosensitiser-folate conjugates and therefore if the 

same amount of active drug is accessible. 

While there have been some reports of small molecule photosensitiser-folic acid 

conjugates, the majority of the research has focussed on the use of folic acid to direct 
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nanoparticles carrying photosensitisers to tumours. The use of folic acid to deliver gold 

nanoparticles has been reviewed in section 1.4.6. Furthermore, folic acid has been used 

to deliver a range of other photosensitiser-nanoparticle conjugates to tumours, including 

quantum dots,38 iron oxide,39 chitosan,40 silica,41 liposomes42 and polymeric43 

nanoparticles. In these nanoconjugates, the photosensitisers are either covalently bound 

to the nanoparticle surface, encapsulated in the nanoparticle, or trapped in the ligand 

corona. For the attachment of folic acid onto nanoparticle systems, most reports do not 

separate the α- and γ- conjugates, relying on the higher reactivity of the γ-conjugate to 

ensure there is active folic acid on the surface, but not quantifying exactly how much 

active folate is present.44,45 In fact, many groups use commercially available folate 

conjugates, which are purchased as a mixture of isomers.46,47 While using a mixture of 

folate isomers yields nanoparticles that show high selectivity towards FRα expressing 

cells, the inconsistency in the ratio of γ- to α-folate conjugates formed on the nanoparticle 

surface means these conjugates have questionable reproducibility, and thus use as drug 

candidates.  

Efforts have been made by the scientific community to overcome this issue and, notably, 

N10-TFA-pteroic acid (4.8) has been used to prepare liposomes with γ-conjugated folic 

acid.48 Folic acid has also been conjugated onto AuNPs through the aromatic amine on 

the pteroic acid section of folic acid.49 However, the crystal structure of folic acid bound 

to FRα shows the pteroic acid deep inside the binding pocket50,51 (Figure 4.6) so it is 

questionable whether the folate is providing the targeting effect described via a folic acid- 

FRα mediated interaction.  

 

Figure 4.6: Orientation of folic acid in FRα showing the pteroic acid moiety deep inside the binding pocket and 
the γ-carboxylic acid protruding from the binding site (PBD: 4LRH). a) surface representation of folic acid in the 
FRα binding site and b) cross section of the binding pocket of FRα. 
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4.1.4.3 Cleavable folate therapies 

While folate conjugates have shown selectivity towards FRα expressing cancers, it has 

been observed that the conjugation of folic acid to photosensitisers can cause a reduction 

in the singlet oxygen quantum yield, and in some cases complete quenching is 

observed.37,52 When folic acid has been used to deliver cytotoxic payloads, folate has been 

linked to payloads through pH,53–55 light,56,57 redox-active58,59 and enzymatically60,61 

cleavable linkers with the aim of releasing the drug intracellularly.  

pH labile linkers rely on the difference in pH between the blood (pH 7.4) and intracellular 

vesicles such as lysosomes (pH 4.5-5.0). The most common pH labile linker is a 

hydrazone, which undergoes acid hydrolysis at lysosomal pH. While this linker is 

appealing, some cleavage has been observed under physiological conditions (pH 7.4, 37 

°C)62 and clinical trials of antibody drug conjugates linked through a hydrazone found 

off-target toxicity due to the lability of these linkers in circulation.63 

Disulphide linkers are cleaved by glutathione, which forms a reductive environment 

within cells. Glutathione is also found extracellularly so these cleavable linkers rely on the 

increased concentration of glutathione inside the cell to deliver the drug to the desired 

location.64 Significantly, glutathione is also upregulated in lung cancers65 so this can 

provide a second targeting effect towards disulphide linked folate-drug conjugates. For 

the work presented in this thesis, however, disulphides are not an ideal linker due to the 

affinity of gold for sulphur, meaning it is highly likely that the disulphide bond would be 

broken upon addition to gold nanoparticles, resulting in the folate moiety directly 

attached to the gold core and thus not accessible as a targeting ligand. Disulphide linkers 

also display lower plasma stability than hydrazones as they can exchange with low 

molecular weight thiols in circulation, which can lead to the loss of the targeting ligand 

and lead to off-target delivery of therapeutics.31 

Light cleavable linkers depend on the use of UV radiation to supply enough energy to 

uncage the attached therapeutic from folic acid. UV radiation penetrates less than one 

millimetre through human skin66 and therefore is a highly limited cleavage technique. 

Investigation into infrared-cleavable linkers may increase the applicability of light 

cleavable linkers as infrared penetrates much deeper into human tissue, but no infrared 

cleavable linkers are currently reported. 

Enzymatically cleavable linkers are commonly targeted towards enzymes that are 

overexpressed in the cells of interest. Most notably, enzymes have been used to release 
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photosensitisers from folic acid. Peptidases have been shown to cleave a β-peptide spacer 

between folic acid and the protoporphyrin IX (PPIX) precursor 5-aminolevulinic acid 

methyl ester (MAL), targeting the formation of PPIX specifically to FRα expressing 

tumours.29 The conjugation of folic acid and chlorin-e6 has been observed to quench the 

fluorescence and therefore singlet oxygen of the photosensitiser, and the design of a 

cathepsin B cleavable linker between folic acid and chlorin-e6 allowed the ‘switch on’ of 

singlet oxygen production in the targeted cells.52 Enzymatically cleavable sequences are 

the most appealing of these cleavable linkers due to their relative stability in circulation67,68 

and the intracellular availability of the enzymes instigating selectivity.  

 

4.1.5 Proteases and their significance in cancer 

Proteases are a diverse group of enzymes that cause proteolysis of proteins, meaning they 

hydrolyse amide bonds and cause degradation. There are two classes of proteases; 

exopeptidases, which act on amide bonds at the N and C termini of proteins, and 

endopeptidases, which cleave internal amide bonds within proteins.69 Proteases are 

ubiquitously produced in cells throughout the body and are vital for the function and 

regulation of healthy cells, however proteases can also be key markers for the mutation 

of healthy cells into cancerous cells.70 There is a plethora of proteases found throughout 

the body, yet two classes are widely studied as both cancerous markers and as key targets 

for activating targeted therapies; these are matrix metalloproteinases and cathepsins. 

Matrix metalloproteinases (MMPs) are a family of 20 proteases that degrade the 

extracellular matrix. These proteases have a dependence on metal ions, and in most cases 

this ion is zinc(II).71 In healthy cells, their role involves the release of growth factors and 

receptors from the cell surface. However, the mutation to cancerous cells can lead to the 

upregulation of MMPs, which are seen to have a role in tumour growth, progression and 

metastasis, along with an influence on increased rates of angiogenesis.72  

The cathepsin family comprises 11 lysosomal cysteine proteases, including cathepsin B 

(CatB). CatB is overexpressed in the majority of cancers and notably its upregulation is 

high in NSCLC.73,74 CatB is present in cells to degrade extracellular proteins that have 

entered the lysosomal compartments of a cell.75 This protease acts as an endopeptidase, 

cleaving amide bonds between hydrophobic residues. CatB differs from other members 

of the cathepsin family as it can also accept an arginine in its sequence for degradation as 

it contains a glutamic acid in its binding pocket that acts as an acceptor for the positive 
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charge of arginine’s side chain.76 CatB has been seen to be overexpressed in a range of 

cancers, including lung, breast, colorectal and prostate, where it has been shown to be 

involved in tumour formation, proliferation and metastasis.75,77–79 In healthy cells a small 

amount (< 5%) of CatB is secreted, but the majority of CatB is found intracellularly. The 

localisation of CatB has been seen to be slightly altered by the transformation of cells 

from healthy to malignant, with an upregulation of CatB leading to its localisation in the 

cytoplasm.79,80 

Both MMPs81–83 and CatB52,84,85 have been employed for the activation of photodynamic 

agents at the tumour, yet the localisation of CatB inside the lysosomes makes it a more 

interesting target. The release of drugs by MMPs could still lead to some off-target toxicity 

as the drug is not necessarily internalised when released extracellularly and could diffuse 

to surrounding healthy cells. CatB cleavage mainly occurs intracellularly, so the desired 

drug must be within the cell before it can be released, preventing this off-target effect. 

 

4.1.6 Cathepsin B substrates and cleavable therapies 

CatB does not have a specific substrate but is known to cleave amide bonds between 

hydrophobic residues, while also recognising arginine. As there is not a specific substrate, 

many amino acid sequences have been used as recognition sequences for CatB cleavage. 

Among the first reported sequences were the tetrapeptides Gly-Phe-Leu-Gly and Ala-

Leu-Ala-Leu, yet these have been surpassed in the literature in favour of dipeptide 

sequences as they have unfavourable cleavage kinetics and are difficult to incorporate into 

peptide sequences due to their hydrophobicity.86 A systematic review of dipeptide 

cleavable sequences determined that, for rapid cleavage by CatB, the second amino acid 

in a sequence needs to be a hydrophobic residue, with valine found to be the optimal 

amino acid.87 It was also found that a spacer was required between the growing peptide 

chain and the cleavable sequence to prevent the overcrowding of the active site of CatB.87 

In fact, it was observed that without this spacer next to the cleavable sequence, CatB 

showed no activity towards cleavable sequences that were cleaved within minutes with 

the addition of a spacer.87 The most widely utilised spacer is para-amino benzyl carbamate 

(PABC), as this restores the activity of CatB and is self-immolating, meaning upon 

cleavage any attached drug is restored without any attached amino acids from the 

cleavable sequence (Scheme 4.2). 
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Scheme 4.2: Self-immolation of PABC (blue) after cleavage (dotted line) gives the free drug 

 

 Many amino acids have been placed in the first position of these dipeptides, including 

alanine, lysine and citrulline (Cit), a non-essential amino acid that is isosteric and 

isoelectronic to arginine but is found to be more stable in circulation and is notably non-

basic. Of the cleavable sequences trialled, Val-Lys was found to be the most rapidly 

cleaved sequence,87 but the basicity of lysine adds complexity for the uptake of any 

cleavable drug into cells as the protonation of lysine can change its characteristics greatly. 

For the system reported in this thesis, the addition of a second lysine residue complicates 

the addition of the peptide onto PEG, following the method described in section 2.3.2.1. 

For these reasons, the cleavable dipeptide Val-Cit was investigated as a CatB substrate in 

this thesis.  While PABC has been seen to be a very good spacer molecule, para-amino 

benzoic acid (PABA), which has the same characteristics as PABC, has been found to be 

a more stable building block for solid phase peptide synthesis due to the presence of a 

moderately electron withdrawing carboxylic acid.88 PABA does not have the ability to 

self-immolate, but as this work aims to use this sequence (Val-Cit-PABA) to remove a 

quenching molecule, and not to release a drug, this is not a concern. The sequence Val-

Cit-PABA (4.11, Figure 4.7) is commonly used in the literature for CatB release of 

molecules and drugs, and it is seen to be a very stable and efficiently cleaved linker.89,90 

 

Figure 4.7: Structure of the Val-Cit-PABA cleavable sequence. The CatB cleavage sequence, valine and citrulline, 
is shown in pink and the PABA spacer is shown in blue 
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4.2 Summary and chapter aims 

The expression patterns of FRα on cancerous epithelial cells, and most notably on lung 

adenocarcinomas, presents folic acid as a highly desirable targeting agent. Folate has been 

shown to selectively target drugs, photosensitisers and nanoparticles towards FRα 

expressing cells and clinical trials of folate-drug conjugates have indicated folic acid as a 

viable targeting moiety for drug candidates. Folic acid possesses two carboxylic acids, but 

it only remains active if the payload conjugation occurs through the γ-carboxylic acid. 

Most of the research into targeting nanoparticles towards FRα using folic acid does not 

discriminate between the α- and γ-isomers, using the higher reactivity of the γ-carboxylic 

acid to favour the formation of the γ-conjugate but not selectively forming it. This gives 

rise to questionable compositions and variable concentrations of the targeting moiety on 

the surface of these nanoconjugates. This variation between batches and lack of 

quantitation of targeting moiety on the nanoparticle surface makes these nanoparticle 

systems questionable drug candidates. Methods to selectively form the γ-conjugate have 

been reported and should be explored to form more uniform and reproducible 

nanocarriers. 

Folic acid, while an attractive targeting moiety widely explored for targeted photodynamic 

therapy, has been shown to quench singlet oxygen production, and many conjugates 

formed show lower, or no, singlet oxygen production compared with the free 

photosensitiser. To overcome this, cleavable linkers have been explored to remove the 

targeting moiety once the photosensitiser, or other drug, has been internalised by 

cancerous cells. One of the most promising methods to remove folic acid intracellularly 

is the use of cathepsin B, a protease overexpressed in cancers. Many CatB cleavable 

linkers have been reported, with the sequence Val-Cit-PABA (4.11) the most widely 

utilised sequence due to its stability in circulation and relatively fast cleavage kinetics. 

This chapter aims to explore the use of folic acid as a targeting agent for the delivery of 

phthalocyanine-gold nanocarriers towards non-small cell lung cancer cell lines. Firstly, 

methods to selectively conjugate folic acid to the nanocarriers were explored to ensure 

that all the folate present on these nanocarriers was active and to prevent any variation in 

targeting activity between batches. Once a method to selectively form γ-folate conjugates 

was determined, phthalocyanine-gold nanocarriers were synthesised, functionalised with 

this targeting moiety. The addition of CatB cleavable linkers between the folate moiety 

and the nanocarrier were explored to increase the production of singlet oxygen by the 
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nanocarriers. The addition of this cleavable sequence also provides a second level of 

selectivity to the nanocarriers as the nanocarriers would not be photodynamically active 

until the directing group was cleaved away by the CatB overexpressed in the target cancer 

cells. 

 

4.3 Results and discussion 

4.3.1 Folic acid conjugation 

As folic acid is shown to only be active towards the folate receptor if conjugated through 

the γ-carboxylic acid, manipulation of its reactivity is required to optimise the conjugation 

and only attach the active form to the nanocarriers. As folic acid is a robust and 

inexpensive molecule possessing carboxylic acids, it can be used in solid phase peptide 

synthesis. To initially determine the effects of standard coupling conditions on the 

attachment of folic acid to a peptide, rink amide MBHA resin was loaded with lysine (Lys) 

and folic acid (FA) was coupled in DMSO overnight alongside HATU and DIPEA, to 

give FA-Lys (4.12, Figure 4.8). Upon cleavage, a crude HPLC (Figure 4.9) was obtained 

showing two prominent peaks at 10.1 and 10.5 minutes. These peaks were separated using 

preparative HPLC, and the mass obtained on a MALDI mass spectrometer showed both 

peaks had a m/z of 569, corresponding to the [M+H]+ of 4.12 and therefore these peaks 

correspond to the α- and γ- conjugates. It has been found that upon random attachment, 

the ratio of α- to γ-conjugated products tends to be approximately 30:70 and that the γ-

conjugate is slightly more polar so is eluted first on a reverse-phase column, and therefore 

it is assumed that the larger peak in the presented synthesis is that of the γ-

conjugate.33,34,91,92 

 

Figure 4.8: The structure of FA-Lys 



4.3.1 Folic acid conjugation 

 

168 

 

 

Figure 4.9: The analytical HPLC trace recorded at 214 nm of crude 4.12 formed using HATU/DIPEA at RT, 
showing the presence of the α and γ-conjugates 

 

Guaragna et al. reported that dissolving folic acid in a solution of DIPEA in DMSO at 50 

°C alongside PyBOP as a coupling agent, before shaking overnight at 30 °C, resulted in 

solely the γ-conjugate.29 This simple method of controlling the selectivity of the coupling 

reaction was tested on the solid phase, again loading rink amide MBHA resin with lysine 

and attaching folic acid overnight in a water bath at 30 °C. The crude HPLC of this 

reaction post synthesis (Figure 4.10) presented two major peaks at retention times of 

10.1 and 10.5 minutes, matching those of the synthesis without temperature control 

previously reported. Upon separation, the masses collected again showed a m/z of 569, 

corresponding to the [M+H]+ of 4.12, and therefore that this temperature-controlled 

reaction had no effect on the selectivity on the conjugation. 



4.3.1 Folic acid conjugation 

 

169 

 

 

Figure 4.10: Analytical HPLC trace recorded at 214 nm of crude 4.12 synthesised using PyBOP/DIPEA at 30 °C, 
showing the presence of both the α and γ-conjugates 

 

Further attempts to selectively conjugate through the γ-carboxylic acid were made in 

solution. Santos et al. reported that cooling a solution of folic acid alongside one 

equivalent of TBTU and N-methylmorpholine (NMM) to 0 °C, followed by the addition 

of an amine resulted in the γ-conjugate.28 NMM acts as a base to activate folic acid and 

increases its reactivity towards TBTU. Cooling the mixture to 0 °C slowed the kinetics of 

the reaction and the steric bulk of TBTU as a coupling agent encouraged the activation 

of the γ-carboxylic acid in preference to the α-carbonyl. The presence of hydrogen 

bonding between the α-carbonyl and the neighbouring amide also increases the 

preferential activation of the γ-position.28 In this thesis, 3-(dimethylamino)-1-propylamine 

was used as a model amine for this reaction, with the aim of selectively forming γ-3-

dimethylaminopropylfolic acid (4.13, Figure 4.11).  

 

Figure 4.11: The structure of 3-dimethylaminopropylfolic acid 

 

As steric bulk of the coupling agent is a major influence on the preferential activation of 

the γ-carbonyl, the bulkier coupling agent PyBOP was also trialled in parallel to TBTU. 
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PyBOP has a much higher steric bulk than TBTU, as shown in Figure 4.12, with its 

structure including three pyrrolidine rings, compared to the bulk of methylamines on 

TBTU.  

 

Figure 4.12: Structures of a) PyBOP and b) TBTU 

 

The crude products of both these solution phase reactions were analysed by analytical 

RP-HPLC where three product peaks were observed at 10.15, 10.26, and 10.39 min for 

the PyBOP synthesis and 9.96, 10.14 and 10.37 min for the synthesis with TBTU. After 

separation of these peaks, the resulting products were analysed by MALDI mass 

spectrometry. Two of these product peaks showed a m/z of 526 and the third a m/z of 

610, corresponding to [M+H]+ of two products with the mass of mono-substituted folic 

acid and the mass of di-substituted folic acid respectively. As two peaks possess the mass 

of singly substituted folic acid, it is likely these are the α- and γ-conjugates, and no clear 

selection of the γ-conjugate has occurred. 

It was also attempted to form the γ-conjugate of folic acid through an NHS ester, again 

hoping that the less hindered conjugate would be favoured. Folic acid was activated with 

one equivalent of DCC/NHS, then 3-(dimethylamino)-1-propylamine was added to react 

with the activated NHS ester. Analysis of the resulting product again showed the presence 

of two major products with retention times of 10.26 and 10.52 min. These products were 

separated, and both showed a m/z of 526, corresponding to the two isomers of 3-

dimethylaminopropylfolic acid. Again, no selectivity was observed towards the γ-isomer 

of folic acid. As all attempts to use steric control for the conjugation of folic acid were 

unsuccessful, further manipulation of folic acid to encourage the selective γ-conjugation 

was explored.  
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4.3.2 Synthesis of folate ligand 2-aminoethylfolic acid 

Two chemical manipulations of folic acid to form solely the γ-conjugate have been 

reported; the use of N10-TFA-pteroic acid (4.8) on the solid phase31,32 and the solution 

phase manipulation to form 2-aminoethylfolic acid (4.6).30,93 While the solid phase 

manipulation involves less steps, 4.8 is expensive and the synthetic procedure is time 

consuming, with some steps taking over a week.94 For these reasons, the synthesis of 4.6 

was explored to form selective folate conjugates. 4.6 selectively adds a terminal amine 

onto the γ-carboxylic acid of folic acid, and this change of terminal functional group on 

the desired conjugation site provides an attractive way of controlling the conjugation.30,93 

The synthesis of 4.6 involved a six-step manipulation of folic acid (Scheme 4.3).  

 

Scheme 4.3: Synthesis of 2-aminoethylfolic acid (4.6) 
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Firstly, folic acid was reacted with trifluoroacetic anhydride to form a mixture of N2,10-

bis(trifluoroacetyl)pyrofolic acid (4.14) and N2,10-bis(trifluoroacetyl)pyrofolic anhydride 

(4.15). All the amines present in folic acid can undergo nucleophilic attack on the 

trifluoroacetic anhydride to form amides, as shown in Scheme 4.4. The trifluoroacetic 

anhydride also reacts with both carboxylic acids in folic acid, forming mixed anhydrides 

(4.20). The amide nitrogen can then undergo nucleophilic addition to the γ-anhydride, 

causing a cyclisation to occur. The α-anhydride could also undergo this cyclisation, but 

the resulting three-membered ring would be highly strained, so this reaction is highly 

unfavourable. The formation of the mixed anhydride/acid was confirmed by the 

appearance of three peaks in the 19F-NMR, corresponding to the two trifluoroacetate 

groups and the anhydride.  This reaction yields a crude mix of the anhydride and acid that 

was taken straight forward into the next step of the synthesis, without further 

characterisation and purification. 

 

Scheme 4.4: The mechanism for the synthesis of 4.14 and 4.15 from folic acid and trifluoroacetic anhydride 

 

The addition of ice to the crude mixture of 4.14 and 4.15 yielded N10-

bis(trifluoroacetyl)pyrofolic acid (4.16) through a hydrolysis, releasing trifluoroacetic acid. 

Both the anhydride and trifluoroacetate groups on secondary amides are hydrolysed but 

the higher nucleophilicity of the tertiary amide prevents the hydrolysis. It is possible that 

the hydrolysis of these groups is not complete as three fluoride peaks are still present in 

the 19F-NMR, or that some of the eliminated TFA is forming salts with the product, and 

therefore still present in the product. To attempt to drive the reaction, the mixture was 

heated to 40 °C for three hours, yet this did not have any effect on the presence of these 
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fluorine peaks. The shift in the ppm of two of these peaks suggests that some alteration 

has occurred to their chemical environment, possibly suggesting they are now present as 

TFA salts. As the 1H- and 13C-NMRs showed accordance with the data provided by Luo 

et al., and the next step of this reaction involved the addition of a strong base that would 

drive the hydrolysis to completion, no further alterations were made to the reported 

method to attempt to remove these peaks from the fluorine NMR.  

The next step of this manipulation involved the reaction of 4.16 with hydrazine 

monohydrate to form pteroyl hydrazide (4.17). Hydrazine monohydrate undergoes 

nucleophilic attack on the benzyl carbonyl, followed by elimination of the pyrrolidinone. 

The hydrazine also undergoes nucleophilic attack on the trifluoroacetate, with its removal 

giving the secondary amine. The success of this reaction could be determined by the loss 

of the four proton resonances between 2.70 and 2.00 ppm and a resonance at 4.77 ppm 

in the 1H NMR spectra due to the elimination of the pyrrolidinone which contains these 

aliphatic protons. Additionally, a m/z of 327 was observed which corresponded to the 

desired product.  

4.17 was next reacted with potassium thiocyanate and tert-butyl nitrite. Potassium 

thiocyanate acts catalytically as a potent nitrosating agent, reacting with tert-butyl nitrite 

to form nitrosyl thiocyanate (4.21). This highly reactive species can undergo electrophilic 

attack from the terminal amine of the hydrazine, leading to the elimination of thiocyanate 

and the formation of an N-nitrosamine (4.23).95 The N-nitrosamine then undergoes a 

dehydration reaction, yielding the azide, as shown in Scheme 4.5. A mixture of pteroyl 

azide (4.18) and N10-nitrosopteroyl azide is formed. Since the nitrosyl thiocyanate can also 

react with the secondary amine between the two aromatic groups in the same way, yet the 

primary amine is more reactive, and as one equivalent of tert-butyl nitrite is added, the 

major product is the terminal azide. N10-nitrosopteroyl azide can be easily converted to 

pteroyl azide by the addition of sodium azide. The acidic conditions lead to the 

protonation of the nitrosamine, to which the azide is a strong nucleophile, resulting in 

the elimination of a nitrosated azide as the formation of secondary nitrosamines is 

reversible.96 Again, this nitrosyl azide can act as a nitrosating agent, but the rate of the 

nitrosation of the azide is much faster than that of nitrosyl azide nitrosating another 

molecule, resulting in 4.18 as the main product.97 The formation of 4.18 was confirmed 

by presence of a peak at 2137 nm in the IR spectrum, suggesting an azide moiety is 

present, and crude 4.18 was carried forward in this synthesis. 
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Scheme 4.5: The mechanism for the formation of pteroyl azide  

 

The addition of L-glutamic acid 5-methyl ester and tetramethylguanidine resulted in a 

product of tetramethylguanadinium L-methyl folate (4.19). Pteroyl azide can undergo an 

imine/enamine tautomerisation, resulting in the elimination of the azide to give p-

quinoketene monoamine (4.28), as shown in Scheme 4.6.30  

 

Scheme 4.6: Tautomerisation of 4.18: pteroyl azide (4.18) and p-quinoketene monoamine (4.28), highlighting in 
blue the amine deprotonated by tetramethylguanidine to encourage the elimination of the azide. 

 

The tetramethylguanidine can deprotonate the amine of the p-aminobenzoyl azide, 

highlighted in blue, leading to the elimination of the azide, encouraging the formation of 

the p-quinoketene tautomer. The amine of the protected glutamate is highly reactive 

towards this structure, leading to a high yield of 4.19, which exists as a 

tetramethylguanadinium salt. The formation of 4.19 leads to the return of the general 

structure of folic acid, but notably with the alteration of a methyl ester selectively at the 

γ-conjugation site. The synthesis of 4.19 was confirmed by the appearance of eight 

resonances between 4.05-1.90 ppm in the 1H-NMR spectra, corresponding to the 

aliphatic protons in the glutamate chain. These can be seen as a multiplet at 4.05 ppm 

with an integration corresponding to one hydrogen, due to the proton adjacent to the 

amide (1-CH, Figure 4.13), a singlet at 3.55 ppm with an integration corresponding to 

three hydrogens, due to the methyl ester, and a multiplet between 2.43 and 1.90 ppm with 
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an integration corresponding to 4 hydrogens, due to the adjacent methylenes in the 

glutamate chain (2-CH2 and 3-CH2). The tetramethylguanidinium salt can also be clearly 

observed in the 1H NMR as a singlet at 2.90 ppm with an integration corresponding to 

the 12 methyl hydrogens. Further confirmation that this is due to the presence of 4.19, 

not a mixture of the starting materials, was found by high resolution ion trap time of flight 

(IT-ToF) mass spectroscopy, with a m/z of 478.1452 observed, consistent with that of 

an 4.19 sodium adduct. 

 

Figure 4.13: The structure of 4.19, highlighting new 1H-NMR resonances observed upon its synthesis 

 

Finally, 4.19 was reacted with neat ethylenediamine, yielding 4.6 through a nucleophilic 

substitution of the γ-methyl ester. Using neat ethylenediamine drives the reaction to 

completion as a large excess is present. Following purification with water and acetone 

precipitations, 4.6 was further purified by preparative RP-HPLC to ensure high purity. 

The synthesis of 4.6 was confirmed by IT-ToF with a m/z of 484.2064 observed, 

matching the expected mass.  

Once the synthesis of 4.6 was confirmed, it was important to determine whether cells 

could tolerate this ligand, or whether 4.6 itself would induce cytotoxicity. To test for the 

possible cytotoxicity of 4.6, an FRα positive non-small cell lung cancer (NSCLC) cell line 

was required. 

 

4.3.3 Determination of the presence of FRα and cytotoxicity of 4.6 

NSCLC cell lines A549 and H292 were tested for the presence of FRα using flow 

cytometry, as described in section 2.3.2. A primary anti-FRα antibody and a goat anti-

mouse FITC secondary antibody were incubated alongside H292 and A549 cells. Figure 

4.14 shows the flow cytometry histograms of fluorescence intensity for each sample. 

H292 cells displayed a large increase in fluorescence upon incubation with the anti-FRα 
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antibody, suggesting the presence of FRα on H292 cells. A549 cells showed no increase 

in fluorescence intensity upon incubation with the anti-FRα antibody, suggesting that 

A549 cells are negative for FRα. These results provide a cell line that can be targeted by 

folate-directed nanoparticles, and a control cell line to determine the selectivity of these 

nanoconjugates. 

 

Figure 4.14:  Flow cytometry histograms of a) H292 and b) A549 cells incubated with anti-FRα antibody then 

FITC-goat anti-mouse secondary antibody (purple) or just with the secondary antibody (blue). 

 

As H292 cells were seen to be positive for FRα, these cells were used to assess 4.6 for 

any cytotoxicity towards FRα expressing cell lines using the cell proliferation assay 3-(4,5-

dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-tetrazolium 

(MTS). H292 cells were seeded in 96 well plates and grown overnight at 37 °C, 5% CO2. 

Following incubation with 4.6, the cell viability was assessed with MTS. Negligible 

cytotoxicity was observed in H292 cells treated with up to 25 µM, as seen in Figure 4.15, 

suggesting that 4.6 can be used as a targeting ligand without inducing cytotoxicity. 
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Figure 4.15: Cell viability of H292 cells incubated with 4.6 using an MTS assay. St = 30 µM staurosporine positive 
control 

 

4.3.4 Functionalisation of C11Pc-PEG-AuNPs with 2-aminoethylfolic 

acid 

4.6 provides the opportunity to now only conjugate through the γ-acid as the reactivity 

of the two termini are dramatically different. The presence of the free amine on 4.6 allows 

for its direct conjugation to HS-PEG-COOH. Due to the free carboxylic acid still present 

on 4.6, the carboxylic acid terminus of HS-PEG-COOH was first activated with 

DCC/NHS/triethylamine to form an NHS ester, then the coupling agents removed to 

prevent activation of the carbonyl on 4.6. After activation, 4.6 was added to the PEG-

NHS ester in DMSO and stirred overnight. The low solubility of 4.6 in non-polar solvents 

allowed for the retrieval of the product by addition of diethyl ether, and any remaining 

DMSO was removed with multiple washes of diethyl ether. This 4.6-PEG (4.29) was used 

to form 4.6-C11Pc-PEG-AuNPs (4.30) in a 1:1 ratio with C11Pc. The synthesis was 

completed in a THF/H2O mix and purified as described in section 2.3.2.1. The resulting 

nanocarriers were analysed by UV-vis spectroscopy, with the spectrum shown in Figure 

4.16. The UV-vis spectrum shows the characteristic double peak of C11Pc, and the lack 

of surface plasmon resonance band confirms the gold core of these nanoconjugates is 

below 5 nm in size, as described in section 2.3.2.1.98,99 Unfortunately, as folic acid absorbs 

strongly at 280 nm, and at this wavelength the absorbance from the AuNPs is strong, this 

UV-vis spectrum cannot be used to estimate the concentration of folic acid on the 

nanocarriers. 
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Figure 4.16: UV-vis spectrum of 4.30 in PBS 

 

4.3.5 Singlet oxygen production 

The ability of 4.30 to produce singlet oxygen was tested using the singlet oxygen probe 

ABMA in PBS, as described in section 2.3.2.3. Upon irradiation, these nanocarriers 

showed no singlet oxygen production over 30 minutes, as shown in Figure 4.17a. This 

is perhaps not surprising as folic acid is known to be an antioxidant100 and to show the 

ability to quench singlet oxygen.101,102 It is possible that the folic acid is quenching the 

singlet oxygen that is produced before it has a chance to react with ABMA due to a much 

closer proximity to the phthalocyanine, with the folate reaction being intramolecular and 

the ABMA photobleaching intermolecular. However, many groups have reported the use 

of folic acid as a targeting ligand for photosensitisers, and so the ratio of PEG:4.29 was 

varied to determine if there was an optimum point at which this antioxidant/quenching 

effect could be overcome but the targeting ability of the folic acid maintained. 4.6-C11Pc-

PEG-AuNPs were synthesised with ratios of PEG:4.29 of 75:25 (4.31), 90:10 (4.32) and 

95:5 (4.33). Singlet oxygen production studies were completed using ABMA on each of 

these 4.6-conjugated nanocarrier systems with no significant singlet oxygen production 

observed for any ratio PEG:4.29 (Figure 4.17b). 
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Figure 4.17: a) singlet oxygen production of 4.30 (pink), PEG-AuNPs (black) and C11Pc-PEG-AuNPs (blue). b) 
singlet oxygen production of, 4.31 (blue), 4.32 (pink) and 4.33 (green). All AuNPs were assessed in PBS at 1 µM 
C11Pc and 1 µM ABMA 

 

4.3.6 Towards a cathepsin B cleavable linker 

To overcome the lack of singlet oxygen production, the cathepsin B cleavable linker Val-

Cit-PABA, described in section 4.1.6, can be employed. This allows for the cleavage of 

the folic acid from the nanoconjugates post cellular internalisation, with the aim of 

‘switching on’ the activity of the C11Pc-PEG-AuNPs once delivered to the target tumour 

cells. This cleavable sequence can be built by solid phase peptide synthesis, but to attach 

4.6 to the solid phase a linker is required that will link two amines. For this, glutaric acid 

(4.34, Figure 4.18) was employed. 

 

Figure 4.18: The structure of glutaric acid (4.34) 

 

4.3.6.1 Development of an amine cross-linker for the solid phase 

4.34 has been used as a linker in solution phase chemistry, often in excess to encourage 

mono-substitution, before the second component is added to the solution.103,104 

Disuccinimidyl glutarate has also been employed in high excess in solution to allow the 

addition of a glutaric linker between peptides, forming amide bonds at each terminus of 

the glutaric acid.105 Examples of more controlled substitution exist using glutaric 

anhydride (4.35) and various coupling agents or bases to form esters.106,107 The use of 4.35 

means that only the mono-ester can be produced and prevents the formation of di-
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substituted glutaric acid. While glutaric spacers are used readily in solution phase 

chemistry, there are few examples of its use on the solid phase.  

On the solid phase, three synthetic pathways for the addition of a glutaric acid (4.34) 

spacer have been reported with increasing complexity. The first method involves the 

addition of 4.35 and N-methylmorpholine and results in the addition of 4.34 through an 

amide bond to the resin-bound peptide chain.108 A second report uses mono-allyl 

protected glutaric acid for the addition to the solid phase, followed by an allyl ester 

deprotection using Pd(PPh3)4 and phenylsilane.109 The third report involves the ring 

opening of a glutaric anhydride derivative with Fmoc-hydrazine to yield 5-(N’-Fmoc-

hydrazyl)-5-oxo-3-pentanoic acids.110 These can then be Fmoc-deprotected leaving a 

hydrazine, but this technique leaves a free amine upon deprotection and is not suitable 

for reversing the reactivity on the solid phase. 

In this thesis, we developed a fourth method for the addition of 4.34 to the solid phase. 

4.35 reacts with NHS under reflux to form a mono-NHS ester, 5-(2,5-dioxopyrrolidin-1-

yl)oxy-5-oxopentanoic acid (4.36, Scheme 4.7). Amines are highly reactive towards NHS 

esters, and the formation of a mono-NHS ester meant that there was no cross-linking of 

glutaric acid between two peptides on the solid phase. This synthetic pathway was 

followed as the activation of 4.35 could be confirmed and the high reactivity of the NHS-

ester meant a highly efficient conjugation occurs. This was chosen over other protected 

glutaric acid residues due to ease of synthesis as no deprotection step was required. The 

synthesis of 4.36 was confirmed by 1H-NMR. 4.35 shows a triplet at 2.75 ppm with an 

integration of four, suggesting the presence of four hydrogens, and a multiplet at 2.03 

ppm with an integration of two, suggesting the presence of two hydrogens. NHS shows 

a singlet at 2.79 ppm with an integration of four. The resulting 4.36 showed a singlet at 

2.82 ppm (4H) corresponding to the NHS protons (3’-CH2, 4’-CH2, Scheme 4.7), a triplet 

at 2.71 ppm (2H) corresponding to the protons on the α-carbon to the NHS-ester (4-

CH2), a triplet at 2.50 ppm (2H) corresponding to the protons on the α-carbon to the 

carboxylic acid (2-CH2), and a multiplet at 2.04 ppm (2H) corresponding to the central 

carbon β to both moieties (3-CH2). For all syntheses using 4.36, a crude mixture was 

utilised as none of the starting materials were able to react with the free amine, and since 

the reagents are used in such high excess for solid phase peptide synthesis, a small amount 

of impurities will not affect the final product. 4.35 also contains a small amount of the 

hydrolysis product 4.34, notable on the 1H-NMR, but this cannot spontaneously react 
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with a free amine so does not present a concern for further use of the crude product 

mixture. 

 

Scheme 4.7: The synthesis of 5-(2,5-dioxopyrrolidin-1-yl)oxy-5-oxopentanoic acid from glutaric anhydride 

 

Addition of 4.36 to the free N-terminus of lysine on the solid phase allows for the 

efficient addition of the linker with the assurance that only one end of the linker will react 

with the solid phase. 4.36 was simply dissolved in DMF and mixed with the resin 

functionalised with lysine. This reaction was allowed to proceed overnight to ensure a 

high level of conjugation, and the addition of the NHS-ester provides no concerns for 

further reactions to produce unwanted byproducts. The addition of glutaric acid was 

assessed using malachite green oxalate after washing the resin with methanol. Malachite 

green oxalate (0.25% w/v in EtOH) and a single drop of trimethylamine can be mixed 

with the solid phase resin for three minutes, and if the resin possesses a free carboxylic 

acid, the malachite green will form a salt with the deprotonated acid. Washing of the resin 

with methanol removes excess dye and leaves a green resin if a carboxylic acid is 

present.111 This was trialled with glutaric acid functionalised resin, which turned bright 

green on addition of malachite green. Rink amide MBHA resin and resin functionalised 

with lysine with the amine terminus free were tested as controls. Both these controls 

resulted in a colourless resin after washing, so malachite green oxalate was used 

throughout the rest of this chapter to routinely check for the presence of a carboxylic 

acid on the solid phase resin.  

Once the coupling of the 4.36 to lysine was confirmed, 4.6 could be conjugated on to 

this growing peptide through its amine terminus. However, as there is still a free 

carboxylic acid on 4.6, normal coupling conditions of HATU/DIPEA could not be 

utilised as this could lead to chains of polymerised 4.6. Instead, the terminal carboxylic 

acid on the resin was activated by reaction with EDC/NHS, catalysed by DIPEA.112 The 

reaction was left to proceed for two hours, then the excess EDC/NHS was washed away 

and 4.6 added to the solid phase in DMSO and shaken overnight. Upon cleavage from 

the resin in 95:2.5:2.5 TFA:TIPS:H2O, the resulting glutaric linked peptide (4.41, Scheme 
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4.8), was obtained. The synthesis of this peptide was confirmed by high resolution IT-

ToF mass spectrometry, with an m/z of 382.1554 observed, corresponding to the mass 

of a doubly charged potassium adduct of the peptide. 

 

Scheme 4.8: The synthesis of 4.41 on the solid phase 

 

4.3.6.2 Employment of 4.36 to synthesise a cathepsin B cleavable folate 

linker 

Once the ability to use 4.36 to reverse the reactivity of the solid phase was confirmed, the 

cleavable sequence could be built. Rink amide MBHA resin was used to build the 

cleavable sequence, with lysine added to the C-terminus of the sequence to provide an 

amine side chain for conjugation to PEG. Once the peptide V-Cit-PABA-K (4.42) was 

built on the resin, 4.36 was reacted with the N-terminus of valine, allowing the addition 

of 4.6 as shown for peptide 4.41, to give peptide CatB cleavable peptide 4.43 (Figure 

4.19). While a small amount of peptide 4.43 was obtained in this synthesis, analysis by 

analytical RP-HPLC showed a large number of products upon the cleavage of this 

peptide, and peptide 4.43 was not the major product.   
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Figure 4.19: Structure of 4.6 cleavable sequence (4.43), showing 4.6 (black), glutaric linker (green), cleavable 

sequence (pink), PABA spacer (blue) and terminal lysine (purple) for coupling the peptide onto nanoparticles  

 

To assess whether the peptide was being degraded under the harsh cleavage conditions 

used for peptide cleavage from rink amide resin (95:2.5:2.5 TFA:TIPS:H2O, 3 h), peptide 

4.43 was synthesised on rink amide MBHA resin, then the resulting resin split into three 

peptide columns. These were treated with three different cleavage cocktails to determine 

the effect of the TFA concentration on the resulting peptide. One column was treated 

with 95:2.5:2.5 TFA:TIPS:H2O, the next with 65:30:2.5:2.5 TFA:DCM:TIPS:H2O and the 

third with 47:48:2.5:2.5 TFA:DCM:TIPS:H2O. Each cleavage was allowed to proceed for 

3 hours, before the solvent was removed under vacuum and the resulting peptide washed 

with diethyl ether. The analytical HPLC traces obtained for each of these cleavage 

cocktails were near identical with a lot of peaks present in the trace, suggesting that the 

TFA concentration in the cleavage cocktail is not responsible for the mixture of products.  

While the addition of 4.36 onto lysine on resin has been shown to be successful, it is 

possible that the differing steric bulk of valine could be less favourable for the addition 

of 4.36, resulting in a lower conjugation efficiency and therefore a less clean reaction. To 

assess the versatility of 4.36 addition to amino acids on resin, a screen of amino acids was 

completed. A variety of amino acids were conjugated onto rink amide MBHA resin, and 

then coupled to 4.36 overnight. Valine provides a relatively high steric bulk near the N-

terminus compared to most other amino acids. To assess whether this had any effect on 

4.36 coupling, valine, leucine and alanine were tested. Leucine differs from valine due to 

a CH2, which moves the steric bulk further away from the N-terminus amine, so if steric 

bulk is influencing this addition, more efficient coupling should be observed for leucine 

than valine. Alanine has the smallest side chain of the amino acids, with its side chain a 

single methyl group, and therefore has the lowest steric bulk. Again, if steric bulk is 

affecting this addition, alanine should display efficient conjugation if additions to leucine 

and valine are sterically hindered. 
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As lysine has been shown to conjugate to 4.36 on resin, arginine was also screened to 

determine the versatility of this coupling on aliphatic, basic residues. Phenylalanine and 

tryptophan were assessed to determine whether aromatic side chains had any influence 

on the conjugation and glutamic acid was tested to see the effect of acidic side chains. 

After conjugation, each resin was tested with malachite green for the presence of a 

carboxylic acid and therefore for the addition of 4.36. As seen in Figure 4.20, each amino 

acid-4.36 combination showed a positive result in the Malachite green test for the 

presence of a carboxylic acid.  

 

Figure 4.20: Malachite green test for coupling of 4.36 on the solid phase to appropriately protected (L-R) arginine, 
tryptophan, phenylalanine, glutamic acid, valine, lysine, alanine and leucine. All reactions were completed on rink 
amide MBHA resin 

 

The resulting peptides were cleaved from the resin using 95:2.5:2.5 TFA:TIPS:H2O, then 

crude 1H-NMR of each peptide collected. For each amino acid screened in this study, the 

crude 1H-NMR showed the presence of the desired peptide. For each peptide there was 

no evidence of unreacted amino acid in the 1H-NMR so it can be concluded that these 

couplings proceeded to near completion, as shown in Figure 4.21 for Val-4.36 (4.44), 

with the assignment provided to confirm its synthesis. Interestingly, in this spectrum the 

diastereotopic methyl groups on the valine residue appear as two overlapping doublets of 

3H instead of the expected doublet of 6H, as seen at 0.97 and 0.96 ppm on the insert of 

Figure 4.21. Further 2D NMR spectra confirmed that this unexpected splitting pattern 

was indeed due to these methyl groups and that they are in some way inequivalent in this 

molecule, possibly due to hindered rotation. Due to the small size of these dipeptides, 

they have very low UV absorbance so their purity was hard to assess by other means. This 

result both highlighted the applicability of the use of 4.36 to reverse the reactivity on the 

solid phase and confirmed the reactivity of valine towards 4.36, making a lack of reactivity 

at this point in the sequence of 4.43 a very unlikely reason for the impure product.  
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Figure 4.21: Structure and crude 1H NMR of 4.44. Inserts show magnifications of CH3 (1) and CH (3) of valine, 
showing that there is no smaller peak of unconjugated valine present, suggesting this reaction has gone to 
completion 

 

The activation of the resin-bound 4.36 by EDC/NHS was investigated to determine 

whether the initial conditions of five equivalents of coupling agent left to react for two 

hours was ideal. For this, resin functionalised with lysine-4.36 was split into four reaction 

vessels. Two were treated with five equivalents of EDC/NHS/DIPEA and the other two 

with ten equivalents. Of these, one of each equivalence was allowed to proceed for two 

hours and the other for three. After this, the resin was washed with DMF, then 1.2 

equivalents of 4.6 in DMSO was immediately added to each resin and shaken overnight. 

The resulting peptides were cleaved from the resin in 95:2.5:2.5 TFA:TIPS:H2O and their 

purity assessed by analytical HPLC, with their traces shown in Figure 4.22. Two major 

peaks were seen in each spectrum, and each peak was isolated and the mass determined 

by MALD-ToF. The first peak (tR = 10.0 mins) shows a m/z of 838, corresponding to 

the [M+Na]+ of peptide 4.41 with the Boc protecting group still present on the lysine 

residue. The second peak (tR = 10.5 mins) shows a m/z of 724, corresponding to the 

[M+H]+ peak of peptide 4.41. Most notably here, there does not appear to be an increase 

in side products upon longer EDC/NHS activation times, or with higher equivalents, so 

increasing the reaction time may allow for more efficient 4.6 coupling. 
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Figure 4.22: HPLC traces of peptide 4.41 following synthesis using different equivalents of EDC/NHS/DIPEA and 
different reaction times, recorded at 214 nm: 5 eq 2 h (blue), 5 eq 3 h (red), 10 eq 2 h (green), 10 eq 3 h (pink). 
Spectra are offset by 1.25 minutes to allow for easier comparison 

 

To determine the efficiency of the synthesis of the cleavable sequence, the peptide was 

cleaved from the resin after the automatic synthesis of V-Cit-PABA-K (4.42) and after 

the addition of the 4.36 linker. The analytical RP-HPLC of the resulting peptide after the 

automated synthesis showed multiple peaks (Figure 4.23) suggesting the synthesis of 

4.42 did not proceed as expected. To increase the yield of the desired peptide 4.43, the 

synthesis of 4.42 must be improved to result in a single product after the automatic 

peptide synthesis. It is possible that the addition of spacers such as β-alanine or the use 

of a different resin may improve the purity of the resulting peptide. For example, 

NovaPEG rink amide resin could be used in the place of rink amide MBHA resin. 

NovaPEG resin swells more than MBHA, leading to more space between the growing 

peptide chains. Furthermore, NovaPEG resin has been shown to increase the yield of 

hydrophobic peptides and can increase the efficiency of the synthesis of difficult peptide 

sequences. A low loading rink amide resin could also be trialled to space out the growing 

peptide chains and to allow for more efficient couplings.
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Figure 4.23: HPLC trace of cleavable sequence 4.42, recorded at 214 nm 

 

4.4 Conclusions and future work 

Folic acid has been widely investigated as a targeting agent for AuNP-based therapeutics, 

but often very little consideration is taken towards the selectivity of the conjugation of 

folic acid to these AuNPs. Folic acid has been shown to only be active towards the FRα 

when conjugated to the nanocarrier through the γ-carboxylic acid. Most reports of folic 

acid addition use amide bond formation chemistry such as DCC/NHS which are not 

selective towards the γ-carbonyl. While reports have shown that these conjugations occur 

in a ca. 70:30 ratio in favour of the γ-conjugate, there is inactive α-conjugated folic acid 

present on these systems. This ratio varies from batch to batch so the number of active 

targeting moieties is not consistent between batches, raising variability in the delivered 

dose. 

Interestingly, both cooling and heating folate coupling reactions has been reported to 

selectively produce the γ-conjugate. Heating folic acid to 30 °C upon the solid phase with 

PyBOP as a coupling agent and cooling folic acid to 0 °C in solution with TBTU and 

PyBOP coupling agents were trialled in this thesis. These reaction conditions, however, 

all resulted in a mixture of the α- and γ- conjugates, as observed by analytical RP-HPLC. 

In this thesis, the chemical manipulation of folic acid to produce 2-aminoethylfolic acid 

(4.6) has been reported for the selective conjugation of folic acid. The synthesis of 4.6 

results in the addition of an amine functionality on the γ-carbonyl. This change in 

reactivity means that folic acid can be selectively conjugated through the γ-conjugate.  
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Once the formation of the γ-conjugate was confirmed and 4.6 had been confirmed to be 

non-toxic in H292 cells below 25 μM, the folic acid derivative was conjugated onto PEG 

for use as a targeting agent for C11Pc-PEG-AuNPs. The synthesised AuNPs, 4.30, were 

tested for singlet oxygen production, with 4.6 shown to quench the singlet oxygen 

production of these nanoconjugates entirely. While this may appear to be a disappointing 

result, this allows for the development of a nanoconjugate where singlet oxygen 

production is quenched until they are internalised into the target cells, adding another 

method of selectivity. Cathepsin B is a protease overexpressed in NSCLC, and the 

addition of a cathepsin B cleavable sequence between the AuNPs and the folate targeting 

moiety could lead to the ‘switch on’ of singlet oxygen production upon internalisation.  

To conjugate 4.6 to the solid phase, 5-(2,5-dioxopyrrolidin-1-yl)oxy-5-oxopentanoic acid 

(4.36) was used for the first time to reverse the reactivity of the solid phase, adding a 

terminal carboxylic acid. This could be activated with an NHS-ester before the addition 

of 4.6 to form a solely γ-conjugated folate ligand. The synthesis of a cathepsin B cleavable 

folate peptide on the solid phase, 4.43, was partially successful, with the peptide isolated, 

but the desired sequence was not the major product and the synthesis resulted in a mixture 

of products. Investigations into why this peptide was not produced in a high yield showed 

that the addition of 4.36 on the resin was efficient and could be applied to a wide range 

of amino acids. Variations in the acid content of the cleavage cocktail showed that the 

mixture of products was not due to peptide degradation on exposure to high 

concentrations of TFA. It was found that the synthesis of the cleavable sequence itself, 

4.42, was not clean and therefore steps towards the efficient synthesis of this sequence 

are needed to produce a higher yield of 4.43. Cleavage after each amino acid addition in 

this sequence would allow for the determination of which additions are ineffective and 

therefore leading to an impure product. Once the synthesis of the cleavable sequence has 

been optimised, the addition of 4.36 and 4.6 can be completed.  

Once synthesised, the cleavage of 4.43 by cathepsin B both by itself and upon conjugation 

onto AuNPs must be assessed to ensure that this sequence would cleave upon cell 

internalisation. Synthesis of AuNPs functionalised with the cleavage product, Lys-PABA, 

would confirm that these AuNPs can produce singlet oxygen upon folate cleavage and 

therefore that this protease cleavable sequence can lead to an additional targeting effect 

for the photodynamic therapy of FRα expressing NSCLC. 
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5.1 General procedures 

5.1.1 Materials and solvents 

All chemicals were purchased from Sigma Aldrich, Fisher Scientific or Fluorochem unless 

otherwise specified. Fmoc-amino acids and coupling agents were purchased from 

Novabiochem, Fluorochem or AGTC Bioproducts. Anhydrous solvents were purchased 

from Sigma Aldrich, used as purchased and assumed to conform to specification. α-Thio-ω-

carboxy polyethylene glycol (3 kDa, PEG) was purchased from Iris Biotech GmbH 

(Germany). Vivaspin 500 (100 kDa MWCO, PES membrane) centrifuge columns were 

purchased from Sartorius Stedim Biotech (UK). Zeba spin desalting columns (7 kDa MWCO, 

0.5 mL) were purchased from Fisher Scientific. Antibodies and secondary antibodies were 

purchased from Abcam or R&D Systems. White-walled clear-bottom 96 well plates for 

phototoxicity assays were purchased from Fisher Scientific. MTS was purchased from 

Promega. Pre-made NuPAGE™ 4-12% Bis-Tris Gels were purchased from Invitrogen. Cell 

lines were purchased from ATCC. 

 

5.1.2 Instrumental techniques 

1H-, 13C- and 19F-NMR were collected using a Bruker spectrometer operating at 400 MHz 

(1H), 100 MHz (13C) or 376 MHz (19F) using the specified deuterated solvent. Chemical shifts 

were recorded in ppm and were referenced to residual solvent peak of MeOH (3.31 ppm), 

DMSO (2.50 ppm), or chloroform (7.26 ppm). Multiplicities in the NMR spectra are 

described as s = singlet, d = doublet, t = triplet, q = quartet, m = multiplet, and combinations 

thereof. Coupling constants are reported in Hz. 

Analytical RP-HPLC was performed using an Agilent 1200 HPLC, fitted with an Agilent 

eclipse XDB-C18 column (4.6 x 150 mm, 5 μm) and a flow rate of 1 mL/min. Spectra were 

run with a solvent gradient of 0-100% B over 20 min. Solvent A: H2O, 0.05% TFA, solvent 

B: MeOH, 0.05% TFA. Detection wavelengths were 214 nm and 254 nm. Semi-preparative 

RP-HPLC was performed using an Agilent 1200 HPLC, fitted with an Agilent eclipse XDB-

C18 column (9.4 x 250 mm, 5 μm) and a flow rate of 3 mL/min. Spectra were run with a 

solvent gradient of 0-100% B over 20 min.  Solvents: A = H2O, 0.05% TFA, B: MeOH, 

0.05% TFA. Detection wavelengths were 214 nm and 254 nm. Preparative RP-HPLC was 
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performed using an Agilent 1200 HPLC, fitted with an Agilent eclipse XDB-C18 column 

(21.2 x 150 mm, 5 μm) and a flow rate 20 mL/min. Spectra were run with a solvent gradient 

of 0-100% B over 15 min.  Solvent A: 95% H2O, 5% MeOH, 0.05% TFA, solvent B: 95% 

MeOH, 5% H2O, 0.05% TFA. Detection wavelengths were 214 nm and 254 nm. 

MALDI was performed on a Kratos Analytical Axima-CFR MALDI-ToF, using α-cyano-4-

hydroxycinnamic acid (α-CHCA) as the matrix. High resolution masses were recorded at the 

John Innes Centre, Norwich Research Park, using an ESI Shimadzu ion-trap ToF mass 

spectrometer with Shimadzu Prominence/Nexera UHPLC system, providing a solvent flow 

of 0.4 mL/min 50% MeOH, 50% H2O. 

UV-vis spectra were recorded on an Agilent Cary 60 spectrometer, using quartz cuvettes with 

1 cm pathlength. Fluorescence spectra were recorded on a Horiba Jobin Yvon Fluorolog 

spectrometer, using quartz cuvettes with a 1 cm pathlength. Infrared spectra were recorded 

on a PerkinElmer BX with an ATR attachment. 

Centrifugation was performed in either an Eppendorf 5415D or, for temperature controlled 

centrifugation, a HERMLE Z 326 K centrifuge. 

Flow cytometry was performed using a Beckman Coulter CytoFLEX, with a flow rate of 10 

μL/min. 

Automated peptide synthesis was performed using a Biotage Syro I. 

Irradiation of samples for singlet oxygen and phototoxicity studies was performed using a 

JDS Uniphase 10 mW 633 nm HeNe laser (1125P) fitted with biconvex diverging lens. 

UV irradiation was performed using a UVP Spot Lite SCL2-6 UV wand. 

Fluorescence microscopy was performed using an inverted Leica DMIL fluorescent 

microscope with an associated Leica DFC420 camera at 10x magnification. 

Cell viability assays were analysed using a BMG Labtech PolarStar Optima microplate reader 

at 492 nm. Microplate fluorescence spectral scans were recorded on a CLARIOstar (BMG 

Labtech) microplate reader. 

SDS-PAGE was performed in an Invitrogen Novex mini-cell chamber and analysed for 

fluorescence in an ImageQuant LAS 4000 imager. 
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5.1.3 Solid phase peptide synthesis 

All peptides synthesised in this thesis were synthesised via Fmoc-solid phase peptide 

synthesis. Rink amide MBHA resin was swelled for 30 minutes in DMF.  

For manual peptide synthesis the resin was deprotected with 40% piperidine in DMF for ten 

minutes, then 20% piperidine in DMF for five minutes twice, followed by washing the resin 

five times with DMF. Fmoc-protected amino acids (5 eq) were coupled using HATU (5 eq) 

and DIPEA (10 eq) in DMF and shaken for one hour on the resin. Each peptide coupling 

was repeated and the resin washed five times with DMF. After each peptide coupling, the 

growing peptide chain was deprotected with piperidine.  

For automated peptide synthesis the resin was deprotected with 20% piperidine in DMF for 

20 minutes twice, followed by washing the resin three times with DMF. The coupling of 

Fmoc-protected amino acids (4 eq) was completed with HOBt/HBTU (4 eq) and DIPEA (8 

eq) and shaken for 45 minutes. Each peptide coupling was repeated, then the resin washed 

three times with DMF. After each peptide coupling, the growing peptide chain was 

deprotected with piperidine. 

Once the peptide was completed, the resin was washed six times with methanol. Cleavage of 

the peptide from the resin was completed in 95:2.5:2.5 TFA:TIPS:H2O with shaking for three 

hours. The resulting solution was evaporated to dryness and washed with cold ether. Peptides 

were purified by preparative HPLC and their purity confirmed by analytical HPLC. 

 
 

5.1.4 Cell culture, passage and count 

A549 and H292 cells were cultured in phenol red free RPMI 1640 and HEK293 cells were 

cultured in phenol red free DMEM/F12. They were routinely subcultured 1 in 12 every 4 

days. The culture medium was removed and the cells were washed with PBS (5 mL). TrypLE 

express (2 mL) was added to the flask and cells were incubated at 37 °C, 5% CO2 until they 

lifted away from the culture flask (1 minute for HEK293, 5 minutes for A549 and H292). 

Media (10 mL) was added to the flask to deactivate the TrypLE express, then all but 1 mL of 

this cell suspension removed from the flask. Media (9 mL) was added to the flask and the 

cells returned to the incubator. 
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To seed for experiments, cells were counted in a haemocytometer. Cells (20 μL) were mixed 

with PBS (20 μL) then pipetted onto the haemocytometer (20 μL). Cells within a 5 by 4 grid 

were counted with a hand tally counter and repeated three times. The average cell count was 

multiplied by 104. Cells were diluted in media to reach the desired cell count, then seeded into 

cell culture treated 96 well plates (100 μL). 

 

5.1.5 Flow cytometry 

A549, H292 or HEK293 cells (1x106) were centrifuged at 350 g, 4 °C for 5 minutes and the 

supernatant removed. Anti-EGFR or anti-FRα antibody (5 µL, 1 mg/mL) was diluted in PBS 

0.5% BSA (500 µL). The cell pellet was resuspended in this antibody solution (100 µL), then 

the cells incubated on ice for one hour. A second tube of cells was incubated with PBS 0.5% 

BSA (100 µL) on ice for one hour. PBS 0.5% BSA (1 mL) was added to each tube and then 

centrifuged at 350 g, 4 °C for 5 minutes. The supernatant was removed, the pellet 

resuspended in FITC-goat anti-mouse secondary antibody (1 µL, 2 mg/mL in 100 µL PBS 

0.5% BSA) and the cells incubated on ice for one hour in the dark. PBS 0.5% BSA (1 mL) 

was added to each tube then centrifuged 350 g, 4 °C for 5 minutes. The supernatant was 

removed and the pellet resuspended in PBS 0.5% BSA (300 µL) and transferred into a flow 

cytometry tube. Cells were analysed in a Beckman Coulter CytoFLEX flow cytometer. Live 

cells were gated and cells run at a flow rate of 10 μL/min with 10,000 events recorded. 

 

5.1.6 Preparation of buffers 

Phosphate buffered saline (PBS) was prepared by addition of NaCl (150 mM) and 

CaCl2.2H2O (100 µM) to 10 mM sodium phosphate buffer. 10 mM sodium phosphate buffer 

was prepared using stock solutions of NaH2PO4.2H2O (200 mM) and Na2HPO4.2H2O (200 

mM) in H2O, with the pH adjusted to 7.4. 

MES buffer was prepared by addition of Tween-20 (0.05%) to an aqueous solution of 2-(N-

morpholino)ethanesulphonic acid (50 mM), and the pH was adjusted to pH 5.5 . 

Sodium phosphate buffer was prepared by adjusting the pH of an aqueous solution of 

NaH2PO4.2H2O (0.1 mM) and Na2HPO4.2H2O (0.1 mM) to 8.0. 
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Triethanolamine buffer was prepared by adjusting the pH of an aqueous solution of 

triethanolamine (0.2 M) to 8.2.  

Ethanolamine buffer was prepared by adjusting the pH of an aqueous solution of 

ethanolamine (0.1 M) to 8.2. 

Histidine acetate buffer was prepared by adjusting the pH of an aqueous solution of L-

histidine (20 mM) to 5.5 with acetic acid. 

Prior to use, all buffers were filtered through syringe filters (0.45 μm) and stored at 4 °C. 

 

5.2 Design, synthesis and biological evaluation of peptide directed 

phthalocyanine-gold nanocarriers 

5.2.1 Synthesis of FITC-βAAEYLRK (2.16) 

2.16 was synthesised following the general procedure described in section 5.1.3. Once the 

peptide was built, FITC was coupled onto the free N-terminus. FITC (1.2 eq) was dissolved 

in 12:7:5 pyridine:DMF:DCM, added to the resin and shaken overnight in the dark. Excess 

FITC was washed off the resin by washing six times with DMF, then the resin was washed 

six times with methanol and the peptide cleaved from the resin and purified as described in 

section 5.1.3 to collect the peptide as a yellow solid (54 mg, 43.6 μmol, 84%). RP-HPLC: tR 

= 13.90 min. MALDI-ToF ([M+H]+): C59H75N13O15S calculated 1238.52, found 1238.50. 

HRMS (ESI-): calculated 1236.5148, found 1236.4804. 

 

5.2.2 Synthesis of FITC-βALARLLTK (2.17) 

2.17 was synthesised following the general procedure described in section 5.1.3, then the 

peptide was FITC-tagged as described in section 5.2.1. After purification by preparative-

RPHPLC the peptide was collected as a yellow solid (30 mg, 23.6 μmol, 45%). RP-HPLC: tR 

= 15.48 min. MALDI-ToF ([M+H]+): C61H88N14O14S calculated 1273.63, found 1273.29. 

HRMS (IT-ToF) ([M+2H]2+): calculated 673.3235, found 637.3260. 
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5.2.3 Fluorescence microscopy for peptide binding determination 

A549 cells were seeded at 1x105 cells/ mL, 100 µL per well in a 96 well plate and incubated 

overnight at 37 °C, 5% CO2. 2.16 (1 μL, 10 mM), 2.17 (1 μL, 10 mM), fluorescein (1 μL, 10 

mM) in DMSO were added to separate wells alongside a control well of DMSO (100 μL). 

These cells were incubated for one hour at 37 °C, 5% CO2, then washed three times with 

cold PBS. The cells were imaged using a Lieca fluorescent microscope at x10 magnification. 

 

5.2.4 Flow cytometry 

A549 and HEK293 cells were analysed for EGFR expression as described in section 5.1.5, 

using an anti-EGFR antibody. 

 

5.2.5 Assessment of peptide cytotoxicity 

A549 or HEK293 cells were seeded in 96 well plated (100 μL, 1x105 cells/ mL) then 

incubated overnight at 37 °C, 5% CO2. 2.16 or 2.17 (10 mM in DMSO) were diluted in a 

serial dilution then added to wells in triplicate (1 μL). Cells were incubated for 72 hours at 37 

°C, 5% CO2 before the media was removed and fresh media added to each well (100 μL). 

MTS (10 μL) was added to each well then the cells incubated for three hours. The absorbance 

was recorded at 492 nm and corrected for background absorbance by subtracting the 

absorbance of media treated with MTS. Cell viability was calculated as a percentage of non-

treated cells. 

 

5.2.6 Synthesis of FITC-βARALELK (2.26) 

2.26 was synthesised following the general procedure described in section 5.1.3, then the 

peptide was FITC-tagged as described in section 5.2.1. After purification by preparative 

RPHPLC the peptide was collected as a yellow solid (35 mg, 29.5 μmol, 57%). Analytical 

HPLC: tR = 14.20 min.  MALDI-ToF: ([M+H]+) C56H77N13O14S calculated 1188.54, found 

1188.50. HRMS (IT-ToF) ([M+3H]3+): calculated 396.8551, found 396.8570. 
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5.2.7 Synthesis of HS-PEG-peptides (2.27 and 2.28) 

α-Thio-ω-carboxy-poly(ethylene glycol) (HS-PEG-COOH) (7.5 mg, 2.44 μmol) was mixed 

with HATU (1.1 mg, 2.93 μmol, 1.2 eq) and DIPEA (0.8 μL, 4.88 μmol, 2 eq) in DMF (300 

μL). 2.16 (4.53 mg, 3.66 μmol, 1.5 eq) or 2.17 (4.66 mg, 3.66 μmol, 1.5 eq) in DMF (50 μL) 

was added to the solution and stirred overnight. The solution was evaporated to dryness and 

the crude peptide-PEG carried forward for nanoparticle synthesis. 

 

5.2.8 Synthesis of peptide-C11Pc-PEG-AuNPs (2.29 and 2.30) 

C11Pc (2.4 mg, 0.94 μmol) was dissolved in anhydrous THF (1 mL) and stirred in the dark. 

2.27 (5.24 mg, 1.22 μmol) or 2.28 (5.30 mg, 1.22 μmol) was dissolved in anhydrous THF (1 

mL) and added to the solution alongside PEG (3.75 mg, 1.22 μmol) in anhydrous THF (1 

mL). HAuCl4.3H2O (1.2 mg, 3.05 μmol) was dissolved in anhydrous THF (1.2 mL) and added 

to the solution. Sodium borohydride (1.5 mg, 39.65 μmol) was dissolved in dH2O (1.2 mL) 

and added under vigorous stirring. This solution was stirred for ca. 17 hrs in the dark. THF 

(5.4 mL) was added to the solution, then the solution was centrifuged at 1,400 rpm for 2 

minutes. The supernatant was removed and evaporated to dryness. The nanoparticles were 

resuspended in PBS (2 mL) then centrifuged at 8,000 rpm for 20 minutes. The resulting 

supernatant was filtered, then purified through Vivaspin 500 columns, centrifuging at 8,000 

rpm for 10 minutes, washing with PBS and repeating the purification. The resulting pellet 

was resuspended in PBS or RPMI 1640 without phenol red (2 mL) and stored at 4 ˚C in the 

dark. These peptide-C11Pc-PEG-AuNPs were characterised by UV-vis between 200-800 

nm. The fluorescence excitation spectrum of C11Pc was recorded between 550-750 nm with 

an emission wavelength of 780 nm. The emission spectrum of C11Pc was recorded between 

653-850 nm with an excitation wavelength of 633 nm. The excitation spectrum of FITC was 

recorded between 400-520 nm with an emission wavelength of 525 nm. The emission 

spectrum of FITC was recorded between 500-650 nm with an excitation wavelength of 490 

nm. 

 

5.2.9 Synthesis of C11Pc-PEG-AuNPs 

This synthesis followed the procedure of Garcia Calavia et al.1  C11Pc (2.4 mg, 0.94 μmol) 

was dissolved in anhydrous THF (1 mL) and stirred in the dark. PEG (7.5 mg, 2.44 μmol) in 
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anhydrous THF (1 mL) was added to the solution, followed by HAuCl4.3H2O (1.2 mg, 3.05 

μmol) dissolved in anhydrous THF (1.2 mL). Sodium borohydride (1.5 mg, 39.65 μmol) was 

dissolved in dH2O (1.2 mL) and added under vigorous stirring. This solution was stirred for 

ca. 17 hrs in the dark. THF (5.4 mL) was added to the solution, then the solution centrifuged 

at 1,400 rpm for 2 minutes. The supernatant was removed and evaporated to dryness. The 

nanoparticles were resuspended in PBS or RPMI 1640 without phenol red (2 mL) then 

centrifuged at 8,000 rpm for 20 minutes. The resulting supernatant was filtered and stored at 

4 ˚C in the dark. These C11Pc-PEG-AuNPs were characterised by UV-vis between 200-800 

nm. The fluorescence excitation spectrum was recorded between 550-750 nm with an 

emission wavelength of 780 nm. The emission spectrum was recorded between 653-850 nm 

with an excitation wavelength of 633 nm. 

 

5.2.10 Synthesis of PEG-AuNPs 

PEG (15.2 mg, 5.1 µmol) was dissolved in dH2O (15 mL). HAuCl4.3H2O (1.2 mg, 3.0 µmol) 

was dissolved in anhydrous THF (1.2 mL) and stirred with the PEG solution for five minutes. 

Sodium borohydride (1.5 mg, 39.7 µmol) was dissolved in dH2O (0.5 mL) and added to the 

solution under rapid stirring. The solution was stirred for four hours at room temperature. 

Purification of these PEG-AuNPs was completed by centrifugation in Vivaspin 500 columns 

at 8,000 rpm for 10 minutes. The brown pellet was re-suspended in PBS buffer (10 mL), 

filtered through a syringe driven filter (0.22 µm) and stored at 4 °C. The UV-vis spectrum 

was recorded between 200-800 nm. 

 

5.2.11 Synthesis of 5-(3-(3-aminopropyl)thioureido)-2-(6-hydroxy-3-oxo-

3H-xanthen-9-yl) benzoic acid (2.34) 

 

This synthesis followed the method of Trévisiol et al. with modifications.2 FITC (6.00 mg, 

15.41 μmol) was dissolved in methanol (1 mL) alongside 1,3-diaminopropane (2.60 µL, 31.15 
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µmol) and stirred for three hours. The methanol was removed under vacuum and the 

resulting orange solid purified by preparative HPLC, giving the product as an orange powder 

(6.35 mg, 13.70 μmol, 89%). 1H-NMR (400 MHz, CD3OD): 8.22 (d, 2H, J = 1.8 Hz), 7.81 

(dd, 1H, J = 2.0 and 8.2 Hz), 7.25 (d, 1H, J = 8.2 Hz), 6.91 (d, 2H, J = 8.3 Hz), 6.86 (d, 2H, 

J = 1.6 Hz), 6.72 (d, 2H, J = 8.8 Hz), 3.80 (t, 2H, J = 6.6 Hz), 3.06 (t, 2H, J = 7.3 Hz), 2.02 

(tt, 2H, J = 7.0 and 7.0 Hz). RP-HPLC tR = 13.12 min. MALDI-ToF: ([M+H]+) C24H21N3O5S 

calculated 464.12, found 464.31. HRMS (IT-ToF) ([M+H]+): calculated 464.1275, found 

464.1284. 

 

5.2.12 Synthesis of FITC-PEG 

α-Thio-ω-carboxy-poly(ethylene glycol) (HS-PEG-COOH) (7.5 mg, 2.44 μmol) was mixed 

with HATU (1.4 mg, 3.68 μmol, 1.5 eq) and DIPEA (0.8 μL, 4.88 μmol, 2 eq) in DMF (100 

μL). 2.34 (1.3 mg, 2.80 μmol, 1.1 eq) in DMF (50 μL) was added to the solution and stirred 

overnight. The solution was evaporated to dryness and the crude peptide-PEG carried 

forward for nanoparticle synthesis. 

 

5.2.13 Synthesis of FITC-PEG-AuNPs (2.31) 

PEG (3.75 mg, 1.27 µmol) and FITC-PEG (4.47 mg, 1.27 µmol) were dissolved in dH2O (7.5 

mL). HAuCl4.3H2O (0.6 mg, 1.5 µmol) was dissolved in anhydrous THF (0.6 mL) and stirred 

with the PEG solution for five min. Sodium borohydride (0.75 mg, 19.9 µmol) was dissolved 

in dH2O (0.25 mL) and added to the solution under rapid stirring. The solution was stirred 

for four hours at room temperature. Purification of these FITC-PEG-AuNPs was completed 

by centrifugation in Vivaspin 500 columns at 8,000 rpm for 10 minutes. The pellet was re-

suspended in PBS buffer (4 mL), filtered through a syringe driven filter (0.22 µm) and stored 

at 4 °C. The UV-vis spectrum was recorded between 800-300 nm. 

 

5.2.14 Synthesis of FITC-C11Pc-PEG-AuNPs (2.33) 

C11Pc (2.4 mg, 0.94 μmol) was dissolved in anhydrous THF (1 mL) and stirred in the dark. 

FITC-PEG (4.29 mg, 1.22 μmol) was dissolved in anhydrous THF (1 mL) and added to the 

solution alongside PEG (3.75 mg, 1.22 μmol) in anhydrous THF (1 mL). HAuCl4.3H2O (1.2 
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mg, 3.05 μmol) was dissolved in anhydrous THF (1.2 mL) and added to the solution. Sodium 

borohydride (1.5 mg, 39.65 μmol) was dissolved in dH2O (1.2 mL) and added under vigorous 

stirring. This solution was stirred for ca. 17 hrs in the dark. THF (5.4 mL) was added to the 

solution, then the solution centrifuged at 1,400 rpm for 2 minutes. The supernatant was 

removed and evaporated to dryness. The nanoparticles were resuspended in PBS (2 mL) then 

centrifuged at 8,000 rpm for 20 minutes. The resulting supernatant was filtered, then purified 

through Vivaspin 500 columns, centrifuging at 8,000 rpm for 10 minutes, washing with PBS 

and repeating the purification. The resulting pellet was resuspended in PBS (2 mL) and stored 

at 4 ˚C in the dark. These FITC-C11Pc-PEG-AuNPs were characterised by UV-vis between 

200-800 nm.  

 

5.2.15 Singlet oxygen production 

2.29, 2.30, C11Pc-PEG-AuNPs or PEG-AuNPs in PBS or methanol (1 μM, 511 μL) were 

added to a quartz cuvette alongside ABMA (1 μL, 0.512 mM in MeOH). This cuvette was 

stoppered and irradiated with a 10 mW HeNe laser at 633 nm, with the laser placed 50 cm 

away. Every five minutes the fluorescence emission spectrum of ABMA was recorded 

between 390-600 nm, with an excitation wavelength of 380 nm. A control of PBS or 

methanol and ABMA (1 μL, 0.512 mM in MeOH) was also irradiated and the ABMA 

fluorescence emission spectrum recorded every five minutes. 

 

5.2.16 Optimised solvent system for peptide-nanoparticle synthesis 

HS-PEG-COOH (3.75 mg, 1.22 μmol) was mixed with HATU (4.63 mg, 1.22 μmol, 1 eq) 

and DIPEA (2.12 μL, 1.22 μmol, 1 eq) in DMF (100 μL), then stirred for five minutes. 2.16 

(1.51 mg, 1.22 μmol, 1 eq) in DMF (150 μL) was added to the solution and stirred for 15 

minutes. The solution was evaporated to dryness and the crude peptide-PEG carried forward 

for nanoparticle synthesis. 

C11Pc (2.4 mg, 0.94 μmol) was dissolved in anhydrous THF (1 mL) and stirred in the dark. 

2.27 (5.24 mg, 1.22 μmol) was dissolved in anhydrous DMF (1 mL) and added to the solution 

alongside PEG (3.75 mg, 1.22 μmol) in anhydrous THF (1 mL). HAuCl4.3H2O (1.2 mg, 3.05 

μmol) was dissolved in anhydrous THF (1.2 mL) and added to the solution. Sodium 

borohydride (1.5 mg, 39.65 μmol) was dissolved in dH2O (1.2 mL) and added under vigorous 
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stirring. This solution was stirred for ca. 17 hrs in the dark. THF (5.4 mL) was added to the 

solution, then the solution centrifuged at 1,400 rpm for 2 minutes. The supernatant was 

removed and evaporated to dryness. The nanoparticles were resuspended in PBS then 

centrifuged at 8,000 rpm for 20 minutes. The resulting supernatant was filtered, then purified 

through Vivaspin 500 columns, centrifuging at 8,000 rpm for 10 minutes, washing with PBS 

and repeating the purification. The resulting pellet was resuspended in PBS (1 mL) and stored 

at 4 ˚C in the dark. The resulting nanoparticles were characterised by UV-vis spectroscopy 

between 200-800 nm. 

 

5.2.17 Variation of coupling agent 

PEG (1.88 mg, 61.28 μmol) was dissolved in DMF (150 μL) alongside the coupling agents 

listed in Table 5.1 (1 eq) and DIPEA (0.11 μL, 1 eq).  

Table 5.1: A summary of the coupling agents trialled for the synthesis of 2.29 

Entry Coupling agent Mass (mg) 

1 
(Benzotriazol-1-yloxy)tripyrrolidinophosphonium 

hexafluorophosphate (PyBOP) 
0.32 

2 
N-[(Dimethylamino)-1H-1,2,3-triazolo-[4,5-b]pyridin-1-

ylmethylene]-N-methylmethanaminium 
hexafluorophosphate N-oxide (HATU) 

0.23 

3 
2-(1H-Benzotriazole-1-yl)-1,1,3,3-tetramethylaminium 

tetrafluoroborate (TBTU) 
0.20 

4 
(1-cyano-2-ethoxy-2-

oxoethylidenaminooxy)dimethylamino-morpholino-
carbenium hexafluorophosphate (COMU) 

0.26 

5 

N-(3-dimethylaminopropyl)-N’-ethylcarbodiimide 
hydrochloride (EDC) 

0.12 

N-hydroxysuccinimide (NHS) 0.07 

6 
N,N’-diisopropylcarbodiimide (DIC) 0.08 (0.1 μL) 

Ethyl cyano(hydroximino)acetate (Oxyma) 1.10  

7 Carbonyldiimidazole (CDI) 0.10 
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This solution was stirred for 5 min, then 2.16 (0.76 mg, 1 eq) in DMF (10 μL) was added to 

the solution and stirred in the dark for 15 min. The solvent was removed under vacuum and 

the crude mixture used in the synthesis of 2.29 as described in section 5.2.16. 

 

5.2.18 Phototoxicity of 2.29 

A549 or HEK293 cells were seeded at 1x105
 cells/mL, 100 μL per well in 96 well plates, then 

incubated for 24 hours. The media was removed and 2.29 (50 μL) were added in FCS free 

RPMI and incubated for three hours. Staurosporine (3 μL, 1 mM in DMSO) was used as a 

positive control. The wells were washed three times with PBS, then complete phenol red free 

media (100 μL) added to each well. For each experiment two identical plates were prepared, 

then one plate irradiated with a 633 nm 10 mW HeNe laser, 6 minutes per well with the laser 

secured 50 cm above the plate. The other plate was kept in the dark. After irradiation, both 

plates were incubated a further 48 hours. MTS (10 μL) was added to each well and the plates 

incubated for three hours before measurement of the absorption at 492 nm on a BMG 

Labtech PolarStar Optima plate reader. 

 

5.2.19 Phototoxicity of control AuNPs 

2.16 (200 nM), PEG-AuNPs (20 nM), 2.31 (200 nM), 2.32 (200 nM), 2.33 (200 nM) and 

C11Pc-PEG-AuNPs (200 nM) were tested for phototoxicity as described in section 5.2.18. 

 

5.3 Investigations into antibody conjugation for the development of 

antibody directed phthalocyanine-gold nanocarriers 

5.3.1 Synthesis of C11Pc-PEG-AuNPs 

C11Pc-PEG-AuNPs were synthesised as described in section 5.2.9. 

 

5.3.2 FITC-tagging of antibodies (3.7) 

FITC (1 µL, 10.2 mM in DMSO) and anti-EGFR antibody (5 µL, 1 mg/mL) were mixed in 

PBS (20 µL) and incubated in the dark for seven hours. PBS (15 µL) was added to the 

solution, then the antibody purified through Zeba spin desalting columns (7,000 MWCO). 

The resulting antibody was diluted to 50 µL total volume in PBS. The emission spectrum was 
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recorded between 500-600 nm with an excitation wavelength of 472 nm. The excitation 

spectrum was recorded between 420-520 nm with an emission wavelength of 548 nm. 

 

5.3.3 Conjugation of 5-FAM to antibody (3.8) 

5-carboxyfluorescein (5-FAM, 6.5 mg, 17.27 µmol) was dissolved in 2:1 DMSO:MES buffer 

(1.6 mL), then mixed with EDC (3.4 mg, 17.74 µmol) and NHS (3.6 mg, 31.28 µmol) and 

stirred for 30 minutes. The resulting activated 5-FAM (1 µL) was added to anti-EGFR 

antibody (5 µL, 1 mg/mL) in PBS (50 µL) and the solution was incubated for six hours. The 

antibody was purified through Zeba spin desalting columns (7,000 MWCO). The emission 

spectrum was recorded between 500-600 nm with an excitation wavelength of 472 nm. The 

excitation spectrum was recorded between 420-520 nm with an emission wavelength of 548 

nm. 

 

5.3.4 Conjugation of 2.34 to C11Pc-PEG-AuNPs (3.9) 

EDC (1 mg, 5.22 μmol) and NHS (1.2 mg, 10.43 μmol) were mixed with C11Pc-PEG-AuNPs 

in MES buffer (1 mL, 3 µM) and stirred in the dark for 30 minutes. The excess EDC/NHS 

was removed by centrifugation through Vivaspin 500 columns (8,000 rpm, 10 min). 2.34 

(0.15 mg, 0.32 μmol) was dissolved in PBS (1 mL) and the AuNP pellets resuspended in this 

solution. The AuNPs were stirred overnight in the dark, then purified by centrifugation in 

Vivapsin 500 columns (8,000 rpm, 20 min), washing six times with PBS. The resulting FITC-

C11Pc-PEG-AuNPs were resuspended in PBS and analysed by UV-vis spectroscopy 

between 300-800 nm. 

 

5.3.5 Antibody functionalisation of C11Pc-PEG-AuNPs via EDC/NHS 

(3.10 and 3.15) 

C11Pc-PEG-AuNPs in MES buffer (1 mL, 4 µM), EDC (1 mg, 5.22 μmol) and NHS (1.2 

mg, 10.43 μmol) were stirred in the dark for 30 minutes. Excess EDC/NHS was removed 

by centrifugation in Vivaspin 500 columns, 8,000 rpm, 15 minutes. Anti-EGFR antibody (5 

µL, 1 mg/mL) was diluted in PBS (1 mL) and stirred slowly overnight in the dark with the 

AuNPs. The resulting nanoconjugates were purified through Vivaspin 500 columns, washing 
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the pellet three times, then resuspended in PBS. The UV-spectrum was recorded between 

300-800 nm. 

 

5.3.6 Functionalisation of C11Pc-PEG-AuNPs with PDEA 

C11Pc-PEG-AuNPs in MES buffer (1 mL, 4 µM), EDC (1 mg, 5.22 μmol) and NHS (1.2 

mg, 10.43 μmol) were stirred in the dark for 30 minutes. Excess EDC/NHS was removed 

by centrifugation in Vivaspin 500 columns (8,000 rpm, 15 min). Pyridine dithioethylamine 

hydrochloride (PDEA, 1.33 mg, 5.97 µmol) was dissolved in PBS (1 mL), added to the 

AuNPs, and the resulting solution stirred overnight in the dark. The resulting nanocarriers 

were purified in Vivaspin 500 columns (8,000 rpm, 15 min) and washed three times with 

PBS, then the nanoparticles resuspended in PBS (1 mL). UV-vis spectra were recorded of 

the washings and PDEA-C11Pc-PEG-AuNPs between 300-800 nm. 

 

5.3.7 Antibody functionalisation of C11Pc-PEG-AuNPs via maleimide 

(3.12, 3.13, 3.16) 

C11Pc-PEG-AuNPs in MES buffer (1 mL, 4 µM), EDC (1 mg, 5.22 μmol) and NHS (1.2 

mg, 10.43 μmol) were stirred in the dark for 30 minutes. Excess EDC/NHS was removed 

by centrifugation in Vivaspin 500 columns, 8,000 rpm, 15 minutes. 1-(2-

aminoethyl)maleimide hydrochloride (3 mg, 16.99 µmol) was dissolved in PBS (1 mL) and 

the collected AuNP pellets were added to this solution. This solution was stirred in the dark 

for 30 minutes, then centrifuged at 8,000 rpm, 15 minutes in Vivaspin 500 columns to givwe 

3.12. Anti-EGFR antibody (5 µL, 1 mg/mL) was diluted in PBS (1 mL) and stirred slowly 

overnight with the AuNPs. The resulting nanoparticles were purified through Vivaspin 500 

columns, washing the pellet three times, then resuspended in PBS. The UV-spectrum was 

recorded between 300-800 nm. 

 

5.3.8 Reduction of antibody disulphides and functionalisation of 3.12 (3.14 

and 3.17) 

3.12 were synthesised as described in section 5.3.7. Anti-EGFR antibody (5 µL, 1 mg/mL) 

was mixed with TCEP (4x10-11 mol, 1.2 eq) in PBS (200 µL). The solution was incubated at 
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37°C for 30 minutes, then purified in Zeba spin desalting columns (7,000 MWCO). The 

purified antibody was immediately added to maleimide-functionalised C11Pc-PEG-AuNPs 

and stirred overnight. The resulting nanocarriers were purified as described in section 5.3.7, 

and analysed by UV-vis spectroscopy between 300-800 nm. 

 

5.3.9 Flow cytometry 

The binding of the Abcam anti-EGFR antibody and the R&D Systems anti-EGFR antibody 

to EGFR on A549 and H292 cells was analysed  by flow cytometry as described in section 

5.1.5. 

 

5.3.10 Singlet oxygen production 

3.10, 3.13, and 3.14 (1 µL) in PBS were tested for singlet oxygen production as described in 

section 5.2.15. 

 

5.3.11 SDS-PAGE for determining antibody binding to AuNPs 

This method followed the method of van der Heide et al. with modifications.3 AuNPs (1 mL) 

were concentrated in Vivaspin columns by centrifugation (8,000 rpm, 10 min). The resulting 

pellet (20 μL) was mixed with tris-glycine SDS sample buffer (20 μL) and DTT (4 μL, 2 M 

in H2O). Antibody controls were prepared by diluting in PBS (5 μL in 15 μL PBS, 0.25 

mg/mL), then mixing with tris-glycine SDS sample buffer (20 μL) and DTT (4 μL, 2 M in 

H2O). The solutions were incubated at 100 °C for 10 mins, then cooled before 20 μL of 

AuNPs and 10 μL of Ab was loaded onto a 4-12% SDS-polyacrylamide gel alongside Thermo 

Scientific PageRuler prestained protein ladder (3 μL). Electrophoresis was performed at a 

constant voltage of 170 V for 75 minutes in MOPS SDS running buffer.  

The resulting gel was washed with H2O, stained with Coomassie stain under rocking until the 

gel maintained a bright blue colour. The gel was then destained with destaining solution under 

rocking until the background was colourless again. Coomassie stain was prepared by 

dissolving Coomassie Brilliant blue R250 (1.00 g, 1.21 mmol) in 1:5:4 glacial acetic 

acid:water:methanol (1 L), before filtering to remove particulates. Destaining solution was 

prepared by mixing glacial acetic acid (100 mL) with water (700 mL) and methanol (200 mL). 
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5.3.12 Anti-EGFR antibody functionalisation of 2.31 

2.31 were functionalised with an anti-EGFR antibody, as described in sections 5.3.5, 5.3.7 

and 5.3.8. 

 

5.3.13 Fluorescence microscopy for the internalisation of antibody-AuNPs 

A549 cells were seeded at 1x105 cells/ mL, 2 mL per well in a 6 well plate and incubated 

overnight at 37 °C, 5% CO2. Ab-FITC-PEG-AuNPs (1 mL, 5 µM) in serum free RPMI were 

added to separate wells. These cells were incubated for one hour at 37 °C, 5% CO2, then 

washed three times with cold PBS. The cells were imaged using a Lieca fluorescent 

microscope at x10 magnification. 

 

5.3.14 Synthesis of PEG-AuNPs 

PEG-AuNPs were synthesised as described in section 5.2.10. 

 

5.3.15 Synthesis of protein G-PEG-AuNPs (3.19) 

PEG-AuNPs in MES buffer (1 mL, 120 nM) were mixed with EDC (1 mg, 5.22 μmol) and 

NHS (1.2 mg, 10.43 μmol) and stirred in the dark for 30 minutes. The excess EDC/NHS 

was removed by centrifugation at 8,000 rpm for 15 minutes in Vivaspin 500 columns. Protein 

G (5 µL, 1 mg/mL in PBS) was diluted in PBS (1 mL), then stirred overnight with the 

activated AuNPs. The resulting protein G-C11Pc-PEG-AuNPs (3.9) were purified by 

centrifugation at 8,000 rpm, 15 minutes in Vivaspin 500 columns, washing the pellet three 

times with PBS buffer. The pellet was resuspended in PBS. 

 

5.3.16 Non-covalent binding of anti-HER2 antibody to 3.19 (3.20) 

3.19 (1 mL) were prepared as described in section 5.3.15 and dispersed in sodium phosphate 

buffer, pH 8.0. Anti-HER2 antibody (5 µL, 1 mg/mL) was stirred slowly alongside these 

nanocarriers for one hour. The resulting nanocarriers were purified through Vivaspin 500 

columns (8,000 rpm, 15 minutes, 4 °C), washing three times with sodium phosphate buffer.  
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5.3.17 Cross-linking of anti-HER2 antibody to 3.19 (3.21) 

3.19 (500 µL) were prepared as described in section 5.3.15 and dispersed in phosphate buffer, 

pH 8.0. Anti-HER2 antibody (2.5 µL, 1 mg/mL) was stirred slowly alongside these 

nanocarriers for one hour. The resulting nanocarriers were purified through Vivaspin 500 

columns (8,000 rpm, 15 minutes, 4 °C) and resuspended in triethanolamine buffer (1 mL) 

alongside dimethylpimelimidate dihydrochloride (DMP, 3.3 mg, 12.73 μmol). The solution 

was stirred slowly for ca. 45 minutes, then purified by centrifugation in Vivaspin 500 columns 

(14,000 rpm, 15 min, 4 °C). The resulting nanoparticle pellet was resuspended in 

ethanolamine buffer and incubated for one hour with slow stirring, before purification by 

centrifugation in Vivaspin 500 columns (14,000 rpm, 15 min, 4 °C). The nanoparticle pellet 

was washed three times with sodium phosphate buffer. 

 

5.3.18 SDS-PAGE of protein G-AuNPs 

3.9, 3.10 and 3.11 were analysed by SDS-PAGE as described in section 5.3.11. 

 

5.3.19 Gly-Fc-III-Bpa (3.22) and FITC-Fc-III-Bpa (3.23) synthesis 

3.22 (GDCAWHLGELBpaWCT) and 3.23 (FITC-βADCAWHLGELBpaWCT) were 

synthesised by solid phase peptide synthesis, as described in section 5.1.3.  FITC was added 

to the peptide as described in section 5.2.1. The peptides were cleaved from the resin using 

92.5:2.5:2.5:2.5 TFA:EDT:TIPS:H2O and shaking for three hours. The solvent was removed 

under vacuum and the resulting peptide washed with cold diethyl either. Gly-Fc-III-Bpa and 

FITC-Fc-III-Bpa were stirred overnight in 0.1 M sodium phosphate buffer (15 mL, pH 8.0) 

at 35 °C, then the solvent removed under vacuum. The resulting peptides were purified by 

preparative RP-HPLC, giving the pure peptides 3.22 (4.04 mg, 2.32 μmol, 4.5%) and 3.23 

(4.50 mg, 2.10 µmol, 4%). 

3.22: MALDI-ToF ([M+H]+): C82H103N19O20S2 calculated 1738.70, found 1738.60. RP-HPLC 

tR = 15.75 min. 

3.23: MALDI-ToF ([M+H]+): C104H116N20O25S3 calculated 2141.76, found 2141.66. RP-

HPLC tR = 17.62 min. 
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5.3.20 UV crosslinking of 3.22 to an anti-EGFR antibody 

Photo-crosslinking reactions were completed in Eppendorf tubes with a final volume of 20 

μL. Samples were prepared in PBS, with final concentrations of 1.67 µM (0.25 mg/mL) of 

anti-EGFR antibody, 16 μM 3.22, and 5% v/v DMSO. Samples were irradiated for 4 h in 

the dark.  

 

5.3.21 SDS-PAGE for 3.22 binding to an anti-EGFR antibody 

Conjugated anti-EGFR antibody (10 µL, 0.25 mg/mL), anti-EGFR antibody (10 µL, 0.5 

mg/mL) and a 10:1 peptide:Ab solution in PBS (10 µL) were analysed by SDS-PAGE. 

Samples were mixed with tris-glycine SDS sample buffer (10 μL) and DTT (2 μL). The 

solutions were incubated at 100 °C for 10 mins, then cooled before 20 μL each sample was 

loaded onto a 4-12% SDS-polyacrylamide gel alongside Thermo Scientific PageRuler 

prestained protein ladder (3 μL). Electrophoresis was performed at a constant voltage of 170 

V for 75 minutes in MOPS SDS running buffer.  

The resulting gel was washed with H2O, stained with Coomassie stain under rocking until the 

gel maintained a bright blue colour. The gel was then destained with destaining solution under 

rocking until the background was colourless. Coomassie stain and destaining solution were 

prepared as described in section 5.3.11. 

 

5.3.22 UV crosslinking of 3.23 to an anti-EGFR antibody 

This method followed the method of Vance et al. with modification.4 Photo-crosslinking 

reactions were performed in a clear, 96-well plate with a final reaction volume of 100 µL. The 

reaction was performed in either histidine acetate buffer or PBS, with final concentrations of 

6.67 µM (1mg/mL) of anti-EGFR antibody, 66.67 µM 3.23, 66.67 µM 5-hydroxyindole and 

10% v/v DMSO. Samples were irradiated for 4 h in the dark with the plate resting on an ice 

pack. Samples were collected after 2 h (25 µL) and 4 h (75 µL), then precipitated in cold 

acetone (500 µL) and left in a cooling bath at -20 °C for 1 h. The antibody was collected by 

centrifugation and resuspended in PBS (5 µL). 
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5.3.23 SDS-PAGE for 3.23 binding to an anti-EGFR antibody 

Conjugated anti-EGFR antibody samples (5 µL), anti-EGFR antibody (5 µL, 1 mg/mL) and 

FITC goat anti-mouse secondary antibody (5 µL, 2 mg/mL) were mixed with tris-glycine 

SDS sample buffer (5 μL) and DTT (2 μL, 2 M in H2O). The solutions were incubated at 100 

°C for 10 mins, then cooled before 10 μL of each sample was loaded onto a 4-12% SDS-

polyacrylamide gel alongside Thermo Scientific PageRuler prestained protein ladder (3 μL). 

Electrophoresis was performed at a constant voltage of 190 V for 40 minutes in MOPS SDS 

running buffer.  

The resulting gel was washed with H2O, then imaged in an ImageQuant LAS 4000 imager. 

The gel was then stained with Coomassie stain under rocking until the gel maintained a bright 

blue colour. The gel was then destained with destaining solution under rocking until the 

background was colourless. Coomassie stain and destaining solution were prepared as 

described in section 5.3.11. 

 

5.4 Towards protease cleavable sequences to ‘turn on’ the photodynamic 

activity of folate directed phthalocyanine-gold nanocarriers 

5.4.1 Synthesis of FA-Lys (4.12) on the solid phase 

 

Rink amide MBHA resin (30 mg, 0.016 mg) was swelled for 30 minutes in DMF then loaded 

with appropriately protected lysine, as described in section 5.1.3. Folic acid (8.3 mg, 18.80 

μmol, 1.2 eq) in DMSO was added to the resin and shaken overnight. The resin was washed 

with DMSO (x2), DMF (x6) and DCM (x6), then cleavage of the peptide from the resin was 

completed in 95:2.5:2.5 TFA:TIPS:H2O, 3 h. The solvent was removed under vacuum, the 

peptide isolated with cold ether precipitation. The peptide was purified by semi-preparative 

RP-HPLC, giving the peptide (4.11 mg, 46%). RP-HPLC: tR = 10.05 and 10.41 mins, 

MALDI-ToF: C25H32N10O6 ([M+H]+) calculated 569.26, found 569.13. 
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5.4.2 Temperature controlled synthesis of 4.12 on the solid phase 

 

This synthesis followed the method of Guaragna et al. with modifications.5 Rink amide 

MBHA resin (30 mg, 0.0156 mmol) loaded with appropriated protected lysine, as described 

in section 5.1.3. DMSO (2 mL) and DIPEA (3.9 μL, 22.56 µmol, 1.44 eq) were heated to 50 

°C, then folic acid (8.3 mg, 18.80 µmol 1.2 eq) was slowly added. Once dissolved, PyBOP 

(9.8 mg, 18.80 µmol, 1.2 eq) was added and the resulting solution added to the resin and 

shaken overnight at 30 °C in a peptide column. The resin was washed with DMSO (x2), DMF 

(x6) and DCM (x6), then cleavage of the peptide from the resin was completed in 95:2.5:2.5 

TFA:TIPS:H2O. The solvent was removed under vacuum, the peptide isolated with cold 

ether precipitation, then purified by semi-preparative HPLC, giving the peptide (3.09 mg, 

35%). RP-HPLC: tR = 10.01 and 10.36 min. MALDI-ToF: C25H32N10O6 [(M+H)+] calculated 

569.26, found 569.32, 569.31. 

 

5.4.3 Synthesis of 3-dimethylaminopropylfolic acid (4.13) via temperature 

control 

 

This synthesis followed the method of Santos et al. with modifications.6 Folic acid (88 mg, 

0.2 mmol) was dissolved in DMF (1 mL) alongside N-methylmorpholine (45 µL, 0.4 mmol) 

and either TBTU (64 mg, 0.2 mmol) or PyBOP (104 mg, 0.2 mmol) and stirred at 0 °C for 

45 minutes. 3-(dimethylamino)-1-propylamine (25 µL, 0.2 mmol) was added to the solution 

and stirred for two hours at 0 °C. The DMF was removed under vacuum, yielding the crude 

product.  
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TBTU coupling: RP-HPLC: tR = 9.96, 10.14, 10.37 mins. MALDI-ToF ([M+H]+): 

C24H32N9O5 calculated 526.25, found 526.36 and 526.45. For the di-substituted product 

([M+H]+): C29H43N10O5 calculated 611.34, found 611.78.  

PyBOP coupling: RP-HPLC: tR = 10.15, 10.26 and 10.39 mins. MALDI-ToF ([M+H]+): 

C24H31N9O5 calculated 526.25, found 526.77 and 526.64. For the di-substituted product 

([M+H]+): C29H43N10O5 calculated 611.34, found 610.99. 

 

5.4.4 Synthesis of 4.13 via NHS-ester 

 

Folic acid (0.47 g, 1.06 mmol) was dissolved in DMSO (10 mL) alongside DCC (0.49 g, 2.37 

mmol), NHS (0.16 g, 1.39 mmol) and triethylamine (0.25 mL, 1.79 mmol). The reaction was 

stirred overnight, filtered and precipitated with diethyl ether. The resulting orange precipitate 

was filtered under vacuum and washed with diethyl ether, yielding crude folate-NHS ester 

(0.64 g). 

Crude folate NHS ester (0.27 g) was dissolved in DMSO (5 mL). 3-(dimethylamino)-1-

propylamine (63.1 μL, 0.50 mmol) was added to the solution and stirred overnight. The 

product was precipitated with acetone, filtered under vacuum and washed with acetone to 

give the crude product (0.23 g, 0.44 mmol). No further purification was undertaken. RP-

HPLC: tR = 10.26 and 10.52 mins. MALDI-ToF: C24H31N9O5 ([M+H]+) calculated 526.25, 

found 526.32 & 526.31. 
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5.4.5 Synthesis of N2,10-Bis(trifluoroacetyl)pyrofolic acid/anhydride (4.14 

and 4.15) 

 

This synthesis followed the procedure of Luo et al. with modifications.7 Folic acid (5.00 g, 

11.32 mmol) was suspended in anhydrous THF (40 mL) and cooled to 0 °C. Trifluoroacetic 

anhydride (13 mL, 93.52 mmol) was added dropwise to the suspension, causing a colour 

change from orange-yellow to dark brown. Once the trifluoroacetic anhydride was all added, 

the reaction was warmed to RT and stirred for ca. 17 h. The solution was filtered to remove 

any solid residue and concentrated under reduced pressure. The solution was transferred with 

the aid of THF into well-stirred diethyl ether and the precipitated yellow solid collected by 

filtration then washed with diethyl ether to yield a crude product (4.13 g). 1H-NMR; some 

peaks appear as atropisomers and are reported as their most abundant peak (400 MHz, 

DMSO-d6): 8.75 (s, 1 H), 7.77-7.66 (m, 4 H), 5.20 (s, 2 H), 4.77 (dd, 1 H, J = 4.0 and 8.9 Hz), 

2.63-2.00 (overlap, 4 H). 19F-NMR (376 MHz, DMSO-d6): -66.11, -74.66, -80.90 (integration 

ratio 0.67:1.00:0.12). 

 

5.4.6 Synthesis of N10-(trifluoroacetyl)pyrofolic acid (4.16) 

 

This synthesis followed the procedure of Luo et al.7 Crude 4.14/4.15 (4.12 g) was dissolved 

in THF (15 mL) and ice (3.01 g) was added. The solution immediately darkened in colour 

and was stirred for 3 h. The gel was precipitated in diethyl ether then the orange solid 

collected by filtration and triturated in diethyl ether. The final product was dried under 

vacuum for 18 h giving 4.16 (3.35 g, 6.82 mmol, 60% over two steps) 1H-NMR; some peaks 

appear as atropisomers and are reported as their most abundant peak (400 MHz, DMSO-d6): 
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8.69 (s, 1 H), 7.78-7.65 (m, 4 H), 5.17 (s, 2 H), 4.77 (dd, 1 H, J = 3.9 and 8.9 Hz), 2.70-2.00 

(overlap, 4 H). 13C-NMR (100 MHz, DMSO-d6): 175.9, 174.5, 172.8, 169.1, 156.1, 155.7, 

154.4, 149.4, 144.6, 142.1, 135.0, 130.0, 128.4, 117.7, 114.9, 58.8, 54.1, 31.5, 21.6 19F-NMR 

(376 MHz, DMSO-d6): -62.24, -66.07, -80.89 (integration ratio 0.04:1.00:0.13). 

 

5.4.7 Synthesis of pteroyl hydrazide (4.17) 

 

This synthesis followed the procedure of Luo et al. with modifications.7 4.16 (0.50 g, 1.02 

mmol) was dissolved in DMSO (10 mL) and hydrazine monohydrate (0.3 mL, 6.18 mmol) 

slowly added while the temperature was maintained at 25 °C. The solution was stirred for ca. 

17 h then the product precipitated from solution using methanol. The yellowish solid was 

collected by filtration, washed with diethyl ether and dried under vacuum for 18 h, giving 

4.17 (0.30 g, 0.92 mmol, 90%). 1H-NMR (400 MHz, DMSO-d6): 8.64 (s, 1 H), 7.62 (d, 2 H, J 

= 8.7), 6.64 (d, 2 H, J = 8.7 Hz), 4.48 (d, 2 H, J = 6.0 Hz). 13C-NMR (100 MHz, DMSO-d6): 

171.1, 165.2, 160.0, 155.2, 150.5, 147.6, 147.4, 128.1, 127.0, 117.5, 110.4, 44.8. MALDI-ToF 

([M+H]+): C14H14N8O2 calculated 327.12, found 327.42. RP-HPLC: tR = 9.95 mins. 

 

5.4.8 Synthesis of pteroyl azide (4.18) 

 

This synthesis followed the procedure of Luo et al.7 4.17 (1.88 g, 5.76 mmol) was stirred with 

potassium thiocyanate (27 mg, 0.28 mmol). Ice-cold trifluoroacetic acid (14.5 mL, 189.36 

mmol) was added and stirred until the solid dissolved. The solution was cooled to -5 °C, tert-

butyl nitrite (0.67 mL, 5.63 mmol) added and stirred for 4 h at -5 °C. The solution was 

warmed to RT and sodium azide (0.19 g, 2.92 mmol, 0.5 eq) was added to the solution and 

stirred for 10 mins. The solution was precipitated with 2-propanol. the resulting yellow 
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powder was purified by centrifugation, washing with water (3 x), acetonitrile (1 x) and diethyl 

ether (3 x) then dried under vacuum for 18 h, resulting in 4.18 (1.16 g, 3.44 mmol, 60%). The 

formation of the azide was confirmed using IR spectroscopy, then the crude mixture used in 

the next step. νmax: 2137 (N3), 1708 (C=O), 1592 (C=O). 

 

5.4.9 Synthesis of tetramethylguanadinium L-methyl folate (4.19) 

 

This synthesis followed the procedure of Luo et al.7 Crude 4.18 (0.53 g, 1.57 mmol) was 

dissolved in DMSO (5 mL). L-glutamic acid 5-methyl ester (0.48 g, 2.97 mmol) and 

tetramethylguanidine (313.5 µL, 2.50 mmol) was added to the solution and stirred overnight. 

The solution was precipitated in acetone, collected by filtration and washed with diethyl ether. 

The resulting yellow powder was dried under vacuum overnight, yielding the product (0.73 

g, 1.27 mmol, 81%). 1H-NMR (400 MHz, DMSO-d6): 8.62 (s, 1 H), 7.59 (d, 2 H, J = 8.6 Hz), 

6.92 (t, 1 H, J = 5.7 Hz), 6.69 (d, 2 H, J = 8.8 Hz), 4.49 (d, 2 H, J = 5.6 Hz), 4.05 (m, 1 H), 

3.55 (s, 3 H), 2.90 (s, 12 H), 2.43-1.90 (m, 4 H). 13C-NMR (100 MHz, DMSO-d6): 177.0, 174.9, 

173.6, 173.1, 165.4, 163.1, 161.2, 156.5, 156.2, 150.7, 148.2, 147.7, 128.5, 128.0, 122.2, 111.4, 

53.6, 51.2, 46.1, 39.4, 30.3, 28.1. HRMS (IT-ToF): C20H21N7O6 ([M+Na]+) calculated 

478.1446, found 478.1452 

 

5.4.10 Synthesis of 2-aminoethylfolic acid (4.6) 

  

This synthesis followed the procedure of Luo et al. with modifications.7 4.19 (50 mg, 87.63 

μmol) was stirred with ethylenediamine (0.36 mL) for 3 h. As the reaction proceeded the 4.19 
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dissolved (ca. 5 mins to dissolve). The product was precipitated using 1:1 diethyl 

ether:acetonitrile and the resulting sol centrifuged to collect an orange oil. This oil was 

dissolved in water, precipitated in acetone, collected via filtration and washed with diethyl 

ether to give and orange-brown product (36 mg, 74.46 μmol, 85%). 1H-NMR (400 MHz, 

DMSO-d6): 8.62 (s, 1 H), 7.92 (s, 1 H), 7.56 (d, 2 H, J = 8.7 Hz), 7.21 (s, 2 H), 6.91 (s, 1 H), 

6.64 (d, 2 H, J = 8.6 Hz), 4.46 (s, 2 H), 4.01 (m, 1 H), 3.13-3.01 (m, 2 H), 2.83-2.71 (m, 2 H), 

2.69 (s, 1 H), 2.18-1.91 (m, 4 H). RP-HPLC tR = 9.40 min. HRMS (IT-ToF): C21H25N9O5 

([M+H]+) calculated 484.2051, found 484.2064.  

 

5.4.11 4.6 cytotoxicity assessment 

H292 cells were seeded in 96 well plated (100 μL, 1x105 cells/ mL) then incubated overnight 

at 37 °C, 5% CO2. 4.6 (14 mM in DMSO) was diluted in a serial dilution then added to wells 

in triplicate (1 μL). Cells were incubated for 24 hours at 37 °C, 5% CO2 before MTS (10 μL) 

was added to each well then the cells incubated for three hours. The absorbance was recorded 

at 492 nm and corrected for background absorbance by subtracting the absorbance of media 

treated with MTS. Cell viability was calculated as a percentage of non-treated cells. 

 

5.4.12 Synthesis of polyethylene Glycol-2-aminoethylfolic acid (4.29) 

HS-PEG-COOH (15 mg, 4.88 μmol) was dissolved in dry DMF (0.60 mL). NHS (0.84 mg, 

7.3 μmol), dicyclohexylcarbodiimide (DCC, 1.50 mg, 7.3 μmol) and triethylamine (0.53 µL, 

3.8 μmol) were added to the solution and stirred overnight. The solution was filtered and the 

solvent removed under vacuum. 4.6 (5 mg, 10.34 μmol, 2 eq) was dissolved in DMSO (0.6 

mL), added to the dry PEG-NHS and stirred overnight. The solution was precipitated in 

diethyl ether and washed with diethyl ether 5 times, decanting off the solvent each time. The 

solid was dried under vacuum then resuspended in THF and centrifuged. The supernatant 

was collected, and the solvent removed under vacuum, giving the product. No further 

purification was undertaken. 
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5.4.13 Synthesis of 4.6 functionalised C11Pc-PEG-AuNPs (4.30) 

C11Pc (2.4 mg, 0.94 μmol) was dissolved in anhydrous THF (1 mL) and left to stir in the 

dark at room temperature. 4.29 (8.6 mg, 2.41 μmol) was dissolved in anhydrous THF (2 mL), 

added to the solution and stirred for five minutes. HAuCl4.3H2O (1.2 mg, 3.05 μmol) was 

dissolved in anhydrous THF (1.2 mL), added to the solution and stirred for a further five 

minutes. Sodium borohydride (1.5 mg, 39.65 μmol) was dissolved in dH2O (1.2 mL) and 

added rapidly to the solution under vigorous stirring. This solution was left stirring in the 

dark for ca. 17 h at room temperature. THF (5.4 mL) was added to the solution then the 

solution was centrifuged at 1,400 rpm for 2 mins. The supernatant was collected and 

evaporated to dryness under reduced pressure. The nanoparticles were resuspended in PBS 

or RPMI 1640 without phenol red (2 mL) then centrifuged at 8,000 rpm for 20 minutes. The 

resulting supernatant was filtered and stored at 4 ˚C in the dark. These 4.6-C11Pc-PEG-

AuNPs were characterised by UV-vis between 200-800 nm. The fluorescence excitation 

spectrum was recorded between 550-750 nm with an emission wavelength of 780 nm. The 

emission spectrum was recorded between 653-850 nm with an excitation wavelength of 633 

nm. 

 

5.4.14 Variation of 4.29 concentration on AuNPs (4.31, 4.32 and 4.33) 

4.6-C11Pc-PEG-AuNPs were synthesis as described in section 5.4.13, with the ratio of 

4.29:PEG of either 25:75 (4.31), 10:90 (4.32) or 5:95 (4.33) used in the place of 100:0 

4.29:PEG. 

 

5.4.15 Singlet oxygen production 

4.30, 4.31, 4.32, 4.33, C11Pc-PEG-AuNPs and PEG-AuNPs in PBS (1 µM) were tested for 

singlet oxygen production as described in section 5.2.15. 
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5.4.16 Synthesis of 5-(2,5-dioxopyrrolidin-1-yl)oxy-5-oxopentanoic acid 

(4.36) 

 

This synthesis followed the procedure of Li et al. with modifications.8 Glutaric anhydride (500 

mg, 4.38 mmol) and NHS (504 mg, 4.38 mmol, 1 eq) were dissolved in THF (20 mL) and 

heated to reflux for two hours. The solvent was removed under vacuum to yield the crude 

product as an oil in quantitative yield. 1H-NMR (400 MHz, CDCl3): 2.82 (s, 4 H), 2.71 (t, 2 

H, J = 7.32 Hz), 2.50 (t, 2 H, J = 7.24 Hz), 2.04 (m, 2H). 

 

5.4.17 Malachite green test for carboxylic acids on resin 

A few beads of resin were washed with methanol, then malachite green oxalate in ethanol 

(0.25% w/v, ca. 1 mL) was added to the beads. Triethylamine (10 μL) was added to the 

solution and the beads left to stand for three minutes. The beads were washed with methanol 

until the solution was clear and a positive test for the presence of a carboxylic acid was 

confirmed by the beads remaining green. 

 

5.4.18 Synthesis of peptide 4.41 (4.6-4.36-Lys) 

 

Rink amide MBHA resin (30 mg, 0.0156 mmol) was loaded with Fmoc-L-Lys(Boc)-OH as 

described in section 5.1.3. After Fmoc deprotection, crude 4.36 (36 mg, 0.17 mmol, 10 eq) 

was dissolved in DMF and overnight, then the resin washed with DMF (x6). EDC (15.0 mg, 

0.078 mmol, 5 eq), NHS (9.0 mg, 0.078 mmol, 5 eq) and DIPEA (27 μL, 0.156 mmol, 10 eq) 

were dissolved in DMF, added to the resin and shaken for three hours. The resin was washed 

with DMF (x6) and 4.6 (9 mg, 0.019 mmol, 1.2 eq) in DMSO was shaken with the resin 
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overnight. The resin was washed with DMSO (x2), DMF (x6) and DCM (x6), then cleavage 

of the peptide from the resin was completed in 95:2.5:2.5 TFA:TIPS:H2O. The solvent was 

removed under vacuum, the peptide isolated with cold ether precipitation, then purified by 

preparative RP-HPLC, giving the peptide (1.54 mg, 14%). RP-HPLC: tR = 9.69 mins. 

MALDI-ToF: C32H44N12O8 [(M+H)+] calculated 725.34, found 725.36. HRMS (IT-ToF): 

[M+H+K]2+ calculated 382.1554, found 382.1579. 

 

5.4.19 Synthesis of peptide 4.43 (4.6-4.36-V-Cit-PABA-K) 

4.43 was synthesised via Fmoc-solid phase peptide synthesis. Briefly, rink amide MBHA was 

functionalised with V-Cit-PABA-K as described in section 5.1.3, before 4.36 and 4.6 were 

added to the growing peptide sequence as described in section 5.4.18. The resulting peptide 

was cleaved from the resin in 95:2.5:2.5 TFA:TIPS:H2O for three hours, then the solvent 

removed under vacuum. The resulting peptide was washed with cold diethyl ether, then 

purified by preparative RP-HPLC, giving the product as an orange solid (4.63 mg, 4.59 μmol, 

8.8%). RP-HPLC: tR = 11.90 min. MALDI-ToF ([M+H]+): C50H69N17O12 calculated 1100.53, 

found 1100.39.  

 

5.4.20 4.36 addition screen 

Rink amide MBHA (100 mg, 0.052 mmol) was loaded with appropriately protected Fmoc-

amino acids (5 eq), as described in section 5.1.3. After Fmoc-deprotection, 4.36 (20 eq, 1.04 

mmol) in DMF was shaken overnight alongside the resin. The resin was washed with DMF 

(x6) then methanol (x6). The resulting peptide was cleaved from the resin with 95:2.5:2.5 

TFA:TIPS:H2O, shaking for three hours. The solvent was removed under reduced pressure 

and the resulting peptide washed with cold diethyl ether. 

  

5.4.20.1 4.36-Val (4.44) 

 

Crude 4.44 was prepared as described in section 5.4.20. 1H-NMR (400 MHz, CH3OD):  4.20 

(d, 1 H, J = 6.9 Hz), 2.34 (t, 2 H, J = 7.3 Hz), 2.34 (t, 2 H, J = 7.3 Hz), 2.07 (dqq, 1 H, J = 
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6.9, 7.1 and 7.0 Hz), 1.90 (dt, 2 H, J = 7.3 and 7.3 Hz), 0.97 (d, 3 H, J = 7.1 Hz), 0.96 (d, 2 

H, J = 7.0 Hz). 

 

5.4.20.2 4.36-Trp 

 

Crude 4.36-Trp was prepared as described in section 5.4.20. 1H-NMR (400 MHz, CH3OD): 

7.62 (d, 1 H, J = 7.8 Hz), 3.31 (d, 1 H, J = 8.0 Hz), 7.10-6.99 (m, 3 H), 4.73-4.68 (m, 1H), 

2.99 (d, 2 H, J = 3.6 Hz), 2.22-2.14 (m, 4 H), 1.81-1.72 (m, 2 H). 

 

5.4.20.3 4.36-Ala 

 

Crude 4.36-Ala was prepared as described in section 5.4.20. 1H-NMR (400 MHz, CH3OD): 

4.33 (q, 1 H, J = 7.2 Hz), 2.34 (t, 2 H, J = 7.4 Hz), 2.30 (t, 2 H, J = 7.7 Hz), 1.90 (dt, 2 H, J 

= 7.4 and 7.7 Hz), 1.35 (d, 3 H, J = 7.2 Hz). 

 

5.4.20.4 4.36-Leu 

 

Crude 4.36-Leu was prepared as described in section 5.4.20. 1H-NMR (400 MHz, CH3OD): 

4.39 (t, 1 H, J = 7.5 Hz), 2.33 (t, 2 H, J = 7.5 Hz) 2.32 (t, 2 H, J = 7.9 Hz), 1.9 (dt, 2 H J = 

7.5 and 7.9 Hz), 1.73-1.62 (m, 1 H), 1.60-1.56 (m, 2 H), 0.96 (d, 3 H, J = 6.5 Hz), 0.93 (d, 3 

H, J = 6.5 Hz). 

5.4.20.5 4.36-Phe 
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Crude 4.36-Phe was prepared as described in section 5.4.20. 1H-NMR (400 MHz, CH3OD): 

7.29-7.17 (m, 5 H), 4.66 (dd, 1 H, J = 5.4 and 4.2 Hz), 3.19-1.16 (m, 1 H), 2.88-2.82 (m, 1 H), 

2.21 (t, 2 H, J = 7.5 Hz), 2.16 (t, 2 H, J = 7.4 Hz), 1.76 (dt, 2 H, J = 7.5 and 7.4 Hz). 

 

5.4.20.6 4.36-Glu 

 

Crude 4.36-Glu was prepared as described in section 5.4.20. 1H-NMR (400 MHz, CH3OD): 

4.38 (dd, 1 H, J = 5.0 and 4.0 Hz), 2.44-2.29 (m, 6 H), 2.15-2.07 (m, 1 H), 1.95-1.86 (m, 3 H). 

 

5.4.20.7 4.36-Arg 

 

Crude 4.36-Arg was prepared as described in section 5.4.20.  1H-NMR (400 MHz, CH3OD): 

4.23 (dd, 1 H, J = 4.9 and 2.9 Hz), 3.10-3.06 (m, 2 H), 2.22 (t, 2 H, J = 2.8 Hz), 2.19 (t, 2 H, 

J = 3.0 Hz), 1.77 (dt, 2 H, J = 2.8 and 3.0 Hz), 1.72-1.71 (m, 1 H), 1.60-1.44 (m, 3 H). 

 

5.4.20.8 4.36-Lys 

 

Crude 4.36-Lys was prepared as described in section 5.4.20. 1H-NMR (400 MHz, CH3OD): 

4.37 (dd, 1 H, J = 5.1 and 3.9 Hz), 2.97-2.94 (m, 2 H), 2.37 (t, 2 H, J = 7.4 Hz), 2.36 (t, 2 H,  

J = 7.5 Hz), 1.93 (dt, 2 H, J = 7.5 and 7.4 Hz), 1.88-1.84 (m, 1 H), 1.77-1.67 (m, 3 H), 1.58-

1.40 (m, 2 H).
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