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Abstract 

 

Purpose: The purpose of this research was to investigate the role of 

P2X7 in microglial function, in relation to glaucoma. Specifically, a 

P2X7 knockout (K/O) microglial cell line was generated and used to 

explore the responses of purinergic stimulation, including [Ca2+]i 

signalling, cytotoxicity, and IL-1β production and release. Purinergic 

mediated consequences of oxygen glucose deprivation were also briefly 

explored.  

Methods: P2X7 K/O microglial cells were generated using CRISPR 

gene editing technology on BV-2 microglia, and tested for P2X7 

expression using flow cytometry, gDNA PCR, qRT-PCR and Western 

blotting. [Ca2+] responses to purinergic agonist stimulation were 

measured in Fura-2 loaded BV-2 and P2X7 K/O cells. Viability and 

cytotoxicity of purinergic stimulated BV-2 cells were assessed with 

MTS, LDH and caspase-3/7 staining assays. IL-1β mRNA and protein 

expression was measured with qRT-PCR and ELISAs respectively. BV-2 

cells were subject to OGD using a custom incubator     

Results: CRISPR modification generated a cell line, which upon 

analysis demonstrated knockout of P2X7 protein expression. 

Purinergic agonists demonstrated a multifaceted [Ca2+]i response 

mediated by multiple receptors including P2X7, P2X4, P2Y2 and P2Y6, 

with P2X7 giving a sustained rise in [Ca2+]i . Microglia were sensitive to 

ATP-induced cytotoxicity mediated by P2X7. An initial lower level of 

ATP-induced toxicity was P2X7-independent and mediated by ADP. 

ATP treatment was a sufficient priming stimulus for IL-1β mRNA and 

protein and P2X7 was responsible for IL-1β release upon subsequent, 

in a P2X7-dependent manner. 

Conclusions: The generation of a P2X7 K/O microglial cell line has 

provided a wealth of information that can contribute to the 

understanding of the role of microglia in the pathophysiological 

mechanisms in glaucoma. 
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Chapter 1 

Introduction 

1.1 The Retina 

The retina is a highly specialised tissue that lines the majority of the 

posterior of the vitreous cavity of the eye and is held in place by the 

outward pressure exerted on it from the vitreous humor, RPE 

interdigitation and other fluid pressures (Marmor, 1993). The retina 

has a number of important regional morphological features (Figure 

1.1). The central retina or posterior pole is a circular zone with an 

approximate 5mm diameter, situated between the two temporal retinal 

arteries. Within the central retina lies a carotenoid-pigmented yellow 

disc, 1.5mm in diameter, known as the macula, and further within 

lays the fovea and the foveolar. The foveolar is a circular depression 

containing the highest density of cone photoreceptors in the retina for 

greatest visual acuity. 

 

The optic disc, also known as the optic nerve head, is a region 1.8mm 

in diameter situated 3-4mm to the nasal side of the fovea with a 

slightly raised rim. It is anatomically unique as it is the only white 

matter tract of the central nervous system (CNS) that leaves the cranial 

cavity, and as such is useful in various forms of clinical diagnostics. 

There is a complete absence of normal retinal layers in this zone, 

meaning no visual detection can occur here giving rise to a blind spot. 

Instead of normal retinal layers, the optic disc contains on average 1.2 

million retinal ganglion cell axons (Jonas et al, 1990) that transport 

visual information as action potentials out of the eye and into the 

brain. When the ganglion cell axons have left the eye, they perforate 

the lamina cribrosa, and form the optic nerve.  
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Figure 1.1: Topographical view of the human retina. Adapted from: 
https://upload.wikimedia.org/wikipedia/commons/4/48/Fundus_pho
tograph_of_normal_left_eye.jpg 
 

The retina has the highest oxygen consumption per weight of any 

tissue in the human body (Yu & Cringle, 2001) and therefore requires 

an extensive blood supply to maintain visual function. The retina has a 

dual blood supply: the central retinal artery, a branch of the 

ophthalmic artery, supplies the inner two thirds; the choroidal 

circulation/vascular bed, supplies the remaining outer retinal 

segment. The central retinal artery enters the retina at the optic disc, 

and branches several times, firstly into superior and inferior branches 

which then subdivide into nasal and temporal arteries. Finally, these 

divide into a vast network of capillaries, the distribution of which is 

unique to every individual (Kaufman & Alm, 2003).   

 

The role of the tissue is to sense the incoming light stimulus and 

convert it to electrical and chemical signals that finally project to 

higher cortical regions of the brain for interpretation. Due to its role, 

the retina contains many specialised and unique cells, which are 

organised into ten distinct layers (Figure 1.2).  The nuclear layers 

contain the cell bodies of the residing neuronal and glial cells and the 

plexiform layers are predominately the synaptic region. 

Central retina 

Macula 

Foveola 

Optic disc 

Superior temporal 
artery 

Inferior temporal 
artery 

Superior nasal 
artery 

Inferior nasal 
artery 

Central 
retinal artery 
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Figure 1.2: Diagram of the functional organisation of the retinal layers 
cells (left) and retinal cell types (right). Cell types shown: Retinal 
pigmented epithelium (RPE), Rod (R), Cone (C), Horizontal cell (HC), 
Bipolar cell (BC), Müller cell (MC), Amacrine cell (AC), Ganglion cell 
(GC), Astrocyte (A), Blood vessel (V), Endothelial cell (E), Pericyte (P), 
Microglia (M). Adapted from: http://eyesee-
eyetalk.blogspot.co.uk/2007/12/231-worn-and-torn-retina.html and 
Santos-Carvalho et al (2014) 
 

1.1.1 Non neuronal retinal cells 

1.1.1.1 Retinal pigment epithelia  

The RPE is a monolayer of hexagonal shaped cuboidal epithelial cells 

that lies at the base of the retina. Each RPE cell is asymmetric in 

structure, which allows for specialised directional function with the 

different neighbouring environments of the cell. The RPE cells apical 

surface borders and interacts with the interphotoreceptor matrix (IPM) 

within the subretinal space, in which RPE cells have important roles in 

retinal adhesion (Marmor, 1993), storage, regulation and transport of 

nutrients, (vitamin A is of particular importance) (Steinberg, 1985) and 

phagocytosis of shed outer segment photoreceptor discs (Bosch et al, 
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1999; Nguyen-Legros & Hicks, 2000). In general terms, RPE cells are 

required for the homeostasis of the photoreceptors and can be thought 

of as forming the blood-retinal barrier. The RPE monolayer originates 

beside the optic nerve head and extends to a serrated junction between 

the retina and the ciliary body known as the ora serrata. The average 

human eye contains 4-6 million RPE cells (Kaufman & Alm, 2003) with 

variable size and shape depending on the spatial distribution in the 

retina, being thinner and more in concentrated in the central retina, 

but wider and slightly flattened in the peripheral retina (Forrester et al, 

2016). 

 
1.1.2 Retinal glia 

1.1.2.1 Müller cells 

Müller cells are specialised radial glial cells and the most abundant of 

all retinal glial cells.  Müller cells provide structural stabilization of the 

retina and span the entire thickness of the retina (Figure 1.2), with 

their foot processes forming the inner limiting membrane (ILM) of the 

retina, and by having adherens junctions with photoreceptors, form 

the external limiting membrane (ELM) of the retina. Müller cells are 

involved in forming glial sheaths around many retinal cells and 

synapses. Unlike other retinal cell, Müller cells are very resistant to 

insult (Anderson & Davis, 1975), in particular hypoxic environments 

(Silver et al, 1997), which is likely due to their primary energy 

metabolism being derived from anaerobic glycolysis (Winkler et al, 

2000). Following cellular insults, Müller cells interact with microglia to 

undergo gliosis and become activated (Bringmann et al, 2009; Vecino 

et al, 2016). Examples of gliotic Müller cell function include cytokine 

production (Kumar et al, 2012) and phagocytosis of foreign substances 

(Mano & Puro, 1990). Müller cells also ensheath RGCs, which helps 

protect them against neurotoxic insults (Kawasaki et al, 2000) and 

isolate the impulses being sent to higher processing centres in the 

brain. 
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1.1.2.2 Astrocytes 

Astrocytes are glial cells of peripheral origin that migrate to the retina 

during development. Astrocytes have a characteristic flattened cell 

body morphology with radiating processes. Astrocytes are located in 

the inner retina, predominately the nerve fibre layer and their presence 

correlates with the presence and distribution of retinal blood vessels. 

The main function of retinal astrocytes is to form ensheathing 

membranes around retinal neurons, but also have roles in 

neurotrophic support and maintenance of the blood-retina barrier 

(Vecino et al, 2016). 

 
1.1.2.3 Microglia 

Microglia are the resident immune cells of the retina, located 

throughout the retinal layers, and have a number of roles retinal 

homeostatic functions. Microglia will be discussed in more detail (1.3) 

 
1.1.3 The neuronal retina   
1.1.3.1 Photoreceptors 

Photoreceptors are highly specialised light sensitive cells, responsible 

for the detection of the electromagnetic radiation in the visible light 

spectrum (390-700nm wavelengths). Human eyes contain two types of 

photoreceptor, rods and cones. Overall both types of photoreceptor 

have similar structure (Figure 1.3), but the subtle differences in 

structure and contents allow them to perform different roles in the 

phototransduction cascade. 

 

Rods are much more abundant in the human retina than cones, there 

being approximately 125 million rods in each eye (Osterberg, 1935). 

Spatially, rods are much more concentrated in regions of the 

peripheral retina. Rod photoreceptor functions in visual detection are 

related to contrast, brightness and motion detection (Forrester et al, 

2016). In comparison with cones, rods are more sensitive in low-light 

conditions, and do not discriminate between colours, the pigment 

rhodopsin having peak absorption in the blue-green wavelengths of the 
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visible light spectrum (Willoughby et al, 2010), resulting in them being 

the primary photoreceptor used in low light conditions. The 

distribution and properties of rod photoreceptors result in poorer 

visual acuity in the peripheral visual field in comparison with that of 

the fovea with its low rod count and high density of cone 

photoreceptors. In contrast to rods, cone photoreceptors require higher 

levels of light stimulation and are sensitive to three different peak 

absorptions (red, green and blue) (Wassel & Boycott, 1991). Cones are 

most highly concentrated in the fovea and are responsible for high 

acuity vision and colour discrimination. The nuclei of photoreceptor 

cells are situated in the outer nuclei layer, and their outer segments 

are situated close to the RPE. 

 

Figure 1.3: Diagram of human rod and cone photoreceptors. Adapted 
from: DeMar et al (1999). 
 

1.1.3.2 Bipolar cells 

Bipolar cells are second order neuronal cells that are responsible for 

the transmission of signals from photoreceptors and horizontal cells to 

amacrine cells and RGCs. Different types of bipolar cell are responsible 

for scotopic (low light/rod mediated) and photopic (bright light/cone 
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mediated) vision, with rod photoreceptors making synaptic connections 

to only one type of bipolar cell, but as many as 10 different type of 

bipolar cell being associated with photopic signalling (Wu, 2009). The 

ratio of bipolar cell connection to photoreceptors also varies greatly 

with location across the retina. Often in the fovea and central retina 

there is a 1:1 ratio of bipolar cell to photoreceptor, whereas bipolar 

cells in the peripheral retina can form synaptic connections with up to 

100 rods (Forrester, 2016). Consequently, the size of bipolar cell 

dendritic tree also varies depending on position in the retina, being 

much larger in the peripheral retina. 

 
1.1.3.3 Horizontal cells 

Horizontal cells are interneurons that connect laterally in the inner 

nuclear layer (INL) of the retina. Horizontal cells can be classified into 

3 distinct types, HI, HII & HIII depending on their ability to connect to 

the different sub classes of cone photoreceptors and also rods in the 

case of HII cells (Kolb et al, 1994). The functional role of horizontal 

cells is regulation of the electrical firing rate of their connected bipolar 

cells.  

 

1.1.3.4 Amacrine cells 

Amacrine cells are interneurons that project their dendrites into the 

inner plexiform layer (IPL) at the synapses between bipolar cells and 

RGCs. Multiple subtypes of amacrine cell exist with a diverse range of 

functions to modulate the responses of bipolar cells and RGCs, which 

is achieved by the release of excitatory neurotransmitters such as 

glutamate and acetylcholine or conversely by release of inhibitory 

neurotransmitters such as glycine and GABA. 

 
1.1.3.5 Retinal ganglion cells 

Retinal Ganglion cells (RGCs) are the neurones of the retina that 

receive information from the photoreceptors via the bipolar and 

amacrine cells. They contain a single axon, which emerges from the 
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cell body and forms the inner nerve fibre layer of the retina. The RGC 

axons run parallel to the inner surface of the retina and accumulate 

with all RGC axons at the optic disc. As a result, the density of the 

RGC layer is thickest at the optic disc (Forrester et al, 2016). The total 

number of RGCs for each eye has a reported 800,000 – 1.5million cells 

(Jonas et al, 1990). The nerve fibres then leave the eye, passing 

through the lamina cribrosa and forming the optic nerve.  

 

There are multiple different forms of retinal ganglion cells and each 

type has their own classification based on the morphology and spread 

of their dendritic tree, the level of branching in the inner plexiform 

layer and the size of their cell body.  

 

1.2 Glaucoma 

Glaucoma is the term for a group of progressive and irreversible optic 

neuropathies that lead to loss of RGCs in the inner retina and their 

axonal projections. The result is a gradual reduction in the visual field, 

starting at the periphery before progressing to the centre, which can 

lead ultimately to total blindness. It is estimated that more than 60 

million people worldwide suffer from glaucoma and it is the second 

leading cause of global blindness after cataract (Flaxman, 2017), which 

makes glaucoma the world leading cause of irreversible blindness. 

 

Due to glaucoma being a term that encompasses a group of retinal 

neuropathies, it can be classified into different sub-types depending on 

cause and pathophysiology. It is divided into primary and secondary 

glaucoma, where secondary glaucoma occurs as the result of another 

condition such as uveitis (Panek et al, 1990), or as a result of ocular 

trauma, drugs or injury (Girkin et al, 2005). Primary glaucoma can 

then be subdivided into open-angle or closed angle, depending on the 

acute angle situated between the iris and the cornea at the periphery 

of the anterior chamber, the iridocorneal angle (Figure 1.4).  
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Figure 1.4: Diagram of the flow of humor and the iridocorneal angle in 
A-Open angle Glaucoma, B-Closed angle glaucoma. Available from: 
https://classconnection.s3.amazonaws.com/33/flashcards/602033/j
pg/open_angle_vs_closed_angle_glaucoma1330585756893.jpg 
 

Estimates suggest both types have roughly equal prevalence (Flaxman, 

2017). Of the two primary forms, both have the characteristic feature 

of raised intraocular pressure (IOP), which is a major modifiable risk 

factor in disease progression. However, in many cases, glaucoma 

presents without increased IOP, a category known as normal tension 

glaucoma (NTG). 

 

Despite being extensively investigated, current knowledge of the exact 

mechanism of RGC death in glaucoma remains unknown, there is 

increasing evidence that neuroinflammation plays an important role 

(Mac Nair & Nickells, 2015; Williams et al, 2017). Microglia, as resident 

immune cells of the retina are central to the process of 

neuroinflammation, with understanding of microglial function being of 

great importance in the understanding of glaucomatous 

pathophysiology.     
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1.3 Microglia 

Microglia are resident mononuclear phagocytic cells, distributed widely 

throughout the central nervous system (CNS). Microglia derive from 

myeloid progenitor cells in the primitive yolk sac and proceed to 

migrate to the brain and associated CNS parenchyma during early 

embryonic development (Ginhoux et al, 2013, Kierdof et al, 2013). 

Once migrated to the CNS, microglia continue to locally self-regulate 

and renew their population throughout adult life by a balance of 

proliferation and apoptosis (Bruttger et al, 2015), without any further 

contribution from peripheral immune cells (Askew et al, 2017). It is 

estimated that microglia represent between 10-15% of the total cell 

population of the brain (Lawson et al, 1992), and also display a diverse 

range of morphologies across the various regions they reside in. 

Additionally, as the retina is a CNS tissue, microglia are located 

throughout, residing predominantly at the nerve fibre layer-ganglion 

cell layer interface, the inner nuclear layer and the outer plexiform 

layer (Hume et al, 1983). Microglial cells have a diverse range of 

functions throughout the CNS, related to CNS development, regulating 

homeostasis and as responders to immune and pathogenic 

challenges.   

  

As they share a common lineage with macrophages and other immune 

cells, it can be difficult to selectively distinguish 

microglia experimentally. One of the first microglial detection methods 

was with weak silver carbonate stain (McCarter, 1940). Since then 

multiple more markers with increased selectivity for resting microglia 

have been discovered, including transmembrane protein 119 

(TMEM119) (Satoh et al, 2016), the purinergic P2Y12 receptor 

(P2Y12R), and, exclusively to murine microglia, Fc receptor-like 

scavenger S (FCRLS) (Butovsky et al, 2014).  

 

It has been demonstrated that microglia have a range of critical 

roles in early CNS development (Frade & Barde et al, 1998). Microglia 
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are also involved in various aspects of synaptic health and 

homeostasis, including their formation (Lim et al, 2013) and 

remodelling (Weinhard et al, 2018), including the regulation of synaptic 

plasticity (Rogers et al, 2011) and the process of synaptic pruning 

critical for correct brain function (Bruce-Keller, 1999, Paolicelli et al, 

2011; Schafer et al, 2012). Outside of their synaptic duties, microglia 

are also involved in embryonic neurogenesis (Walton et al, 2006; 

Cunningham et al, 2013), reorganisation of neuronal networks via 

phagocytosis (Sierra et al, 2010; Tremblay et al, 2010) and supporting 

the remyelination of axons (Olah et al, 2012). The roles microglia play 

in early CNS development are perhaps best highlighted by studies of 

microglial dysfunction or absence, which results in the subsequent 

dysfunction of neuronal networks (Zhan et al, 2014) and general 

disrupted brain development (Erblich et al, 2011; Paolicelli et al, 

2011).  

 

As well as their neuronal remodelling and synaptic functions, under 

normal “resting” conditions, microglia contribute to a signalling 

network system with neurons, in order to modify function 

and promote neuronal survival. For instance, healthy 

neurons tonically release the chemokine CC3CL1 (fractalkine), which 

binds to its corresponding receptor (CX3CR1) on resting microglia to 

induce the release of adenosine, which in turn acts on neuronal A1 

receptors to activate survival pathways (Lauro et al, 2008; 2010). The 

microglial/neuronal CX3CL1 pathway has also been implicated in the 

process of synaptic pruning (Kettenmann et al, 2013), whereby 

deficiency in the chemokine leads to reduced microglial surveillance 

(Pagani et al 2015).  There is also a wealth of evidence that microglia 

regulate inhibitory transmission of neuronal networks via the release 

of brain derived neurotrophic factor (BDNF), which interacts 

with Tropmyosin receptor kinase B (TrkB) (Tanaka et al, 

1997; Frerking et al, 1998; Baldelli et al, 2005).  
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Perhaps the most important role of microglia, is monitoring the CNS 

parenchyma for pathological stimuli, in order to react and mount a 

protective response. Signalling molecules that stimulate a microglial 

immune response are often grouped into two categories, pathogen-

associated molecular patterns (PAMPs) and danger-associated 

molecular patterns (DAMPs) based on their source of origin (Bianchi, 

2007). PAMPs, as their name would suggest, are derived from 

infectious microorganisms and include the bacterial cell wall 

component lipopolysaccharide (LPS). In contrast, DAMPs are derived 

from host cell components as a result of damage/stress and cell death. 

Microglial surveillance of their environment is achieved utilising fine 

motile processes which sample their surroundings (Davalos et al, 

2005; Nimmerjahn et al, 2005). In order detect a wide range of stimuli, 

microglia are endowed with a large array of immune receptors such as 

toll-like receptors (TLRs), nucleotide-binding oligomerization domains 

(NODs) and various scavenger receptors (SRs) (Chen et al, 2009; Bell et 

al, 1994; Ransohoff & Perry, 2009; Kettenmann et al, 2011).  

  

When microglia are stimulated, they respond based on the specific 

nature of the stimulus, to either promote or suppress inflammation, in 

order to prevent tissue damage, promote tissue repair, and return the 

surrounding microenvironment back to homeostatic control (Nakajima 

& Kohsaka, 1993). After activation, in order to elicit an appropriate 

response microglia must undergo morphological transformation into 

functional phenotypes, a process known as microgliosis. It is now 

recognised that activated microglia exist in two broad distinct states; 

M1 or “classically” activated, responsible for pro-inflammatory 

responses and M2 or “alternatively” activated, responsible for an anti-

inflammatory response. Although this nomenclature and classification 

originally referred to activation states recognised in peripheral 

macrophages, activated CNS microglia undergo similar profiles, and 

much of the evidence for macrophage profiles can be extrapolated to 

that of microglia.  
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1.3.1 Retinal microglia 

During development, migration of microglia to the retina is thought to 

occur from two sources, the optic nerve head and the ciliary body. The 

lineage of optic nerve head derived microglia is thought to be 

macrophagic (Ginhoux et al, 2010), whereas the ciliary body derived 

microglia show markers of dendritic lineage (Diaz-Araya et al, 1995a; 

1995b). In the developing retina, microglia inhabit all layers of the 

retina (Ashwell et al, 1989), however as the retinal layers develop, 

microglia settle in the plexiform layers (Santos et al, 2008), albeit with 

a highly branched morphology, with branches that can span the entire 

retina (Karlsetter et al, 2015). This is consistent with the resting state 

of other CNS microglia.   

 

Like their brain counterparts, retinal microglia have a range of 

physiological roles in retinal development, homeostasis and 

inflammation/disease. As activation of retinal microglia by changes in 

the retinal environment can lead to deleterious effects (Dick et al, 

2003), several mechanisms are utilised in maintaining microglia in a 

resting state for retinal homeostasis. This process involves 

contribution from multiple retinal cell types, such as RPE cells 

(Liversidge et al, 1994), retinal neurons (Liang et al, 2009) and Müller 

cells (Wang & Wong, 2014; Gallina et al, 2015), which release a variety 

of signalling molecules that modulate microglial activity. Such 

signalling molecules include CX3CL1 (Liang et al, 2009; Huang et al, 

2013), CD200 (Carter & Dick, 2004), diazapam binding inhibitor (DBI) 

(Wang et al, 2014), NO and Prostaglandin E2 (Liversidge et al, 1994), 

and ATP (Wang & Wong), 2014. During development, microglial 

phagocytosis is thought to play a major role in the clearance of dying 

neurons in the GCL and INL of the retina (Hume et al, 1983). As 

previously described, microglia play a key role in synaptic pruning, a 

process that involves the associated protein C1q (Stevens et al, 2007). 

Since expression of C1q is concentrated at synapses of RGCs in the 

IPL, and that expression negatively correlates with maturation of the 
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retina (Stevens et al, 2007), it is assumed that retinal microglial 

synaptic pruning occurs in the retina as part of the development 

process in this layer. Microglial phagocytotic function is retained in the 

developed retina, and contributes to the clearance of dead cells and 

debris in pathological conditions (Thanos, 1991; Khono et al, 2013; 

Yuan et al, 2015). The role of microglial phagocytosis was further 

demonstrated with neutralisation of the microglial c-type lectin protein 

dectin-1, causing a reduction in the clearance of Candida albicans 

(Maneu et al, 2011).  

 

1.3.2 Retinal microglia in glaucoma 

Microglia are often the primary responding cell type to 

pathophysiological events, and as such investigation into microglial 

activity may provide a wealth of information into early stages of 

glaucoma development. Primary isolated retinal microglia represent an 

excellent tool for research, however their limited lifespan and difficulty 

in isolating from native tissue are also limiting factors. Alternatively, 

CNS derived, retrovirally immortalised microglial cell lines are also 

commercially available including BV-2 and N9 murine microglia, which 

mitigate some of the disadvantages associated with the use of primary 

microglia. Immortalised cell lines also have associated disadvantages 

including their susceptibility to dedifferentiation. Investigation of 

microglial responses, whether isolated primary cells or immortalised 

cell lines, in the absence of additional cell types and native tissue 

architecture however is not the same as experimental modelling of 

glaucoma, and caution should be taken when interpreting results of 

such experiments. 

 

As with other neurodegenerative diseases of the CNS such as 

Parkinson’s and Alzheimer’s disease, there is much interest in the role 

of microglia in the pathophysiology of glaucoma, however it remains 

poorly understood. Microglial activation in the optic nerve head (ONH) 

and the retina is reported as one of the first detectable events in 
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glaucoma, preceding RGC death (Neufeld, 1999; Yuan & Neufeld, 

2001; Johnson & Morrison, 2009; Ebneter et al, 2010; Bosco et al, 

2011; Taylor et al, 2011). Evidence of early microglial activation in 

glaucoma is based on numerous studies.   

  

For example, in human subjects with glaucoma, microglia have been 

demonstrated to undergo morphological changes to an ameboid M1 

state coupled with increased proliferation (Yuan & Neufield, 2001). 

Several other morphological changes have also been observed, 

including, an upregulation of several immune related receptors, such 

as TLRs (Luo et al, 2004), MHC classes I and II (Kreutzberg, 

1996; Streit et al, 1999) and CD68, which is coupled to enhanced 

phagocytic activity (Rojas et al, 2014; Yuan & Neufield, 2001). 

Additionally, these phagocytic microglia express pro-inflammatory 

molecules such as complement cascade proteins, Tumor necrosis 

factor alpha (TNFα), and several metalloproteases (Yuan & Neufield, 

2000; Yuan & Neufield, 2001). Based on the microglial profile 

expressed in the early stages of glaucoma, the stimuli responsible are 

likely to be one of many DAMPS or heat shock proteins (HSPs). 

Interestingly, proteomic analysis of human glaucomatous retina has 

shown increased expression of HSP-60 and HSP-70, as well as TLR2, 

TLR4 and TLR7 (Luo et al, 2010), although this is a tissue-wide 

phenomenon and not isolated to microglia.   

  

Due to the difficulties associated with human tissue, animal models of 

glaucoma are much more prevalent and thus a much wider body of 

data on microglia in animal glaucomatous models is available 

(Bouhenni et al, 2012), with the majority of studies conducted in 

rodent models (Pang & Clark, 2007). Experimental increase of IOP by 

cauterization of episcleral veins in rats demonstrated the death of 

RGCs (Naskar et al, 2002), and their ingestion by activated microglia. 

In this study, activated microglia with phagocytosed RGC contents 

were observed at the site of degeneration after just 3 days of increased 
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IOP. Similarly, in a model of acute IOP increase in C57BL/6J mice, the 

migration and proliferation of ameboid microglia was observed after a 

week (Kezic et al, 2013). In a study utilising CX3CR1-GFP reporter 

mice, similar patterns of activation, proliferation and migration were 

observed, which were parallel to a decline in the number of total RGCs 

(Liu et al, 2012). Another procedure used to study glaucoma in a 

mouse model is unilateral laser induced ocular hypertension, in 

which the untreated eye serves as a negative control. In studies 

utilising this model, microglial activation was demonstrated in the 

ganglion cell layer of the optic nerve head, as well as the outer regions 

of the retina (Gallego et al, 2012; de Hoz et al, 2013; Rojas et al, 

2014).   

  

One model commonly used to study glaucomatous progression is the 

DBA/2J (D2) mouse model. DBA/2J (D2) mice have genetic mutations 

in the melanosomal protein glycosylated protein NMB (GPNMB) and 

tyrosine-related protein-1 (TYRP1), which leads to an increase in IOP 

secondary to systemic pigment dispersion syndrome, presenting 

between 6-8 months in age (Anderson et al, 2002). With DBA/2J (D2) 

mice, these mutations do not always fully develop due to low mutation 

penetrance (Libby et al, 2005), meaning mice with regular IOP after 6 

months can be used as a negative control in these studies. Temporal 

analysis of microglia in the DBA/2J (D2) via staining with Iba1 marker 

demonstrated early microgliosis and the clustering of Iba1 positive 

cells (presumably microglia) in the inner central retina and 

unmyelinated optic nerve sections at only 3 months (Bosco et 

al, 2011). Analysis of DNA microarrays of microglia from the optic 

nerve head region of DBA/2J (D2) mice have shown high expression of 

C1qa, endothelin 2 and components of the complement cascade 

(Howell et al, 2011). To validate these observations, dietary 

administration with the endothelin receptor 

antagonist bosentan protected against neurodegeneration (Howell et al, 

2014).   
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1.4 Purinergic signalling  

Purine nucleosides such as adenosine, and nucleotides such as 

adenosine-5’-triphosphate (ATP) and adenosine-5’-diphosphate (ADP), 

are part of a family of chemical mediators which are most well known 

for their role in cellular energy metabolism, however they also have a 

diverse range of functions in extracellular signalling, including within 

the peripheral and central nervous system (Figure 1.5). The role of 

purines as cell signalling molecules was originally discovered in 

relation to the effects of adenosine on the cardiovascular system (Drury 

& Szent-Györgyi, 1929). This discovery lead to the idea that purine 

nucleotides and nucleosides could act as a signalling molecule between 

cells. The role of purine nucleotides and nucleosides (in particular ATP) 

as neurotransmitters was discovered in early electro-stimulation 

experiments (Holton, 1959), and is now understood to be present and 

modulatory in almost all neurons. This theory was long contested 

among the scientific community, but today is accepted universally.   

 

It was from pioneering work in the early 1970s by Burnstock (et al, 

1970; Burnstock, 1972), where the discovery was made that ATP is 

also released at many neurons as a co-transmitter, that the term 

purinergic signalling was first coined. ATP is often co-packaged with 

neurotransmitters such as acetylcholine and noradrenaline (Silinsky, 

1975 Unsworth & Johnson, 1990) and has also been shown to be co-

released alongside various neurotransmitters including GABA, 

glutamate, 5-hydroxytryptamine (5-HT) and dopamine (Burnstock, 

2007).  
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Figure 1.5: Molecular structure of ATP  
 
As well as ATP being in synaptic vesicles in neurons, ATP is stored in 

secretory vesicles in other cells, which can be stimulated to release via 

exocytosis (Praetorius & Leipziger, 2009). The packaging of ATP into 

synaptic or secretory vesicles is regulated by the vesicular nucleotide 

transporter (VNUT), which utilises an intracellular proton gradient 

generated by V-ATPase (Sawada et al, 2008). Exocytosis of ATP from 

vesicles is a highly regulated process involving the soluble N-

ethylmaleimide-sensitive factor attachment protein receptor (SNARE) 

family of proteins, as well as associated accessory factors (Sudhof & 

Rothman, 2009. A key stimulus of vesicle exocytosis is increased levels 

of intracellular calcium ([Ca2+]i) (Messenger et al, 2014).  

 

Free cytosolic ATP is also released by plasma membrane channels, 

primarily via a pannexon pore, formed as a homohexamer of pannexin-

1 subunits (Dahl, 2015). The pannexon channel has two open 

conformations, whereby the larger open state is non-selectively 

permeable to molecules with a molecular weight of less than 1.5kD, 

including ATP (Dahl, 2015). Pannexin channel involvement in non-

vesicular ATP release has been demonstrated after a range of 
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stimulating factors, including mechanical stress, hypoxia, elevated 

[Ca2+]i and the binding of several ligands to their respective receptors, 

including glutamate and angiotensin II (Bruzzone et al, 2005; Ransford 

et al, 2009; Dahl, 2015). Furthermore, ATP stimulation of purinergic 

receptors is able to induce pannexin mediated ATP release in a positive 

feedback mechanism termed ATP-induced ATP release (Locovei et al, 

2006; Locovei et al, 2007), which acts to amplify ATP signals. Cellular 

ATP release also occurs during cellular injury and death (Martins et al, 

2014). In cell death that features disruption of the cell membrane, 

such as necrosis, intracellular contents including ATP are passively 

released into the extracellular milieu.  

 

Upon release, ATP is degraded by extracellular ectonucleotidases to 

related purinergic signalling ligands, such as ADP, adenosine 

monophosphate (AMP) and adenosine, which are pharmacologically 

active, providing ligands for all classes of purine receptor (Abbracchio 

et al, 2009). These pathways are summarised in Figure 1.6. 

Ectonucleoside triphosphate diphosphohydrolase-1 (NTPDase1), more 

commonly known as Cluster of Differentiation 39 (CD39), is a key 

enzyme in the degradation of ATP, which catalyses the hydrolysis of γ 

and β phosphate groups, to produce ADP and AMP respectively, in a 

Ca2+ and Mg2+ dependent manner (Heine et al, 2001). Ectonucleotide 

pyrophosphatase/phosphodiesterase 1 (ENPP1) is another 

ectonucleotidase enzyme that catalyses the cleavage of 5’-

phosphodiester bonds of a broad range of nucleotide substrates, 

including ATP, UTP and cyclic AMP (cAMP) (Namasivayam et al, 2017), 

albeit with preference towards ATP as a substrate (Kato et al, 2012). 

Catalysis of ATP by ENPP1 generates AMP without the formation of 

intermediary ADP due to the hydrolysis of the phosphodiester bond 

between the α and β phosphate groups (Kato et al, 2012). Adenosine is 

subsequently formed from the degradation of AMP, primarily by 

activity of the dimeric enzyme cluster of differentiation 73 (CD73), 

alternatively known as Ecto-5’-nucleotidase (Latini & Pedata, 2001). 
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Another source of production of intracellular adenosine is from the 

hydrolysis of S-adenosylhomocysteine (SAH) by the enzyme SAH 

hydrolase, a process which is thought to provide the cell with up to a 

third of its adenosine production (Lloyd et al, 1988).  

 

Figure 1.6: Overview of receptor families, endogenous ligands and 
ectonucleotidases that constitute purinergic signalling. Adapted from 
Ottensmeyer et al, 2018.  
 
1.4.1 Purinergic receptors  

The effects of signalling via nucleotides and nucleosides ligands are 

exerted at families of purinergic receptors. A system of purinoceptor 

classification was first established based on a combination of 

structural characteristics and pharmacological properties (Burnstock, 

1978; Burnstock & Kennedy, 1985). Although experimental evidence 

for purinergic receptors had existed for some time, widespread 

acceptance of their existence was determined by the cloning and 

characterization of purine and pyrimidine sensitive receptors, of which 

four P1, eight P2Y (1,2,4,6,11-14) and seven P2X receptor subtypes (1-

7) have been discovered in humans. 
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1.4.2 Adenosine receptor family 

Receptors sensitive to adenosine, originally termed P1 receptors, were 

the first to be cloned (Libert et al, 1991). There are currently four 

recognised adenosine receptor subtypes, A1, A2a, A2b and A3, all of 

which are members of the G protein-coupled receptor (GPCR) 

superfamily. They are all linked to adenylate cyclase which governs the 

majority of their effects. Adenosine receptors have been shown to play 

critical roles in cardiac muscle regulation, neuronal function, pain and 

sleep, as well as inflammation (Blackburn et al, 2009; Sawynok, 2016). 

The pro-inflammatory effects of adenosine are largely attributed to the 

A1 receptor, whereas anti-inflammatory effects are mediated via the A2a 

receptor (Blackburn et al, 2009). The crystal structures of A1 and A2a 

receptor subtypes have been published (Cheng et al, 2017). Of the four 

receptor subtypes, A1 and A3 share ~49% sequence homology and 

couple to Gαi/o (Cordeaux et al, 2004; Zhou et al, 1992). A1 can also 

couple to Gαs and Gq/G11 demonstrating ligand specific G-protein 

selectivity (Cordeaux et al, 2004). A2a and A2b share ~59% sequence 

homology and couple to Gαs (Olah, 1997; Feoktistov & Biaggioni, 

1995). Expression of adenosine receptors is ubiquitous throughout the 

body and has been shown on all immune cells (Haskó et al, 2008), 

including the presence of all receptor subtypes on microglia (Fredholm 

et al, 2001).  

 

The endogenous ligand of all adenosine receptors is its namesake 

purinergic-signalling molecule. Compounds of the methylxanthine 

class of drugs are non-selective antagonists of adenosine receptors, 

including theophylline, istradefyline and (the most widely consumed 

drug worldwide), caffeine, all of which are approved therapeutic drugs. 

Numerous subtype selective agonists and antagonists have also been 

developed. 
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1.4.3 P2Y receptor family 

The P2Y receptor family (P2YR) are all G protein-coupled, but with a 

relatively high diversity in amino acid sequence amongst the eight 

recognised mammalian subtypes. Despite this diversity in subtype 

sequences, all P2YRs belong to the δ-branch of class A GPCRs 

(Fredriksson et al, 2003; Lagerström & Schiöth, 2008). The first P2YR 

was successfully cloned from chick brain cDNA was P2Y1 (Webb et al, 

1993). Soon after, all eight mammalian subtypes were cloned and 

characterised as well as a number of orphan receptors and predicted 

non-mammalian nucleotide G protein-coupled receptors that are 

structurally similar, but have yet to be proven functional, (denoted as 

p2y lowercase) (Vanhoutte et al, 1996; King et al, 2000).  

 

The early GPCR structural prediction was based on genetic structural 

analysis coupled to molecular modelling approaches with the similarly 

related rhodopsin GPCR (Costanzi et al, 2004; Jacobson et al, 2013), 

and was eventually supported by the recent publication of the crystal 

structures for P2Y12 (Zhang et al, 2014a; Zhang et al, 2014b) and 

P2Y1 (Zhang et al, 2015) which demonstrated multiple GPCR 

structural characteristic features including seven hydrophobic α-

helical transmembrane regions (TM1-7) interspersed with alternating 

intracellular and extracellular loops (three of each in total) (Figure 1.7). 

Clarification of the ligand binding site was achieved initially by 

searching for conserved sequences combined with mutagenesis of 

likely candidates (Erb et al, 1995; Jacobson et al, 2013; Schmidt et al, 

2013). Eventually, clarification of the ligand-binding site was 

supported with crystal structure publications, identifying that regions 

in TM3,6 & 7 appear to be involved (Schmidt et al, 2013; Zhang et al, 

2015). P2YR receptors can be subdivided into two groups based on 

their more similar sequence homology. P2YRs 1, 2, 4, 6 & 11 comprise 

the first subgroup and couple to Gq, exerting their effect via 
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phospholipase C (PLC) activation and subsequent IP3 signalling and 

release of intracellular calcium stores. Conversely, the P2YRs 12, 13 & 

14 of the second subgroup couple to Gi to inhibit adenylate cyclase or 

modulate activity of ion channels. Uniquely among P2YRs is P2Y11, 

which has also been shown to couple to Gs and increase activity of 

adenylate cyclase.  

 

 

Figure 1.7 X-ray crystal structure of P2Y12 with antagonist AZD1283 
bound, showing the characteristic structural features of the P2YR 
family of GPCRs. Cell membrane is represented by the shaded region 
and α-helical transmembrane regions are labelled I-VII. Adapted from 
Zhang et al, 2014b. 
 

As well as structural diversity, there is large diversity in endogenous 

agonists for the P2YR subtypes, including adenine nucleotides, 

(predominantly ADP, but also ATP to a lesser extent), the uracil 

nucleotides UTP, UDP and the sugar linked UDP-glucose.  

 

1.4.3.1 P2Y1 

The first P2YR to be cloned, P2Y1 was isolated from chick brain tissue 

(Webb et al, 1993), and the human homologue was isolated shortly 

afterwards (Ayyanathan et al, 1996). The human P2Y1 receptor gene 
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(P2RY1) contains no intron regions and is located on chromosome 3. 

Human P2Y1 is expressed extensively throughout the body and in the 

CNS. It is distributed across a number of brain regions (most notably 

the nucleus accumbens) as well as in the spinal cord, (Moore et al, 

2001) and in retinal Müller cells (Grosche et al, 2013) and RPE cells 

(Tovell & Sanderson, 2008). In immune cells, P2Y1 is shown to be 

expressed in human macrophages (Moore et al, 2001) and additionally 

mouse microglial cells (Light et al, 2006; Fukumoto et al, 2018), 

although receptor expression in microglia is reportedly weak. Human, 

rat and mouse P2Y1 all form a 373 amino acid protein, with a 97.1% 

sequence homology between the two rodent receptors (Tokuyama et al, 

1995). P2Y1 belongs to the first subfamily of P2YRs that couple to Gαq/ 

Gα11 as well as modulating the inhibition of K+ channels (Filippov et al, 

2006; Erb & Weisman, 2012).  

 

Both adenine based nucleotides ADP and ATP act as endogenous 

ligands at P2Y1, where ADP is a full and ATP a partial agonist (Palmer 

et al, 1998; Waldo et al, 2002; von Kügelen, 2019). Further P2Y1 

ligands include methylthionated analogues of ADP, as well as the 

highly selective and potent MRS2365 (Chhatriwala et al, 2004) which 

mimic the pharmacology of their endogenous counterparts (Schachter 

& Harden, 1997; Waldo et al, 2002). P2Y1 is blocked at low affinity by 

pan P2-antagonists PPADS and suramin (Waldo et al, 2002), however 

the competitive antagonist MRS2179 is both more potent and highly 

selective for P2Y1 receptors (Boyer et al, 1998). 

 

1.4.3.2 P2Y2 

P2Y2 was originally referred to as the P2U receptor before being 

renamed under nomenculature guidelines. Discovered shortly after 

P2Y1, P2Y2 was originally cloned from murine neuroblastoma cells 

(Lustig et al, 1993) followed by the human homologue from human 

epithelial airway cells (Parr et al, 1994), where its gene was located to 

chromosome 11. P2Y2 expression has been detected in many tissues 
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including extensively in the CNS in various brain regions (Moore et al, 

2001), RPE cells (Tovell & Sanderson, 2008), as well as macrophages 

(Abbracchio et al, 2006) and microglia (Tozaki-Saitoh et al, 2012). The 

translated human receptor protein is 377 amino acids in length, and 

couples directly to PLCβ1 via Gαq/11 (Erb & Weisman, 2012).  

 

Both endogenous UTP and ATP are full agonists of P2Y2, with the 

former having stronger potency (Lazarwoski et al, 1995), whereas the 

receptor is insensitive to ADP and UDP. Additional selective agonists 

have been developed including MRS2698 (Ivanov et al, 2007) and 

PSB1114, which is 60-fold more selective over P2Y4 and P2Y6 (El-

Tayeb et al, 2011). Another class of agonists include analogues of UTP 

with a thiol group at different positions on the uracil base 

(Brunschweiger & Müller, 2006; El-Tayeb & Müller 2006). Although 

insensitive to pan purinergic antagonists PPADS and Reactive blue 2 

(RB2), P2Y2 is sensitive to suramin (Janssens et al, 1999). The 

selective competitive antagonist AR-C118925XX is also used 

experimentally (Kemp et al, 2004).  

 

1.4.3.3 P2Y4 

Previously known as the pyrimidinoceptor, P2Y4 was isolated from a 

human genomic cDNA library (Communi et al, 1995; Nguyen et al, 

1995) independently by two groups at roughly the same time. The 

location of the gene (P2RY4) was determined to be at region q13 on the 

X chromosome (Nguyen et al, 1995). Human P2Y4 has been 

demonstrated as widely expressed in tissues including the intestine, 

liver, kidneys, pancreas and brain (Moore et al, 2001). In terms of 

immune cells human macrophages show P2Y4 expression (Moore et al, 

2001) and low levels of P2Y4 mRNA have been detected in microglia 

(Light et al, 2006) along with protein expression (Li et al, 2013). There 

is evidence of expression in rat retinal Müller cells (Wurm et al, 2009) 

and RPE cells (Tovell & Sanderson, 2008). Translated hP2Y4 receptor 

protein is 365 amino acids in length (both murine are 361) and only 
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shows 51% sequence homology to human P2Y2 receptor (Communi et 

al, 1995). Like P2Y1 and P2Y2, P2Y4 couples to PLCβ1 via Gαq/11 (Erb & 

Weisman, 2012).  

 

There are prominent species specificity differences for the endogenous 

ligands of P2Y4. UTP is a full agonist at the hP2Y4 but only a partial 

agonist at the rP2Y4, whereas ATP, which is a full agonist at rP2Y4 

and an antagonist at hP2Y4 (Kennedy et al, 2000, Jacobson et al, 

2002). Similarly to ATP, diadenosine tetraphosphate (AP4A) acts as an 

agonist at rP2Y4, but as an antagonist at hP2Y4 (Kennedy et al, 2000). 

ATP/UTP analogues with alternative nucleoside groups such as 

inosine-5’-triphosphate (ITP), guanosine-5’-triphosphate (GTP) and 

cytidine-5’-triphosphate (CTP) all act as partial agonists at both human 

and rat P2Y4 (Bogdanov et al, 1998, Kennedy et al, 2000). Relatively 

recently, synthetic selective P2Y4 agonists have emerged including 

MRS2927 and MRS4062 (Maruoka et al, 2011). There are currently 

very few antagonists for P2Y4, with the P2Y4 selective antagonist PSB-

16133 having been developed only recently (Rafehi et al, 2017). The 

pan-antagonists PPADS and RB2 are antagonists at hP2Y4 and rP2Y4 

respectively (Jacobson et al, 2009; Bogdanov et al, 1998). 

 

1.4.3.4 P2Y6 
P2Y6 was first cloned from aortic smooth muscle (Chang et al, 1995), 

with cloning of the human homologue from a placenta cDNA library 

occurring shortly after (Communi et al, 1996), where it was located to 

chromosome 11 (Pidlaoan et al, 1997). Reverse transcription 

polymerase chain reaction (RT-PCR) studies have revealed extensive 

expression of P2Y6 across multiple brain regions, with highest 

expression located in the cingulate gyrus (Moore et al, 2001). Notable 

P2Y6 expression outside the CNS includes the high levels in the 

spleen, as well as; macrophages and Müller cells (Moore et al, 2001; 

Fries et al, 2005). Evidence also suggests P2Y6 to be the most highly 

expressed purinergic receptor in microglia (Light et al, 2006). The 
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translated P2Y6 receptor is only 328 amino acids long for human and 

both rodent homologues (Bailey et al, 2001; Lazarowski et al, 2001). As 

a member of the first subgroup of P2YRs, P2Y6 couples to PLCβ1 via 

Gαq/11 (Erb & Weisman, 2012), but also shows evidence of G12 coupling 

in some cell types (Nishida et al, 2008). 

 

The only endogenous full agonist for P2Y6 is UDP, however UTP and 

ADP are also less potent partial agonists (Communi et al, 1996). 

Several synthetic selective P2Y6 agonists have been developed 

including MRS2693 (Besada et al, 2006), MRS2782 (Ko et al, 2008) 

and MRS2957 (Maruoka et al, 2010). Non-competitive antagonist 

MRS2578 is P2Y6 selective (Mamedova et al, 2004). P2Y6 is also 

blocked by purinergic receptor pan-inhibitors PPADS, RB2 and 

suramin (von Kügelgen & Hoffmann, 2016).  

 

1.4.3.5 P2Y11 

The human P2Y11 receptor was first cloned from placental tissue 

(Communi et al, 1996) and is unique among P2YRs in many aspects. 

Notably, the P2Y11 gene (P2RY11), found on chromosome 19, contains 

an intron in its coding sequence (Communi et al, 2001). No ortholog 

from rat or mouse has been cloned, although experimental evidence for 

a functional murine P2Y11 has been demonstrated in mouse 

cardiomyocytes (Balogh et al, 2005). P2Y11 is expressed extensively in 

the central nervous system, notably highly in the parahippocampal 

gyrus, putamen, nucleus accumbens and striatum brain regions, as 

well as the spinal cord, pituitary gland. It is also expressed in 

lymphocytes and macrophages (Moore et al, 2001). Structurally P2Y11 

is a 374 amino acid length protein which contains much larger second 

and third extracellular loops than other P2YRs (Communi et al, 1997; 

Communi et al, 2001). P2Y11 also dually couples to Gq and Gs proteins 

(Communi et al, 1997; Communi et al, 1999; Qi et al, 2001). Evidence 

of co-expression and interaction between P2Y11R with P2Y1R has also 
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been demonstrated (Haas et al, 2014), including in functional evidence 

in rat microglia (Seo et al, 2004; Seo et al, 2008).  

 

P2Y11R displays sensitivity to the endogenous ligands ATP and UTP 

with similar affinities (Communi et al, 1999; White et al, 2003), but not 

ADP. A number of synthetic agonists also have activity at P2Y11R, 

including BzATP, 2MeSATP, ADPβS (Communi et al, 1999). Highly 

potent P2Y11 selective agonists have also been developed, namely 

NF546 (Meis et al, 2010), and AR-C67085 (Balogh et al, 2005), which 

also displays antagonistic activity at P2Y12 (Kennedy et al, 2013). 

 

1.4.3.6 P2Y12 

Cloned from a human platelet cDNA library (Hollopter et al, 2001), the 

human P2Y12 gene (P2YR12) is located on chromosome 3. P2Y12R is 

expressed highly in various brain regions (Hollopter et al, 2001; Sasaki 

et al, 2003), as well as on lymphocytes, leukocytes and platelets (Wang 

et al, 2004). Interestingly, microglia express P2Y12R at such a high 

level, that it is often used as cell marker for identifying microglial cells 

over macrophages (Kobayashi et al, 2008; Zhu et al, 2017). The 

hP2Y12R structure is fairly typical for that of a P2YR, forming a 342 

length amino acid protein, albeit with a distinct straight conformation 

of helix V (Figure 1.7; Zhang et al, 2014b). Murine orthologs are 343 

and 347 amino acids in length for rat and mouse species respectively 

(Simon et al, 2002; Pausch et al, 2004). Similarly to P2Y13 and P2Y14 

subtypes, P2Y12R signals predominately via Gi/Go and inhibits 

adenylate cyclase activity (Sasaki et al, 20003; Bodor et al, 2003).   

 

The principal endogenous agonist at P2Y12 is ADP (Herbert & Savi, 

2003), although 2MeSADP and ADPβS are also agonists (Takasaki et 

al, 2001). Due to P2Y12Rs clinical role in the regulation of blood 

clotting (Dorsam & Kunapuli, 2004), a number of selective synthetic 

irreversible antagonists for P2Y12R have been developed to prevent 

platelet aggregation. Of the thienopyridine class, clopidogrel and 
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prasugrel are prodrugs and require two sequential catalytic 

conversions by hepatic cytochrome enzymes to generate their 

pharmacologically active metabolites (Savi et al, 2000; Kazui et al, 

2010). A number of experimentally used high affinity P2Y12R selective 

synthetic antagonists are also available that do not require metabolic 

activation including AZD1283 (Bach et al, 2013), AR-C67085 (Kennedy 

et al, 2013) and PSB0739 (Hoffmann et al, 2009).  

 
1.4.3.7 P2Y13 

The P2Y13 receptor subtype, initially known as the orphan receptor 

GPR86 (Wittenberger et al, 2001) was first cloned from the human 

astrocytoma cell line 1321N1 (Communi et al, 2001), followed shortly 

by cloning of the mouse and rat orthologs (Zhang et al, 2002; 

Fumagalli et al, 2014). The human P2Y13 gene (P2RY13) is located on 

chromosome 3, clustered with six closely related GPCRs, including 

P2Y1 (Wittenberger et al, 2001). Expression of P2Y13 has been 

exhibited in various cell types and tissues including platelets (Zhang et 

al, 2002), monocytes (Wang et al , 2004), epidermal keratinocytes 

(Inoue et al, 2007) and megakaryocytes (Balduini  et al, 2012). Mature 

human P2Y13 protein is 354 amino acids in length, slightly larger than 

both murine homologues (Zhang et al, 2002) and signals 

predominately via Gi/Go (Communi et al, 2001) 

 

Both ADP and ATP are endogenous agonists for P2Y13R, although the 

former is considerably more potent (Marteau et al, 2003). There are 

currently no P2Y13R selective agonists, however the synthetic 

compounds 2MeADP and 2MeATP are significantly more potent than 

their endogenous counterparts (Marteau et al, 2003). A number of 

synthetic P2Y13R selective antagonists have been developed, including 

the pyridoxal phosphate derivative compounds MRS2211 and 

MRS2603 (Kim et al, 2005), as well as the clinically used antiplatelet 

drug cangrelor (Marteau et al, 2003). The non-selective pan inhibitors 

suramin, PPADS and reactive blue 2 are also antagonists of P2Y13R 
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(Marteau, 2003), albeit with lower affinity than the selective 

compounds.  

 

1.4.3.8 P2Y14 

Originally cloned from human myeloid cells as the orphan receptor 

KIAA0001 (Nomura et al, 1994), P2Y14 was eventually re-classified as 

a P2YR subtype due to its unique pharmacological profile (Chambers et 

al, 2000). Cloning of murine orthologs followed shortly after (Freeman 

et al, 2001). The human and mouse P2Y14 receptor transcripts differ 

significantly but transcribe the same 338 amino acid length mature 

receptor (Carter et al, 2009), whereas the rat ortholog is significantly 

truncated at only 305 amino acids (Freeman et al, 2001). All P2Y14 

homologues signal predominately via Gi/Go. P2Y14 is fairly 

ubiquitously expressed, but is prominently associated with immune 

cells (including microglia) and epithelial cells (Abbrachio et al, 2006). 

 

P2Y14 is activated by endogenous UDP-sugars, of which UDP-glucose 

is the most potent (Fricks et al, 2008). The related purine sugar 

compounds UDP-galactose, UDP-glucuronic acid and UDP N-acetyl-

glucosamine (Fricks et al, 2009) are also endogenous agonists at 

P2Y14. There are conflicting reports of UDP acting as an agonist and 

as a competitive antagonist (Carter et al, 2009; Fricks et al, 2008). The 

first P2Y14 selective synthetic antagonist to be developed was PPTN 

(Barrett et al, 2013). The structurally relate synthetic antagonists 

MRS4458 and MRS4478 (Yu et al, 2018) have since been developed 

with similar affinities. 

 

 
1.4.4 P2X receptor family 

Unlike P2Y receptors, all seven subtypes of P2X receptor are ligand 

gated ion channels (LGICs), with shared structural characteristics. The 

P2X family of receptors (P2XRs) are structurally distinct from other 

super-families of LGICs such as tetrameric glutamate and pentameric 
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Cys-loop receptors, and consist of a trimeric assembly of 3 subunits 

around a central non selective ion conductance pore (Jiang et al, 2003; 

Hattori & Gouaux, 2012) in a three-fold axes of symmetry. Whilst 

homomeric assembly of the trimeric subunits is most common, there is 

evidence of heteromeric trimer assembly (Saul et al, 2013). The 

topology of each subunit consists of intracellular N- and C-termini with 

two transmembrane spanning regions, the first of which (TM1) is 

linked to gating of the channel, whilst the second (TM2) forms the 

interior lining of the central conductance pore (Burnstock, 2007). 

Another characteristic feature of P2XR subunits is a large extracellular 

loop (the ectodomain) between TM1 and TM2 (Clyne et al, 2002; 

Ennion & Evans, 2002; Rokic et al, 2010).  

 

The endogenous ligand for all P2XRs is ATP. Despite this P2XRs do not 

contain a Walker motif characteristic of proteins that bind ATP (Walker 

et al, 1982). Initially experimental evidence (Nagaya et al, 2005), 

followed by experiments combining mutagenesis and electrophysiology 

on eight highly conserved amino acid residues of the ectodomain of 

zfP2X4 (K70, K72, N96, F188, T189, F297, R298 and K316) (Ennion et 

al, 2000; Wilkinson et al, 2006; Fischer et al, 2007; Marquez-Klaka et 

al, 2007; Roberts & Evans, 2007), led to the hypothesised ATP binding 

site for P2XRs as a positively charged pocket at an interface between 

two adjacent subunits, with three sites in total per assembled trimeric 

receptor (Marquez-Klaka et al, 2007). With the publication of the X-ray 

crystal structure of the zebrafish P2X4 receptor (zfP2X4) in its closed 

state (Kawate et al, 2009), followed soon after in its open pore state 

with ATP bound (Hattori & Gouaux, 2012), and more recently the 

crystal structure of P2X3 at three different stages of the gating cycle 

(Mansoor et al, 2016), confirmation of the ATP binding site location in 

P2XRs, as well as the mechanisms of conformational changes 

associated with its binding followed (Figure 1.8). Due to the existence 

of three ATP binding sites per trimeric receptor, it was initially unclear 

whether one ATP molecule bound was sufficient stimulus to open the 
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ion channel pore. It has subsequently been recognised that whilst the 

binding of one ATP molecule is not sufficient for channel opening, it 

does induce a receptor conformation change, resulting in an alteration 

of the second and third ATP binding sites, demonstrating positive 

cooperative binding for the subsequent ATP molecules (Jiang et al, 

2012).  

 

 
Figure 1.8: Representation of the P2XR superfamilies characteristic 
trimeric structure, in its closed channel and open channel forms with 
ATP bound. Proposed sequence of channel opening in response to ATP 
binding is labelled 1-5. From Chataigneau et al, 2013. 
 

Despite the approximate 30-50% peptide sequence homology across 

the seven P2XR subtypes (North, 2002; Stojilkovic et al, 2005), there 

exists a reasonably large variation in P2XR channel dynamics and 

tissue distribution, which in turn implicates different subtypes in a 

vast range of homeostatic functions throughout the body. 

 
1.5.4.1 P2X1 

The first cloned receptor of the P2XR class was isolated from rat vas 

deferens tissue (Valera et al, 1994), and was named P2X1. Shortly 

after, the human P2X1 ortholog was cloned from a urinary bladder 

cDNA library (Longhurst et al, 1996). The human P2X1 gene (P2RX1) is 
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located near that of P2X5 (and the vanilloid receptor, VR1) on the short 

arm of chromosome 17 (Longhurst et al, 1996). As well as bladder 

tissue that it was originally cloned from, human P2X1 is also highly 

expressed in the vas deferens (similar to rat expression) (Banks, et al, 

2006), smooth muscle cells (Wang et al, 2002), arteries (Bo et al, 1998) 

and moderately expressed in platelets (Scase et al, 1998; Vial et al, 

1997), lymphocytes (Sluyter et al, 2001), mast cells (Wareham et al, 

2009) and multiple cardiac tissues (Berry et al, 1999). Additionally, in 

mice, P2X1 is similarly highly expressed in vas deferens (Mulryan et al, 

2000), bladder and smooth muscle (Vial & Evans, 2000; Vial & Evans, 

2001) and arteries (Vial & Evans 2002). P2X1 is also moderately 

expressed in multiple rodent immune cell types including neutrophils 

(Lecut et al, 2009) and macrophages (Sim et al, 2007). 

 

The P2X1 subunit is 399 amino acids in length (~45kDA) and contains 

the P2XR superfamily characteristics including intracellular termini 

and a large extracellular loop between two transmembrane regions 

(Longhurst et al, 1996). When assembled as a homotrimeric LGIC, the 

resulting channel is cation selective and non-selectively permeable 

between Na+ and K+, and highly permeable to Ca2+ (Evans et al, 1996). 

Kinetically, P2X1 displays rapid desensitization within a timeframe of 

10-100ms upon prolonged ATP stimulation (>1μM) as well as slow 

desensitization recovery (North, 2002; North & Jarvis, 2013). P2X1 is 

pharmacologically profiled by the equipotency of the full agonist αβ-

methylene ATP (αβ-meATP) and ATP, both of which have an EC50 of 

~1μM (Valera et al, 1994; Evans et al, 1996). Additionally, both 2'(3')-O-

(4-Benzoylbenzoyl)adenosine-5'-triphosphate (BzATP) and L-βγ 

methylene ATP (βγ-meATP) are full agonists at P2X1, where βγmeATP is 

30-fold more potent at P2X1 than P2X3 (Bianchi et al, 1999; Evans et 

al, 1995). Common P2XR pan blockers PPADS and suramin, as well 

suramin derived structural analogs such as NF449 and NF023 are 

antagonists at P2X1 (Evans et al, 1995; Jacobson et al, 2002; 

Hülsmann et al, 2003), however synthetic compounds have been 



34 
 

developed that are more selective to P2X1 including MRS2220 

(Jacobson et al, 1998). Another class of P2X1 antagonists are Trinitro-

phenyl substituted nucleotides TNP-ATP, TNP-ADP and TNP-GTP 

however none are selective solely towards P2X1 and also act as 

antagonists at P2X2/3 (Virginio et al, 1998). 

 

1.5.4.2 P2X2 

As with P2X1, the cloning of P2X2 cDNA from rat origin nerve growth 

factor (NGF) differentiated PC12 neuronal cells (Brake et al, 1994) 

preceded the cloning of the human homologue, which was eventually 

isolated from the pituitary gland (Lynch et al, 1999). The human P2X2 

gene (P2RX2) is located on chromosome 12 (Lynch et al, 1999). P2X2 is 

has widespread tissue distribution including extensive expression 

throughout the CNS as well as expression in various non-neuronal cell 

types (Burnstock & Knight 2004). 

 

The human P2X2 subunit exists as six different splice variants and 

thus ranges in size from 379 amino acids (variant H) to 497 amino 

acids in length (variant D), where variant A is regarded as the 

canonical isoform which is 471 amino acids in length. Much of our 

current knowledge of the structure of P2XR subunits comes from data 

initial experiments on the P2X2 subtype. The ion channel pore formed 

by homotrimeric P2X2 subtype assembly is permeable to multiple 

monovalent cations, as well as Ca2+ (Evans et al, 1996). Stimulation by 

ATP of P2X2 produces relatively sustained currents (Brake et al, 1994), 

and shows resistance to desensitisation compared with P2X1 (North, 

2002; North & Jarvis, 2013). 

 

There are no known additional agonists for P2X2 other than the 

endogenous ligand ATP (EC50 1.5μM) (Jacobson et al, 2009). However, 

P2X2 does have the unusual property of reversible potentiation by 

micromolar concentrations of extracellular zinc and copper ions 
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(Wildman et al, 1998), as well as protons (Stoop et al, 1997). Currently 

only the competitive antagonist PSB-10211 is selective for P2X2 (IC50 

86nM) over other P2XRs (Baqi et al, 2011), but pan inhibitors such as 

PPADS also act as non-competitive antagonists at P2X2 albeit several 

magnitudes of potency lower than at P2X1 (Donnelly-Roberts et al, 

2009).  

 

1.5.4.3 P2X3 

P2X3 subunits were first cloned from rat dorsal root ganglion cDNA 

libraries (Chen et al, 1995), with cloning of the human homologue from 

a heart cDNA library following soon after (Garcia-Guzman et al, 

1997a). It is situated on chromosome 11, and early studies showed a 

limited distribution of hP2X3 to the spinal cord and heart (Garcia-

Guzman et al, 1997a). Subsequent studies have demonstrated mP2X3 

receptor expression throughout the sensory nervous system, including 

trigeminal, dorsal root and petrosal ganglia (Bradbury et al, 1998). 

P2X3 expression has also been shown in the rat retina, located at axon 

terminals of rod and cone cells, as well as in amacrine cells 

(Puthussery & Fletcher, 2007). Immune cells that express P2X3 

include B cells (Przybyla et al, 2018) and mast cells (Cekic & Linden, 

2016). The P2X3 subunit structure is a 397 amino acid protein for 

human, mouse and rat orthologs. 

 

P2X3 has a similar pharmacological profile to that of P2X1, with 

approximate equipotency of ATP and αβmeATP (North, 2002). 

Additional agonists at P2X3 include BzATP and 2-MeSATP, which is 

more potent than ATP (Chen et al, 1995; Garcia-Guzman et al, 1997a). 

Some compounds with P2X3 selective antagonism with high potency 

have been developed, including A317491 (Jarvis et al, 2002), AF-906 

and AF-219 (Jacobson & Müller, 2016). P2X3 is also inhibited by the 

pan blockers PPADS, TNP-ATP and suramin. 
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1.5.4.4 P2X4 

The rat P2X4 was cloned by 5 groups independently at around the 

same time (Buell et al, 1996; Séguéla et al, 1996; Soto et al, 1996a, Bo 

et al, 1996) from various brain regions and pancreatic islet cells (Wang 

et al, 1996). The human P2X4 was cloned shortly after the rat 

homologue from human brain (Garcia-Guzman et al, 1997b). P2X4 is 

one of the most widely expressed P2XR subtypes, being found on most 

glial cells and neurons (Buell et al, 1996 ; Amadio et al, 2007), 

including microglia (Tsuda et al, 2003; Vazquez-Villoldo et al, 2014). 

Immunohistochemical staining of the mammalian retina has revealed 

P2X4 localised to terminals post-synaptic to rod and bipolar cells, 

likely representing horizontal and amacrine cells (Ho et al, 2014), and 

separate studies have found P2X4 mRNA expression in bipolar cells 

(Wheeler-Schiling et al, 2000). P2X4 subunit structure forms a 388 

amino acid protein subunit (Garcia-Guzman et al, 1997b). 

 

The P2X4 receptor channel displays dual states of activation, where 

brief applications of agonist (such as ATP) cause a cation–selective 

channel, where Ca2+ permeability is the highest amongst all P2XR 

subtypes (Egan & Khakh, 2004). Continual stimulation for several 

seconds causes the formation of an increasingly permeable channel to 

larger organic cations such as N-methyl D-glutamine (NMDG+) (Khakh 

et al, 1999a) and inorganic fluorescent dyes such as YOPRO-1 and 

ethidium bromide (Bernier et al, 2012). The pharmacological profile of 

P2X4 is interesting as it includes several positive allosteric modulators 

(PAMs), including ivermectin (Khakh et al, 1999b) and extracts of the 

Panax ginseng  termed ginsenosides (Dhuna et al, 2019), although 

ginsenosides are less potent than their action at P2X7 receptors. The 

most potent agonist of P2X4 is ATP with a reported EC50 of 7.4µM for 

the human ortholog (Garcia-Guzman et al, 1997b). 2-meSATP, CTP, 

αβ-meATP and dATP have also shown agonist activity at P2X4 (Soto et 

al, 1996b), with BzATP also acting as a partial agonist (Bowler et al, 

2003; Stokes et al, 2011). Several synthetic P2X4 selective antagonist 
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have also been developed, including 5-BDBD, PSB12062 and BX430, 

which has no activity at mP2X4 (North & Jarvis, 2013).  

 

1.5.4.5 P2X5 

P2X5 was first isolated from rat heart and celiac ganglion cDNA 

libraries (Collo et al, 1996; Garcia-Guzman et al, 1996) followed by the 

human homologue a year later (Lê et al, 1997). P2X5 expression and 

tissue distribution has been less extensively explored, but it has been 

shown on both B cells and T cells (Przbyla et al, 2018; Cekic & Linden, 

2016), and immunoreactivity has been shown in the soma of 

cholinergic amacrine cells in the ganglion cell layer (Shigematsu et al, 

2007), as well as mRNA transcripts in Müller cells and retinal ganglion 

cells (Jabs et al, 2000; Wheeler-Schilling et al, 2001) 

P2X5 currents are comparatively smaller than those of other P2XR 

subtypes, whilst they otherwise resemble channel dynamics of the 

P2X2 receptor, with little desensitization (North, 2002). Murine P2X5 

subunits form a 455 amino acid protein, but is slightly truncated in 

human P2X5 at 422 amino acids (Lê et al, 1997).   

 

Αβ-meATP acts as an agonist at P2X5 with an approximate 10-fold 

lower potency than ATP (Ruppelt et al, 2001) and BzATP is a full 

agonist with similar potency to ATP at the human isoform (Bo et al, 

2003). No synthetic P2X5 selective antagonist have been developed, 

however agonist action at P2X5 is inhibited by the purinergic pan-

inhibitors PPADS, BBG, and suramin (Syed & Kennedy, 2012). TNP-

ATP also acts as an antagonist at P2X5, albeit at several orders of 

magnitude less than P2X1 and P2X3 (North & Jarvis, 2013). 

 

1.5.4.6 P2X6 

The first P2X6 receptor ortholog to be cloned was from a rat superior 

cervical ganglion cDNA library and subsequently rat brain tissue (Collo 

et al, 1996; Soto et al, 1999), whilst the human ortholog was isolated 

from lymphocytes (Urano et al, 1997) and was originally designated 



38 
 

P2XM due to its widespread expression in human and mouse skeletal 

muscle (Nawa et al, 1998). P2X6 has also been shown to be expressed 

in B cells (Przbyla et al, 2018) and mRNA expression is extensive 

throughout the CNS, including in the brain and spinal cord (Collo et al, 

1996). Homologous P2X6 expresses poorly and is usually unable to 

form functional homomers (Torres et al, 1999), and when it does 

express, no currents are evoked from ATP stimulation (Soto et al, 

1999). P2X6 containing heterologs, including P2X2/6 and P2X4/6 are 

activated by 2-meSATP and antagonised by suramin and PPADS (King 

et al, 2000; Lê et al, 1997) 

 

1.5.4.7 P2X7 

Originally referred to as the P2Z receptor (Falzoni et al, 1995; Baricordi 

et al, 1996; Blanchard et al, 1996) before reclassification (Suprenant et 

al, 1996), the homomeric P2X7 receptor subtype is the most 

structurally and functionally unique of the P2X family. Full length 

cDNA sequences were first cloned from rat brain (Suprenant et al, 

1996), followed by the human (Rassendren et al, 1997; Buell et al, 

1998) and then mouse microglial cells (Chessel et al, 1998). The 

human P2X7 gene (P2RX7) contains 13 exons and is located on 

chromosome 12, within 130kb of P2RX4’s location (Buell et al, 1996). 

With different combinations of exons, there exist several splice variants 

of P2X7, including seven of hP2X7 (Cheewatrakoolpong et al, 2005; 

Sluyter & Stokes, 2011), which can affect the binding properties of 

agonists and protein interactions (Xu et al, 2012). These splice variants 

were designated P2X7B-P2X7H, where the original full length variant 

was designated P2X7A (Figure 1.9). A further 3 splice variants, 

including one in rodent P2X7 (P2X7K), have since been discovered 

(Feng et al, 2006; Nicke et al, 2009). P2X7B is a biologically relevant 

splice variant, which contains a truncated c terminus caused by the 

transcription of the intron between exons 10 and 11, resulting in the 

introduction of a new stop codon (Cheewatrakoolpong et al, 2005; 

Adinolfi et al, 2010). 
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Figure 1.9: Schematic view of exons expressed (1-13) in known P2X7 
splice variants. From Sluyter & Stokes, 2011 
 

The hP2X7 gene also displays a large number (>686) of single 

nucleotide polymorphisms (SNPs), including 16 non-synonymous that 

have been well characterised (Sun et al, 2010; Sluyter & Stokes, 2011). 

Of those 16 characterised, multiple instances have shown evidence of a 

loss of function (Gu et al, 2001; Fernando et al, 2005; Sheman et al, 

2006; Lees et al, 2010), with gain of function SNPs also evident (Stokes 

et al, 2010). One SNP has the unique property of loss of function for 

pore formation, but not for P2X7 channel function (Boldt et ali, 2003). 

Expression of P2X7 is predominately on cells of the immune system 

(Collo et al, 1997; Burnstock & Lavin, 2004), including 

macrophages/monocytes (Collo et al, 1997), mast cells (Bulanova et al, 

2005), lymphocytes (Gu, 2000), and microglia (Ferrari et al, 1997a; 

Xiang & Burnstock, 2005), where it is located primarily at the cell 

surface Boumechache et al, 2009). Additionally in the CNS, P2X7R is 

expressed on neurons (Anderson & Nedergaard, 2006), including RGCs 
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(Mitchell et al, 2009) and also Müller cells (Franke et al, 2001). P2X7 is 

also expressed outside of the CNS in a variety of tissues, including 

osteoblasts (Gartland et al, 2001), fibroblasts (Solini et al, 1999) and 

epithelial cells (Groschl-Stewart et al, 1999).  

 

Translation of the original full-length P2X7 subunit gene produces a 

subunit 595 amino acids in length (Nicke, 2008), by far the largest of 

any P2XR subtype. It contains a characteristically large C-terminus, 

which contains an additional hydrophobic sequence that may be 

involved in the formation of another TM domain (North, 2002). 

Repeated P2X7 stimulation does not display desensitisation kinetics 

for the ion channel (North, 2002), however the onset of inward current 

has been shown to become slower after successive agonist applications 

(Suprenant et al, 1996). When in a Xenopus oocyte expression system, 

P2X7 demonstrates two-component onset/offset kinetics, suggesting 

ATP binds at two different ligand binding domains (Klapperstuck et al, 

2000; Klapperstuck et al, 2001). Similarly to P2X4, prolonged agonist 

stimulation of P2X7 recruits the formation of a large diameter cytolitic 

pore (Smart et al, 2003), which is commonly measurable by the use of 

DNA intercalating fluorescent dyes such as ethidium and YO-PRO-1. 

Whilst the identity of the large cytolitic pore remains elusive, connexin 

knockout and hemichannel antagonist studies (Pelegrin & Suprenant, 

2006) suggest that the connexin and pannexin family of hemichannels, 

such as pannexin-1 may be responsible (Locovei et al, 2007; Qu et al, 

2011), although other studies contradict this (Alberto et al, 2013). 

  

Whilst it is an endogenous agonist, compared to other P2XR subtypes 

P2X7 requires much higher concentrations of ATP (>100μM, typically 

millimolar) to activate its central ion channel pore (North, 2002; 

Anderson & Nerdergaard, 2006), compared to other P2XRs. 

Endogenous ADP and AMP are also very weak agonists for P2X7, 

however their efficacy increases if following a brief stimulation with 

ATP (Chakfe et al, 2002). Conversely the synthetic agonist BzATP is 
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more 10-30 times more potent than ATP at P2X7, but despite common 

conception, it is not P2X7 selective. BzATP also displays a progressive 

increase in agonist potency upon repeated stimulation (Hibell et al, 

2000). There are numerous modulators for P2X7 activity. Extracellular 

ion concentration plays a role in modulating agonist potency, whereby 

lowering Mg2+ and Ca2+ increases ATP and BzATP potency (Suprenant 

et al, 1996). In similar fashion to its action at P2X4, ivermectin acts as 

a human-selective positive modulator of P2X7 (Nörenberg et al, 2012). 

Positive allosteric modulation has also been demonstrated with 

compounds from the Panax ginseng extract, termed ginsenosides 

(Helliwell et al, 2015). GW791343 has species dependent allosteric 

modulation, acting as a positive modulator at rat, and a negative 

modulator at human P2X7 (Michel et al, 2008). Oxidised ATP (oATP), 

an irreversible P2X7 antagonist, is also commonly used in 

experimental models (Murgia et al, 1993). Several P2X7 selective, 

highly potent synthetic antagonists have been developed and used 

experimentally, including AZ10606120 (Michel et al, 2008), JNJ-

47965567 (Bhattacharya et al, 2013) and A839977 (Donnely-Roberts & 

Jarvis, 2007; Donnely-Roberts et al, 2009). 

 
1.4.5 Purinergic receptors in microglia 

Expression of P2 receptor mRNA in primary microglia has been 

extensively reported. Although it is likely that microglia express all P2Y 

subtypes, expression predominantly consists of subtypes P2Y2, 6, 12, 

13 and 14 (Visentin et al, 2006; Inoue et al, 2006; Light et al, 2006; 

Koizumi et al, 2007; Crain et al, 2009). The most prominently 

expressed P2XRs appear to be P2X4 and P2X7 (Sperlagh & Illes, 2007; 

He et al, 2017). The function of many of these receptors has been 

linked to key microglial processes.   

 

Under stimulation by pathological stimuli, microglial cells undergo 

directional migration toward areas of damage/injury by following a 

chemical gradient of a specific danger signal in a process known as 
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chemotaxis. Early studies demonstrated that microglia undergo 

chemotaxis in response to extracellular ATP and ADP (Honda et al, 

2001). Microglial chemotaxis has been shown to be mediated by 

multiple purinergic receptors. Firstly, P2Y12 was elucidated as the 

receptor responsible for ADP mediated chemotaxis (Haynes et al, 2006) 

and required downstream Akt activation and a phospholipase-C (PLC) 

mediated increase in intracellular Ca2+ (Irino et al, 2008). It was 

followed shortly by the discovery that ATP mediated microglial 

chemotaxis was via P2X4 receptors (Ohsawa et al, 2007), in a 

phosphoinositol-3 kinase (PI3K) dependent mechanism of actin 

polymerisation at the leading edge membrane. The purinergic system 

also plays a key role in the signalling between microglia and neurons 

as neuronal derived ATP (and additionally glutamate) have been shown 

to attract microglial processes (Kato et al, 2016), which is thought to 

demonstrate the ability of microglia to detect changes in neuronal 

activity. 

 

Phagocytosis is the process by which a cell ingests/engulfs relatively 

large particles (>1µm) from the extracellular milieu into an internal 

phagosome compartment. Phagocytosis is required for immune cells 

such as microglia in the clearing of bacteria, pathogens and cellular 

debris/apoptotic bodies. Microglia are able to phagocytose appropriate 

targets by their recognition by a number of receptors, including Fc 

receptors, complement receptors, scavenger receptors and endotoxin 

receptors (Ulvestad et al, 1994). P2Y6 stimulation by its endogenous 

agonist UDP has been shown to stimulate microglial phagocytosis 

(Koizumi et al, 2007; Inoue, 2007). This experimental evidence 

suggests a role for UDP released from damaged/dying cells to act as a 

phagocytosis signal for neighbouring microglia in a mechanism that is 

separate from ATP/ADP mediated chemotaxis. P2X4 mediated 

phagocytosis has also been demonstrated in alveolar macrophages 

(Stokes & Suprenant, 2009), however it is currently unknown if this is 

reproducible in microglia.  
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Recent evidence has emerged that demonstrates a role for microglial 

P2X4 in mediating neuropathic and chronic pain. Whilst the majority 

of microglial P2X4 receptor is located in intracellular lysosomal 

compartments (Quershi et al, 2007), P2X4 expression is upregulated in 

activated spinal microglia (Ulmann et al, 2008). Microglial P2X4 

stimulation induces the release of brain derived neurotrophic factor 

(BDNF), which in turn signals to spinal interneurons to alter 

GABAergic signalling resulting in pain hypersensitivity (Coull et al, 

2005). This is demonstrated by the lack of mechanical hyperalgesia 

development in P2X4-/- knockout mice following peripheral nerve injury 

(Ulmann et al, 2008). 

 

Another important function of microglia is their ability to produce and 

process a number of inflammatory cytokines and interleukins in 

response to pathological stimuli. The processing of some interleukins 

such as interleukin-1β and interleukin-18 require proteolytic 

conversion from an inactive precursor, by a pattern recognition 

receptor (PRR) caspase complex known as an inflammasome (see 1.61).  

 

1.4.6 Purinergic signalling in glaucoma 

Due to the ubiquity of purinergic ligands/neurotransmitters, the role 

purinergic signalling in the eye is complex governing multiple ocular 

functions (Sanderson et al, 2014), with abundant evidence for 

purinergic signalling and specifically ATP involvement in glaucoma 

pathogenesis. Isolated rat retinas that have been mechanically 

stimulated have been shown to release ATP from Müller cells (Newman, 

2003), and similarly stimulated optic nerve head astrocytes show a 

similar effect (Beckel et al, 2014). More specifically, several studies 

utilising elevated pressure to simulate glaucoma pathology have shown 

increases in vitreous/extracellular ATP concentrations (Reigada et al, 

2008). However, this phenomenon of mechanical stress on the release 

of ATP is common throughout the body, as demonstrated in a number 
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of tissues including those found in the bladder (Ferguson et al, 1997) 

and blood vessels (Bodin, et al, 1991). 

 

The effects of extracellular ATP on retinal tissue/cell types has been 

investigated in a number of studies. Key to glaucoma pathogenesis, are 

the effects of ATP on retinal ganglion cells. Healthy retinal ganglion 

cells contain an abundance of P2X7 receptors (Sperlagh et al, 2006), 

which appear to be the prime receptor for mediating ATP induced cell 

death (Zhang et al, 2005; Xue et al, 2016). A number of studies have 

been shown to support that ATP, and potent agonist BzATP, 

stimulation of P2X7 on retinal ganglion cells causes cell death via 

increase of intracellular Ca2+ and caspase activation (Zhang et al, 

2005; Hu et al, 2008; Hu et al, 2010). Pharmacological antagonism of 

the receptor with BBG have shown a reduction in the level of RGC 

death following BzATP stimulation (Hu et al, 2010). In support of this 

evidence, recent findings using a human retinal explant model have 

found that P2X7 activation resulting in RGCs death either by direct 

stimulation with BzATP; or when modelling retina ischaemia by oxygen 

glucose deprivation (OGD) (Niyadurupola, 2013).  

 

In contrast to ATP, extracellular adenosine has shown a 

neuroprotective effect on RGCs. Methods to degrade extracellular ATP 

have shown increased RGC cell survival after elevated pressure 

stimulation (Zhang et al, 2006). Furthermore, adenosine, a purine 

signalling molecule produced by the degradation of ATP, provides 

general neuroprotective effects by stimulation of A1 receptors (Newman, 

2004), and adenosine stimulation of A3 receptors on RGCs prevents 

P2X7 mediated cell death (Zhang et al, 2006). However, in direct 

contrast, there is also evidence that adenosine may play a deleterious 

role, as antagonism of the A2A Receptor with SCH 58261 caused a 

decrease in pro-inflammatory mediator secretion and also reduced 

RGC cell loss in an elevated IOP model (Madeira et al, 2015). This 
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evidence suggests that the homeostatic balance of extracellular ATP 

and adenosine could play a crucial role in the conditions that give rise 

to the pathogenesis of glaucoma, mediating both neuroprotection and 

cell death, exacerbating the latter when an imbalance of this natural 

homeostasis emerges.  

 

1.5 Calcium Signalling 

Calcium (Ca2+) is a ubiquitous ionic second-messenger signalling 

molecule that regulates a diverse number of intrinsic and extrinsic 

cellular functions. All P2 receptors signal, at least in part, Via Ca2+.  

 

1.5.1 Intracellular calcium homeostasis  

Under resting conditions, the cytoplasmic Ca2+ concentration of a 

mammalian cell is ~100nM, which is a large contrast to the typical 

millimolar (mM) concentration of extracellular Ca2+ (Breitwieser et al, 

2008). Cells have several mechanisms in order to maintain such a low 

cytoplasmic Ca2+ including the constant extrusion of Ca2+ into the 

extracellular milieu by plasma membrane Ca2+ ATPase (PMCA) 

transporters, and by sequestration into intracellular organelles, such 

as the endoplasmic reticulum by smooth endoplasmic reticular Ca2+ 

ATPase (SERCA), both of which are active transporters and require ATP 

hydrolysis as an energy source (Bootman, 2012). Another mechanism 

utilised is the Na+/Ca2+ (NCX) and Na+/Ca2+/K+ (NCXK) exchange 

transporters, which utilise the energy from inward Na+ movement to 

power Ca2+extrusion from the cytosol. Ca2+ is also stored in the 

mitochondria, which is mediated by both mitochondrial calcium 

uniporters and NCXs 

 

1.5.2 Calcium second messenger signalling 

Ca2+ has excellent biochemical properties that allow it to act as an 

effective second messenger, such as its ubiquitous nature and the 

large concentration gradient between intra- and extracellular 
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compartments. For Ca2+ to act as a second messenger, it requires 

stimulus-based access to cytosolic components, such as enzymes and 

signalling proteins on which to exert its effects. Mechanisms for 

periodically increasing cytosolic Ca2+ can be broadly divided into two 

categories, extracellular Ca2+ entry through plasma membrane Ca2+ 

channels, and mobilisation of intracellular Ca2+ stores via intermediary 

signalling pathways.  

 

Calcium channels are ion channels permeable to Ca2+. When activated, 

a conformational change occurs leading to the opening of the channel 

and the rapid transmission of Ca2+ into the cytosol. The enormous 

~20,000 fold concentration gradient across the plasma membrane 

means that Ca2+ channels allows rapid Ca2+ influx. Calcium permeable 

channels can be divided in two categories based on their activation 

stimulus, voltage-gated calcium channels (VGCC or VDCC) and ligand-

gated ion channels (LGIC), which may or may not be selective for Ca2+.  

 

VGCCs are located in the membrane of excitable cells, such as muscle 

cells, and neurons. They are closed under resting physiological 

membrane potential and are activated upon depolarization of the cell 

membrane. All VGCCs share structural similarities, consisting of a 

complex of multiple protein subunits, which form around a central 

conductive pore that Ca2+ is transmitted through. VGCCs are 

categorized as L-, N-, P-, Q-, R- and T-type based on a number of 

factors, namely their Ca2+ conductance kinetics, activation and 

inactivation kinetics and their sensitivity to antagonists, which are all 

governed by the subunits that contribute to the assembled receptor 

(Catterall & Swanson, 2015). 

 

LGICs are a diverse family of calcium channels that require 

stimulation via the binding of a specific ligand. Unlike VGCCs, LGICs 

can be found both in the plasma membrane and in the membranes of 

intracellular organelles where calcium is sequestered, and as such can 
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be responsible for both extracellular Ca2+ entry and internal store 

mobilisation. Ryanodine receptors (RyRs) are a class ER/SR bound 

Ca2+ permeable receptor channels found in various excitable tissue 

types such as cardiac and skeletal muscle. Three mammalian isoforms 

of RyRs have been discovered (RyR1-3) with differing tissue 

distributions (Lanner et al, 2010). RyRs are principally activated by 

elevated levels of cytosolic Ca2+ from events such as activation of 

VGCCs, and thus play a key role in the positive feedback process of 

Ca2+ induced Ca2+ release (Berridge et al, 2000). Inositol 1,4,5-

trisphosphate (IP3) receptors (IP3R) are Ca2+ selective LGICs (Furuichi et 

al, 1989), expressed ubiquitously in almost all cell types (Taylor et al, 

1999), and play an integral role in Ca2+ release from intracellular 

stores (Berridge, 1993) and is localised on the membrane of the ER 

(Otsu et al, 1990). Three isoforms of the IP3R have been discovered 

(IP3R1-3), each with different IP3 binding affinities, as a result of 

structural differences. Upon activation of IP3Rs, sequestered Ca2+ from 

the ER freely diffuses down the electrochemical gradient into the 

cytosol, where it is able to propagate further intracellular signalling 

pathways. Upon depletion of endoplasmic reticulum Ca2+, the store-

operated calcium channel (SOC) STIM accumulates at the endoplasmic 

reticulum plasma membrane and interacts with Orai channels in the 

cell plasma membrane to allow extracellular Ca2+ influx and 

restoration of endoplasmic reticular Ca2+ stores (Prakriya & Lewis 

2015). 

 

The principal agonist of IP3R is the lipid second messenger molecule 

IP3. A wide array of extracellular signalling molecules instigate the 

production of intracellular IP3, principally via two classes of cell 

surface receptor, GPCRs and tyrosine kinase receptors (TRKs) 

(Berridge, 2016). The stimulation of both receptor classes results in the 

activation of one of multiple subclasses of the phospholipase C (PLC) 

class of enzymes. In the case of GPCRs, the PLC-β isoform is activated, 

whereas TRK activation induces the PLC-γ isoform (Cocco et al, 2015). 
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Once activated, PLC catalyses the cleavage of membrane bound 

phospholipid phosphotidyl 4,5-bisphosphate (PIP2), generating IP3 and 

concurrently producing the secondary messenger molecule 

diacylglycerol (DAG) (Figure 1.10). IP3 is then able to freely diffuse into 

the cytosol where it interacts with IP3Rs.  

 

Figure 1.10: Diagram of cellular Ca2+ homeostasis and mobilisation 
mechanisms. Adapted from Orrenius et al, 2004. 
 

The mitochondrial permeability transition pore (MPTP) which is formed 

during the apoptotic signalling cascade of events and releases 

mitochondrial stored Ca2+ into the cytoplasm.  

 

LGICs, in the plasma membrane, also termed ionotropic receptors, 

constitute a primary mechanism of cytosolic Ca2+ entry from the 

extracellular milieu, although most examples are not Ca2+ selective, 

and conduct additional cations. A wide number of ionotropic receptors 

including the N-methyl D-aspartate (NMDA) subtype of glutamate (Glu) 

receptors, nicotinic acetylcholine (ACh) receptors and the P2X family of 

purinergic receptors have all been shown to have higher Ca2+ 
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permeability than for monovalent cations (Punkratov & Lalo, 2014) and 

are widely expressed throughout the central nervous system. 

 

1.5.3 Purinergic mediated Ca2+ signalling  

Both P2Y and P2X receptor families play a role in Ca2+ signalling. 

Intracellular Ca2+ increase via store mobilisation, in response to P2YR 

agonists, has been demonstrated in a number of different cell types. Of 

the GPCR coupled P2Y family, receptor subtypes 1,2,4,6 & 11 all 

couple directly to Gq or G11, and thus their stimulation causes PLC-β 

activation, generation of IP3 and subsequent mobilisation of 

intracellular calcium stores (Dubyak & El-Moatassim, 1993; Burnstock 

1997). Furthermore, P2YR subtypes 12, 13 & 14 are also able to 

indirectly regulate intracellular Ca2+ levels, including via modulation of 

N-type Ca2+ channels (Burnstock, 2007). Despite being coupled to Gαo, 

P2Y14 has been shown to mediate Ca2+ influx in endothelial cells via 

the β/γ subunits (Fumagalli et al, 2003). Additionally, UDP-glucose 

stimulation of glial cells causes Ca2+ signalling, further highlighting a 

potential role for P2Y14 in cell specific Ca2+ signalling. 

 

In contrast to P2YRs, all P2XRs are ionotropic, and all subtypes have 

demonstrated Ca2+ conductance (in addition to other cations) in 

isolated systems (Egan & Khakh, 2004). The subunit composition and 

ligand sensitivity of each P2XR subtype determines the magnitude and 

duration of the subsequent Ca2+ response, thus there is a wide range 

of possible Ca2+ responses following purinergic stimulation. 

 

1.6 Cytokines 

Cytokines are a group of small molecular weight proteins consisting of 

chemokines, interleukins, tumour necrosis factor and several other 

groups. They are responsible for autocrine, paracrine and endocrine 

signalling and are intimately linked with many processes in the 

immune system. Interleukins are a group of 15 cytokines (1-13, 15 & 

17). Of particular importance is the Interleukin-1 family of cytokines, 
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which play a key role in immune/inflammatory responses. Interleukin 

1β (IL-1β), alongside interleukin-1α (IL-1α) are pro-inflammatory 

cytokines which belong to the interleukin-1 family. Both interleukins 

have a similar 3 dimensional profile despite only sharing roughly 20-

30% amino acid sequence homology (Ferrari et al, 2006). IL-1ra, which 

is able to bind but not stimulate IL-1 receptors, is also part of the IL-1 

family.  

 

1.6.1 Interleukin-1β 

Interleukin 1β (IL-1β) is a pro-inflammatory cytokine produced by 

immune cells, including macrophages and microglia. IL-1β is initially 

formed from its inactive 31kDa precursor protein, pro-interleukin 1β 

(pro IL-1β), which requires proteolytic cleavage from the enzyme 

caspase-1, previously known as interleukin converting enzyme (ICE), 

to produce the active and mature 17.5kD protein (Thornberry et al, 

1992). Cytosolic pro- IL-1β is the product of gene induction and 

transcription, stemming primarily from NFκB signalling which can be 

initiated by the activation of a range of pattern recognition receptors 

(PRRs), which includes soluble, membrane bound and cytosolic 

receptors that are able to sense a variety of pathological stimuli. This 

results in NFκB activation is its translocation to the nucleus where it 

initiates the transcription of a range of proteins. A key example of one 

IL-1β gene inducer, utilised heavily in experimental studies for the 

production of intracellular pro-IL-1β, is the activation of Toll like 

receptor 4 (TLR4) by the pathogen associated molecular pattern (PAMP) 

bacterial Lipopolysaccharide (LPS) (Grahames et al, 1999), although IL-

1β is also upregulated in the absence of PAMPs by damage associated 

molecular patterns (DAMPs) in a process known as sterile 

inflammation (Chen et al, 2010). The pro-inflammatory Caspase-1 

enzyme is a member of the cysteine protease family called caspases, 

and is produced from the 45kDa precursor zymogen, pro caspase-1. 

The conversion of pro-caspase-1 to the active caspase-1 requires 

proteolytic cleavage at an aspartate residue, a process that requires 
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the assembly of previously described protein complexes termed 

inflammasomes (Martinon et al, 2002). Of particular importance in IL-

1β processing is the NLRP3 inflammasome. 

 

The NLRP3 oligomer functions as a pattern recognition receptor (PRR) 

of the NOD-like receptor (NLR) subfamily. The NLRP3 PRR is 

characterised by the containing of several key domains, including a 

central nucleotide-binding and oligomerization (NACHT) domain, which 

is conserved in all NLRs, a C-terminal leucine rich repeat (LRR) 

structural motif, and a pyrin (PYD) domain (Figure 1.11). Whilst the 

LRR motif is believed to function in ligand recognition, the PYD is 

essential for and mediates homotypic protein interactions with PYD on 

ASC (Vajjhala et al, 2012) leading to ASC recruitment. ASC 

subsequently recruits pro-caspase-1 via a caspase recruitment domain 

(CARD), leading to its proteolytic conversion and separation of the p10 

and p20 catalytic domain fragments, to form of active caspase-1.  

 

 

Figure 1.11: Schematic diagram of NLRP3 inflammasome assembly, 
highlighting key monomers PRR, ASC and caspase-1 (CASP1) as well 
as interaction domains. Arrowheads indicate positions of proteolytic 
cleavage. Adapted from Schroder & Tschopp, 2010. 
 

Several stimuli for NLRP3 inflammasome assembly have been 

elucidated, including viruses (Kanneganti et al, 2006; Allen et al, 

2009), bacteria (Gross et al, 2009; Mariathasan et al, 2006) and 
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various DAMPS, such as amyloid-β plaques (Halle et al, 2008), 

sphingosine (Luheshi et al, 2012), silica and asbestos (Cassel et al, 

2008), and extracellular ATP (Mariathasan et al, 2006). Additionally, 

cell swelling mediated by extracellular osmolarity (Compan et al, 2012), 

and prolonged Zn2+ depletion (Summersgill et al, 2014) have been 

shown to have important roles in NLRP3 activation. 

One mechanism that is of particular importance is the stimulation of 

P2X7R by extracellular ATP (Kahlenburg & Dubyak, 2004), leading to 

K+ efflux and pannexin-1 recruitment (Kanneganti et al, 2007), which 

is thought to allow direct cytosolic access to NLRP3 agonists. In 

addition to NLRP3, microglia have a number of other PRRs are able to 

form functional caspase-1 inflammasomes, including NLRP1, IPAF and 

AIM (Schroder & Tschopp, 2010), each with variations in which 

domains they contain. ATP stimulation of cell surface P2X7 has been 

shown to activate the caspase-1 NLRP3 inflammasome, leading to the 

processing of pro-interleukin-1β (Mariathasan et al, 2006; Ferrari et al, 

2006).  

 

As IL-1β lacks a signal sequence peptide (Auron et al, 1984) and is 

absent from both the endoplasmic reticulum and golgi apparatus in 

LPS primed monocytes (Singer et al, 1988), its cellular release 

mechanism is not via the conventional ER/Golgi apparatus protein 

export mechanism (Rubartelli et al, 1990). Instead multiple potential 

mechanisms of IL-1β have been suggested based on experimental data, 

of which one or multiple may be responsible based on several factors. 

Early studies hypothesised release was by cellular lysis, and while this 

is true under certain conditions (Hogquist et al, 1991a), more regulated 

mechanisms have since been elucidated. Protected IL-1β release has 

been shown by microvesicle shedding (MacKenzie et al, 2001; Bianco et 

al, 2005; Pizzirani et al, 2007; Bianco et al, 2009), lysosomal exocytosis 

(Andrei et al, 1999) or similarly exosome release (Qu et al, 2007; 

Record et al, 2011), which may be important for distant IL-1β 
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signalling. Alternatively, IL-1β release can occur with pyroptotic cell 

death (discussed in 1.7.3). 

 

Once released, IL-1β exerts its effects through its corresponding 

membrane bound receptor, IL-1RI, which upon ligand binding, recruits 

IL-1 receptor accessory protein (IL-1RAcP), which stabilises the 

receptor complex and initiates several intracellular protein signalling 

cascades. Il-1β is also able to bind the type II receptor (IL-RII), 

although this receptor is unable to stimulate intracellular signalling, 

and sequesters IL-1RAcP, preventing it from interacting with IL-1RI 

(Lang et al, 1998), thus acting as a decoy receptor to decrease IL-1β 

activity. Additionally, the same stimuli that produce release of IL-1β, 

also produce the delayed release of the competitive IL-RI antagonist IL-

1ra. Upon binding, IL-1ra cannot initiate IL-RI recruitment of IL-

1RAcP, and thus does not propagate intracellular signalling 

(Greenfeder et al, 1995). 

 

1.6.2 IL-1β in microglia 

As a cell of myeloid lineage, alongside macrophages, and as the 

immune regulatory cells of the CNS, microglia possess an array of 

components that are essential for the generation of IL-1β and its 

processing and release in response to various stimuli. Microglia 

produce IL-1 β mRNA and pro-IL-1β precursor protein in response to a 

number of stimuli, such as LPS (Yao et al, 1992) and thus is often 

used as a marker for M1 phenotype microglial activation. This is 

process is often termed “priming” in microglia and macrophages. LPS 

priming of microglia occurs via TLR4, which is expressed in microglia 

(Laflamme & Rivest, 2001; Kielian, 2006). Following priming, microglia 

are required to process and release IL-1β in its mature form (as 

previously described). Microglia have been shown to express multiple 

necessary components of the inflammasome, including scaffold PRRs 

(predominately NLRP3), ASC and caspase-1 (Gustin et al, 2015;). High 

levels of P2X7 expression have also been shown on microglia (Ferrari et 
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al, 1997a; Xiang & Burnstock, 2005) and there are numerous reports 

that P2X7 is required for the release of IL-1β from microglia (Ferrari et 

al, 1996; Ferrari et al, 1997b; Sanz et al, 2009).  

 

1.6.3 IL-1β in glaucoma 

There is much evidence to support the role of IL-1β in the pathogenesis 

of glaucoma. Primary evidence from studies have shown that aqueous 

humor from glaucomatous patients contain elevated levels of pro-

inflammatory cytokines, including α- and γ-interferons, and 

interleukins (Chua et al, 2012; Takai et al, 2012). This has been 

supported by a number of experiments using glaucoma models. Levels 

of IL-1β mRNA in rat retinal astrocytes and possibly microglia, have 

been shown to increase after simulating retinal ischaemia by optic 

nerve ligation, to simulate glaucomatous optic neuropathy (Hangai et 

al, 1995). The optic nerve ligation model has also more recently shown 

an increase in extracellular levels of IL-1β protein in retinal tissue 

extracts (Zhang & Chintala, 2004). 

 

Similarly, experimentally induced ischaemia by use of elevated 

pressure in rat retinas was shown to cause a pattern of damage that 

appeared similar to that of glaucomatous optic neuropathy, including 

reduced cell density in the ganglion cell layer (Peng et al, 2008; Russo 

et al, 2008). It was also shown to increase levels of IL-1β protein up to 

12 hours after reperfusion (Yoneda et al, 2001) and elevated IL-1 

mRNA expression (Sugiyama et al, 2013). The cellular damage 

observed has been demonstrably reduced upon administration of 

antagonists of IL-1 β activity, including IL-1Ra and anti-IL-1β antibody 

(Yoneda et al, 2001).  

 

IL-1β may also be linked to the mediation of excitotoxic cell death in 

the retina.  Immunohistochemical studies have shown that intravitreal 

NMDA injections causes cell death in rat retinas caused by stimulation 

with exocitotic agent NMDA caused increase levels of IL-1β mRNA in 



55 
 

several retinal cell types, including glial cells and retinal ganglion cells 

(Kitaoka et al, 2007), utilising the NF-κB pathway. As with the optic 

nerve ligation method, injection of IL-1β antagonist molecules 

including IL-1Ra and anti-IL-1β antibody prevented cell death in 

retinal tissues after NMDA induced IL-1β up regulation. Whether IL-1β 

plays a neuroprotective or deleterious role in excitotoxicity damage 

may be a depend on homeostatic control over the cytokine, where low 

endogenous levels play a neuroprotective role against damage, but 

elevated and/or sustained levels are mediators of cell death and long-

term tissue damage. 

 

Genetic variation may provide partial evidence to a link between Il-1β 

and some forms of glaucoma. A genetic polymorphism of the IL-1β 

gene, along with another polymorphism of the IL-1α was found to be 

statistically more frequent in POAG patients than controls (Lin et al, 

2003). The nature of this polymorphism is to increase the levels of 

secretion of IL-1β (Pociot et al, 1992), hinting that increased levels of 

IL-1β release may be involved in POAG pathogenesis. However, it is 

unclear that this polymorphism may lead to POAG, as similar studies 

have found no increased frequency of the genotype in POAG compared 

to controls (Li et al, 2017).  

 

1.7 Cell death 

Cell death is an inevitable outcome for all cells and describes the 

process by which cells cease their biological function. Cells can 

undergo a variety of different types of cell death based on the type of 

stimulus received. Cell death can occur to fulfil a number of purposes, 

such as the maintenance of cell populations, or as the result of 

disease, infection or injury. Cell death is a broad term that can be 

further defined based on the specific mechanisms and outcome 

involved. 
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1.7.1 Apoptosis 

Apoptosis, as a term was coined after observations of programmed cell 

death across multiple cell types and tissues (Kerr et al, 1972), and is a 

form of regulated cell death (RCD). Apoptosis is an essential regulation 

mechanism for both development and cellular homeostasis in 

maintaining appropriate cell numbers, millions of which are removed 

daily. Apoptosis occurs as result of a wide range of possible stimulus, 

including the withdrawal of required growth factors/essential survival 

factors, or stimulation of cell surface death receptors by their 

corresponding ligands. Once a cell receives adequate stimulus to 

undergo apoptosis, it undergoes a number of characteristic 

morphological and biochemical changes. 

 

Mechanistically, apoptosis can be broadly divided into two pathways, 

the intrinsic mitochondrial and extrinsic receptor mediated pathways, 

although there is evidence of cross talk between signalling molecules of 

the two pathways. Extrinsic apoptosis is mediated by a series of cell 

surface death receptors, such as the tumor necrosis factor (TNF) family 

of receptors (TNFR, also known as Fas receptors) (Locksley et al, 2001), 

which contain a characteristic ~80 amino acid cytoplasmic death 

domain (Ashkenazi & Dixit, 1998). Upon stimulation by a suitable 

ligand (such as TNFα), death receptors trimerise and recruit receptor 

specific intracellular adaptor proteins at corresponding death domains 

to initiate an intracellular signalling cascade. Once recruited, the 

adaptor proteins then bind procaspase-8 to form a death-inducing 

signalling complex (DISC), which results in the auto-catalytic 

activation to caspase-8 (Kischkel et al, 1995). Alternatively, 

dependence receptors such as DCC and Unc5H1–3 are also able to 

induce extrinsic apoptosis via the withdrawal of their respective ligand 

below a threshold level (Gibert et al, 2015). 

 

The intrinsic pathway is initiated from within the cell by a range of 

diverse mediators that, unlike the extrinsic pathway, are not directly 
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receptor mediated. Examples of theses stimuli include withdrawal of 

growth factors (Nunez et al, 1990; Brumatti et al, 2010), DNA damage 

(Roos et al, 2016), excessive reactive oxygen species (ROS) and 

endoplasmic reticulum damage (Pihan et al, 2017). All of these stimuli 

act to cause alteration of the mitochondrial membrane, resulting loss 

of mitochondrial membrane potential and opening of the mitochondrial 

permeability transition pore (MPTP). The permeabilization of the 

mitochondrial membrane is the critical step in intrinsic apoptosis, as 

the process becomes irreversible after this stage (Tait & Green, 2010). 

Subsequently, there is the release of mitochondrial proteins into the 

cytosol (Saelens et al, 2004), including the electron transport shuttle 

protein cytochrome c, which further initiates an apoptotic signalling 

cascade. The key regulators of mitochondrial release of cytochrome-c 

into the cytosol belong to the B-cell lymphoma-2 (BCL-2) protein 

family, which includes both pro-apoptotic (such as Bax and Bad) and 

anti-apoptotic protein mediators, which bind to and sequester the pro-

apoptotic mediators (Czabotar et al, 2014). Cytochrome-c release from 

the mitochondria binds to pro-caspase apoptotic protease activating 

factor-1 (Apaf1) and procaspase-9, to form a multiprotein complex 

known as an apoptosome (Riedl & Salvesen, 2007). Apoptosome 

monomer units dimerise via their CARD domains, which causes the 

autolytic conversion of procaspase-9 to its active form (Hu et al, 2014). 

 

After the activation of the initiator caspases 8 and 9 in their respective 

pathways, it is at this point that both pathways converge in the 

activation of the executioner caspase, caspase-3. Activated caspase-3 

is responsible for the characteristic morphological and biochemical 

changes observed with apoptosis, primarily by the cleavage of various 

cellular components. One key feature of apoptosis is the fragmentation 

of cellular DNA by caspase activated endonucleases also known as 

karyorrhexis, which produces 180-200 base pair DNA fragments 

(Bortner et al, 1995) and a characteristic ladder-like pattern when 

separated by gel electrophoresis. These fragments can be detected 
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experimentally by the use of the fluorescent-based dye terminal 

deoxynucleotidyl transferase dUTP nick endlabelling (TUNEL). Several 

morphological and biochemical changes are also seen at the plasma 

membrane, including membrane blebbing (Sebbagh et al, 2001) and 

rounding up of the cell into apoptotic bodies, which is a result of 

degradation of the cytoskeleton. Apoptosis also induces the 

translocation of phosphatidyl serine residues to the extracellular 

surface of the plasma membrane surface (Bratton et al, 1997), which is 

due to caspase-3 mediated activation of scramblase enzyme. In turn 

this inactivates the flippase enzyme that homeostatically maintains 

phosphatidyl serine residues at the inner leaflet of the plasma 

membrane (Marino & Kroemer, 2013). The combination of degradation 

of cellular components and clearance of apoptotic bodies without the 

release of their cytoplasmic contents into the extracellular milieu, 

means that apoptosis does not induce an inflammatory response 

(Maderna & Godson, 2003).  

 

1.7.2 Necrosis 

Necrosis is a term for a rapid and uncontrolled form of cell death. 

Unlike apoptosis, necrosis is passive and not usually a form of RCD.  

Necrotic cell death is defined by several characteristic morphological 

features, including swelling of organelles, increase in cell volume 

(oncosis), and eventual cell membrane rupture and uncontrolled 

release of cytoplasmic contents into the extracellular milieu. Several 

other characteristic events can occur alongside necrotic cell death, 

including mitochondrial ROS production and increases in cytosolic 

Ca2+ and subsequent activation of calpains and cathespins (Yuan, et 

al, 2016), although it is not known if these are causative or resultant of 

necrosis.   

 

The nature of necrotic cell death means it initiates an inflammatory 

response in surrounding environment and usually affects large regions 

of cells/tissues due to propagative outcome. Whereas apoptotic cell 
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death can be beneficial and even necessary for homeostatic function, 

necrotic cell death is almost always detrimental. Classification of 

necrotic cell death usually occurs in the absence of markers for 

alternative mechanisms of cell death.  

 

1.7.3 Pyroptosis   

Pyroptosis is a form of RCD that has a key role in innate immunity, 

particularly against intracellular pathogens (Jorgensen & Miao, 2015), 

which depends on the formation of plasma membrane pores of the 

gasdermin family of proteins. Pyroptosis was initially defined as a form 

of cell death similar to apoptosis, but intimately linked to the activity of 

specific caspases, namely caspase 1, but also 4 & 5 in humans and the 

murine homologue caspase 11, and under certain circumstances 

caspase 3 (Rogers et al 2017). The initiation of pyroptosis requires 

activation of these caspases, which is mediated by a range of PRRs 

that are able to recognise a wide array of ligands. Cells that undergo 

pyroptotic cell death are mainly of myeloid lineage, such as 

macrophages (Fink & Cookson, 2006), neutrophils, dendritic cells, 

CD4+ T cells and microglia (Lee et al, 2019). However pyroptosis has 

been documented in other cell types including neurons (Adamczak et 

al, 2014). 

 

The first elucidated pathway for pyroptosis was termed the canonical 

pathway and is reliant on caspase 1 activity (figure1.12). As previously 

described, caspase 1 is activated from its precursor via an assembled 

inflammasome (also known as the pyroptosome), and is responsible for 

the processing of IL-1β and IL-18 from their immature forms. 

Pyroptosis is therefore associated with the release of these mature 

cytokines, and thus induces an inflammatory response (Man et al, 

2017). The non-canoncial pathway is mediated by intracellular LPS 

from invading bacteria, which interacts directly with the CARD domain 

of caspases 11, 4 & 5 to cause their oligomerization and activation (Shi 
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et al, 2014), thus these caspases act as PRRs for LPS directly (Figure 

1.12). 

 

Figure 1.12: Diagram of the canonical (b) and non-canonical (a) 
inflammasome pathways involved in pyroptosis. From Broz, 2015 
 

Activated pyroptosis-associated caspases propagate pyroptosis by 

cleaving the protein gasdermin D (GSDMD). GSDMD is one of six 

members of the gasdermin protein family, which is held inactive in its 

full-length form by the c-terminal domain (GSDMD-CT) auto-inhibiting 

the active pore forming terminus (GSDMD-NT). Activated capsases 

cleave GSDMD at the interdomain loop after Asp275 (Asp276 in mouse 

homologue) (Kayagaki et al, 2015), whereby the active GSDMD-NT 

translocates to the inner leaflet of the plasma membrane via and 

oligomerises to form a pore and permeabilization of the plasma 

membrane (Aglietti et al, 2016). This allows release of generated 

inflammatory cytokines IL-1β and IL-18, as well as other cytosolic 

DAMPs. 

 

After gasdermin pore formation, key characteristic cell death 

associated morphological and biological changes are initiated. Pore 

formation causes influx of water via the osmotic gradient, which leads 
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to cell swelling and lysis (Fink & Cookson, 2006), in a manner similar 

to necrotic cell death. 

 

1.7.4 Necroptosis 

Necroptosis is a form of RCD with necrotic like phenotype. Although it 

shares many similarities with both necrosis and apoptosis, necroptosis 

is a distinct process, as it is not a passive (Linkermann & Green; 

2014), and is highly regulated like apoptosis, however, unlike 

apoptosis, necroptosis elicits an inflammatory response via the release 

of cytosolic contents into the extracellular milieu (Kaczmarek et al, 

2013). Necroptosis is initiated by activation of one of multiple death 

receptors, such as Fas (Vercammen et al, 1998) and TNFR1 

(Vercammen et al, 1997), or PRRs such as TLR4 (Dhuriy & Sharma, 

2018). 

 

Unlike other RCD mechanisms, necroptosis does not involve the 

activity of caspases, and is instead executed on a molecular level by 

receptor-interacting kinase3 (RIPK3) (Cho et al, 2009) and the 

subsequent phosphorylation and activation of mixed lineage kinase 

domain like pseudokinase (MLKL) (Murphy et al, 2013). In some cases, 

such as in TNFR1 mediated necroptosis, RIPK3 activation is preceded 

by activation of the related receptor-interacting kinase1 (RIPK1), which 

interacts with RIPK3 via their shared RIP homotypic interaction motif 

domains (RHIM) (Vandenabeele et al, 2010), causing the formation of a 

complex known as a necrosome (Grootjans et al, 2017). 

Phosphorylated MLKL forms oligomers, which translocate to the 

plasma membrane via binding to phosphatidylinositol phosphate 

molecules and cause permeabilization of the plasma membrane (Chen 

et al, 2014). MLKL phosphorylation also induces other cellular 

cascades, including the increase of [Ca2+]i  thought to be mediated by 

the transient receptor potential cation channel subfamily M member 7 

(TRPM7) (Cai et al, 2014). 
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Characteristically, necroptotic cell death presents with many features 

similar to those of pyroptotic cell death, including osmotic cell 

swelling/bursting following membrane permeabilization, as well as the 

release of cytosolic components that act as DAMPs in the extracellular 

milieu.  

 

1.7.5 P2X7R mediated cell death  

Almost since its initial discovery, the ability of the P2X7R to induce cell 

death has been well documented. P2X7R mediated cell death was 

originally described as necrotic in mechanism (Di Virgilio et al, 1989), 

and is still considered the primary cell death mechanism in cases of 

sterile inflammation where DAMPS are released into the extracellular 

environment (Di Virgilio et al, 1998), however it was soon shown that a 

number of factors influence P2X7R mediated cell death. One such 

factor is cell type, which was demonstrated in a subsequent study 

(Zanovello et al, 1990).  

 

Although apoptotic cell death has been widely reported as a P2X7R 

mediated outcome after prolonged ATP stimulation (Franceschi et al, 

1996), surprisingly little investigation into the mechanisms of P2X7R 

apoptosis have been undertaken. It has been demonstrated that 

prolonged ATP stimulation of cells with high concentrations of ATP 

causes P2X7 induced apoptosis (Franceschi et al, 1996), whereas brief 

applications of the same stimulus induce a reversible state of 

‘pseudoapoptosis’ with agonist washout (Mackenzie et al, 2005). There 

is evidence that ATP stimulation, acting at what is suspected to be 

P2X7R, is responsible for mitochondrial cytochrome c release and 

subsequent caspase 3 activation (Ferrari et al, 1999). In contrast, due 

to its high expression on immune cells, the role of P2X7R in pyroptosis 

is well documented. P2X7R mediated K+ efflux is widely regarded as a 

stimulating factor in NLRP3 inflammasome assembly in the canonical 

pathway (Mariathasan et al, 2006), and thus acts to induce pyroptosis 

in cells that are primed. In the non-canonical pathway, P2X7R has 
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been shown to be activated downstream of caspase 11 mediated 

pannexin-1 activation and ATP release, leading to pyroptotic cell death 

(Yang et al, 2015a) 

 

1.7.6 Cell death in Glaucoma 

Regulated cell death is an essential mechanism in both the 

development and homeostasis of the retina (Vecino & Acera, 2015). 

However, the key characteristic of glaucomatous neurodegeneration is 

the pathogenic death of RGCs, resulting in an associated permanent 

loss of vision. There is evidence that P2X7 may play a role in 

glaucomatous RGC death, since RGCs express P2X7 (Wheeler-Schilling 

et al, 2000; Mitchell et al, 2009; Niyadurupola et al, 2013), and several 

experimental models of glaucoma have explored the role of P2X7 on 

RGC death. The glaucoma model of optic nerve crush showed a delay 

in increased numbers of phagocytic microglia and RGC loss after 

blocking P2X7 and with P2X7 K/O mice (Nadal-Nicholás et al, 2016). 

This is supported by evidence that ATP stimulation, or treatment with 

potent P2X7R agonist BzATP induces the apoptotic death of 

dissociated rat RGCs, both in vitro (Zhang et al, 2005), and in vivo rat 

retinas (Hu et al, 2010), which was shown to be dependent on Ca2+ 

influx and caspase activation (Zhang et al, 2005). Additionally, RGC 

cell death is delayed in the P2X7 associated PRR NLRP3 knockout 

mouse following optic nerve crush (Puyang et al, 2016). There is also 

evidence the P2X7 associated channel pannexin-1 on RGCs has a role 

in purinergic mediated RGC death, as pannexin-1 knockout mice 

(panx1-/-) demonstrated reduced inflammasome activation, Ca2+ and 

cell death following ischaemic injury (Dvoriantchikova et al, 2012). 

Additionally, it was shown that the NMDA receptor antagonist MK801 

prevented RGC loss after BzATP treatment of rat retina (Hu et al, 

2008), suggesting the NMDA receptor may play a downstream role in 

P2X7 mediated RGC death.  
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Cell death has also been shown in human models, in particular with 

the human organotypic retinal culture (HORC) model. Niyadurupola 

and colleagues (2013) demonstrated that BzATP caused a loss of RGC 

specific markers, and was inhibited by the antagonist BBG. 

Furthermore, ischaemic damage of isolated optic nerves was inhibited 

with the same P2X7 antagonist (Domercq et al, 2010). 

 

As well as direct P2X7 mediated cell death of RGCs, the expression of 

purinergic receptors, in particular P2X7 on various retinal cell types, 

including microglia, suggests there may be additional indirect 

mechanisms contributing to glaucomatous RGC death.      

 

1.7.7 Cell death in microglia 

Throughout life, the numbers of microglia in the CNS is kept in a 

careful balance between proliferation and apoptosis, in order to 

maintain a sufficient number of microglial cells. A number of stimuli 

have been discovered to induce microglial cell death. The cytokines IL-

13 and IL-4, both anti-inflammatory cytokines and stimulators of the 

M2A phenotype of active microglia have been demonstrated to induce 

apoptosis of activated microglia (Yang et al, 2002; Shin et al, 2004; 

Yang et al, 2006). This adds further evidence to the notion that 

M2A polarization of microglia is utilised to bring the resolution of the 

inflammatory response. Furthermore, overstimulation of 

TLR4 has been shown to induce apoptotic cell death of microglia in 

a Fas-independent manner (Jung et al, 2005), which suggests there 

are regulatory mechanisms for preventing over stimulation/activation 

microglial cells and the immune response. TLR4 has also been 

demonstrated to be responsible for the necroptotic cell death of retinal 

microglia in both rd1 retinal degeneration mice and in an NMDA 

induced model of acute retinal degeneration (Huang et al, 2018), 

whereby several inflammatory cytokines including CCL2, TNF-α and IL-

1β were upregulated, with increased levels and phosphorylation of the 

necroptosis associated proteins RIPK1, RIPK3 and MLKL. Additionally, 
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treatment with necrostatin-1, a specific inhibitor of RIPK1 necroptosis, 

significantly reduced both microglial necroptosis and retinal 

degeneration.  

 

A host of other stimuli have also been shown to induce cell death of 

microglia, including corticotrophin releasing hormone (CRH) (Ock et al, 

2006), mitochondrial toxin 1-methyl-4-phenylpyridinium (Jin et al, 

2012), and activation of the E prostanoid receptor 2 (EP2 receptor) 

(Fu et al, 2015).    

 

In addition to its role in cell death in other cells and tissues, P2X7R 

has been shown to play an instrumental role in the regulation of 

microglial cell death in response to purinergic stimulus. Primary 

microglia stimulated with BzATP demonstrated a significant decrease 

in microglial cell number, which was not reproduced with antagonism 

from A-804598 or in P2X7-/- microglia (He et al, 2017). In this same 

study, P2X7 stimulation with BzATP was also sufficient to produce cell 

death in LPS primed microglia.  

 

1.8 Aims and Objectives 
 

Numerous studies have highlighted the potential involvement of 

purinergic signalling and inflammatory cytokines, in particular IL-1β 

in the pathogenesis of glaucoma. As immune privileged cells of the 

CNS and the retina, and in addition to being endowed with a variety of 

purinergic receptors, microglia represent a potential modulator of 

glaucomatous events and as such are of key interest in the study of 

glaucomatous pathogenesis.  The aim of this thesis is to investigate the 

role of microglial P2X7 activity in relation to glaucoma. 
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The specific aims of this research were: 

 to generate a P2X7R-deficient microglial (BV-2) cell line as a tool 

for investigating the role of P2X7 in these cells.  

 The use of pharmacological agonists and antagonists were then 

utilised to characterise Ca2+ via purinergic receptors in BV-2 

microglia, in particular the contribution of P2X7 to ATP-

mediated Ca2+ responses.  

 Utilising similar methods to investigate purinergic-mediated 

proliferation and cell death mechanisms in microglia 

 Investigate the role of ATP, and in particular the P2X7 receptor, 

in relation to both priming and release mechanisms of IL-1β.  

 Briefly explore the link between simulated glaucomatous 

ischaemic conditions with OGD, and purinergic signalling.  

The evidence generated by these experiments would help give new 

insight into the role of neuroinflammation and microglial cells into 

the pathogenesis.
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Chapter 2 

Materials and methods 
 

2.1 Cell culture 
 
BV2 mouse microglial cells (Blasi et al, 1990), and P2X7 knockout BV2 

cells were cultured in Dulbecco’s Medium: Nutrient mixture F-12 

(DMEM/F-12), containing 10% heat-inactivated foetal bovine serum 

(FBS) (Life Technologies), 1% 200mM L-Glutamine (Life Technologies, 

Paisley, UK) and 1% 10,000units Penicillin-Streptomycin antibiotic 

(Life technologies, Paisley, UK).  Cultures were stored in 75cm3 flasks 

(NuncTM EasYFlaskTM, Thermo Scientific) and incubated at 37oC, 5% 

CO2.  

 

When cells reached approximately 80-90% confluency, they were 

passaged. Culture medium was aspirated and washed in 5ml 

Dulbecco’s phosphate buffered saline (DPBS) (Invitrogen, Paisley, UK). 

DPBS was then aspirated and 10mls of 5% Trypsin-EDTA solution (Life 

Technologies, Paisley, UK) was added and incubated for approximately 

3 minutes, until cells were visibly detached from the culture flask 

under microscope. The trypsin was then neutralised with an equal 

volume of 10% FBS DMEM/F-12 and the cell suspension solution 

transferred to an aseptic 25ml centrifuge tube (Sterilin U.K). Cell 

suspensions were then centrifuged at 300 x G for 10 minutes until a 

visible pellet had formed. The supernatant was aspirated and the pellet 

re-suspended in 5ml 10% FBS DMEM/F-12. Re-suspended cells were 

then available for plating for use in experiments. Re-suspended cells 

were also seeded into a new 75cm3 flask to maintain the cell cultures 

and the passage number recorded.  
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For seeding plates, the re-suspended cells were counted using a 

haemocytometer (Assistant, Sondheim-Rhön, Germany). For 

experiments, cells were seeded at a range of densities depending on the 

experimental assay (Table 2.1).  

 

Table 2.1 Seeding density of BV-2 microglial cells and P2X7 knockout 
BV-2 microglial cells for different experimental assays. 
Assay Assay environment Seeding 

density 
Volume of 
medium 

Viability 

assays: MTS, 

LDH, 

Caspase 3/7 

96 well Plate (Nunclontm 

Delta Surface, Thermo 

Scientific) 

6000 

cells/well 

200µl 

Fura-2 Poly-D-Lysine coated 96 

well Plate (Nunclontm Delta 

Surface, Thermo Scientific) 

10,000 

cells/well 

100µl 

Transfection 6 well plate (Nunclontm 

Delta Surface, Thermo 

Scientific) 

100,000 

cells/well 

2ml 

qRT-PCRs, 

Western blot 

35mm cell culture dishes 

(Corning, USA) 

120,000 

cells/well 

1.5ml 

ELISA 24 well plate (Nunclontm 

Delta Surface, Thermo 

Scientific) 

500,000 

cells/well 

500µl  
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2.2 Transfection  

For testing of transfection reagents, cells were initially seeded as stated 

previously (Table 2.1). After 24 hours, well medium contents were 

replaced with 900µl Opti-MEMTM reduced serum medium (Life 

Technologies, Paisley, UK) for 10 minutes at room temperature. In an 

Eppendorf, 1µg of endotoxin free rP2X7-GFP plasmid (Dr Stokes) was 

added to a transfection reagent solution according to manufacturer’s 

instructions. The contents of each Eppendorf was then carefully added 

to a separate well of the 6 well plate. An additional well was exposed to 

100µl fresh Opti-MEMTM as a mock transfection control. The plate was 

then gently shaken to ensure even distribution of plasmid containing 

transfection reagent throughout each well, and incubated at 37oC 5% 

CO2. After 24 hours exposure to transfection reagents, each plate was 

visually assessed for cell viability and successful transfection using 

brightfield and fluorescence imaging respectively. 

 

For CRISPR transfection of BV-2 cells, well medium contents were 

replaced with 900µl fresh Opti-MEMTM reduced medium serum and 

allowed to sit for 10 minutes at room temperature.  

In a separate Eppendorf, 1µg of endotoxin free pHCSVBlast-Cas9 

plasmid was combined with 25µl tracrRNA (10µM) and 25µl crRNA 

(10µM) was added to a transfection reagent solution according to 

manufacturer’s instructions. The contents of each Eppendorf was then 

added to a separate well of the 6 well plate. An additional well was 

exposed to an additional 100µl fresh Opti-MEMTM as a mock 

transfection control. The plate was then gently swirled to ensure even 

distribution of plasmid containing transfection reagent throughout 

each well, and incubated at 37oC 5% CO2.  To determine successful 

transfection/genomic modification of BV-2 microglia, 48 hours post 

transfections cells were incubated in 1µg/ml final concentration 

blasticidin antibiotic for 72 hours. Cells were visually assessed for 

viability and cell number following transfection and blasticidin 

selection.    
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2.3 Single cell clonal expansion 

Single cell clonal expansion was performed using an array dilution 

method in a 96 well plate. 100µl of DMEM/F12 10% FBS media was 

added to all wells in the 96 well plate, except well A1, to which 200µl of 

a 2000 previously transfected cells/ml solution is seeded (Figure 2.1). 

100µl of cell solution was then transferred from well A1 to B1 and 

mixed by pipetting up and down to produce a 1:2 dilution, which was 

then repeated down the first column of the plate until well H1. 100µl of 

DMEM/F12 10% FBS media was then added to wells A1-G1 so that all 

wells in column 1 had a total volume of 200µl. A second set of 

sequential 1:2 serial dilutions was then performed across the plate 

horizontally, followed by the addition 100µl of DMEM/F12 10% FBS 

media to all wells except column 12, to produce a cell density gradient 

across the plate, from most concentrated in well A1 to least 

concentrated in H12.  

  

Figure 2.1: Diagram of dilution steps for 96 well plate clonal 
expansion. Available at 
https://www.idtdna.com/pages/education/decoded/article/genome-
editing-in-cell-culture-isolating-single-clones-for-genotypic-and-
phenotypic-characterization 
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Cells were then incubated at 37oC 5% CO2, for 72 hours to proliferate, 

after which the each well of the plate was assessed for the presence of 

colonies that had appeared to be generated from a single cell. In the 

event of singular cell colonies, cells were trypsinised and re-cultured in 

a larger well of a 6 well culture plate with fresh DMEM HAM/F12 10% 

FBS medium. Colonies were then cryogenically stored until further 

characterisation. 

 

2.4 Real time Ca2+ response measurements 

A Fura-2 AM ratiometric, dual excitation/single emission wavelength 

calcium dye (Hello Bio, Bristol, UK) was used for measuring calcium 

responses to agonists/antagonists in cultured cells. Fura-2 AM is form 

of Fura-2 dye conjugated to a mildly hydrophilic acetoxymethyl (AM) 

group, which allows it to pass from the extracellular medium into cells 

across the phospholipid membrane. Once inside the cell, the AM group 

is cleaved by cellular esterases to trap Fura-2 intracellularly. Upon 

Ca2+ binding Fura-2, it undergoes a shift in its optimum absorption 

wavelength intensity from 380nm (Ca2+ free) to 340nm (Ca2+ saturated) 

(Figure 2.2) with emission measured at 510nm. Expressing fluorescent 

excitation/emission data as a ratio (340nm/380nm) avoids problems 

associated with other calcium sensor dyes such as uneven dye loading, 

photobleaching and dye extrusion, as level of emission is independent 

of concentration 

 

For Fura-2 AM calcium assay, cells were seeded on Poly-D-Lysine 

(PDL) (Sigma-Aldrich, Poole, UK) coated 96 well plate in 10% FBS 

supplemented DMEM/F-12 and incubated overnight at 37oC, 5% CO2. 

Medium was then removed and the cells incubated in 100µl loading 

buffer, consisting of Hank’s Balanced Salt Solution (HBSS) (Life 

Technologies, Paisley, UK), containing 2µM Fura-2AM (Thermo 

Scientific, Surrey, UK) and 250µM Sulfinpyrazone (Sigma Aldrich) to 

prevent dye extrusion from cells. Cells were incubated in loading buffer 

at 37oC for 45 minutes. 
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Figure 2.2: Representation of changes in fluorescent emission of Fura-
2 ratiometric dye following Ca2+ binding at 15 seconds.  
 

Table 2.2: Contents of ETotal physiological saline buffer. Buffer 
adjusted with 5mM NaOH (Sigma Aldrich, Poole, UK) to pH 7.4. 
Osmolarity measured with a Vapro 5520 vapor pressure osmometer 
(ELITechGroup, Berkhamsted, UK), to check on osmolarity of 300-
310mOsm/kg.  

 Concentration Source 

NaCl 147mM Sigma Aldrich, Poole, UK 

CaCl2 2mM Sigma Aldrich, Poole, UK 

KCl 2mM Sigma Aldrich, Poole, UK 

MgCl2 1mM Sigma Aldrich, Poole, UK 

D-(+)-Glucose 13mM Sigma Aldrich, Poole, UK 

Hepes 10mM Sigma Aldrich, Poole, UK 

 

Agonists were prepared in ETotal running buffer (Table 2.2) at 10x 

final concentration and distributed appropriately in a deep well drug 

plate with V-bottom (Greiner, UK). Loading buffer was then removed 

from the cell plate and replaced with 180µl of ETotal running buffer in 

combination with the desired concentration of any antagonists or 

allosteric modulators as appropriate. Cells were then incubated in the 

FlexStation 3 multi-mode microplate reader (Molecular Devices, 
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Wokingham, UK) at 37oC for ten minutes prior to the start of 

recordings. For the duration of the experiment (300seconds), 

fluorescence emission intensity at 510nm was measured following 

340nm and 380nm excitation every 3.5 seconds for 300 seconds. Each 

reading was an average of 6 separate readings per well, on the medium 

PMT gain setting. 20μl of 10x agonist were injected into the cell plate 

after 30 seconds of baseline recording, to produce the final desired 

concentration. 

 

Baseline fluorescent readings were recorded for 30 seconds prior to 

agonist application and subtracted from trace recordings for analysis. 

For peak analysis, maximum 340/380nm ratio values for each trace 

were determined using Softmax Pro 5.3 software (Molecular Devices) 

for the determined trace period. Area under the curve analysis was 

performed in Softmax Pro 5.3 software (Molecular Devices) for the 

determined trace period.     

2.5 MTS 

CellTiter 96 AQueous One Solution Cell Proliferation Assay (MTS) 

(Promega, Southampton, UK), is a colorimetric assay used to determine 

cell viability and was utilised. The assay contains two active 

compounds, (3-(4,5dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-

2-(4-sulphophenyl)-2H-tetra-zolium) (MTS) and an electron coupling 

agent phenazine ethosulfate (PES). The mitochondria of metabolically 

active cells can indirectly reduce the MTS compound, which produces 

the soluble coloured formazan compound (Figure 2.3). This colour 

change can be quantified to assess cell viability.  
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Figure 2.3: The oxidation of PES in the mitochondria allows the 
subsequent reduction of MTS to Formazan in the culture medium. 
From: https://www.creative-bioarray.com/support/comparison-of-
different-methods-to-measure-cell-viability.htm 
 

1:10 of the well volume of the MTS solution was added directly to cell 

culture medium and the plate was incubated for 1 hour at 37oC. 

Absorbance was then measured using a FlexStation 3 multi-mode 

microplate reader (Molecular Devices, Wokingham, UK) at 490nm. 

Average background readings from three samples of fresh Serum free 

DMEM/F-12 were subtracted from absorbance values. The processing 

of absorbance data was as follows: 

 

% 𝐶𝑒𝑙𝑙 𝑣𝑖𝑎𝑏𝑖𝑙𝑖𝑡𝑦 =
((absorbance treated) − (absorbance background))

((absorbance control) − (absorbance background))
 × 100 
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Figure 2.4: MTS absorbance values in relation to cell number. BV-2 
cells at varying densities (0-10000 cells/well) were seeded in 96 well 
plates in serum-free medium containing 10% MTS solution. 
Absorbance at 490nm measured after 1hr. (n=4). 
 

2.6 LDH 

The cytotoxicity detection kit (LDH) (Roche, Indianapolis, USA) was 

used to assess lytic cell death in samples. The LDH assay measures 

the release of the enzyme Lactate Dehydrogenase into the culture 

medium through the disrupted cell membrane as a result of lytic cell 

death. NAD+ is reduced to NADH/H+ by the LDH catalysed conversion 

of lactate to pyruvate. NAD/H+ then reduces iodonitrotetrazolium (INT) 

to a coloured formazan product (Figure 2.5).  
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Figure 2.5: LDH release from damaged cells catalyses the production 
of NADH/H+ by the conversion of lactate to pyruvate, which in turn 
catalyses the reduction of INT to formazan. Available from: 
https://www.fishersci.com/shop/products/ldh-cytotoxicity-assay-
200/501036376  
 
To perform the LDH assay, 100μl supernatant of each sample was 

transferred to a corresponding well position on a new 96 well plate. 

The reaction mixture was then prepared at a ratio of 1:45 of 

Diaphorase/NAD+ catalyst solution to Sodium Lactate and INT dye 

solution. 100μl of the reaction mixture was then added to each sample 

and an additional three background wells, and the plate was incubated 

at 37oC and 5% CO2. The plate was read at 15 minutes using a 

FlexStation 3 multi-mode microplate reader (Molecular Devices, 

Wokingham, UK) at wavelengths 490nm assessing concentration of the 

formazan produced, and 660nm assessing background emission. The 

absorbance data values were wavelength adjusted and average 

background readings from three samples of fresh serum free DMEM/F-

12 were subtracted. The processing of absorbance data was as follows: 

 

𝐿𝐷𝐻 𝑎𝑏𝑠𝑜𝑟𝑏𝑎𝑛𝑐𝑒 = ൬
𝑆𝑎𝑚𝑝𝑙𝑒 𝑎𝑏𝑠𝑜𝑟𝑏𝑎𝑛𝑐𝑒

 (490𝑛𝑚 − 660𝑛𝑚)
൰ − ൬

𝐵𝑎𝑐𝑘𝑔𝑟𝑜𝑢𝑛𝑑 𝑎𝑏𝑠𝑜𝑟𝑏𝑎𝑛𝑐𝑒

 (490𝑛𝑚 − 660𝑛𝑚)
൰ 
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LDH data was expressed as a fold change over control as follows: 

𝐹𝑜𝑙𝑑 𝑐ℎ𝑎𝑛𝑔𝑒 𝑖𝑛 𝐿𝐷𝐻 𝑟𝑒𝑙𝑒𝑎𝑠𝑒 (𝑜𝑣𝑒𝑟 𝑐𝑜𝑛𝑡𝑟𝑜𝑙) =
𝑆𝑎𝑚𝑝𝑙𝑒 𝐿𝐷𝐻 𝑎𝑏𝑠𝑜𝑟𝑏𝑎𝑛𝑐𝑒 

𝐶𝑜𝑛𝑡𝑟𝑜𝑙 𝐿𝐷𝐻 𝑎𝑏𝑠𝑜𝑟𝑏𝑎𝑛𝑐𝑒
  

2.7 Caspase 3/7 activation live cell imaging 

The Earlytox caspase-3/7 Nucview (Molecular Devices, Wokingham, 

UK) was used to assess caspase 3 activation. A 2X reaction mixture 

containing 6µM NucView 488 substrate reagent and 10µg/ml Hoechst 

33342 nucleic acid stain (Thermo Scientific, Surrey, UK) was prepared 

in warmed (37oC) serum free, phenol red free DMEM HAM/F12 media 

(Life technologies, UK). 100μl supernatant of each sample was 

carefully removed avoiding disrupting the cultured cells and 100μl of 

the prepared reaction mixture was then added to each well for a final 

concentration of 3µM NucView 488 substrate reagent and 5µg/ml 

Hoechst 33342. Cells were then incubated, protected from light for 30 

minutes at 37oC 5% CO2.  

 

 

 

 

 

Figure 2.6: Diagrammatic representation of imaging pattern for each 
well. Hashed orange square represents field of vision over well centre. 
Green squares represent areas that were imaged. Diagram not to scale.  
 

Earlytox caspase-3/7 treated cells were then imaged using a widefield 

Zeiss Axiovert 200M fluorescent microscope with a 100W mercury arc 

lamp. Cell morphology was detected with bright field light, whereas 

Hoechst 33342 stained nuclei were detected at 461nm and Caspase 

3/7 activation staining was detected at 530nm. During imaging, Cells 

were incubated at 37oC, 5% CO2. Each well was imaged in random 

order to minimise time dependent effects on apoptosis. Four 10x 
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magnification images were taken per well, with six biological replicates 

per condition. Each image was taken from a region taken one full field 

of view width away from the centre of the well (Figure 2.6), in order to 

ensure an accurate representation of the entire well population.  

 

2.8 Hoescht & Caspase 3/7 positive cell counting 

Images were exported from Zeiss Axiovision 4.8 software (Carl Zeiss 

LTD, Cambridge, UK) as a tagged image file (.TIF) in order to avoid 

compression and loss of resolution, with separate images produced for 

each fluorescent channel. Hoescht and caspase 3/7 positive stained 

cells were counted in FIJI software (version 1.51a). Briefly, threshold 

images for each channel were generated and then analysed with the 

particle count function (figure 2.7). Watershed function was also 

performed in order to separate cells that had co-localized and gain a 

more accurate count. Percentage of Caspase 3/7 positive stained cells 

was calculated as follows: 

% 𝑜𝑓 𝑐𝑒𝑙𝑙𝑠 𝑤𝑖𝑡ℎ 𝑎𝑐𝑡𝑖𝑣𝑒 𝑐𝑎𝑠𝑝𝑎𝑠𝑒 3 7⁄ =
𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝐻𝑜𝑒𝑐ℎ𝑠𝑡 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒 𝑐𝑒𝑙𝑙𝑠

𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑁𝑢𝑐𝑣𝑖𝑒𝑤 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒 𝑐𝑒𝑙𝑙𝑠
 𝑥 100 

 

 

 
Figure 2.7: Fiji image software was used for counting the number of 
hoescht 33342 or caspase 3/7 positive stained cells. Representative 
images of A generated threshold image for 3mM ATP treated, Hoescht 
33342 stained BV-2 cells, and B & C summary of FIJI particle count 

A B 

C 
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function from corresponding threshold image A, displaying 643 
individual, positively stained cells. 
 
Multiple imaging per well in combination with 6 biological replicates 

per experiment resulted in a mean cell count for each field of view 

image of 1167.53 ± 49.08 (S.E.M), with a mean total well cell count of 

4325.78 ± 424.65 (S.E.M) under control conditions. With cell death 

inducing stimuli, the average number of total cells/field of view 

decreased, likely due to removal of cells, however even with the highest 

level of reduction, the mean total cell count field of view image was 

642.25 cells ± 84.93 (S.E.M), with a mean total well cell count of 2848 

± 268.32 (S.E.M). 

2.9 Genomic DNA extraction 

Genomic DNA of control BV-2 cells and BV-2 P2X7R knockout cell 

clone populations was extracted in order to determine the exact 

alterations in the genetic sequence of P2X7R. Genomic DNA was 

extracted using the Wizard SV genomic DNA purification system 

(Promega, Southampton, UK). Medium was removed from each well, 

and 150µl Wizard® SV lysis buffer solution was added and mixed by 

pipetting. Cell lysate was then transferred to a Wizard® SV mini 

column contained in a collection tube, and centrifuged at 13,000rpm 

for 3 minutes and the flow through discarded. This was followed by 

four wash stages consisting of the addition of 650µl of column wash 

solution to the minicolumn, centrifuging at 13,000rpm for 1 minute 

and discarding the flow through. The minicolumn binding matrix was 

then dried by centrifugation at 300xg for 2 minutes. Total gDNA was 

then eluted by adding 250µl of nuclease free water (Qiagen) and 

centrifuging at 300xg for 1 minute, with the flow through gDNA being 

stored at -20oC. Extracted gDNA was quantified using duplicate 

measurements using the NanoDrop ND-2000 spectrophotometer 

(NanoDrop Technologies, Wilmington, USA). 
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2.10 Non-quantitative gDNA PCR 

Extracted cell gDNA was then amplified at the region of Exon 2 in the 

P2X7 receptor, in order to be then sequenced. gDNA was first 

normalised to 200ng in 10µl nuclease free water (Qiagen) in a thin-

walled Eppendorf and then mixed into a 25µl reaction mixture 

containing 1.25µl custom designed forward primer (Sigma Aldrich, 

Poole, UK), 1.25µl custom designed reverse primer (Sigma Aldrich, 

Poole, UK) and 12.5µl Hot Start Taq mastermix (New England Biolabs, 

Hitchin, UK).  Each sample was then run on a LifeECO thermal cycler 

(BIOER, Hangzhou, China) for 35 cycles. Each cycle consisted of 10 

seconds at 98oC for strand separation, 30 seconds at 66oC for 

annealing and 30 seconds at 72oC for strand extension.   

 

2.11 RNA extraction 

The Qiagen RNeasy mini kit (Qiagen, Crawley, UK) was used for the 

total RNA extraction of treated cells. The supernatant was aspirated 

and 350μl of a 20% β-mercaptoethanol (Sigma Aldrich, Poole, UK) 

solution was added to the culture dish. The cells were then scraped 

using a sterile dish scraper per sample. The samples were then 

homogenised by passing through a 20 gauge needle ≥8 times and 

transferred to an individual sterile RNase free Eppendorf. At this point, 

the lysate was either frozen at -80oC for later extraction, or the protocol 

was continued.  For each sample, an equal volume (350μl) of 70% 

ethanol was added to the extracted supernatant and the entire 

solution was mixed and transferred to an RNeasy mini spin column. 

The samples were then centrifuged at 13,000rpm for 15 seconds and 

the flow through was discarded. RW1 buffer was then added to the 

column and the samples were further centrifuged for 15 seconds and 

the flow through was discarded. A solution of DNase diluted in RDD 

buffer was made at a ratio of 1:7, and 80μl was added directly to the 

column for 15 minutes to digest any DNA in the samples. The samples 

were then washed with RW1 buffer and centrifuged twice at 13,000rpm 

followed by a further two washes with Buffer RPE and centrifugation at 



81 
 

13,000rpm for 15 seconds and then at 13,000rpm for 2 minutes. The 

column for each sample was then dried by centrifugation at 13,000rpm 

and then transferred into a new RNase free 1.5ml collection tube. To 

collect the RNA from the column, 50μl of RNase free water (Qiagen, 

Crawley, UK) was added directly to the spin column and centrifuged for 

1 minute at 13,000rpm.  

 

Concentrations of the extracted RNA for each sample were measured in 

duplicates using the NanoDrop ND-2000 spectrophotometer 

(NanoDrop Technologies, Wilmington, USA). 260/280 and 260/230 

absorbance ratios were also measure to determine if the RNA samples 

were free from contaminating DNA and triazol reagents, (determined 

suitable if ratios were ≥1.8 for both samples)  

 

2.12 cDNA synthesis 

As a template for qRT-PCR assays, RNA must be converted to the more 

stable complimentary DNA (cDNA) by synthesis of a complimentary 

DNA strand. RNA samples were first normalised to 100ng/μl with 

RNase free water to a volume of 10μl. A solution of dNTP (Invitrogen, 

Paisley, UK) and random primers (Promega, Southampton, UK) were 

added to the samples, which were then briefly centrifuged to vortex 

mix. The samples were then then loaded into a LifeECO thermal cycler 

(BIOER, Hangzhou, China) and heated at 65oC for 5 minutes. The 

samples were then chilled briefly on ice followed by the addition of a 

solution mixture containing 5×first strand buffer (Invitrogen, Paisley, 

UK), RNase inhibitor (Promega, Southampton, UK) and dithiothreitol 

(DTT) (Invitrogen, Paisley, UK). The samples were then heated using a 

LifeECO thermal cycler (BIOER, Hangzhou, China) to 25oC for 10 

minutes, followed immediately by heating at 42oC for 2 minutes. 

Samples were then briefly chilled and 1µl Superscript II Reverse 

Transcriptase (Invitrogen, Paisley, UK) was added. Samples were then 

centrifuged briefly to mix before being heated in the thermal cycler to 
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42oC for 50 minutes, followed immediately by heating at 70oC for 15 

minutes. cDNA samples were stored at -20oC until use. 

 

2.13 Rotorgene qRT-PCR 

For amplification, a 20µl reaction mixture was prepared, consisting of 

1µl template cDNA, 1µl forward primer and 1µl reverse primer at a 

concentration of 5µM each (table 2.3), 2µl RNASE free water and 5µl 

SensiFASTTM- SYBR® Lo-ROX master mix. In addition to each sample, a 

standard curve cDNA template was constructed to determine linear 

primer efficiency, by pooling 50µl of BV-2 cDNA and 50µl of clone-14 

cDNA together to produce a top standard (100%) before performing a 

series of five 1:5 serial dilutions with RNAse free water. Multiple 

reactions were run for each gene, with each sample run in triplicate, 

each standard curve sample run in duplicate and two non- template 

control samples with cDNA volume replaced with RNASE free water. 

 
Table 2.3: Primer sequences for genes analysed with qPCR. Sequences 
pairs were selected from OriGene, available at: 
https://www.origene.com  
Gene Direction Primer Sequence 

β-actin F 5’- CAT TGC TGA CAG GAT GCA GAA GG  

R 5’- TGC TGG AAG GTG GAC AGT GAG G 

P2rx1 F 5’- CTT TGG CTG GTG TCC TGT AGA G 

R 5’- CCT GTT GAC CTT GAA GCG TGG A 

P2rx2 F 5’- ACT ACG AGA CGC CCA AGG TGA T 

R 5’- CCT GGT AGC TTT TCT GAC GAT G 

P2rx3 F 5’- TCA TCA ACC GAG CCG TTC AGC T 

R 5’- ACT CTG TTG GCA TAG CGT CCG A 

P2rx4 F 5’- GCT TTC AGG AGA TGG CAG TGG A 

R 5’- TGT AGC CAG GAG ACA CGT TGT G  

P2rx5 F 5’- AGG ACG CAG AAG GCT TCA CCA T 

R 5’- GGC AGT AGA GAT TGG TGG AGC T 

P2rx6 F 5’- TGC TAA CCA GGA ACT GTC GGT 

R 5’- AAG TCC CGT TCC TGG TAG CCT T 

P2rx7 F 5’- GAA CAC GGA TGA GTC CTT CGT C 

R 5’- CAG TGC CGA AAA CCA GGA TGT C 

P2ry1 F 5’- CCT GCT ATG ACA CCA CGT CCA A  
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R 5’- AGC GGA GAG TTG TTC AGG TCA T 

P2ry2 F 5’- TTC ACC TGG CAG TTT CGG ACT C 

R 5’- GTG TAG AAG AGG AAA CGC ACC AG 

P2ry4 F 5’- CTG GAC AGT CAT CTT CTC GGC T 

R 5’- TTC GGC GTT CAA CAG TCT TGC C 

P2ry6 F 5’- CAG TCT TTG CTG CCA CAG GCA T 

R 5’- AGC AAG AAG CCG ATG ACC GTG A 

P2ry12 F 5’- CAA GGG GTG GCA TCT ACC TG 

R 5’- AGC CTT GAG TGT TTC TGT AGG G 

P2ry13 F 5’- TGG GTT GAG CTA GTA ACT GCC 

R 5’- TTG TCC CGA GCA TCA GCT TT 

P2ry14 F 5’- ACC TCC GTC AAG AGG AAG TCC A 

R 5’- GCT GTA GTG ACC TTC CGT CTG A 

Adora1 F 5’- GAT CGG TAC CTC GAG TCA AGA   

R 5’- CAC TCA GGT TGT TCC AGC CAA AC 

Adora2a F 5’- CAC GCA GAG TTC CAT CTT CAG C 

R 5’- CCC AGC AAA TCG CAA TGA TGC C 

Adora2b F 5’- TTC GTG CTG GTG CTC ACA CAG A  

R 5’- AAG GAC CCA GAG GAC AGC AAT G 

Adora3 F 5’- GCC ATT GCT GTA GAC CGA TAC A 

R 5’- CCC ACC AGA AAG GAA ACT AGC C 

 
Each primer pair was assessed for linear amplification of target cDNA 

by running the standard curve samples (as described previously). 

Primer specificity was also assessed by running a melt curve following 

PCR amplification consisting of an increase of 1oC every 5 seconds to a 

target temperature of 95oC (Figure 2.8). 

Figure 2.8:  A representative plot of linear amplification for a primer 
pair and B representative trace of melt curve demonstrating a singular 
peak, indicating primer specificity for a single product (p2rx1 primer 
pair). 
 

A B 
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Data was analysed using Q-rex software (Qiagen Crawley, UK) with the 
∆CT method: 
 
∆Ct = Ct (Target gene) – Ct (β-actin housekeeping gene) 

 

Data was presented as mean values ± S.E.M from cells of three 

independent passages. 

2.14 Taqman® qRT-PCR  

Taqman® quantitative real-time polymerase chain reaction (qRT-PCR) 

was conducted using the Applied Biosystems 7500 fast real-time PCR 

System (Applied Biosystems, Warrington, UK) to quantify changes in 

RNA expression levels. cDNA produced from RNA samples was diluted 

to 0.5ng/μl using RNase free water. 5ng total cDNA for the gene of 

interest samples and 1ng total cDNA for the housekeeping gene (due to 

18s gene abundance) were loaded in duplicates into wells of a 

microAmp Optical 96 well reaction plate (Applied Biosystems, 

Warrington, UK). A solution mixture containing Master Mix (PCR 

Biosystems LTD, London, UK), Primers/probes (Applied Biosystems, 

Warrington, UK) (Table 2.5) and RNase free water was produced for 

each gene being investigated, to a produce a total well volume of 25μl 

(see table 2.4) 

 

Table 2.4: Quantities of reagents mixed and added to genetic 
material for qRT-PCR. 
Gene  Sample 

vol μl 
Master 
mix vol μl 

Prime/
Probe 
vol μl 

RNase 
free 
water μl 

Total 
vol μl 

mIL-1β 
mm00434228_m1 

10 8.33 1.25 5.42 25 

18s 
mm03928990_g1 

2 8.33 0.5 F 
0.5 R 
0.5 P 

13.17 25 
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Table 2.5: Taqman qRT-PCR probe/primer sources 
Gene  Sequence Reporter Supplier 

mIL-1β  mm00434228_m1 FAM Applied 
Biosystems, 
Warrington, UK 18s mm03928990_g1 FAM 

 
The plate was then sealed with a PCR film cover (Thermo Scientific, 

Surrey, UK). The qRT-PCR procedure began with heating the plate at 

50oC for 2 minutes, followed by heating at 90oC for 10 minutes to 

reduce non-specific amplification. The plate then underwent 40 cycles 

of heating to 95oC for 15 seconds to denature the double stranded 

cDNA/DNA, then cooling to 60oC for 60 seconds to allow primer 

annealing to the single strands. 

 

Analysis of the data was conducted utilising the Ct value set in the 

exponential phase of amplification, then normalised using 

housekeeping probe values. The delta Ct method was adopted to 

assess changes in expression. This method calculates a fold change in 

expression by using the following equation: 

 

∆Ct1 = Ct (Target A-treated) – Ct (Ref B-treated) 

∆Ct2 = Ct (Target A-control) – Ct (Ref B-control) 

∆ ∆ Ct = ∆Ct1 (treated) – ∆Ct2 (control) 

Normalised target gene expression level = 2-∆∆C 

2.15 ELISA  

An Enzyme-Linked Immunosorbent Assay, specific for the detection of 

IL-1β was used to quantify IL-1β protein. 500μl of medium from the 

experimental plate well sampled to determine secreted IL-1β and 

stored at -80oC. The cells were then lysed and total protein content 

extracted with 200µl RIPA extraction buffer (Thermo Scientific, Surrey, 

UK), mixed briefly and stored as two 100µl aliquots at -80oC.  
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Preparation of the plate (Corning Costar 9018) began with diluting the 

Anti-mouse IL-1β capture antibody (BD Biosciences, California, USA) 

in a NaHCO3/Na2CO2 coating buffer solution. 100μl the diluted 

antibody solution was then applied to each well and the plate was 

sealed and incubated overnight at 4oC. The plate contents were then 

aspirated and the plate washed with 300μl of a 0.05% Tween 20 PBS 

wash buffer solution ≥3 times. The plate wells were then blocked with 

200μl of a 10% FBS-Phosphate buffer saline (PBS) assay diluent 

solution for 1 hour at room temperature, followed by aspiration and a 

further ≥3 washes with wash buffer solution. For quantifying IL-1β, 

recombinant mouse IL-1β (BD Biosciences, California, USA) was 

reconstituted in deionised water and used to produce a standard curve 

by dilution in varying amounts of assay diluent solution. 100μl of each 

standard, a negative control (100μl assay diluent) and 100μl of each 

medium sample or extracted protein sample were transferred to an 

appropriate well on the plate, which was then incubated at room 

temperature for 2 hours. This was then followed by washing the plate 

in wash buffer solution ≥5 times. The Biotinylated Anti-mouse IL-1β 

detection antibody (BD Biosciences, California, USA) was then diluted 

in assay diluent and transferred to each well on the plate, followed by 

incubation of the plate at room temperature for 1 hour. This was then 

followed by washing the plate ≥5 times. The enzyme reagent 

Streptavidin-horseradish peroxidase conjugate (BD Bioseciences, 

California, USA) was then diluted in assay diluent solution, and 100μl 

was added to each well on the plate, which was then incubated at 

room temperature for 30 minutes. The plate was then aspirated 

washed in wash buffer solution ≥7 times. 100μl of 3,3’,5,5’-

Tetramethylbenzidine (TMB Substrate Solution) (Thermo Scientific, 

Surrey, UK) was then added to each well and the plate incubated in 

the dark at room temperature for 30 minutes. 50μl of 2N H2SO4 stop 

solution was then added to each well and the absorbance of was then 

measured using a FlexStation 3 multi-mode microplate reader 



87 
 

(Molecular Devices, Wokingham, UK) at 450nm and 570nm. The 

absorbance data was then processed to find the amount of IL-1β using 

from the standard curve.  

2.16 Flow cytometry  

For each sample, cells were trypsinised and 500,000 cells extracted for 

flow cytometry analysis. Selected cells were washed once with cold 

phosphate buffered saline (PBS) containing 0.5% bovine serum 

albumin (BSA) buffer, then either stained with primary antibody (rat-

anti mouse P2X7 antibody (Hano43; Enzo Life Sciences UK Ltd, Exeter, 

UK)) at 1:10 dilution in PBS/BSA 0.5% buffer, or re-suspended in 

PBS/BSA 0.5% buffer alone for negative controls, for one hour on ice. 

Following primary staining, cells were further washed with PBS/BSA 

0.5% buffer followed by staining with secondary antibody (goat anti-rat 

IgG Alexa488 secondary antibody (Fisher Scientific, Loughborough, 

UK)) for one hour on ice. Cells were then washed with PBS/BSA 0.5% 

buffer followed by resuspension in 300µl with PBS/BSA 0.5% buffer for 

acquisition.  

 

Figure 2.9: Example of manual gating method of cells, in order to 
avoid cellular debris in data acquisition.  
 

Acquisition was performed with either a FACSCalibur (Becton 

Dickinson, Swindon, UK) or CytoFLEX flow cytometers (Beckman 

Coulter, High Wycombe, UK), using CellQuest and CytExpert software 

respectively. Sample populations were manually gated to select only 

viable cells and eliminate cellular debris (Figure 2.9), with each run 
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capturing a total of 5000 gated events using FL1 channel with medium 

PMT voltage gain setting. Each clonal population was assessed for the 

presence of surface P2X7R against its corresponding negative control 

sample. 

2.17 BCA 

A biconchinic assay (BCA) was used to determine protein quantities 

from cell lysates. Protein standards were prepared by diluting bovine 

serum albumin (BSA) in radio-immunoprecipitation assay (RIPA) lysis 

buffer at a range of 0-1000μg/ml. Protein standards and samples were 

separately applied to a 96 well plate in duplicate. Each well then 

received ddwater and BCA reagents A and B (Thermo Scientific) mixed 

at a ratio of 10:50:1. The plate was then covered and placed on a 

shaker for 1 minute before being incubated at 37°C for 1 hour. A 

FlexStation 3 multi-mode microplate reader (Molecular Devices, 

Wokingham, UK) was used to measure the absorbance at 550nm. The 

protein concentrations of the unknown samples were calculated from 

the standard curve. 

 

2.18 Western Blot 

Whole cell lysates were prepared RIPA lysis buffer (Fisher Scientific, 

Loughborough, UK) containing protease inhibitors (Fisher Scientific, 

Loughborough, UK). Cell pellets were disrupted by briefly pipetting and 

lysed on ice for 30 minutes. Cell pellets were then centrifuged at 

10,000rpm for ten minutes to separate cellular debris, with the 

supernatant transferred to a new Eppendorf tube. A BCA assay was 

performed to determine the quantity of extracted protein in each 

sample. For each sample, a loading mixture was prepared containing 

10µl LDS sample buffer, 4µl reducing agent, 25µg of sample total 

protein and adjusted to 40 µl total volume with deionised water. 

Sample loading mixtures were then briefly heated to 70oC for ten 

minutes using a LifeECO thermal cycler (BIOER, Hangzhou, China). 

Each sample loading mixture was loaded into separate lanes of a 
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precast BoltTM 4-12% Bis-Tris Plus gradient gel (Fisher Scientific, 

Loughborough, UK), and electrophoresis was performed in 2-(N-

morpholino)ethanesulfonic acid (MES) buffer (Sigma Sigma Aldrich, 

Poole, UK) at 200V for 22 minutes. 

 

Protein was then transferred to a polyvinylidene fluoride (PVDF) 

membrane (Immobilon P, Fisher Scientific, Loughborough, UK) with a 

semi-dry transfer method using FisherbrandTM semi-dry blotter (Fisher 

Scientific, Loughborough, UK) at 320mA constant current for 30 

minutes. The membrane was subsequently blocked overnight at 4oC in 

blocking solution, consisting of TBST solution (Thermo Scientific, 

Surrey, UK) containing 5% non-fat milk to prevent non-specific 

antibody binding.  

 

PVDF blots were then incubated with anti-P2X7 C-terminal antibody 

APR-002 (Alomone Laboratories, Jerusalem, Israel) or anti-P2X4 

antibody APR-004 (Alomone Laboratories, Jerusalem, Israel) at 1:2000 

dilution in blocking solution. After primary incubation, blots were 

washed in PBST ≥3 times. Blots were then incubated with a 

horseradish peroxidase conjugated goat anti-rabbit IgG secondary 

antibody (Sigma Aldrich, Poole, UK) at a 1:2000 dilution, in blocking 

solution for two hours at room temperature. Following secondary 

antibody incubation, blots were washed in PBST ≥3 times. Blots were 

then developed by applying Luminata Crescendo chemiluminescent 

substrate (Merck Millipore, Watford, UK) and imaged with an Image 

Quant LAS 4000 imager (GE Healthcare Life Sciences, Amersham, UK). 

Following primary staining and imaging, blots were stripped with a 

200nM NaOH solution for fifteen minutes, washed ≥3 times, re-blocked 

and re-probed for β-actin with a mouse monoclonal anti-β-actin 

antibody A5316 (Sigma Aldrich, Poole, UK) at a 1:2000 dilution, 

followed by staining with horseradish peroxidase conjugated goat anti-

rabbit IgG secondary antibody (Sigma Aldrich, Poole, UK) at a 1:10,000 

dilution, in blocking solution for 1 hour at room temperature. 
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2.19 Oxygen glucose deprivation 

For experiments modelling ischaemia in cultured cells, an oxygen 

glucose deprivation model previously described (Niyadurupola et al, 

2013) was used. Glucose-free media was bubbled with 95% N2, 5% CO2 

for 10 minutes prior to use and sealed to eliminate residual O2. Cell 

culture medium was replaced with either glucose-free serum-free 

DMEM or serum-free DMEM (Life Technologies, Paisley, UK) 

supplemented with 1% Penicillin-Streptomycin antibiotic (Life 

technologies). Cells were then placed in a sealed modular incubator 

container (Billups-Rothenburg, Del March, CA) with gas inlet and 

outlet valves and a moisture reservoir. Gas in the chamber was then 

replaced why passing 95% N2 5% CO2 through the modular incubator 

for ten minutes. The inlet and outlet valves were then sealed to create 

an oxygen free environment, and the container was incubated at 37oC 

for the duration required for the experiment.    

 

2.20 Data Analysis  

Data is represented as the mean ± standard error of the mean (S.E.M) 

of at least 4 independent experiments, unless otherwise stated. All 

statistical analysis was performed using GraphPad Prism software 

(versions 6.00 or 7.03). Data consisting of only two groups was 

analysed for significance using the Student’s T-test. Data of more than 

two variables were analysed with a one-way analysis of variance, in 

combination with a Dunnett’s post hoc test for testing significance 

against a control group, or a Tukey’s post hoc test for testing 

significance against all groups. For the presentation of dose response 

curves, data was transformed using non-linear regression. Statistical 

significance between groups was described when a null hypothesis 

could be rejected with at least 95% confidence (P≤0.05).      
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Chapter 3 

Generation and characterisation of a P2X7 receptor knockout 

microglial cell line 

 

3.1 Introduction 

Clustered regularly interspaced short palindromic repeats (CRISPR) 

refers to sequences of DNA from prokaryotes, which along with 

associated RNA molecules and enzymes, plays a role in acquired 

immune defence in these organisms. One such CRISPR system that 

has been extensively studied and is commonly used for genome editing 

was developed from Streptococcus pyrogenes, the type II CRISPR/Cas9 

system (le Rhun et al, 2019). This form of acquired immunity is a 

bacterial defence system that can defend against viruses and other 

foreign DNA such as bacteriophages. The bacteria is able to recognise 

foreign nucleic acids with the nuclease enzyme Cas1. Cas1 cleaves the 

foreign DNA it into small sections, thus inactivating it and incorporates 

it into the host cells DNA, resulting in the accumulation of small 

segments of acquired DNA which are separated by palindromic spacer 

regions. These palindromic regions produce hairpin bends when 

transcribed into RNA. 

 

The host cell produces complimentary RNA (crRNA), using the acquired 

DNA as a template, which is then able to bind specifically to the foreign 

nucleic acid upon subsequent infection. The host cell also produces 

trans-activating crRNA (tracrRNA), a hairpin RNA molecule derived 

from the translation of a palindromic region of the host CRISPR DNA, 

which is able to bind to crRNA. The combination of crRNA and 

tracrRNA is able to form a stable complex with the Cas9 

helicase/nuclease enzyme, effectively guiding the enzyme to the DNA 



92 
 

and activating it to produce specifically targeted double stranded DNA 

breaks. 

 

The ability of this system to cause specific and precise targeted DNA 

strand breaks has highlighted it potential use in genomic engineering. 

The transfection of a eukaryotic cell with elements of the type II 

CRISPR/Cas9 system can be utilised to induce permanent, stable 

genetic alterations in the cell genome, including gene knock ins and 

knock outs. Essential to this process are the Cas9 helicase/nuclease 

and an RNA molecule to guide Cas9 and activate/stabilise the complex 

(Cong et al, 2013). Transfection of a cell with plasmid DNA containing 

Cas9, along with a transfection marker for selection such as antibiotic 

resistance or green fluorescent protein (GFP), allows expression of the 

Cas9 enzyme. Co-transfection of single guide RNA (sgRNA), a synthetic 

combination of crRNA and tracrRNA, allows the guiding and activation 

of Cas9 to a user determined site based on the sequence of the sgRNA, 

causing a site-specific double strand break in the cell genome (Figure 

3.1). Alternatively, sgRNA and Cas9 can be incorporated into the Cas9 

plasmid as an all-in-one construct.  

 

Figure 3.1: Representative diagram of the Cas9 crRNA tracrRNA 
protein-RNA assembly around a strand of gDNA, indicating double 
stranded cut sites upstream of the protospacer adjacent motif (PAM). 
Available from: https://dharmacon.horizondiscovery.com/gene-
editing/crispr-cas9/crispr-guide-rna/ 
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The cut site of Cas9 requires the recognition of a specific sequence that 

is known as the protospacer, as well as a the protospacer adjacent 

motif (PAM) situated next to the protospacer (Anders et al, 2014)  

 

With a double strand break in the host cell DNA, the cell will attempt 

to repair the damage utilising one of two methods, the rapid but error 

prone non-homologous end joining repair (NHEJ) method, or with the 

more precise homology directed repair (HDR). When the cell attempts 

NHEJ repair, the process is often prone to errors resulting in genetic 

mutation (Lieber, 2010). For example the introduction of an extra 

nucleotide base during NHEJ, resulting in a shift for the reading frame 

for any RNA transcription and potentially a non-functional protein, or 

a premature stop codon resulting in a truncated protein product. Due 

to the random nature of mutation in this method, the end result can 

be a variety of different genetic mutations in a transfected population. 

It is therefore desirable to isolate a single genetic knockout from the 

population in order to minimise any variation for use in experiments. 

This can be achieved with the use of single cell clonal expansion.  

 

In comparison with earlier gene disruption techniques, such as siRNA, 

CRISPR/Cas9 technology offers a stable and permanent alteration of 

target cells, whereby a single cell containing the desired gene 

modification can be used to generate a new cell line. As the P2X7 

receptor is of key interest in both microglial functions and 

glaucomatous pathophysiology, the generation of a P2X7 receptor 

knockout microglial cell line would provide an extremely valuable tool 

in microglial function, as well as glaucoma research. This chapter 

describes the optimization of transfection conditions for BV-2 

microglia, and the subsequent production of a CRISPR/Cas9 mediated 

P2X7 knockout microglial cell line.  
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3.2 Results 

3.2.1 Optimisation of transfection conditions for BV-2 microglia 

It is known that immune cells, particularly microglial cells, are difficult 

to transfect. However, despite low reported transfection efficiencies, 

various transfection reagents have been used to successfully transfect 

microglial cells (Zhang et al, 2012; Smolders et al, 2018; Raas et al, 

2019). Based on reported past successes, as well as advantageous 

features such as loading of multiple components, several commercially 

available transfection reagents (Table 3.1) were assessed for 

cytotoxicity and transfection efficiency of a reporter plasmid, in order 

to optimise a transfection protocol for use with the BV-2 cell line. A rat 

P2X7 GFP reporter plasmid was chosen due to requirement for quick 

and easy screening by visual assessment with fluorescent microscopy, 

as well as mimicking a larger transfection load that is required for 

subsequent CRISPR transfection. 

 

Table 3.1: List of commercially available transfection reagents tested 
with BV-2 microglia in initial transfection efficiency experiment. 

Transfection Reagent Manufacturer Location 

JetPEI® PolyPlus Illkirch, France 

DharmaFECT Duo® Dharmacon  Lafeyette, CO, US 

Lipofectamine 2000® Invitrogen Paisley, UK 

Fugene® Promega  Southampton, UK 

 
 

Preliminary experiments were carried out where BV-2 cells were 

visually assessed for viability after 24 hour incubation with the 

selected transfection reagents in the presence and absence of rat P2X7 

GFP reporter plasmid.  
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In the absence of rat P2X7 GFP reporter plasmid, BV-2 cells displayed 

no substantial morphological changes with any of the transfection 

reagents tested. The additional presence of rat P2X7 GFP reporter 

plasmid caused both loss in cell number, and morphological changes 

(Figure 3.3). Of the plasmid transfected cells, the DharmaFECT Duo 

reagent was the best tolerated, producing limited cell number and 

morphological changes.  

 

 
 

Figure 3.2: Representative images of BV-2 microglia morphology  
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Figure 3.3: Representative images of BV-2 microglia morphology after 
24-hour incubation with various transfection reagents, in isolation 
(left) or in combination with 1µg rat P2X7R GFP reporter plasmid 
(right). 
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BV-2 cells were then assessed for successful transfection when using 

Dharmafect Duo. Following transfection with 1µg rat P2X7 GFP with 

DharmaFECT duo, BV-2 cells demonstrated moderate levels of 

fluorescently labelled cells after 24-hour treatment (Figure 3.3). 
 

Figure 3.4: Representative (A) brightfield and (B) immunofluorescent 
images of rat P2X7 GFP transfected BV-2 cells, utilising Dharmafect 
Duo transfection reagent, Images were taken 24 hours after 
transfection. Fluorescent cells indicate successful transfection of BV-
2 microglia with rat P2X7R GFP plasmid.  

 

Dharmafect duo reagent was selected to carry out CRISPR/Cas9 

transfection, based on several factors, including lowest cytotoxic effect 

on the cells compared with alternative reagents (Figure 3.3), and the 

successful expression of rP2X7-GFP reporter plasmid in a proportion of 

the cell population (Figure 3.4 B). A further advantage of this system is 

the use of a single transfection step for multiple CRISPR components. 

 

In order to initiate Cas9 protein expression for use with CRISPR gene 

editing, BV-2 cells have to be transfected with a plasmid containing 

expression vectors for Cas9 nuclease enzyme and a selectable 

marker/reporter gene for population enrichment, such as a fluorescent 

tagged protein or antibiotic resistance, and appropriate promoter 

regions for both. The pHCSVBlast-Cas9 plasmid (GE Healthcare 

Dharmacon, Lafayette, CO, US) contains the essential Cas9 nuclease 

vector controlled by a human cytomegalovirus (hCMV) promoter, in 

A B 
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addition to a blasticidin resistance (BlastR) gene for transfection 

enrichment, which is controlled by a simian virus 40 (SV40) promoter 

(Figure 3.5). The pHCSVBlast-Cas9 plasmid also contains an 

additional ampicillin resistance (AmpR) gene for plasmid propagation in 

Escherichia coli cultures, which simplifies the procedures required to 

produce knockout cells.  

 

Figure 3.5: Plasmid map containing vector elements of the 
Dharmacon® Edit-R plasmid. (Cas9) Cas9 nuclease enzyme gene 
vector. (hCMV) human cytomegalovirus promoter. (BlastR) blasticidin 
antibiotic resistance. (SV40) Simian virus 40 promoter. (AmpR) 
ampicillin resistance gene vector. Available from: 
https://dharmacon.horizondiscovery.com/uploadedFiles/Resources/e
dit-r-cas9-nuclea-express-plasmid-synth-rnas-manual.pdf 
 

3.2.2 Design of mP2X7 exon2 targeting crRNA sequences  

The P2X7 receptor exists in several splice variant forms, in both 

human and mouse homologues (Sluyter & Stokes, 2011; Nicke et al. 

2009), due to different combinatorial assembly of exon regions. As 

such, previous attempts at producing a P2X7 knockout model, 

specifically the Glaxo P2X7 -/- knockout mouse, resulted in one isoform 

of the P2X7 (P2X7(k)) with an alternative N-terminus and TMD 1, 

escaping gene deletion (Nicke et al. 2009). To ensure a complete P2X7 

knockout is generated that covers all known mouse splice variants, 

crRNA was designed to target exon2, which is shared by all isoforms of 

the mP2X7 receptor. P2X7 exon2 potential complimentary crRNA 

sequences are shown in table 3.2 
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Table 3.2: Predicted crRNA sequences generated with Millipore/sigma 
CRISPR design tool (now available online: 
https://www.milliporesigmabioinfo/bioinfo_tols/faces/secured/crispr
/crispr.xhtml). 
  

 

* sense 

† 

antisense 

No. of sites in 

genome 1, 2 or 3 

nucleotides 

different from 

target sequence 

Name Sequence PAM Target 

strand 

1 2 3 

MM0000047168 5’-
TGTGCACGGAGCTGATAAC 
 

AGG † 0 0 4 

MM0000047167 5’-
GATAACAGGCTCTTTCCGC 
 

TGG † 0 0 1 

MM0000047169 5’-
ATCAGCTCCGTGCACACCA 
 

AGG * 0 0 3 

MM0000047166 5’-
GAGCGATAAGCTGTACCAG 
 

CGG * 0 0 0 

 

Since BV-2 cells are of mouse origin, the generated crRNA sequences 

were subsequently BLAST searched against the Mus musculus (mm10) 

genomic DNA library in order to identify potential instances liable to off 

target genetic modification. All of the generated crRNA transcripts 

demonstrated high specificity to the exon2 mP2X7 sequence, with 

potential off site targets only emerging when allowing for a nucleotide 

mismatch of ≥3. 

 

Based on the predicted likelihood of off target effects, of the 4 

sequences generated, sequences MM0000047167 and MM0000047169 

were selected for use in the CRISR/cas9 treatment of BV-2 microglia 

(Figure 3.6).  
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5’CTTTGCTTTGGTGAGCGATAAGCTGTACCAGCGGAAAGAGCCTGTTA

TCAGCTCCGTGCACACCAAGGTCAAAGGCATAGCAGAGGTGACGGAGAA

TGTCACAGAGGGTGGGGTGACGAAGTTAGGACACAGCATCTTTGACACT

GCAGACTACACCTTCCCTTTGCAG 
 

Figure 3.6: Base sequence of mP2X7 exon2. Green/cyan highlighted 
region represents MM0000047167 crRNA sequence and cyan/pink 
highlighted region represents MM0000047169 crRNA sequence. 
 

Identification of cells expressing the pHCSVBlast-Cas9 plasmid would 

increase the chances of isolating cells with successful CRIPSR-

mediated modification of P2X7. Following transfection, cell cultures 

were treated with blasticidin antibiotic in order to select only cells 

expressing BlastR gene, a component of the pHCSVBlast-Cas9 plasmid 

(Figure 3.5). 

 

Following blasticidin treatment, wells demonstrated a moderate 

reduction in cell number, indicating the removal of cells that were not 

expressing the BlastR gene. In order to determine disruption to P2X7R 

expression in CRISPR treated/blasticidin selected cell cultures, flow 

cytometry was subsequently performed. 
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3.2.3 P2X7R flow cytometry screening of blasticidin resistant 

CRISPR treated BV-2 cells  

Wells that displayed cells with antibiotic resistance, along with 

untreated BV-2 cells as a positive control were screened for surface 

P2X7 protein expression by indirect flow cytometry.  

 

 

 

 

 

 
Figure 3.7: A Forward side scatter plot demonstrating manual gating of 
viable cells to avoid cell debris, cell plot density represented as colour 
change from red (low density) to green (high density) B-D Representative 
flow cytometry plots of P2X7 screened CRISPR treated BV-2 cells, pink 
trace is P2X7 positive population, green is corresponding non-primary 
antibody stained negative control. B control BV-2 microglia, C 
MM0000047167 cRNA treated BV-2 cells D MM0000047169 cRNA treated 
BV-2 cells. Data acquired with FACSCalibur flow cytometer and CellQuest 
software.  
 

 

 

A 

C 

B 

D 
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Untreated BV-2 cells demonstrated clear rightward shift in 

fluorescence, with little population overlap with the corresponding 

negative control population (Figure 3.7 B), indicating presence of P2X7. 

Screening of CRISPR treated BV-2 populations produced varied 

results, with some populations producing identical plots to that of 

untreated BV-2 cells, indicating that, despite inheritance of antibiotic 

resistance, these populations had not altered the presence of cell 

surface P2X7 protein. In contrast, several CRISPR treated populations 

exhibited dual distinct peaks in fluorescence, where one peak 

overlapped with the negative control (Figure 3.7 C). The overlap of one 

peak with the population’s corresponding negative control indicates 

the loss of cell surface P2X7 protein in a proportion of the cell 

population.  

 

3.2.4 Single cell clonal expansion of P2X7 deficient BV-2 

populations 

In order to generate a complete P2X7R knockout population, 

CRISPR/cas9 MM0000047167 crRNA treated BV-2 cells that 

demonstrated a P2X7 deficient sub-population were subjected to single 

cell clonal expansion using serial array dilution method (see 2.3). Array 

dilution single cell clonal expansion produced, 27 colonies of cells of 

single cell origin. Following single cell clonal expansion, cells were 

subsequently cultured and expanded for further characterisation. 
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3.2.5 P2X7 flow cytometry screening of single cell clones 

Following clonal expansion, 27 generated single cell colonies, in 

addition to parental BV-2 cells as a positive control, were screened for 

the surface expression of P2X7 protein by indirect flow cytometry (as 

described in 3.2.3). 

 

 

       

      
 
Figure 3.8: A-D Representative flow cytometry plots of P2X7 screened 
cells colonies, blue trace is P2X7 stained population, yellow is 
corresponding non-primary stained negative control. A parental BV-2 
microglia, B Clone 7E, C Clone 7F, D Clone 8C. Data acquired with 
FACSCalibur flow cytometer and CellQuest software.  
 

Parental BV-2 cells acting as a positive control demonstrated clear 

rightward shift in fluorescence, with little population overlap with the 

corresponding negative control population (Figure 3.8 A). In a similar 

manner to the BV-2 positive control, many of the colonies tested 

demonstrated no overlap with corresponding negative control 

A B 

C D 



104 
 

population (Figure 3.8 C), indicating single cell clonal expansion had 

failed to isolate a P2X7 deficient cell from the mixed population. In 

contrast many of the colonies displayed a singular defined fluorescent 

peak that overlapped entirely with their corresponding negative control 

population (Figure 3.8 B), indicating an entirely P2X7 surface deficient 

population had been successfully generated.  

 

In addition, there were several instances of colonies producing two 

distinct fluorescent peaks, of which one produced a clear rightward 

shift, in a similar manner demonstrated by mixed populations 

observed in the initial indirect flow screening of CRISPR transfected 

BV-2 cells (Figure 3.8 D). Colonies demonstrating dual fluorescent 

peaks indicates that following single cell clonal expansion, a well was 

mistakenly observed to have produced a colony from a single cell, 

where two or more cells were initially seeded. A detailed assessment of 

the surface expression of P2X7 for each single cell clonal expansion 

generated colony is presented in table 3.3. 
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Table 3.3: Table of colonies screened for surface expression of P2X7 

with indirect flow cytometry. The expression of surface P2X7 is 

designated based on the number of fluorescent peaks observed and the 

overlap of peaks with each clone’s corresponding negative control 

population. 

Single cell generated 

colony  

Overlap with negative 

control (P2X7 stain) 

Selected for storage 

7E Full * 

9D Full * 

6D Full * 

29B None  

F12 Full * 

F6 Full * 

7D None  

7F None  

8C Mixed  

7C None  

39B Mixed  

9C None  

Clone 1 Full * 

Clone 2 None  

Clone 4 Full * 

Clone 5 Full * 

Clone 6 Mixed  

Clone 8 Full * 

Clone 10 Mixed  

Clone 11 None  

Clone 13 Mixed  

Clone 14 Full * 

Clone 15 Full * 
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3.2.6 P2X7 mediated Fura-2 Ca2+ screening of generated clone 
populations 
In order to further explore potential abolition of surface P2X7 receptor 

activity on CRISPR generated knockout clones, Intracellular Ca2+ 

measurements were recorded for 200 seconds using Fura-2 AM 

fluorescent indicator dye, following stimulation with 500μM ATP at 30 

seconds. Each individual knockout clone area under the curve 

response was compared to that of unedited BV-2 and BV-2 cells 

incubated with the P2X7 antagonist AZ10606120 (10μM) as negative 

and positive controls of P2X7 activity respectively (Figure 3.9).  
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Figure 3.9: Average area under the curve Fura-2 ratio Ca2+ responses 
(30-200s) in BV-2 and single cell generated P2X7 K/O clones, following 
500μM ATP stimulation, represented as Mean ± S.E.M (minimum of 
n=3 traces). For P2X7 inhibition in BV-2 cells, AZ10606120 (10μM) 
was used as a positive control. * indicates significance against BV-2 
control group using one-way ANOVA with Dunnett’s post hoc test 
(P<0.05).  
 
Pre-incubation of BV-2 cells with 10μM AZ10606120 demonstrated 

significant reduction in the ATP mediated area under the curve Fura-2 

Ca2+ response (Figure 3.9). Similarly, each individual knockout clone 

tested here demonstrated either similar or greater reduction in the ATP 

mediated area under the curve Fura-2 Ca2+ response compared to 

AZ106 preincubated BV-2 microglia, demonstrating a loss of P2X7 

receptor functionality.  
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3.2.7 P2X7R Genomic DNA region sequencing  

Due to the appearance of successful P2X7 knockout in several clone 

populations, one such population, Clone-14 was selected at random 

for further characterisation. Clone-14 total genomic DNA was 

extracted, and exon 2 genomic region amplified by standard PCR. 

Primers were designed against P2X7 exon2 region sequence (Table 

3.4).  

 

Table 3.4: Sequences of primers designed against exon2 of mP2X7  

Primer Primer sequence  

MF_mP2X7-ex2_For 5’-CCCAAACTGCTGTCCTCTGT 

MF_mP2X7-ex2_Rev 5’-CCCTAGACCCCTAAGGATGG 

 

PCR was performed with the designed primers on extracted gDNA from 

parental BV-2 cells and Clone-14 cells, followed by separation of the 

PCR products on an agarose gel (Figure 3.10). Amplified PCR products 

from both cell sources demonstrated similar sized bands of an 

expected 289bp size.  

 

 

 

Figure 3.10: Gel of non-quantitative PCR products from BV-2 and 
clone-14 gDNA 
 

Sanger sequencing was subsequently performed on PCR amplified 

gDNA samples from each BV-2 knockout clone, as well as untreated 

BV2 gDNA (performed by Eurofins Genomics), in order to validate 

1000 

300 

BV-2 C-14 

500 



108 
 

genetic modification as a result of CRISPR treatment. Each sequence 

file was analysed in Chromas software (version 2.6) and the base 

sequence data exported as a txt file. The base sequence of untreated 

BV-2 cells was searched against chromosome 5 of the Mus musculus 

genome (Figure 3.12) using the Basic Local Alignment Search Tool 

(BLAST), to determine whether the region-specific PCR had amplified 

exon2 of P2X7 correctly, as well as any potential deviations from the 

parental BV-2 sequence in the clones tested.  

 

The chromatogram of P2X7 exon2 gDNA from BV-2 cells demonstrated 

clearly distinct peaks for each base position above minimal 

background noise with no unclear base designations (Figure 3.11) from 

base position 20 onwards. When aligned with the Mus musculus 

(mm10) mp2rx7 sequence the result was a sequence that encompassed 

exon2 of P2X7 and demonstrated a homology of 99%, highlighting a 

single missing cysteine base residue at position 15 in the BV-2 cell line 

(Figure 3.12). Due to the unclear designation of bases at the beginning 

of the chromatogram, it is unclear whether there is truly a missing 

base  

 

The chromatogram sequence of clone-14 gDNA, like that of BV-2 gDNA 

demonstrated a clearly defined beginning sequence from base 20 

onward (Figure 3.13). In contrast to the BV-2 sequence however, from 

base 44 onward the clone-14 chromatogram demonstrated multiple 

instances of unclearly defined double peaks (Figure 3.13), indicative of 

mutations or variation in the sequence between the two diploid alleles. 

When aligned with the Mus musculus (mm10) mp2rx7 sequence the 

result was a sequence that demonstrated extensive base sequence 

deviation (Figure 3.14), including multiple base deletions, additions 

and nucleotide mis-matches, resulting in a sequence homology of only 

74%. This indicated that CRISPR treatment had caused significant 

alteration in the exon2 region of mp2rx7 in clone-14 cells. 
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3.2.8 qRT-PCR analysis of purinergic receptor expression in BV-2 

and BV-2 P2X7 K/O cells 

Following Sanger sequencing of gDNA, the mRNA expression levels of 

all purinergic receptor subtypes present in the mouse genome were 

screened from cDNA generated from parental BV-2 and clone-14 cells, 

to investigate P2X7 receptor knockout in clone-14 cells, as well as 

determine any effects on other purinergic receptors following CRISPR 

gene editing. cDNA was generated from total RNA and expression levels 

were assessed by qRT-PCR (Table 3.5). 

 
qRT-PCR analysis of BV-2 and clone-14 cell purinergic and adenosine 

receptor family mRNA expression demonstrated the presence of mRNA 

transcripts for all tested receptors in both cell types (Table 3.5), except 

for the Adenosine A3 receptor (Adora3), which was not detected in 

either cell type within 40 amplification cycles. Relative expression 

levels (based upon mean CT above β -actin housekeeping gene), 

demonstrated wide variation amongst the different subtypes of 

receptor. High expression levels, designated as <10 ∆CT, was detected 

for multiple purinergic receptors mRNA transcripts in parental BV-2 

cells (Table 3.5), for P2X4, P2X5 and P2Y1. A similar pattern of high 

expression was seen in clone-14 cells. Clone-14 cells also 

demonstrated high expression P2Y2 and the adenosine A2A receptor. 

For most receptors, there was no significant difference in expression 

between BV-2 and clone-14 cells. The only significant difference in 

expression was a 7.8 fold downregulation of P2Y12 in clone-14 cells. 

 

For most receptors there was no significant difference in expression 

between BV-2 and clone-14 cells. However, there was a significant 

mRNA down regulation of P2Y12 in Clone-14 cells. Intriguingly, mRNA 

transcript expression was detected in clone-14 cells, with no 

significant alteration in relative expression compared to parental BV-2 

cells. 
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Table 3.5: Purinergic and adenosine receptor family mRNA expression 
in BV-2 and clone-14 cells, expressed as mean ∆ct ± S.E.M. +++ 
indicates high expression, ++ indicates moderate expression, + 
indicates low expression, - not detected. N=3 on cells from 3 
independent passages. * indicates significant difference between 
expression in BV-2 and clone-14 cells (p<0.05) using students T-test. 
Gene ∆CT 

(BV-2) 

Relative 

expression 

(BV-2) 

∆CT 

(Clone-14) 

Relative 

expression 

(Clone-14) 

Significant 

change in 

expression 

P2rx1 11.20 ± 0.15 ++ 11.11 ± 0.34 ++  

P2rx2 13.96 ± 1.42 ++ 14.32 ± 1.31 ++  

P2rx3 13.19 ± 2.24 ++ 12.67 ± 2.87 ++  

P2rx4   7.42 ± 0.61 +++ 8.09 ± 0.77 +++  

P2rx5   7.86 ± 0.68 +++ 7.68 ± 0.98 +++  

P2rx6 16.78 ± 1.41 + 16.09 ± 1.52 +  

P2rx7 12.18 ± 1.66 ++ 12.23 ± 1.71 ++  

P2ry1   8.68 ± 0.78 +++ 9.15 ± 1.57 +++  

P2ry2 10.23 ± 0.94 ++ 9.27 ± 0.73 +++  

P2ry4 14.79 ± 0.72 ++ 15.76 ± 1.21 +  

P2ry6  12.79 ± 3.71 ++ 13.92 ± 2.10 ++  

P2ry12 14.03 ± 0.25 ++ 17.00 ± 0.77 + * 

P2ry13 14.70 ± 2.00 ++  13.67 ± 1.13 ++  

P2ry14 17.80 ± 1.09 + 17.22 ± 1.58 +  

Adora1 13.50 ± 4.81 ++ 15.29 ± 4.46  +  

Adora2a 14.40 ± 0.87 ++ 14.10 ± 1.30 ++  

Adora2b 10.54 ± 0.92 ++ 9.28 ± 0.61 +++  

Adora3 ND - ND -  
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3.2.9 Western Blot analysis of total cell P2X7 protein 

The previously utilised methods for P2X7 phenotypic assessment, flow 

cytometry screening and live cell imaging assays, were only selective 

for only surface protein expression. In order to assess total cellular 

P2X7 protein content of BV-2 and BV-2 P2X7 K/O cells, Western 

blotting of cell lysates was performed, alongside J774 macrophage cell 

lysate as a positive control (Figure 3.15). Blots were then stripped and 

re-stained for β-actin as a protein loading control.   

                 

Figure 3.15: Western blot images demonstrate no anti-P2X7 reactive 
band in clone-14 cells (BV-2 P2X7-), compared to anti-P2X7 reactive 
bands in untreated BV-2 cells and J774 macrophages. β-actin bands 
indicate equal protein loading/well (25μg). 

A P2X7 band was seen in both native BV-2 and J774 macrophage 

sample lanes, however there was no reactive band in clone-14 lane 

(Figure 3.15). Stripped and re-probed plots exhibited anti-β-actin 

immune reactivity in all sample lanes, with even band widths 

indicative of even sample loading.   

P2X7

B-actin

J7
74

BV-2
BV-2

BV-2
 P

2X
7-
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3.3 Discussion 

The P2X7R has several established roles in microglial functions as well 

as a reported role in glaucomatous neurodegeneration (Niyadurupola 

et al, 2013). The primary aim of this chapter was to generate a P2X7 

knockout microglial cell line, for study of the P2X7R in various 

microglial functions in relation to glaucoma. Alongside this, was the 

aim to optimise a set of conditions for the successful transfection of 

microglial cells, for use in potential future studies. Nuclease based 

tools for targeted genomic engineering including CRISPR/Cas9 are 

advantageous over other knockdown tools such as siRNA, due to the 

permanent and non-revertible outcome, allowing long term analysis of 

the modified target. The CRISPR/Cas9 system utilises gRNAs to target 

a nuclease to the site of modification, which represents a significant 

advantage in the ease of design and low cost associated with 

developing gRNAs compared to other nuclease based tools. For these 

reasons, CRISPR/cas9 mediated gene editing was selected as the 

technique of choice to generate the P2X7 knockout microglia cell line 

described in this chapter.  

 

Immortalized BV-2 cells are a widely used model for in vitro research of 

microglial function and have been used as a model for retinal microglia 

(Langmann, 2007). In terms of suitability, BV-2 cells have a high level 

of resemblance to isolated primary microglia (Henn et al, 2009; 

Stansley et al, 2012), although caution must be exercised in the 

extrapolation of results as considerable differences have been 

demonstrated between BV-2 cells and in vivo microglia (Butovsky et al, 

2014). Despite their ease of manipulation for use with a variety of 

experimental techniques, phagocytic cells such as macrophages and 

microglia have limitations that make them difficult to transfect. The 

primary transfection obstacle is likely due to expression of enzymes, 

which are responsible for the degradation of foreign nucleic acids 

(Zhang et al, 2012), due to their role of protection against bacterial 

pathogens in inflammatory responses. Additionally, transfection, 
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particularly with liposomal based reagents, has been associated with 

reduced cell viability in BV-2 cells (Rao et al, 2015), as well as the 

transient release of IL-6 into culture medium (Smolders et al, 2018). 

For these reasons, microglial transfection has been associated with low 

overall transfection efficiencies when using chemical/liposomal based 

transfection reagents such as Lipofectamine® 2000 (Zhang et al, 

2012). Despite this, there is evidence of successful transfection of BV-2 

cells (Raas et al, 2019).  

 

Initially, a series of experiments were developed to optimize the 

transfection of BV-2 microglia. All of the transfection reagents tested in 

the absence of reporter plasmid (mock transfections) exhibited minimal 

instances of morphological characteristics associated with cell death 

(Figure 3.3). However, the addition of plasmid material to the 

transfection conditions caused some reduction in cell number and 

(Figure 3.3), compared to corresponding mock transfection controls 

although DharmaFECT duo reagent showed less cell damage than 

other reagents. Additionally, due to the potentially narrow window of 

Cas9 protein expression after transfection, and the potential 

compounding effect of multiple transfections on cell viability, a reagent 

that delivered both the required plasmid and CRISPR associated RNA 

molecules in one step was deemed advantageous over separate 

transfections of each component. Dharmafect® Duo is optimised for 

co-transfection of plasmids and small RNA templates, and for these 

reasons, was selected as the plasmid delivery vehicle of choice.   

 

Based on the submitted sequence template (Table 3.2), 4 unique 

crRNA sequences were and checked for off-target effects. Two of these 

were selected and used in transfections, with transfected cells then 

analysed for P2X7 protein expression using flow cytometry. 

Populations were found in which the P2X7R was absent at the cell 

surface; single cell clonal expansion was used to grow clonal colonies 

which were further characterised by flow cytometry to find cells where 
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the P2X7R was successfully eliminated. Flow cytometry of colonies 

generated by single cell clonal expansion demonstrated several 

populations with complete knockout of P2X7R surface expression. 

These colonies were then cryogenically stored, with one colony, clone-

14 selected for further characterisation. 

 

For additional characterisation, Sanger sequencing of clone-14 PCR 

amplified gDNA was performed. Sequencing of the parental BV-2 cells 

as a positive control was aligned to the Mus musculus (mm10) reported 

genome sequence and demonstrated a 99% homology match. High 

homology matching of the BV-2 sequence acts as validation for the 

study of P2X7 receptor function in BV-2 cells with other studies in 

similar immortalised cell lines and in vivo studies. Conversely, P2X7 

exon2 sequence of Clone-14 cells displayed a significant base sequence 

alteration, in comparison/alignment to parental BV-2 sequence, 

indicating that significant alteration of exon 2 sequence in Clone-14 

cells had occurred as a result of CRISPR/Cas9 mediated modification 

had occurred. Since protein translation from mRNA transcripts occurs 

in triplet codons, single base deletions or insertions cause mutations 

in the reading frame, resulting in altered amino acid sequence and 

subsequently alterations in the construction of the mature protein 

such as differences in tertiary interactions. Although indels typically 

manifest in alterations of less than 20 base pairs (van Overbeek et al, 

2016), rare occurrences of indels hundreds of base pairs in length and 

resulting significant disruption of the target gene have also been 

observed (Kosicki et al, 2018). 

 

In order to further characterise P2X7 knockout of clone-14 cells, as 

well as associated receptor expression levels, total isolated RNA was 

surveyed for expression of purinergic receptor transcripts in parental 

BV-2 and Clone-14 cells (Table 3.5). β –actin was used as a loading 

control housekeeping gene for comparison between BV-2 and lone-14 

cDNA, and demonstrated high stability between technical repeats and 
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between cell types. Transcripts of all surveyed purinergic receptors 

were detected within 40 amplification cycles for both cell types (Table 

3.5), with the sole exception of the A3 adenosine receptor subtype. 

Relative expression, based on average cycle appearance above β –actin 

(∆CT) housekeeping expression, demonstrated high expression of 

transcripts for the receptor subtypes P2X4, P2X5 and P2Y1 in parental 

BV-2 cells. In contrast, several receptor subtypes demonstrated 

relatively low transcript expression including P2X2, P2Y4, P2Y14 and 

the Adenosine A1 receptor.  

 

The detection of transcripts for nearly all purinergic receptors in BV-2 

cells is unsurprising given the multitude of studies demonstrating 

expression of functional purinergic receptors in microglia. For primary 

microglia, P2Y and P2X expression has been shown (Visentin et al, 

2006; Inoue, 2006; Koizumi et al, 2007; Light et al, 2006; Crain et al, 

2007), although it has been identified that P2Y mRNA expression is 

predominantly of subtypes P2Y2, P2Y6, P2Y12, P2Y12, P2Y13 and 

P2Y14 (Hidetoshi et al, 2012), and following development, P2X subtype 

expression is predominately of the P2X4 and P2X7 subtypes in primary 

rat microglia (Xiang & Burnstock, 2005), plus P2X1 in isolated human 

brain stem microglia (Smith et al, 2013). Likewise, immortalised 

microglia (N9 cell line) have previously been shown via RT-PCR and 

Western blotting to express six P2X and seven P2Y receptor subtypes 

(Bianco et al, 2006). The presence of mRNA transcripts of all four 

adenosine receptor subtypes have previously been demonstrated in 

isolated primary rat microglia (Bianco et al, 2005), although he 

absence of the A3 receptor subtype in our BV-2 cells could be 

explained by the species difference. Additionally, detection of the 

mRNA transcript for the adenosine receptor A3 subtype was previously 

detected by RT-PCR of N13 and BV-2 immortalised microglia cDNA 

(Hammarberg et al, 2003), although transcript for the A1 subtype was 

not detected in this study, which is in contradiction with these findings 

as A1 mRNA transcript was detected. Furthermore, it was not stated 
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how many PCR amplification cycles were performed in this study, 

raising the possibility that it was fewer than the required for detection.  

 

In comparison to parental BV-2 cells, the expression levels of 

purinergic receptor transcripts in clone-14 microglia demonstrated 

mild variation, albeit with one instances of significant downregulation 

for P2Y12 (Table 3.5). Expression of purinergic receptors in microglia is 

highly plastic (Crain et al, 2009). It is perhaps therefore unsurprising 

that small changes in receptor expression were detected between BV-2 

and clone-14 cells. It is also important to note, that mRNA analysis 

doesn’t provide information on expression of receptors at the protein 

level, as exemplified by P2X7. mRNA transcript levels for P2X7 were 

not significantly different between BV-2 and clone-14 cells (Table 3.5), 

despite significant alterations to the genomic DNA sequence (Figure 

3.13) and a corresponding absence of cell surface receptor protein 

expression (Figure 3.14). Furthermore, previous studies have also 

demonstrated no change in target mRNA transcript expression, despite 

the absence of functioning target protein (Dabrowska et al, 2018), 

which helps validate the lack of reduction in expression of P2X7R 

transcript in clone-14 cells. 

 

In microglia, the trafficking and expression of purinergic receptors at 

the cell surface, specifically P2X4 and P2X7, is a highly dynamic 

process (Boumechache et al, 2009). Additionally, evidence exists that 

some purinergic receptors, such as P2X4 are stored within 

intracellular lysosomes under resting conditions (Qureshi et al, 2007; 

Boumechache et al, 2009). In order to determine whether 

CRISPR/Cas9 mediated gene editing had altered trafficking of the 

P2X7 receptor and cell surface expression, instead of producing a 

knockout, total cellular P2X7 protein content of BV-2 and Clone-14 

cells, was assessed by Western blot analysis. Alongside BV-2 and 

Clone-14 lysates, J774 macrophage cell lysate was utilised as a 

positive control (Coutinho-Silva et al, 2005). Western blot analysis 
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demonstrated an immunoreactive band for P2X7 protein in parental 

BV-2 cells and the positive control J774 macrophage cell line (Figure 

3.14). In contrast, no immunoreactive band was detected in Clone-14 

cells. Stripped and re-probed blots for loading control protein β -actin 

displayed equally sized immunoreactive bands in all cell types tested 

(Figure 3.14), demonstrating even protein loading in all wells. The lack 

of anti-P2X7 immunoreactivity in total cellular lysate contents of 

Clone-14 cells suggests either a complete abrogation of P2X7 protein 

synthesis, or the production of a severely modified P2X7 protein 

structure as the result of a P2X7 mRNA transcript that escapes NMD. 

This modified protein structure disrupted antibody binding epitope, 

which is subsequently no longer recognised by the Hano43 antibody.  

 

The combination of data presented in this chapter has shown the 

successful knockout of P2X7 protein expression in clone-14 microglia 

following CRISR/Cas9 mediated gene editing. The generation of a P2X7 

knockout cell line can be now in further experiments to investigate the 

role of P2X7R in BV-2 microglia. 
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Chapter 4 

P2X7, along with P2X4 and P2Y2 receptors mediate ATP stimulated 

intracellular Ca2+ responses in resting microglia 

 

4.1 Introduction 
 

Due to its ubiquitous nature, ATP release can be invoked from nearly 

all mammalian cells, which can occur as a response to a wide variety 

of stimuli.  ATP and similarly related purinergic/nucleotide signalling 

molecules have been demonstrated to be released under a variety of 

different conditions, including mechanical stimulation (Patel et al, 

2005), hydrostatic pressure (Ferguson et al, 1997) and inflammatory 

conditions (La-Sala et al, 2003). Key findings have also implicated ATP 

release in the pathogenesis of glaucoma. For example, levels of ATP are 

elevated in the anterior chamber of patients with PCAG, which were 

correlated to the levels of increased pressure (Zhang et al, 2007; Li et 

al, 2011). Experimental models of glaucoma have also reproduced 

similar results, with increased hydrostatic pressure of bovine eye cups 

causing an increase in ATP concentration in the vitreal compartment 

adjacent to the retina (Reigada et al, 2008), as well as a coinciding 

upregulation of the nucleotide transporter VNUT in the glaucomatous 

DBA/2J mouse model (Perez de Lara et al¸ 2015). 

 

As resident immune cells of the retina, microglia are sensitive to 

modulation by purinergic signalling molecules and are endowed with 

various purinergic receptors (Table 3.5) for the detection of such 

molecules. The subsequent modulation of intracellular calcium 

([Ca2+]i) as a secondary signalling system following purinergic receptor 

stimulation occurs as direct plasmalemmal entry following P2X 

receptor activation or as mobilisation of intracellular stores from Gq 
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coupled P2Y receptor mediated activation (James & Butt, 2002). 

Changes in [Ca2+]i are important to various microglial functions, 

including chemotaxis (Ohsawa et al, 2007), process extension, de-

ramification, cytokine release and phagocytosis (Mizoguchi & Monji, 

2017). As such, measuring [Ca2+]i as a marker for purinergic receptor 

activation in microglia and similar cell types has been utilised 

historically (Walz et al, 1993), and extensively since.   

 

The aims of this chapter are to characterise [Ca2+]i responses in BV-2 

microglia, following stimulation with various endogenous purinergic 

signalling ligands, in particular with regards to the 

P2X7R. Furthermore, stimulation of P2X7 K/O Clone-14 cells 

generated in the previous chapter can provide both functional evidence 

for the successful knockout of the P2X7 receptor, as well as 

characterisation of this receptor’s contributions to purinergic Ca2+ 

signalling.   
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4.2 Results 

4.2.1 ATP mediated Ca2+ responses in BV-2 microglia 

 

In order to explore the activation of BV-2 microglia in response to the 

endogenous purinergic agonist ATP, intracellular Ca2+ secondary 

messenger responses were explored. Fura-2 acetoxymethyl loaded BV-

2 cells were stimulated with a wide range of ATP concentrations 

(100nM-3mM) and Ca2+ responses were measured for 300 seconds 

(Figure 4.1).  

 

ATP stimulation caused a dose dependant increase in intracellular 

Ca2+ in BV-2 microglia, and manifested as a biphasic response (Figure 

4.1 A). The initial phase response consisted of a rapid increase in Ca2+ 

reaching a peak within 30 seconds of agonist application, then 

returning towards baseline levels. This initial peak phase was observed 

at ATP concentrations above 300nM and was concentration dependent, 

reaching a maximum response by 100µM (Figure 4.1 B). The calculated 

EC50 was 1.9µM ATP. At higher ATP concentrations (≥300µM), an 

additional sustained Ca2+ response was observed (Figure 4.1 A), 

characterised as a dose dependant increase in Ca2+ concentration, 

following the initial peak. Sustained phase elevated Ca2+ did not return 

to baseline levels over the course of the experiment (300s). 

Additionally, higher ATP concentrations led to a quicker onset of the 

sustained phase, with the two phases merging at 1mM ATP. 
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Figure 4.1: A Average intracellular Ca2+ concentration (340/380nm 
Fura-2 ratio) in BV-2 microglia following ATP stimulation (3µM-3mM) 
(n=3). Baseline fluorescence was recorded for 30 seconds prior to ATP 
stimulation and was subtracted from the measurements. B & C 
Concentration response relationship for ATP mediated Ca2+ increase in 
BV-2 microglia, measured as B Peak response (30-60s) and C Area 
under the curve (90-300s), represented as mean values ± S.E.M (n=3). 
Data was fitted using non-linear regression in GraphPad Prism, with 
EC50 values determined as 1.9µM (B) and 344µM (C) respectively  
  

A 

B C 
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The EC50 of the sustained phase (determined as the area under the 

curve between 90-300 seconds) was determined as 344µM (Figure 4.1 

C). The two phase Ca2+ response to ATP could indicate either the 

contribution of two or more purinergic receptors, or multiple states of 

receptor activation.  Interestingly, the maximal response of the 

sustained phase was not observed at the highest concentration tested 

(3mM), but at the second highest concentration (1mM), which could 

suggest a mechanism of fairly rapid receptor desensitization occurs to 

prevent excessive receptor stimulation. 

 
 
4.2.2 ATP mediated Ca2+ responses in P2X7 K/O Clone-14 
microglia 
 
In order to determine the functional characteristics of the P2X7 

receptor in ATP mediated intracellular Ca2+ responses, intracellular 

Ca2+ levels were also measured in P2X7 K/O Clone-14 microglia. Clone-

14 microglia were Fura-2 loaded and stimulated with an identical 

range of ATP concentrations (100nM-3mM), with resulting Ca2+ 

responses measured for 300 seconds (Figure 4.2).  

 

In contrast to BV-2 microglia, Clone-14 cells displayed only a 

monophasic Ca2+ response following ATP stimulation (Figure 4.2 A), 

consisting of the rapid initial peak only. The calculated EC50 peak 

response (30-60 seconds) in clone 14 microglia was 4.1µM ATP (Figure 

4.2 B), closely resembling the calculated EC50 peak response in BV-2 

microglia, suggesting the absence of P2X7R does not alter the initial 

peak phase response to ATP.  The sustained phase of Ca2+ increase 

observed in BV-2 cells (Figure 4.1 A) was completely absent in Clone-

14 cells at all ATP concentrations tested, representing a significant 

reduction the in AUC (90-300 seconds) response (Figure 4.2.C).  
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Figure 4.2: A Average intracellular Ca2+ concentration (340/380nm 
Fura-2 ratio) in P2X7 K/O clone-14 microglia following ATP 
stimulation (3µM-3mM) (n=3). Baseline fluorescence was recorded for 
30 seconds prior to ATP stimulation and was subtracted from the 
measurements. B & C Concentration response relationship for ATP 
mediated Ca2+ increase in P2X7 K/O clone-14 microglia, measured as 
B Peak response (30-60s) and C Area under the curve (90-300s), 
represented as mean values ± S.E.M (n=3). Data was fitted using non-
linear regression in GraphPad Prism, with EC50 values determined as 
4.1µM (B) 3.5µM (C) respectively 
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4.2.3 AZ10606120 antagonism of ATP mediated Ca2+ responses in 
BV-2 microglia 
 

As further evidence for the role of P2X7 in the sustained phase Ca2+ 

response to high dose ATP stimulation, BV-2 microglia pre-treated with 

the potent P2X7 receptor antagonist AZ10606120 (0-10µM) for 30 

minutes before being stimulated with a wide range of ATP 

concentrations (3µM-3mM), and resulting Ca2+ responses measured for 

300 seconds (Figure 4.3). 

 

Each concentration of AZ10606120 (1, 3 & 10µM) demonstrated 

significant inhibition in the sustained phase Ca2+ response to ATP 

stimulation of BV-2 cells (Figure 4.3). AZ10606120 had no significant 

effect on the initial peak Ca2+ response at any concentration tested. 

The inhibition demonstrated with AZ10606120 further indicates a role 

for P2X7 in the sustained phase response, but not the initial phase.       
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Figure 4.3: A Average intracellular Ca2+ concentration (340/380nm 
Fura-2 ratio) in BV-2 microglia following ATP stimulation (300µM) at 
30 seconds in the presence of various concentrations (0-10µM) of P2X7 
receptor antagonist AZ10606120. Mean values displayed (n=3). 
Baseline fluorescence was recorded for 30 seconds prior to ATP 
stimulation and was subtracted from the measurements. B 
Concentration response relationship for ATP mediated Ca2+ increase in 
BV-2 microglia, measured as area under the curve (90-300s) 
represented as mean values ± S.E.M (n=3). C Concentration response 
relationship for ATP mediated Ca2+ increase in BV-2 microglia, 
measured as peak Fura-2 ratio (30-60s) represented as mean values ± 
S.E.M (n=3). * Indicates significance compared to the ATP control 
group using two-way ANOVA with Dunnett’s post hoc test. Data was 
fitted using non-linear regression in GraphPad Prism 
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4.2.4 BzATP mediated Ca2+ responses in BV-2 microglia 
 
To further delineate the contribution of P2X7 receptor activation in BV-

2 microglia [Ca2+]i responses, BV-2 cells were stimulated with the 

potent synthetic P2X7 agonist BzATP at a range of concentrations 

(300nM-300µM). The responses measured for 300 seconds (Figure 4.4).  

 

Like ATP, BzATP stimulation of BV-2 cells demonstrated a dose 

dependent increase in intracellular Ca2+ in BV-2 microglia (Figure 4.4 

A). However, in contrast to ATP, BzATP stimulation lacked an initial 

rapid peak phase and produced only a sustained phase response, 

which manifested similarly to the sustained phase with ATP 

stimulation. Non-linear regression of AUC was performed, which 

determined the EC50 for BzATP to be 64µM.  

 
4.2.5 BzATP mediated Ca2+ responses in P2X7 K/O Clone-14 
microglia 
 
The role of P2X7s role was further explored with BzATP in P2X7 K/O 

Clone-14 microglial cells. Clone-14 cells were stimulated with BzATP at 

a range of concentrations (300nM-300µM). The responses were 

measured for 300 seconds (Figure 4.5). 

 

Unlike with BV-2 cells, BzATP stimulation of Clone-14 microglia failed 

to elicit a strong sustained phase of elevate [Ca2+]i, with only a minor 

increase observed at the highest concentration tested 300µM (Figure 

4.5). The absence of P2X7 demonstrating a lack of BzATP efficacy in 

eliciting a sustained phase [Ca2+]i response indicates that P2X7 

mediates the majority of this phase response.     
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Figure 4.4: A Average intracellular Ca2+ concentration (340/380nm 
Fura-2 ratio) in BV-2 microglia following BzATP stimulation (300nM-
300µM) (n=3). Baseline fluorescence was recorded for 30 seconds prior 
to agonist stimulation. B Concentration response relationship for 
BzATP mediated Ca2+ increase in BV-2 microglia, measured as area 
under the curve (30-300s), represented as mean values ± S.E.M (n=3).  
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Figure 4.5: A Average intracellular Ca2+ concentration (340/380nm 
Fura-2 ratio) in P2X7 K/O clone-14 microglia following BzATP 
stimulation (300nM-300µM) (n=3). Baseline fluorescence was recorded 
for 30 seconds prior to agonist stimulation. B Concentration response 
relationship for BzATP mediated Ca2+ increase in P2X7 K/O clone-14 
microglia, measured as area under the curve (30-300s), represented as 
mean values ± S.E.M (n=3). 
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4.2.6 AZ10606120 antagonism of BzATP mediated Ca2+ responses 

in BV-2 microglia 

In a similar manner to the antagonism of ATP responses (Figure 4.3), 

AZ10606120 was utilised to investigate the role of the P2X7 receptor in 

BzATP mediated [Ca2+]i responses. BV-2 cells were stimulated as 

previously described (Figure 4.4) in the absence or presence of 

AZ10606120 (1-10µM) (Figure 4.6). 

 

AZ10606120 demonstrated significant inhibition of 300µM BzATP 

mediated sustained phase responses at all concentrations tested (1, 3 

& 10µM), although it did not produce any significant effect at any other 

BzATP concentrations explored. Responses in the presence of high 

concentration AZ10606120 were similar to BzATP mediated responses 

in P2X7 K/O Clone-14 cells (Figure 4.6). 

 



134 
 

 

Figure 4.6: A Average intracellular Ca2+ concentration (340/380nm 
Fura-2 ratio) in BV-2 microglia following BzATP stimulation (30µM in 
the presence of various concentrations (0-10µM) of the P2X7 
antagonist AZ10606120 (n=3). Baseline fluorescence was recorded for 
30 seconds prior to ATP stimulation and was subtracted from the 
measurements. B Concentration response relationship for ATP 
mediated Ca2+ increase in BV-2 microglia, measured as area under the 
curve (90-300s), represented as mean values ± S.E.M (n=3). * Indicates 
significance compared to BzATP control group using two-way ANOVA 
with Dunnett’s post hoc test. Data was fitted using non-linear 
regression in GraphPad Prism  
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4.2.7 PSB12062 antagonism of ATP mediated Ca2+ responses in 
P2X7 K/O Clone-14 microglia 
 

In order to explore the involvement of purinergic receptors in the initial 

ATP mediated Ca2+ response in BV-2 cells, the potent P2X4 antagonist 

PSB12062 was utilised, in combination with P2X7-/- Clone-14 cells in 

order to negate the effects of P2X7 mediated contribution to the ATP 

response. Clone-14 cells were stimulated with a wide range of ATP 

concentrations (3µM-3mM) in the presence of PSB12062 (0-10µM) and 

Ca2+ responses were measured for 300 seconds (Figure 4.7).  

 

Antagonism with PSB12062 (1-10µM) demonstrated a significant 

inhibition of the initial phase (peak intracellular Ca2+) response 

compared to ATP stimulation alone (Figure 4.7), indicating that P2X4 

activation plays a significant role in the initial peak phase response to 

ATP stimulation BV-2 microglia cells.  
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Figure 4.7: Average intracellular Ca2+ concentration (340/380nm 
Fura-2 ratio) in P2X7 K/O Clone-14 microglia following 300µM ATP, in 
the presence of varying concentrations of P2X4 antagonist PSB12062 
(0-10µM). Mean values displayed (n=3). Baseline fluorescence was 
recorded for 30 seconds prior to ATP stimulation and was subtracted 
from the measurements. B Peak Ca2+ response in P2X7 K/O Clone-14 
responses following ATP stimulation in the absence and presence of 
PSB12062 (10µM). Data represented as mean values ± S.E.M (n=3). * 
indicates significance compared to control ATP response using one-way 
ANOVA with Dunnett’s post hoc test (P<0.05). Data was fitted using 
non-linear regression.   
  

A 

B 



137 
 

4.2.8 5-BDBD antagonism of ATP mediated Ca2+ responses in P2X7 

K/O Clone-14 microglia  

 

As further evidence for the role of P2X4 in the ATP-mediated Ca2+ 

response of BV-2 cells, the competitive P2X4 antagonist 5-BDBD was 

utilised, once again using P2X7 K/O Clone-14 cells in order to negate 

the P2X7 mediated component of the ATP response. Clone-14 cells 

were stimulated with a wide range of ATP concentrations (3µM-3mM) 

in the presence 5-BDBD (0-10µM) and Ca2+ responses were measured 

for 300 seconds (Figure 4.8).  

 

As with PSB12062, antagonism with 5-BDBD (10µM) demonstrated a 

significant inhibition (P<0.05) of the initial peak [Ca2+]i response 

compared to ATP stimulation alone (Figure 4.8). Significant inhibition 

with 5-BDBD (10µM) was observed at all ATP concentrations tested, in 

comparison to just the higher ATP concentrations observed with 

PSB12062. This suggests that P2X4 activation plays a significant role 

in the initial peak phase response to ATP stimulation of P2X7 K/O 

Clone-14 microglia.  
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Figure 4.8: A Average intracellular Ca2+ concentration (340/380nm 
Fura-2 ratio) in P2X7 K/O Clone-14 microglia following 300µM ATP, in 
the presence of varying concentrations of P2X4 antagonist 5-BDBD (0-
10µM). Mean values displayed (n=3). Baseline fluorescence was 
recorded for 30 seconds prior to ATP stimulation and was subtracted 
from the measurements. B Peak Ca2+ response in P2X7 K/O Clone-14 
responses following ATP stimulation in the absence and presence of 5-
BDBD (10µM). Data represented as mean values ± S.E.M (n=3). * 
indicates significance compared to control ATP response using one-way 
ANOVA with Dunnett’s post hoc test (P<0.05). Data was fitted using 
non-linear regression.   
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4.2.9 AR-C 118925XX antagonism of UTP mediated Ca2+ responses 
in BV-2 microglia 
 

To explore the potential contribution of the P2Y2 receptor to ATP 

mediated [Ca2+]i responses, stimulation with the more potent P2Y2 

receptor endogenous agonist UTP was utilised, in combination with the 

competitive potent P2Y2 receptor antagonist AR-C118925XX. Fura-2 

BV-2 cells were stimulated with a wide range of UTP concentrations 

(1µM-1mM) in the presence or absence of AR-C118925XX (1-10µM), or 

in isolation (Figure 4.9 & 4.10). 

 
Stimulation with UTP produced a dose dependent single phase [Ca2+]i 

response (Figure 4.9), similar in shape to that observed with ATP 

stimulation. Antagonism with AR-C118925XX demonstrated a robust 

significant inhibition of the UTP-induced increase in [Ca2+]i (Figure 

4.10). 

 
Figure 4.9: Average intracellular Ca2+ concentration (340/380nm 
Fura-2 ratio) in BV-2 microglia following UTP stimulation (1µM-1mM) 
(n=3). Baseline fluorescence was recorded for 30 seconds prior to ATP 
stimulation and was subtracted from the measurements. 
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Figure 4.10: A Average intracellular Ca2+ concentration (340/380nm 
Fura-2 ratio) in BV-2 microglia following UTP stimulation (300µM) at 
30 seconds in the presence of various concentrations (0-10µM) of P2Y2 
receptor antagonist AR-C118925XX. Mean values displayed (n=3). 
Baseline fluorescence was recorded for 30 seconds prior to ATP 
stimulation and was subtracted from the measurements. B 
Concentration response relationship for UTP mediated Ca2+ increase in 
BV-2 microglia, measured as area under the curve (90-300s) 
represented as mean values ± S.E.M (n=3). C Concentration response 
relationship for ATP mediated Ca2+ increase in BV-2 microglia, 
measured as peak Fura-2 ratio (30-60s) represented as mean values ± 
S.E.M (n=3). * Indicates significance compared to the UTP control 
group using two-way ANOVA with Dunnett’s post hoc test. Data was 
fitted using non-linear regression in GraphPad Prism 
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4.2.10 ADP mediated Ca2+ responses in BV-2 microglia 

To explore contribution of other purinergic agonists to [Ca2+]i 

signalling, ADP stimulation of BV-2 Cells was investigated by 

stimulating with a wide range of ADP concentrations (100nM-3mM) 

(Figure 4.11).  

 

ADP mediated [Ca2+]i responses demonstrated a dose dependent 

increase in peak response, similar to the observed initial phase 

response with ATP stimulation (Figure 4.11). An additional sustained 

phase response was also observed, however in contrast to ATP, 

stimulation, this phase was only observed at the highest concentration 

tested (3mM). 

 

4.2.11 ADP mediated Ca2+ responses in P2X7 K/O Clone-14 
microglia 
 

Due to the presence of a characteristic P2X7 like sustained phase 

[Ca2+]i response following 3mM ADP stimulation, ADP stimulation was 

explored the in P2X7 K/O Clone-14 cells. 

 

ADP responses in P2X7 K/O Clone-14 cells (Figure 4.12) mimicked 

those observed in parental BV-2 cells (Figure 4.11), with the exception 

of the absence of the sustained phase response observed at 3mM. The 

absence of the sustained phase response has subsequently highlighted 

the involvement of P2X7 in the mediation of this phase response. 
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Figure 4.11: A Average intracellular Ca2+ concentration (340/380nm 
Fura-2 ratio) in BV-2 microglia following ADP stimulation (300nM-
3mM) (n=3). Baseline fluorescence was recorded for 30 seconds prior to 
agonist stimulation. B Concentration response relationship for ADP 
mediated Ca2+ increase in BV-2 microglia, measured as peak Fura-2 
ratio (30-60s), represented as mean values ± S.E.M (n=3). Data was 
fitted using non-linear regression, with EC50 values determined as 
10.1µM. 
 
 
  

A 

B 



143 
 

 

 
Figure 4.12: A Average intracellular Ca2+ concentration (340/380nm 
Fura-2 ratio) in BV-2 microglia following ADP stimulation (300nM-
3mM) (n=3). Baseline fluorescence was recorded for 30 seconds prior to 
agonist stimulation. B Concentration response relationship for ADP 
mediated Ca2+ increase in BV-2 microglia, measured as peak Fura-2 
ratio (30-60s), represented as mean values ± S.E.M (n=3). Data was 
curve fit using non-linear regression, with EC50 values determined as 
10.1µM. Data was fitted using non-linear regression, with EC50 values 
determined as 8.02µM. 
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4.2.12 MRS2179 antagonism of ADP mediated Ca2+ responses in 
BV-2 microglia 
 
Like ATP, ADP is a promiscuous ligand with affinity for multiple P2 

receptor subtypes. The P2Y1 receptor antagonist MRS2179 was used 

to probe P2Y1 receptor contribution (Figure 4.13). 

 

Antagonism, with MRS2179 (10µM) did not produce significant 

inhibition of ADP mediated [Ca2+]i responses at any concentration 

explored, suggesting P2Y1 is not involved in ADP mediated [Ca2+]i of 

BV-2 microglia. 

 

4.2.13 MRS2578 antagonism of ADP mediated Ca2+ responses in 
BV-2 microglia 
 
To further probe the role of purinergic receptor contribution to the ADP 

mediate [Ca2+]i response, the potent P2Y6 receptor antagonist 

MRS2578 was utilised. (Figure 4.14). 

 
Antagonism with MRS2578 (10µM) demonstrated a robust and 

significant inhibitive effect on ADP mediated [Ca2+]i responses, with a 

dose dependent antagonist effect observed. Reduction in peak 

fluorescent responses was observed at concentrations of 10µM ADP 

and above, suggesting mediation from P2Y6.   
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Figure 4.13: A Average intracellular Ca2+ concentration (340/380nm 
Fura-2 ratio) in BV-2 microglia following 300µM ADP, in the presence 
of varying concentrations of P2Y1 antagonist MRS2179 (0-10µM). 
Mean values displayed (n=3). Baseline fluorescence was recorded for 
30 seconds prior to ATP stimulation and was subtracted from the 
measurements. B Peak fura-2 ratio quantification of Fura-2AM Ca2+ 
BV-2 responses following ADP stimulation in the absence and presence 
of MRS2179 (10µM). Data represented as mean values ± S.E.M (n=3). * 
indicates significance compared to control ADP response using one-
way ANOVA with Dunnett’s post hoc test (P<0.05). Data was fitted 
using non-linear regression.   
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Figure 4.14: A Average intracellular Ca2+ concentration (340/380nm 
Fura-2 ratio) in BV-2 microglia following 300µM ADP, in the presence 
of varying concentrations of P2Y6 antagonist MRS2578 (0-10µM). 
Mean values displayed (n=3). Baseline fluorescence was recorded for 
30 seconds prior to ATP stimulation and was subtracted from the 
measurements. B Peak fura-2 ratio quantification of Fura-2AM Ca2+ 
BV-2 responses following ADP stimulation in the absence and presence 
of MRS2578 (10µM). Data represented as mean values ± S.E.M (n=3). * 
indicates significance compared to control ADP response using one-
way ANOVA with Dunnett’s post hoc test (P<0.05). Data was fitted 
using non-linear regression.   
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4.2.14 PSB0739 antagonism of ADP mediated Ca2+ responses in 
BV-2 microglia 
 
As residual ADP mediated [Ca2+]i  signalling was present with the 

highest concentration of P2Y6 antagonism, further delineation of other 

purinergic receptor contributions was explored with the potent P2Y12 

receptor antagonist PSB0739. PSB0739 was selected over other 

commercially available P2Y12 receptor antagonists, as it is bioactive 

without enzymatic conversion in contrast to other commonly used 

antagonists such as tricagrelor. Fura-2 acetoxymethyl loaded BV-2 

microglial cells were stimulated with a wide range of ADP 

concentrations (3µM-3mM) in the presence PSB0739 (0-10µM) and 

[Ca2+]i responses were measured for 300 seconds (Figure 4.15). 

 

Antagonism with PSB0739 (10µM) a moderately significant inhibition 

in AUC [Ca2+]i responses at the ADP stimulations concentrations (3-

10µM), and unusually at 300µM (Figure 4.15). This significant 

difference was observed mainly in the decay phase of the peak, 

whereby return to baseline fluorescent levels occurred quicker in the 

presence of PSB0739 (10µM)   



148 
 

 

-6 -5 -4 -3
0.0

0.5

1.0

1.5

log [ADP] M

Fu
ra

-2
 R

at
io

 (
34

0
nm

/3
8

0n
m

)
P

ea
k 

re
sp

on
se

 (
30

-6
0s

ec
)

ADP

ADP + 10M PSB0739

 
Figure 4.15: A Average intracellular Ca2+ concentration (340/380nm 
Fura-2 ratio) in BV-2 microglia following 300µM ADP, in the presence 
of varying concentrations of P2Y12 antagonist PSB0739 (0-10µM). 
Mean values displayed (n=3). Baseline fluorescence was recorded for 
30 seconds prior to ATP stimulation and was subtracted from the 
measurements. B Peak fura-2 ratio quantification of Fura-2AM Ca2+ 
BV-2 responses following ADP stimulation in the absence and presence 
of PSB0739 (10µM). Data represented as mean values ± S.E.M (n=3). * 
indicates significance compared to control ADP response using one-
way ANOVA with Dunnett’s post hoc test (P<0.05). Data was fitted 
using non-linear regression.   
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4.3 Discussion  

Initial experiments were conducted to establish a dose response 

relationship for the ubiquitous purinergic agonist ATP in BV-2 

microglia. ATP (100nm-3mM) stimulation of BV-2 microglia displayed a 

complex and dynamic [Ca2+]i response (Figure 4.2.1 A), consisting of a 

dose dependent initial rapid transient rise at low and moderate ATP 

concentrations (≤300µM), followed by a subsequent and distinct period 

of elevated [Ca2+]i at higher ATP concentrations (≥300µM ATP). The 

exhibited biphasic [Ca2+]i response following stimulation with high 

concentrations of ATP is in agreement with multiple previous 

fluorimetric Ca2+ studies, and has been demonstrated in multiple 

different cell types including primary rat astrocytes (Nobile et al, 2003; 

Balerini et al, 2005), and primary mouse microglia (Visentin et al, 

1999; Shieh et al, 2014). Isolation of the initial peak phase response, 

by quantification of peak fluorescent responses within 30 seconds of 

agonist stimulation (Figure 4.1 B) determined an EC50 value of 1.9µM.  

Of important note, with increasingly higher concentrations of ATP, the 

sustained phase [Ca2+]i response onset is shortened following 

stimulation, and it became difficult to separate from the peak phase 

response, which is exemplified by the 1mM ATP response. Additionally, 

the maximal sustained phase response elicited by ATP was at 1mM 

and not the highest concentrations (3mM) tested (Figure 4.2.1 A), 

which may suggest the rapid occurrence of receptor 

desensitization/internalization following overstimulation, an effect 

which has been shown to occur with purinergic receptors (Brinson & 

Harden, 2001). 

 

Quantifying the sustained phase response to ATP (Figure 4.2.1 C) 

determined an EC50 value of 344 µM for ATP. This is substantially 

higher than reported EC50 values for all purinergic receptors, with the 

exception of P2X7, which is several orders of magnitude less sensitive 

to ATP than related P2X subtypes with a reported EC50 of 0.3-1mM at 
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physiological concentrations of Mg2+ and Ca2+ (Gever et al, 2006; 

Kaczmarek-Hajek et al, 2012).  

 

In order to differentiate the contribution of different purinergic 

receptors in the ATP mediated [Ca2+]i response in BV-2 microglia, 

several pharmacological tools were subsequently used, in combination 

with the P2X7 deficient clone-14 cells described in the previous 

chapter. In contrast to BV-2 cells, ATP stimulation of Clone-14 cells 

demonstrated only an initial transient [Ca2+]i peak (Figure 4.2), with a 

complete absence of the characteristic sustained phase, even at the 

highest concentrations tested (3mM), confirming the role of P2X7 in 

the sustained phase of the response. Quantification of the initial phase 

of the [Ca2+]i response in Clone-14 cells demonstrated similarity with 

that of BV-2 cells, indicating P2X7 does not have a role on the initial 

response. It also further indicates that the use of CRISPR to knockout 

P2X7 didn’t affect the functional expression of the purinergic receptors 

involved in mediation of the initial phase [Ca2+]i response.  

 

To further clarify P2X7s role in [Ca2+]i signalling, stimulation with the 

potent P2X7 receptor synthetic agonist BzATP was performed in BV-2 

(Figure 4.4) and Clone-14 cells (Figure 4.5). Due to its selective profile 

for P2X7 over related P2X subtypes, BzATP is widely used in 

experimental studies to investigate P2X7 responses. BzATP stimulation 

of BV-2 cells exhibited a dose dependent calcium response, manifested 

as an isolated sustained phase of elevated [Ca2+]i and an absence of the 

initial transient phase response observed with ATP. These findings 

mimic the BzATP induced [Ca2+]i response pattern demonstrated in 

previous calcium fluoroscopy studies, shown in primary rat 

(Parvathenani et al, 2003) and cultured mouse (Shieh et al, 2014) 

microglia, as well as rat brain astrocytes (Ballerini et al, 2005). In 

contrast to BV-2 cells, BzATP exhibited only a minimal residual 

sustained phase response in Clone-14 cells, indicating it is a good 
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pharmacological tool for P2X7 responses in these cells, with a minimal 

contribution for other purinergic receptors.  

 

Confirmation of the role of P2X7 in the sustained phase [Ca2+]i 

response utilised the potent P2X7 antagonist AZ10606120, which has 

been validated in previous studies, specifically in blocking BzATP 

induced Ca2+ responses (Tozzi et al, 2018). Pre-treatment with 

AZ1060610 (1-10µM) caused significant inhibition of the sustained 

phase responses to both BzATP and elevated ATP stimulation (Figures 

4.3 & 4.6), with no significant alteration to the ATP-mediated peak 

phase response. This demonstrates both further evidence for the role 

of P2X7 in the sustained phase response, and that AZ10606120 is a 

good pharmacological tool for investigating P2X7 receptor activity.  

 

Following confirmation of P2X7 receptor mediation of the sustained 

phase [Ca2+]i response by ATP, a series of experiments were conducted 

in order to identify the involvement of additional purinergic receptor 

subtypes in the peak phase of the response. Due to its high expression 

in BV-2 cells (Raouf et al, 2007), and higher reported affinity for ATP 

(100µM range), the role of P2X4 on the initial phase [Ca2+]i response 

was subsequently explored. These experiments utilised selective P2X4 

antagonists, in combination with P2X7 deficient Clone-14 cells in order 

to eliminate the potential effects of P2X7 activation. Both P2X4 

antagonists tested, PSB12062 (10µM) and 5-BDBD (10µM) 

demonstrated significant reduction in the peak [Ca2+]i response (Figure 

4.7 & 4.8), following ATP stimulation, indicating a role for P2X4 in 

mediation of the transient peak [Ca2+]i response. The presented P2X4 

antagonist data corroborates previous findings in microglial cells. For 

example potentiation of ATP [Ca2+]i responses were demonstrated with 

the P2X4 positive allosteric modulator ivermectin, and were 

subsequently blocked with  PSB12062 or 5-BDBD pre-treatment 

(Dhuna et al, 2018). P2X4 involvement in ATP mediated peak [Ca2+]i 

responses has also been demonstrated in cell models other than 
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microglia, for example, in THP-1 macrophages, antagonism with either 

10µM PSB12062 or 5-BDBD was sufficient to significantly inhibit a 

100µM ATP mediated transient [Ca2+]i response (Layhadi & Fountain, 

2017). 

 

UTP is a full agonist at mP2Y2, and equipotent with ATP (Tovell & 

Sanderson, 2008). UTP was therefore utilised in BV-2 microglia to 

explore the contributions of the P2Y2 receptor to [Ca2+]i responses, 

without contribution from P2X7 and P2X4 activation. UTP stimulation 

of BV-2 cells demonstrated a dose dependent increase in [Ca2+]i 

response (Figure 4.9), in a manner similar to that observed to the 

initial (peak) phase seen with ATP stimulation. Further exploration 

with the use of the competitive P2Y2 receptor antagonist demonstrated 

a significant inhibition of UTP-induced increase in [Ca2+]i (Figure 4.10). 

In previous studies, UTP stimulation has demonstrated a rapid rise in 

microglial [Ca2+]i , similar to that observed in this experiment, despite 

low mRNA expression of P2Y2 (Light et al, 2006). However, the receptor 

identity was not probed further with antagonism or receptor knockout 

cells. Although not in a microglial model, other systems expressing 

P2Y2, for example in human adipose derived mesenchymal stromal 

cells have been previously shown to signal via Ca2+  following UTP 

stimulation, with significant inhibition by AR-C118925XX (Ali et al, 

2018). This UTP and AR-C118925XX data, in combination with 

antagonism of P2X4 mediated ATP responses suggests that a 

combination of both P2Y2 and P2X4 contribute to the initial [Ca2+]i 

response. Future investigations combining the use of P2Y2 and P2X4 

receptor antagonists would help determine if additional purinergic 

receptors also contribute to the initial ATP-mediated [Ca2+]i response.   

 

Although ATP is considered the primary endogenous signalling 

molecule of the purinergic system, a number of additional related 

endogenous agonists also have activity in control of physiological 

processes. In addition to ATP, a range of nucleotide signalling 
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molecules can be released into the extracellular milleu, including UDP, 

UTP and ADP. ADP is itself a product of the degradation of ATP, which 

is mediated by a family of ecto-nucleotidase enzymes, which are 

expressed by BV-2 microglia (Braun et al, 2000), as well as numerous 

other cells. The combination of these factors makes ADP a potential 

key signalling molecule in mediation of Ca2+responses. 

 

ADP (100nm-3mM), demonstrated a dose dependent increase in [Ca2+]i 

manifesting as rapid peak followed by a decrease back to baseline, 

similar to that observed with low to moderate ATP stimulation. At low 

concentrations of ADP, elevated [Ca2+]i levels returned to baseline 

rapidly, however at higher concentrations (≥300µM), return to baseline 

was more gradual. 3mM ADP induced the sustained phase response 

that was similar to that seen with high concentrations of ATP, 

although ATP induced a sustained phase response at lower 

concentrations (≤300µM) (figure 4.11). The sustained phase response 

was absent in Clone-14 cells, suggesting a P2X7-mediated component, 

which could be through direct ADP stimulation of the receptor, ADP 

mediated ATP release, or possibly ATP contamination of ADP stocks. 

There has been no previous reports of activity of ADP at P2X7 

receptors, suggesting ADP stimulation of BV-2 cells may induce ATP 

release as an autocrine signalling system, a mechanism which has 

been demonstrated previously in urothelial cells (Mansfield & Hughes, 

2014). Most studies utilising ADP stimulation use far lower 

concentrations than 3mM. Unfortunately, without further investigation 

no definitive conclusion can be made about the mechanism 

responsible.  

 

In order to determine the receptors which contribute to the ADP 

mediated [Ca2+]i response, a series of pharmacological antagonists with 

selectivity for specific receptors were utilised. Due to the detection of 

relatively high mRNA receptor transcript levels for P2Y1, in addition to 

its reported coupling to Gq/G11 and phospholipase C mediated [Ca2+]i 
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signalling, the role of P2Y1 contribution to ADP mediated [Ca2+]I 

responses was explored. The P2Y1 receptor selective antagonist 

MRS2179 was used, but did not demonstrate any significant inhibition 

of the ADP mediated [Ca2+]i responses in BV-2 microglia (Figure 4.13). 

This is in agreement with previous studies in microglia, whereby 

MRS2179 did not block [Ca2+]i responses (Light et al, 2006). In 

contrast, other cell systems have demonstrated a robust P2Y1 

mediated ADP response, such as in astrocytes (Fumagalli et al, 2003) 

and Vas vasorum endothelial cells (Lyubchenko et al, 2010). In 

combination with these reported findings, these results suggest P2Y1 

mediated [Ca2+]i responses are cell type specific. It is interesting that 

despite relatively high levels of mRNA expression (Table 3.5), no 

evidence of pharmacological activity was found in BV-2 cells. 

 
As well as activating P2Y1, the role of P2Y6 was subsequently explored 

due to its moderate mRNA expression (Table 3.5), in addition to its 

reported role in phagocytosis (Koizumi et al, 2007), where ADP has 

been reported as a partial agonist. In contrast to MRS2179, the P2Y6 

antagonist MRS2578 demonstrated a strong, significant inhibition of 

the ADP-mediated [Ca2+]i responses, at moderate and high 

concentrations (≥10µM). The role of P2Y6 in microglial phagocytosis 

was first demonstrated following UDP stimulation, where it was shown 

that subsequent Ca2+ responses were blocked by MRS2578 in a 

manner similar to results found here. Later studies demonstrated 

similar MRS2578 antagonism of ADP responses in THP-1 monocytes 

(Micklewright et al, 2018) and human adipose derived mesenchymal 

stromal cells (10µM MRS2578) (Ali et al, 2018). The significant 

inhibition demonstrated with MRS2578 occurred generally at higher 

stimulation concentrations, which suggests that P2Y6 receptor 

activation may play a more significant role in microglial function in 

closer proximity to sites of cellular damage/purine nucleotide release, 

where concentrations are likely to be significantly higher. 
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The role of P2Y12 receptor in ADP mediated Ca2+ responses was also 

explored with the selective antagonist PSB0739. Although P2Y12 does 

couples predominately to via adenylate cyclase inhibition, and not PLC 

mediated Ca2 signalling, P2Y12 mediated Ca2+ responses have 

previously been demonstrated in various cell types. Inhibition of ADP 

mediated [Ca2+]i responses with an alternative P2Y12 antagonist 

tricagrelor and siRNA P2Y12 knockdown has also been shown in THP-

1 monocytes (Micklewright et al, 2018), and similarly the P2Y12 

antagonist AR-C69931MX significantly blocked [Ca2+]i responses 

following P2Y12 agonist (2MESADP) stimulation in C6 transformed 

glial cells (Suplat et al, 2007). When challenged with the P2Y12 

antagonist PSB0739, no significant inhibition of the ADP induced 

[Ca2+]i response was demonstrated. It should be noted that the major 

intracellular signalling pathway coupled with P2Y12 is via adenylate 

cyclase inhibition, and not Ca2+. This does not however mean that 

P2Y12 doesn’t have a role in purinergic Ca2+ signalling responses. 

PSB0739 antagonism strongly inhibited ADP-mediated Ca2+ signalling 

in polarized (M2) primary microglia, compared to non-polarized 

microglia (Moore et al, 2015). M2 polarization also significantly up-

regulated P2Y12 expression, suggesting polarization may enhance the 

role of the receptor in [Ca2+]i,.  

 

The combination of the data presented in this chapter has highlighted 

the dynamic and complex role different purinergic nucleotide receptor 

agonists play in microglia and the subsequent changes in [Ca2+]i 

signalling, and has highlighted that various receptors including P2Y2, 

P2Y6, P2X4 and P2X7 have potential in mediating microglial function. 

It is possible that additional purinergic receptors also contribute to 

Ca2+ signalling in microglia, however several challenges still remain in 

investigating them further. For example, PCR analysis demonstrated 

high expression of P2X5 in BV-2 microglia, however there is a lack of 

selective pharmacological agonists and antagonists for investigating 

P2X5 receptor activity in a cell culture system. The potential for 
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alternate receptor subtype knockout BV-2 clones to be generated with 

the use of CRISPR described in the previous chapter also exists, as 

well as the use of other techniques such as siRNA receptor 

knockdown. Experiments exploring functional activity of highlighted 

purinergic receptors will be presented in the following chapter. 
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Chapter 5 

P2X7 receptor mediates viability and cell death of resting microglia  

 

5.1 Introduction   
 

As microglia are the resident immune cells of the retina, they represent 

the first line of immune defence against pathological disturbances and 

subsequent retinal damage. Although much research has been 

conducted on the response of primed/polarised microglial responses 

following purinergic stimulation, the role of resting state microglia is 

often overlooked with regards to the initial pathogenic response stages. 

Additionally, due to their phagocytic role, particular focus is often 

prioritised to microglial induction of cell death in neighbouring, 

particularly in regards to developing or damaged neurons, which may 

have particular implications for RGCs in glaucoma (Thanos et al, 1991; 

Schuetz & Thanos, 2004). There is however a relative lack of 

understanding regarding the processes of cell death in microglial cells 

themselves, which is particularly important due to their established 

homeostatic roles throughout the body (Yin et al, 2017).  

 

The contribution of microglial cells to glaucomatous RGC degeneration 

is currently unclear, whether the overall balance is beneficial with the 

clearance of damaged RGCs contributing to a return to homeostasis 

within the retina (Sierra et al, 2013), or whether microglial clearance of 

RGCs is inappropriate and accelerates the process due to the clearance 

of neurons that are not beyond recovery (Brown & Neher, 2014). 

Gaining understanding of the delicate balance between proliferation 

and cell death in a resting state microglial cell population, in response 

to purinergic signalling molecules from damaged tissue, could provide 

valuable insight into the mechanisms underlying the early stages of 

conditions involving retinal damage, such as glaucoma. This chapter 
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aims to investigate the effects of purinergic stimulation on the cell 

death mechanisms in resting microglia in response to endogenous 

purinergic signalling molecules, in order to gain better understanding 

of the response these cells during early stage pathophysiological 

conditions in the retina.  
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5.2 Results 
 
5.2.1 Cell viability/death in response to ATP in BV-2 microglia 
 
In order to determine the effects of purinergic stimulation on microglial 

viability and the induction of possible cell death pathways, BV-2 

microglia were initially stimulated with varying concentrations of ATP 

for 24hrs in serum free media, with measurements of cell viability and 

cell death recorded with the MTS (Figure 5.1) and LDH (Figure 5.2)  

assays respectively. 

 

Figure 5.1: BV-2 cell viability measured using MTS assay in response 
to varying concentrations of ATP (10µM-5mM) for 24 hours (n=4). Data 
presented as Mean ±S.E.M. * indicates significance compared to 
control (P>0.05) using one-way ANOVA with Dunnett’s post-hoc test.  
 
ATP stimulation of BV-2 microglia demonstrated a biphasic reduction 

in cell viability, where concentrations of 50µM-1mM elicited an 

approximate 30% reduction in viability compared to control, whereas 

concentrations ≥3mM produced a near total abolishment of viability 

(figure 5.1).  
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Figure 5.2: BV-2 cell death measured using LDH assay in response to 
varying concentrations of ATP (10µM-5mM) for 24 hours (n=4). Data 
presented as Mean ±S.E.M. * indicates significance compared to 
control (P>0.05) using one-way ANOVA with Dunnett’s post-hoc test. 
 
In contrast to results from the MTS assay, LDH release following ATP 

stimulation for 24 hours did not produce a biphasic response in BV-2 

cells, with a significant increase in release of LDH only occurring at 

concentrations of ≥3mM, mirroring the large reduction in viability 

observed at these concentrations.    

 

5.2.2 Caspase 3/7 activation in response to ATP in BV-2 microglia 

In order to validate the use of MTS assay as a means of detecting cell 

death, a live cell (non-fixed) fluorescence microscopy assay for 

detection of active caspase 3/7 was utilised. MTS assay conditions 

were reproduced with fluorescence images recorded following 24 hour 

treatment of BV-2 cells with varying concentrations (10µM-5mM) of 

ATP (Figure 5.3). 
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Figure 5.3: BV-2 cell death measured as percentage of caspase 3/7 
active cells (Nucview 488) of total cell number (Hoescht 33342) 
following stimulation with various concentrations of ATP (10µM-5mM) 
for 24 hours (n=4). Data presented as Mean ±S.E.M. * indicates 
significance compared to control (P>0.05) using one-way ANOVA with 
Dunnett’s post-hoc test. 
 

Similar to observations with the MTS assay, ATP stimulation 

demonstrated a biphasic increase in the percentage of treated cells 

with active caspase 3/7 (Figure 5.3). An initial significant increase in 

the percentage of cells with active caspase 3/7 of approximately 25% 

was demonstrated at ATP concentrations from 300µM-1mM, whereas 

concentrations of ≥3mM produced activation of caspases 3/7 in the 

near totality of cells. These observed increases in the percentage of 

cells with active forms of caspase 3/7 with this assay mirrors the 

reduction in cell viability demonstrated in the MTS assay (Figure 5.1). 
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5.2.3 Cell viability/death in response to ATP P2X7 K/O Clone-14 

microlgia 

Due to the promiscuity of ATP as a ligand at purinergic receptors and 

the expression of multiple subtypes in BV-2 cells (Table 3.5), the role of 

different purinergic receptors on ATP-mediated viability reduction/ 

increase in cell death was explored. With the use of P2X7 K/O clone-

14 microglia, the role of P2X7 was initially explored using MTS (Figure 

5.4) and active caspase 3/7 fluorescent live cell imaging (figure 5.4) 

assays were utilised. 

 

Figure 5.4: Cell viability measured using MTS assay in BV-2 (solid) 
and Clone-14 (hashed) microglial cells, in response to varying 
concentrations (30µM-3mM) of ATP for 24 hours (n=4). Data presented 
as mean ±S.E.M. * indicates significance (P<0.05) compared to control 
using one-way ANOVA with Dunnett’s post hoc test. § indicates 
significance (P<0.05) between cell types at given ATP concentrations 
using two-way ANOVA with Sidak’s post hoc test.    
 

Similarly to with wild type BV-2 cells, 300µM ATP stimulation 

produced a significant reduction in cell viability in clone-14 cells, of 

approximately 20% (Figure 5.5). Although less severe than the 

approximate 30% reduction in viability demonstrated at equal 

concentration in wild type BV-2 microglia, this difference in viability 

was not significant between the two cell types. However 3mM ATP 
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treated clone-14 cells demonstrated an inhibition of loss of cell 

viability, which is in contrast to and significantly different from the 

results demonstrated with wild type BV-2 microglia. Additionally, live 

cell fluorescent imaging demonstrated a significant increase in the 

percentage of total cells with active caspase 3/7 in clone-14 microglia 

following ATP stimulation at concentrations of ≥100µM (Figure 5.5). 

The significant increase in percentage of cells with active caspase 3/7 

began with an approximate 15% increase over control at 100µM, before 

peaking and plateauing at approximately 35% with concentrations of 

≥300µM. Where a near total activation of caspase 3/7 was 

demonstrated in wild type BV-2 microglia following stimulation with 

elevated concentrations of 3-5mM ATP (Figure 5.3), this effect was not 

replicated in clone-14 microglia, with no increase over the approximate 

45% caspase 3/7 activation observed at 300µM. 

 

 

Figure 5.5: P2X7 K/O clone-14 cell death measured as percentage of 
caspase 3/7 active cells (Nucview 488) of total cell number (Hoescht 
33342) following stimulation with various concentrations of ATP (10 
µM-5mM) for 24 hours (n=3). Data presented as Mean ±S.E.M. * 
indicates significance compared to control (P>0.05) using one-way 
ANOVA with Dunnett’s post-hoc test. 
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5.2.4 BzATP dose response in BV-2 microglia 

 
In order to further probe the role of P2X7 receptor in purinergic 

mediated microglial cell death, the potent P2X7 receptor agonist was 

utilised. BV-2 microglia were stimulated with a range of concentrations 

(1-500µM) to produce a dose response comparable to those previously 

demonstrated with ATP, where cell viability and cell death were 

assessed by MTS (Figure 5.6) and LDH (Figure 5.7) assays respectively. 

 
Figure 5.6: BV-2 cell viability measured using MTS assay, in response 
to varying concentrations of BzATP stimulation (1-500µM) for 24 hours 
(n=4). Data presented as Mean ±S.E.M. * indicates significance 
compared to control (P>0.05) using one-way ANOVA with Dunnett’s 
post-hoc test.  
 
Unlike the clearly biphasic response to following ATP stimulation, 

BzATP demonstrated a significant dose-dependent reduction in cell 

viability from concentrations ≥5µM (Figure 5.6), reaching a maximum 

reduction in viability of 70% with the highest concentration of 500µM. 

Whilst the results of MTS assays demonstrated different patterns of 

cell viability reduction by ATP and BzATP stimulation, BzATP 

stimulation produced a similar LDH release profile to that of ATP 

stimulated BV-2 cells (Figure 5.2), whereby no significant LDH release 

was detected until the two highest BzATP tested concentrations (Figure 
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5.7). However, this BzATP LDH release profile mirroring occurred at 

concentrations ten-fold less concentrated than those demonstrated 

with ATP. Both assays highlight BzATP as more efficacious/potent 

than ATP in reducing cell viability and increasing cell death mediated 

LDH release. 

 
Figure 5.7: BV-2 cell death measured using LDH assay, in response to 
varying concentrations of BzATP (1-500µM) for 24 hours (n=4). Data 
presented as Mean ±S.E.M. * indicates significance compared to 
control (P>0.05) using one-way ANOVA with Dunnett’s post-hoc test. 
 
 
5.2.5 P2X7 receptor antagonism with ATP stimulation in BV-2 

microglia 

In a similar manner to previous experiments utilising BzATP, the role 

of P2X7 receptor in purinergic mediate microglial cell death was 

explored using the highly potent P2X7 receptor antagonist 

AZ10606120. BV-2 cells were first incubated in varying concentrations 

of AZ10606120 (1-10µM) to assess the cytotoxicity of the antagonist 

itself in the absence of additional purinergic receptor stimulation. 

Despite minor variation, AZ10606120 demonstrated no significant 

change in cell viability of BV-2 cells at any concentration tested (Figure 

5.8). Following incubation of BV-2 microglia AZ10606120, viability was 

subsequently assessed with MTS assay following stimulation with 
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3mM ATP in the presence of varying concentrations of AZ10606120 (1-

10µM) for 24 hours (Figure 5.9). 

 

Figure 5.8: BV-2 cell viability measured using MTS assay, in response 
to varying concentrations of AZ10606120 (0-10µM) for 24 hours (n=3). 
Data presented as Mean ±S.E.M. * indicates significance compared to 
control (P>0.05) using one-way ANOVA with Dunnett’s post-hoc test. 
 

As with previous results, BV-2 microglia treated with 3mM ATP in the 

absence of AZ10606120 demonstrated a dramatic and significant 

reduction in cell viability to approximately 15% of control (Figure 5.9).  

The pre-incubation and presence of 1µM AZ10606120 was insufficient 

to block this. However, increased concentrations of AZ10606120 

(≥3µM) demonstrated a significant protection from 3mM ATP mediated 

cell viability decrease, rescuing cell viability to between 60-70% of 

control, values which are consistent with the decrease of cell viability 

observed with 300µM ATP stimulation. Increasing concentrations of 

AZ10606120 above 3µM did not provide further protection from 3mM 

ATP mediated reduction in cell viability. 
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Figure 5.9: BV-2 cell viability measured using MTS assay, in response 
to ATP (3mM) in the presence of varying concentrations of AZ10606120 
(0-10µM) for 24 hours (n=3). Data presented as Mean ±S.E.M. * 
indicates significance compared to control (P>0.05) using one-way 
ANOVA with Dunnett’s post-hoc test. 
 
 

5.2.6 P2X4 receptor antagonism with ATP stimulation in BV-2 

microglia 

Following exploration of P2X7 receptor involvement in purinergic 

mediated reduction in microglial cell viability, the initial phase of 

reduced cell viability observed with ATP concentrations between 

300µM-1mM (Figure 5.1), which was not prevented in P2X7 K/O clone-

14 cells, was subsequently investigated. Due to the involvement of the 

P2X4 receptor in the initial phase of the ATP-induced Ca2+ responses, 

as well as the high expression of the P2X4 receptor subtype in BV-2 

microglia (Table 3.5), the highly potent P2X4 antagonist PSB12062 

(Figure 5.10) was utilised in isolation and combination with 300µM 

ATP stimulation. As with previous antagonist experiments, cell viability 

was measured with MTS assays. 

 

Unlike previous experiments with AZ10606120, incubation of BV2 

microglia with PSB12062 was not well tolerated at any concentration 

tested, demonstrating significant levels of reduction in cell viability to 
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between 40-60% of control (Figure 5.10 A). The addition of 300µM ATP 

to experimental conditions demonstrated the significant and 

predictable approximate 35% reduction in cell viability compared to 

control in absence of PSB12062 (Figure 5.10 B). 300µM ATP 

stimulation in the presence of PSB12062 failed to prevent the 

reduction in cell viability, and instead provided further significant 

reductions in cell viability to around 40% of control, at every 

concentration of antagonist tested.  

 

 

Figure 5.10: BV-2 cell viability measured using MTS assay, in 
response to A varying concentrations of PSB12062 (0-10µM), or B ATP 
stimulation (300µM) in the presence of varying concentrations of 
PSB12062 (0-10µM) for 24 hours (n=3). Data presented as Mean 
±S.E.M. * indicates significance compared to control (P>0.05) using 
one-way ANOVA with Dunnett’s post-hoc test. 
 

It was not possible to determine whether P2X4 was involved due to the 

toxic effects of this antagonist. An alternative potent P2X4 antagonist 

5-BDBD was therefore explored, in order to further probe the role of 

this receptor in purinergic mediated reduction in cell viability. In a 

similar manner to previous antagonist experiments, BV-2 microglia 

were pre-incubated with varying concentrations of 5-BDBD (1-10µM) in 

isolation (Figure 5.11 A) or in the presence of 300µM ATP (Figure 5.11 

B). MTS assay was used for cell viability measurements.  

 

A B 
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Unlike PSB12062, 5-BDBD was not cytotoxic to BV-2 microglia at all 

concentrations tested in the absence of ATP stimulation, however a 

dose dependent reduction in microglial viability was observed (Figure 

5.11A), with significant viability reductions at 3-10µM. Microglial 

viability reduction with 1µM 5-BDBD produced a minor approximate 

10% reduction in cell viability which was not significant. 5-BDBD in 

combination with 300µM ATP was unable to provide any recovery of 

cell viability at any concentration tested. 

 

  
Figure 5.11: BV-2 cell viability measured using MTS assay, in 
response to A varying concentrations of 5-BDBD (0-10µM), or B ATP 
(300µM) in the presence of varying concentrations of 5-BDBD (0-10µM) 
for 24 hours (n=3). Data presented as Mean ±S.E.M. * indicates 
significance compared to control (P>0.05) using one-way ANOVA with 
Dunnett’s post-hoc test. 
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5.2.7 P2Y2 receptor antagonism with ATP stimulation in BV-2 

microglia 

The role of P2Y2 was also probed with the antagonist AR-C118925XX 

(Figure 5.14). 

 

 
 
Figure 5.12: BV-2 cell viability measured using MTS assay, in 
response to A varying concentrations of AR-C118925XX(0-10µM), or B 
ATP stimulation (300µM) in the presence of varying concentrations of 
AR-C118925XX (0-10µM) for 24 hours (n=3). Data presented as Mean 
±S.E.M. * indicates significance compared to control (P>0.05) using 
one-way ANOVA with Dunnett’s post-hoc test. 
 
In isolation, incubation with AR-C118925XX was well tolerated and 

demonstrated no significant reduction in viability (Figure 5.12 A). 

However, in combination with 300µM ATP stimulus, no significant 

protective effect was observed (Figure 5.12 B). 
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5.2.8 ATPγS dose response in BV-2 microglia 

In order to investigate potential P2Y receptor involvement following the 

breakdown of ATP, the non-hydrolysable synthetic purinergic agonist 

ATPγS was investigated. BV-2 microglia were stimulated with an ATPγS 

concentration range (1-500µM) for 24 hours and viability measured 

with an MTS assay (Figure 5.12). An additional condition of 300µM 

was included as a positive control. 

 

Figure 5.13: BV-2 cell viability measured using MTS assay, in 
response to varying concentrations of ATPγS stimulation (1-500µM) for 
24 hours (n=3). Data presented as Mean ±S.E.M. * indicates 
significance compared to control (P>0.05) using one-way ANOVA with 
Dunnett’s post-hoc test. 
 

In contrast to the effects of ATP, non-hydrolysable ATPγS stimulation 

produced a mild increase in cell viability above control at all 

concentrations tested, which only significant over control at the 

highest concentration of 300-500µM tested. This indicates that ATP 

breakdown products are involved in the loss of viability seen with ATP.  
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5.2.9 ATP metabolite dose responses in BV-2 microglia 

Due to the lack of reduced cell viability/cytotoxicity following ATPγS 

stimulation, the effects ADP, a metabolite product from the breakdown 

of ATP, on cell viability was investigated in BV-2 cells (Figure 5.13). 

 

Figure 5.14: BV-2 cell viability measured using MTS assay, in 
response to varying concentrations of ADP stimulation (10µM-5mM) for 
24 hours (n=4). Data presented as Mean ±S.E.M. * indicates 
significance compared to control (P>0.05) using one-way ANOVA with 
Dunnett’s post-hoc test. 
 
ADP stimulation produced a dose dependent reduction in cell viability 

of BV-2 microglia (Figure 5.13). Similarly to 300µM ATP stimulation, a 

significant cell viability reduction of approximately 30% was 

demonstrated with 300µM ADP stimulation, as well as all 

concentrations above this excluding 3mM. However, in contrast to 

ATP, ADP concentrations of 3-5mM did not produce any further 

reductions in cell viability.  

 
Following stimulation with ADP, the related purinergic ligand and ADP 

metabolite adenosine was subsequently explored. Cell viability of BV-2 

microglial cells stimulated with a range of concentrations (10µM-5mM) 

of adenosine was assessed with MTS assay (Figure 5.14). Unlike 

related purinergic ligands ATP and ADP, adenosine stimulation of BV-2 
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cells produced no significant alterations in cell viability compared to 

control at any concentration tested. 
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Figure 5.15: BV-2 cell viability measured using MTS assay, in 
response to varying concentrations of adenosine stimulation (1µM-
500µM) for 24 hours (n=3). Data presented as Mean ±S.E.M. * 
indicates significance compared to control (P>0.05) using one-way 
ANOVA with Dunnett’s post-hoc test. 
 
5.2.10 P2Y1 receptor antagonism with ADP stimulation in BV-2 

microglia 

As ADP (≥300µM) demonstrated a similar 30% reduction in cell 

viability, the contribution of various P2Y receptor subtypes was probed 

for their contribution to this effect. The role of P2Y1 was assessed 

using the P2Y1 selective antagonist MRS2179 (Figure 5.15). 

 

A mild significant reduction in cell viability was observed with 

MRS2179 in isolation at the highest concentrations tested (10µM). 

With the addition of 300µM ADP, no significant protective effect was 

observed.  
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Figure 5.16: BV-2 cell viability measured using MTS assay, in 
response to A varying concentrations of MRS2179 (0-10µM), or B ADP 
stimulation (300µM) in the presence of varying concentrations of 
MRS2179 (0-10µM) for 24 hours (n=3). Data presented as Mean 
±S.E.M. * indicates significance compared to control (P>0.05) using 
one-way ANOVA with Dunnett’s post-hoc test. 
 

5.2.11 P2Y12 receptor antagonism with ADP stimulation in BV-2 

microglia  

The P2Y12 receptor was subsequently explored with the use of 

pharmacological antagonist PSB0739 (Figure 5.17).  

 

Figure 5.17: BV-2 cell viability measured using MTS assay, in 
response to A varying concentrations of PSB0739 (0-10µM), or B ADP 
stimulation (300µM) in the presence of varying concentrations of 
PSB0739 (0-10µM) for 24 hours (n=3). Data presented as Mean 
±S.E.M. * indicates significance compared to control (P>0.05) using 
one-way ANOVA with Dunnett’s post-hoc test. 
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As with select previous antagonists, incubation of BV-2 microglia with 

PSB0739 in isolation was not well tolerated, and provided a dose 

dependent decrease in cell viability, with significant reductions 

observed at both 3µM and 10µM (Figure 5.17 A). PSB0739 was unable 

to provide any significant protection from 300µM ADP stimulation 

(Figure 5.17 B).  

 
5.2.12 Uracil-nucleotide dose responses in BV-2 microglia 

Due to the cytotoxicity associated with multiple selective P2Y receptors 

probed under experimental conditions, further experiments exploring 

the contribution of purinergic receptors to the ADP mediated 

cytotoxicity utilised selective purinergic agonists UTP (Figure 5.18) and 

UDP (Figure 5.19). Ca2+ responses had indicated that the P2Y6 

receptor was functional in these cells and UDP is an agonist for these 

receptors.  

 
Figure 5.18: BV-2 cell viability measured using MTS assay, in 
response to varying concentrations of UTP (1-500µM) for 24 hours 
(n=4). Data presented as Mean ±S.E.M. * indicates significance 
compared to control (P>0.05) using one-way ANOVA with Dunnett’s 
post-hoc test. 
 

Stimulation with either uracil-nucleotide agonist (Figures 5.18 & 5.19) 

did not demonstrate reduction in cell viability of BV-2 microglia at any 

concentration tested. 
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Figure 5.19: BV-2 cell viability measured using MTS assay, in 
response to varying concentrations of UDP (1-500µM) for 24 hours 
(n=4). Data presented as Mean ±S.E.M. * indicates significance 
compared to control (P>0.05) using one-way ANOVA with Dunnett’s 
post-hoc test. 
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5.3 Discussion 

Stimulation of resting BV-2 microglia with an ATP dose range 

produced a biphasic reduction in viability (MTS), with a significant 

reduction of approximately 30% at concentrations of 300µM or greater, 

followed by an almost complete abolition of viability with 3-5mM ATP. 

(Figure 5.1). In contrast to MTS assay results, significant release of 

LDH over control only occurred at highest 3-5mM concentrations 

tested (Figure 5.2) which parallels the with the near complete loss of 

viability in MTS assay at these concentrations. Both assays utilised 

initially are indirect measurements of cell death. In the MTS assay, 

viability is measured as mitochondrial metabolism and thus can be 

susceptible to changes in mitochondrial metabolism independent of 

cell death. For example, both P2X7 mediated Ca2+ influx and K+ efflux 

have been shown to negatively modulate mitochondrial respiration and 

concurrently positively modulate the autophagy mediated process of 

mitochondrial degradation, mitophagy (Sekar et al, 2018). The LDH 

assay is measures release of cellular contents into the extracellular 

medium, which only occurs under certain cell death 

pathways/conditions such as necrosis. Due to the discrepancies 

observed in the MTS and LDH assay results at concentrations between 

300µM-1mM, a further assay was utilised to corroborate MTS and LDH 

data and provide insight into potential cell death mechanisms.  

 

Caspase 3 and 7 isoforms are members of the executioner caspase 

family, with sequential activation of 3 followed by 7 shown to play a 

key role in the execution phase of apoptotic cell death (Porter & 

Jänicke, 1999). Outcome of caspase 3/7 fluorescent imaging assay 

mirrored the results of MTS assay, seeing a moderate rise in the 

percentage of cells with active forms of caspase 3/7 at moderate 

concentrations (300µM-1mM), and a near total activation at 3-5mM 

ATP (Figure 5.3). The caspase 3/7 assay also provided further 

information over MTS assay, in that the intermediate rise in caspase 

activation was shown to occur in a sub-population of approximately 



178 
 

30% of cells, rather than a 30% reduction in mitochondrial metabolism 

for the entire population. Although assay conditions were conducted in 

serum free medium to minimise the impact of different cell cycle stages 

on receptor expression profiles and minimise potential serum protein 

interactions, it is unclear from these results why a sub-population of 

the homogenous cell culture is susceptible to stimulation with 

intermediate ATP concentrations.   

 

The activation of caspases 3/7 also provides additional information 

about the potential mechanisms of cell death occurring. Despite there 

being a role for active caspases in pyroptotic cell death, most 

commonly caspase 1/11 in the canonical pathway (Miao et al, 2011), 

but additionally caspase 4 in the non canonical pathway (Chen et al, 

2019). A further isoform, caspase 8 has also been shown to cleave 

gasdermin-D in pyroptosis (Scanlon, 2018). As pro-caspase-8 is 

activated by caspase 3, the activation of caspase 3 in the fluorescent 

imaging assay alone cannot exclude pyroptotic cell death as a 

possibility in ATP treated microglia. However, due to the lytic 

mechanism of pyroptotic cell death, LDH release quantification is a 

commonly used technique for detection of pyroptosis (Rayamajhi et al, 

2013). LDH assay results of BV-2 microglia showed no significant 

increase in LDH release over control at intermediate ATP 

concentrations (300µM-1mM), release of which would be highly likely 

under pyroptotic or necrotic conditions. Additionally, BV-2 microglia 

were under resting conditions and not primed prior to ATP stimulation, 

thus lacking the necessary inflammasome assembly and further 

reducing the likelihood of pyroptotic cell death. Therefore, the evidence 

presented here suggests apoptosis is the most likely mechanism of cell 

death. 

 

The activation of caspase 3/7 in nearly the entire population of BV-2 

microglia at elevated concentrations (3-5mM) of ATP stimulation seems 

contradictory to the significant increase of LDH release as this implies 
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necrotic cell death in which caspase activation does not occur. 

However this LDH release could be explained as secondary necrosis, a 

process of autolytic degradation of apoptotic bodies in the absence of 

phagocytic uptake by surrounding cells (Silva, 2010). Microglia are 

phagocytic cells responsible for the uptake of dead cells and debris, 

thus apoptotic bodies formed when a proportion of the cells undergo 

apoptosis would likely be phagocytosed by remaining ~70% of the, 

preventing secondary necrosis and LDH release. However with elevated 

ATP concentrations (3-5mM) affecting essentially the entire cell culture 

population, there would be no capacity for surrounding microglia to 

phagocytose the apoptotic bodies, leading to substantial LDH release 

by secondary necrosis of the apoptotic bodies. The biphasic pattern of 

cell death observed can therefore be explained by one mechanism, 

which is induced by different receptors. 

 

As an endogenous signalling ligand, ATP acts promiscuously at 

multiple purinergic receptors. This combined biphasic cell death 

response to ATP and additional data demonstrated from the 

combination of MTS, LDH and caspase assays suggests the cell death 

is occurring either as a result of the contribution of multiple different 

receptor subtypes, or from a single receptor that is exhibiting multiple 

states of activation. Due to P2X7Rs historical role in cell death (Adinolfi 

et al, 2005), as well as its reported multiple sates of activation (Smart 

et al, 2003), and the high concentrations of ATP required, a series of 

further experiments were designed to determine the contribution of 

P2X7 receptor subtypes involvement in ATP mediated microglia cell 

death, involving the use of selective pharmacological agonists, 

antagonists and the P2X7R K/O clone-14 microglial cell line.  

 

Unlike with ATP stimulation, the potent synthetic agonist P2X7R 

agonist BzATP induced a dose dependent significant decrease in cell 

viability (Figure 5.6), characteristic of activity of an isolated receptor. 

The BzATP dose response was also an order of magnitude more potent 
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than with ATP, which supports the reported potency of BzATP over ATP 

at P2X7R in the literature (Suprenant et al, 1996; Baraldi et al, 2004). 

Unlike the contrasting MTS results between ATP and BzATP 

stimulation, the LDH release profile of BzATP stimulated BV-2 (Figure 

5.7) cells bore a striking resemblance to that of ATP stimulated BV-2 

microglia, with significant release over control only occurring at the 

two highest concentrations tested (300-500µM). These results again 

validate the increased efficacy of BzATP over ATP at the P2X7, as well 

as supporting the hypothesis that the LDH release demonstrated is 

occurring as secondary necrosis of apoptotic bodies once the cell 

culture environment reaches a critical threshold of cell death and loses 

its ability of phagocytic clearance. Similarly, BzATP has been shown to 

induce P2X7 mediated cell death in primary microglia, where a 

concentration of 380µM induced a similar approximate 40% reduction 

in cell viability after 4.5 hours, which was absent in microglia from 

P2X7 K/O mice and significantly inhibited with A-804598 pre-

incubation (He et al, 2017). Despite BzATPs potency at the P2X7R 

subtype, it also acts as an agonist at other purinergic receptor 

subytpes such as P2X1, P2X3 and even P2Y11 (only relevant in 

humans) (Jarvis & Khakh, 2009), meaning the contribution of these 

receptors to BzATP mediated cell death of BV-2 microglia cannot be 

excluded. However, the Ca2+ described in the previous chapter 

indicates that BzATP is not acting at the receptors that would cause 

Ca2+ increase.  

 

In order to support BzATP experimental data and further explore the 

role of P2X7, an ATP dose response was repeated in P2X7 K/O clone-

14 microglial cells (Figures 5.4 & 5.5), whereby ATP induced a near 

identical reduction in cell viability and increase in percentage of active 

caspase 3/7 positive cells at intermediate concentrations of ATP (300-

500µM), to wild type BV-2 cells (Figures 5.1 & 5.3). However, in 

contrast to wild type BV-2 cells, elevated concentrations of ATP of 3-

5mM were unable to induce the further near total abolition of cell 
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viability and activation of caspases-3/7 in clone-14 cells. Additionally, 

3µM AZ1060120 incubation was unable to provide full recovery of cell 

viability in 3mM ATP stimulated BV-2 cells (Figure 5.9), instead 

reducing cell viability loss to approximately 70% of control, similar to 

levels observed with 300µM ATP stimulation in the absence of 

antagonist. As 3µM AZ10606120 significantly inhibited P2X7R 

mediated intracellular Ca2+ elevation (Figures 4.3 & 4.6), and 

incubation with AZ1060120 was well tolerated in BV-2 microglia up to 

concentrations of 3µM in the absence of ATP stimulation (Figure 5.8), 

the combination of these results suggest that P2X7R plays a critical 

role in the response to elevated (3mM) ATP stimulation, but not 

substantially with the intermediate reduction of cell viability with ATP 

concentrations below 3mM.   

 

As mentioned previously, it is unsurprising that P2X7 plays a key role 

in purinergic mediated cytotoxicity in BV-2 microglia, due to its early 

discovery in immune cells including microglia (Ferrari et al, 1996), and 

also its historically significant role as a cell death receptor in a variety 

of cell types (Adinolfi et al, 2005). Reported mechanisms of P2X7 

mediated cell death vary from apoptosis (Humphrys et al, 2000), 

necrosis (Ferrari et al, 1999) to pyroptosis (Yang et al, 2018), with each 

mechanism dependent on a seemingly multitude of factors including 

cell type, duration of receptor stimulation (Di Virgilio et al, 1998), and 

for immune cells, the activation state/polarization phenotype. With 

particular focus on P2X7 in microglial cells, Ferrari and colleagues 

(1997a) demonstrated with early studies in both primary mouse 

microglia and N9 and N13 human microglial cell lines that ATP 

stimulation of P2X7 induced cell death, was occurring via an apoptotic 

pathway due primarily to morphological changes characteristic of 

apoptosis, such as membrane blebbing. This study also demonstrated 

significant LDH release following stimulation with ATP, BzATP and 

ATPγS, which could be interpereted as secondary necrosis of apoptotic 

bodies. Both these effects were prevented with the irreversible P2X7 
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antagonist oATP. Subsequent investigation by the same group 

demonstrated activation of effector family caspases 3, 7 and  8, 

chromatin condensation and fragmentation of DNA (detected by gel 

electrophoresis), all hallmark features of apoptosis in response to 3mM 

ATP stimulation of N13 microglia (Ferrari et al, 1999).  Since these 

initial reported results, further studies have demonstrated supporting 

evidence for the apoptotic mechanism of cell death following P2X7R 

activation in microglia, including phosphatidyl-serine residue exposure 

(Bianco et al, 2005) and AKT/ERK pathway activation (He et al, 2017). 

 

In order to determine the receptor(s) responsible for the initial phase of 

ATP-mediated cytotoxicity, a range of further experiments were 

conducted. Although this stage of cytotoxicity is reliant on ATP 

concentrations <3mM, this range of concentrations (300µM -1mM) is 

still supramaximal for the remaining purinergic receptor subtypes. 

Due to extensive microglial expression (Ulmann et al, 2008; Table 3.5), 

as well as reported functional roles of the in microglia and related 

macrophages (Stokes et al, 2017), plus the availability of more potent 

pharmacological tools over other subtypes,that have successfully 

inhibited the intial phase of the ATP-induced Ca2+ responses (Chapter 

4), P2X4R function in relation to ATP/purinergic mediated cytotoxicity 

in BV-2 microglia was subsequently explored. Two potent P2X4 

antagonists utilised in the prior chapter, PSB12062 (Figure 4.7) and 5-

BDBD (Figure 4.8) were used in the MTS assay in both isolation and in 

combination with 300µM ATP to assess long term antagonist 

cytotoxicity on BV-2 microglia and potential cytoprotective effects 

against ATP mediated intermediate cytotoxicity. Unlike AZ10606120, 

both P2X4 antagonists explored demonstrated cytotoxicity to microglial 

cells in the absence of additional purinergic receptor stimulation 

(Figures 5.10 A & 5.11 A), making the assessment of any cytoprotective 

effects difficult. In fact, combination of ATP stimulus and P2X4 

antagonists, particularly PSB12062, produced further reductions in 

cell viability than ATP stimulus alone. It was therefore not possible to 
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determine whether the P2X4R was involved in this response with this 

set of antagonists. However, later experiments using ATPγS showed no 

cell death, which would have been expected if P2X4 was involved, as a  

modified radioligand form of ATPγS, [35S]ATPγS has been shown to 

bind to P2X4 (Abdelrhaman et al, 2017) and act as an agonist (L 

Stokes, personal communication). 

 

In addition, there is little evidence to support a role for P2X4 in 

microglial cell death. It has been shown that sustained stimulation of 

P2X4R in resting BV-2 cells lead to pore formation but not cytoskeletal 

rearrangement/membrane blebbing or detectable LDH release (Bernier 

et al, 2012). Furthermore, Dhuna and colleagues (2019) demonstrated 

that P2X7 deficient microglia were insensitive to cell death following 

ATP stimulation. However the concentration of ATP utilised for this 

study was 200µM. Correlating this information with the data presented 

in this chapter, 200µM may not be sufficient to elicit the intermediate 

cytotoxic effects on BV-2 microglia. In the same study, ATP stimulation 

of HEK cells over-expressing hP2X4 did not cause cell death, although 

the lack of cytotoxicity could be attributed to differences of cell type or 

the use of orthologous human P2X4 (Dhuna et al, 2019). P2X4R 

stimulation has been shown to exacerbate LPS induced microglial cell 

death (Vazquez-Villoldo et al, 2014), however the requirement of LPS 

priming in this study differs significantly from use of resting/non-

polarized microglia. Overall, it seems unlikely that P2X4 is involved in 

the cell death seen in the current experiments, however it cannot be 

ruled out without further investigation. 

 

Due to full agonist activity of ATP at the P2Y2 receptor, and the 

involvement of this receptor in the ATP-mediated initial phase Ca2+ 

response, this receptor subtype was also explored. The P2Y2 

antagonist AR-C118925XX (Figure 5.12 A) was well tolerated, but did 

not provide any inhibition of 300µM ATP-mediated cytotoxicity. AR-

C118925XX is a competitive antagonist, which in combination with the 
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high concentration of ATP stimulation used may explain its lack of 

efficacy. It’s involvement in the ATP-induced cell death can therefore 

not be ruled out from these experiments.  

 

Microglia, including the BV-2 cell line, express the necessary enzymes 

to rapidly hydrolyse extracellular ATP (Rodrigues-Neves et al, 2018). 

The expression of such enzymes in combination with the long-term 

model of assays (24hrs) provides the potential for ATP breakdown, and 

concurrently the generation of large quantities of related purinergic 

signalling ligands, such as ADP and adenosine, leading to potential 

stimulation of additional families of purinergic receptors. In order to 

isolate the potential involvement of P2Y and P1Rs, a viability dose 

response of the ATP derivative ATPγS in BV-2 microglia was 

determined. In contrast to the intermediate cytotoxic effect caused by 

ATP stimulation, ATPγS was not cytotoxic at any concentration tested 

(up to 500µM) (Figure 5.12), instead producing a mildly significant 

proliferative effect at ≥300µM. Much of the rational for agonists and 

antagonists used in this chapter was derived from the results of the 

previous chapter assessing intracellular Ca2+ mobilization, as Ca2+ as a 

secondary messenger system has been linked to cell death pathways 

(Orrenius et al, 2003; Yuan, et al, 2016). It is entirely possible however, 

that the mobilisation of Ca2+ and cell death pathways demonstrated in 

this chapter are occurring as independent parallel responses, thus 

explaining the discrepancy between the ATP and ATPγS responses at 

relative concentrations. Proliferation from purinergic stimulation is not 

unheard of, on the contrary tonic low-level stimulation of P2X7 

provides proliferative effects in a range of cell types (Di Virgilio et al, 

2009; Adinolfi et al, 2012). The lack of cytotoxicity of the non-

hydrolysable ATPγS indicates that the intermediate cell death phase is 

as a result of one or more ATP degradation products stimulating 

receptors alternative to P2X subtypes. As such, ADP and adenosine 

viability dose responses were established in BV-2 microglia (Figures 

5.13 & 5.14).  
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ADP stimulation produced a significant decrease in cell viability at 

concentrations ≥300µM, at a level effectively identical to that seen with 

300µM ATP (Figure 5.13). In contrast to ATP however, no P2X7 

mediated cytotoxicity component was observed with 3-5mM ADP 

stimulation. Despite functional roles for multiple P2Y receptors 

subtypes in microglia, ADP-mediated cytotoxicity in microglia or other 

comparable cell types has not previously been shown. 

 

Both cytotoxicity and proliferation mediated from adenosine receptor 

stimulation has been previously reported in a multitude of cell types. 

A3 receptor stimulation has demonstrated apoptotic cell death of 

mesangial cells (Duann et al, 2005), as well as tumour cells (Bar-

Yehuda et al, 2008), with activation of caspase 3 (Aghaei et al, 2011). 

Conversely, A3 receptor stimulation has also demonstrated 

cytoprotective effects against optic nerve transection induced apoptosis 

of RGCs (Galvao et al, 2012), suggesting that the role of A3 receptors in 

cytoprotection/cytotoxicity is cell type and situation dependant. 

Specific to microglia, adenosine stimulation has been shown to induce 

the characteristic apoptotic cell death marker of fragmented DNA after 

12 hours, however individual adenosine receptor subtype blockade was 

ineffective in preventing this effect, suggesting a receptor independent 

pathway (Ogata & Schubert, 1996). BV-2 stimulation with adenosine 

demonstrated no significant change in either cytotoxicity or 

proliferation at any concentration tested (Figure 5.14), indicating that 

breakdown of ATP to adenosine was not responsible for ATP-induced 

cell death in BV-2 microglia.   

 

In order to explore the responsible P2Y receptor subtype, a 

combination of pharmacological receptor inhibition and selective 

purinergic agonists were utilised. Despite microglial tolerance to the 

P2Y1 antagonist MRS2179 (Figure 5.16 A), it did not demonstrated 

significant reduction in 300µM ADP mediated cytotoxicity Figures 5.16 
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B). This is not surprising since functional expression of this receptor 

was not detected in the Ca2+ signalling experiments. With regard to 

P2Y12 receptor antagonism, PSB0739 was not well tolerated in BV-2 

cells and induced a significant dose dependent cytotoxic effect (Figure 

5.17). As such, whether P2Y12 antagonism was effective in blocking 

ADP mediated cytotoxicity was undetermined (Figure 5.17B). In order 

to avoid the seemingly sensitive nature of BV-2 microglia to long term 

antagonist exposure, P2Y subtype selective purinergic agonists UTP 

(P2Y4) and UDP (P2Y6, P2Y14), that are also endogenous, were 

explored in inducing apoptosis. Neither UDP or UTP demonstrated no 

significant change in cell viability at any concentration tested, 

indicating that these receptor subtypes are not involved in the ADP-

mediated cell death observed. This is despite clear functional 

expression of P2Y6 as demonstrated in Ca2+ signalling experiments. 

Like with ADP, there is little literature evidence for uracil-nucleotide 

purinergic ligand based cytotoxicity in microglia or related cell types. 

UTP was unable to induce LDH release from microglial cells at 

concentrations up to 2mM (Ferrari et al, 1997a). 

 

Due to lack of useful selective pharmacological tools, the identification 

of the receptors responsible for the first phase of cell death was not 

possible, although P2Y2 and P2Y12 remain potential candidates. The 

successful generation of the P2X7R K/O microglial cell line represents 

an avenue of investigation that could be explored in the future, by 

generation of similar P2YR K/O cell lines. This research however 

demonstrated a clear role for the P2X7 receptor in microglial cell death, 

demonstrating the central role for this receptor to microglial function.  
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Chapter 6 

Prole of P2X7 receptor in purinergic mediated IL-1β mRNA expression, 

protein processing and release in microglia 

 
 

6.1 Introduction 

 

The inflammatory cytokine interleukin-1β is a key regulator of the 

inflammatory response within the central nervous system, and as such 

has been shown to play a role in many neuroinflammatory diseases 

(Liu & Quan, 2018). To date there have been multiple reports of 

changes in IL-1β expression in experimental models of glaucoma, 

which are discussed further below. 

 

An elevated IOP-induced retinal ischaemia model in rat retina has 

demonstrated a transient increase in expression of IL-1β, which 

correlated with reduced cell density in the inner plexiform layer, an 

effect that was abolished with IL-1ra or anti-IL-1β antibody 

pretreatment (Yoneda et al, 2001). Optic nerve ligation, a simulation of 

glaucomatous RGC damage, also demonstrated significant 

upregulation of IL-1β mRNA (Hangai et al, 1995) and corresponding 

increases in apoptotic BAX protein and RGC loss, which was similarly 

inhibited with IL-1ra treatment (Zhang & Chintala, 2004). Additionally, 

in an acute glaucoma elevated IOP model, retinal 

ischaemia/reperfusion demonstrated the production of the 

inflammasome component NLRP3, as well as IL-1β, which were shown 

to be reliant on caspase 8 and TLR4 (Chi et al, 2014). More recently, 

mechanical strain demonstrated an upregulation in IL-1β mRNA, 

alongside associated inflammasome genes NLRP3, ASC and CASP in 

optic nerve head derived astrocytes (Albalawi et al, 2017), in a process 

which was shown to be ATP and P2X7 dependent. Furthermore, 
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experiments utilising HORC models demonstrated the application of 

BzATP to the retina induced a large upregulation of IL-1β mRNA and 

IL-1β secretion (Niyadurupola, 2009). 

 

Microglial function has long been the focus in neuroinflammatory 

conditions, due to their role as immune response cells in the CNS, 

alongside their inflammasome related functions, including the 

processing and release of IL-1β (Liu & Quan, 2018). Having explored 

the effects of purinergic stimulation on intracellular Ca2+ signalling 

and viability in resting microglia in previous chapters, this chapter 

aims to investigate the role of purinergic stimulation on the processing 

and release of IL-1β from resting microglia, in the hope of gaining better 

understanding of the relationship between purinergic signalling and IL-

1β with regards to early stage glaucomatous pathophysiology.  
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6.2 Results 

6.2.1 LPS priming of BV-2 microglia 

The TLR-4 agonist and bacterial cell wall component 

lipopolysaccharide (LPS), is a known and widely used priming stimulus 

for IL-1β (Yao et al, 1992), and the P2X7 receptor is known to play a 

major role in its processing and release. Initial experiments therefore 

sought to replicate these findings and also use the clone-14 cells to 

confirm the role of P2X7 in IL-1β release in BV-2 cells. A series of 

experiments were first conducted to determine suitable conditions for 

using LPS as a positive priming control. To determine the suitability of 

time course conditions, BV-2 microglia were stimulated with LPS, and 

media was sampled at stimulation and after 3, 6, 12 and 24 hours for 

LDH assay to determine lytic cell death during the course of the 

experiment (Figure 6.1). 

Time (hrs)
0 3 6 9 12 15 18 21 24

0.0

0.5

1.0

1.5
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2.5
Control

LPS 0.5 g/ml

 
Figure 6.1: Fold change in LDH release from BV-2 microglia following 
stimulation 0.5μg/ml LPS, over 24 hours (n=4). Data presented as 
mean ± S.E.M. * Indicates significance (P<0.05) compared to control at 
equivalent time point using one-way ANOVA with Tukey’s post-hoc 
test. 
 

LDH release under experimental conditions demonstrated an increase 

in LDH release for both control and LPS stimulation, with an 
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approximate 2-fold increase at 24 hours. LPS stimulus did not produce 

any significant changes in LDH release compared to control. 

 

As the LDH release profile demonstrated the suitability of experimental 

conditions, mRNA expression of IL-1β was assessed initially following 

stimulation with LPS at 3, 6, 12 and 24 hour time points using 

TaqMAN q-RTPCR in BV-2 microglia (Figure 6.2 & 6.3). 

 
Figure 6.2: Fold change in IL-1β mRNA expression in BV-2 microglia 
following stimulation with 0.5μg/ml LPS, at various intervals over 24 
hours (n=3). Data presented as mean ± S.E.M. * Indicates significance 
(P<0.05) compared to control at equivalent time point using one-way 
ANOVA with Dunnett’s post-hoc test. 
 

LPS treatment (0.5μg/ml) of BV-2 microglia induced a strong increase 

in IL-1β mRNA expression over control at every time point assessed 

over the 24 hour timecourse, with statistical significance at the 6-24 

hour time points (Figure 6.2). The increase in expression peaked at an 

approximate ~200 fold increase at 24 hours, representing a significant 

28-fold increase when compared to the equivalent 24 hour control 

sample (Figure 6.3).  
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Figure 6.3: Fold change in IL-1β mRNA expression at 24 hours in BV-
2 microglia following stimulation with 0.5μg/ml LPS (n=3). Data 
presented as Mean ± S.E.M. * Indicates significance (P<0.05) compared 
to control at equivalent time point using one-way ANOVA with 
Dunnett’s post-hoc test. 
 

Following significant upregulation of IL-1β mRNA with LPS treatment, 

the level of IL-1β protein was also assessed in BV-2 microglia (Figure 

6.4 A) and P2X7 K/O clone-14 microglia (Figure 6.4 B). Cell lysates 

were collected following 4 hour LPS priming and assessed for IL-1β 

with an ELISA.  

 

In
tr

ac
el

lu
la

r 
IL

-1
 (

pg
/m

l)

Contro
l 

LPS (0
.5

g/m
l) In

tr
ac

el
lu

la
r 

IL
-1

 (
pg

/m
l)

Contro
l 

LPS 0
.5

g/m
l

 
Figure 6.4: Intracellular IL-1β protein levels in (A) BV-2 microglia and 
(B) P2X7 K/O clone-14 microglia, following priming with 0.5μg/ml LPS 
for 4 hours (n=4). Data presented as mean ± S.E.M. * Indicates 
significance (P<0.05) compared to control using Student’s T-test. 
 

A B 
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As with mRNA expression, LPS priming of BV-2 microglia induced a 

strong significant increase in intracellular IL-1β protein levels (Figure 

6.4 A). This IL-1β protein upregulation was also demonstrated in P2X7 

K/O clone-14 cells (Figure 6.4 B), indicating P2X7 is not involved in 

the LPS priming mechanism. 

 

6.2.2 P2X7 in IL-1β release in BV-2 and clone-14 microglia 

Due to the documented role of P2X7 in the maturation and release of 

IL-1β protein (Ferrari et al, 1997b; López-Castejón et al, 2007), P2X7-

mediated IL-1β release was subsequently explored. IL-1β release from 

BV-2 microglia was determined by ELISA in media samples, following 

pretreatment/priming with LPS, followed by stimulation with ATP 

(3mM) to activate P2X7 (Figure 6.5).   

 
Figure 6.5: IL-1β release in BV-2 microglia following priming with 
0.5μg/ml LPS for 4 hours, and stimulation with 3mM ATP for 30 
minutes (n=4). Data presented as mean ± S.E.M. * Indicates 
significance (P<0.05) compared to control using one-way ANOVA with 
Tukey’s post-hoc test. 
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Pretreatment with LPS alone or stimulation with 3mM ATP alone did 

not produce a significant increase in IL-1β protein release, whereas the 

combination of both conditions induced a significant increase in IL-1β 

release (Figure 6.5). To confirm the role of P2X7 in IL-1β release, 

conditions were replicated in P2X7 K/O clone-14 microglia (Figure 

6.6). 

 
Figure 6.6: Intracellular IL-1β protein levels in P2X7 K/O clone-14 
microglia following priming with 0.5μg/ml LPS for 4 hours, and 
stimulation with 3mM ATP for 30 minutes (n=4). Data presented as 
mean ± S.E.M. * Indicates significance (P<0.05) compared to control 
using one-way ANOVA with Tukey’s post-hoc test. 
 

In contrast to BV-2 microglia, IL-1β was completely abolished in P2X7 

K/O clone-14 microglia (Figure 6.6), indicating ATP stimulation is 

acting at P2X7, which in turn mediates IL-1β release. Neither LPS nor 

ATP exhibited significant increase in IL-1β release in isolation.   
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Figure 6.7: Extracellular IL-1β release in BV-2 microglia following 
priming with 0.5μg/ml LPS for 4 hours, and stimulation with 3mM 
ATP for 30 minutes, in the presence or absence of 10μM AZ10606120 
(n=4). Data presented as mean ± S.E.M. * Indicates significance 
(P<0.05) compared to control using one-way ANOVA with Tukey’s post-
hoc 
 

As further confirmation for the role of P2X7 in IL-1β release, The P2X7 

antagonist AZ10606120 was used (Figure 6.7). AZ10606120 

significantly inhibited release of IL-1β from LPS primed/ATP 

stimulated BV-2 cells.   
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6.2.3 Purinergic priming of BV-2 microglia 

Despite LPS acting as a strong priming stimulus and positive control 

for IL-1β upregulation, LPS modelling glaucomatous pathophysiology 

cannot be considered appropriate as there is no evidence for such a 

pathogenic involvement. However, changes in extracellular ATP 

concentrations have been demonstrated with glaucoma (Zhang et al, 

2007) and under experimental glaucoma conditions (Reigada et al, 

2008). Furthermore, BzATP induces IL-1β expression and release in 

human retina in the absence of any other priming stimulus 

(Niyadurupola, 2009). Based on this, the role of purinergic agonists as 

priming stimulus for microglial IL-1β production and release were 

investigated. Expression of IL-1β mRNA was assessed following 

stimulation with ATP (300µM) and BzATP (30µM) at 3, 6, 12 and 24 

hour time points using TaqMAN q-RTPCR in BV-2 microglia (Figure 

6.8). 

 

ATP and BzATP stimulation of BV-2 microglia demonstrated dissimilar 

patterns of IL-1β mRNA induction (Figure 6.8 A & B). BzATP 

stimulation demonstrated no significant changes in IL-1β expression 

compared to control at any time point. In contrast, ATP stimulation 

demonstrated a substantial increase in IL-1β expression compared to 

control, beginning with a small non-significant rise at 12 hours, before 

a more pronounced ~30 fold increase at 24 hours (Figure 6.8 A). When 

adjusted against the equivalent 24 hour time point control expression 

value, ATP demonstrated a significant 4.5 fold increase in IL-1β (Figure 

6.8 B).  

 

The difference in activity of ATP and BzATP in causing IL-1β 

upregulation suggests that the effect may not be mediated by the 

P2X7R. To confirm this, ATP and BzATP stimulation conditions were 

replicated in P2X7 K/O clone-14 cells, and IL-1β mRNA was assessed 

at 24 hours using TaqMAN q-RTPCR (Figure 6.9).  



196 
 

 

 
Figure 6.8: A Fold change in IL-1β mRNA expression in BV-2 microglia 
following stimulation with 300μM ATP or 30μM BzATP, over 24 hours 
(n=4). B Mean fold change in IL-1β mRNA expression in BV-2 microglia 
following stimulation with 300μM ATP or 30μM BzATP for 24 hours 
(n=4). Data presented as mean ± S.E.M * Indicates significance 
(P<0.05) compared to control at equivalent time point using one-way ANOVA 
with Dunnett’s post-hoc test. 

 

A 

B 
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Figure 6.9: Fold change in IL-1β mRNA expression in clone-14 
microglia following stimulation with 300μM ATP or 30μM BzATP for 24 
hours (n=4). Data presented as mean ± S.E.M. * Indicates significance 
(P<0.05) compared to control at equivalent time point using one-way 
ANOVA with Dunnett’s post-hoc test 
 

Stimulation of P2X7 K/O clone-14 microglia with the purinergic 

agonists demonstrated a near identical outcome to that seen in BV-2 

cells, whereby BzATP failed to elicit any significant changes in IL-1β 

mRNA expression, however ATP stimulation caused a significant ~4 

fold upregulation of IL-1β (Figure 6.9). 

 
Furthermore, AZ10606120 was unable to inhibit the upregulation seen 

with 300µM ATP (Figure 6.10). The lack of inhibition by AZ10606120, 

or in P2X7 K/O clone-14 microglia indicates P2X7 is not involved in 

the ATP mediated upregulation of IL-1β mRNA. 
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Figure 6.10: Fold change in IL-1β mRNA expression in BV-2 microglia 
following stimulation with 300μM ATP in the presence or absence of 
3μM AZ10606120 after 24 hours (n=3). Data presented as mean ± 
S.E.M. * Indicates significance (P<0.05) compared to control using one-
way ANOVA with Tukey’s post-hoc test. 
 

 

With the evidence that moderate ATP (300μM) stimulation can induce 

upregulation of IL-1β (Figure 6.4), the effect of long term ATP 

stimulation on IL-1β mature protein production and release in BV-2 

microglia was assessed. Due to the longer incubation required for 

significant IL-1β upregulation with ATP compared to LPS priming, pre-

treatment with ATP was extended to 24 hours, with intracellular 

(Figure 6.11) and release (Figure 6.12) measured from cell lysates and 

media samples respectively. 
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Figure 6.11: Intracellular IL-1β protein levels in BV-2 microglia 
following priming with 300μM ATP for 24 hours (n=3). Data presented 
as mean ± S.E.M. * Indicates significance (P<0.05) compared to control 
using one way ANOVA with Tukey’s post hoc test. 
 

Following 24 hour ATP priming, BV-2 microglia demonstrated a 

moderate significant increase in IL-1β protein levels (Figure 6.11), 

albeit at a lower magnitude compared to LPS priming. Stimulation of 

P2X7 with elevated ATP (3mM) induced a significant release of IL-1β 

from ATP primed BV-2 microglia (Figure 6.12), which like intracellular 

protein levels, was at a lower magnitude compared to LPS 

priming/P2X7 stimulation.   
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Figure 6.12: Extracellular IL-1β protein release in BV-2 microglia after 
priming with 300μM ATP for 24 hours, followed by 3mM ATP 
stimulation for 30 minutes (n=3). Data presented as S.E.M. * Indicates 
significance (P<0.05) compared to control using one-way ANOVA with 
Tukey’s post hoc test. 
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6.3 Discussion 
 

Several studies have shown a potential link between the inflammatory 

cytokine IL-1β and glaucomatous pathophysiology (Hangai et al, 1995; 

Yoneda et al, 2001; Zhang & Chintala, 2004; Chi et al, 2014; Albalawi 

et al, 2017). As such, the role of microglial processing and release of 

IL-1β and a potential link with purinergic signalling was explored. 

 

Initial experiments in this chapter monitored LDH release following 

LPS priming conditions over 24 hours, with the aim to determine 

suitable experimental conditions for the subsequent investigation of IL-

1β i.e. conditions that did not induce cell death. This was confirmed, 

therefore, LPS-induced IL-1 β expression and release could be 

investigated. LPS exhibited a robust upregulation of IL-1β mRNA in 

BV-2 cells at every time point sampled. The role of the bacterial cell 

wall component LPS as an inducer of microglial activation with 

corresponding IL-1 upregulation is well documented (Lund et al, 2006) 

and is subsequently widely employed as positive control (Hoogland et 

al, 2015). As a positive control, the LPS/TLR-4 pathway to IL-1β 

upregulation has been extensively studied, shown to be reliant on a 

cascade of intracellular adaptor proteins including MyD88, with the 

eventual translocation of active NF- κB to the nucleus (Lu et al, 2008). 

The strong response of BV-2 microglia to LPS stimulation in these 

experiments is therefore unsurprising, but helps to demonstrate the 

suitability of BV-2 microglia as a model for studying IL-1β processing 

further. Following investigations of IL-1β on an mRNA level, the 

subsequent mature protein production and processing functions in 

microglia were explored. LPS demonstrated significant increases in 

intracellular IL-1β protein levels (Figure 6.4 A) that were not dependent 

on the presence of P2X7 (Figure 6.4 B).  

 

Before accumulated IL-1β protein is released, it requires enzymatic 

processing by an inflammasome complex, the formation of which is 
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dependent on additional factors. P2X7R stimulation has been well 

documented as a potent inducer of the oligomerization of the 

cannonical NLRP3 inflammasome (Mariathasan et al, 2006; Di Virgilio, 

2007; Lister et al, 2007), and direct stimulation of microglial P2X7 has 

demonstrated IL-1β release (Sanz & Di Virgilio, 2000; Brough et al, 

2002), as well as in other mononuclear phagocytes (Hogquist et al, 

1991b). To determine P2X7-mediated IL-1β release under our 

experimental conditions, experiments were replicated utilising 

antagonism with AZ10606120 and P2X7 K/O clone-14 microglia. ATP 

(3mM) caused significant release of IL-1β in LPS-primed BV-2 cells 

(Figure 6.5). Both P2X7R K/O (Figure 6.6) and pharmacological 

antagonism (Figure 6.7) significantly abrogated ATP-mediated IL-1β 

protein release in LPS primed cells, validating the role of P2X7 in 

microglial inflammasome oligomerization and the processing and 

release of IL-1β.  

 

Despite LPS being a useful positive control for IL-1β upregulation, its 

use in models simulating glaucomatous conditions isn’t particularly 

appropriate as it is not a pathogenic component of glaucoma. There are 

however increases in purinergic release demonstrated in glaucomatous 

eyes (Zhang et al, 2007) and under simulated glaucomatous conditions 

in vivo (Lu et al, 2015). Therefore, the role of purinergic agonists as 

DAMPs was explored, in their ability to act as priming and release 

stimuli in BV-2 microglia 

 

Purinergic stimulation of BV-2 cells presented a vastly different pattern 

of IL-1β mRNA expression over the experimental timecourse compared 

to LPS (Figure 6.8). ATP stimulation was effective in upregulating IL-1β 

mRNA, however at a much lower magnitude than with LPS, and only 

after substantial delay, with significant upregulation over control only 

after 24 hours (Figure 6.8). Additionally, BzATP stimulation was 

insufficient in upregulating IL-1β mRNA expression at any time point 

sampled. The discrepancies in response magnitude and induction time 
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between LPS and ATP may suggest a different mechanistic pathway of 

induction is occurring with the two agonists. 

 

Compared to the LPS/TLR-4 pathway, there are relatively few reported 

instances of purinergic stimulation inducing IL-1β upregulation. In 

fact studies have found that ATP is ineffective as a priming stimulus in 

glial cultures (Savage et al, 2012). Despite this, it has been shown that 

direct intravitreal injection of BzATP led to IL-1β upregulation in 

mouse retinas after 24 hours (Albalawi et al, 2017) in a mechanism 

that implicated the involvement of the P2X7R and NF- κB. Similarly, 

BzATP application to human retinal cultures also induced a significant 

mRNA upregulation as well as release of IL-1β protein (Niyadurupola, 

2009). The magnitude of IL-1β upregulation in these studies was also 

much more comparable to the effects of ATP stimulation in BV-2 cells 

(Figure 6.8).  

 

Under the experimental conditions for these experiments, BzATP was 

not sufficient to induce IL-1β upregulation. This is contradictory to the 

previously described studies (Niyadurupola, 2009; Albalawi et al, 

2017), however a number of differences in experimental design may 

explain this discrepancy. Firstly, the concentration of BzATP used 

(30µM) is far below that utilised in the aforementioned studies (100µM 

and 250µM respectively), however this concentration was chosen as it 

was shown to be sufficient to activate P2X7 in both Ca2+ (Figure 4.4) 

and viability assays (Figure 5.6). Furthermore, pharmacokinetic 

considerations of intravitreous injection would render much lower final 

concentrations at the intended site of action, than that administered 

due to the use of an intact organ system. Additionally, due to the use 

of an organ/tissue system, it is unclear which cell types are 

responsible for the IL-1β upregulation, with multiple contenders 

alongside microglia, such as astrocytes and Müller cells.  
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Following these experiments, the novel role of ATP as an inducer of IL-

1β mRNA expression was further explored in relation to IL-1β at the 

protein level. Due to the longer timescale required for intermediate ATP 

to upregulate IL-1β mRNA, priming with intermediate ATP 

concentrations was extended to a 24 hour incubation, but the same 

ATP release stimulus conditions were retained (Figures 6.5 & 6.6). In a 

similar manner to mRNA expression, intermediate ATP priming of BV-2 

cells demonstrated a significant upregulation of intracellular IL-1β 

protein levels (Figure 6.11), but at a level that was much less than 

seen with LPS priming. These results demonstrate for the first time 

that long term ATP stimulation can act as a sufficient, albeit relatively 

weak, priming agent in microglia, in comparison with traditional 

agents such as LPS, zymosan or polyinosininc:polycytidylic acid 

(Poly(I:C)) (Facci et al, 2014). Use of alternative sterile DAMPs as 

priming agents, such as TNF-α has also shown induction of IL-1β in 

macrophages, at a lower magnitude than with LPS induction 

(Bezbradica et al, 2017). 

 

In order to clarify the potential role for P2X7R in the ATP mediated 

upregulation of Il-1β, a combination of P2X7R K/O clone-14 microglia 

and pharmacological antagonism with AZ10606120 were subsequently 

explored (Figures 6.9 & 6.10). Both methods explored failed to block 

the ATP mediated IL-1β upregulation, which in combination with the 

aforementioned BzATP data, indicates the P2X7 is not involved. Due to 

the concentration of ATP (300µM), as well as the ability for ligand 

degradation to produce related compounds such as ADP and 

adenosine, and the expression of various purinergic receptors on BV-2 

microglia (Table 3.5), there could be multiple receptor candidates 

responsible for the observed IL-1β upregulation and determining the 

exact signalling pathway resulting from ATP priming remains difficult, 

however using results from this and previous chapters combined with 

data reported in the literature, it can be speculated upon.  
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Previously, 300µM concentrations of ATP and ADP were shown to 

cause partial population death of BV-2 microglia over a long-term 24-

hour timecourse (Figure 5.1 & 5.14), which in combination with the 

requirement for similar length incubation for ATP mediated IL-1β 

priming suggests a link between the two outcomes. As the precise 

purinergic receptor subtype receptor dictating this intermediate 

cytotoxicity remains elusive, screening with the use of more potent and 

selective pharmacological agonists/antagonists would prove difficult 

due to the sensitivity of BV-2 microglia, however the use of ADP may 

provide further insight. Additionally, the presence of apoptotic bodies 

and cell debris resulting from intermediate ATP stimulation, may act 

as an inducer of IL-1β upregulation in surrounding microglia in an 

indirect paracrine manner. Regardless of the pathway responsible, the 

demonstration that ATP acts as a priming agent has potential 

implications for the pathophysiological progression of glaucoma. 
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Chapter 7 

P2X7 role in viability and IL-1β regulation in simulated oxygen glucose 

deprived (OGD) microglia 

 

7.1 Introduction 

Whilst elevated IOP is an established risk factor for glaucoma 

pathophysiology, the prevalence of normotensive glaucoma indicates 

the potential for additional pathogenic mechanisms in the development 

of glaucoma. Per weight, the retina is the most oxygen demanding 

tissue in the human body (Ames, 1992), and as such requires a 

constant supply of both oxygen and glucose via retinal vasculature to 

maintain functional homeostasis. Abnormalities in both retinal and 

optic nerve head blood flow in glaucoma have previously been reported 

(Kerr et al, 1998; Fuchsjager-Mayrl et al, 2004), including reduced 

ocular blood flow in both high and NTG patients (Hamard et al, 1994). 

Furthermore, vasospastic conditions have been found to predispose to 

glaucoma (Broadway & Drance, 1998). Oxygen glucose deprivation 

(OGD) resulting from reduced ocular blood flow is therefore established 

possible mechanism in glaucoma development (Mozaffarieh et al, 

2008).  

  

Links between OGD and altered purinergic signalling have previously 

been shown, including extracellular γ release following ischaemia in 

the brain (Cavaliere et al, 2004; Cavaliere et al, 2007; Arbeloa et al, 

2012), from optic nerve oligodendrocytes via pannexin hemichannels 

(Domercq et al, 2010) and from RPE cells following chemically induced 

ischaemia (Reigada & Mitchell, 2005), suggesting multiple sources 

exist for retinal release under ischaemic conditions. In the retina, 

OGD/ischaemia and purinergic signalling have been explored with 

particular focus on RGC cell death. Simulated ischaemia has been 
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shown to induce death of RGCs in human organotypic retinal cultures 

(HORCs) (Niyadurupola et al, 2011). Furthermore, with HORCs, this 

loss in RGCs was prevented following P2X7R antagonism 

(Niyadurupola et al, 2013). Similarly, P2X7R mediation of hypoxia-

induced retinal neuronal cell death has been demonstrated in rat 

tissue (Sugiyama et al, 2010). 

 
Whilst there is evidence that retinal ATP may act directly on RGCs via 

P2X7 to induce cell death, fewer studies have explored the effects of 

simulated OGD on surrounding retinal support cells such as 

astrocytes, Müller cells and microglia, regarding their ability to 

respond and influence the overall outcome. Both cultured Müller cells 

(Aldarwesh, 2015) and primary astrocytes (Schmid-Brunclik et al, 

2008) have exhibited both cytotoxicity and proliferation following OGD 

stimulation. Studies of microglia including cultured cells (Lyons & 

Kettenmann, 1998; Yenari & Giffard, 2001) and tissue preparations 

(Eyo & Dailey, 2012) have demonstrated cytotoxic susceptibility under 

ischaemic conditions, which in at least one case was mediated by 

P2X7R activity (Eyo et al, 2013). Furthermore, ischaemic stimulation of 

microglia has been shown to induce an M2 like phenotype and 

promote tissue and vascular remodelling (Perego et al, 2011; Hu et al, 

2012). Despite this, there is still much information yet to be elucidated 

about the role of microglia in response to ischaemia, and due to the 

lack of clear understanding on the effects of OGD-mediated purinergic 

signalling on microglia, further exploration of these processes is 

required. This chapter aims to investigate the effects of OGD simulated 

ischaemia on BV-2 microglial viability and inflammatory/cytokine 

response to gain better understanding of the potential role for retinal 

microglia following ischaemic insult.     
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7.2 Results 

7.2.1 OGD stimulated MTS viability and LDH release in BV-2 

microglia 

Preliminary investigations probed the effects of complete OGD 

treatment on cell viability (Figure 7.1A) and LDH release (Figure 7.1B) 

in BV-2 microglia at various time points over 24 hours. 

 

 
 
Figure 7.1: Cell viability as % percentage of control (A) and fold change 
in LDH release (B) from BV-2 microglia at various time points over 24 
hours under complete OGD (n=3). Data presented as mean ± S.E.M. * 
indicates significance (P<0.05) over 0hr control using one-way ANOVA 
with Dunnett’s post hoc test  

 

C
e

ll 
V

ia
bi

lit
y 

(%
 o

f 
C

o
n

tr
o

l)

A 

B 



209 
 

BV-2 cells demonstrated both a time dependent decrease in cell 

viability and increase in LDH release under complete OGD conditions 

(Figure 7.1). At the earliest time point investigated of 1 hour, complete 

OGD was insufficient to induce a significant change in LDH release or 

cell viability, however a significant reduction in viability of approximate 

60% was exhibited at 3 hours, and preceded the first instance of 

significant LDH release which was observed at 6 hours. By 24 hours 

there was a near total loss of cell viability alongside an approximate 

2.5-fold increase in LDH release, which closely resembled the effects of 

3-5mM ATP stimulation in BV-2 cells demonstrated in previous 

experiments (Figures 5.1 & 5.2). 

 
7.2.2 MTS viability in BV-2 and Clone-14 microglia following 3hr 

OGD stimulation 

 
The role of P2X7 in OGD mediated cytotoxicity was then investigated. 

Viability in P2X7 K/O clone-14 cells alongside BV-2 microglia was 

assessed by MTS assay following complete OGD conditions for 3 hours. 

 
Figure 7.2: Cell viability of BV-2 microglia and P2X7 K/O clone-14 
microglia following complete OGD for 3 hours (n=3). Data presented as 
mean ± S.E.M. * indicates significance (P<0.05) using Student’s T-test. 
 

In contrast to the significant reduction of cell viability in BV-2 

microglia, P2X7 deficient clone-14 microglia showed no significant 
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decrease in viability in response to complete OGD. The results 

implicate P2X7 activity in OGD mediated cytotoxicity of microglia. 

 
7.2.3 IL-1β mRNA expression in BV-2 microglia following 3 hours 

of complete OGD  

 
Following the demonstrated effects of OGD on viability, expression of 

IL-1β following complete OGD was explored in BV-2 microglia (Figure 

7.3). 

 

Figure 7.3: Fold change in IL-1β mRNA expression over control in 
microglia following complete OGD for 3 hours (n=3). Error bars 
represent S.E.M. * indicates significance (P<0.05) using Student’s T-
test 
 

Despite a moderate increase in IL-1β mRNA expression following OGD, 

due to high variability this observed effect was not found to be 

significant. 
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7.3 Discussion 

 
The results presented in this chapter have demonstrated the 

cytotoxicity of BV-2 microglia to complete OGD conditions. This 

cytotoxicity was demonstrated primarily by a dramatic time-dependent 

decrease in MTS viability and increase in extracellular LDH release, 

detectable from as early as 3 and 6 hours respectively. Due to 

similarities in viability and LDH release profiles of BV-2 cells under 

complete OGD for 24 hours, to that with 3-5mM stimulated ATP, the 

role of P2X7 in OGD stimulated cytotoxicity of BV-2 microglia was 

explored. For this, P2X7 K/O clone-14 cells were subject to identical 

conditions for 3 hours, which in comparison to BV-2 cells 

demonstrated a significant protective effect.  Despite these cytotoxic 

changes, 3hr OGD was insufficient to significantly up-regulate IL-1β 

mRNA. 

 

OGD mediated viability/cytotoxicity has been explored in primary 

microglia, whereby total OGD induced a biphasic response consisting 

of a mildly proliferative effect from 15-30 minutes, followed by a 

cytotoxic effect with longer OGD stimulation (Kong et al, 2014). 

Similarly, hypoxic conditions have demonstrated the induction of 

autophagic cell death in primary microglia in a time dependent manner 

(Yang et al, 2015b). Cytotoxicity under OGD conditions has also been 

explored in BV-2 microglia (Eyo et al, 2013), whereby induction of cell 

death occurred with 4-6 hours of complete OGD treatment, which 

more closely resembles the data demonstrated in this chapter. This 

loss of cell viability was also shown to be dependent on both 

extracellular Ca2+ and P2X7 receptor activity, as depletion of 

extracellular Ca2+ or pharmacological blockade with BBG 

demonstrated significant protection. The combination of these findings 

suggests that one potential mechanism for microglial cytotoxicity 

under OGD conditions involves the release of high concentrations of 

eATP from microglial cells themselves. Release of ATP has been 
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previously shown under OGD conditions in hippocampal slices 

(Juranyi et al, 1999; Frenguelli et al, 2007), however as these 

preparations utilised whole tissue samples it is difficult to determine 

the source of extracellular ATP as other cell types such as Müller cells 

and astrocytes may also contribute. Released eATP could in turn act as 

an autocrine signalling mechanism to stimulate microglial P2X7 

causing an influx of Ca2+ ions, causing an intracellular signalling 

cascade resulting in cell death. However, more experimental data is 

needed to confirm this theory, which could include the use of 

luciferase assays to determine extracellular ATP release from BV-2 

microglia, as well as the use of pharmacological antagonists of various 

intracellular signalling cascades to determine the cell death signalling 

pathway.   

 

Another factor to consider is that only conditions of complete OGD 

were explored in this chapter, and it is unknown whether withdrawal 

of oxygen or glucose regulates the cytotoxic effect, or whether the 

combination withdrawal of both is required. It has been previously 

shown in Müller cells that glucose, but not O2, is necessary for survival 

(Aldarwesh, 2015). Glucose is a critical metabolic energy source for 

microglial cells, which express the glucose transporter Glut 5 (Payne et 

al, 1997), and primary cultured microglia have been shown to undergo 

drastic cell death from 30-48 hours in the absence of glucose (Yenari & 

Giffard, 2001), showing that glucose supply is essential for microglial 

survival. 

 

However, a complete oxygen glucose deprivation event for any extended 

period of time would be highly unlikely and would not be expected in 

glaucoma. More likely would be partial or transient OGD resulting 

from retinal hypoperfusion following vasospastic events. Or a decrease 

in the perfusion pressure as a result of raised IOP Future investigation 

with partial, transient or repeated OGD deprivation insults may more 

accurately reflect predicted changes during glaucoma pathophysiology. 
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Chapter 8 

General Discussion 

 

Microglia express a multitude of purinergic family receptors, and as 

such, a number of key microglial functions are reported to be regulated 

by purinergic receptor activity (Sperlágh & Illes, 2007). Alterations in 

purinergic signalling homeostasis have also been reported in both 

patient studies and in vitro models of glaucomatous neurodegeneration 

(Zhang et al, 2007; Lu et al, 2015). The research presented in this 

thesis aimed to explore the effect of purinergic signalling on multiple 

functions in resting microglial cells, such as intracellular calcium 

signalling, proliferation and cytotoxicity, and the processing and 

release of the inflammatory cytokine IL-1β, in order to gain better 

insight into the role of microglial activation in the early 

pathophysiological stages of glaucoma.  

 

In many ways, the P2X7 receptor is perhaps the most unique 

purinergic subtype and is therefore the focus of a great deal of 

research, including in relation to both microglia (Calovi et al, 2019) 

and neurodegenerative diseases such as glaucoma (Takenouchi et al, 

2010; Sanderson et al, 2014). In anticipation of exploring the 

functional role of P2X7 in this thesis, initial experiments focused on 

the generation of a P2X7 receptor knockout microglial cell line, using 

CRISPR mediated gene editing on the well-established BV-2 

immortalised cell line. The use of receptor knockout models when 

studying receptor function present various advantages over alternative 

methods, such as pharmacological antagonism, due to the elimination 

of non-selective action at similar receptor subtypes, and the more 

complete and longevity of alteration in comparison with interference 

based techniques such as siRNA.  
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Despite the documented difficulties of transfection in microglial cells 

(Carrillo-Jimenez et al, 2018), early experiments optimised a set of 

conditions that demonstrated successful transfection of BV-2 

microglia. Transfection followed by selection processes generated a 

number of individual colonies with unique and theoretically 

homogenous genetic ablation of P2X7. Due to time constraints, only 

one of the generated colonies that demonstrated early signs of P2X7 

K/O, clone-14, was carried forward for further analysis of P2X7R 

presence and function, however the alternate colonies were stored for 

potential future analysis and characterisation at a future date if 

needed.  

 

Further characterisation assays probed the extent of P2X7 K/O in 

clone-14 cells whereby cell surface or intracellular P2X7 protein was 

not detected. Interestingly, despite the absence of P2X7R at the protein 

level, mRNA transcript signal was still present and recognised by the 

qRT-PCR primer pair. Although unusual, this is not unheard with 

reports of mRNA transcripts in CRISPR targeted knockout proteins still 

present in the literature (Dabrowska et al, 2018). Additional evidence 

for the knockout of functional P2X7 in clone-14 microglia was also 

established in following experiments, where absence of P2X7 abolished 

several characteristic functions, including the loss of sustained 

elevated intracellular calcium signalling, lack of extensive cytotoxicity 

following elevated ATP stimulation, and the loss of IL-1β release in 

primed microglia. The successful knockout of P2X7 from BV-2 

microglia represents a powerful tool for the investigation of P2X7 

mediated functions in microglia.  

 

Although purinergic receptor mediated intracellular Ca2+ signalling has 

been explored in multiple in vivo tissues and cell lines, microglial 

responses, particularly in the BV-2 model are less well reported. 

Fundamental differences in BV-2 microglia Ca2+ signalling may exist in 

comparison with reported models such as macrophages and HEK over-
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expression systems. Resting microglia demonstrated a dynamic 

intracellular Ca2+ signalling response following purinergic stimulation, 

which was shown to be dependent on the contribution of multiple P2 

receptor subtypes. 

 

ATP stimulation at elevated concentrations demonstrated a multi-

component Ca2+ response, whereby P2X7 was shown to be responsible 

for a later sustained phase response, which was similar to previously 

reported P2X7 Ca2+ responses in primary cultured microglia (Shieh et 

al, 2014). The remaining initial peak phase response at lower ATP 

concentrations was mediated predominantly by P2X4, although P2Y2 

activation may also contribute, due to the efficacy of AR-C118925XX 

antagonism of UTP responses. In contrast, ADP mediated Ca2+ 

responses in resting microglia was similar to the peak phase response 

following ATP stimulation, and was found to be predominantly P2Y6 

mediated. Additional purine nucleotide responses were not explored, so 

require further investigation. Extrapolating these results to 

glaucomatous pathophysiology suggests that retinal microglial 

purinergic-mediated Ca2+ responses and subsequent intracellular 

signalling, are heavily dependent on the availability of purinergic 

ligands in the extracellular milieu. Furthermore, proximity to regions of 

ATP release, may be crucial in terms of resting microglial response. 

Additionally, the presence of related purine nucleotide signalling 

molecules such as UTP and UDP, as well as the generation of ADP 

from ATP degradation may further shape microglial responses. The 

activation of intracellular Ca2+ signalling demonstrated also opens up 

various avenues of investigation in terms of subsequent activation of 

intracellular signalling pathways and resulting microglial functions. 

 

One cellular mechanism linked to elevated intracellular Ca2+ is the 

induction of regulated cell death pathways. The P2X7 receptor, as 

previously reported (Franceschi et al, 1996; Ferrari et al, 1997a), was 

shown to mediate a drastic cytotoxic response following long term 



216 
 

stimulation with either BzATP or high concentrations of ATP. P2X7-

mediated cytotoxicity demonstrated the activation of executioner phase 

caspases 3 and/or 7, strongly suggesting apoptotic mechanisms of cell 

death. Subsequent extracellular LDH release was also present, 

although this was likely the result of secondary necrosis of apoptotic 

bodies. Due to the requirement for elevated extracellular 

concentrations, as well as the rapid degradation of ATP in the 

extracellular space, P2X7 mediated cell death would only be important 

for resting microglia situated within close vicinity of cellular damage. 

Microglial activation can be beneficial in neuroinflammatory situations, 

by mediating the phagocytotic clearance of cellular debris. However, 

excessive stimulation of microglia may induce a neurotoxic phenotype 

(Langmann, 2007), which may be detrimental to RGCs and contribute 

to glaucomatous progression. Moreover, the prevention of microglial 

activation with minocycline (Bosco et al, 2008) has shown improved 

RGC survival following simulated glaucomatous events. Since the 

mechanism of P2X7-mediated cell death appears to be apoptotic, an 

outcome that does not propagate an inflammatory response, this might 

suggest a mechanism whereby microglia situated within close vicinity 

to the site of cellular damage/ATP release are prevented from excessive 

stimulation/activation and removed in order to prevent a detrimental 

response.    

 

One of the most interesting results of this research came with 

investigations into alternate purine nucleotide mediated cytotoxicity in 

resting microglia. ADP was shown to have a cytotoxic effect in an 

approximate 30% proportion of the homogenous cell culture 

population, in mechanism that involved executioner caspases 3/7, but 

was independent of P2X7. ADP-mediated cytotoxicity in cells is so far 

unreported. Further investigation was unsuccessful in determining the 

receptor subtype responsible, due in part to a number of the 

antagonists tested causing toxicity in the BV-2 cells. However the use 

of alternate purine nucleotides and adenosine as agonists provided 
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evidence against the involvement of several possible candidates, 

including P2Y1, P2Y2, P2Y4, P2Y6, P2Y14 and the entire P1 family of 

receptors. The lack of a murine P2Y11 also precludes this subtype 

from the observed cytotoxicity. The remaining potential receptor 

subtypes were P2Y12 & P2Y13. The P2Y12 antagonist PSB0739 

couldn’t be used effectively due to toxicity, plus there is a lack of 

selective agonists between these receptor subtypes. Generation of 

receptor knockouts with CRISPR as demonstrated in chapter 3 may 

provide additional insight. Replication of experimental conditions in 

alternative microglia models, such as primary cells or N9 immortalised 

microglial cell line may also provide additional insight. The wider 

impact of this ADP-mediated cytotoxic effect in microglia in relation to 

glaucoma is unclear. It could, however, be speculated that, as with 

P2X7 mediated cell death, removal of a proportion of microglial cells 

may act as a mechanism to limit excessive stimulation and prevent a 

subsequent detrimental outcome. 

 

P2X7 was also shown to be a sufficient release stimulus for 

accumulated intracellular IL-1β, albeit with no effect on the priming 

stage, which is in agreement with previous reports. Novel data, 

however, showed that long-term pre-incubation with ATP was a 

sufficient priming stimulus, independent of P2X7 activity, although 

ATP priming is less efficacious than the well-established LPS/TLR4 

pathway. ATP as a priming stimulus has only previously been shown 

in astrocytes (Albalawi et al, 2017), however in this case was shown to 

be P2X7 mediated. ATP acting as an IL-1β priming stimulus at 

moderate concentrations has implications for the glaucomatous 

pathophysiology. The increase in extracellular concentrations of purine 

nucleotides under glaucomatous pathophysiological conditions, by a 

lytic form of cell death such as pyroptosis, from pannexin 

hemichannels following periods of elevated IOP (Reigada et al, 2008) or 

from RPE cells following hypoxia/ischaemia stimulation (Reigada & 

Mitchell, 2005) may act as priming stimulus for resting microglia, 
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which when encountering initial stages of glaucomatous tissue damage 

would then be susceptible to releasing IL-1β and further contributing 

to glaucomatous damage/disease progressions. Furthermore, the low 

level response in comparison with traditional inflammatory responses 

is compatible with the slow progressive nature of glaucomatous 

pathophysiology. It is however unknown if ATP mediated priming is 

acting as a direct stimulus for microglia, or whether IL-1β upregulation 

is as a result of paracrine detection of cellular/apoptotic debris, as 

intermediate ATP was previously shown to induce cytotoxicity in a 

subpopulation of resting microglia. Further investigation into the 

receptor subtype responsible would help clarify the exact mechanisms 

of ATP mediated microglial priming. 

 

Reduced blood flow and consequential ischeamia of the retina and 

optic nerve head have also been proposed as mechanisms underlying 

glaucomatous pathophysiology. OGD was explored in relation to 

purinergic signalling and glaucoma pathophysiology. OGD was shown 

to have a significant cytotoxic effect on BV-2 microglia which appears 

to be P2X7 receptor dependent, which is in agreement with similar 

findings in BV-2 microglia (Eyo et al, 2013). Ischaemic events in 

glaucoma may therefore have a substantial impact on the ability of 

microglial cells to respond to resultant inflammatory situations. No 

significant upregulation of IL-1β was detected in OGD treated BV-2 

cells which would imply that OGD treatment does not induce an M1 

like phenotype in BV-2 cells. It would be interesting to explore the 

polarization state of OGD treated BV-2 cells further, as non-polarised 

and M2 phenotypic microglia have previously been shown to be 

protective against OGD induced cell death in organotypic brain slices 

(Girard et al, 2013), although due to the cytotoxicity of OGD in BV-2 

cells themselves, there may be a limited capacity for microglia to 

respond.  
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In summary, changes to purinergic signalling, including increases in 

ocular ATP have been shown in patients with glaucoma (Zhang et al, 

2007; Li et al, 2011) and ATP release has been demonstrated under 

simulated glaucomatous conditions in retinal tissue (Reigada et al, 

2008). Furthermore purinergic stimulation has induced cell death in 

cultured RGCs via P2X7 (Zhang et al, 2005) implicating a direct 

mechanism for purinergic stimulation and P2X7 in the etiology of 

glaucoma.  

 

However questions relating to indirect mechanisms of purinergic 

signalling involved in glaucomatous neuroinflammation and 

degeneration still remain. BzATP stimulation of HORCs has previously 

shown an upregulation of IL-1β, which was mediated by P2X7 

(Niyadurupola et al, 2013). Here it was shown that P2X7 stimulation 

does not upregulate IL-1β BV-2 cells, but ATP stimulation via a 

different receptor does, linking ATP release under glaucomatous 

conditions with DAMP priming of microglia. P2X7 receptor stimulation 

was shown to be a strong mediator of IL-1β release, and therefore it is 

possible that multiple waves of extracellular ATP could cause IL-1β 

production and release from retinal microglia. The demonstration that 

astrocytes can mimic these results, albeit mediated by P2X7 (Albalawi 

et al, 2017), suggests that multiple retinal glial cells may contribute to 

the neuroinflammatory response in glaucoma.  

 

The presented work in this thesis has helped provide insight into the 

role of the P2X7 receptor in microglia. Given the crucial part played by 

microglia in retinal homeostasis, it may also contribute to a greater 

understanding of the pathophysiology of the disease. 
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Conclusions 

 
 CRISPR gene editing was used to successfully generate a 

functional P2X7 receptor deficient BV-2 microglia cell line 

(Clone-14). 

 Multiple purinergic receptors mediate ATP stimulated 

intracellular Ca2+ responses in BV-2 microglia, including P2X7, 

P2X4 and P2Y2.  

 Similarly, P2Y6 appears to play a role in ADP stimulated Ca2+ 

responses in BV-2 microglia. 

 Long term P2X7 stimulation induces apoptotic cell death 

followed by secondary necrosis/cell lysis in BV-2 microglia.  

 Approximately 30% of a homogenous BV-2 population are also 

susceptible to purinergic stimulated apoptotic cell death, 

mediated by an unidentified receptor (possibly P2Y12).  

 The P2X7 receptor activation mediates the release of 

intracellular IL-1β in BV-2 cells. 

 A novel role for purinergic stimulation was demonstrated in the 

priming of IL-1β, not mediated by P2X7, albeit at far lower levels 

than the traditional priming agent LPS.  

 P2X7 plays a role in the death of BV-2 cells following oxygen 

glucose deprivation.  
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List of Abbreviations  

αβmeATP  αβ-methylene ATP  

βγmeATP  L-βγ methylene ATP  

2MeSADP 2-methylthio-adenosine-5’-diphosphate  

2MeSADP 2-methylthio-adenosine-5’-triphosphate  

5-HT   5-hydroxytryptamine  

Ach    Acetylcholine  

ADP    Adenosine diphosphate  

ADPβ   Adenosine-5’-(β-thio)-diphosphate  

AMP    Adenosine monophosphate  

ANOVA  Analysis of Variance  

AP4A   Diadenosine tetraphosphate  

Apaf1   Apoptotic protease activating factor-1  

ASC    Apoptosis associated speck like protein  

ATP    Adenosine triphosphate  

BBG    Brilliant blue G  

BDNF   Brain-derived neurotrophic factor  

BzATP   Benzoyl-benzoyl adenosine 5’-triphosphate  

CARD   Caspase recruitment domain  

CASP   Caspase  

CD    Cluster of differentiation  

cDNA    Complimentary deoxyribonucleic acid  

CNS    Central nervous system  

CRISPR Clustered regularly interspaced short palindromic repeats  

CTP    Cytidine-5’-triphosphate  
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DAG    Diacylglycerol  

DAMPs   Damage associated molecular patterns  

DBI    Diazapam binding inhibitor  

DISC   Death-inducing signalling complex  

DMEM   Dulbecco’s Minimum Essential Medium  

DMSO   Dimethyl Sulfoxide  

DNA    Deoxyribonucleic acid  

dNTP   Deoxynucleotide triphosphate  

DPBS   Dulbecco’s Phosphate Buffered Saline  

EC50    50% effective drug concentration  

ELISA   Enzyme-linked Immunosorbant Assay  

ER    Endoplasmic reticulum  

FBS    Fetal bovine serum  

FCRLS   Fc receptor-like scavenger S  

GABA    Gamma-aminobutyric acid  

GCL    Ganglion cell layer  

GFP    Green fluorescent protein  

Glu    Glutamate  

GPCR   G protein-coupled receptor   

GPNMB  Glycosylated protein nmb  

GSDM   Gasdermin  

GTP    Guanosine-5’-triphosphate  

HSP    Heat shock protein(s)  

ICE    Interleukin converting enzyme  

IL-13   Interleukin-13  
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IL-1α   Interleukin-1 alpha  

IL-1β   Interleukin-1 beta  

IL-1RA   Interleukin-1 receptor antagonist  

IL-1RAcP  Interleukin-1 receptor accessory protein  

IL-4    Interleukin-4  

INL    Inner nuclear layer  

IOP    Intraocular pressure  

IP3    Inositol 1,4,5-triphosphate  

IPL    Inner plexiform layer  

ITP    Ionisine-5’-triphosphate  

K/O    Knockout  

LDH    Lactate dehydrogenase  

LGIC   Ligand gated ion channel  

LPS    Lipopolysaccharide  

LRR    Leucine-rich repeat  

MHC   Major histocompatibility complex  

MLKL   Mixed lineage kinase domain like pseudokinase  

MPT    Mitochondrial permeability transition pore  

mRNA   Messenger RNA  

MTS 3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl_-
2-(4-sulphophenyl)-2H-tetrazolium  

NACHT Nucleotide-binding and oligomerization   

NCX Na+/Ca2+ exchange transporter  

NCXK Na+/Ca2+ -K+ exchange transporter  

NF-κB Nuclear factor kappa B  
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NGF Nerve growth factor  

NLR NOD-like receptor  

NLRP3   Nacht, LRR and PYD domains-containing protein 3  

NMDA   N-methyl D-aspartate  

NODs   Nucleotide-binding oligomerization domains  

NTG    Normal-tension glaucoma  

NTPDase1 Ectonucleotidase triphosphate diphosphohydrolase-1  

oATP   Oxidised ATP  

OFL    Optic fiber layer  

OGD   Oxygen glucose deprivation  

ONH    Optic nerve head  

ONL    Outer nuclear layer  

PAM    Positive allosteric modulator 

PAMPs   Pathogen associated molecular patterns   

PBS    Phosphate buffered saline  

PDL    Poly-D-Lysine 

PI3K    Phosphoinositol-3 kinase  

PLC    Phospholipase C  

PMCA    Plasma membrane Ca2+ ATPase  

POAG   Primary open angle glaucoma  

PRR    Pattern recognition receptor  

PYD    Pyrin domain  

qRT-PCR Quantitative reverse transcription polymerase chain 
reaction  

RB2    Reactive blue 2  
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RCD    Regulated cell death  

RGCs   Retinal ganglion cells  

RIPK   Receptor-interacting kinase   

RNA    Ribonucleic acid  

ROS    Reactive oxygen species  

RPE    Retinal pigment epithelium   

RyR    Ryanodine receptor  

SAH    S-adenosylhomocysteine  

SERCA   Smooth endoplasmic reticular Ca2+ ATPase  

siRNA   Small interfering Ribonucleic acid  

SNARE Soluble N-ethylmaleimide-sensitive factor attachment 
protein receptor   

SNP Single nucleotide polymorphism  

SR Sarcoplasmic reticulum   

SRs    Scavenger receptors  

TLRs   Toll-like receptors  

TM    Transmembrane  

TMEM119 Transmembrane protein 119  

TNF-α   Tumor necrosis factor alpha  

TNP    Trinitro-phenyl  

TrκB   Tropomyosin receptor kinase B  

TRPM7 Transient receptor potential cation channel subfamily 
member 7  

TUNEL Terminal deoxynucleotidyl transferase dUTP nick 
endlabelling  

TYRP1   Tyrosine-related protein-1  
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UDP    Uridine 5’-diphosphate  

UTP    Uridine 5’-triphosphate  

VGCC   Voltage gated calcium channel  

VNUT   Vesicular nucleotide transporter  

VR1    Vanilloid receptor  

YO-PRO-1 Yohimbine-proline 1  

ZBP1   Z-DNA binding protein 1 (ZBP1)  
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