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Abstract 

 

Antibodies are an important class of biomolecules that have contributed immensely 

to several fields including, medicine, diagnostics, and as an important biomolecule 

required for a plethora of scientific procedures. However, methods to control 

antibody-antigen binding using exogenous stimuli such as light remain limited. The 

use of antibodies in a therapeutic setting has become a dominant biological platform 

in the pharmaceutical market and has been successfully employed for the treatment 

of numerous diseases including autoimmune disorders, cancers, infections, and 

cardiovascular diseases.  

Cancer immunotherapeutics are often developed to target overexpressed antigens 

near tumour cells or on the surface of malignant cells. Often these disease targets 

are essential biological receptors that have developed mutations affecting 

expression levels or activity. Although highly expressed on targeted tumour cells, 

basal levels of targeted receptors can be present on healthy cells. Consequently, the 

reduced specificity of antigen targeting between healthy and diseased cells can cause 

severe side-effects of antibody therapeutics. By introducing methods to enable the 

spatiotemporal control of antibody-antigen binding affinities by light, an additional 

level of safety and improved targeting is achieved for these therapeutic molecules.  

The research performed in this thesis aimed to explore strategies and available 

technologies for the site-specific incorporation of designer amino acids with unique 

chemistries that could facilitate the spatiotemporal control over antibody-antigen 

binding with the use of external stimuli. A simple and robust method was designed 

for the genetic incorporation of photocaged tyrosine (pcY) into the structure of an 

anti-EGFR antibody fragment, 7D12. Subsequent techniques developed to evaluate 

light-mediated binding of 7D12 mutants to its target on the surface of cancer cells 

demonstrated binding inhibition with the presence of pcY in two positions, Y32pcY 

and Y113pcY and upon irradiation with 365 nm light and de-caging of pcY, binding 

was restored. 
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CHAPTER 1                                            

Introduction 
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1.1 The importance of expanding the genetic code  

 

The past two decades have witnessed the rapid growth in diversity and scope of our 

knowledge in expanding the genetic code. Our understanding, together with a 

powerful set of tools for the manipulation of cellular machinery, has allowed 

scientists to accomplish diverse applications in probing, imaging and controlling 

protein function.  

In nature, the precursors of proteins are amino acids encoded by nucleotide codons, 

and while DNA and RNA are two methods employed by organisms to store hereditary 

information, it is proteins that are responsible for the complex biological processes 

found within all living organisms. Often referred to as the building blocks of life, 

amino acids have a limited conserved set of 20 canonical groups decoded from 64 

triplet codons, that are utilised by the translational machinery for the biosynthesis of 

proteins. Although the limited chemical properties contained within this set of 

building blocks has allowed for the development of proteins with highly complex 

structures and functions observed in living organisms, it has equally restricted the 

development of protein diversity. Further protein diversity can be achieved with 

expansion of the genetic code as this allows the site-specific incorporation of non-

canonical amino acids (ncAA) that display a plethora of interesting chemical 

properties. Therefore, expanding the genetic code to include building blocks outside 

of the 20 canonical amino acids in the biosynthesis of proteins enables the 

development of novel and enhanced protein biological activities and is useful in the 

study of protein structure and function. Some examples of this include the 

incorporation of ncAAs containing post-translational modification (PTM), chemically 

reactive side chains, fluorophores, photo-cross-linkers, altered pKa’s, and redox 

properties (Fahmi et al., 2007; Chin et al., 2002b; Murakami et al., 2000; Lin et al., 

2014; Neumann et al., 2008a).  

Considerable interest has been shown in the field of expanding the genetic code for 

the incorporation of ncAAs into antibodies to generate novel and enhanced 

biotherapeutics. Typically, the antibodies are generated with site-specific 



 

3 
 

incorporation of an ncAA containing bioorthogonal functional groups. This allows for 

the site-specific coupling of drug molecules to the antibody for the generation of 

antibody-drug conjugates (ADCs) or for the linking together of different antibodies 

to engineer bispecific antibodies (bsAb) that have the ability to simultaneously 

recognise multiple types of epitopes (Zhou et al., 2014; Kim et al., 2012a). An 

alternative approach was taken in this thesis work, where ncAAs that influence the 

binding of antibodies were site-specifically incorporated for the development of a 

novel therapeutic. This project aimed to investigate if the site-specific incorporation 

of a photocaged ncAA into the antigen binding site of an antibody (in response to an 

amber codon, TAG) would make it inactive until exposed to light (Figure 1.1). 

  

 

Figure 1.1: Graphic representation of photo control over antibody-antigen binding. The site-specific 

replacement of a canonical amino acid in an active site of the antibody fragment with a photocaged 

analogue (represented by the orange star) for temporary binding inhibition to the targeted antigen. 

Upon irradiation with light (365 nm) the photo-protective group is de-caged restoring functionality to 

the bioactive molecule with the conversion of the photocaged ncAA to the natural analogue. 
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When irradiated with light (365 nm) the irreversible photo-decaging process would 

occur, and natural functionality would be restored to the molecule as the photolabile 

group is removed. The application of light as an exogenous activation mechanism 

enables the spatiotemporal control over the treatment and could have many 

interesting applications. A common drawback of immunotherapy is the undesired 

side-effects of specific binding to targeted receptors on healthy cells. For example, 

the therapeutic antibody Cetuximab targets the cell surface epidermal growth factor 

receptor (EGFR) resulting in cell growth inhibition and induction of apoptosis 

(Baselga, 2001). It has been shown that the binding of this therapeutic antibody to 

healthy cells results in undesired side-effects (Nguyen et al., 2009a). Controlled 

activation of antibodies with light at the site of tumours could potentially reduce 

these side effects. 

 

1.2 Generation of orthogonal translation machinery  

 

The incorporation of ncAA into recombinant proteins relies on the reassignment and 

suppression of canonical codons with mutually orthogonal aaRS/tRNA pairs. This is 

achieved by transferring an aaRS/tRNA pair from a different kingdom to the host 

organism, and evolving the amino acid binding pocket of aaRS to specifically 

aminoacylate its corresponding tRNA with ncAA. These evolution experiments 

involve using positive and negative selection methods (Figure 1.2) to identify 

orthogonal aaRS that bind to ncAA over endogenous amino acids in the cell (Chin, 

2014). Usually, this process begins with crystal structure analysis of the aaRS to 

identify residues in the active site that can be rationally or randomly mutated to 

generate large aaRS libraries. For the positive selection, an amber codon is inserted 

into a gene conferring antibiotic resistance so that survival of the organism is reliant 

on mutated aaRSs that can aminoacylate its corresponding tRNACUA with the desired 

ncAA to incorporate into the gene. Survivors of the positive selection are then 

subjected to the negative selection in the absence of ncAA. An amber codon is 

inserted into a lethal gene in order to ensure mutated aaRS does not aminoacylate 
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tRNACUA with endogenous amino acids resulting in cell death. This process is repeated 

for several rounds to generate highly selective aaRS. Using this approach, highly 

efficient orthogonal aaRS have been engineered to incorporate hundreds of diverse 

ncAAs into recombinant proteins (Dumas et al., 2015). 

 

Figure 1.2: Directed evolution of aaRS/tRNA pairs for site-specific incorporation of ncAA. For positive 

selection, two plasmids are transformed into the host cell. The plasmid containing the aaRS library 

allows for the constitutive expression of potential orthogonal aaRS while the other plasmid contains 

an antibiotic gene required for host survival and tRNACUA. Successful aminoacylation of tRNACUA by a 

member from aaRS library allows for the genetic encoding of ncAA and successful expression of 

antibiotic gene. aaRS molecules in the library that do not aminoacylate tRNACUA with ncAA in response 

to amber codon will not avoid cell death in presence of antibiotic. Plasmids containing aaRS from 

surviving organisms are then used in negative selection to ensure that these do not aminoacylate 

tRNACUA with endogenous amino acids. Amber codon is substituted into a toxic gene and no ncAA is 

supplied to host. In the case of canonical amino acid incorporation in response to amber codon, toxic 

gene is expressed which leads to cell death. This process of positive/negative selection is repeated 

several times to generate highly selective aaRS. 

The first reported in vivo site-specific incorporation of a ncAA in response to an 

amber codon was by Wang et al. in 2001. The recombinant protein was expressed in 

Escherichia coli (E. coli) using the evolved orthogonal aaRS/tRNA pair (TyrRS/tRNACUA) 

isolated from Methanocaldococcus jannaschii (M. jannaschii or Mj). The 
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incorporation of the ncAA p-Methoxyphenylalanine into the protein of interest was 

shown to be site-specifically expressed with high fidelity and efficiency which later 

led to widespread use of the MjTyrRS system for the incorporation of an extensive 

range of aromatic ncAAs (Santoro et al., 2002). The orthogonality originated as a 

result of the absence of a major anticodon binding region in the aaRS of MjTyrRS and 

the significant difference between the tRNA acceptor loop of M. jannaschii and E. coli 

tRNAs (Steer et al., 1999). Two publications in 2002 reported the discovery of 

pyrrolysine, the 22nd canonical amino acid used in the biosynthesis of proteins in 

some methanogenic archaea and bacteria (Srinivasan et al., 2002, Hao et al., 2002). 

Interestingly, this amino acid was inserted during translation in response to an amber 

stop codon, this natural example of amber suppression prompted interest in the 

aaRS/tRNA pair, PylRS/tRNACUA, for its potential orthogonality to the translational 

machinery of E. coli and eukaryotes. It was later shown that the PylRS/tRNACUA 

system from Methanosarcina barkeri (M. barkeri or Mb) is orthogonal in E. coli and 

could incorporate many pyrrolysine analogues in response to an amber stop codon 

(Polycarpo et al., 2006). Although wild-type PylRS was reported to have good 

incorporation efficiency of pyrrolysine analogues, the potential orthogonality of the 

PylRS/tRNACUA system in E. coli and eukaryotes prompted further evolutionary 

studies to increase the incorporation capabilities for additional ncAA with diverse 

chemistries. In these studies, random or targeted mutations to the active site 

residues of PylRS were designed using the crystal structures of Methanosarcina 

mazei (M. mazei or Mm) or M. barkeri as a guide, as the binding pocket of PylRS from 

both these organisms are well-conserved. (Neumann et al., 2008b, Yanagisawa et al., 

2008). These evolutionary studies showed increased capabilities for the site-specific 

incorporation of ncAA containing functional groups at the Nε nitrogen of lysine, such 

as Nε-acetyl-lysine (Neumann et al., 2008b), Nɛ-(tert-butyloxycarbonyl)-L-lysine 

(BocLys) and Nɛ-allyloxycarbonyl-L-lysine (AlocLys) (Yanagisawa et al., 2008). The 

degree of specificity PylRS shows towards structurally related ncAA allows for a 

higher capability of incorporating ncAA derivatives which improved its desirability as 

an efficient aaRS. 
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In addition to MjTyrRS/tRNACUA and Mm/MbPylRS/tRNACUA pairs several other 

aaRS/tRNA pairs that have been less investigated for genetic code expansion, include 

E. coli TyrRS/tRNA pair and LeuRS/tRNA pair which are orthogonal in yeast (Edwards 

& Schimmel, 1990; Soma & Himeno, 1998) and AspRS/tRNA, SerRS/tRNA, 

LysRS/tRNA, GluRS/tRNA and ProRS/tRNA pairs which have been generated to have 

orthogonality in either prokaryotic and/or eukaryotic cells (Hughes et al., 2010; 

Pastrnak et al., 2000; Liu & Schultz, 1999; Chatterjee et al., 2012). 

 

1.3 How non-canonical amino acids (ncAAs) are incorporated 

 

Numerous methods for incorporating ncAA into polypeptides or proteins have been 

developed (Dumas et al., 2015). The most wide-spread method for in vivo 

incorporation of ncAA is by codon reassignment of the amber stop codon (TAG). 

Three of the 64 possible triplet codons are stop codons (Figure 1.3); named amber 

(TAG), ochre (TAA) and opal (TGA).  

 

Figure 1.3: Codon table for E. coli. Reading for 5’ (centre) to 3’ (edge) enables decoding of 3 letter 

triplet codons to their corresponding amino acid. Stop codons are highlighted (Red stop symbol). 
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As these stop codons lack the corresponding tRNA charged with amino acids and 

instead terminate the translation process with the use of release factors, they make 

excellent candidates for codon reassignment. This is especially the case for the amber 

stop codon, which is the rarest of the three stop codons with an estimated use of 7% 

in E. coli (Nakamura et al., 2000). Three key components (Figure 1.4) are required for 

the site-specific incorporation of ncAAs into proteins within a host organism via 

codon reassignment. First, a unique aminoacyl-tRNA synthetase (aaRS)/tRNA pair 

that is orthogonal to other aaRS/tRNA pairs in the host organism needs to be evolved 

so that it exclusively aminoacylates its corresponding orthogonal tRNA with a desired 

ncAA while remaining unreactive to endogenous tRNA and amino acids. The next 

requirement is an unassigned codon (usually the amber stop codon, TAG) that can 

be recognised by the orthogonal tRNA anticodon loop. Introducing this unassigned 

codon into a desired site in the gene of interest enables the site-specific encoding of 

a ncAA. The final requirement is the ncAA itself, which is commonly supplemented 

into the growth media or can be biosynthesised by the cell (Liu & Schultz, 2010). 

 

 

Figure 1.4: Incorporation of ncAA into a protein via a nonsense codon during translation. The 

orthogonal tRNA synthetase/tRNA recognise the amber stop codon (UAG) with the anticodon (CUA) 

while not interfering with endogenous translational processes (indicated by red lines). This allows for 

the site-specific encoding of ncAA into the structure of a recombinant protein in vivo. 
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While the amber stop codon has had the most prevalent use for codon reassignment, 

the developments of aaRS/tRNA for suppression of ochre and opal have also been 

reported (Wan et al., 2010). Although these codons have a higher frequency of use 

in the E. coli genome which could lead to cell toxicity due to their suppression, they 

are potentially useful for the incorporation of multiple distinct ncAA (Chatterjee  et 

al., 2013).  

Another active area of research in this field is to remove TAG specific release factors 

(RF1) within an organism allowing for higher efficiency of amber stop codon 

reassignment. Removal of RF1 is particularly useful when attempting to incorporate 

the same ncAA multiple times in different positions. Normally the efficiency of codon 

reassignment incorporation dramatically reduces after encoding the first ncAA; this 

was improved by removing competition with RF1. However, this method can affect 

fitness of cells as TAG codons in the host’s endogenous genes are no longer read as 

stop codons, and the undesired extensions of polypeptide sequences causes 

complications in the cell (Johnson et al., 2011). An effective method to avoid the 

negative effects of RF1 knockout is to replace the amber codons within the organism 

to alternative synonymous stop codons. The techniques multiplex automated 

genome engineering (MAGE) and hierarchical conjugative assembly genome 

engineering (CAGE) were used to change 321 instances of TAG amber codons to TAA 

ochre codons in E. coli strain C321.ΔA (Addgene #48998) to construct a genomically 

recoded organism (GRO) that has had RF1 removed and all amber codons reassigned 

(Lajoie et al., 2013a). It was shown that the GRO had improved incorporation of ncAA 

in response to an amber codon without deleterious effects to host fitness. 

Interestingly, the GRO was reported to have increased resistance to T7 

bacteriophage, likely caused by deleterious effects of the prfA knockout on the 

translation of viral proteins.  

The genomic reassignment of the amber stop codon was a significant breakthrough 

in the emerging field of synthetic genomics. The genome editing techniques 

developed in this area of research have more recently been used to accomplish an 

engineered GRO with rare codon reassignment. Although the E. coli strain C321.ΔA 

had reassigned less frequently used stop codon for the incorporation of ncAA, it had 
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limited potential for the incorporation of multiple distinct ncAA. To increase the 

number of free codons for reassignment, Fredens et al. focused their attention on 

alternative codons (Fredens et al., 2019). The genetic code has an inherent 

redundancy as 64 codons only encode for 20 canonical amino acids and three stop 

codons. This redundancy means multiple codons can synonymously encode for the 

same amino acid. However, it has been shown that synonymous codons can be non-

equivalent, and many synonymous substitutions can have detrimental effects on 

regulating gene expression (Lajoie et al., 2013b). Using this knowledge, Fredens and 

colleagues investigated reducing the redundancy of the genetic code by identifying 

rarely used codons and replacing all instances of the redundant codons found within 

the genome with synonymous codons. These techniques enabled the construction of 

a four-megabase synthetic E. coli genome that uses only 61 out of the 64 codons, by 

reassigning two serine codons (TCG→AGC and TCA→AGT) and the amber stop codon 

(TAG→TAA). This required the reassignment of 18,214 codons to remove all 

instances of TCG, TCA and TAG from the genome. Strain Syn61 was reported to have 

an increased generation time of 90 minutes when compared to MDS42, another GRO 

E. coli strain with a reported generation time of 57 minutes. However, successful 

incorporation of ncAA in response to the reassigned serine codon (TCG) was achieved 

using an orthogonal PylRS/tRNACGA pair in Syn61 while being extremely toxic to 

MDS42 cells. While this is a recent breakthrough in this field, it is certainly not the 

last with reports of 57-codon synthetic E. coli genome currently in research (Ostrov 

et al., 2016).  

The number of distinct ncAA that can be incorporated into a protein is theoretically 

limited by the number of non-coding codons. The research mentioned above on 

genomically recoded organisms is a unique approach to increase the number of non-

coding codons available within the organism. Another interesting concept is to 

incorporate ncAAs in response to quadruplet codons while simultaneously decoding 

standard triplet codons in the mRNA to avoid protein truncation and degradation. 

Quadruplet codons could offer a possible 256 additional codons to the cell 

(O'Donoghue et al., 2012). The first report of simultaneous incorporation of distinct 

ncAA in response to a quadruplet codon and an amber stop codon was by Anderson 
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et al. in 2004. In this study L-homoglutamine (hGln) was incorporated into myoglobin 

in vivo within E. coli using Pyrococcus horikoshii orthogonal LysRS/tRNAAGGA in 

combination with M. jannaschii TyrRS/tRNACUA for the incorporation of the ncAA O-

methyl-L-tyrosine. Although decreased efficiency was observed with the 

incorporation of two distinct ncAA it was shown that the ribosome can recognise and 

decode quadruplet codons. Following this, investigations into the evolution of an 

orthogonal ribosome with higher amber suppression efficiency was reported (Wang 

et al., 2007). To ensure minimal interaction with the endogenous translational 

machinery, an orthogonal translational pathway was developed based on an 

alternative Shine-Dalgarno sequence (Rackham & Chin, 2005). The natural Shine-

Dalgarno sequence is a short recognition sequence (AGGAGG) typically found at 

position -7 to -4 upstream of the 5’ translational start codon in mRNA (Shine & 

Dalgarno, 1974). Slight mutations in the sequence can increase or decrease the 

translation initiation efficiency in prokaryotes by altering the complementary 

interactions between the mRNA and ribosomal RNA and can be used as a method to 

control gene expression (Kozak, 1983). Instead of controlling the initiation of 

translation with slight mutations in the Shine-Dalgarno sequence, Rackham et al. 

developed pairs of mRNA and ribosome that do not bind to natural ribosome and 

endogenous mRNA in E. coli (Rackham & Chin, 2005), providing an orthogonal 

translational machinery in E. coli. Wang and colleagues later evolved this orthogonal 

ribosome (ribo-X) for efficient amber suppression (Wang et al., 2007). At the time of 

the report, typical efficiency (defined as the ratio of full-length recombinant protein 

to terminated truncated protein) of ncAA incorporation into proteins in response to 

an amber codon was limited to 20-30%. The limited incorporation efficiency was 

caused by the competition between RF1 mediated peptide termination in response 

to an amber stop codon and orthogonal tRNACUA mediated peptide chain elongation 

with the addition of an ncAA. By designing an orthogonal translation pathway, the 

orthogonal ribosome could be evolved towards higher efficiency of amber 

suppression through ncAA incorporation without affecting the endogenous cellular 

processes. It was shown that the directed evolution of ribo-X had increased the in 

vivo incorporation efficiency of p-benzoyl-L-phenylalanine (Bpa) in response to an 

amber codon from 24% to 62% with the BpaRS/tRNACUA pair and ribo-X. The reported 
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high-fidelity and increased efficiency of the amber suppressor tRNA was in part 

attributed to the orthogonality of the mRNA as a result of the alternative Shine-

Dalgarno sequence. The orthogonality of the mRNA allowed for separate translation 

systems to function independently within the living cell. A later study (Neumann et 

al., 2010) describing an evolved ribosome (ribo-Q1) was established on the research 

described above. Ribo-Q1 was designed for the efficient decoding of quadruplet 

codons (Figure 1.5) and the highly efficient incorporation of two distinct ncAA was 

reported. 

 

Figure 1. 5: Genetic incorporation of multiple distinct ncAA by decoding amber and quadruplet 

codons. In the same host organism, both the orthogonal translation pathway that uses orthogonal 

mRNA for the expression of modified proteins and the endogenous translation pathway that is 

responsible for endogenous proteins are simultaneously active. Evolved ribosome (Ribo-Q1) 
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exclusively recognises alternative Shine-Dalgarno sequence on orthogonal mRNA but is designed to 

use endogenous charged tRNA, orthogonal charged tRNA and orthogonal charged tRNA with 

quadruplet anticodon. This allows for the expression of modified protein with two distinct site-

specifically incorporated ncAA. 

This study achieved expression of glutathione S-transferase calmodulin (GST-CaM) 

fusion protein with the simultaneously incorporation of N6-[(2-

propynyloxy)carbonyl]-L-lysine (CAK) with MbPylRS/ MbtRNACUA pair in response to 

an amber codon (TAG) and p-azido-L-phenylalanine (AzPhe) with 

AzPheRS/tRNAUCCU pair in response to a quadruplet codon (AGGA). The orthogonal 

evolved ribosome with cognate orthogonal mRNA enabled high fidelity and efficient 

translation of quadruplet codons without affecting cell viability as interaction with 

the endogenous translational pathway was minimised reducing toxicity from 

frameshifts occurring via quadruplet decoding of the transcriptome. 

 

1.4 Application of non-canonical amino acids 

 

A considerable amount of literature has been published on investigating new 

techniques for the incorporation of ncAA in vivo and has demonstrated the efforts 

invested in designing separate cellular systems to work mutually with the natural 

endogenous processes within the cell. Although the foundation built through this 

research has been vital for the progression of this field, the applications of these 

techniques to alter or enhance protein function truly demonstrates the utility and 

flexibility of these technologies. This section will highlight research that has used 

ncAAs for the understanding of protein structure and function. A diverse range of 

genetically encoded ncAA have been used to investigate fundamental questions on 

protein structure and function both in vitro and in vivo (Figure 1.6). These include 

redox probes to investigate electron transfer in mechanistic studies (Minnihan et al., 

2011), isotopic labels for infrared spectroscopy and nuclear magnetic resonance 

(NMR) studies (Schultz et al., 2006; Cellitti et al., 2008), ncAA containing heavy atoms 

for X-ray crystallography (Pearson et al., 2015), photo-crosslinkers for mapping 
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biological interactions in vivo (Chin et al., 2002a) and fluorescence ncAA for optical 

imaging (Wang et al., 2006).  

 

 

Figure 1. 6: Examples of ncAAs used in the investigation of protein structure and functions. (1) p-azido-

phenylalanine, (2) Alkyne lysine, (3) Coumarin Lysine analogues, (4) tert-butyl tyrosine, (5) o‐

nitrobenzyl tyrosine, (6) o‐nitrobenzyl lysine, (7) Benzoyl-phenylalanine, (8) Phosphoserine, (9) Nε -

acetyl-lysine. 

 

1.4.1 Probing protein structure and function.  

 

Electron transfer (ET) through and between proteins is widely used in biological 

processes and is a fundamental driving force of the chemistry of life. The conversion 

of energy such as light, into forms that are usable for chemical transformations often 

occur as a cascade of many biological processes, such as photosynthesis. Our ability 

to probe electron transfer in proteins is often limited by the difficulties to site-

specifically insert electron acceptors in vivo. The development of site-specific 

incorporation of ncAA has facilitated the control over the acidity, basicity and redox 
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potential of key residues in a protein of interest. For example, the addition of 

fluorotyrosines (N-acetylfluorotyrosinamides) proved to be a useful EPR probe for 

studying the mechanism of radical formation in ribonucleotide reductase (Minnihan 

et al., 2011). A more recent study (Lv et al., 2015) described the insertion of 4-fluoro-

3-nitrophenylalanine (FNO2Phe) into green fluorescent protein (GFP). FNO2Phe has 

been shown to have similar reductive potential to important biological reductants 

such as NAD(P)H. With the genetic incorporation of this ncAA it was possible to 

measure high-speed photoinduced electron transfer (PET) from the GFP 

chromophore to FNO2Phe. These genetically incorporated probes have proved to be 

useful tools for the investigation of protein function. Infrared spectroscopy (IR or 

vibrational spectroscopy) is a powerful methodology that utilises the interaction of 

infrared radiation and matter to identify and characterise molecules. Introduction of 

functional groups with unique vibrational signature that can be identified over 

naturally-occurring functional groups in the protein can be achieved by genetic 

incorporation of ncAA infrared probes. In one example, the site-specific introduction 

of deuterium probes (Carbon-Deuterium C-D) via photocaged tyrosine analogues 

allowed for characterisation of specific microenvironments and dynamics of the 

enzyme dihydrofolate reductase (DHFR) and the ability to monitor conformation 

changes during its catalytic pathway (Groff et al., 2009).  

 

1.4.2 Photo-crosslinking ncAA to map protein-protein interactions.  

 

Another method of probing and mapping protein function uses of ncAA containing 

photo-crosslinking side chains. Multiple photocrosslinkers have been genetically 

incorporated both in vivo and in vitro, including benzophenones (Chin et al., 2002a), 

diazirine (Ai et al., 2011), and aryl azides (Tippmann et al., 2007) to define the 

structure and function of protein complexes. These photo-crosslinking side chains 

form covalent bonds to molecules in close proximity upon irradiation. The fast 

formation of covalent bonds provides positional and structural information and 
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allows for the investigation of weaker protein-protein interactions in their native 

environment that could be missed by other non-covalent methods.  

For example, the use of ncAA containing benzophenone (p-benzoyl-l-phenylalanine 

or pBpa) was used to investigate lipopolysaccharides (LPS) assembly in the outer 

membrane of E. coli and allowed elucidation of intermolecular interactions within 

key protein complexes responsible for this task (Freinkman, et al., 2011). Another use 

of pBpa was in the attempt to further characterise the protein-protein interactions 

that define transcriptional activation, and increase fundamental knowledge in 

functionality and binding modes of the transcription activation in vivo in their native 

context (Majmudar et al., 2009). This study showed that the genetic incorporation of 

pBpa into the transcriptional factor (Gal4) enabled photo-cross linking in vivo and the 

identification and characterisation of a key masking protein (Gal80). Although this 

study was fundamentally important for the development of our understanding of 

transcriptional activation, several steps of isolation and purification, as well as 

technically challenging experiments, were required to isolate the protein of interest. 

A later study that aimed to reduce these experimental challenges used a bifunctional 

ncAA that contained benzophenone for photoactivatable cross-linking and alkynyl 

moiety for isolation after crosslinking (Joiner et al., 2017). The bifunctional ncAA 4′‐

ethynyl‐p‐benzoyl‐L‐phenylalanine (BPKyne) was genetically incorporated with E. coli 

TyrRS/tRNACUA in yeast and photo-crosslinked with the Gal4–Gal80 transcriptional 

complex. The crosslinked complex was then isolated and purified by employing a 

subsequent reaction with the alkynyl handle.  

 

1.4.3 Fluorescent imaging.  

 

Another interesting application of encoding designer amino acids is the genetic 

incorporation of fluorescent ncAAs. The ability to modify proteins with fluorescent 

probes has greatly enhanced our capability to study protein dynamics in vitro and in 

vivo. Fluorescent proteins have been isolated from many organisms such as avGFP 

from the jellyfish Aequorea victoria (Ormö et al., 1996) or DsRed derived from the 
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coral Discosoma striata (Gross et al., 2000). However, due to the large size of the 

naturally-occurring fluorophores a common limitation of expressing fluorescent 

fusion proteins is the restriction of labelling the C- or N- terminus of the target 

protein as this can cause significant structural perturbation to the protein. Another 

labelling approach relies on the direct chemical labelling of reactive canonical amino 

acids (cysteine and lysine) with a variety of synthetic fluorophores. While 

methodologies for fluorescent labelling of amino acids are relatively simple, 

complications can arise if key residues are labelled, which can perturb protein 

functionality. 

Furthermore, as target residues can be present at several sites within a protein with 

varying levels of accessibility, numerous fluorophores can be conjugated to the 

protein resulting in heterogeneous labelled product. Therefore, the ability to site-

specifically encode fluorescent amino acid into recombinant proteins would be a 

powerful tool. In one example, the MjTyrRS/MjtRNACUA pair was evolved to 

incorporate L-(7-hydroxycoumarin-4-yl) ethylglycine in response to an amber codon 

(Wang et al., 2006). This ncAA was chosen for investigation due to its high 

fluorescence quantum yield, small size and pH-sensitivity. Successful incorporation 

into whale myoglobin at Ser4TAG position was verified by electron spray ionisation 

mass spectrometry (ESI MS). Summerer and colleagues reported another example of 

a genetically incorporated fluorescent ncAA in 2006 (Summerer et al., 2006), where 

the fluorescent amino acid dansylalanine was encoded into proteins in yeast in 

response to an amber codon. The majority of encoded fluorescent amino acids have 

excited at shorter wavelength which could present problems in live-cell microscopy. 

However, the methodology for genetic site-specific incorporation of these 

fluorescent probes provides a fast and convenient technique to label proteins with 

fluorophores compared to the conventional protein fusions or chemical labelling 

methods discussed above. The generation and encoding of longer wavelength 

fluorescent amino acids is an important future direction for this field.  
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1.4.4 Post-translational modifications.  

 

Although over 140 different amino acids have been identified within naturally 

occurring proteins, the majority of these originate from post-translational 

modification (PTM) of the 20 canonical amino acids (Uy & Wold, 1977). PTMs are 

ubiquitous and highly conserved in biology and are responsible for critical roles in 

cellular processes such as signal transduction, which controls the underlying 

mechanisms of cell proliferation, gene regulation, cellular growth and metabolism 

(Krauss et al., 2003). To further study these processes both in vitro and in vivo, it 

would be highly beneficial to have the ability to site-specifically incorporate amino 

acids with PTMs into targeted proteins. However, this is often a challenge as the 

enzymes responsible for the generation of PTM could be largely unknown or are not 

site-specific. With the powerful tools available for genetic encoding of ncAA, the 

ability to site-specifically incorporate amino acids with PTMs enables the direct 

localisation of selectively modified residues into proteins which are highly valuable 

for the discovery of the biological roles of these modifications. Some examples of 

PTMs that have been achieved with the incorporation of ncAA are phosphorylation, 

sulfurylation and nitration, which will be briefly discussed in this section. Numerous 

studies have reported the incorporation of phosphorylated amino acids such as 

phosphoserine (Park et al., 2011), phosphothreonine (Zhang et al., 2017) and 

phosphotyrosine (Luo et al., 2017). Phosphorylation/dephosphorylation is the 

addition/removal of a phosphoryl group to a molecule and is critical in many 

biological processes, and can act as a molecular switch for protein function. For 

example, it has been estimated that almost half of the regulatory enzymes 

responsible for metabolism in yeast are subjected to phosphorylation, which offers 

a dynamic way to regulate protein activity and allows for higher regulation of 

protein-protein interactions compared to their non-phosphorylated counterparts 

(Vlastaridis et al., 2017). In a recent study, the generation of an orthogonal 

aaRS/tRNA for the genetic incorporation of O-phosphotyrosine (pTyr) and its non-

hydrolysable analogue 4-phosphomethyl-L-phenylalanine (Pmp) in E. coli was 

reported (Luo et al., 2017). The encoding of pTyr and Pmp proved to be more 
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challenging than the incorporation of other ncAA as pTyr and Pmp required a 

propeptide strategy to increase the cellular uptake of these ncAA. Commonly, ncAAs 

are supplemented into the growth media, and cellular uptake occurs via transport 

pathways of other amino acids or small molecules. The controlled encoding of pTyr 

analogues at tyrosine sites facilitated the investigation of phosphotyrosine PTM in a 

variety of proteins sizes. O-Phosphoserine (Sep) is the most abundant 

phosphorylated amino acid within eukaryotes with 48 and 7.3 times higher 

abundance than phosphotyrosine and phosphothreonine, respectively (Olsen et al., 

2006). The evolution of an orthogonal aaRS/tRNA for the genetic incorporation of 

phosphoserine (Sep) was reported in model proteins within E. coli (Park et al., 2011 

& Rogerson et al., 2015). This study achieved high yields of proteins containing site-

specifically incorporated Sep in response to amber codon to produce biologically 

relevant phosphorylated proteins that were previously challenging to express. 

 

1.4.5 Biorthogonal chemical handles.  

 

The ability to perform chemical conjugations on biological systems is a growing area 

of interest in chemical biology, more specifically being able to modify biomolecules 

with synthetic moieties for use as diagnostic tools, therapeutic agents or for 

fundamental research. A general strategy for labelling proteins is the chemoselective 

targeting of deprotonated thiolate nucleophiles in cysteine residues or amine 

nucleophile in lysine residues for conjugation. However, these targets can be limiting 

as cysteines are often required for correct folding of proteins and lysines are often 

important for protein function. Furthermore, as there are often multiple targeted 

sites in a protein it is difficult to label a protein of interest homogenously. A method 

designed to avoid these challenges is the genetic site-specific incorporation of 

bioorthogonal chemical handles into proteins using ncAA. Three examples of 

commonly used bioorthogonal groups in ncAAs are ketones (Wang et al., 2003), 

acetylenes and azides (Deiters et al., 2003). Keto groups are a versatile functional 

group but are absent in the 20 canonical amino acids, to overcome this natural 
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limitation, Wang and colleagues evolved an orthogonal aaRS/tRNA to site-specifically 

encode p-acetyl-L-phenylalanine in response to an amber codon. They demonstrated 

high-efficiency incorporation and showed useful protein modification by selective 

conjugation to a small molecule fluorophore. A similar approach was used for the 

incorporation of acetylenes and azides containing groups in ncAA by Deiters et al. 

Orthogonal aaRS/tRNA pairs were developed for the encoding of p-

(propargyloxy)phenylalanine and p-azidophenylalanine in yeast. They then 

demonstrated small molecule conjugation to these unique chemical handles via an 

azide-alkyne cycloaddition reaction. More recently, a study demonstrated the 

attachment of two distinct bioorthogonal chemical handles in proteins to facilitate 

double labelling for a variety of applications (Sachdeva et al., 2014). The 

simultaneous incorporations of two distinct ncAAs in the recombinant protein was 

achieved by using the MjPrpRS/tRNACUA pair to encode a terminal alkyne containing 

amino acid in response to an amber codon, and PylRS/tRNAUACU pair that encoded a 

cyclopropene containing amino acid in response to a quadruplet codon on 

orthogonal mRNA (using evolved ribosome, Ribo-Q1). The resulting full-length 

protein showed site-specific incorporation of two distinct ncAAs which were mutually 

orthogonal to each other. This allowed for a one-pot double labelling reaction at 

targeted chemical handles at physiological pH and temperature. 

 

1.4.6 Stimuli control over bioactivity.  

 

The ability to develop new strategies for the control over protein function in vivo is 

an interesting application of the genetic encoding of ncAAs. Versions of amino acids, 

for example tyrosine, lysine, serine and cysteine, containing blocking groups have 

been genetically encoded. Incorporating these ncAAs, in place of naturally occurring 

amino acid, in the active site of proteins would generate inactive versions that can 

be activated by certain stimuli, such as light, pH or addition of a small molecule, for 

detaching the blocking group. Photocaged amino acids are one such example that 

requires light to remove the blocking group. The photo-cleavable group allows for 
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the rapid control over spatial and temporal activation of the biomolecule back to its 

native function, which can facilitate investigations into biological processes. One 

strategy employed for the optical control over genome engineering was the insertion 

of photocaged lysine into potentially active sites within the CRISPR/Cas9 system 

(Hemphill et al., 2015). The clustered regularly interspaced short palindromic repeats 

(CRISPR) targeted invasive nucleic acids with Cas proteins as an antiviral defence 

mechanism utilised by prokaryotes and archaea (Brouns et al., 2008). Guide RNA 

(gRNA) is combined with Cas9 enzymes to recognise and cleave specific DNA strands 

dictated by the CRISPR sequence. The Cas9 enzyme has been optimised for gene 

editing, gene deletions and gene mutations (Hsu et al., 2013) in human cells and 

animal models (Mali et al., 2013; Gratz et al., 2013). The authors showed that by 

replacing lysine in the Cas9 complex at position 866 with the encoding of photocaged 

lysine in response to an amber codon they enabled light-activated control over gene 

editing by CRISPR/Cas9 system. This accomplishment could allow for future spatial 

and temporal control of gene activation/deactivation within human cells. However, 

the photo-cleavage mechanism is activated upon 365 nm irradiation. Ultraviolet 

radiation has been shown to have poor tissue penetration which could represent 

additional challenges for deep tissue targets or animal models. 

Furthermore, the radiations on live cells can alter the intracellular signalling networks 

and cause cytotoxic effects. The development of using non-invasive approaches to 

activate protein activity in vivo has gained widespread attention in recent years (Zorn 

& Wells, 2010). One strategy is to use small molecules to modulate protein 

functionality by triggering catalytic deprotection of ncAA containing blocking groups 

and converting these amino acids back to their native form. In one study, a palladium-

mediated deprotection of a lysine derivate was designed for the activation of protein 

functionality in vivo (Li et al., 2014). It was reported that the chemically caged lysine 

inhibited protein function until removal of caging group via a palladium-catalysed 

reaction. 
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1.5 Introduction to antibodies and antibody fragments 

 

In 1975, Nobel prize winners Milstein and Köhler first described the hybridoma 

technology, which started the revolution of therapeutic antibody research (Köhler & 

Milstein, 1975). This technology allowed for large scale synthesis of antibodies and 

paved the way for advances in antibody engineering and development. The first 

generation of monoclonal antibodies (mAbs) were of murine origin and had limited 

clinical success, mainly due to the immune response they caused in humans, making 

the half-life of the molecules too short for them to act as a viable treatment (Van 

Kroonenburgh & Pauwels, 1988). Following this, chimeric mouse-human antibodies 

were designed by using the human constant (Fc) region to which a murine variable 

region was attached (Morrison et al., 1984). These were further humanised by using 

whole human antibodies with the exception of the complementary determining 

regions (CDRs) isolated from mouse antibody (Jones et al., 1985). Through the use of 

cloning technologies, isolation and expression of the genes encoding for full human 

mAbs became possible in the late 1980s (Chiang et al., 1989). Although these full-

length antibodies offered high-specificity, high-affinity targeting, along with 

increased retention time, they still suffered in their efficiency in in vivo applications 

as repeated administration resulted in human anti-mouse antibody response. 

Furthermore, due to the complexity of the molecule a high cost is often associated 

with it, along with long-term storage stability problems. 

Monoclonal antibodies have become an essential research tool in experiments such 

as flow cytometry, immunohistochemistry, Western blots, enzyme-linked 

immunosorbent assay (ELISA) and many more. Additionally, they are a promising 

therapeutic agent owing to outstanding specificity to targeted molecules. The 

variable region of an antibody can be customised to bind almost any extracellular or 

cell surface protein, which can result in several outcomes, such as blocking 

downstream signalling or activating biochemical pathways (Hori et al., 1991). 

Another advantage of non-immunogenic antibodies is their long circulation half life, 

which is due to their large molecular size and the binding of Fc-domain to the 

neonatal receptor reducing clearance from the body. Generally, full-length mAbs are 
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expressed in mammalian cell line cultures due to the complexities of the molecule 

(Birch & Racher, 2006). Full-length antibodies have been shown to express in E. coli 

as aggregates that after expression can be refolded using in vitro methods to 

generate bioactive mAbs. However, these methods are hindered by low expression 

yields and complex procedures (Boss et al., 1984). A more recent study showed high 

expression yields and correct assembly of full-length mAbs in E. coli periplasm, which 

offers many advantages over mammalian expression such as shorter fermentation 

times and reduced costs (Simmons et al., 2002). However, antibodies expressed in 

bacterial system lack post-translational modifications which can be important for 

biological application of monoclonal antibodies as glycosylation of the constant 

region of antibodies play an important role in humoral immune response. 

Smaller antibody fragments have also gained importance due to advantages of easier 

expression, low cost and their ability to penetrate deeper into human tissues (Figure 

1.6.A). With careful design scientists have reduced the size of mAbs without 

compromising on their ability to bind the target; the short chain variable fragment 

(scFv) is the smallest antibody fragment and only contains the variable (VH/VL) 

domains of the antibody, held together with a flexible polypeptide linker. Fragment 

antigen binding (Fab) fragments contain one constant and one variable domain of 

both the heavy and the light chain. When compared to full-size antibodies these 

smaller fragments promote better tissue penetration while keeping high specificity 

as the antigen-bind site is not modified. However, due to their monovalent nature, 

these antibody fragments often exhibit low retention time on the target (Adams et 

al., 2001). This can be improved by engineering Fab and scFv fragments into dimeric, 

trimeric or tetrameric conjugates.  
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Figure 1.7: Diagram representation of various naked antibody formats. Blue ovals depict variable 

regions, and grey oval represent conserved regions (difference between light and heavy chains are 

shown by different colour intensity). A) Layout of full length mAb (150kDa) and commonly used 

antibody fragments (Fab, F(ab)2, scFv, and Fc region). B) Heavy-chain only antibody (90kDa) and 

variable domain fragments (VHH or nanobody). 

 

There are a number of ways to express antibodies and their corresponding fragments 

in E. coli i) the periplasm (space between the inner and outer membrane) of E. coli 

has an oxidative microenvironment making it suitable for the formation of intra-

domain disulphide bonds in antibodies and antibody fragments (Charlton, 2004). To 

direct the polypeptide chain to the periplasmic space, the addition of an N-terminal 
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peptide secretion sequence upstream of the gene of interest is required, few 

examples of such sequences include PelB, OmpA, and PhoA. During transport to the 

periplasm the signalling peptide is cleaved leaving the protein of interest intact. 

Proteins from the periplasmic space can then be easily extracted and purified.  (Rouet 

et al., 2012). ii) Another technique for bacterial production of Ab fragments is to use 

E. coli strains engineered for the expression of recombinant proteins that contain 

disulphide bonds; these strains such as SHuffle (Lobstein et al., 2012) contain 

genomic copies of proteins that can assist in the correct folding of proteins and have 

reductive pathway enzymes such as thioredoxin reductase (trxB) and glutathione 

reductase (gor) suppression and a cytoplasmic chaperone to aid in disufide bond 

formation (DsbC). 

In 1993, heavy chain only antibodies were discovered in camel blood when 

unexpected bands were observed on a Coomassie stained protein gel (Hamers-

Casterman et al., 1993); these results were inconsistent with the size of standard four 

chain (two light and two heavy) antibodies. It was later discovered that these heavy 

chain only antibodies are found in all camelid species and sharks. Interestingly it has 

also been claimed that the heavy chain antibodies in camelids evolved independently 

from those found in sharks (Nguyen et al., 2002). These antibodies consist of two 

heavy chains that are each composed of two constant domains linked via a hinge to 

a variable domain called VHH or nanobody (Figure 1.6.B). 

The variable domain (VHH or nanobody) of a heavy chain only antibody is the main 

part responsible for antigen binding. This has resulted in the expression of extremely 

small antigen binding molecules (around 15 kDa), half the size of the smallest 

antibody fragment (scFv 30kDa). This small molecular size offers many advantages 

and some potential disadvantages when compared to full-size mAb. Studies on 

nanobodies have revealed many interesting antigen binding characteristics that are 

not possible with full size or fragmented antibodies. It has been shown that due to 

the small size of nanobodies they are able to bind to difficult to access antigens and 

have higher binding affinity to cavities (De Genst et al., 2006) and hidden epitopes. 

They can thus be used as enzyme inhibitors and antagonists for receptor function 

(Lauwereys et al., 1998) with possible application in combating viral infection (Van 
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der Vaart et al., 2006). Furthermore, nanobodies have the added benefits of 

improved solubility, ease of cloning, stability and simple production procedures, over 

full-length antibodies or antibody fragments. 

The apparent disadvantage nanobodies have in terms of their therapeutical 

application is having a mass below the threshold of filtration for the renal glomeruli, 

thus after injection into the bloodstream they are rapidly excreted by the kidneys. It 

has been shown that when BALB/c mice were injected intravenously with 

nanobodies, their elimination half-life was estimated to be 90 minutes (Cortez‐

Retamozo et al., 2002). This problem can be circumvented by coupling two or more 

nanobodies, which can also increase their pharmaceutical potential as such 

multimeric nanobodies can have multiple functions. Nanobodies have also been 

fused to albumin specific nanobody to increase their molecular size, which in turn 

reduces the clearance of the molecule (Dennis et al., 2002). This modular nature of 

nanobodies means they can be linked to any molecule of interest for pharmaceutical 

(Conrath et al., 2001), biotechnological (Szynol et al., 2004) or for fundamental 

biological research (Hassaine et al., 2014). 

 

1.6 Uses of ncAA in antibody therapeutics 

 

As of December 2018, the international ImMunoGeneTics information system 

(Lefranc et al., 2008) database lists 65 whole mAb formats (including naked whole 

mAbs, ADCs, and bispecific mAbs) and 18 antibody fragments (including Fabs, Fc 

fusions, scFv fusions and bispecific scFv’s) approved for clinical use. The significant 

industrial interest in the development and improvement of antibody treatment 

continues to dominate the biological therapeutic platform. Although naked whole 

mAbs make up the majority of the approved antibody-based therapies (60 approved 

out of the 65 whole mAb formats), as a single therapeutic agent, clinical efficacy 

remains limited. Conjugation of small molecule therapeutic agents to mAbs is one 

strategy to enhance clinical efficacy by increasing receptor specificity, binding 

affinities, structural stability and targeted toxicity (via drug molecules).  
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Antibody-drug conjugate (ADC) is a form of biopharmaceutical that combines the 

targeting specificity of mAbs with the delivery of a highly potent cytotoxic drug. Up 

to June 2019, five ADCs have been approved for the treatment of cancer by the 

European Medicines Agency (EMA) and the Food and Drug Administration (FDA). 

These include Gemtuzumab ozogamicin (Appelbaum et al., 2017), Brentuximab 

vedotin (de Claro et al., 2012), Trastuzumab emtansine (Amiri-Kordestani et al., 

2014), Inotuzumab ozogamicin (Lamb, 2017), and Polatuzumab vedotin (Deeks, 

2019). Although these ADCs have shown promise in clinic, they have drawbacks 

through their methods of non-specific conjugation of cytotoxic drug to the antibody 

resulting in heterogeneous products, which can negatively affect stability, 

tolerability, half-life and potency of the treatment (Sievers & Senter, 2013). For 

example, Gemtuzumab ozogamicin (Mylotarg™) an anti-CD33 antibody conjugated 

to the DNA cleaving agent calicheamicin (Hamann et al., 2002) was the first ADC 

approved for acute myeloid leukaemia and was withdrawn from the market in 2010 

due to toxicity and lack of efficacy. The specificity of targeted mAb is often directed 

to highly expressed antigens near tumour cells or to the surface of malignant cells in 

an attempt to reduce cytotoxic payloads to healthy cells and improve the safety of 

ADCs. Often the disease target antigens are essential biological receptors that have 

acquired mutations affecting expression levels or activity. Although highly expressed 

on targeted tumour cells, basal levels of targeted receptors can be present on healthy 

cells. Consequently, the reduced specificity of antigen targeting between healthy and 

diseased cells can cause severe side-effects. For example, Cetuximab (Erbitux™) is an 

FDA approved anti-EGFR mAb used for the treatment of head and neck cancer, 

metastatic colorectal cancer and metastatic lung cancer (Cunningham et al., 2004). 

It has been reported that 70% to 80% of patients treated with Cetuximab have 

exhibited adverse effects, such as localised rash formation or drug-induced 

acneiform folliculitis (Nguyen et al., 2009a). These observed side-effects of 

Cetuximab have been linked to the binding of mAb to healthy epidermis cells 

expressing basal level EGFR (Harding & Burtness, 2005). One strategy for overcoming 

these detrimental drawbacks is the site-specific genetic incorporation of ncAA for 

bioorthogonal chemical labelling. The optimisation of the biological, structural and 

pharmacological properties of ADCs with the site-specific incorporation and chemical 
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conjugation to p-Acetylphenylalanine (pAcF) was reported for the anti-Her2 FAB 

fragment in E. coli and full-length mAb in mammalian cells (Axup et al., 2012). The 

study showed site-specific linkage of a single microtubule toxin auristatin F (AF) to 

pAcF in the FAB fragment and dual conjugation of two microtubule toxin AF to two 

distinct sites within a mAb. In another study, auristatin was conjugated to p‐

acetylphenylalanine (pAzF) that was genetically encoded into anti‐CXCR4 mAb via a 

stable oxime linkage (Kularatne et al., 2014). Both studies reported homogeneously 

labelled ADC products with improved potency in mouse tumour xenograft models 

and increased serum half-life. Although no significant toxicity was observed with the 

treatment of anti‐CXCR4-ADC, a modest decrease was reported in bone marrow 

CXCR4+ cell populations which could be attributed to the unwanted targeting of 

healthy cells. In a recent study, cyclopropene derivative of lysine (CypK) was site 

specifically incorporated into an anti-HER2 monoclonal antibody, Trastuzumab. The 

cyclopropene group in this antibody was covalently linked to tetrazine‐modified 

MMAE (tetrazine‐vcMMAE) via a stable dihydropyridazine linkage to give 

homogeneously labelled ADC (Oller‐Salvia et al., 2018). Site specific incorporation of 

bioorthogonal chemical handles into antibodies have allowed development of 

clinically useful homogeneous ADCs with enhanced efficacy.  

A bispecific antibody (bsAb) is an artificially designed antibody that can 

simultaneously bind to two different epitopes. This dual specificity enables a wide 

range of applications such as blocking two signalling pathways simultaneously, 

binding and redirecting specific immune cells to tumour targets and delivering 

payloads to targeted cells (Dhimolea & Reichert, 2012). There are a number of bsAb 

formats (Figure 1.7) that roughly fall into two main categories; immunoglobulin G 

(IgG)-like and non-IgG-like. The IgG-like bsAb retain the traditional mAb structure 

with two Fab arms (heavy and light chains), each of which are specific for a different 

antigen or epitope, and an Fc region. Examples of IgG-like bsAb are dual variable 

domain antibodies (DVD-Ig) and trifunctional antibodies (Wu et al., 2007; Jäger et al., 

2009). Due to the inclusion of the Fc region in these bsAb formats, improved solubility 

and stability along with increased serum half life have been reported for such 

antibodies. The non-IgG-like bsAb formats lack the Fc region and mainly consist of 
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various Fab and scFv regions. Examples of non-IgG-like bsAb formats are bispecific T-

cell engagers (BiTEs), Dual Affinity Re-Targeting (DARTs), diabodies and tandem 

diabodies (Baeuerle & Reinhardt 2009; Moore et al., 2011; Holliger et al., 1993; 

Cochlovius et al., 2000). As the non-IgG-like bsAb are smaller in size they have 

improved tissue penetration.  

 

 

Figure 1.8: Layout of various bispecific antibodies formats, typically defined as two categories; 

immunoglobulin G (IgG)-like and non-(IgG)-like. Different targeting variable regions identified as either 

blue or green ovals, and conserved regions depicted as grey ovals.  

 

Clinical success of bsAbs was shown with the approval of Catumaxomab (Removab™) 

in 2009 for the treatment of malignant ascites (Holmes, 2011) and the FDA-approved 
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blinatumomab (Blincyto™) in 2014 for the treatment of Philadelphia chromosome-

negative relapsed or refractory acute lymphoblastic leukaemia (Przepiorka et al., 

2015). Although bsAbs have many possible advantages over traditional antibodies, 

their development has been hindered due to low expression yields and structural 

instability (Spiess et al., 2015). This is mainly caused by incorrect assembly of 

antibody chains through quadroma methodology, which relies on the random 

formation of usable bsAb and can be highly inefficient. Another method for bsAb 

assembly is by chemical conjugation, commonly by targeting lysine or cysteine 

residues. However, as previously discussed with methods for developing ADCs, this 

method often yields heterogeneous products which are often suboptimal as 

therapeutics.  Strategies that take advantage of genetically encoded ncAAs have 

emerged as a promising alternative for the generation of bispecific antibodies. In one 

such study, p-acetylphenylalanine (pAcF) was site-specifically incorporated into two 

Fab fragments using amber supression. The expression of pAcF in anti-HER2 and anti-

CD3 Fab fragments enabled coupling via a bifunctional ethylene glycol linker to 

generate anti-HER2/anti-CD3 bsAb (Kim et al., 2012a). This study showed a simple 

method to generate high yielding homogeneously conjugated bispecific antibodies 

with excellent in vitro activity. 

 

1.7 Light mediated release of photo-active therapeutics 

 

A great deal of interest has been shown in the development of “smart drugs” that 

are designed to improve therapeutic efficiency and performance while minimizing 

negative side-effects. One therapeutic approach is the use of stimuli to activate the 

therapeutic molecule or to regulate the delivery and release of a therapeutic 

payload.  The two main categories of stimuli that have been explored are, i) 

endogenous stimuli which include, enzyme-based activation, redox potential, pH 

sensitivity and chemical activation, and ii) exogenous stimuli which include light, 

temperature, magnetic field, ionizing radiations and ultrasound (Karimi et al., 2016). 

The use of light as a stimulus has gained considerable attention due to localised non-
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invasive activation of light-activated molecules with precise spatial and temporal 

control. Some examples of light-activated therapeutics include precise drug delivery 

via the photo-trigged release of an encapsulated therapeutic agent (Agasti et al., 

2009) or therapeutic agent covalently linked to photocaged group that can be 

removed upon irradiation with light (Fleige et al., 2012). 

The use of light as an activation mechanism has shown promising outcomes in the 

engineering of light responsive therapeutics. Several articles were published in the 

1960s on the synthesis of photo-protective groups (PPGs) (Barton et al., 1962; 

Barltrop & Schofield, 1962; Sheehan & Wilson, 1964). These discoveries quickly led 

to interests in using these PPGs for biological applications. In 1977, Engels & 

Schlaeger demonstrated photo-regulation of cyclic adenosine monophosphate 

(cAMP), and in 1978, Kaplan et al. successfully caged an adenosine triphosphate 

(ATP) derivative. The development of these light responsive biologically active 

molecules offered scientists experimental opportunities to gain further 

understanding of otherwise difficult to study biochemical processes. Over the years, 

PPGs have been utilised in a plethora of biologically relevant molecules for the 

investigation of fundamental processes and in several biomedical applications. The 

technique of inhibiting bioactivity via photocaging has been applied to a variety of 

biomolecules such as proteins (Sinha et al., 2010), enzymes (Mentel et al., 2011), 

receptors (Zhao et al., 2006), RNA (Chaulk & MacMillan, 2007), DNA (Wang et al., 

2015) and amino acids (Philipson et al., 2001).  

An ideal light-activated drug delivery system should allow for spatial and temporal 

control over release of the drug in diseased tissue, while reducing drug dosage and 

off target toxicity to healthy cells. However, prolonged exposure to light (especially 

in the case of shorter wavelengths) can cause adverse side effects on healthy cells, 

including DNA degradation and the damaging of endogenous cellular molecules. 

While shorter wavelengths such as UV (200-400 nm) has sufficient energy to break 

covalent bonds it also has low tissue penetration depth caused by strong scattering, 

absorption by water and tissue and potential phototoxicity to targeted areas 

containing healthy tissue (Ai et al., 2016). In contrast, longer wavelength light such 

as near-infrared (NIR, 650-900 nm) can penetrate much deeper into the tissue (Figure 
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1.8) and have less toxicity. However, functional groups that can be decaged by NIR 

are ususally more complex, require complicated synthesis and have low water 

solubility.  

 

 

Figure 1.9: Diagram illustrating the depth of tissue penetration by light of different wavelengths. 

Although longer wavelength such as NIR can penetrate deeper in tissues, it often requires large 

complicated photocaging groups. Shorter wavelength such as UV can achieve de-caging but suffers 

from reduced tissue penetration.   

 

Ideally, an upconverting strategy should be implemented to combine the advantages 

of short and long wavelengths. One upconverting method is the use of upconverting 

nanoparticles (UCNPs) which can exhibit photon upconversion. This works through 

the absorption of two or more incident low energy photons which are converted and 

emitted as a higher energy photon, this allows for the absorption of long NIR 

wavelengths with a resulting emission of short UV radiations (áMichael Dcona et al., 

2015). Another method for upconversion is by using two-photon absorption (TPA). 

To photocleave a PPG a specific single-photon excitation is often required. 
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Alternatively, the application of light with approximately twice the wavelength can 

be used in TPA to photocleave at a higher energy state. However, this method is a 

third-order process and is a consequence of true nonlinear optical effect that is 

typically several orders of magnitude weaker than linear absorption (Warther et al., 

2010). The requirement of higher light intensities and specialised laser sources to 

adjust irradiation conditions so that the light beam focuses directly on the targeted 

site involves careful optimisation. However, this technique has the advantage that 

molecules can be activated very precisely in deep tissues (Brieke et al., 2012).   

As previously discussed in section 1.4.6, photocaged amino acids have been 

genetically encoded into proteins to achieve light mediated control over their 

activity. Such ncAAs has been employed for in vitro studies on photoregulation of 

ligand protein binding (Bose et al., 2006), site-specific photocleavable polypeptide 

backbone of proteins (Peters et al., 2009) and as probes for protein-DNA interactions 

(Lee et al., 2009).  

 

1.8 Focus of research described in this PhD thesis  

 

The aim of this research was to develop and explore spatialtemporal control over 

antigen-antibody binding by light with the site-specific incorporation of photocaged 

ncAA into the binding site of antibody fragments. The control over antibody binding 

with exogenous stimuli could allow for interesting applications in improving 

immunotherapies. This thesis contains seven chapters. Below is a brief summary of 

each of these chapters: 

 

Chapter 2: Methods and materials used during the period of this research. 

Chapter 3: Investigations and development of efficient plasmid constructs for 

periplasmic expression of antibody fragments in E. coli. 
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Chapter 4: Exploring efficient suppressor plasmids for the genetic site-specifc 

incorporation of several ncAAs into antibody fragments in response to an amber 

codon. 

Chapter 5: The development and validation of an on-cell assay to assess antibody-

antigen binding by light on the surface of live cancer cells. 

Chapter 6: Microscopy investigation into the real-time antigen binding of photocaged 

antibody fragments on the surface of live cancer cells. 

Chapter 7: Final discussion and future work. 
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CHAPTER 2                                                  

Methods   
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2.1 Methods  

2.1.1 Cell Lines 

 

For mammalian cell line tissue cultures; Epithelial squamous carcinoma cell line, 

A431, and human breast adenocarcinoma cell line, MDA-MB-231, were purchased 

from Sigma-Aldrich. All mammalian cell lines were cultured in DMEM (Gibco, 

Invitrogen) containing L-glutamine, 4.5 g/L D-Glucose, 110 mg/L Sodium pyruvate, 

10% (v/v) foetal bovine serum (FBS), and a cocktail of penicillin and streptomycin 

(PEN/STREP). This medium will be referred to as complete medium (Appendix A.1). 

 

2.1.2 Escherichia coli strains 

 

Many different commercially available E. coli strains are commonly used for a specific 

purpose: fast growth, routine cloning, long-term storage, expression of recombinant 

proteins and many more. Table 1 outlines the strains used during this thesis, along 

with their primary uses and their genotypes. 

 

Table 2.1: E. coli strains  

Strain Natural 

resistance 

Primary use Genotype 

DH10B Streptomycin General cloning and long-

term glycerol stock storage  

F- endA1 recA1 galE15 

galK16 nupG rpsL 

ΔlacX74 Φ80lacZΔM15 

araD139 Δ(ara,leu)7697 

mcrA Δ(mrr-hsdRMS-

mcrBC) λ- 

BL21(DE3)  High level expression of 

recombinant proteins under 

T7 control 

E. coli B F– dcm ompT 

hsdS(rB – mB –) gal 

λ(DE3) 
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BL21(DE3) 

pLysS 

Chloramphenicol Slightly reduced expression of 

recombinant proteins with 

tighter control over T7 basal 

expression 

E. coli B F– dcm ompT 

hsdS(rB – mB –) gal 

λ(DE3) [pLysS Camr] 

XL10 Gold Tetracycline and 

Chloramphenicol 

High competency cloning for 

PCR mutagenesis 

endA1 glnV44 recA1 thi-

1 gyrA96 relA1 lac Hte 

Δ(mcrA)183 Δ(mcrCB-

hsdSMR-mrr)173 

tetR F'[proAB 

lacIqZΔM15 

Tn10(TetR Amy CmR)]  

SHuffle 

T7  

Low levels of 

streptomycin 

T7 Protein expression with 

enhanced capacity to 

correctly form disulphide 

bonds in the cytoplasm   

F´ lac, pro, lacIq / Δ(ara-

leu)7697 araD139 fhuA2 

lacZ::T7 gene1 

Δ(phoA)PvuII phoR 

ahpC* galE (or U) galK 

λatt::pNEB3-r1-

cDsbC(SpecR, lacIq) ΔtrxB 

rpsL150(StrR) Δgor 

Δ(malF)3 

 

 

2.1.3 Plasmids 

 

Table 2.2: Plasmid list of cloned plasmids synthesised during this project. Details of 

cloning strategies are listed in the results section, or alternatively, AddGene product 

code is provided in description. 

Plasmid name Antibiotic 

resistance 

Description 

pSANG10-3F Kanamycin  (AddGene 39264) Periplasmic 

expression vector 

pSANG10-3F-BG4 Kanamycin (AddGene 55756) Periplasmic 

expression vector for ScFv BG4 

pSANG10-7D12 Kanamycin Periplasmic expression vector for 

VHH 7D12 (Anti-EGFR) 
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pSANG10-7D12(K3TAG) Kanamycin Periplasmic expression vector for 

VHH 7D12 with amber stop codon 

in position 3 (Lysine) 

pSANG10-7D12(K43TAG) Kanamycin Periplasmic expression vector for 

VHH 7D12 with amber stop codon 

in position 43 (Lysine) 

pSANG10-7D12(K65TAG) Kanamycin Periplasmic expression vector for 

VHH 7D12 with amber stop codon 

in position 65 (Lysine) 

pSANG10-7D12(K76TAG) Kanamycin Periplasmic expression vector for 

VHH 7D12 with amber stop codon 

in position 76 (Lysine) 

pSANG10-7D12(K87TAG) Kanamycin Periplasmic expression vector for 

VHH 7D12 with amber stop codon 

in position 87 (Lysine) 

pSANG10-7D12(Y32TAG) Kanamycin Periplasmic expression vector for 

VHH 7D12 with amber stop codon 

in position 32 (Tyrosine) 

pSANG10-7D12(Y109TAG) Kanamycin Periplasmic expression vector for 

VHH 7D12 with amber stop codon 

in position 109 (Tyrosine) 

pSANG10-7D12(Y113TAG) Kanamycin Periplasmic expression vector for 

VHH 7D12 with amber stop codon 

in position 113 (Tyrosine) 

pULTRA_CNF Spectinomycin  (AddGene 48215) Suppressor 

plasmid containing 

MjCNFRS/MjtRNACUA 

pULTRA_PCY Spectinomycin Suppressor plasmid containing 

MjPCYRS/MjtRNACUA 

pULTRA_(wt)PylRS_PylRNA Spectinomycin Suppressor plasmid containing 

PylRS/PyltRNACUA 

pAS61_PCK Spectinomycin Suppressor plasmid containing 

PylPCKRS/PyltRNACUA 

pSANG10-FAB225 Kanamycin Periplasmic expression vector for 

FAB C225 (Anti-EGFR) 
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pAraH6HATT Chloramphenicol Periplasmic expression vector for 

human FAB against tetanus toxoid  

pSANG10-VHH-R2 Kanamycin Periplasmic expression vector for 

VHH R2 (Anti-R6) 

pSANG10-VHH-2Rs15d Kanamycin Periplasmic expression vector for 

VHH 2Rs15d (Anti-HER2) 

pSANG10-VHH-2Rs15d 

(Y37TAG) 

Kanamycin Periplasmic expression vector for 

VHH 2Rs15d with amber stop 

codon in position 37 (Tyrosine) 

pSANG10-VHH-2Rs15d 

(R38AGA) 

Kanamycin Periplasmic expression vector for 

VHH 2Rs15d with amber stop 

codon in position 37 and upstream 

synonymous codon mutation 

pSANG10-VHH-2Rs15d 

(R38CGA) 

Kanamycin Periplasmic expression vector for 

VHH 2Rs15d with amber stop 

codon in position 37 and upstream 

synonymous codon mutation 

pSANG10-VHH-2Rs15d 

(R38CGG) 

Kanamycin Periplasmic expression vector for 

VHH 2Rs15d with amber stop 

codon in position 37 and upstream 

synonymous codon mutation 

pSANG10-VHH-2Rs15d 

(R38AGG) 

Kanamycin Periplasmic expression vector for 

VHH 2Rs15d with amber stop 

codon in position 37 and upstream 

synonymous codon mutation 

pSANG10-VHH-2Rs15d 

(R38CGT) 

Kanamycin Periplasmic expression vector for 

VHH 2Rs15d with amber stop 

codon in position 37 and upstream 

synonymous codon mutation 

 

2.1.4 Subculturing adherent cell line 

 

Cell line passaging was typically performed at 80-90% confluence. Growth medium 

was removed from T-75 flask, and adhered cells were washed once with 10 mL of 

DPBS. To detach cells, 3 mL of pre-warmed trypsin-EDTA (Sigma-Aldrich) was added 
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to T-75 flask and incubated at 37°C for 2 minutes. After 2 minutes, detachment was 

checked using a microscope, if cells were not completely detached they were further 

incubated at 37°C for 1 minute increments until complete dissociation occured. Once 

cells were detached, 7 mL of complete medium was added, and 10 mL total volume 

was transferred to a sterile 15 mL falcon tube. Cells were pelleted at 300 g for 5 

minutes. Supernatant was removed, and pellet was resuspended in 10 mL complete 

medium. 1 mL of suspended cells were added to 9 mL fresh complete medium and 

transferred to a sterile T-75 flask and incubated at 37°C, 5% CO2. Every 2-3 days 

medium was replaced with complete medium until 80-90% confluence was 

observed, when re-passaging was performed.  

 

2.1.5 Cell line storage 

 

To thaw cell lines stored in liquid nitrogen, cryovials containing cells were placed in 

37°C water bath with constant shaking until about 80% were thawed. 1 mL of thawed 

cells were quickly pipetted into 3 mL pre-warmed complete medium. Cells were 

pelleted at 300 g for 5 minutes, supernatant was removed, and pellet was 

resuspended in 4 mL complete medium. Resuspended cells were transferred to 

sterile T-25 flask and incubated at 37°C, 5% CO2. After 24 hours, cells were checked 

for attachment, and medium was replaced. 

To make cell line stocks for long-term storage, cells were passaged at least twice 

before being grown to 80-90% confluence. The protocol for subculturing adherent 

cell line (2.1.4) was followed to detach cells and centrifuge. 10 mL of freezing medium 

(90% FBS, 10% DMSO) was added to resuspend cell pellet, and then 1 mL of 

resuspended cells were aliquoted into cryovials. Cryovials were placed in an 

isopropanol chamber Mr Frosty Freezing Container (Thermo Scientific) and stored at 

-80°C overnight. The next day, cryovials were transferred to liquid nitrogen for long-

term storage. 
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2.1.6 Competent cells 

 

To produce a large stock of E. coli that can be used to efficiently transform bacterial 

cells, two methods are primarily used to induce competence. The first being chemical 

induced competent cells, and secondly, electroshock (electroporation) induced 

competent cells. To start, 5 mL of LB broth (Appendix A.1) was inoculated with an E. 

coli strain and incubated overnight at 37°C in a shaking incubator (220 rpm). The 

following day, 50 mL LB broth was subcultured with overnight culture to an OD600-

0.1 and grown at 37°C, 200 rpm until OD600-0.4-0.5. After this stage the two methods 

for inducing competence differ. 

For electrocompetent cells, the culture was centrifuged at 4000 rpm (20 minutes, 

4°C). Supernatant was decanted, and pellet was resuspended in 25 mL ice-cold sterile 

Mili-Q H2O. Cells were centrifuged again at 4000 rpm (20 minutes, 4°C), decanted 

and resuspended in 25 mL ice-cold 15% glycerol. A final centrifuge at 4000 rpm (20 

minutes, 4°C) was performed. The supernatant was decanted, and cells were 

resuspended in remaining liquid. These electrocompetent cells were then aliquoted 

and stored at -80°C. 

For chemically competent cells, the culture was transferred to a sterile falcon tube 

and centrifuged at 8000 rpm for 8 minutes at 4°C. The pellet was drained and 

resuspended in 8 mL of transformation buffer 1 (Appendix A.1) and incubated on ice 

for 15 minutes. Cells were then centrifuged again at 8000 rpm, 8 minutes at 4°C. The 

supernatant was thoroughly drained, and the pellet was resuspended in 4 mL 

transformation buffer 2 (Appendix A.1). The chemically competent cells were then 

aliquoted and stored at -80°C. 

 

2.1.7 Transformation 

 

Transformation and selection of bacteria is a crucial procedure in molecular biology. 

This is the process by which foreign DNA (plasmids) are inserted into a bacterial cell. 
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This is important not only for bacterial expression of recombinant genes but also 

because the cells can be used as a means of storage and replication of plasmid DNA. 

To transform chemically competent cells, the cells were first removed from -80°C and 

left on ice for 5-10 minutes to thaw. 50 µL of competent cells were aliquoted into a 

fresh sterile Eppendorf tube, and 1 µL of plasmid DNA was added. After gentle 

mixing, the cells were incubated on ice for 15-20 minutes. Heat shock at 42°C for 45 

seconds allows for cellular uptake of plasmid DNA. Cells were then immediately 

transferred onto ice for 5 minutes. 1 mL of pre-warmed SOB (Appendix A.1) was 

added to cells and incubated on a heatblock for 1 hour at 37°C (600 rpm). Cells were 

then centrifuged at 8000 rpm for 5 minutes, 800 µL of supernatant was removed, 

and the pellet was resuspended in remaining liquid. 50 µL of resuspended cells were 

transferred onto an LB agar (Appendix A.1) plate containing relevant selection 

antibiotics and grown overnight at 37°C. 

 

2.1.8 Molecular cloning 

 

Molecular cloning is a set of essential experimental methods in the life sciences that 

are used to assemble recombinant DNA molecules for propagation within a host 

organism (Lessard, 2013). For the work done in this thesis, these methods refer to 

the isolation of a DNA sequence (typically a gene), its insertion into a vector, the 

transformation of competent E. coli and identification of positive clones via an 

antibiotic selection marker. 

 

2.1.8.1 DNA measurements 

 

Concentrations of DNA were measured on NanoPhotometer (IMPLEN) that uses UV- 

Visible spectroscopy to detect DNA in the sample at a wavelength of 260 nm. To 

confirm the purity of DNA, 260/280 ratio was used, typically a ratio of around 1.8 is 
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accepted as pure DNA and a value of around 2 is accepted as pure RNA. 260/230 ratio 

was used to check for contaminants in the sample, with the expected value for a pure 

sample at 2-2.2.  

 

2.1.8.2 Restriction enzyme digestion 

 

A restriction enzyme is an enzyme that recognises specific sequences within DNA 

called restriction sites. These enzymes can cleave DNA at the restriction site resulting 

in DNA fragments. During the period of this study, several different restriction 

enzymes from NEB (New England BioLabs) were used. The reactions were set up to 

the manufacturer’s specifications, typically with variations in temperature, 

incubation time and reaction buffer. For example, in a 25 µL reaction, 0.5 µg of DNA 

was mixed with 2.5 µL of 10X NEBuffer and 5 units of each restriction enzyme 

(generally 0.5 µL). Sterile Mili-Q water was added to make the final volume to 25 µL 

and the mixture was incubated at 37°C for 1 hour (temperature and time are 

dependent on enzymes). DNA fragments were then resolved on a 1% agarose-TAE 

gel, run for 40 minutes at 120V. 

 

2.1.8.3 Agarose gel extraction 

 

QIAquick Gel Extraction Kit (Qiagen) was used to purify DNA fragments from 1% 

agarose-TAE gel. Standard manufacturers protocol was followed, and DNA extracted 

was eluted in 40 µL of pre-warmed (50°C) sterile Mili-Q water. 
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2.1.8.4 Plasmid DNA amplification and extraction 

 

QIAprep Spin Miniprep Kit (Qiagen) was used to isolate plasmid DNA from bacterial 

inoculations. To start, the plasmid was transformed into DH10B E. coli cells and 

grown overnight (37°C) on LB agar plates containing appropriate antibiotics 

(Appendix Table A.1). Then a single colony was inoculated into 5 mL LB broth with 

antibiotics and grown overnight in a shaking incubator (37°C, 200 rpm). Standard 

QIAprep Spin Miniprep protocol was followed to isolate plasmid DNA from overnight 

culture. 

 

2.1.8.5 Polymerase chain reaction (PCR) 

 

The polymerase chain reaction (PCR) is a widely used microbiology technique for 

exponential amplification of a particular region in DNA in vitro. This technique relies 

on the rapid heating and cooling to drive temperature-dependent reactions. 

Specifically, denaturation of DNA (98°C), annealing of primers (50-72°C) and 

extension of new DNA (72°C). During this period of study, Q5 High-Fidelity DNA 

Polymerase (NEB), reaction buffer (NEB) and dNTP’s (NEB) was used and set up to 

manufacturers standards. Table 2.3 lists reagents used and final concentrations, and 

table 2.4 describes PCR reaction conditions. 

 

Table 2.3: PCR reagents list with concentrations used followed to manufacturer’s 

standards. 

Reagent 50 µL reaction Final concentration 

Q5 Reaction Buffer (5X) 5 µL 1X 

Forward Primer (10 µM) 2.5 µL 0.5 µM 

Reverse Primer (10 µM) 2.5 µL 0.5 µM 
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dNTPs (10 mM) 1 µL 200 µM 

Template DNA ~ 0.2 µL < 1000 ng 

Q5 High-Fidelity DNA 

Polymerase* 

0.5 µL 0.02 U/µl 

Sterile mili-Q water Adjust to 50 µL  

*Reagent is added last before mixing. 

 

Table 2.4: PCR cycle times and temperatures. 

Step Temperature Time 

Initial denaturation 98°C 30 Seconds 

30 Cycles 

Denaturation, annealing, 

extension 

98°C 5–10 seconds 

*50-72°C 10–30 seconds 

72°C 30 seconds/kb 

Final extention 72°C 2 minutes 

Hold 4°C Indefinitely 

*Calculated from NEB primer annealing tool.  

 

2.1.8.6 Gibson assembly 

 

Gibson assembly (NEB) is a cloning technique designed to ligate a DNA insert into a 

digested vector. The reaction is carried out by 5’ exonuclease that creates a 25-40 bp 

single strand overhang on the DNA fragment. These overhangs which are designed 

to be complementary allow for the 2 or more fragments to anneal before being 

repaired by a polymerase and a DNA ligase (Gibson et al., 2009). The reactions were 

set up to the manufacturer’s specifications. For a 5 µL reaction, 2.5 µL of Gibson 

Assembly Master Mix (2X) was mixed with 0.02–0.5 pmols of vector and insert. For 

optimised cloning efficiency, the amount of insert used was 2-3 fold in excess of to 
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the amount of vector. Samples were then incubated at 50°C for 1 hour then 

transferred to ice or -20°C. 2 µL of assembly reaction was then directly transformed 

into DH10B. 

 

2.1.8.7 T4 ligation 

 

Another ligation technique used during this study was T4 ligation (NEB). T4 DNA 

ligase is an enzyme that catalyses the formation of covalent phosphodiester bonds 

between the 5’ phosphate and 3’ hydroxyl termini of digested DNA fragments. Before 

setting up this reaction, the vector and insert were digested with the same restriction 

enzymes. Following the manufacturers' specification, in a 20 µL reaction, 2 µL T4 DNA 

Ligase Buffer (10X) was mixed with vector DNA (0.020 pmol), insert DNA (0.060 pmol) 

and 1 µL T4 DNA Ligase. The reaction volume was adjusted to 20 µL with sterile Mili-

Q water, and the reaction was incubated at room temperature for 1 hour. Heat 

inactivation of T4 DNA ligase can be done at 65°C for 10 minutes if ligation reaction 

needed to be stored at -20°C. Otherwise, DH10B cells were directly transformed with 

2 µL of ligation reaction. 

 

2.1.8.8 Sequencing  

 

New clones assembled by Gibson or T4 ligation were sent for Sanger sequence 

verification. For each sanger sequence reaction, 5 µL of plasmid DNA (100 ng/µL) and 

5 µL of appropriate sequencing primer (3.2 pmol/µL) were sent to Source Bioscience. 

Sequence analysis was carried out on CLC Main Workbench (Qiagen). 
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2.1.8.9 Site-directed mutagenesis 

 

To carry out vector modification, QuikChange XL Site-Directed Mutagenesis Kit 

(Agilent Technologies) was used to the manufacturers specifications. Mutagenic 

primers (IDT) were used in combination with PCR (Table 2.3 and 2.4) to amplify 

parental DNA with mutated target site, generating nicked circular strands. To remove 

parental DNA, DpnI digestion (10 U/µL, 37°C, 1 hour) was used to digest methylated 

DNA and remaining nicked dsDNA was transformed (2.1.7) into XL10-gold 

ultracompetent cells and grown on LB agar plates with corresponding antibiotics. 

 

2.1.9 Periplasmic expression (Rouet et al, 2012) 

 

After expression plasmids were verified by Sanger sequencing, they were 

transformed into an expression cell line (Table 2.1) and grown overnight (37°C, 16 

hours) on LB agar plates with appropriate antibiotics. A single colony from the agar 

plate was used to inoculate 10 mL 2XTY-G (2XTY media, 4% glucose and appropriate 

antibiotics; Appendix A.1) and grown in a shaking incubator overnight (37°C, 200 rpm, 

16 hours). Once grown, the overnight culture OD600 was recorded and used to 

subculture 500 mL fresh 2XTY-G to an OD600 of 0.1. This was then incubated until 

OD600 reached 0.4-0.6 (37°C, 220rpm, 2-3 h) and induced with IPTG (1 mM final 

concentration). After induction, cells were incubated overnight (30°C, 180 rpm, 16 

hours). To extract periplasmic proteins, cells were pelleted at 3200 g, 4°C for 10 

minutes. The supernatant was discarded, and pellet was resuspended with 25 mL 

periplasmic buffer 1 (Appendix A.1). The resuspended cells were incubated on ice for 

30 minutes then centrifuged at 10,000 g, 4°C for 10 minutes. The supernatant was 

transferred to a sterile falcon tube and stored on ice (periplasmic fraction). The pellet 

was resuspended with periplasmic buffer 2 (Appendix A.1) and incubated on ice for 

20 minutes. After incubation, cells were centrifuged again at 10,000 g, 4°C for 10 

minutes. The resulting supernatant was collected (osmotic fraction) and pooled 
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together with the periplasmic fraction. To remove any bacterial cells that may have 

been collected in the extraction process, the fractions were filtered through a 0.22 

µm vacuum filter unit. Overnight dialysis with 1X PBS (Appendix A.1) was carried out 

on the sample to remove unwanted macromolecules from solution.  

 

2.1.10 Ni-NTA purification 

 

To purify the protein of interest from periplasmic extraction, Ni-NTA gravity-flow 

columns were used. After overnight dialysis 1 mL of Ni-NTA resin was added to 

fractions and incubated at 4°C for 1 hour with gentle rocking. This was then 

transferred to gravity-flow column and washed twice with 10 mL PBS and once with 

8 mL of Ni-NTA wash buffer (Appendix A.1), to remove non-specific binding to resin. 

To elute, 500 µL of Ni-NTA elution buffer (Appendix A.1) was added to resin bed and 

incubated at room temperature for 15 minutes before collection. This was repeated 

8-10 times resulting in 4-5 mL total elution. To remove imidazole, overnight dialysis 

was performed against 1X PBS. 

 

2.1.11 Concentrating protein 

 

To concentrate protein samples, Vivaspin 500 MWCO 3 kDa spin concentrator 

(Sigma) were used. 500 µL of sample was added to the concentration column and 

centrifuged at 15,000 x g for 30 minutes until the desired volume was reached.   

 

2.1.12 SDS Polyacrylamide gel electrophoresis (PAGE) 

 

For further analysis of expressed proteins, SDS-PAGE was used as a method for 

separating protein by mass. Precast NuPAGE 4-12% Bis-Tris Protein Gels (Invitrogen) 
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were used in either 10-well or 20-well format with MES running buffer. 5 µL of 

Precision Plus Protein Unstained Standards (Bio-Rad) was used as the protein ladder. 

For sample preparation, 15 µL of protein (typically, 20 µM results in a well-defined 

band) was mixed with 5 µL of NuPAGE LDS sample buffer (4X) and heated to 95°C for 

5 minutes. Before loading the sample onto the gel, it was centrifuged at 13k rpm, 4°C 

for 15 minutes. Optimal run time with MES running buffer is 200V for 35 minutes or 

until the dye front had reached the bottom of the gel. Gels were stained with 

InstantBlue (Sigma-Aldrich) at room temperature with gentle rocking for 2-16 hours, 

and destained with Mili-Q water. Images were acquired with a Gel Doc XR+ system 

(Bio-Rad) and processed on ImageLab software (Bio-Rad).  

 

2.1.13 Western blot 

 

A widely used analytical technique western blot was frequently used throughout the 

period of study. This is a general method of detecting a specific protein within a 

complex mixture of proteins, particularly, by detection of the C-terminus 

polyhistidine-tag (6xHis-Tag). For the qualitative detection of protein with 6xHis-tag, 

the protein was separated by mass on a polyacrylamide gel (as described in 2.1.12) 

and transferred onto a nitrocellulose membrane (iBLOT 2 Transfer Stack, Invitrogen). 

To achieve this, an iBLOT 2 Dry Blotting System (Invitrogen) was used, set to 

manufacturers specifications. After transfer, the membrane was incubated in 

western blot blocking buffer (10% milk in PBST) for 1 hour, room temperature and 

gentle rocking. After removing blocking buffer, the membrane was incubated in 

primary antibody (Mouse-anti-6X-HIS tag, Invitrogen) for 1 hour, with gentle rocking 

at room temperature. After primary antibody incubation, the membrane was washed 

three times with PBST (5-10 minutes, gentle rocking), and incubated in secondary 

antibody (Anti-mouse, IgG, HPR-linked, Invitrogen) for 1 hour at room temperature 

with gentle rocking. The two antibody incubation steps for 1 hour at room 

temperature can alternatively be done overnight at 4°C. Three final washes in PBST 

(5-10 minutes, gentle rocking) are done after secondary antibody incubation. 
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Membrane was then developed using SuperSignal Chemiluminescent Substrate 

(Thermo Scientific) and imaged using GelDoc XR+ system (Bio-rad). 

 

2.1.14 BCA protein assay 

 

To measure the total protein concentration of a sample, the Pierce BCA Protein Assay 

Kit (Thermo Scientific) was used. This Colorimetric assay measured total protein 

concentration at 562 nm using a standard spectrophotometer or plate reader 

(A562nm). Setting up the Microplate procedure for measurement on a plate reader, 

nine standards of known BSA concentrations are used for plotting a standard curve.  

To make the BCA working reagent, 50 parts Reagent A was mixed with 1 part Reagent 

B (50:1, reagent A:B). 10 µL of protein of interest and standards were pipetted into 

separate wells of a 96-well plate, and 200 µL of WR was added. Plate as then 

incubated at 37°C for 30 minutes, then absorbance measured at 562 nm on a plate 

reader. 

 

2.1.15 De-caging genetically incorporated pcY 

 

Irradiated samples used in on-cell assay were acquired by irradiating wt7D12, 

7D12pcY32, 7D12pcY109 and 7D12pcY113 with 365 nm light from a UV 

transilluminator (GelDocMega; BioSystematica). Measured 365 nm UV intensity of 

the transilluminator by laser power meter (FieldMate; Coherent) resulted in 14 mW 

intensity and a calculated photon flux of 32.8 mW/cm2 (Surface area of coverslip 

2.54cm2). Samples were loaded onto an 18 mm glass coverslip irradiated for 4 

minutes with 365 nm light for de-caging and de-caged samples were transferred to 

1.5 ml Eppendorf tube for protein concentration measurements and direct use in on-

cell assay. For de-caging pcY with the microscope, DAPI channel was used for 1 

minute during microscopy experiment. Measured 365 nm UV intensity of the DAPI 
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channel by laser power meter (FieldMate; Coherent) resulted in 8 mW intensity and 

a calculated photon flux of 0.25 mW/cm2 (40x 1.3 NA Plan-Neofluar objective area of 

3.06mm2). 

 

2.1.16 On-cell assay 

 

Cell lines A431 (Sigma-Aldrich, Cat. No. 85090402) and MDA-MB-231 (Sigma-Aldrich, 

Cat. No. 92020424) were used in these experiments. Cell lines were grown in 

complete medium using standard tissue culture procedures in T-75 flasks until 80-

90% confluence. After washing with 1X PBS and trypsinising cells, cells were pelleted 

(300 g, 5 min) and resuspended in 10 mL complete medium. The cells were then 

counted on a hemocytometer and diluted to 200,000 cells/mL. 200 µL of this solution 

was dispensed into each well (40,000 cells/well) of white 96-well plate (Corning, 

3903) and grown overnight until 80-90% confluence. Once the desired confluence 

was reached the medium was replaced with 200 µL of fresh complete medium. 

Dilutions of antibody fragments were prepared on a clear 96-well plate in complete 

medium and transferred to white 96-well plate containing cells via multichannel 

pipette. The plate was incubated for 10 minutes (37°C, 5% CO2). After removing 

medium, the cells were washed with complete medium then fixed using 150 µL of 

3.7% formaldehyde in each well and incubated at room temperature for 20 minutes. 

Formaldehyde solution was removed, and cells were washed 3 times (200 µL, 5 

minutes, gentle rocking) with PBST (1X PBS, 0.1% Tween 20). After removing wash 

buffer, 100 µL of blocking buffer (10% milk in PBST) was added to each well and 

incubated at room temperature for 1 h with gentle rocking. The blocking buffer was 

removed. 50 µL of solution containing primary anti-6x-His tag antibody was added to 

each well, and the plate was incubated (room temperature, 1 hour, gentle rocking). 

The primary antibody solution contained mouse anti-6x-His tag antibody (Thermo 

Fisher Scientific) at 1:500 dilution and 1% milk in PBST. After primary antibody 

incubation cells in each well were washed three times with PBST (200 µL, 5 minutes, 

gentle rocking). 50 µL of secondary antibody solution was added to each well and 
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incubated (room temperature, 1 hour, gentle rocking). This solution contained an 

HRP-linked antibody (Anti-mouse, IgG, HPR-linked) at a dilution of 1:1000 in 1% milk 

and PBST. Secondary antibody was removed, and cells in each well were washed five 

times with PBST (200 µL, 5 minutes, gentle rocking). Finally, 200 µL of SuperSignal 

Chemiluminescent Substrate (Thermo Scientific) was added, and the plate was 

imaged using BIORAD GelDoc XR+. The plate was further quantified by measuring 

chemiluminescence signal using a CLARIOstar plate reader (BMG labtech). 

 

2.1.17 Labelling reaction 

 

To a 37.5 µL solution of antibody fragments (100 µM), 51 µL of water, 1.5 µL of 10 

mM dye in DMF (Thermo Fisher Scientific) and 10 µL of 1 M NaHCO3 (pH 8) was 

added.  The reaction mixture was incubated at 25°C for 1 h with shaking (600rpm). 

To remove excess fluorophore, the labelled samples were applied to Zeba desalting 

columns (MWCO 7000 Da, Thermo Fisher Scientific). To ensure that all the unbound 

fluorophore was removed, each sample was passed through the columns three 

times. The concentration was determined using a calorimetric Pierce BCA protein 

assay (Thermo Fisher Scientific) measured at 562 nm. 

 

2.1.18 Stationary Microscopy 

 

A431 cell line was seeded at 80,000 cells/well in a 24-well plate (Corning, 3526) and 

grown until 80% confluence was reached (16-18 hours, 37°C, 5% CO2). For all live-cell 

imaging experiments, a physiological imaging medium was used to provide better 

clarity and reduced background Imaging medium (Appendix A.1) contained 120 mM 

NaCl, 5 mM KCl, 2 mM CaCl2.2H2O, 1 mM MgCl2.6H2O, 1 mM NaH2PO4, 1 mM 

NaHCO3, 25 mM HEPES and adjusted to 7.2 pH. Once adjusted, medium was 

supplemented with 11 mM Glucose, 2.5 mM myo-Inositol, 2 mM Glutamine and 50X 

BME amino acids (Sigma-Aldrich). Once desired confluence was reached, cells were 
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washed three times with imaging medium and 297 µL of fresh imaging medium 

added to each well. 3 µL stocks of 100x labelled nanobody were added to each well 

making the total volume 300 µL. Then the 24-well plate was incubated for 10 minutes 

(37°C, 5% CO2) before washing with fresh imaging medium and acquiring data. Filter 

sets used during these experiments were; blue filter set (Zeiss cube #49, Ex = 365 nm, 

Em = 445/450 nm), red filter set (TexRed, Zeiss cube #43HE, Ex = 572 ± 14 nm, 

Dichroic = 593 nm (Semrock), Em = 629 ± 28 nm (Semrock)), GFP filter set (Zeiss cube 

#13 dichroic, Ex = 472 ± 15 nm, Dichroic = 495 nm (Zeiss), Em = 520 ± 17.5 nm). 

 

2.1.19 Dynamic Microscopy 

 

A431 cell line was seeded at 400,000 cells/mL in an ultra-low attachment 6-well plate 

(Corning, 3471) containing 18 mm cover glass (2 mL per well). Once 80-90% 

confluence was observed, the coverslip was washed three times with imaging 

medium and mounted into a Ludin chamber (Life imaging services). A peristaltic 

pump was connected to the microscope chamber and allowed for a constant flow of 

imaging media over live cells at a rate of 1 mL/min. Time-lapse was set up to take 

brightfield and fluorescence images every 30 seconds. Cells were imaged on a Zeiss 

Axiovert 200M microscope at 37°C using Zeiss AxioVision software. Brightfield and 

fluorescence images were captured using a 40x (1.3 NA) Plan-Neofluar, oil-immersion 

objective lens and a Zeiss AxioCam MRm CCD camera. BODIPY-TMR-X fluorescence 

was excited at 572 ± 14 nm and emission collected at 629 ± 28 nm. BODIPY-FL 

fluorescence was excited at 472 ± 15 nm and emission collected at 520 ± 17.5 nm.  

Microscopy images were processed by Fiji (ImageJ). 

 

2.1.20 Cell viability 
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A431 cells were seeded (2 mL, 400,000 cell/well) into ultra-low attachment 6-well 

plate (Corning, 3471) containing 18 mm cover glass and incubated overnight (37oC, 

5% CO2). For irradiation with 365 nm light, glass coverslip was transferred to either a 

microscopy chamber for UV exposure via Zeiss Axiovert 200M microscope or placed 

on a UV transilluminator (GelDocMega; BioSystematica). Irradiation treatment of 

A431 cells occurred for 1 minute and 4 minutes with control at 0 minutes before 

coverslip was transferred to complete medium. Cells were allowed to proliferate for 

24-48 hours before cells were detached from the coverslips with trypsin, centrifuged 

(300 g, 5 minutes), resuspended in complete medium and added at 200 µL/well in a 

96-well plate. Resaruzin (0.1 mg/mL in PBS; Sigma-Aldrich) was added to the cells in 

a 1:10 dilution for 2 h at 37 °C. Resaruzin exhibits a blue colour and low fluorescence 

in metabolically inactive cells but is converted to a highly fluorescent product 

(resorufin) upon metabolism by viable cells.   Fluorescence was then measured on a 

Flexstation 3 plate reader (Molecular Devices; laser excitation, 570 nm; emission 

detection, 600 nm). 
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CHAPTER 3                                           

Periplasmic expression of antibody fragments 
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3.1 Introduction  

 

The first chapter of this thesis provided extensive examples of protein modification 

with the site-specific encoding of ncAAs and illustrated the utility and flexibility of 

expanding the genetic code to alter or enhance protein function and/or structure. 

This chapter will build the groundwork for the design and optimisation of expression 

systems to achieve high fidelity production of therapeutically relevant antibodies and 

antibody fragments for later modification with ncAAs. Before the genetic 

incorporation of ncAA into proteins, a highly efficient expression platform is required 

that allows for high expression yields of correctly folded antibody/antibody 

fragments.  One of the most popular host organisms for the expression of 

recombinant proteins is E. coli. This well-established host organism offers short 

culturing times, simple and effective genetic manipulations while retaining low 

culturing and maintenance costs.  

Prior to implementing this host organism for the high-level production of 

recombinant proteins, numerous design considerations require careful attention for 

the generation of highly efficient expression platforms. Often expressed recombinant 

proteins can cause toxicity to the host organism affecting cell growth and production 

yields. The challenging endeavour of balancing minimal cell toxicity to maximum 

recombinant protein yields has led researchers to develop a repertoire of genetic 

tools. A standard method to reduce toxicity is to tightly control the expression of the 

recombinant protein with the addition of inducible promoters, transcription 

terminators, and leader sequences or by regulating the origin of replication (Ori) 

which confers control over the number of plasmids present in the cell. The next 

section will briefly introduce the various genetic techniques developed by 

researchers over the years while highlighting specific systems used in this chapter. 
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3.1.1 Promoter 

 

A straightforward method of controlling the regulation of expressed recombinant 

proteins is with the addition of an upstream promoter region. A promoter is a region 

of DNA that initiates transcription of a particular gene and is typically either 

constitutive (always active) or inducible (active in response to a stimuli). A natural 

example of tight inducible regulation of gene expression is the lac operon found in E. 

coli. The lac promoter controls expression of the lac operon and is inhibited by the 

lac repressor (LacI) in the absence of lactose. When glucose is not available to the 

cell, and an abundance of lactose is present, the tightly regulated lac promoter is 

activated when allolactose binds and inactivates the lac repressor which allows for 

the transcription of three structural genes (LacZ, LacY, and LacA) required for the 

metabolism of lactose (Oehler et al., 1990). Researchers have used this knowledge in 

the development of inducible systems with a derivative of the lac promoter (lacUV5 

promoter) that is insensitive to catabolite repression (enabling expression in the 

presence of glucose) and is only switched on in the presence of allolactose (Wanner 

et al., 1978).  As allolactose is degraded by the cell (catalysed by β-galactosidase), a 

synthetic non-hydrolyzable analogue isopropyl β-D-1-thiogalactopyranoside (IPTG) 

can be used as a stable activation substrate for transcription under lac and lacUV5 

promoters as concentrations remain constant during the experiment. Although this 

control mechanism has been described as a tightly regulated expression system, in 

actuality, the lac operon is active at low levels which lead to low level expression 

without addition of the inducer (Pothoulakis & Ellis, 2015). Furthermore, the lac 

promoter and its derivative lacUV5 are relatively weak and are rarely used for the 

high-level expression of recombinant proteins (Baneyx, 1999). Rather synthetic 

hybrids such as tac and trc promoters are commonly used which consist of the -35 

region of the trp (tryptophan) promoter and the -10 region of the lac promoter (tac 

and trc promoters differ by 1 bp) resulting in two relatively strong promoters (De 

Boer et al., 1983; Brosius et al., 1985). 

https://en.wikipedia.org/wiki/%CE%92-galactosidase
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Since its development, the T7 promoter system has become an extremely popular 

tool for recombinant protein expression in molecular biology. Almost three decades 

ago, three independent studies were published on the T7-lac promoter-operator 

system (Deuschle et al., 1989; Giordano et al., 1989; Dubendorf & Studier, 1991) 

based on earlier work that introduced the bacteriophage T7 RNA polymerase (T7 

RNAP) into E. coli for high level expression of a specific target gene (Tabor & 

Richardson, 1985). It was shown that the highly active T7 RNAP could transcribe 

mRNA at rates several times higher than endogenous E. coli RNA polymerase and was 

highly selective for its own promoter sequence. However, such transcriptional 

activity when uncontrolled could cause cellular toxicity due to high basal level 

expression of recombinant proteins. In the T7 system the transcription of the gene 

of interest is controlled by the T7 promoter which is recognised by T7 RNAP. The 

highly active T7 RNAP is encoded into the genome of certain strains of E. coli (Such 

as BL21(DE3)) and is under the control of the lacUV5 promoter so that production of 

T7 RNAP is dependent on addition of IPTG which then enables T7 RNAP to transcribe 

the gene of interest. The leaky expression of the lac promoter can lead to production 

of low levels of T7 RNAP but can be controlled with the basal expression of T7 

lysozyme provided to the cell via a plasmid, pLysS (Studier, 1991). 

Transcription from the promoters discussed so far has focused on the initiation by 

IPTG induction. However, several systems have been developed to respond to 

alternative chemical or physical signals such as arabinose induction (ara promoters) 

and temperature induction (cspA promoter). The constitutive and inducible 

promoters used or discussed in this thesis have been listed in Table 3.1. 

 

Table 3.1: Promoters  

Promoter Induction Level of 
expression 

Additional information 

lac IPTG    Weak  

lacUV5 IPTG Weak Derivative of the lac promoter not subject 
to cAMP dependent regulation 
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tac IPTG Strong Accumulation of recombinant protein 15-
30% of total cell protein  

trc IPTG Strong Accumulation of recombinant protein 15-
30% of total cell protein 

T7-lac 
operator 

IPTG Very strong Accumulation of recombinant protein 40-
50% of total cell protein 

araBAD Arabinose Moderately 
Strong 

Weaker than the tac and trc promoters 

proK Constitutive Weak  

glnS’ Constitutive Weak modified variant of the glnS promoter 

E. coli mRNA promoter information compiled from databases and literature 

(Hershberg et al., 2000; Lisser & Margalit, 1993). 

 

3.1.2 Plasmid copy number 

 

A plasmid origin of replication is a stretch of sequence within a plasmid at which 

replication is initiated (Del Solar & Espinosa, 2000). The nature of the origin of 

replication determines the copy number of the nucleic acid molecule and variations 

in this sequence can result in varying levels of plasmid populations. A simple 

misunderstanding would be to assume that a higher plasmid copy number directly 

equates to an increase in recombinant protein yield. However, this can often place a 

metabolic burden on the host and cause plasmid instability leading to detrimental 

effects to cell viability and reduced expression levels (Bentley et al., 1990). The 

regulatory mechanisms of high copy plasmids often differ considerably compared to 

low copy number plasmids. Typically, the control of replication of an ORI is refered 

to as relaxed or strigent depending on the method of replication initiation by 

countertranscribed RNA (ctRNA), or protein, or both (Snyder & Champness, 2013). 

ORI incompatibility is the inability of two plasmids to coexist stably within a cell and 

can result in plasmid “curing” (loss of plasmid during cell division). If two plasmids 

cannot coexist stably within a cell they belong in the same incompatibility group, 

similarly, if plasmid stability is observed between two plasmids they are members of 
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different incompatibility groups. Two factors determining the incompatibility 

grouping of plasmids is if they share the same replication control or if they share the 

same partitioning system.  

If similar replication controls are used between different plasmids it can cause 

underrepresentation of one of the plasmids as the replication control system does 

not recognise the two plasmids as different. As the cell divides, the plasmid with less 

copies are not equally distributed to the daughter cell, and through subsequent cell 

divisions, the daughter cells are more likely to be cured of one of the plasmids. The 

partitioning system is important for its role in segregating plasmids into daughter 

cells during cell division, if two plasmids share the same partitioning system, unequal 

distribution of plasmids to the daughter cells can occur resulting in the curing of one 

the plasmids. Incompatibility grouping becomes an important factor in the genetic 

encoding of ncAAs as two or more plasmids are often required for the production of 

the recombinant protein (via expression plasmid) with the basal expression of 

orthogonal translational machinery (via suppressor plasmid). 

 

3.1.3 Selection marker 

 

During this thesis, many different antibiotic resistance genes were used as positive 

selection markers for plasmid maintance. This positive selection method confers 

antibiotic resistance to host cells that carry the plasmid of interest while inhibiting 

the growth of plasmid free cells. Usually, the resistance gene inserted into the 

plasmid backbone contains the information required for the production of an 

enzyme that inactivates certain antibiotics. Antibiotics such as ampicillin (bla gene; 

Sutcliffe, 1978), chloramphenicol (cat gene; Shaw, 1983) and kanamycin (Neo gene; 

Umezawa, 1979) are degraded by the enzymatic counterpart facilitating antibiotic 

resistance to the host. However, the continuous production of these enzymes leads 

to sustained degradation and depletion of the antibiotic allowing the growth of 

plasmid free organisms over time (Korpimäki et al., 2003). Alternatively, the use of 



 

61 
 

the antibiotic tetracycline could overcome this problem. Tetracycline facilitates cell 

toxicity by blocking the A site of the ribosome and inhibiting protein synthesis 

(Roberts, 1996). Resistance to this molecule is primarily achieved due to genes 

encoding an energy-dependent efflux pump that actively eject tetracycline from the 

cell or with the production of ribosomal protection protein (Roberts, 2005). As the 

antibiotic is not degraded it has been shown that host resistance and tetracycline 

activity remain highly stable during cultivation. Typically, the plasmid used during this 

thesis had already been optimised for expression, and the genetic manipulation only 

required removal and insertion of expression genes, and no editing of the antibiotic 

marker was necessary. However, similar to the ORI considerations discussed above, 

careful planning was required when transforming two or more plasmids as inserting 

multiple selection markers of the same type would not allow the host to differentiate 

between plasmids and cell survival would not depend on the uptake of multiple 

plasmids. 

 

3.1.4 Affinity tag 

 

Although the incorporation of affinity tags to recombinant proteins do not directly 

control or maintain optimum expression, they can be used as a method for the 

purification of expressed proteins from the E. coli cellular milieu and as a method of 

protein detection during expression and purification steps (Nilsson et al., 1997). Two 

types of affinity tags are often fused to proteins to achieve the above benefits; the 

first is a small stretch of amino acids which forms a peptide tag, and the second being 

a larger polypeptide called a fusion tag. Furthermore, the larger fusion tags can be 

used as solubility enhancers for difficult to express proteins. Commonly used fusion 

tags such as glutathione S-transferase (GST; Smith & Johnson, 1988) and ubiquitin 

(Baker, 1996) have been shown to enhance solubility of fused proteins (Raran-Kurussi 

& Waugh, 2012) but also require extra steps in the removal of the polypeptide tag 

which can result in unknown solubility of cleaved recombinant protein. Peptide tags 

have less interference with protein structure due to their smaller size and normally 
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do not inhibit the biological activity of the recombinant protein. However, certain 

cases have been reported in which the structure and activity of the protein was 

negatively influenced by peptide tags (Buchert et al., 2002). Common examples of 

peptide tags are FLAG-tag, His-tag and c-Myc-tag which can be attached to the N-

terminal or C-terminal ends of the recombinant protein. In this study, the use of His-

tagged proteins allowed for the efficient downstream purification of the protein of 

interest from complex mixtures of extracted periplasmic proteins. Furthermore, the 

His-tag was used in analytical detection techniques such as Western blot to check for 

successful expression of full-length recombinant proteins and played a vital role in 

the development of an on-cell assay. The polyhistidine-tag (His-tag or 6xHis-tag) is a 

six histidine amino acid motif that is commonly added to the C- or N-terminal ends 

of a recombinant protein for later use in purification (Hochuli et al., 1988). As 

histidine residues are strongly involved with binding to metal ions, the addition of a 

chain of histidine residues at the end of a protein directly increases the proteins 

affinity to binding to metal ions. This knowledge was used in the development of 

purification techniques for His-tagged proteins by immobilising Ni2+ or Co2+ to carriers 

to which the histidine residues are chelated or removed as a method of isolating His-

tagged protein with high purity.  

 

3.1.5 Leader sequence 

 

Protein toxicity may arise if the recombinant protein expressed within the host cell 

has unnecessary and/or detrimental interactions with endogenous processes. A 

possible solution to this problem is the exporting of the protein to the periplasmic 

space or extracellular environment (Mergulhao et al., 2005). This can be achieved by 

attaching a leader sequence region upstream of the initiation codon (N-terminus) 

that directs recombinant proteins outside of the cell or to the bacterial periplasm. 

Another interesting application of directing recombinant proteins to the periplasm is 

the ability to facilitate disulfide bond formation and the correct folding of certain 

proteins via the oxidising environment of the periplasm (Charlton, 2004). This is 



 

63 
 

especially relevant to this project as the troubled expression of correctly folded 

antibody and antibody fragments in E. coli (due to the reducing environment of the 

cytosol) is a well reported obstacle to overcome in a bacterial expression system 

designed for the production of therapeutically active antibodies.  
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3.2 Results & discussion 

3.2.1 Construction of periplasmic expression vectors 

 

As discussed previously, one of the major challenges in antibody fragment expression 

in bacterial systems is the reducing environment of the cytoplasm, which inhibits the 

formation of disulphide bridges. To overcome this challenge, researchers have 

designed a method to translocate expressed polypeptide chains to the periplasm as 

the oxidising conditions of the periplasm in Gram-negative bacteria, allow for the 

correct formation of intradomain disulphide bonds (Georgiou & Segatori, 2005). 

During this study, the pectate lyase B (PelB) signal peptide sequence identified in 

Erwinia carotovora (Lei et al., 1987) was used extensively in expression vectors to 

direct antibody fragments to the periplasm. In Gram-negative E. coli cells this 22 

amino acid sequence (Table 3.2) at the N-terminus is recognised and targeted by SRP 

(signal recognition particle, a protein-RNA complex) that directs specific proteins to 

the translocation machinery of the general secretory pathaway so that they are 

secreted to the periplasmic space. For large scale production of heavy chain only 

variable fragments (VHH) an expression vector was designed for optimised 

periplasmic expression of recombinant protein.  

 

Table 3.2: Leader sequences used throughout this study. 

Leader sequence Amino acid sequence* Reference 

Pectate lyase B 
(PelB) 

MKYLLPTAAAGLLLLAAQPAMA  Lei et al., 1987 

Outer membrane 
protein A (OmpA) 

MKKTAIAIAVALAGFATVAQA   Ghrayeb et al., 1984 

Alkaline 
phosphatase (PhoA) 

MKQSTIALALLPLLFTPVTKA   Oka et al., 1985 

* Sequences identified through signal peptide database (Kapp, 2010) 
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This expression system (Figure 3.1) included an inducible T7 promoter, N-terminal 

signal peptide (PelB) and a C-terminal 6xHis-tag for purification and analysis. These 

constructs were explicitly designed for direct cloning into selected plasmid 

backbones using Gibson assembly (New England Biolabs), this required 25-40 base 

pair (bp) overlapping regions at the 5` and 3` ends and codon optimisation for 

expression in E. coli. After designing these gene fragments, they were sourced as 

gBlocks from Integrated DNA Technologies (IDT) and cloned into the respective 

expression vectors. 

 

 

Figure 3.1: Graphic illustrating Gibson assembly insertion of expression construct. Red overhang 

regions designed as 25-40 bp complementary sequences. 

 

Before ordering and synthesising the gBlocks, the IDT codon optimisation tool was 

used to optimise the codon usage of the expression construct for E. coli. As codon 

usage depends on the host organism, heterologous genes will often suffer from 

reduced expression due to the presence of rare codons. When rare codons are 

included in the CDS, the corresponding rare tRNAs are depleted at a faster rate than 

the abundant tRNAs which can lead to amino acid incorporation errors and protein 

truncation (Gustafsson et al., 2004). By altering rare codons in a reading frame to a 

synonymous, frequently used codons expression yields of heterologous recombinant 

proteins are improved (Plotkin & Kudla, 2011).  
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Initially, two vectors were selected for the insertion of the periplasmic expression 

construct. First pRSF-D11-G9-GST was chosen due to its optimisation for 

incorporation of two distinct ncAAs. This large 11kb plasmid contains the sequences 

for a quadruplet decoding orthogonal ribosome along with an orthogonal ribosomal 

binding site (oRBS). The second plasmid was pSANG10-3F-BG4 (Addgene; 55756) 

which was selected for its optimised expression and characterisation of scFv antibody 

fragment BG4 (Biffi et al., 2013). The recombinant protein selected for periplasmic 

expression was VHH 7D12 (PDB; 4KRL). The 7D12 sequence was obtained from in-

depth literature search on crystal structures of EGFR specific antibody fragments. 

EGFR has been shown to be implicated in many human cancers including colorectal, 

brain, lung, head and neck (Baselga & Arteaga, 2005) and has become a popular 

cancer therapeutic target for antibody-based drugs. In a study characterising 7D12 

together with other anti-EGFR VHH (Schmitz et al., 2013) it was reported that 7D12 

had relatively high KD (219 nM ± 20) compared to other antibody fragments that 

target the same receptor (FABC225; KD - 2.3  nM ± 0.5; Li et al., 2005). However, these 

KD results from SPR experiments measured binding of VHH 7D12 to sEGFR rather than 

cell-surface EGFR which had been previously reported in the low nanomolar range 

(Oliveira et al., 2012). Additionally, Schmitz et al. showed that VHH 7D12 had similar 

binding mechanisms to the full-length mAb cetuximab, 7D12 was shown to bind 

strongly to domain III of sEGFR (KD – 47 nM ± 3.6). 

For the cloning of VHH 7D12 gene construct into the pRSF vector, plasmid pRSF-D11-

G9-GST was digested with BamHI-HF and SpeI (37°C, 1 hour with Cutsmart buffer). 

The vector backbone was separated on a 1% agarose gel and purified with QIAquick 

Gel Extraction Kit (QIAGEN). A synthetic gBlock was designed (Appendix Table A.3; 

GB003) to contain 25 bp overlapping regions complementary to the insert area of the 

cut pRSF vector. This gBlock contained an oRBS required for multiple incorporation 

of unnatural amino acids. Gibson assembly was used to ligate the gBlock into 

digested pRSF-D11-G9-GST (50°C, 1 hour) and the ligation mixture was subsequently 

transformed into DH10B cells. Cells were plated onto LB agar (Kan), single colonies 

were isolated, and the plasmid DNA sequence was verified by Sanger sequencing 

(SourceBioscience). A similar cloning strategy was implemented to insert 7D12 
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periplasmic expression construct into pSANG10-3F vector. pSANG10-3F-BG4 was 

digested with HindIII-HF and XbaI (37°C, 1 hour with Cutsmart buffer), gBlock was 

designed (Appendix Table A.3; GB002) containing 25 bp overlapping regions and 

cloned into pSANG10-3F with Gibson assembly. After transformation with the 

ligation mixture, cells were plated on LB agar (Kan), and single colonies were isolated 

and the plasmid DNA sequence was verified by Sanger sequencing. This resulted in 

two new plasmids, pSANG10-7D12 and pRSF-7D12 (Figure 3.2).  

 

 

 

Figure 3.2: Plasmid maps of pSANG10-7D12 and pRSF-D11-7D12 with inserted 7D12 expression 

construct.  

 

Several similarities between the two expression vectors are observed, such as 

kanamycin resistance marker, His-tag for purification and PelB leader sequence for 

periplasmic expression of recombinant proteins. An observable difference between 

the two plasmids is in the origin of replication. In the pSANG10 vector a mutated 

version of the pMB1 origin (ColE1-derivative; Minton, 1984) is used which facilitates 

a high plasmid copy number of 500–700 copies per cell.  In contrast, the pRSF vector 

contains the RSF1030 origin, which is another high copy number origin (>100 copies 

per cell) that is compatible with ColE1 derived origins (Som & Tomizawa, 1982). The 
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high copy number ORIs contained in pSANG10-7D12 and pRSF-D11-7D12 relate to 

expected number of plasmid copies per host cell, which in some instances could 

result in the expression of high protein production yields in E. coli or alternatively 

could lead to protein aggregation and deleterious effects on the host cell (in the case 

of a toxic product). The resulting expression is often dependent on the gene of 

interest that is being expressed, and facilitating the production of correctly folded 

soluble protein is often of higher importance than the total expression yield of the 

protein.  

As mentioned earlier, the pMB1 derivative origin and RSF1030 origin are not in the 

same incompatibility group. This means that if both plasmids are co-transformed into 

the same bacterial cell, it results in stable plasmid coexistence. The benefit of 

compatible expression vectors is not only due to the ability to co-transform them into 

the same bacterial cell (as typically the bacterial cell required only one expression 

vector), but with the additional flexibility in experimental design. Although the 

benefits of flexible plasmid strategies may seem unclear at this point, the later 

chapters that describe the co-transformation of plasmids (expression and 

suppression plasmids) for genetic incorporation of ncAA, highlight the importance of 

plasmid incompatibility groups and having multiple plasmid pairing options. Table 3.3 

lists commonly used origins of repication and those used explicitly in this study. The 

incompatibility grouping of origins in this table is an arbitrary grouping system but 

will be necessary for explaining co-transformation choices later in this study. 

 

Table 3.3: List of commonly used ORI’s. 

Origin of 
replication 

Copy number Control Inc 
group* 

Reference 

ColE1 15-20 Relaxed 1 Lin-Chao & Bremer, 
1986 

pMB1 20-60 Relaxed 1 Bolivar et al., 1977 

pMB1 
(Mutant) 

500-700 Relaxed 1 Minton, 1984 



 

69 
 

p15A 10-12 Relaxed 2 Chang & Cohen, 
1978 

RSF1030 >100 Relaxed 3 Som & Tomizawa, 
1982 

* Arbitrary group numbering of incompatibility groups. 

 

Another noticeable difference between the two expression vectors is the significant 

disparity between plasmid sizes. The pSANG10 expression vector carrying the VHH 

7D12 construct has a plasmid size of 5.7 kb, while pRSF with a similar expression 

construct is almost double that in size at 10.8 kb. This significant difference is due to 

the ribosomal RNA genes encoding the 5S, 16S, and 23S rRNA contained on the pRSF 

vector which enables cellular production of an orthogonal ribosome (Ribo-X) that 

uniquely recognises an orthogonal ribosomal binding site (oRBS) on the protein of 

interest mRNA (Wang et al., 2007). The generation of ribo-X orthogonality to the 

endogenous translational machinery was achieved with ribosomal mutations to the 

16S rRNA (U531G and U534A), while the additional copies of the endogenous 5S and 

23S rRNA are located on the pRSF vector to facilitate the correct formation of the 

orthogonal ribosome. Due to this expression setup, the gene encoding 7D12 is not 

under T7 control and is expressed via the lacUV5 promoter, while the genes 

responsible for the orthogonal ribosome are controlled by the trc promoter (trp/lac 

hybrid). The trc promoter is a hybrid of the trp and lac promoters and facilitates 

stronger promoter mediated expression in comparison to the lac promoter but still 

includes the lac operator region (lacO) which is inducible with the addition of IPTG. 

When IPTG is added to the growth medium, strong expression of orthogonal 

ribosomes is enabled under the control of the trc promoter, with the simultaneous 

expression of recombinant protein controlled by the weaker lacUV5 promoter. In 

contrast, 7D12 expression from pSANG10 vector is tightly regulated by the strong T7 

promoter. To facilitate the initiation of 7D12 transcription, the T7 promoter requires 

the highly active T7 RNAP, which in BL21(DE3) E. coli cells is under the control of the 

lacUV5 promoter . Thus, to induce expression of 7D12, IPTG is required to induce T7 

RNAP expression, which in turn activates transcription of 7D12 via the T7 promoter. 
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3.2.2 Periplasmic expression of anti-EGFR VHH 7D12 in E. coli 

 

For periplasmic expression of anti-EGFR wild-type 7D12, expression plasmid 

pSANG10-7D12 was transformed into BL21(DE3) and grown on LB agar (Kan) plates. 

A single colony from these plates was used to inoculate 10 mL 2xTY-GK (4% glucose, 

50 µg ml-1 kanamycin) and grown overnight (37°C, 200 rpm). This overnight culture 

was used to subculture 500 mL fresh 2xTY-GK to an OD600 of 0.1 and the resulting 

culture was grown until OD600 of 0.4-0.6. Once the desired OD600 was reached, IPTG 

(final concentration 1 mM) was added to induce expression of 7D12 and grown 

overnight (30°C, 160 rpm). After harvesting the cells as described in 2.1.9, the 

periplasmic fraction was filtered through a 0.2-µm filter unit and dialysed overnight 

(Slide-A-Lyzer dialysis cassette, 12-30 mL, 3500 MWCO) against 1X PBS. VHH 7D12 

was purified from the complex mixture of periplasmic proteins using Ni-NTA gravity-

flow columns as described in 2.1.10 and analysed using SDS-PAGE (Figure 3.3.A) as 

described in 2.1.12. The saturated band in figure 3.3.A represents expressed 7D12 in 

the presence and absences of IPTG induction. The protein concentration was 

measured using the BCA colourimetric protein assay and the total amount of purified 

7D12 was found to be 10.1 mg/L. The identity of the protein was further verified 

using electrospray ionization mass spectrometry coupled with liquid 

chromatography, ESI-MS (Figure 3.3.B). The ExPASy ProtParam online tool was used 

to calculate the predicted molecular mass of 7D12 as 14241 Da. LC-MS results were 

in agreement with calculated molecular mass.  

While the results demonstrate a high yield of VHH 7D12 with the use of pSANG10 

vector in the presence of IPTG, a weak band likely corresponding to VHH 7D12 was 

observed at 15 kDa in the absence of IPTG. As discussed, the lacUV5 promoter (which 

regulates T7 RNAP) has been reported to have a low basal expression level in the 

absence of IPTG which would result in low level production of T7 RNAP and 

subsequent initiation of T7 promoter and expression of VHH 7D12. One method to 

reduce this basal level of expression is by using an E. coli strain that contains a 

plasmid for the production of T7 lysozyme (such as BL21(DE3)pLysS). The pLysS 
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plasmid expresses low levels of T7 lysozyme, a natural inhibitor of T7 RNAP that 

inhibits basal levels of T7 RNAP activity but is titered out with increasing levels of T7 

RNAP in the event of IPTG induction (Studier, 1991). 

 

 

Figure 3.3: Expression and identification of VHH 7D12. A) Purified periplasmic protein extract 

separated by size on SDS-PAGE and stained with Coomassie Brilliant Blue. B) ESI-MS of purified VHH 

7D12, mass peak observed at 14241. 

 

For expression of wild-type 7D12 in the pRSF vector, a similar methodology as above 

was applied, with alterations to expression strain (BL21(DE3)pLysS) and a reduction 

in expression scale (100 mL 2xTY-GK). To compare the difference in expression 

between pSANG10 and pRSF vectors, plasmids pSANG10-7D12 and pRSF-7D12 were 

induced in the presence and absence of IPTG. Extracted periplasmic milieu was 

purified as described in methods (2.1.9) and His-tagged protein samples were 

resolved on SDS-PAGE (Figure 3.4). 

Similarly to the above expression (Figure 3.3.A) a high level of VHH 7D12 expression 

was achieved with the use of the pSANG10 vector in the presence of IPTG. As 

expected, basal levels of VHH 7D12 in the absence of IPTG were reduced with the 

use of BL21(DE3)pLysS cells. Although a clear band corresponding to 7D12 was 

observed at around 15 kDa in the lane representing pSANG10-7D12 (+IPTG), high 

levels of background signal were also present. It was speculated that this 
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background signal was caused by periplasmic proteins that were still present in the 

sample due to insufficient purification of the His-tagged protein from the extracted 

periplasmic protein fraction. 

 

 

Figure 3.4: Comparison of two expression vectors pSANG10 and pRSF-D11 in the production of VHH 

7D12 with and without IPTG induction. Samples were resolved on SDS-PAGE. 

 

In contrast, although the same methodology was used for the growth, expression 

and purification of VHH 7D12 from pSANG10 and pRSF vector, no observable band at 

15 kDa was present to indicate successful expression of VHH 7D12 from pRSF vector 

in the presence of IPTG. Several factors could have contributed to the unsuccessful 

expression of VHH 7D12 with pRSF vectors, such as a suboptimal expression cassette 

or toxicity of the expressed recombinant protein. As pSANG10-7D12 demonstrated 

high yields of VHH 7D12 with a high copy number ORI (pMB1 derivate) and strong 

promoter (T7 promoter) it is unlikely that VHH 7D12 would cause toxicity to the host 

cell. Furthermore, cell growth of both recombinant strains was monitored before 

induction by measuring the optical density, and similar growth was observed (data 

not shown) which indicates non-toxicity of the assimilated genes and basal 

expression of the mRNA/protein. Measurements of cell growth after induction of 

IPTG (following overnight incubation) demonstrated similar growth between the all 

samples (pSANG10 +/- IPTG, pRSF +/- IPTG) which provides further support to the 

notion that VHH 7D12 is non-toxic and tolerable to the bacterial host. Therefore, a 
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feasible explanation of the differences in expression between pSANG10 and pRSF is 

due to variations in the components used in the expression vector. The pRSF vector 

contained a lower copy number ORI (RSF1030; >100 copies), and VHH 7D12 

expression was regulated by a weaker promoter (lacUV5). Both of these vector 

components could contribute to reduced expression of VHH 7D12 in comparison to 

pSANG10 vector. Furthermore, as pRSF vector functions with higher expression 

complexity (orthogonal ribosome expression required to recognises oRBS on mRNA), 

further analysis is required to ensure optimisation of these key components of the 

expression platform. 

 

3.2.3 Periplasmic expression of alternative VHH in E. coli 

 

To explore 7D12 binding affinities to an EGFR positive cell line, a negative heavy-chain 

only antibody fragment was required as a contrast between targeted binding to cell 

surface EGFR and non-specific binding to cell surface. After an extensive literature 

research, the negative control selected was the anti-RR6, VHH-R2 (PDB: 1QD0) as this 

has been commonly used as a negative control (Van Der Meel et al., 2012). This VHH 

was generated against the hapten azo-dye Reactive Red (RR6) and was shown to be 

an efficient novel small molecule targeting agent compared to protein recognition 

which is the typical targeting method (Spinelli et al., 2000). The gene encoding for 

periplasmic expression of VHH R2 was designed as a synthetic gBlock (Appendix Table 

A.3; GB032) and inserted into the pSANG10 backbone, resulting in a new plasmid 

called pSANG10-VHH-R2 (Figure 3.5). The pSANG10 vector was chosen as previous 

results demonstrated high yields of an alternative VHH (7D12), and it was assumed 

that by replacing the CDS coding of VHH 7D12 with VHH R2 similar high yields would 

be achieved. Briefly, pSANG10-3F-BG4 was digested with HindIII-HF and NdeI (37°C, 

1 hour with Cutsmart buffer), gBlock was designed to contain 25 bp overlapping 

regions and cloned into pSANG10-3F with Gibson assembly and directly 

transformation into DH10B E. coli cells. Recovered cells were plated on LB agar (Kan) 

and the DNA sequence of respective clones was verified via Sanger sequencing. 
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Figure 3.5: Plasmid map of pSANG10-VHH-R2 designed for the periplasmic expression of anti-RR6 VHH 

R2 with the induction of IPTG. 

 

For periplasmic expression of anti-RR6 VHH R2, expression plasmid pSANG10-VHH-

R2 was transformed into BL21(DE3)pLysS and grown on LB agar (Kan) plates. Similar 

methodology was followed as described in 3.2.2 wherein 100 mL of fresh 2xTY-GK 

was inoculated and induced with IPTG for the production of VHH R2. Periplasmic 

proteins were extracted as described in 2.1.9 and purified from the complex mixture 

of periplasmic proteins using Ni-NTA gravity-flow columns as described in 2.1.10. 

Purified his-tagged proteins were resolved using SDS-PAGE (Figure 3.6) as described 

in 2.1.12. 

 



 

75 
 

 

Figure 3.6: Periplasmic expression of VHH R2. Purified periplasmic protein VHH R2 extract separated 

on SDS-PAGE and stained with Coomassie Brilliant Blue. ExPASy ProtParam estimated size; 14733 Da. 

 

The lane corresponding to pSANG10-VHH-R2 induced with IPTG contains a His-

tagged protein that resolved as a well-defined band at 15 kDa. Using the ExPASy 

ProtParam online tool, the calculated molecular mass of VHH R2 was 14733 Da which 

is in agreement with SDS-PAGE results. In the absence of IPTG, no His-tagged protein 

was observed. 

With the development and optimisation of the pSANG10 expression vector, the 

successful expressions of two separate VHH have been demonstrated. The anti-EGFR 

VHH 7D12 has clear therapeutic values illustrated in several studies, while the VHH 

R2 is an important negative control that can be used to highlight the specificity of 

7D12 targeting to EGFR. One of the main aims of this study is the modification of the 

therapeutically relevant antibody or antibody fragments with the site-specific 

incorporation of ncAAs. To demonstrate the efficacy of the techniques developed for 

photo-control over antibody-antigen binding, it was important to show this control 

with a diverse range antibody fragments that target a plethora of antigens. HER2 

(Human Epidermal Growth Factor Receptor type 2) is a member of EGFR family and 

overexpression of this receptor has been shown to play an important role in the 

development of certain types of cancers. Similarly, to the mAb developed anti-EGFR 

cetuximab, full-length antibodies have been developed for specific targeting of HER2. 
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Trastuzumab (Herceptin™) is a monoclonal antibody that was approved for the 

medical treatment of HER2 positive breast cancer in America in 1998 (Vogel et al., 

2002). A highly optimised VHH (2Rs15d) for high affinity tumour targeting of HER2 

positive cell lines was recently generated (D'Huyvetter et al., 2017). In this study it 

was shown that the binding mechanics of VHH 2Rs15d was slightly different to its 

full-length counterpart Trastuzumab in which VHH 2Rs15d binds to the HER2 domain 

I while Trastuzumab interacts with domain II and IV.  For the expression of anti-HER2 

antibody fragments, a cloning strategy was designed for insertion of the VHH 2Rs15d 

gene (PDB: 5MY6) into pSANG10 expression vector. The gene encoding for 

periplasmic expression of VHH 2Rs15d was designed as a synthetic gBlock (Appendix 

Table A.3; GB033) and inserted into the pSANG10 backbone, resulting in a new 

plasmid called pSANG10-2Rs15d (Figure 3.7). Briefly, pSANG10-3F-BG4 was digested 

with HindIII-HF and NdeI (37°C, 1 hour with Cutsmart buffer), gBlock was designed to 

contain 25 bp overlapping regions and cloned into pSANG10-3F with Gibson 

assembly. E. coli DH10Β cells were transformed with the Gibson reaction mix, 

recovered and plated on LB agar (Kan) and the DNA sequence of respective clones 

was verified by Sanger sequencing. 

 

 

Figure 3.7: Plasmid map of pSANG10-VHH-2Rs15d designed for the periplasmic expression of anti-

HER2 VHH 2Rs15d when grown in the presence of IPTG. 
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As initial test expressions of 2Rs15d showed low levels of expressed recombinant 

protein, Western blot was used as an analytical technique to detect the presence of 

His-tagged proteins. For periplasmic expression of anti-HER2 VHH 2Rs15d, expression 

plasmid pSANG10-2Rs15d was transformed into BL21(DE3)pLysS cells and grown on 

LB agar (Kan) plates. Similar methodology was followed as described in 3.2.2 wherein 

100 mL of fresh 2xTY-GK was inoculated and induced with IPTG for the production of 

VHH 2Rs15d. Periplasmic proteins were extracted as described in 2.1.9. The use of 

Western blot as a detection method removed the need for purification of his-tagged 

protein from the complex mixture of periplasmic milieu as the technique directly 

identifies recombinant proteins with a C-terminal his-tag. The complete Western blot 

methodology is listed in methods (2.1.13), but briefly, after separation on SDS-PAGE, 

samples were transferred onto a nitrocellulose membrane via iBLOT2 transfer 

system. Non-specific protein interactions were blocked using 10% milk in 1x PBS for 

1 hour at room temperature, which was followed by detection of his-tag with primary 

antibody (Mouse-anti-6X-HIS tag, Invitrogen) for 1 hour at room temperature. After 

washing off non-specifically bound primary antibody with PBST, secondary antibody 

(Anti-mouse, IgG, HPR-linked, Invitrogen) incubation was performed for 1 hour at 

room temperature.  The Membrane was then developed using SuperSignal 

Chemiluminescent Substrate (Thermo Scientific) and imaged using a GelDoc XR+ 

system (Bio-rad). Figure 3.8 shows the chemiluminescence signal acquired from 

detection of his-tagged proteins expressed by pSANG10-2Rs15d plasmid in the 

presence and absence of IPTG. 

Using the ExPASy ProtParam online tool, the calculated molecular mass of VHH 

2Rs15d is 13452 Da. An intense band can be observed at 13 kDa with the addition of 

IPTG which likely corresponds to the VHH 2Rs15d, however an additional intense 

band at 25 kDa is also noted. This is likely caused by a dimeric molecular species of 

2Rs15d wherein homodimer formation between two 2Rs15d molecules occur 

resulting in a His-tagged protein of double the molecular weight. The presence of 

dimeric molecular species suggests unfavourable protein interactions which could 

result in increased instability and aggregation of expressed recombinant proteins. 
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Figure 3.8: Periplasmic expression of 2Rs15d. Ladder (A) White light image of protein ladder (B) Ladder 

and pSANG10-2Rs15d Chemiluminescence signal of protein ladder and extracted periplasmic proteins 

detected by GelDoc XR+ system.  

 

The build-up of protein aggregates can lead to the formation of insoluble inclusion 

bodies (IB) which reduces expression yields and can lead to cell toxicity (Carrio & 

Villaverde, 2002). To reduce IB formation, tighter control over bacterial expression is 

required to favour the biosynthesis of correctly folded recombinant proteins. Simple 

changes to the methodology such as shortened induction time, reduced induction 

temperature and regulating the concentration of the inducer can allow for improved 

control over the production of biologically functional proteins. Although the cell line 

BL21(DE3)pLysS was used to reduce basal expression in absence in IPTG, the 

presence of a His-tagged protein was observed at 13 kDa without IPTG induction. This 

is likely due to the highly sensitive detection of his-tagged protein when using 

Western blot as an analytical technique. 
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3.2.4 Expression of FAB fragments in E. coli 

 

This chapter has demonstrated the expression of various variable domains from 

heavy chained only antibodies with diverse targets from the optimised expression 

vector pSANG10. The next section will explore the expression of monoclonal 

antibody fragments in a bacterial expression system. Fragment antigen-binding (FAB) 

consists of one constant and one variable region of both the heavy and light chain. 

The bacterial expression of FAB differs to VHH expression as the expression construct 

contains the variable and constant heavy chain (VH-CH) and the variable and 

constant light chain (VL-CL) with individual leader sequences for periplasmic 

expression.  The Fab fragment from the monoclonal antibody cetuximab (FABC225; 

PDB: 1YY8) was designed as an expression construct and was inserted into pSANG10 

vector for periplasmic expression. The crystallography study that characterised the 

structure of FABC225 (PDB; 1YY8) complex to sEGFR generated the fragments via 

papain digestion of full-length mAb (Cetuximab) and undigested mAb were removed 

by passing the mixture over protein-A column to isolate FABC225 in the flow through 

(Li et al., 2005). Since then, expression of FABC225 has been reported in mammalian 

cell culture (Donaldson et al., 2009) whereby, assembled FABC225 was secreted to 

the extracellular medium and purified via affinity tags (FLAG-tag and/or His-tag). A 

number of studies have shown bacterial expression of FAB fragments; however, 

these studies often express the light and heavy chain separately, and carry out 

refolding post purification by reducing a mixture of equal parts heavy and light chains 

(Hakim & Benhar, 2009). This resulted in correctly folded pure FAB fragments but at 

the cost of a reduced yield (90% loss of yield from refolding).  An in-depth review of 

vector design for the characterisation and optimisation of bacterial expression of FAB 

fragments explored various factors relating to high purity yields of correctly 

assembled FAB fragments (Corisdeo & Wang, 2004). Through the expression of a 

human FAB against tetanus toxoid (tt) the study investigated three different 

expression vectors with different orientations of heavy and light chains and the use 

of a dicistronic expression construct compared to expression of the two chains with 

separate promoters. Once optimised expression vector was designed, further 
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experiments were conducted to find optimal culturing conditions. The resulting 

plasmid (Orientation; VL-CL before VH-CH, dicistronic expression with one lac 

promoter) showed a 10-fold increase of expressed FAB fragments when cultured in 

JM105 E. coli strain (similar expression to BL21(DE3)), induced at 37°C with 0.1mM 

IPTG. 

The FABC225 expression cassette was designed for insertion into the pSANG10 

vector. Alternative signal peptide encoding sequences, namely OmpA and PhoA were 

placed at the N-terminus of the heavy and light chain genes, respectively. A 6xHis-

tag was encoded at the C-terminal part of the heavy chain for detection and 

purification. The orientation of the chains was designated as VH-CH before VL-CL, 

contrary to the optimisation study previously discussed, and in hindsight, this may 

have contributed to the low expression level observed later. A multiple fragment 

Gibson assembly was carried out for the insertion of two gBlocks into pSANG10 

vector. First, pSANG10-3F-BG4 was digested with HindIII-HF and XbaI (37°C, 1 hour 

with Cutsmart buffer), gBlocks were designed (Appendix Table A.3; GB015 and 

GB016) to contain 25 bp overlapping regions and cloned into pSANG10-3F with 

Gibson assembly and directly transformed into DH10B cells. Recovered cells were 

plated on LB agar (Kan) and verified by Sanger sequencing. This resulted in a new 

plasmid for periplasmic expression of FABC225, pSANG10-FABC225 (Figure 3.9).  

Sequencing confirmed the correct orientation of the ligated products; however, 100 

mL small scale expressions experiment did not yield any FABC225 protein (results not 

shown). For small scale expression plasmid pSANG10-FABC225 was transformed into 

BL21(DE3)pLysS and grown on LB agar (Kan) plates. Similar methodology was 

followed as described in 3.2.2 wherein 100 mL of fresh 2xTY-GK was inoculated and 

induced with IPTG for the production of FABC225. Periplasmic proteins were 

extracted as described in 2.1.9 and purified from the complex mixture of periplasmic 

proteins using Ni-NTA gravity-flow columns as described in 2.1.10. Purified his-

tagged proteins were analysed using SDS-PAGE as described in 2.1.12. 
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Figure 3.9: Plasmid map of pSANG10-FABC225 designed for the periplasmic expression of anti-EGFR 

FAB fragment (FABC225) when grown in the presence of IPTG. Orientations of FAB chains are heavy 

chain (VH-CH) before light chain (VL-CL) with preceding N-terminus leader sequences, OmpA and PhoA 

respectively.  

 

Expected observation of successful expression should yield small amounts of 

FABC225 heavy chain with his-tag (25 kDa), while correctly assembled FAB heavy and 

light chain should form a well-defined protein band at 48.3 kDa under oxidising 

conditions. In the case of reduced samples similar amounts of heavy (25 kDa) and 

light (23.4 kDa) chains should be present on the gel. The SDS-PAGE results indicated 

that the expression attempt was unsuccessful, and expected bands were not present 

(data not shown). To investigate whether chemical cell lysis had adversely affected 

extracted cellular contents, methods based on physical cell lysis (sonication and 

French press) were used to extract recombinant proteins. The analysis of alternative 

extraction methods resulted in no apparent improvement of extracted FABC225 

(results not shown). 
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Numerous factors could have contributed to the unsuccessful expression of FABC225 

from the pSANG10 expression vector. Initially it was speculated that the observed 

decrease in production was due to the pSANG10 vector being optimised for 

expression of scFv and VHH and not alternative antibody fragment formats. The high 

copy number ORI in combination with the strong T7 promoter demonstrated efficient 

production of VHH fragments with high yields. However, by transitioning the 

pSANG10 expression platform for the production of FAB fragments, a significant loss 

of purified recombinant protein is observed, which could be due to overexpression 

and subsequent toxicity of the recombinant proteins. Monitoring cell growth of the 

recombinant strains before and after induction showed standard growth patterns 

observed in previous successful expression studies and provided evidence that the 

expressed recombinant proteins were non-toxic to the host. Another explanation for 

the reduced expression of FABC225 are the factors relating to recombinant protein 

instability and aggregation, which can cause a build-up of protein aggregates, known 

as inclusion bodies (IBs). By introducing foreign genes into E. coli for the expression 

in the hosts microenvironment, different environmental parameters (such as pH, 

osmolarity, cofactors, and folding mechanisms) may exist compared to the original 

source. The overexpression of recombinant proteins in such unfavourable conditions 

can lead to protein aggregation, a reduction in solubility and subsequently, formation 

of IBs. Several methods are available to reduce IB formation such as chaperone co-

expression (De Marco et al., 2005), the addition of solubility enhancer as a fusion 

partner or simply reducing expression rates (with reductions in temperature, 

induction time, and inducer concentration; Vera et al., 2007).  

Before investigating the parameters of reduced expression rates of FABC225 in an 

effort to increase production yield of correctly folded recombinant proteins, we first 

decided to test alternative expression vectors that had been designed for FAB 

expression. An extensive search of the literature revealed a plasmid designed 

explicitly for the expression of FAB fragments (AddGene; Plasmid #63901). The 

plasmid pAraH6HATT (Figure 3.10) is based on the expression vector pComb3H 

system (Cary et al., 2000) had been optimised for periplasmic expression of tetanus 

toxoid FAB (FABtt).  
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Figure 3.10: Plasmid map of pAraH6HATT designed for the periplasmic expression of FAB fragment 

against tetanus toxoid in the presence of arabinose. Orientations of FAB chains are light chain (VL-CL) 

before heavy chain (VH-CH) with preceding N-terminus leader sequences, OmpA and PelB 

respectively.  

 

A noticeable difference between pSANG10 and pAraH6HA systems was the use of a 

different inducible promoter region for expression of recombinant proteins. The 

pSANG10 system is tightly regulated with the T7 promoter while pAraH6HA system 

uses araBAD inducible promoter. The araBAD promoter is induced with l-arabinose 

in the growth media and has been shown to have reduced background expression 

compared to the lac promoter (Siegele & Hu, 1997). However, the strength of the 

promoter has been reported to be somewhat weaker than the T7 and tac systems 

(Balzer et al., 2014). As overexpression of recombinant proteins can cause IB 

formation, thus reducing the yield of correctly folded FAB fragments, a promoter that 

is weaker and under tighter control could facilitate improved expression yields. 

Another difference between pSANG10 and pAraH6 systems was the orientation of 

the heavy/light chain. Previously, the orientation of FABC225 chains in pSANG10 
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were designed as VH-CH before VL-CL; however, in pAraH6HATT, the orientation is 

VL-CL before VH-CH which were preceded with OmpA and PelB leader sequences, 

respectively. As previously demonstrated in the study of optimised FAB expression 

vectors, the orientation is important for the correct assembly of FAB fragments and 

the orientation of VL-CL before VH-CH has shown to result in higher yields (Corisdeo 

& Wang, 2004). A two-step assembly method was designed to insert FABC225 into 

pAraH6 vector.  

First, primers were designed (Appendix Table A.2; D143, D144) to amplify the heavy 

chain region of FABC225 from pSANG10-FABC225. The primers contained 20 bp 

overhangs complementary to the pAraH6HATT vector with removed FABtt heavy 

chain. The PCR product was separated on a 1% agarose gel and purified with QIAquick 

Gel Extraction Kit (QIAGEN). The pAraH6HATT vector was digested with XhoI and SpeI 

(37°C, 1 hour with Cutsmart buffer) and the backbone was isolated and purified from 

an agarose gel. To insert the PCR product into digested pAraH6 backbone, Gibson 

assembly was used (50°C, 1 hour) and the resulting ligation mixture was transformed 

into DH10B cells. Recovered cells were plated on LB agar (Chloramphenicol) and 

grown overnight (37°C, 12-16 hours). A single colony was isolated and plasmid DNA 

extracted for Sanger sequencing. After verification of correctly inserted FABC225 

heavy chain coding sequence, the next step was to insert the FABC225 light chain 

encoding sequence. Similar design methods were used in the generation of PCR 

primers (Appendix Table A.2; D145, D146) for the amplification of FABC225 light 

chain region from pSANG10-FABC225. The plasmid encoding the FABC225 heavy 

chain in pAraH6 vector was digested to remove FABtt light chain. Briefly, pAraH6-

FABC225-HC was digested with XbaI and SacI (37°C, 1 hour with Cutsmart buffer) to 

remove the light chain, the digested sample was resolved by size on 1% agarose gel 

and pAraH6-FABC225-HC backbone was extracted. For ligation, PCR product 

(FABC225 light chain) was mixed with pAraH6-FABC225-HC backbone in a Gibson 

assembly reaction (50°C, 1 hour) and transformed into DH10B.  

Sequence verification of pAraH6-FABC225-HC confirmed the correctly assembled 

plasmid sequence. However, problems occurred when attempting to insert the 

FABC225 light chain carrying sequence. DH10B cells transformed with Gibson 
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assembled pAra-FABC225 showed either no growth with Chloramphenicol or similar 

growth in comparison to the negative control plate indicating unsuccessful ligation 

of FABC225 light chain. After additional experiments to confirm the correct size of 

digested pAraH6-FABC225-HC vector and PCR product of FABC225-LC, an alternative 

ligation method was used in an attempt to resolve this problem. The T4 DNA ligase 

is an enzyme isolated from the bacteriophage T4 and is commonly used by 

researchers as a ligation method that catalyses the formation of covalent 

phosphodiester bonds between the 5’ phosphate and 3’ hydroxyl termini of two 

digested DNA fragments. T4 ligation details are listed in methods (2.1.8.9). Briefly, 

digested vector pAraH6-FABC225-HC (XbaI and SacI) was ligated with T4 DNA ligase 

(20°C, 2 hours) to digested insert PCR product FABC225-LC (XbaI and SacI) at a ratio 

of 1:3, vector to insert. Ligated mixture was transformed into DH10B and plated on 

Chloramphenicol agar plates. The use of T4 DNA ligase resulted in similar conclusions 

to the Gibson assembly with the unsuccessful ligation of FABC225 light chain to 

pAraH6-FABC225-HC vector. This led to speculation that an incorrect plasmid map 

was provided by AddGene and to resolve this would require full plasmid sequencing 

to determine the correct sequence. A further 8 primers (Appendix Table A.2; D177-

86) were sequentially designed for full plasmid sequencing, and resulting sequence 

reads were assembled to form a circularised DNA map. The newly sequenced plasmid 

map was aligned with the previous plasmid map using the online tool Nucleotide 

BLAST (NCBI; Zheng et al., 2000) resulting in a 95% consensus between the two 

plasmid maps. A total of 260 nucleotides (56 of which were gaps) were misaligned 

with consensus sequence with a high percentage of misaligned nucleotides occurred 

within the araBAD promoter region upstream of the light chain initiation codon. 

These misaligned nucleotides could have a negative influence on the design of Gibson 

overhangs. However, no additional restriction sites that were used in T4 ligation were 

introduced, and consequently the reason for unsuccessful ligation with T4 DNA ligase 

is still unknown.  
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CHAPTER 4                                                  

Genetic incorporation of non-colonial amino 

acids in antibody fragments 
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4.1 Introduction 

 

In the previous chapter, the in-depth characterisation and optimisation of the 

expression vector pSANG10 resulted in a highly efficient platform for periplasmic 

expression of antibody fragments. The development of this expression platform was 

required before commencing investigations into the genetic encoding of non-

canonical amino acids (ncAA) into recombinant proteins. In this chapter, I will discuss 

experiments performed for optimisation of site-specific incorporation of ncAAs into 

antibody fragments.  Information gained from these experiments was used to 

develop an optimised plasmid for site-specific encoding of photocaged amino acid 

into heavy chain only antibody fragments (variable domain; VHH). ncAAs were site-

specifically incorporated into VHH 7D12 and VHH 2Rs15d that bind EGFR and HER2, 

respectively, receptors that are important targets for cancer therapy. 

 

4.1.1 Expanding the genetic code for in vivo site-specific incorporation of non-

canonical amino acids 

 

As discussed in the first chapter, in vivo site-specific installation of ncAA into proteins 

is achieved by directing the ncAA incorporation in response to an amber or 

quadruplet codon at a desired site in a gene of interest.  

To comprehensively discuss the process of in vivo genetic incorporation of ncAA into 

proteins, certain aspects of protein translation will need to be highlighted. In its most 

basic form, the framework underpinning the central dogma of molecular biology 

describes the flow of genetic information within a biological system as a two-step 

process (transcription, followed by translation). In protein translation, endogenous 

transfer RNAs (tRNAs) are aminoacylated with their cognate amino acids using 

specific aminoacyl tRNA synthetase enzymes (aaRS) within the host organism. During 

translation, the aminoacylated tRNA reads triplet codons on the messenger RNA 

(mRNA) via Watson-Crick base-pairing interactions between the mRNA codon and 
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tRNA anticodon. This decoding of the mRNA codons is facilitated by the ribosome 

and as matching tRNA bearing the appropriate amino acid residues are used by the 

ribosome-mRNA complex, amino acids are linked to the growing polypeptide chain. 

This basic principle was used in the exploitation and development of reassigning non-

sense codons for the site-specific genetic encoding of ncAAs. By evolving selective 

aminoacyl tRNA synthetase/tRNA (aaRS/tRNA) pairs that specifically recognises a 

desired ncAA of choice and a reassigned codon, the endogenous translation 

machinery can be used as a method of site-specific incorporation of a desired ncAA 

in response to an appropriate codon. Before the evolved aaRS/tRNA pair is used for 

the incorporation of ncAA, the orthogonality of the pair must be ensured so that 

there is no interaction with the existing host organism’s synthetases, tRNAs and 

translational machinery. This orthogonality and compatibility in which the aaRS does 

not recognize endogenous tRNAs or amino acids and the tRNA does not act as a 

substrate for any endogenous aaRSs, while simultaneously the orthogonal tRNA pair 

can be recognised by the host ribosome, is a vital requirement before genetic 

decoding of a ncAA.  

The most successfully reported codon used for the encoding of one ncAA is the 

amber nonsense codon (stop codon; TAG) which has been selected due to its less 

frequent use compared to other codons. Other systems that are based on the 

reassignment of ochre stop codon, opal stop codon, rare codons, and quadruplet 

codons have also been reported for site-specific incorporation of single ncAAs along 

with multiple distinct ncAAs. However, as the amber suppression technique is 

considered to be the most established and robust methodology for in vivo 

incorporation of ncAA, it was chosen as the primary method of genetic encoding of 

ncAA into E. coli during this thesis.  
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4.1.2 Expression of orthogonal aaRS/tRNA pairs in cells 

 

To incorporate a ncAA in response to an amber codon, an orthogonal aaRS that 

recognises the desired ncAA and can specifically charge the orthogonal tRNACUA (CUA 

denotes the anticodon that recognises the amber nonsense codon) with the ncAA is 

required within the host cell. To supply the cell with orthogonal aaRS/tRNACUA pairs, 

the corresponding genes encoding the aaRS and tRNACUA are expressed using a 

plasmid (commonly referred to as suppressor plasmids). For the construction of 

efficient suppressor plasmids, careful optimisation of expressed aaRS/tRNACUA pairs 

is required, so that appropriate levels are present in the cell. A careful balance 

between expressing high amounts of tRNACUA to outcompete endogenous release 

factor (RF1; peptide termination factor that binds to amber stop codon in the 

ribosome) while not causing toxicity to the host via the incorporation of ncAA into 

endogenous proteins which can lead to detrimental effects on cellular processes. 

Over the last decade several suppressor plasmids have been developed that vary in 

their origin of replication, the promoter types and strengths that drive expression of 

aaRS and tRNA, and the number of copies of aaRS and tRNA genes contained within 

the suppressor plasmid. Table 4.1 lists suppressor plasmids that were evaluated for 

their efficiency to incorporate ncAA. A more detailed discussion on these plasmids is 

presented in the next few sections of this chapter. 

 

Table 4.1: Suppressor plasmids investigated in this study. 

Plasmid aaRS/tRNA 
pair 

isolated 
from 

ORI * Number 
of aaRS 
copies 

Promoter 
for aaRS 

Number 
of tRNA 
copies 

Promoter 
for tRNA 

pSUP_ 
MjCNFRS/MjtRNA 

M. 
jannaschii 

p15A 
(2) 

1 modified 
glnS’  

6 proK 

pEVOL_    
MjCNFRS/MjtRNA 

M. 
jannaschii 

p15A 
(2) 

2 1 by glnS′         
1 by 

araBAD 

1 proK 



 

90 
 

pULTRA 
MjCNFRS/MjtRNA 

M. 
jannaschii 

CloDF13 
(4) 

1 tacI 1 proK 

pCDF_  
PylRS/PyltRNA 

M.    
barkeri 

CloDF13 
(4) 

3 modified 
glnS’  

1 Ipp 

*See Table 3.3 for incompatibility groups. 

 

4.1.3 Suppressor plasmids containing Methanocaldococcus janaschii derived 

MjTyrRS/tRNACUA pair 

 

As discussed above there are a number of suppressor plasmids that have been 

developed for the expression of aaRS/tRNACUA pairs in host organisms to facilitate 

the incorporation of ncAAs in response to an amber codon. A classic strategy for the 

generation of orthogonality in aaRS/tRNACUA pairs is by transferring them from 

another kingdom into the organism of interest. Often the orthogonality of the 

aaRS/tRNACUA pair is defined with respect to each host as endogenous translation 

machinery has differences between species. In the first chapter, an extensive review 

into examples of orthogonality between aaRS/tRNA pairs and host organisms 

demonstrated several orthogonal systems that can be used in prokaryotic and/or 

eukaryotic hosts.  

This section will review the development of suppressor plasmids containing 

TyrRS/tRNA pair isolated from the archaebacteria Methanocaldococcus jannaschii 

(MjTyrRS/tRNACUA) for the genetic encoding of ncAA into recombinant proteins 

expressed in E. coli. The first example of the directed evolution of an orthogonal 

aaRS/tRNA pair for in vivo site-specific incorporation of a ncAA in response to an 

amber codon was the tyrosyl aaRS/tRNA pair from M. janaschii (MjTyrRS/tRNACUA) 

and has been primarily used for the incorporation of aromatic ncAA related to 

phenylalanine (Wang et al., 2001). This orthogonal pair was an ideal candidate for in 

vivo studies due to its minimalistic anticodon loop binding domain and that it does 

not aminoacylate E. coli tRNA (Steer & Schimmel, 1999). Furthermore, it was shown 

that the TyrRS could efficiently aminoacylates a cognate tRNATyr derivative (mutated 
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to recognise a reassigned amber codon) while remaining effective in orthogonal 

protein translation in E. coli (Wang et al., 2000). However, compared to wild type 

MjTyrRS/tRNA incorporation, a considerable decrease in protein yield was shown 

when encoded ncAAs in response to an amber codon in E. coli systems in vivo 

(Smolskaya & Andreev, 2019). This was likely due to inadequate optimisation of 

orthogonal synthetase and its suppressor tRNA ratios in the host organism for 

efficient translational function which, as a consequence reduced ncAA incorporation 

capability.  

The past decade has witnessed several versions of suppressor plasmids containing 

MjTyrRS/tRNACUA pair for incorporation of a diverse range of ncAAs in response to an 

amber codon. The first significant advance in improving the yield of recombinant 

protein with site-specific encoding on ncAA was the development of a single plasmid 

system containing both genes for synthetase and suppressor tRNA which replaced 

the two plasmid system (aaRS and tRNA genes located on two separate plasmids).  

One of the first single plasmid systems; pSUP_MjCNFRS/6xMjtRNA (Figure 4.1.A; Ryu 

& Schultz, 2006) contained six copies of MjtRNA in two polycistronic expression 

cassettes which was controlled by an E. coli prolyl-tRNA promoter and terminator 

(proK) to regulate levels of orthogonal MjtRNA expressed within the host. The 

expression of one copy of a mutant MjTyrRS (D286R) was controlled by E. 

coli glutaminyl-tRNA synthetase constitutively active promoter (modified variant 

glnS’ promoter; Plumbridge & Söll, 1987). The plasmid contained the low/mid-level 

copy number p15A ORI which made it compatible with the most commonly used 

expression vectors (including pSANG10) and reduced the overexpression of 

MjTyrRS/tRNACUA. Although higher levels of expression could be achieved with 

stronger promoters and higher plasmid copy numbers, it was found that 

overexpression of foreign synthetase and suppressor tRNA in E. coli can cause toxicity 

to the host due to the interference with translation machinery (such as elongation 

factor Tu (EF-Tu) and ribosomal components) and unintentional modification of 

native genes containing naturally occurring amber codons. A significant factor that 

influences the suppression efficiency of aaRS/tRNA pairs is the compatibility between 

orthogonal tRNA and the translation apparatus of the host cell. The prokaryotic 
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elongation factor EF-Tu that is responsible for catalysing the binding of an aminoacyl-

tRNA (aa-tRNA) to the A-site of the ribosome had been shown to have low affinity 

(specifically in E. coli) to charged MjtRNACUA which reduce its ability to recognise and 

deliver orthogonal aa-tRNA to the ribosome (LaRiviere et al., 2001).  

To overcome this challenge a novel series of vectors were developed by Schultz and 

colleagues in 2010 (Young et al., 2010). The pEVOL_2xMjCNFRS/MjtRNA vector 

(Figure 4.1.B) contained two copies of MjTyrRS, with the expression of one copy 

being controlled by the constitutive glnS′ promoter for basal levels of aaRS, while the 

second copy was controlled by the inducible araBAD promoter increasing the 

availability of aaRS to the cell when induced with arabinose. Furthermore, previously 

directed evolution work that identified modification of the GC-rich T-stem region of 

MjtRNA allowed for the optimisation of a suppressor tRNACUA
opt that demonstrated 

enhanced affinity to EF-Tu of E. coli (Guo et al., 2009). This work was incorporated 

into the pEVOL series of aaRS/tRNA vectors which further enhanced site-specific 

incorporation efficiencies of ncAAs in vivo and allowed for expression levels 

approaching that of wild-type MjTyrRS system.   

Although a substantial improvement was reported in the efficiency of ncAA 

incorporation via the pEVOL system, further enhancement was shown with the 

development of the pULTRA plasmid. The new suppressor plasmids (pULTRA series) 

was developed by Schultz and colleagues for improved efficiency at amber 

suppression and for the incorporation of multiple distinct ncAAs in response to 

amber and ochre codons by utilising the efficient incorporation qualities of both the 

MjTyrRS/tRNA and MbPylRS/tRNA pairs, respectively (Chatterjee et al., 2013). The 

suppressor plasmid pULTRA_MjCNFRS/MjtRNA (Figure 4.1.C) was designed to 

contain one copy of both MjTyrRS and suppressor tRNACUA
opt on the pCDF-1b vector 

backbone which conferred spectinomycin resistance, Clodf13 replicon and the lacI 

regulatory elements. The increased plasmid copy number (20−40 copies per cell) 

designated by the Clodf13 replicon enhanced the expression level and suppressor 

efficiency of aaRS/tRNA pair. 
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Figure 4.1: Pictorial representation of plasmids, pSUP, pEVOL and pULTRA for incorporation of ncAA 

using MjRS/MjtRNACUA A) pSUP_MjCNFRS/6xMjtRNA suppressor plasmid designed with 6 copies of 

MjtRNA under proK promoter and one copy of MjTyrRS under glnS’ promoter. pSUP vector contains 

p15A ORI and chloramphenicol resistance gene. B) pEVOL_2xMjCNFRS/MjtRNA suppressor plasmid 

designed with 1 copy of optimized MjtRNA under proK promoter and 2 copies of MjTyrRS under glnS’ 

promoter and araBAD promoter. pEVOL vector contains p15A ORI and chloramphenicol resistance 

gene. C) pULTRA_MjCNFRS/ MjtRNA suppressor plasmid designed with 1 copy of optimized MjtRNA 

under proK promoter and 1 copy of MjTyrRS under tacI promoter. pULTRA vector contains Clodf13 

ORI and Spectinomycin resistance gene. 

 

Compared to the suppressor plasmid pEVOL the MjTyrRS expression on pULTRA is 

controlled by the tacI inducible promoter (hybrid of the trp and lacUV5 promoters) 

which allows for relatively strong expression under IPTG induction. This 

promoter/terminator replaced the T7 elements of pCDF-1b vector as the tacI 
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promoter allows for IPTG concentration dependent expression of MjTyrRS (De Boer 

et al., 1983). Furthermore, the notoriously leaky expression of tacI promoter actually 

benefited the system and allowed for the single copy MjTyrRS expression to mimic 

the two copy MjTyrRS system of pEVOL in which basal levels of MjTyrRS are 

constitutively achieved with the weak glnS′ promoter, and high levels of MjTyrRS can 

be induced by the strong araBAD promoter. Similar to pEVOL the one copy of 

suppressor tRNACUA
opt was controlled by the proK promoter and terminator, this 

resulted in a highly efficient suppression system that contained one expression 

construct of MjTyrRS and suppressor tRNACUA. Additionally, this study reported the 

construction of pULTRA-II plasmid that contained single copies of aaRS/tRNA pairs of 

both the MjTyrRS/tRNACUA and MbPylRS/tRNAUUA that encoded two distinct ncAAs in 

response to amber and ochre codons. 

 

4.1.4 Methanosarcina mazei / Methanosarcina barkeri derived PylRS/tRNA pair 

 

Alternative orthogonal aaRS/tRNA pairs derived from methanogens, most notably 

the Methanosarcina mazei (Mm) pyrrolysyl-tRNA synthetase pair 

(MmPylRS/MmtRNACUA) or the homologous Methanosarcina barkeri (Mb) pair 

(MbPylRS/MbtRNACUA) have been extensively developed for incorporation of many 

types of ncAA. In 2002, the discovery that certain methanogenic bacteria naturally 

incorporate pyrrolysine in several methyltransferase genes in response to an in-

frame amber stop codon (Srinivasan et al., 2002, Hao et al., 2002) stimulated further 

research on PylRS and its cognate amber suppresser tRNAPyl. Not long after this 

discovery, it was demonstrated that by supplying pyrrolysine to E. coli and with the 

incorporation of genes responsible for expression of MbPylRS and the suppressor 

MbtRNACUA (pylT and pylS), the natural in vivo translation of amber codon occurs with 

the encoding of pyrrolysine (Blight et al., 2004). While it was shown that wild-type 

PylRS had good incorporation efficiency of pyrrolysine analogues and that 

endogenous E. coli and eukaryotic aaRS did not interact with MbtRNACUA, conferring 

the additional advantage of being orthogonal in E. coli and eukaryotes (Polycarpo et 
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al., 2006), limitations in its incorporation capabilities for additional ncAA with diverse 

chemistries prompted further evolutionary studies. Since then many studies have 

explored directed evolution of PylRS/tRNA pairs to significantly broaden the 

aaRS/tRNA available substrate scope. Published crystal structures of Mm/MbPylRS 

complexes with pyrrolysine (Such as PDB; 2Q7H) are often used in the rational design 

of novel mutants that can bind to a diverse range of ncAAs, alternatively similar 

results can be achieved with the random mutations of active residues. The first 

example of a PylRS mutant was for the incorporation of a post-translational modified 

lysine (Nε-acetyllysine) in recombinant proteins produced in E. coli (Neumann et al., 

2008b). The randomisation of six targeted residues (Leu266, Leu270, Tyr271, Leu274, 

Cys313 and Trp383) located in a hydrophobic cavity in close proximity to (and likely 

involved in binding to the pyrroline ring) pyrrolysine allowed for the rearrangement 

of MbPylRS so that it binds to the acetyl group. In another study it was shown that a 

single mutation to MmPylRS(Y384F), identified through random screening enabled 

higher aminoacylation and amber suppression incorporation of Nɛ-(tert-

butyloxycarbonyl)-L-lysine (BocK), Nɛ-allyloxycarbonyl-L-lysine (AllocLys) and 

pyrrolysine compared to wtPylRS (Yanagisawa et al., 2008), and when combined with 

another point mutation in MmPylRS(Y306A) it enabled large scale production of 

recombinant protein containing site-specific Nɛ-(o-azidobenzyloxycarbonyl)-L-lysine 

(AzZLys). In this thesis, the plasmid pCDF_3xPylRS/PyltRNA (Figure 4.2) is extensively 

used for the incorporation of BocK and N6-[(2-propynyloxy)carbonyl]-L-lysine (CAK). 

This plasmid was constructed by Chin and colleagues and has been used for efficient 

site-specific incorporation of BocK and CAK in E. coli (Sachdeva et al., 2014; Wang et 

al., 2014). This plasmid was generated with the introduction of two additional copies 

of MbPylRS gene into the pCDF plasmid that contained single copies of 

MbPylRS/tRNA pair. Similar design considerations as the MjTyrRS series of expression 

vectors were implemented in the construction of pCDF_3xPylRS/PyltRNA. The 

regulation of the three copies of expressed MbPylRS was under control of the weak 

glnS’ constitutive promoter while the single copy of PyltRNA was under IPTG 

inducible expression of the relatively strong lpp promoter (Nakamura & Inouye, 

1979). This achieved a highly regulated and optimized suppressor plasmid for the 
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expression of MbPylRS/tRNA pair for the site-specific incorporation of numerous 

ncAAs.  

 

 

Figure 4.2: pCDF_3xPylRS/PyltRNA suppressor plasmid designed with 1 copy of MbPyltRNA under the 

lpp promoter and three copies of MbPylRS under the glnS’ promoter. pCDF vector contains the Clodf13 

ORI and the Spectinomycin resistance gene. 

 

4.1.5 Orthogonal synthetase and corresponding suppressor tRNA for genetic 

encoding of photocaged amino acids 

 

The ability to control protein activation by an external stimulus such as light is a 

useful tool for investigation into biological processes. The strategy used in this thesis 

involved the blocking of essential amino acids with a removable photo-protective 

moiety, which when removed, reverts the amino acid back to native form. Several 

analogues of natural amino acids have been synthesised with additional photo-

protective groups, such as lysine, cysteine, and tyrosine, and have been genetically 

encoded in vivo in prokaryotic and eukaryotic host organisms. The incorporation of 

these ncAA in eukaryotic expression systems is not in the scope of this thesis. 

Therefore, the focus of this section will be aimed at examples of incorporation of 

photocaged ncAA in prokaryotes. In 2006, the genetic encoding of o‐nitrobenzyl‐O‐

tyrosine (photo-protected tyrosine derivative or ONBY/PcY) was reported in E. coli in 

response to an amber codon (Deiters et al., 2006). To incorporate photocaged 

tyrosine into recombinant proteins, the MjTyrRS/tRNACUA pair was evolved to 
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selectively recognise and aminoacylate photocaged tyrosine. The evolutionary study 

identified five residues in the tyrosine binding pocket of MjTyrRS that when mutated 

(Y32G, L65G, F108E, D158S, and L162E) could accommodate the bulky o‐nitrobenzyl 

moiety and allowed for in vivo incorporation with high fidelity and good efficiency 

using amber suppression in E. coli. Following the evolution of a mutant MjTyrRS 

selected for encoding of photocaged tyrosine, a study on the directed evolution of a 

mutant MmPylRS/tRNACUA was implemented to establish a system for encoding of o-

nitrobenzyloxycarbonyl-Nε-L-lysine (photo-protected lysine derivative or ONBK) in 

bacterial and mammalian cells (Chen et al., 2009), resulting in four mutations 

(Y306M, L309A, C348A, Y384F) to MmPylRS/tRNACUA which facilitated efficient site-

specific incorporation of ONBK. MbPylRS/tRNACUA has also been evolved for 

incorporation of o‐nitrobenzyl‐O‐tyrosine (photocaged tyrosine), and contained four 

mutations to the synthetase (L270F, L274M, N311G, and C313G) expanding the 

pyrrolysine recognition pocket (Arbely et al., 2012). For the incorporation of a photo-

protected cysteine derivative (S-[(R,S)-1-{4',5'-(methylenedioxy)-2'-

nitrophenyl}ethyl]-L-cysteine) Chin and colleagues once again evolved a 

MbPylRS/tRNACUA pair, which has following mutations when compared to its 

wildtype precursor aaRS: N311Q, C313A and V366M in the active site (Nguyen et al., 

2014). 

 

4.1.6 Non-canonical amino acids 

 

The ncAA used in this chapter were either purchased from commercial suppliers or 

synthesised by colleagues. Table 4.2 lists the ncAA used in this study with additional 

information about their function, details about synthetic route or suppliers, and 

information about aaRS/tRNA pairs required for in vivo incorporation in proteins. 
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Table 4.2: Non-canonical amino acids utilized during this thesis. 

Name/Structure aaRS/tRNA 

pair 

Function Synthesis/Supplier 

Reference 

N6-(tert-butoxycarbonyl)-L-lysine  

Boc lysine (BocK) 

 

 

Mb Pyl PTM Sigma-Aldrich 
(Product # 359661) 

4-Azido-L-phenylalanine  

(AzF) 

  

 

Mj Tyr Bioorthogonal 
functional 

group for site-
specific 

conjugation 

Thermo-fisher 
(Product # 
50259191) 

o‐nitrobenzyl‐O‐tyrosine 

Photocaged Tyrosine (pcY) 

 

Mj Tyr Photocaged Deiters et al., 2006 

N6-[(2-propynyloxy)carbonyl]-L-
lysine 

(CAK) 

 

Mb Pyl Bioorthogonal 
functional 

group for site-
specific 

conjugation 

Nguyen et al., 2009b 
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The ncAAs N6-(tert-butoxycarbonyl)-L-lysine (BocK) and N6-[(2-

propynyloxy)carbonyl]-L-lysine (CAK) are excellent substrates for MbPylRS and have 

been incorporated into proteins in response to an amber codon using MbPylRS/ 

PyltRNACUA pair (Fekner  et al., 2009; Nguyen et al., 2009b). While the ncAA 4-Azido-

L-phenylalanine (AzF) has been incorporated into proteins using an evolved mutant 

of MjTyrRS/tRNACUA pair. (Chin et al., 2002). As discussed earlier, the evolutionary 

studies on MjTyrRS/tRNA identified five mutations to the MjTyrRS for successful 

incorporation of o‐nitrobenzyl‐O‐tyrosine (pcY) in response to an amber codon 

(Deiters et al., 2006).  
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4.2 Results & discussion 

4.2.1 Construction of VHH amber mutants 

 

Two methods were used in this thesis to insert in frame amber codons into the coding 

sequence of the gene of interest. A commonly used method to create specific, 

targeted changes (including insertions, deletions and substitutions) in plasmid DNA 

is site-directed mutagenesis. Initially, a method that was pioneered in 1985 (Kunkel, 

1985), this powerful technique is commonly used as a method to make changes in 

protein activity as a result of DNA manipulation. This in vitro method is based on the 

design of mutagenic DNA primers which are used with PCR to insert desired 

mutations in parent DNA. Further information on the specific protocol can be found 

in the methods chapter (2.1.8.9). The alternative method is by using a synthetic 

double-stranded DNA, which is ordered as geneblock from a commercial supplier. 

Although site-directed mutagenesis is a cost effective method compared to the use 

of synthetic DNA, it can often be a time consuming experiment with various 

troubleshooting steps. A combination of these two techniques was used in the 

construction of amber codon containing expression vectors, and specific details will 

be discussed in the results. 

To site-specifically insert a photo-protected amino acid derivative into VHH 7D12, 

two approaches were taken.  In the first approach, lysine was identified as the key 

residue to block with a photo-protective group. As lysine’s side chain contains a 

positively charged amino group and is frequently located at proteins active or binding 

sites (Betts & Russell, 2003) it makes an excellent candidate for the substitution with 

photocaged lysine as a method of enabling photocontrol over antigen binding. Five 

lysine residues were identified in the structure of VHH 7D12 and Gibson cloning 

strategies was used to mutate each residue to an amber codon. The lysine residues 

within the structure of VHH 7D12 (K3, K43, K65, K76, K87) were targeted for insertion 

of ncAA using amber suppression. The cloning strategy for inserting amber mutations 

at these positions in 7D12 involved use of synthetic gBlocks and Gibson assembly.  

Synthetic gBlocks were ordered with corresponding TAG mutations and Gibson 
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overhangs (Appendix Table A.3; GB004-8). K3TAG, K43TAG, K65TAG, K76TAG were 

inserted by digesting pSANG10-7D12 with XbaI and SalI restriction enzymes, while 

K87TAG was inserted using SalI and HindIII restriction enzymes. After cloning, 

sequences were verified using Sanger sequencing which resulted in five new plasmids 

(pSANG10-7D12-K3TAG/ 43TAG/ K65TAG/ K76TAG/ K87TAG) with five possible 

locations to test photocaged lysine mediated inhibition of antigen binding. 

The second approach taken to create a photo-active antibody fragment was with the 

genetic encoding of photocaged tyrosine. Seven tyrosine residues are present in VHH 

7D12; using the crystal structure of VHH 7D12 in complex with domain III of the 

extracellular region of EGFR (PDB; 4KRL) as a guide, three tyrosine residues, Y32, Y109 

and Y113, were selected (Figure 4.3). The three tyrosine residues are highlighted in 

magenta, and although all three seem to be in close proximity to the binding 

interface between 7D12 and EGFR, position Y109 seems to have a preferential 

parallel orientation to the EGFR surface while Y32 and Y113 protrude into the binding 

pocket of EFGR.  

 

 

Figure 4.3: Crystal structure complex of 7D12-EGFR showing VHH 7D12 bound to domain III of sEGFR 

(sEGFRd3). A) VHH 7D12 in complex with sEGFRd3, 7D12 coloured cream with highlighted tyrosine 
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mutants (Y32, Y109, and Y113) in magenta and domain III of EGFR coloured cyan. B) View of interface 

region between VHH 7D12 and sEGFRd3 with focus placed on protruding side chains of Y32 and Y113. 

C) Alternative view of interface region between VHH 7D12 and sEGFRd3 highlighting the parallel 

orientation of Y109 has to EGFR surface. These structures were generated using UCSF Chimera 

software. 

 

Similar methodology as the cloning strategy for lysine TAG mutations was used to 

replace the tyrosine residues. As discussed earlier, visualisation software was used 

to select three tyrosine residues out of the possible seven, and three gBlocks were 

designed with Gibson overhangs (Appendix Table A.3; GB020-22). The gBlock for 

Y32TAG was inserted after digesting pSANG10-7D12 with XbaI and SalI. The gBlocks 

for Y109TAG and Y113TAG were inserted after digesting pSANG10-7D12 with SalI and 

HindIII. After cloning, sequences were verified using Sanger sequencing and this 

resulted in the construction of three new plasmids (pSANG10-7D12-Y32TAG/ 

Y109TAG/ Y113TAG). 

Amber mutants of another antibody fragment, VHH 2Rs15d, were also constructed. 

The results from chapter 3 showed successful cloning and expression of the anti-

HER2 VHH 2Rs15d from the expression vector pSANG10-VHH-2Rs15d. To identify 

potential tyrosine residues for development of photoactive 2Rs15d, molecular 

dynamics simulations were performed by Dr Saher Shaikh to simulate pcY 

incorporation into various tyrosine positions and to predict effects of their binding to 

HER2. Simulation methods are described in detail in Bridge et al., 2019. The tyrosine 

residue in position 37 was chosen as an ideal candidate for photocaging due to the 

predicted inhibition it would cause to HER2 binding. To replace tyrosine at position 

37 with photocaged tyrosine, site-directed mutagenesis was performed. Detailed 

methodology on site-directed mutagenesis is listed in methods (2.1.8.9) and 

mutagenic primers (Appendix Table A.2; D119 and D120) were designed and ordered 

from IDT. After cloning, sequences were verified using Sanger sequencing and this 

resulted in the plasmid pSANG10-VHH-2Rs15d-Y37TAG. 
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4.2.2 Construction of suppressor plasmids 

 

For incorporation of ncAA in response to an amber stop codon, a suppressor plasmid 

containing orthogonal aminoacyl- tRNA synthetase (aaRS)/ tRNA pairs is required. 

The first suppressor plasmid made during this study was for the incorporation of 

photocaged lysine. Photocaged lysine aaRS was PCR amplified from plasmid 

AG73_PCKRS_PyltRNA using Q5 High-Fidelity DNA Polymerase (NEB) according to the 

manufacturers recommendations. The PCR primers (Appendix Table A.2; D029, 

D030) were designed to generate Gibson overhangs corresponding to plasmid 

pCDF_PylRS/PyltRNACUA. Plasmid pCDF_PylRS/PyltRNACUA was then digested with 

NdeI, and PstI-HF restriction enzymes, and PCR product was ligated using Gibson 

assembly. The resulting plasmid pCDF_PcKRS/PyltRNACUA was transformed into 

DH10B cells and plated on kanamycin agar plates for overnight growth (37°C, 16 

hours). Plasmid DNA was extracted from a single colony, and the correct insert was 

verified by Sanger sequencing. 

Next, we designed a suppressor plasmid for incorporation of photocaged tyrosine in 

response to an amber stop codon. Based on previous work on incorporation of pcY 

(Deiters et al., 2006) we designed synthetic geneblocks with five mutations in 

MjTyrRS, viz, Tyr32 → Gly32, Leu65 → Gly65, Phe108 → Glu108, Asp158 → Ser158 and Leu162 

→ Glu162 . This gblock has appropriate overhangs for insertion into the pULTRA 

plasmid using Gibson assembly (Appendix Table A.3; GB024). The plasmid 

pULTRA_CNF was digested with NotI restriction enzyme, and MjTyrRS was separated 

from pULTRA backbone before the MjPCY-RS gBlock was inserted. The resulting 

plasmid pULTRA-PCY was transformed into DH10B cells and plated on kanamycin 

agar plates for overnight growth (37°C, 16 hours). Plasmid DNA was extracted from 

a single colony, and correct insert was verified by Sanger sequencing. 

Before attempting to incorporate photocaged amino acids into the structure of VHH 

7D12, it was essential to investigate the most efficient suppressor systems (MjTyrRS 

or Mm/MbPylRS). This was achieved by an extensive comparison between commonly 
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used suppressor plasmids and is discussed in the next section of this chapter. To test 

PylRS/tRNA pair efficiency in the pULTRA plasmid, the aaRS/tRNA genes were cloned 

from pCDF_PylRS/PyltRNACUA plasmid into pULTRA_CNF. To replace the aaRS/tRNA 

pair, a two-step cloning strategy was designed first to replace the MjTyrRS with 

MbPylRS, followed by the replacement of MjtRNA with MbtRNA. Primers (Appendix 

Table A.2; D055, D056) were designed to amplify the MbPylRS from 

pCDF_PylRS/PyltRNACUA and add Gibson overhangs for Gibson ligation into digested 

pULTRA backbone. The plasmid pULTRA_CNF was digested with NotI to remove 

MjTyrRS, digested product was separated by size on 1% agarose gel, and pULTRA 

backbone was extracted from the gel. Gibson assembly was used to insert the PylRS 

PCR product into pULTRA resulting in the plasmid pULTRA-PylRS. After sequence 

verification pULTRA-PylRS was digested with PstI and XhoI to remove MjtRNA, 

backbone was gel extracted, and the PyltRNA gBlock (Appendix Table A.3; GB031) 

was inserted by Gibson assembly. The final plasmid pULTRA-PylRS-PyltRNA showed 

successful replacement of the MjTyrRS/tRNA pair with the MbPylRS/tRNA pair. 

 

4.2.3 Comparison of suppressor plasmids 

 

As discussed earlier, there are two commonly used orthogonal aminoacyl-tRNA 

(aaRS)/tRNA pairs for genetically encoding non-colonial amino acids (ncAA) into 

proteins in E. coli. The Methanosarcina mazei (Mm) pyrrolysyl-tRNA synthetase pair 

(MmPylRS/MmtRNACUA) and the homologous Methanosarcina barkeri (Mb) pair 

(MbPylRS/MbtRNACUA) have been extensively developed for incorporation of many 

types of ncAA. The alternative derived from Methanocaldococcus janaschii (Mj) 

TyrRS/tRNACUA pair has been primarily used in the incorporation of aromatic ncAA 

related to phenylalanine. Over the past decade, there have been many iterations of 

highly efficient suppressor plasmids that have emerged within the literature, which 

has overall been significant for the development of this field. However, as there has 

been no comparative review it is difficult to compare the efficiencies of these 

suppressor plasmids. In this section we screen four frequently used suppressor 
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plasmids (pCDF_3xPylRS/PyltRNA, pSUP_MjCNFRS/6xMjtRNA, pEvolv_2xMjCNFRS/ 

MjtRNA and pULTRA_MjCNFRS/MjtRNA) to determine which of these plasmids is 

most efficient for incorporating certain ncAAs into VHH 7D12. The results from this 

study would determine which suppressor plasmids would be used later for 

incorporation of photocaged amino acids into VHH 7D12. The first comparison was 

between plasmids containing Mm or Mb PylRS/tRNA pairs and Mj TyrRS/tRNA pairs. 

The plasmid pCDF_PylRS/PyltRNA was used for incorporation of N6-(tert-

butoxycarbonyl)-L-lysine (BocK) in VHH 7D12, as this ncAA is a substrate for 

incorporation with PylRS. Plasmids containing MjTyrRS; pSUP_MjCNFRS/MjtRNA, 

pEvolv_MjCNFRS/MjtRNA and pULTRA_MjCNFRS/MjtRNA were used for 

incorporation of p-azido-phenylalanine (AzF). To investigate the efficiency of site-

specific incorporation of ncAA we co-transformed these suppressor plasmids with 

pSANG10-7D12-Y32TAG in BL21 (DE3) pLysS cells. These transformed cells were used 

in a small-scale expression (10 mL) and the media was supplemented with either 

4mM AzF or 8mM BocK (all samples induced with IPTG). ncAA were dissolved in 

NaOH and were added to positive samples. After addition of ncAA to the growth 

media, the same amount of HCl was added and the pH of the media was adjusted to 

7. Extracted proteins were analyzed by Western blot, as shown in Figure 4.4. The 

MjTyrRS plasmids used in this study show the evolutionary steps Peter Schultz group 

made on their suppressor plasmids, starting with pSUP (Ryu & Schultz, 2006) being 

refined to pEvolv (Guo et al., 2009) and finally resulting in pULTRA (Chatterjee et al., 

2013). The pCDF PylRS/tRNA plasmid (Sachdeva et al., 2014) designed later by the 

Chin group uses the PylRS system for incorporation of ncAA in response to both 

amber stop codon and quadruplet codons in E. coli.  

 

Figure 4.4: Screening of amber suppression efficiency of pCDF_3xMbPylRS/MbPyltRNACUA, 

pSUP_MjCNFRS/6xMjtRNACUA, pEvolv_2xMjCNFRS/MjtRNACUA and pULTRA_MjCNFRS/MjtRNACUA 
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plasmids. Comparison of band intensities of his-tagged VHH 7D12-Y32 (loaded by normalised culture 

OD600) with Western blot shows pULTRA suppressor plasmid is most efficient at incorporation of  4-

Azido-L-phenylalanine (AzF) using MjRS/MjtRNA pair and slight reduction of expression is shown in 

the incorporation of N6-(tert-butoxycarbonyl)-L-lysine (BocK) with MbPylRS/MbPyltRNA pair in 7D12. 

 

The Western blot results showed expression of his-tagged recombinant proteins 

relied on the addition of ncAA in the media. Furthermore, the suppressor plasmids 

containing Mj CNFRS/ MjtRNACUA pair allowed incorporation of AzF at position 32 in 

7D12 at varying levels. The highest to lowest efficiency for incorporation of AzF was 

pULTRA, pEvolv and then pSUP, which follows the time frame of published literature.  

As higher expression was observed using the Mj system of pULTRA, we next wanted 

to investigate if transferring the PylRS/tRNA pair CDS from pCDF to pULTRA would 

further increase the efficiency of site-specific incorporation of BocK or N6-[(2-

propynyloxy)carbonyl]-L-lysine (CAK) and to also test incorporation of pcY using the 

mutated plasmid pULTRA_PCY. Bock and CAK have been shown as two excellent 

substrates for PylRS incorporation. The three suppressor plasmids (pULTRA_CNF, 

pULTRA_PCY and pULTRA_Pyl) were separately transformed into BL21 (DE3) pLysS 

containing pSANG10-7D12-Y32TAG. To compare wt7D12 expression with 

incorporation efficiency of the suppressor plasmids we co-transformed pULTRA-CNF 

and pSANG10-7D12(wt). The media was supplemented with either 8mM BocK/CAK 

or 4mM pcY/AzF. Proteins were expressed in 100 mL cultures and purified with Ni-

NTA before concentration with Vivaspin 500 (MWCO 3K). Samples were then 

resolved on SDS-PAGE, as shown in Figure 4.5.  

High levels of ncAA incorporation were seen with pULTRA_CNF and pULTRA_PCY. 

There was a slight reduction in the expression of 7D12-Y32 AzF with pULTRA_CNF 

compared to wt7D12 levels. However, incorporation and expression of 7D12-Y32pcY 

was similar to wt7D12. Unfortunately, expression levels of pULTRA_Pyl were not 

comparable to the other pULTRA plasmids. Both CAK and BocK had a decrease in 

incorporation of 7D12-Y32. To compare pCDF efficiency to pULTRA_Pyl, we designed 

a similar experiment for incorporating CAK and BocK. 
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Figure 4.5: Screening of several versions of pULTRA suppressor plasmid with the genetic site-specific 

incorporation of various ncAA in VHH 7D12-Y32TAG. The observed band intensities in the Coomassie 

stained gel (loaded by normalised culture OD600) demonstrated a slight reduction in expression of 

7D12 with the incorporation of 4-Azido-L-phenylalanine (AzF) with pULTRA-CNF suppressor plasmid 

compared to wild-type 7D12 expression. The incorporation of o‐nitrobenzyl‐O‐tyrosine (pcY) in 7D12 

with pULTRA-PCY was shown have similar expression to wild-type 7D12, while incorporation efficiency 

of pULTRA-Pyl showed significant reduction in expression compared to wild-type when encoding N6-

(tert-butoxycarbonyl)-L-lysine (BocK) and N6-[(2-propynyloxy)carbonyl]-L-lysine (CAK). 

 

The two suppressor plasmids (pCDF-Pyl and pULTRA_Pyl) were transformed into 

BL21 (DE3) pLysS containing pSANG10-7D12-Y32TAG. A single colony was used to 

inoculate a 5 mL starter culture which was incubated overnight (2xTY, Kanamycin, 

Spectinomycin, 4% glucose; 37°C, 16 hours, 200 rpm). The next day, the starter 

culture was used to subculture 100 mL fresh 2xTY-GKS to an OD600 of 0.1 and grown 

until OD600 of 0.4-0.6. Once the desired OD600 was reached, either 8mM BocK or CAK 

was added to the culture along with IPTG (1 mM) to all samples to induce expression 

of 7D12-Y32TAG and grown overnight (30°C, 160 rpm). After harvesting cells as 

described in 2.1.9 the periplasmic fraction was filtering through a 0.2-µm filter unit 

and dialysed overnight (Slide-A-Lyzer dialysis cassette, 12-30 mL, 3500 MWCO) 

against 1X PBS. His-tagged recombinant proteins expressed in the periplasm were 

purified using Ni-NTA gravity-flow columns as described in 2.1.10 before 

concentration with Vivaspin 500 (MWCO 3K). Purified his-tagged proteins were 

resolved by size using SDS-PAGE and stained with Coomassie InstantBlue (Sigma-

Aldrich) for analysis (Figure 4.6). 
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Figure 4.6: Suppressor plasmid efficiency comparison between PylRS/tRNA pair in pULTRA and pCDF 

vectors. The observed band intensities in the Coomassie stained gel (loaded by normalised culture 

OD600)  demonstrated higher genetic incorporation efficiency of N6-(tert-butoxycarbonyl)-L-lysine 

(BocK) and N6-[(2-propynyloxy)carbonyl]-L-lysine (CAK) in 7D12-Y32 with pCDF suppressor plasmid 

compared to pULTRA suppressor plasmid.  

 

Both plasmids containing PylRS/tRNA pairs (pCDF and pULTRA) showed expression 

of 7D12-Y32TAG containing ncAA only with the addition of ncAA to the growth 

media. Higher expression of 7D12-Y32TAG with pCDF-PylRS/tRNA was observed 

when using CAK compared to BocK, signifying that the ncAA CAK is a more suited 

substrate for PylRS incorporation. However, when comparing pCDF-Pyl efficiency to 

pULTRA-Pyl a significant decrease is observed in the production of 7D12-Y32TAG. 

These results are likely due to differences in promoters and the number of copies of 

PylRS present on pCDF-Pyl and pULTRA-Pyl. A single copy of PylRS and tRNA are 

present on pULTRA-Pyl, and expression of PyltRNA on pULTRA vector is controlled by 

proK promoter and terminator while the PylRS is under the inducible tac promoter. 

Compared to the optimised expression of pCDF-Pyl vector that contains 3 copies of 

PylRS that are under control of the weak glnS’ constitutive promoter while the single 

copy of PyltRNA was under the inducible expression of the relatively strong Ipp 

promoter. The substantial decrease in ncAA encoding efficiency between pCDF-Pyl 

and pULTRA-Pyl is possibly caused by insufficient optimization of pULTRA plasmid for 

the ideal level of aaRS/tRNA pairs within the host organism. 
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4.2.4 Expression of VHH 7D12 containing site-specifically incorporated photocaged 

tyrosine 

 

To investigate the expression of light activated antibody fragments by site-specific 

incorporation of photocaged amino acids, both the amber mutant expression vector 

and suppressor plasmid were co-transformed into E. coli for periplasmic expression. 

We initially planned to incorporate photocaged lysine (pcK) into 7D12, which would 

be encoded using the plasmid pCDF_PcKRS/PyltRNACUA. While plasmid construction 

was being carried out, the PylRS/tRNA incorporation efficiency was tested with the 

site-specific encoding of BocK in the five amber codon locations (Lysine-TAG 

mutations). To test incorporation efficiency at these mutants using  pCDF-Pyl, BL21 

(DE3) pLysS E. coli cells were transformed with pSANG10-7D12 (WT and K-TAG 

mutants) and pCDF_PylRS/PyltRNACUA, and grown in presence of  kanamycin and 

spectinomycin. In addition, we also tested incorporation of AzF using pULTRA vector 

in one of these amber mutants, K76TAG.  Using similar methods as above, 

pULTRA_MjRS/tRNACUA was co-transformed with pSANG10-7D12-K76TAG. A single 

colony of the transformed cells was selected and inoculated in started culture which 

were used to subculture 10 mL 2xTY-GKS (4% glucose, kanamycin, spectomycin). 

Periplasmic expression and extraction was carried out as described in methods 

(2.1.9) followed by Ni-NTA purification (2.1.10) and protein concentration (2.1.11). 

The resulting protein extract was resolved on precast stain free Mini-PROTEAN TGX 

gel (Figure 4.8.A) followed by transfer to PVDF membrane and detection of his-

tagged proteins by Western blot (Figure 4.8.B). 
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Figure 4. 7: Expression of 7D12 with genetic site-specific incorporation of two ncAA in response to 

five lysine amber mutants. (A) Observed band intensities on stain free TGX gel (loaded by normalised 

culture OD600) demonstrated efficient incorporation of N6-(tert-butoxycarbonyl)-L-lysin (BocK) in 

response to amber mutants at position K3 and K65 with pCDF-PylRS/tRNA suppressor plasmid. Band 

corresponding to 7D12 detected in response to amber mutant at position K76 with the addition of 4-

Azido-L-phenylalanine (AzF) and pULTRA-MjRS/tRNA. (B) Following transfer of proteins on TGX gel to 

PVDF membrane, Western blot detection of his-tagged proteins resulted in similar identification of 

7D12. 

  

Likewise to previous expressions of recombinant proteins encoded with ncAA, the 

successful expression of full-length protein relied on the addition of ncAA in the 

culture. The encoding of BocK into K3TAG resulted in similar levels of expressed 

recombinant protein to wild type VHH 7D12, while a slight reduction of expressed 

protein was observed with BocK incorporation at position 65. However, little to no 

expression of VHH 7D12 was detected for K43TAG, K65TAG and K87TAG indicating 

unsuccessful incorporation of BocK in these positions. Interesting, the incorporation 

of AzF in position 76 with pULTRA-CNF plasmid resulted in expression similar to wild 

type which could, in theory, be signifying that the suppressor plasmid pULTRA has 

increased suitability in the genetic encoding of ncAA. Due to difficulties in the 

synthesis of photocaged lysine, and to not delay experimental results, we next 
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planned to proceed with the investigation of genetically encoding a photocaged 

tyrosine. Photocaged tyrosine was successfully synthesised by Dr Amit Sachdeva 

during this time. 

A similar approach was used to site-specifically incorporate photocage tyrosine in 

VHH 7D12. First, pSANG10-7D12 (WT and Y-TAG mutants) were co-transformed into 

BL21 (DE3) pLysS E. coli cells with pULTRA_PCY. A single colony of cells containing 

these plasmids (due to resistance to kanamycin and spectinomycin) was used to 

inoculate a starter culture, which was then used to subculture 100ml 2xTY-GKS. To 

induce expression 1 mM final concentration of IPTG was added to all samples and 4 

mM final concentration of pcY dissolved in NaOH was added to positive samples. 

After addition of pcY, the same amount of HCl was added and the pH was adjusted 

to 7. The total protein extract was then purified using Ni-NTA and concentrated using 

Vivaspin columns (3K MWCO). The resulting protein was resolved by size on SDS-

PAGE and high levels of expressed protein can be seen, shown in Figure 4.8.  

 

 

Figure 4.8: Genetic site-specific incorporation of pcY in VHH 7D12. The expression of three amber 

mutants of 7D12 (7D12-Y32TAG, 7D12-Y109TAG and 7D12-Y113TAG) only occurs in the presence of 

o‐nitrobenzyl‐O‐tyrosine (pcY). Comparison of band intensities for amber mutants with wt7D12 

shows efficient incorporation of pcY.   

 

The yield of wt7D12, 7D12-Y32pcY, 7D12-Y109pcY and 7D12-Y113pcY were 10.1, 5.3, 

3.2, 1.7 mg per litre of culture, respectively. The protein expression was performed 

in the presence and absence of pcY, for amber mutants of 7D12, full length 7D12 was 

only expressed when the media was supplemented with pcY. The variability of amber 
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codon suppression and subsequent differences in expressed yield of 7D12 with site-

specific encoding of pcY are a result of multiple factors such as codon context effects 

in which surrounding nucleotides of an amber codon in a specific location can affect 

suppression efficiency. Although only a slight variation in the levels of expressed 

protein was observed for these three amber mutants, these factors can significantly 

reduce the expression of recombinant proteins and will be discussed in detail later in 

this chapter. The small difference in molecular weight with the addition of the 

photocaged group cannot be resolved on SDS-PAGE, therefore we further confirmed 

that pcY had been incorporated using Electrospray Ionization Mass Spectrometry 

(ESI-MS), shown in Figure 4.9.  

 

 

Figure 4.9: Electrospray Ionization Mass Spectrometry (ESI-MS) measurements of expressed 7D12 and 

three amber mutants (Y32, Y109, and Y113). Wild type VHH 7D12 resulted in a measured mass of 
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14241 Da and corresponded to ExPASy ProtParam calculated mass. The three amber mutants with 

site-specific incorporation of pcY in positions Y32, Y109 and Y113 resulted in an increased mass of 

14376 Da which relates to the additional mass of photocaged group. 

 

The calculated mass for wt7D12 was predicted using the ProtParam tool (ExPASy) 

and the addition of pcY was calculated to give the predicted mass of 7D12-Y32pcY, 

7D12-Y109pcY and 7D12-Y113pcY. The shift in mass from 14241 Da to 14376 Da 

shows the successful addition of photocaged tyrosine at three positions within VHH 

7D12. To investigate if the photo-caged group can be removed upon irradiation with 

365 nm light, we designed mass spectrometry based experiments. 7D12 samples 

containing site-specifically incorporated pcY were exposed to 4 minutes of 365nm 

light using a UV transilluminator. To load the sample, 50 µL of caged 7D12 was 

pipetted onto an autoclaved glass coverslip before being irradiated for 4 minutes. 

The resulting de-caged sample was collected and analysed by ESI-MS (Figure 4.10).  

 

 

Figure 4.10: Electrospray Ionization Mass Spectrometry (ESI-MS) measurements of expressed 7D12 

and three amber mutants (Y32, Y109, and Y113) before and after irradiation with light (365 nm, 4 

minutes). First row represents before irradiation, observed mass of wild-type VHH 7D12 is 14241 Da 

while three mutants with pcY incorporation have increased mass of 14376 Da. After irradiation, the 

second row demonstrates de-caging of pcY mutants and decreased mass to wild-type level. 



 

114 
 

The ESI-MS results from before de-caging shows a mass of 14241 Da for 7D12  and 

an increased mass of 14376 Da for 7D12-Y32pcY, 7D12-Y109pcY and 7D12-Y113pcY. 

After 4 minutes of 365 nm irradiation all four samples show the mass of 14241 Da, 

consistent with conversion to wild type VHH 7D12. This demonstrates the successful 

de-caging of genetically encoded pcY and the de-protection of tyrosine residue 

resulting in the ncAA reverting back to a native tyrosine.  

 

4.2.5 Expression and optimisation of VHH 2Rs15d with photocaged ncAA 

 

After optimizing pcY incorporation into VHH 7D12, we next wanted to investigate the 

genetic encoding of pcY into other antibody fragments. The results from chapter 3 

showed the successful cloning and expression of the anti-HER2 VHH 2Rs15d from the 

expression vector pSANG10-VHH-2Rs15d. To identify potential tyrosine residues for 

amber codon mutation, modelling software was developed by Dr Saher Shaikh to 

simulate pcY incorporation into various tyrosine positions and to predict effects on 

binding affinities to HER2. The tyrosine residue in position 37 was chosen as a good 

candidate for photocaging due to the predicted inhibition it would cause to HER2 

binding. Following the construction of the plasmid pSANG10-2Rs15d-Y37TAG, it was 

co-transformed into BL21(DE3)pLysS with pULTRA-PCY. To compare expression 

between wild type VHH 2Rs15d and VHH 2Rs15d with site-specific encoded pcY, the 

plasmid pSANG10-VHH-2Rs15d was co-transformed into BL21(DE3)pLysS with 

pULTRA-PCY. As a control pSANG10-7D12(wt) and pSANG10-7D12-Y32TAG were co-

transformed BL21(DE3)pLysS with pULTRA-PCY for comparison between 7D12 and 

2Rs15d antibody fragment expression. A single colony of cells conferring kanamycin 

and spectinomycin resistance was used to inoculate a starter culture which was then 

used to subculture 10ml 2xTY-GKS. To induce expression, 1 mM final concentration 

of IPTG was added to all samples and 4mM final concentration of pcY dissolved in 

NaOH was added to positive samples. After addition of pcY, the same amount of HCl 

was added and the pH was adjusted to 7. Extracted periplasmic proteins were directly 

loaded onto an SDS-PAGE for separation by size before being transferred to 



 

115 
 

nitrocellulose membrane for Western blotting. Detection of his-tagged proteins was 

achieved with primary antibody incubation targeted to His-tag followed by secondary 

antibody incubation which contained an HRP conjugate for chemiluminescence. The 

developing reagent SuperSignal chemiluminescence substrate (Thermo Scientific) 

was added to the membrane and chemiluminescence was imaged on a GelDoc XR+ 

system (Figure 4.11). 

 

 

Figure 4.11: Western blot detection of his-tagged proteins from the expression of pSANG10-7D12 (And 

Y32TAG mutant) compared to pSANG10-VHH-2Rs15d (And Y37TAG mutant). All samples were induced 

with IPTG and positive and negative samples defined by addition of pcY. Intense band of pSANG10-

7D12 and Y32 amber mutant indicate high levels of expression of VHH 7D12. Similar expression of 

2Rs15d is not observed from the expression of pSANG10-VHH-2Rs15d and Y37 mutant (loaded by 

normalised culture OD600). 

 

Similar to previous results, the expression of VHH 7D12 with/without pcY from the 

expression plasmid pSANG10 showed a high yield of his-tagged recombinant 

proteins. The expected results from wild type VHH 7D12 in the absence and presence 

of pcY should have yielded similar levels of recombinant protein as both samples 

were induced with IPTG. However, the observed results indicate a decrease in 

expression from the sample without pcY. This is likely due to experimental error, 

additionally, with consideration of previous expression studies (that wt7D12 yield is 

similar to that of 7D12-Y32pcY) it is logical to assume that the band corresponding to 

wild type VHH 7D12 (with pcY) is the correct level of expression. In contrast to VHH 

7D12 expression, a significant decrease in yield is shown in the expression of VHH 

2Rs15d. The efficiency of ncAA incorporation in response to an amber codon can be 
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highly variable, and several factors affecting the efficiency of amber suppression are 

largely unknown (Schwark et al., 2018). Two factors that are thought to affect the 

variability of amber codon suppression: 1) reduced expression due to the competiton 

between amber suppression and endogenous release factors (RF1), and 2) codon 

context effects (Brar, 2016). A substantial amount of research has been focused on 

the generation of GRO systems to reduce or remove competing RF1, these systems 

are discussed in the first chapter so will not be reviewed in this section. However, the 

codon context, the effect of neighbouring codons to the amber suppression 

efficiency are largely unexplored.  In a recent study (Schwark et al., 2018), an 

investigation into the effects of the nucleotide identity of the 3’-side of the amber 

codon (+4 position, the first three being the amber codon) showed that improved 

amber incorporation was achieved when the location was occupied with a purine 

nucleotide (specifically, highest efficiency was achieved with +4 adenine) and 

decreased efficiency was demonstrated with a pyrimidine nucleotide (+4 cytosine 

exhibited lowest efficiency). The mechanisms behind this are currently unclear; 

however, one hypothesis is that the potential preference of +4 position purine is a 

result of base stacking stability between suppressor tRNA–mRNA interactions. 

To investigate the specific reading context of the suppressed codon in VHH 2Rs15d-

Y37TAG, and whether pcY incorporation efficiency could be improved, a mutagenesis 

study was designed to mutate the codon downstream (R38) of Y37TAG. As the direct 

mutation of the +4 position from a cytosine to an adenine would change the amino 

acid incorporated from an arginine to a serine, we decided to conserve the Arg 

residue at position 38 and mutate it to synonymous variations. There are six codons 

that code for arginine (CGC, AGA, CGA, CGG, AGG, and CGT) with various levels of 

usage in E. coli organism. Mutagenic primers (Table 4.3) were designed for a site-

directed mutagenesis experiment resulting in 6 amber codon plasmids with 

alternative downstream codons. 
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Table 4.3: Synonymous codon mutations made to downstream arginine codon 
(R38). 

Codon E. coli usage* Mutagenic primers** Plasmid 

CGC (Original) 36% N/A pSANG10-VHH-2Rs15d 
(Y37TAG) 

AGA 7% D164, D165 pSANG10-VHH-2Rs15d 
(R38AGA) 

CGA 7% D200, D204 pSANG10-VHH-2Rs15d 
(R38CGA) 

CGG 11% D216, D217 pSANG10-VHH-2Rs15d 
(R38CGG) 

AGG 4% D214, D215 pSANG10-VHH-2Rs15d 
(R38AGG) 

CGT 36% D218, D219 pSANG10-VHH-2Rs15d 
(R38CGT) 

* % use of codon in E. coli compared to its synonymous variations. 

** Appendix Table A.2 for full sequences 

 

For expression of VHH 2Rs15d with the site-specific genetic encoding of pcY, a similar 

10 mL expression was performed as above. Seven expression plasmids (wt2Rs15d 

and six variations of Y37TAG) were co-transformed with pULTRA-PCY. Protein 

expression was performed both in asence and presence of pcY, while all samples had 

IPTG. Extracted his-tagged recombinant proteins were detected by Western blot 

(Figure 4.12). 

 

 

Figure 4.12: Screening of pSANG10-VHH-2Rs15d amber codon context at position Y37 with the 

incorporation of pcY. Six synonymous codon mutations (at position R38) resulted in various levels of 

expressed 2Rs15d (loaded by normalised culture OD600) in the presence of pcY. 
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Similarly to results discussed in chapter 3, the likely presence of a dimeric molecular 

species of 2Rs15d is observed with the successful expression of 2Rs15d. Further 

similarities are seen with the reduced expression of Y37TAG (CGC; original 

downstream codon) which are in agreement with previous results (figure 4.11). 

Interestingly, the effect of downstream codon mutations on incorporation of pcY at 

position 37 in Rs15d shows drastically varying levels of expression. The original 

hypothesis that the +4 position nucleotide mutation from purine to pyrimidine (C to 

A) has shown minor improvements in incorporation efficiency of pcY, both AGA and 

AGG mutations demonstrate slightly higher expression than original CGC arginine 

codon. However, the highest difference in incorporation efficiency can be seen with 

the mutation of the arginine codon to CGA (similar expression to wild type 2Rs15d), 

which suggests that the +4 nucleotide position of the amber codon at this location is 

not directly linked to incorporation efficiency. Higher incorporation efficiency of pcY 

is observed with the mutation of CGC arginine codon to less frequently used 

synonymous codons. The expression of AGA, CGA and AGG mutants resulted in the 

three highest yields of recombinant protein of the six codons tested and each of 

these three codons have an E. coli usage of less than 7%, while in contrast, the 

reduced expression of CGC and CGT mutants have a codon usage of 36% in E. coli. 

However, not enough data is available to conclusively determine the variation in 

expression levels observed with the synonymous mutations of the downstream 

codon. For a clearer understanding of the processes behind this mechanism, multiple 

tyrosine amber mutant locations would need to be investigated, along with testing 

these expression systems in GRO containing RF1 knockout as a method of reducing 

endogenous amber codon competing systems. 
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CHAPTER 5                                                    

Assessment of antibody-antigen binding on 

the surface of live cancer cells 
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5.1 Introduction 

 

The last two chapters have demonstrated the optimisation and characterisation of 

an expression vector pSANG10 and the screening of several suppressor plasmids 

leading to the development of a suppressor plasmid pULTRA-PCY for insertion of the 

non-canonical amino acid (ncAA), o‐nitrobenzyl‐O‐tyrosine (photocaged tyrosine or 

pcY) in response to an amber nonsense codon. The expression vector pSANG10 was 

utilised to express high yields of heavy chain only antibody fragments (VHH 7D12; 

Schmit et al., 2014) that had previously been developed to target epidermal growth 

factor receptor (EGFR).  

Mutations affecting EFGR overexpression or activity have been linked to many 

cancers including, lung, colon, head, and neck and have resulted in becoming a 

widespread therapeutic drug target in oncology. Mutations, amplification or 

misregulations of EGFR have been shown to lead to constant receptor activation and 

uncontrolled cell division which results in unregulated growth and tumour formation. 

Several EGFR inhibitors have been developed and clinically approved for the direct 

treatment of EGFR positive cancers. However, common adverse effects (found in 

more than 90% of patients) can result in a papulopustular rash that spreads across 

the face and torso (Liu et al., 2013). Similar outcomes are seen with the use of anti-

EGFR monoclonal antibodies, and necessitate the improvement of current 

immunotherapeutics to reduce non-specific targeting. 

As discussed in the previous chapter, the development of a highly efficient system 

for genetic site-specific incorporation of pcY in 7D12 was accomplished. Three 

mutants of 7D12, viz.  7D12-32pcY, 7D12-109pcY and 7D12-113pcY, which have pcY 

at positions 32, 109 and 113 in 7D12, were successfully expressed in E. coli. ESI-MS 

confirmed the increased mass of expressed mutant 7D12 bearing pcY compared to 

wild type 7D12, indicating successful incorporation of pcY. Upon exposure to 365 nm 

irradiation the ESI-MS confirms mass loss corresponding to the o‐nitrobenzyl moiety, 

with pcY reverting back to its native analog (tyrosine). 
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It was hypothesised that the addition of a photocaged moiety in the antigen binding 

site of 7D12 would result in an inactive form of the antibody fragment which could 

be restored to the active antibody upon irradiation with 365 nm light. As such the 

ability to facilitate photo-control over antibody-antigen binding would enable 

spatiotemporal control over the immunotherapeutic treatment and could reduce the 

commonly reported adverse effects of EGFR targeting antibodies.  

In this chapter, a brief discussion of commonly used assays to measure protein-

protein interactions will be presented. Subsequently, in the results and discussion an 

on-cell assay is described, developed as part of this thesis work, to assess the binding 

of 7D12 to EGFR on the surface of live cancer cells. Finally, experimental results on 

measurement of light-mediated binding between photocaged mutants of 7D12 and 

EGFR will be presented.  

 

5.1.1 Techniques to measure binding affinity and kinetics of antibody-antigen 

interactions 

5.1.1.1 Enzyme-linked immunosorbent assay  

 

The enzyme-linked immunosorbent assay (ELISA) was simultaneously described by 

two research teams in 1971 (Engvall & Perlmann, 1971; Van Weemen & Schuurs, 

1971). However, the method was primarily pioneered by Engvall and Perlmann, when 

they employed this technique to determine the level of IgG in rabbit serum. Since 

then, ELISA has become a method routinely used in research and diagnostic 

laboratories around the world for the detection and quantification of substances 

such as peptides, proteins, antibodies and hormones (Aydin, 2015). ELISA is typically 

performed by immobilising an antigen of interest to a stationary phase (such as 

microplate surface) for either direct detection by primary antibody or indirectly by a 

secondary antibody that recognises the primary (Figure 5.1). Separation between 

bound and non-bound material can be achieved by washing during the assay which 

removes non-specifically bound materials and enables detection of specific analytes. 
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To measure bound primary or secondary antibody, typically the antibody is linked to 

a fluorophore or an enzyme for detection.  The most commonly used enzymes in 

ELISA are horseradish peroxidase (HRP) and alkaline phosphatase (AP). A broad range 

of substrates can be used to develop enzyme marker signal and often the selection 

of the substrate is dependent on the experimental design or instruments available 

for signal detection. Another popular ELISA format is the sandwich assay, developed 

in 1977 (Kato et al., 1977). In this format the analyte is bound (or sandwiched) 

between two primary antibodies (the capture and detection antibody). The ELISA 

sandwich method has been reported to be 2-5 times more sensitive than other ELISA 

formats (Aydin, 2015). Outside of the direct, indirect, and sandwich ELISA formats 

(Figure 5.1), several other ELISA strategies have been developed, such as competitive 

ELISA, and in-cell ELISA. However, as this section is only a general overview of ELISA 

technique these formats will not be discussed.  

 

Figure 5.1: Schematic representation of common ELISA formats. For direct and indirect ELISA, the 

antigen of interest (Ag) is immobilised onto a solid surface for either direct detection using enzyme 

marker (E) linked primary antibody or indirectly detected with first the primary antibody which is then 

targeted by secondary antibody linked to an enzyme. For the sandwich ELISA technique, capture 

antibody is immobilised onto the solid surface that targets antigen of interest, which is then detected 

with relevant primary and secondary antibodies.  

 

Over the last several decades the rising popularity of ELISA can in part be credited to 

the simplicity and speed of the method while having the ability to design experiments 
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that can rapidly handle a large number of samples in parallel, and while this method 

is a popular choice for the evaluation of various diagnostic targets it can have certain 

limitations. As detection is accomplished by assessing the measurable product 

produced from a substrate after incubation, the evaluated interactions are not 

monitored in real-time. Furthermore, weak interactions between antigen-antibody 

can occasionally be overlooked as detection of low affinity antibodies can be 

removed by the incubation and wash steps.  

 

5.1.1.2 Surface plasmon resonance (SPR) 

 

Another technique that has been gaining popularity since its inception 30 years ago 

is surface plasmon resonance (SPR) based affinity measurements. The use of SPR has 

been widely embraced for the characterisation of antibody-antigen interactions. Due 

to the ability of SPR to monitor biomolecular interactions in real time, it is considered 

the “gold” standard for monitoring a diverse range of protein-protein interactions 

(Olaru et al., 2015).  In contrast to ELISA, SPR based techniques allow for the 

visualisation of binding events in real time without the requirement of ligand or 

analyte labelling. The label free and real-time monitoring attributes of SPR facilitate 

accurate kinetic measurements and rapid analysis while reducing possible 

complications associated with ELISA.  

SPR-based instruments use an optical method to monitor molecular interactions on 

a removable sensor chip. In order to detect molecular interactions, a ligand is 

immobilised onto the surface of the sensor chip and its binding partner (the analyte) 

is injected in aqueous solution over the sensor chip. Running buffers and sample 

buffers are delivered to the chip under continuous flow via a microfluidic system. A 

typical SPR biosensor chip is designed on a glass chip coated with a thin layer of 

chemically inert metal (usually gold) with an additional adhesive layer which acts as 

an anchor for the attachment of the immobilisation matrix (Figure 5.2.A). Ligands or 
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target molecules can be attached to the immobilisation matrix by either chemical 

coupling or capture coupling.  

The SPR optical phenomenon describes changes in monitored refractive index via 

quantum mechanical principles. Although the underlying physical principals of SPR 

are complex and detailed theoretical understanding of SPR is not required for a 

working knowledge of the technique, a brief overview is presented here. When a 

beam of light is directed through a high refractive index medium, such as a prism, to 

the surface of gold-coated chip that is in contact with a low refractive index medium, 

such as a physiological buffer, some light is reflected from the interface (Figure 5.2.B). 

Depending on the angle at which the light strikes the interface, the light rays can exit 

the prism by refraction or can be totally internally reflected back through the prism 

for detection by a photodiode array detector. Furthermore, when the interface (glass 

chip) is coated with an inert metal film (usually gold) the reflection is not total as 

photons are absorbed by the gold layer and reduction in light intensity occurs in the 

reflected light. This reduction in light can be measured as a shift when mass changes 

occur above the gold chip surface. Specifically, the change of mass causes changes to 

the local refractive index, and as the reflected light profile is sensitive to changes in 

refractive index, the specific reflection angle shifts which is detected by photodiode 

array.  

As the analyte binds to the immobilised ligand, the refractive index close to the 

surface changes in proportion to the mass of material bound. As biomolecular 

interactions are measured in real-time, the resulting change in refractive index is 

displayed as a sensorgram, plotted as binding response (resonance units; RUs) on the 

y-axis against time on the x-axis (Figure 5.3.C).  
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Figure 5.2: Schematic representation of key features in surface plasmon resonance based affinity 

measurements. (A) Characteristic layout of SPR sensor chip, a chemically inert metal (typically gold) is 

layered over a glass base. Adhesive layer anchors immobilisation matrix to inert metal film.  (B) Cross-

section of flow cell to demonstrate the real-time event of analyte delivery to immobilised ligand via 

microfluidic system. As analyte interacts and binds to ligand, the increased mass applied to sensor 

chip effects local refractive index which is measured by photodetector array. (C) Example sensorgram 

of measured change in refractive index by photodiode array in real time.  

 

 



 

126 
 

5.1.1.3 Isothermal titration calorimetry 

 

Isothermal titration calorimetry (ITC) is a technique that can be used to determine 

the thermodynamic parameters of heat change during complex formation at 

constant temperature. The instrument is sensitive enough to characterise 

biomolecular interactions by detecting heat absorbed or released during a binding 

event (the change in binding enthalpy) to generate a complete thermodynamic 

profile relating to the parameters of the mechanism involved in binding to a 

biomolecule, this includes enthalpy changes, binding affinity/association constant 

and stoichiometry (Freyer & Lewis, 2008). As changes in heat or enthalpy occur in 

almost all chemical and biochemical interactions, the method can be used for a wide 

range of application such as antibody-antigen (Yamashita et al., 2019), ligand-protein 

(Bronowska, 2011), nucleic acid-protein (Kutnowski et al., 2019) small 

molecule/drug-protein (Marzabadi et al., 1996) interactions. 

Commonly used techniques such as ELISA or SPR, as mentioned above, often require 

the modification of the targeted biomolecule (with enzyme or affinity tags). These 

manipulations can perturb biological functionality of the targeted biomolecule which 

can cause detrimental effects on measured affinity interactions. Another 

characteristic related to these methods is the prerequisite of physically attaching the 

target molecule to a surface before characterising biomolecular interactions. This 

stipulation can result in unfavourable orientation or positioning of the target 

molecule on the solid phase prompting difficult to access active sites and causing a 

decrease in measured biomolecular interactions (Doyle, 1997). In comparison, ITC 

can characterise binding interactions with unmodified forms of the biomolecule in 

solution and is not affected by the drawbacks mentioned above.  

The ITC instrument consists of two cells (sample cell and reference cell) that are 

designed with efficient thermal conducting material and surrounded by an adiabatic 

jacket to regulate consistent temperatures. To measure heat change during 

biomolecular interactions at constant temperature the instrument is based on a cell 

feedback system where the measured differential heat effects of the reference cell 
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(typically filled with buffer or water) are detected and directs a feedback circuit to 

regulate temperature of the sample cell (containing macromolecule) in order to 

maintain isothermal conditions between the two cells. As the ligand is titrated into 

the sample cell by long-needled syringe in precisely known aliquots, the measured 

heat fluctuation (either increase or decrease depending on the nature of the 

reaction) of the sample cell results in an increase or decrease in power to maintain 

equal temperature to the reference cell. Exothermic reactions cause the feedback 

power to decrease to maintain reference cell temperature, while endothermic 

reactions lead to an increase in feedback power. Power output observations for 

temperature control of the sample cell during injections are plotted against time 

(min) which results in a series of peaks of heat flow. As the effect of heat change (and 

consequently, power output) corresponds to ligand and macromolecule interactions, 

the analysis of recorded heat flow over time can be used to calculate thermodynamic 

parameters of the interacting partners under study (Perozzo & Scapozza, 2004). 

ITC has been shown as a robust method for measuring molecular interactions and 

has several advantages compared to related affinity measurement techniques. The 

label-free characteristic of ITC enables measurements of binding interactions with 

unmodified native forms of the target molecule under study. This characteristic 

avoids possible immobilisation complications (physical attachment to solid surface 

can decrease performance metrics) as the experiment is performed in solution. 

Furthermore, by measuring interactions in solution, a wide range of biologically 

relevant conditions (pH, salt, temperature) can be tested. However, several design 

considerations need to be taken into account before experimentation. Both 

interacting components of the experiment require thorough purification to remove 

any contaminating enzymatic activity as measuring changes in heat or enthalpy of 

noncovalent interactions could apply to contaminants and could affect results of 

investigated event. Furthermore, large amounts of highly purified interacting 

biomolecules are required for the sample cell and titration, which can lead to time 

consuming expression and purification experiments and additional associated costs. 

However, this drawback has reduced considerably with the development of NanoITC 
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system (TA instruments) which reports higher sensitivity with low sample 

concentration (Nevola & Giralt, 2015). 

 

5.1.2 Experimental drawbacks of current techniques to measure antibody-antigen 

interactions 

 

ELISA, SPR, and ITC are commonly used techniques for the investigation into protein-

protein interactions, and have several useful qualities as well as certain limitations. 

Depending on the therapeutic or diagnostic setting, the individual techniques can be 

utilised as powerful tools to gain a wealth of knowledge. However, three constraining 

aspects of the discussed techniques compelled investigations into the development 

of a novel binding assay for the analysis of 7D12 and EGFR interactions:  

1. The requirement of sophisticated instrumentation to perform and/or analyse the 

experiment. The ELISA technique is less affected by this potential challenge as the 

only essential instrument required is a microplate reader for acquisition of the 

enzyme produced signal. Although microplate washers and microplate incubator 

shakers are useful instruments for reducing experimental run time and 

facilitating reproducibility between experiments, cost effective alternatives are 

available. As microplate readers are a standard instrument found within 

biological laboratories around the world and a broad range of substrates are 

available for the development of a variety of enzyme markers, the associated 

instrumental expenses are relatively low. However, ITC systems (such as 

NanoITC; TA instruments) and SPR based instruments such as BIAcore (GE 

Lifesciences) have high initial expenses of the instrument accompanied with 

maintenance costs and comprehensive technological working knowledge. 

 

2. The large amounts of purified ligand required for extensive investigations into 

protein-protein interactions. In terms of an experimental setup to investigate 
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affinity interactions between the binding partners 7D12 and EGFR, the receptor 

(EGFR) would require attachment to microplate for ELISA experiments, 

immobilisation on a sensor chip for SPR based analysis or highly purified 

concentrations of sEGFR for ITC methods. Multiple methods have been 

developed for the recombinant expression and purification of EGFR, and typically 

expression is reported in mammalian expression cell lines such as Chinese 

hamster ovary (CHO) cell lines (Cadena & Gill, 1993; Makabe et al., 2008) and 

Human embryonic kidney (HEK) cell lines (Wang et al., 2018). Additionally, 

extensive reviews into optimisation of CHO and HEK cell production of 

recombinant proteins have been published (Kim et al., 2012b; Thomas & Smart, 

2005). Furthermore, several studies have reported the recombinant expression 

of soluble EGFR (sEGFR) domains from baculovirus-infected Sf9 cells (Ferguson et 

al., 2000; Li et al., 2005). However, the development and optimisation of EGFR 

expression systems is often time-consuming and labour intensive. Alternatively, 

purified EFGR is available from various commercial suppliers, and numerous 

studies have used this route to acquire purified EGFR (Hong et al., 2010; Dubois 

et al., 2008; Prado et al., 2010). The options of optimising an EGFR expression 

system or purchasing large quantities of EGFR from commercial suppliers were 

not ideal choices during the preliminary stages of investigations into binding 

interactions of light activation of VHH 7D12 and contributed to the decision to 

develop a cell-based assay to measure antibody-antigen interactions.   

 

3. ELISA, SPR, and ITC, measure binding interactions in non-native environments 

using purified proteins. Although this parameter reduces variability and can 

improve repeatability between experiments due to finer control over 

experimental design, it does not give insight into non-specific interaction in a 

cellular environment in the presence of other cell surface antigens and can 

reduce the applicability of the measured biomolecule.   
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5.2 Results & discussion 

5.2.1 Development of on-cell assay to measure the interaction of an antibody to 

cell surface antigen 

 

To investigate interactions between 7D12 and EGFR, we designed an assay that 

would report on binding in a cellular environment in the presence of other cell 

surface antigens. Similar cell based methods have been designed for the quantitative 

detection of cell surface molecules, such as radio immunobinding assay (RIA), cell-

enzyme-linked immunosorbent assay (cELISA; Lourenço, & Roque-Barreira, 2010), 

live-cell ELISA (Jiang et al., 2014), and on-cell Western (Abadier et al., 2015). 

Similarities of the designed cell based assay can be made in relation to in-direct cell-

ELISA where a primary detection antibody is chosen for specific interaction with a cell 

surface protein and is identified by a secondary antibody linked to an enzyme marker 

for the production of a detectable signal (Lourenço, & Roque-Barreira, 2010). 

However, in these protocols the addition of the binding partner is often carried out 

at 4°C for 1 hour in ELISA buffer (PBS containing 1% bovine serum albumin) to 

minimize the endocytosis of cell surface molecules. Although these binding 

conditions may result in a higher concentration of bound biomolecules on the cell 

surface and consequently higher detectable signal, they are not performed under 

physiologically relevant conditions, which in certain aspects can reduce the efficacy 

of the experiment. For the cell based assay designed during this thesis, cells 

overexpressing the targeted cell surface receptor were grown in a 96-well plate 

before treatment of binding partner (containing a His-tag) in physiologically relevant 

conditions (37°C, complete medium). After incubation of binding partner and 

multiple washes to remove non-specific interactions, cells were fixed with the 

addition of formaldehyde solution. Bound biomolecules were detected by primary 

antibody (Anti-His tag) which was identified by secondary antibody linked to HRP for 

signal development (Figure 5.3). 
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Figure 5.3: On-cell assay for measurement of binding between antibody fragment to cell surface 

antigen. (1)  40,000 cells were seeded into each well of a 96-well plate. (2) Addition of His-tagged VHH 

in fresh complete medium is incubated for 10 minutes. (3) The antibody solution was replaced with 

3.7% formaldehyde solution for fixing the cells. (4) Non-specific interactions of cell surface antigens 

blocked with blocking solution. (5) Incubation with primary antibody specific for histidine tag. (6) 

Incubation with HRP-linked secondary antibody that targets primary antibody. (7) The substrate for 

HRP was added, and the cells were imaged for chemiluminescence by GelDoc XR+ system. 

 

The design of this cell-based assay placed a high priority on developing a readily 

accessible and economical method while retaining precision and reliability. Designing 

a technique in which the live cells provided the antigens needed for the assay, 

removed the requirement of obtaining purified antigen.  
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5.2.2 Optimisation of on-cell ELISA 

5.2.2.1 Preliminary investigation of VHH 7D12 binding interactions with A431 

carcinoma cell line 

 

The initial investigations of binding interactions of 7D12-EGFR by on-cell assay used 

human epidermal carcinoma cells A431 (Sigma-Aldrich), which express high levels of 

cell surface EGFR. Using standard tissue culture procedures (2.1.4) these cells were 

counted and diluted to 200 cells/µL, then 200 µL of this solution was seeded into a 

white 96-well plate (40,000 cells/well) and grown in complete medium overnight to 

80-90% confluence (16-20 hours, 37°C, 5% CO2). After desired confluence was 

observed, complete medium was replaced with serum-free medium to remove any 

detached cells and incubated (4 hours, 37°C, 5% CO2) to serum starve the cells. 

Dilutions of 7D12 and pcY mutants were separately prepared in a clear 96-well plate 

in complete medium and transferred in duplicates to the white 96-well plate 

containing cells via a multichannel pipette. The plate was incubated for 10 minutes 

(37°C, 5% CO2), then medium was removed, and non-specific binding removed by 

washing with serum free medium (200 µL to each well). To fix cells, 150 µL of 3.7% 

formaldehyde solution was added to each well and incubated at room temperature 

for 20 minutes. Formaldehyde solution was removed, and cells were washed 5 times 

(200 µl, 15 minutes, gentle rocking) with PBST (1x PBS with 0.1% Tween-20). Cell 

surface antigens that might bind non-specifically to primary antibody were blocked 

by incubating with 10% milk-PBST (100 µL/well) for 1 hour at room temperature with 

gentle rocking. The blocking buffer was removed, and 50 µL of primary anti-6X-HIS 

tag antibody solution was added and incubated at room temperature for 1 hour with 

gentle rocking. The primary antibody solution contained mouse anti-6x-His tag 

antibody (Thermo Fisher Scientific) at 1:500 dilution and 1% milk in PBST. Another 

five washes were performed with PBST to remove residual primary antibody, and 50 

µL of secondary antibody solution was added to each well and incubated at room 

temperature for 1 hour. The secondary antibody solution contained HRP-linked 

antibody (Anti-mouse, IgG, HPR-linked) at a dilution of 1:1000 in 1% milk and PBST. 
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Secondary antibody was removed, and cells in each well were washed five times with 

PBST (200 µL, 15 minutes, gentle rocking). Finally, 200 µL of SuperSignal 

chemiluminescent substrate (Thermo Scientific) was added and incubated for 10 

minutes at room temperature before plate imaging using BIORAD GelDoc XR+ (figure 

5.4). 

 

 

Figure 5.4: Cell-based assay experiments to assess the interaction of wt7D12 and three pcY mutants 

to EGFR on the surface of A431 cells. Chemiluminescence signal detected with wt7D12 and Y109pcY 

indicate affinity to EGFR while background signal from Y32pcY and Y113pcY demonstrate binding 

inhibition due to addition of pcY. Representive image from three experiments in duplicates. 

 

Using the BIORAD GelDoc XR+ system to detect chemiluminescence signal produced 

by HRP linked secondary antibody resulted in an increase of observed signal in 

relation to increasing concentration of wt7D12 (0-100 nM). The initial results from 

the cell-based assay demonstrated inhibition of binding affinity between EGFR and 

7D12 when positions Y32 and Y113 are replaced with photocaged tyrosine. However, 

pcY incorporation into position Y109 of 7D12 resulted in similar detected signal to 

wt7D12. 

Note that the tyrosine residues at positions 32, 109 and 113 were selected after 

careful analysis of the crystal structure of 7D12-EGFR domain III complex (PDB; 4KRL). 

These residues were in close proximity to the binding interface and it was theorised 

that photocaging these positions would have inhibitory effect on 7D12-EGFR binding. 

However, it was also observed that while the tyrosine at position 109 was within 
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close proximity of the binding interface, the orientation of the amino acid was 

parallel to the EGFR surface and pointing away from the binding interface, and hence 

its significance in 7D12-EGFR binding were uncertain. The results in Figure 5.4 

indicate that the incorporation of pcY into position Y109 does not interfere with 

binding interactions of 7D12-EGFR.  

 

5.2.2.2 Adjusting on-cell assay to reduce background signal 

 

Although clearly defined chemiluminescence signals were detected in Figure 5.4, the 

required exposure time to detect chemiluminescence signal using GelDoc XR+ system 

was relatively high (>60 seconds). In Western blot experiments, high exposure times 

can help in the generation of a clear band. However, high exposure can cause an 

increase in background signal (Mahmood, & Yang, 2012).  

To minimise background signal in future cell-based assays, several amendments were 

made to the protocol, such as reducing the number and incubation time for specific 

washing steps. The washing steps after cell fixation and primary antibody incubation 

were reduced from 5 washes for 15 minutes each to 3 washes for 5 minutes each. 

Wash steps after secondary antibody were carried out the same number of times (5 

washes) but wash times were reduced to 5 minutes. These small changes in the 

protocol resulted in higher signal detection and a reduction of exposure time (<5 

seconds) while not compromising the detected signal from the well where 7D12 is 

absent (data not shown). Further experimentation to evaluate optimum dilutions of 

primary and secondary antibodies resulted in no changes to the protocol (primary 

antibody; 1:500, secondary antibody; 1:1000), but illustrated the effect of varying 

either detection antibody can have on produced chemiluminescence signal 

(Appendix Figure A.2).  
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5.2.2.3 Investigations into cell line serum starvation  

 

As previously discussed, one of the aims of developing this cell based binding assay 

was to replicate (to an extent) physiologically relevant conditions to gain a more 

complete biological understanding of 7D12 binding to EGFR. The on-cell assay 

designed so far differed to similar binding assays that use isolated antigens to test 

binding interactions (ELISA, SPR, and ITC), and a different approach was taken to 

binding assays that are cell based (cELISA, live-cell ELISA, and on-cell Western) in 

which antibody-antigen incubation steps are often performed at 4°C in binding 

buffers. The methods used so far have required serum starvation of A431 cells before 

testing 7D12-EGFR interactions; in this section, we investigated the implications of 

removing the serum starvation step from the protocol.  

Serum starvation is a frequently used technique in molecular biology and is often 

considered as a routine method to be applied to cells before experimentation. 

However, the inconsistencies in the literature in defining standardised terminology, 

and methodology have resulted in ambiguous descriptions of the correct procedure 

to follow (Pirkmajer & Chibalin, 2011). Commonly, serum starvation is used as a 

method to synchronise proliferating cells (to enter G0/G1 phase from cell cycle) to 

promote homogeneity (Cooper, 2003) or as a method to completely remove serum 

as an experimental precaution, as serum is a poorly defined complex that could have 

undesirable interference with experimental results (Mannello & Tonti, 2007). It has 

also been used to study metabolic cellular stress responses (Levin et al., 2009) and 

apoptosis (Hasan et al., 1999) however serum starvation duration and serum 

concentration need to be determined for each cell line as starvation can elicit 

complex and unpredictable cellular responses which could subsequently interfere 

with experimental results and conclusions (Eichelbaum et al., 2012; Grada et al., 

2017).  

To address this important issue, an on-cell assay was performed with and without 

serum.  The experimental design was similar to the methods described above. Human 

epidermal carcinoma cells A431 were seeded into a white 96-well plate (40,000 
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cells/well) and grown in complete medium overnight to 80-90% confluence (16-20 

hours, 37°C, 5% CO2). When 80-90% confluence was observed, complete medium 

was replaced with either fresh complete medium or serum free medium and cells 

were incubated for 4 hours (37°C, 5% CO2). After incubation, a range of 

concentrations of wt7D12 (5, 10, 20, 50, 100, 200 nM) were diluted in either 

complete medium or serum free medium on a separate plate before being 

transferred to cells and incubated for 10 minutes (37°C, 5% CO2). Following the 7D12 

treatment step, the standard protocol was adopted, and chemiluminescence was 

imaged by GelDoc XR+ system and quantified by CLARIOstar plate reader (Figure 5.5).   

 

 

Figure 5.5: On-cell assay assessing wt7D12 affinity to EGFR on A431 cells treated with and without 

serum starvation. Higher chemiluminescence signal from serum starved cells demonstrates 

increased affinity of wt7D12 to EGFR when cells are pre-treated with serum starvation. Representive 

image from three experiments in duplicates 

 

The on-cell assay resulted in higher overall chemiluminescence signal detected from 

serum starved A431 cells incubated with wt7D12. Interestingly, differences of 

detected signal between starved and non-starved at higher concentrations of 

wt7D12 (100 and 200 nM) resulted in a 15-20% decrease in signal in the latter, while 

lower concentration of wt7D12 (5, 10, 20, 50 nM) demonstrated a decrease of up to 

50%. The reasons for the apparent higher binding affinity of wt7D12 to serum starved 

cells remain unclear. However, a hypothesis to explain this occurrence is that the 

fetal bovine serum used in complete medium contains epidermal growth factor (EGF) 
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or other unknown analytes that may compete with 7D12 for binding to EGFR. 

Another possibility is that the process of serum starvation on A431 cells causes 

metabolic stress on the cells as they attempt to adjust to changing conditions (Levin 

et al., 2009) by inducing signal transduction pathways which could influence cell 

surface EGFR activity.  Although a small decrease in binding affinity was observed 

with non-starved A431 cells, we performed further experimentation using serum as 

this was physiologically relevant.   

The results from this section of the thesis were used to finalise the on-cell assay 

methodology listed in the methods chapter (2.1.16). All further on-cell assay 

discussed in this chapter follow the finalised protocol unless specified.  

 

5.2.4 Evaluation of the on-cell assay efficacy with control experiments 

5.2.4.1 Negative EGFR cell line control 

 

From the initial experimental results and following optimisation of the on-cell assay, 

the measured antibody-antigen interactions indicate positive correlation between 

7D12 binding affinities to EGFR on the surface of A431 cells. However, as the assay 

has not tested 7D12 binding affinity to alternative control cell lines, it is unknown if 

the produced chemiluminescence signal is caused by non-specific binding of 7D12 to 

the surface of A431 cells.  

To confirm 7D12 specificity to EGFR, an EGFR-negative human breast 

adenocarcinoma cell line (MDA-MB-231) was selected for further analysis. MDA-MB-

231 cell line is triple-negative breast cancer cell line (Chavez et al., 2010) that lacks 

the three commonly identified molecular markers that are used for the classification 

of breast cancer tumours (expression of estrogen receptor and progesterone 

receptor, and amplification of HER2). In a study reviewing seventeen commonly used 

breast cancer cell lines (Subik et al., 2010); MDA-MB-231 cell line demonstrated basal 

levels of EGFR which makes it an ideal candidate for 7D12 binding comparison studies 
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with EGFR overexpressing cell line A431. It was hypothesised that in the event that 

7D12 is specific to EGFR interactions, a significant increase in on-cell assay 

chemiluminescence signal would be observed with A431 cells compared to MDA-MB-

231. However, as the basal level of EGFR is present on MDA-MB-231 cell surface, it 

was expected that detection of minor signal would occur. 

To measure and compare 7D12 binding affinities to A431 and MDA-MB-231, the cell 

lines were seeded into a white 96-well plate (40,000 cells/well) and grown in 

complete medium overnight to 80-90% confluence. Once 80-90% confluence was 

observed, the on-cell assay experimental procedures were followed (Methods 

2.1.16). The wt7D12 cell surface interactions were measured by chemiluminescence 

signal on CLARIOstar (BMG labtech) plate reader and imaged by GelDoc XR+ system 

(Figure 5.6). 

 

 

Figure 5.6:  Experimental control of on-cell assay determining specificity of wt7D12 to EGFR on 

positive cell line (A431) and negative cell line (MDA-MB-231). Significant increase in 

chemiluminescence signal detected on EGFR positive cell line indicates that VHH 7D12 has higher 

affinity to A431 cells.  Representive image from three experiments in triplicates. 

 

The observed chemiluminescence signal produced from the detection of wt7D12 

demonstrated a clear difference between the two carcinoma cell lines. Similar to 

previous investigations of wt7D12 binding interactions to A431, the signal observed 

increased sharply until saturation at approximately 100 nM. On comparison with 

wt7D12 binding to MDA-MB-231, a significantly lower chemiluminescence signal 
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(approximately 70-80% lower than for A431 cells) was observed. These results are 

consistent with the proposed hypothesis that a significant decrease would be 

observed between A431 and MDA-MB-231; however, due to basal levels of EGFR 

present of MDA-MB-231 cell surface, minor chemiluminescence signal would be 

detected. These findings indicate that wt7D12 is specific to EGFR on the cell surface 

of A431 and that the produced chemiluminescence signal is a direct response to 7D12 

interactions with EGFR. 

 

5.2.4.2 Negative VHH control 

 

The previous section described investigations into the specificity of 7D12 binding 

interactions with EGFR by comparing measurements of bound 7D12 to two 

carcinoma cell lines; A431 that overexpresses EGFR and MDA-MB-231 that has basal 

levels of EGFR. We next wanted to explore binding interactions of a non-specific his-

tagged VHH antibody fragment to A431 cell surface, to evaluate if the observed signal 

of VHH 7D12 to A431 is due to specific interactions between the VHH and EGFR and 

is not as a consequence of some other property of the surface of A431 cells. The 

negative VHH antibody fragment used in this binding assay was briefly discussed in 

chapter 3, the anti-RR6 (azo-dye reactive red), VHH-R2 (PDB: 1QD0) was selected due 

to its frequent use in the literature as a negative control (Van Der Meel et al., 2012). 

The VHH R2 is generated against the hapten azo-dye Reactive Red (RR6) small 

molecule (Spinelli et al., 2000) and has no reported affinity to EGFR. In the event that 

VHH R2 does not interact with A431 cell surface proteins, only a background signal 

would be expected.  

As discussed in chapter 3, the negative control VHH-R2 was expressed and purified 

using the same methodology as wt7D12. An on-cell assay experiment was designed 

to analyse 7D12 and R2 binding affinities to EGFR positive cell line A431. On-cell assay 

protocol listed in methods (2.1.16) was followed where A431 cells were seeded and 

grown in a 96-well plate for the analysis of a range of concentrations of 7D12 and R2. 
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Cell surface interactions were measured by chemiluminescence signal on CLARIOstar 

plate reader and imaged by GelDoc XR+ system (Figure 5.7). 

 

 

Figure 5.7: Experimental control of on-cell assay determining specificity of his-tagged heavy chain 

only antibody fragments to A431 cell surface. The assay demonstrates background interaction of 

negative VHH R2 compared to VHH 7D12. Representive image from three experiments in triplicates. 

 

The observed results in Figure 5.7 supports the suggested hypothesis that the 

chemiluminescence signal is due to the specific targeted binding of 7D12 to EGFR on 

A431 cells, and not due to non-specific binding of a heavy-chain only antibody 

fragments to EGFR or the surface of A431 cells. Figure 5.7 shows that the 

chemiluminescence signal for wt7D12 increases until saturation at 100-200 nM, 

which is in close agreement with previous on-cell assays. However, the negative VHH-

R2 has near background level of signal, indicating minimal binding to EGFR or A431 

cell surface.  

 

5.2.5 Restoring EGFR binding affinity to photocaged VHH 7D12 

 

The preliminary results shown in Figure 5.4 demonstrated successful inhibition of 

7D12 binding to EGFR (on A431 cell surface) with the addition of genetically 

incorporated pcY in two positions (Y32TAG and Y113TAG). In contrast, the site-
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specific encoding of pcY in position Y109TAG appeared to have only minor effects on 

binding inhibition and possible reasons relating to this observation were discussed 

earlier in this chapter. To investigate the light promoted restoration of binding 

affinity of 7D12 mutants containing pcY, an on-cell assay was designed to measure 

interactions of wt7D12 and the three amber mutants containing pcY (Y32, Y109, and 

Y113) to A431 cell surface EGFR under physiologically relevant conditions, before and 

after decaging. Similar methods were used in de-caging VHH 7D12 (wt and pcY 

mutants) with 365 nm light, as described in chapter 4 (2.1.15). Photocaged and de-

caged samples were then applied to an on-cell assay to identify if binding has been 

restored for photocaged samples upon exposure to light (Figure 5.8). 

The observed chemiluminescence signal in Figure 5.8 demonstrated inhibition and 

the subsequent photo-activation of 7D12 with the site-specific incorporation of pcY 

at positions Y32 and Y113. Similar to the preliminary data (Figure 5.4), before 

irradiation with 365 nm light, wt7D12 and Y109pcY exhibited similar binding affinities 

to EGFR. However, when photocaged tyrosine is substituted into position Y32 or 

Y113, the binding to EGFR is blocked. It is observed that pcY at position Y32 shows 

significant inhibition of EGFR binding up to 500 nM, which is restored to near 

wildtype levels when de-caged by irradiation with 365 nm light. It is also shown that 

pcY at position Y113 is slightly less effective at inhibiting binding to EGFR compared 

to position Y32. However, the chemiluminescence signal is significantly lower than 

wildtype and signal is restored to near wild-type levels upon irradiation with 365 nm 

light. This experiment demonstrates an elegant and robust method of photocontrol 

over an antibody fragment with a single amino acid site replacement to a photocaged 

analogue. Further research invested into computational methods to model 7D12-

EGFR interaction would assist in selecting key residues for mutational studies, 

expediting the discovery of such photoactive antibody fragments. 
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Figure 5.8: On-cell assay binding experiments to assess the interaction of EGFR with wt7D12 and 

amber mutants containing site-specifically incorporated pcY. On-cell assays performed on the surface 

of A431 cells demonstrates that the presence of pcY at positions 32 and 113 in 7D12 inhibits its binding 

to EGFR. However, Y109pcY mutant shows binding affinity similar to wt7D12. The binding of Y32pcY 

and Y113pcY mutants are restored upon irradiation with 365 nm light. Representive image from three 

experiments in duplicates.  
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5.2.6 Determining binding affinity of VHH 7D12 to EGFR using on-cell assay 

 

To determine the parameters involved in binding affinity/association of 7D12 to EGFR 

and subsequent photocaging and photo-deprotection effects on inhibited 7D12, an 

on-cell Western was designed. 

A similar experimental design was used as previously described (5.2.5) an increased 

number of data points. Nine concentrations (between 0.5 – 500 nM) were chosen to 

give a concentration range over 4 orders of magnitude and experiments were 

performed in triplicates (full GelDoc XR+ data provided in Appendix Figure A.2). The 

measured chemiluminescence intensity was quantified using CLARIOstar plate 

reader and plotted against log(concentration) of 7D12. The data trend was fitted to 

sigmoidal nonlinear curve using graphpad data analysis and graphing software 

resulting in the generated graphs (Figure 5.9) and calculated KD values (Table 5.1). 

The fitted sigmoidal nonlinear curves of the quantified chemiluminescence intensity 

of wt7D12 (with and without irradiation) showed an increase in signal from 5 to 100 

nM concentration of VHH followed by saturation of chemiluminescence signal at 

higher concentrations. For 7D12 with the addition of pcY in positions Y32 and Y113 

(Y32pcY and Y113pcY), near background chemiluminescence signal was observed up 

to 500 nM when samples were not irradiated, demonstrating the inhibition of 7D12-

EGFR interactions due to the presence of pcY at these two positions. The binding of 

Y32pcY and Y113pcY was recovered to almost wt7D12 levels upon sample irradiation 

with 365 nm light indicating light-mediated control over antibody-antigen 

interactions. Slight reduction in chemiluminescence intensity and saturation of 

Y109pcY without irradiation was observed when compared to the irradiated version, 

which could indicate minor binding interference with the addition of pcY in position 

Y109. 
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Figure 5.9: On-cell assay analysis to determine the binding kinetics of 7D12 (wt and pcY mutants) to 

EGFR in the presence and absence of 365 nm light. Chemiluminescence intensities obtained from cell 

based binding experiments for wt7D12, Y32pcY, Y109pcY and Y113pcY, before and after irradiation 

with 365 nm light, were quantified using CLARIOstar plate reader and plotted against 

log(concentration) of 7D12. Fitted trend line was plotted as sigmoidal nonlinear equation using 

graphpad data analysis and graphing software. 

 

Table 5.1: Parameters obtained after fitting the data to the sigmoidal nonlinear 
equation using graphpad. 

Sample Imax KD (nM) R2 

wt7D12 with 
irradiation (+) 

5.8 (±0.28) x107 20 (±1.8) 0.98 

wt7D12 without 
irradiation (-) 

5.8 (±0.33) x107 23 (±2.6) 0.97 

Y32pcY with 
irradiation (+) 

5.0 (±0.17) x107 37 (± 2.6) 0.99 
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Y32pcY without 
irradiation (-) 

N/A N/A N/A 

Y109pcY with 
irradiation (+) 

4.9 (±0.14) x107 27 (±1.6) 0.99 

Y109pcY without 
irradiation (-) 

4.3 (±0.12) x107 31 (±1.5) 0.99 

Y113pcY with 
irradiation (+) 

4.4 (±0.14) x107 38 (±2.6) 0.99 

Y113pcY without 
irradiation (-) 

N/A N/A N/A 

 

The curve fitting parameters generated by graphpad as a result of plotting the 

quantified chemiluminescence intensity against log(concentration) of 7D12 are listed 

in Table 5.1. The estimated binding affinity of 7D12 to EGFR on the surface of A431 

cells was reported by the equilibrium dissociation constant (KD), which can be used 

to evaluate the strengths of biomolecular interactions. The curve fitting parameters 

resulted in an estimated wt7D12 (before irradiation) KD of 22 nM (± 2.4). Comparable 

7D12 affinity measurements calculated with different techniques have been 

described in the literature. SPR analysis of 7D12 interactions with sEGFRd3 resulted 

in a reported KD of 47 nM (± 3.6; Schmitz et al., 2013) and in another study, 125I‐

labelled 7D12 affinity to live A431 cells had a reported KD value of 25.7 nM (Roovers 

et al., 2011).  

The slightly reduced affinity of Y109pcY before irradiation (compared to wt7D12) 

demonstrated in Figure 5.9 is consistent with affinity values reported in Table 5.1. 

The reduced KD of 30.7 nM (± 2.3) indicates weaker interactions with EGFR likely due 

to the presence of pcY. Upon irradiation improved affinity is reported with a KD value 

of 23.9 nM (± 4.6). For Y32pcY and Y113pcY before irradiation, near background 

levels of chemiluminescence were detected up to 500 nM due to pcY mediated 

binding inhibition to EGFR, which subsequently prevented affinity estimations. 

However, upon irradiation with 365 nm light and the restoration of binding, Y32pcY 

and Y113pcY reported KD measurements of 29.4 nM (± 8.1) and 27.3 nM (± 10.6) 

respectively.  
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This chapter has illustrated extensive optimisation of the on-cell assay with 

investigations into effects of serum starvation, confirming validity of experimental 

design with control studies on negative cell lines and heavy-chain only antibody 

fragments, and small refinements to the protocol (reduced washing steps and 

investigated detection antibody dilutions) to reduce background signal. These 

experiments have contributed to the development of a robust, inexpensive and 

straightforward new tool that offers a highly sensitive alternative to other commonly 

used assays for the qualitative and quantitative data analysis of biomolecule 

interactions with cell surface antigens. 
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CHAPTER 6                                                         

Light dependent real-time delivery of 

fluorophores to the surface of live cells 
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6.1 Introduction  

 

With the initial development and optimisation of efficient periplasmic expression 

platforms, to the comprehensive characterisation of suppressor plasmids for efficient 

site-specific encoding of photocaged ncAAs into recombinant proteins, to the 

subsequent establishment of in vitro methods to investigate biomolecular 

interactions, this thesis has demonstrated the generation of heavy chain only 

antibody fragments (VHH) that depend on light-mediated activation to bind to a cell 

surface antigen.  

The previous chapter described the development of an in vitro live-cell assay to 

evaluate mediated antibody-antigen binding. Using this assay, we demonstrated 

light-dependent activation of VHH 7D12 to EGFR when o‐nitrobenzyl‐O‐tyrosine 

(photocaged tyrosine or pcY) was incorporated at either Y32 or Y113 position in 

7D12. Numerous control experiments were performed to scrutinise the assay 

validity, leading to the development of a robust, economical and straightforward 

technique that offers highly sensitive analysis of antibody-antigen interactions.  

An intrinsic characteristic of a VHH antibody fragment is the ability for enhanced 

tissue permeability compared to other antibody formats due to the comparatively 

low molecular mass (12-15 kDa). However, these therapeutic molecules and other 

fragmented antibody formats suffer in their ability to elicit an immune response and 

the subsequent triggering of antibody dependent cellular cytotoxicity (ADCC) due to 

the lack of an Fc region, which can be seen as a potential drawback to the therapeutic 

value of these antibody formats. To circumvent the problem of reduced cell 

cytotoxicity of such antibody formats, researchers have developed methods to 

increase the cytotoxicity of the antibodies with the additional linkage of cytotoxic 

drugs. Antibodies and antibody fragments linked to cytotoxic drugs are called 

antibody-drug conjugates (ADC). 

A key mechanism essential to several cancer immunotherapeutics (especially ADCs) 

is the process of receptor mediated internalisation of the therapeutic antibody and 
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delivery of a cytotoxic drug to the intracellular target in the case of ADCs. Although 

the developed in vitro cell based assay in this thesis could be utilised as a powerful 

tool for revealing antibody-antigen interactions, minimal insight is gained on the 

dynamic biological processes as a result of 7D12 binding to surface EGFR. To capture 

such dynamic biological processes, receptor-mediated antibody internalisation, and 

to investigate delivery of 7D12 bound molecules to the intracellular environment of 

carcinoma cell lines, we designed live-cell microscopy experiments.  

 

6.1.1 Receptor-mediated internalisation 

 

Cellular internalisation of external material plays an essential role in a cells ability to 

communicate with its environment. Small molecules like ions and organic molecules 

can pass through the plasma membrane (PM) by passive diffusion, dedicated 

channels, or ion pumps. The control over the movement of larger biomolecules in 

and out of the cell requires the alternative biological processes of endocytosis 

(internalisation to intracellular environment), and exocytosis (release to extracellular 

environment). Several variations of endocytosis exist, including phagocytosis, 

macropinocytosis, clathrin-mediated endocytosis (CME), clathrin-independent 

endocytosis (CIE), and caveolin-mediated endocytosis (Doherty & McMahon, 2009). 

These important processes have unique functions and have been shown to be critical 

cellular in functions, such as the regulation of cell membrane homeostasis, migration, 

nutrient uptake, and signal transduction (Scita & Di Fiore, 2010; Sigismund et al., 

2012). Due to the internalisation characteristic of endocytosis, receptor related 

endocytic properties have become a key determinant in the selection of antigens for 

targeting by ADCs. Of the numerous pathways for endocytic entry of proteins and 

lipids at the plasma membrane, CME has been the most extensively studied and is 

becoming increasingly understood. This vesicular transport event describes the 

endocytosis and recycling of receptors via the formation of clathrin-coated pits 

(David et al., 1996) followed by a subsequent scission to form clathrin-coated vesicles 

(Sorkin, 2004). CME vesicles undergo fusion with early endosomal sorting 
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compartments (Schmid, 1997) where the endosome is either directed to recycling 

compartments or matures to a late endosome which fuse to the lysosome 

(Thottacherry et al., 2019).  

Although simplified in certain aspects, the aim of this overview is to provide a basic 

description the of clathrin-mediated endocytosis, which is involved in the 

internalisation of activated EGFR (Lemmon & Schlessinger, 2010). The ErbB family of 

receptors are receptor tyrosine kinases (RTKs) and include HER1 (EGFR, or ErbB1), 

HER2 (ErbB2), HER3 (ErbB3), and HER4 (ErbB4). The activation of ErbB RTKs by growth 

factor ligands results in various downstream signalling cascades, the downregulation 

of the receptor and subsequent intracellular receptor and ligand degradation (Sorkin 

& Goh, 2009). In fact, it is the misregulation of downstream signalling transduction 

which can cause uncontrolled cellular division and tumour proliferation in carcinoma 

cells overexpressing EGFR. Upon binding to EGF, EGFR forms activated clusters due 

to conformational changes and is subsequently internalised by both the CME and CIE 

endocytic pathways. However, at low physiological concentrations of EGF, CME is 

considered the main internalisation pathway (Sorkin & Goh, 2009; Wiley, 1988). The 

CME vesicular transport event of EGFR endocytosis from the plasma membrane 

describes the internalisation of EGFR clusters via the formation and scission of 

clathrin-coated pits to clathrin-coated vesicles which fuse with early endosomes and 

sorting compartments. Receptors are then either recycled back to the plasma 

membrane or directed for degradation in the lysosome (Figure 6.1). Visualisation of 

7D12-EGFR endocytosis using live-cell microscopy experiments can in principle 

provide vital information about 7D12 mediated delivery of small molecules to cancer 

cells. (Figure 6.1).  
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Figure 6.1: Diagram overview of activated EGFR clathrin-mediated endocytosis. EGFR can function on 

the plasma membrane as monomer or pre-dimer, and upon binding to EGF, the receptors form 

clusters in budding invagination pits of the plasma membrane. This results in a clathrin-coated pit 

which is cleaved from the plasma membrane forming clathrin-coated vesicle. After uncoating clathrin, 

the vesicle fuses to a sorting endosome where it is directed to the lysosome for degradation, receptor 

recycling or other pathways.  

 

6.1.2 Live-cell microscopy design considerations 

 

Live-cell imaging has become an integral part of modern biological and medical 

sciences and provides researchers with a wide range of tools to investigate dynamic 

processes occurring at the molecular, cellular or whole organism level in living 

systems. Development of live-cell imaging techniques has transformed the way 

biologists study cellular dynamics, proteins, and a plethora of biological processes 

and molecular interactions. Observation and measurements of dynamic changes at 
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the cellular level in a live cell setting can provide greater insight into biological 

interactions when compared to snapshots of fixed cells at a particular time point. The 

use of live or fixed cells in imaging require numerous experimental considerations 

and processing procedures, and have both advantages and disadvantages depending 

on the experiment. 

Methods containing fixation procedures often suffer from the fact that the fixation 

processes alter the structure of the surface molecules that might be targets of 

investigation (Schnell et al., 2012) and cellular conformation may be changed. 

Furthermore, as the cells are preserved at a particular time point, less functional 

information of dynamic processes is attained. Despite several disadvantages, cellular 

fixation is often required because of limitations imposed by imaging experiment and 

apparatus. Furthermore, benefits such as greater preservation and stability of 

cellular structures, and minimisation of cellular movement and sample degradation 

can be preferential factors contributing to experimental design. 

Compared to fixed cell imaging, capturing meaningful and physiological relevant 

microscopy data across space and time of live-cell imaging experiment is often 

challenging because of compromises between image quality and maintaining cell 

health. This compromise results in a fine balance between minimising phototoxicity 

and photobleaching (while maintaining a useful signal-to-noise ratio), and providing 

suitable environmental conditions for cell replication and viability. While the 

generation of images that are both biologically relevant and aesthetically pleasing 

are often regarded as a high priority in experimental design, the process of imaging 

the biological samples should not compromise cellular health. Several factors that 

contribute to the maintenance of cellular health (such as physiological temperature 

control, pH, humidity, osmolality, and media composition) should be actively 

observed, maintained and/or optimised as required by the experiment (Cole, 2014). 
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6.1.3 Fluorescent tools for live-cell imaging 

 

The use of fluorescent tools to aid in the visualisation, probing, tracking, and 

quantifying of cellular processes has become well-established. Typically, a small 

molecule fluorophore or fluorescent protein (FP) is linked to the biomolecule of 

interest for imaging purpose. The genetic encoding of FPs allows for the generation 

of fluorescent labels within the cell using transgenic approaches, or alternatively the 

FP can be fused to recombinant proteins ensuring a 1:1 ratio of expressed protein to 

fluorophore. Although extensive optimisation in optical and biochemical properties 

of FP have resulted in a diverse range of available fluorescent proteins, they are large 

(typically around 25 kDa) compared to organic fluorophores (~1 kDa) and can perturb 

stability, function and localisation of labelled protein. Alternatively, the generation 

of small molecule fluorescent dyes by organic synthesis has resulted in numerous 

organic dyes that span the visible wavelength range. During this chapter, several 

small molecule fluorophores (Table 6.1) were chemically conjugated to VHH 7D12 

and its photocaged mutants to investigate their binding and internalisation. 

 

Table 6.1: List of small molecule fluorophores used in this study. 

Fluorophore Abs 
(nm) 

Em  
(nm) 

Characteristics 

Protonex Green 500 443 502 pH-sensitive fluorescence. Non-
fluorescent at physiological pH, 

increasing fluorescence as pH decreases. 

BODIPY-FL 505 513 pH-insensitive fluorescence. Narrow 
spectral bandwidth. 

pHrodo Green 505 525 pH-sensitive fluorescence. Non-
fluorescent at physiological pH, 

increasing fluorescence as pH decreases. 

BODIPY-TMR-X 542 574 pH-insensitive fluorescence. 

Alexa Fluor 555 556 575 pH-insensitivity fluorescence between 
pH 4 to 10. 
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Brightest fluorescence output compared 
to spectrally similar dyes. 

pHrodo Red 560 585 pH-sensitive fluorescence. Non-
fluorescent at physiological pH, 

increasing fluorescence as pH decreases. 

Protonex Red 600 575 597 pH-sensitive fluorescence. Non-
fluorescent at physiological pH, 

increasing fluorescence as pH decreases. 

Atto 647N 647 661 pH-insensitivity fluorescence between 
pH 2 to 11. 

 

These fluorescent dyes often demonstrate enhanced optical properties compared to 

fluorescent proteins with improved brightness, photostability and narrower 

wavelength bandwidths (Toseland, 2013). However, as methods to link these 

reactive dyes typically involve attachment to biomolecule via specific functional 

groups, such as amine, thiol, azide, tetrazine functional groups, problems can emerge 

with the loss of site-specific control and the number of fluorophores conjugated to 

the biomolecule resulting in heterogeneous mixtures containing a range of dye to 

protein ratios (Lu & Zenobi, 1999). For example, the widely used amine reactive 

fluorophores for the modification of biomolecules typically target lysine residues in 

the protein. However, lysine residues frequently play an important role in protein 

structure, such as formation of salt bridges with a negatively charged aspartate or 

glutamate residues to increase protein stability (Barnes, 2007). Furthermore, lysine 

residues are commonly located in protein active/binding sites. These contributing 

factors can affect function and stability of labelled proteins.  
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6.2 Results & discussion 

6.2.1 Optimisation of live-cell microscopy experimental procedures 

 

Initial investigations were performed using a plate-based endpoint assay, in which 

live cells were incubated with the labelled antibody fragment 7D12 and amber 

mutants for set time points before imaging. These experiments enabled high-

throughput analysis of several conditions and facilitated the experimental 

troubleshooting required before real-time observations of 7D12-EGFR interactions.  

One of the mostly versatile and commonly used techniques for labelling proteins is 

to use chemical groups that react with primary amines (-NH2). These amines exist in 

the side-chain of lysine amino acid residues and at the terminus of the protein. To 

confer fluorescence to VHH 7D12, labelling reactions were carried out using N-

hydroxysuccinimide ester (NHS ester) containing synthetic fluorescent dye that can 

react with primary amines  in 7D12 under slightly basic conditions (pH 8) to form 

stable amide bonds. Typically, a labelling reaction would consist of 37.5 µL solution 

of antibody fragments (100 µM), 51 µL of water, 1.5 µL of 10 mM dye in DMF and 10 

µL of 1M NaHCO3 (pH 8).  The reaction mixture was incubated at 25°C for 1 h with 

shaking (600rpm). To remove excess fluorophore, the labelled samples were applied 

to Zebra desalting columns (MWCO 7000 Da). To ensure that all the unbound 

fluorophores was removed, desalting was performed three times for each sample. 

The initial plate-based microscopy experimental design involved seeding 300,000 

A431 cells in a 24-well plate that were grown until 80% confluence (16-18 hours, 

37°C, 5% CO2). Once desired confluence was reached, cells were washed three times 

with imaging medium and 297 µL of fresh imaging medium was added to each well. 

3 µL stocks of 100x labelled VHH 7D12 were added to each well making the total 

volume 300 µL, then 24-well plate was incubated for 10 minutes (37°C, 5% CO2) and 

washed with fresh imaging medium before acquiring data. Cells were imaged on a 

Zeiss Axiovert 200M microscope at 37°C using Zeiss AxioVision software. Brightfield 

and fluorescence images were captured using a 10x objective lens and a Zeiss 

AxioCam MRm CCD camera. Preliminary microscopy analysis was performed at 10x 
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magnification (results not shown) with 200nM concentration of 7D12(wt), Y32pcY, 

Y109pcY and Y113pcY labelled with BODIPY-FL. The GFP filter set (Zeiss cube #13 

dichroic, Ex = 472 ± 15 nm, Dichroic = 495 nm (Zeiss), Em = 520 ± 17.5 nm) was used 

to excite and collect BODIPY-FL fluorescence. The collected fluorescence signal from 

these experiments was achieved from 2000ms of exposure, which can be considered 

relatively high depending on imaging frequency and total time period of the 

experiment. In the case of the designed plate-based experiment, high exposure time 

could result in false-positive signal detection from autofluorescence and have a 

negative influence on cellular health. The acquired fluorescent images using 10x 

objective were processed by Fiji (ImageJ) and demonstrated poor signal-to-noise 

ratio of VHH 7D12 (and three photocaged mutants) to A431 cell surface EGFR. 

Difficulties in differentiating well defined cells in acquired microscopy data resulted 

in the decision to increase the objective lens magnification.  

Similar methodology was applied in the design of further plate-based microscopy 

experiments to test a higher magnification objective lens (20x). Initial investigations 

(results not shown) demonstrated similar results to preliminary data, where minimal 

fluorescence signal was detected. As the objective lens both illuminates the sample 

and collects photons emitted from fluorescence to generate the microscopy image, 

increasing the objective lens magnification decreases image intensity as smaller 

pixels generally collect fewer photons (Waters, 2009). To compensate for intensity 

loss, higher exposure times (20 seconds) were required to capture BODIPY-FL 

fluorescence. Although the resulting microscopy images (Figure 6.2) demonstrated 

higher detectable fluorescence, an increase in autofluorescence was likewise 

observed.  
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Figure 6.2: Assessment of interaction between wt7D12, 7D12-32pcY, 7D12-109pcY and 7D12-113pcY 

with EGFR on the surface of A431 cells using fluorescence widefield microscopy.  100nM BODIPY-FL 

labelled 7D12 and its pcY mutants (Y32pcY, Y109pcY, and Y113pcY) were incubated with A431 cells 

for 10 minutes, subsequently the solution was removed and the plates were washed with imaging 

media before acquiring images with Zeiss Axiovert 200M microscope (20X) on brightfield channel 

and GFP channel (20000ms exposure). Images were processed in Fiji (ImageJ), scale bar = 100 

microns. 

 

The extended exposure time resulted in the detection of fluorescence from A431 

cells in the absence of VHH, and caged 7D12 (Y32pcY, and Y113pcY). Fluorescence 

imaging of A431 cells in the absence of BODIPY-FL labelled VHH should result in no 

detectable signal. Furthermore, in previous analysis of binding interactions of caged 
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7D12 (Y32pcY and Y113pcY) to EGFR using on-cell assay resulted in antibody-antigen 

affinity inhibition which should have corresponded to reduced or no signal detected 

in this experiment. Although certain experimental design considerations could have 

caused increased background fluorescence signal of caged 7D12 (Such as insufficient 

washing before imaging, or inadequate purification after BODIPY-FL labelling), as 

similar signal was detected from absence of VHH, it was hypothesised that the 

observed signal was due to high exposure times causing autofluorescence. Despite 

high background fluorescence detected for caged 7D12 samples, a significant 

difference in fluorescence was observed between wt7D12 and autofluorescence 

from caged samples. In the presence of wt7D12 labelled with BODIPY-FL, highly 

saturated fluorescence was observed surrounding A431 cells which could indicate 

7D12-EGFR cell surface interactions. This observation is further demonstrated with 

caged 7D12 Y109pcY, which is in agreement with previous work that showed binding 

was not inhibited with the site-specific addition of pcY at position Y109. For 7D12 

Y32pcY and 7D12 Y113pcY, a fluorescence signal similar to samples without any 

fluorophore was consistent with on-cell experiments discussed in the previous 

chapter. 

In an attempt to reduce exposure time, four different fluorescent dyes were tested 

(Results not shown). NHS-esters of these dyes (BODIPY-FL, BODIPY-TMR-X, Atto 

647N, Alexa 555) were covalently attached to wt7D12 as described above, and 

purified using Zebra Spin columns (MWCO 7000 Da). BODIPY-FL and BODIPY-TMR-X 

resulted in highest detected fluorescence of the four tested dyes. The fluorescence 

signal detected from wt7D12 BODIPY-FL resulted in the highest signal with the lowest 

exposure time, and was therefore selected for further optimisation. To confirm that 

the fluorescent signal was due to 7D12-EGFR interactions, the binding of BODIPY-FL 

labelled 7D12 to an EGFR-negative cell line was investigated.  
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Figure 6.3: Assessment of interaction between wt7D12 with EGFR on the surface of A431 and MDA-

MB-231 cells using fluorescence widefield microscopy.  100nM BODIPY-FL labelled 7D12 were 

incubated with A431 and MDA-MB-231 cells for 10 minutes, subsequently the solution was removed 

and the plates were washed with imaging media before acquiring images with Zeiss Axiovert 200M 

microscope (20X) on brightfield channel and GFP channel (15000ms exposure). Images were 

processed in Fiji (ImageJ), scale bar = 100 microns. 

 

The results in Figure 6.3 show that at 100nM and 200nM concentration of BODIPY-

FL labelled wt7D12, significant fluorescence signal was detected on A431 cells, while 

a much reduced signal was observed with MDA-MB-231. These results are consistent 
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with our hypothesis that we are visualising specific interaction between 7D12 and 

EGFR, using BODIPY-FL labelled 7D12. The results are also in agreement with on-cell 

experiments described in chapter 5 (5.2.4.1). The minor fluorescent signal detected 

on MDA-MB-231 is likely due to basal level of EGFR on the surface of MDA-MB-231. 

These microscopy images also demonstrate no autofluorescence in the absence of 

labelled 7D12, which is likely due to reduced exposure time of 15 sec compared to 

20 sec as in figure 6.2. However, 15 sec exposure is still long and can have detrimental 

effect on cell health. In an attempt to optimise exposure time, 200nM wt7D12-

BODIPY-FL, Y32pcY-BODIPY-FL, Y109pcY-BODIPY-FL and Y113pcY-BODIPY-FL were 

incubated with A431 cells for 10 minutes before washing with imaging medium. 

Fluorescence images were acquired with 20 seconds and 5 seconds exposure (Figure 

6.4).  

 

Figure 6.4: Microscopy investigation into reduction of exposure time. Images of BODIPY-FL labelled 

7D12 (200nM) binding interactions to A431 cell surface EGFR. Images were acquired with Zeiss 
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Axiovert 200M widefield microscope (20X) on and GFP channel (20 seconds or 5 seconds exposure). 

Images were processed in Fiji (ImageJ), scale bar = 100 microns, Brightness/contrast (B/C) = 1700/3000 

and 600/1500 for 20s and 5s exposure, respectively. 

 

At 20 second exposure, no fluorescence was detected in the absence of labelled VHH 

indicating reduced background signal. Only minor fluorescence was detected from 

two caged samples (Y32pcY-BODIPY-FL and Y113pcY-BODIPY-FL) indicating that with 

the addition of pcY in either positions (Y32 or Y113) within 7D12 inhibit their 

interaction with EGFR. Compared to the background fluorescence from caged 

samples (and absence of VHH), wt7D12-BODIPY-FL and Y109pcY-BODIPY-FL both had 

significant fluorescence indicating binding to EGFR which is in agreement with 

previous on-cell assay experiments. It is interesting to note that there is quite a stark 

difference in fluorescence between wt7D12 and 7D12-109pcY at 20 sec exposure but 

much less difference at 5 sec exposure. This might be due to non-linear change in 

fluorescence intensity with exposure time.  

The Zeiss Axiovert 200M microscope used in these experiments captures analogue 

images with a CCD camera which converts (via 12-bit analog-to-digital (A/D) 

converter) to a digital image containing 4096 grey values (2 x 1012). By adjusting the 

displayed range of grey values at defined thresholds (minimum and maximum) the 

brightness and contrast of the image is directly affected. Although the radiant 

intensity (magnitude or quantity of light detected) of the sample is not affected, by 

changing the minimum and maximum thresholds to 600/1500 of images attained 

from 5000ms exposure, the overall brightness is increased. However, this decreases 

the image resolution and quality of the digital image which is determined by total 

number of pixels and range of brightness values. The decrease image resolution (of 

images acquired at 5000ms exposure) shows a significant difference of quality when 

compared to images acquired with 20000ms (thresholds set to 1700/3000). 

However, longer exposure times cause additional complications and require a 

balance between image quality and cell viability. Although the aim of reducing 

exposure was achieved, by shorting the range of grey values this has accentuated 
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background signal that can be seen in no sample, Y32pcY-BODIPY-FL and Y113pcY-

BODIPY-FL with 5 seconds exposure.  

 

6.2.2 Real-time live-cell imaging with pH-sensitive dyes 

 

Use of BODIPY-FL fluorophore for visualising binding of 7D12 to EGFR on the surface 

of A431 cells required several washing steps that can potentially interfere with 

experimental observations. To circumvent this challenge and to visualise the process 

of endocytosis of 7D12, the use of pH sensitive dyes as a method of generating 

fluorescence was investigated. These dyes are designed to be non-fluorescent 

outside the cell at physiological pH and their fluorescence increases at lower pH of 

the endosome upon endocytosis. Previous studies have investigated the receptor-

mediated internalization of antibodies (Hazin et al., 2015; Casalini et al., 1993). 

However, these studies often labelled antibodies with radioisotopes or pH-

insensitive fluorescent molecules. To detect internalized antibodies by fluorescence 

or radioactivity the cell membrane is often washed with low pH buffer or ice cold PBS 

and fixed with formaldehyde. These methods are end-point assays as cell fixation 

causes irreversible damage to the cells. Similarly, there were studies examining 

internalization of antibodies labelled with pH sensitive dyes (Göstring et al., 2010; 

Berguig et al., 2012). Although these studies gave an impressive snapshot of 

endosomes and lysosomes at specific time periods, they did not show the real-time 

process of receptor-mediated antibody internalization.  

The same labelling methodology as above was applied to label wt7D12 with pHrodo 

Red and Protonex Red 600. A431 cells were grown on glass coverslips (18 mm) by 

seeding 400,000 cells per well in a 6-well Ultra-Low Attachment plate (Corning, 

3471). After growing for 18-20 hours (37°C, 5% CO2) the coverslip was mounted in a 

Ludin chamber (Life imaging services) for imaging with 40x (1.3 NA) Plan-Neofluar, 

oil-immersion objective lens. The cells were washed 3 times with pre-warmed 

imaging medium, and 198 µL of fresh imaging medium was added to the chamber 



 

163 
 

and loaded on the Zeiss Axiovert 200M microscope. Initial checks on cell health and 

autofluorescence was done by imaging cells with before treatment, then 2 µL of 100x 

labelled VHH 7D12 was added to the chamber imaging medium to make the final 

concentration 200 nM. With the addition of labelled 7D12 the time-lapse was 

initiated, the time-lapse was programmed to capture on brightfield and red filter set 

(TexRed, Zeiss cube #43HE, Ex = 572 ± 14 nm, Dichroic = 593 nm) every 1 minute for 

a total of 15 minutes. Exposure time of the TexRed channel was set to 80ms for 7D12-

Protonex Red 600 and 1000ms for 7D12-pHrodo Red. Conjugation of pH-sensitive 

dyes to 7D12 prompted significant reduction in exposure while retaining high levels 

of fluorescence (Figure 6.5).  

 

Figure 6.5: Exploring the use of pH-sensitive dyes. Microscopy images of pHrodo Red and Protonex 

Red 600 labelled wt7D12 (200nM) binding interactions to A431 cell surface EGFR. Images were 

acquired with Zeiss Axiovert 200M widefield microscope (40X) on TexRed channel (pHrodo Red = 1000 

ms exposure, Protonex Red 600 = 80 ms exposure). Images were processed in Fiji (ImageJ), scale bar 

= 50 microns, Brightness/contrast (B/C) = 2000/2600 and 850/1150 for Protonex Red 600 and pHrodo 

Red respectively. 
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Although initial results were encouraging, further controls were required to fully 

validate the experiment.  Due to considerable reduction required in exposure time 

for fluorescent imaging of 7D12 labelled with Protonex Red 600, further analysis was 

necessary to determine if fluorescence was attributed to decreased pH from EGFR 

mediated endocytosis, or as a result of other factors. A similar time-lapse experiment 

was designed with A431 cells to measure fluorescence of wt7D12 Protonex Red 600 

and 7D12-Y32pcY Protonex Red 600 (with and without irradiation at 365nm). To de-

cage labelled 7D12-Y32pcY, the DAPI microscope filter set (blue filter set, Zeiss cube 

#49, Ex = 365 nm, Em = 445/450 nm) was used to irradiate VHH sample and cells for 

30 seconds. The resulting fluorescence in Figure 6.6 shows comparable signal 

between wt7D12, caged 7D12-Y32pcY, and de-caged 7D12-Y32pcY.  

The expected fluorescence from caged 7D12-Y32pcY should have resulted in 

decreased detected signal due to inhibited binding to EGFR due to photocaged 

tyrosine in 7D12. Therefore, it was speculated that the fluorescence signal observed 

from caged VHH 7D12 was not caused by the EGFR mediated internalization and 

subsequent pH decrease. An alternative explanation for the observed fluorescence 

is as a result of inefficient purification of free fluorescent dye molecules from the 

labelling reaction. With the addition of free dye molecules in the medium, non-

specific internalisation and subsequent fluorescence could occur, a process in which 

small particles are internalized from the cell surface (Alberts et al, 2013).  To 

investigate this hypothesised non-specific small molecule internalisation, 

internalisation of Protonex Red 600 labelled wt7D12 and 7D12 Y32pcY was analysed 

on EGFR-negative, MDA-MB-231 cells. A431 and MDA-MB-231 cells were grown on 

18mm coverslips as described above, and were treated with 100 nM of Protonex Red 

600 labelled 7D12 Y32pcY. As a control, A431 cells were also treated with Protonex 

Red 600 labelled wt7D12. Time-lapse images were captured every 1 minute for a 

total of 15 minutes. 
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Figure 6.6: Evaluating the efficacy of Protonex Red 600 labelled 7D12 (wild type and Y32pcY) to A431 

cells. Microscopy images were acquired with Zeiss Axiovert 200M widefield microscope (40X) on 

TexRed channel (25 ms exposure). Images were processed in Fiji (ImageJ), scale bar = 50 microns, 

Brightness/contrast (B/C) = 100/1500. 
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Figure 6.7: Evaluating the efficacy of Protonex Red 600 labelled 7D12 (wild type and Y32pcY) to A431 

and MDA-MB-231 cells. Microscopy images were acquired with Zeiss Axiovert 200M widefield 

microscope (40X) on TexRed channel (50 ms exposure) and brightfield channel. Images were 

processed in Fiji (ImageJ), scale bar = 50 microns, Brightness/contrast (B/C) = 300/2000. A) Images 

acquired following 100 nM sample treatment at t=0. B) Images acquired after 15 minutes incubation 

with treatment showed similar fluorescence signal. 

 

Figure 6.7 shows that after 15 minutes Protonex Red 600 labelled 7D12-Y32pcY have 

significant and comparable fluorescence on A431 and MDA-MB-231 cells to the 

control wt7D12 fluorescence on A431 cells. This indicates that the fluorescence signal 
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observed is likely caused by insufficient removal of excess dye in the labelling 

reaction. To address this challenge, more rigorous purification protocol was adopted. 

It was observed that Protonex Red 600 dye did not dissolve completely during the 

labelling reaction. Thus, after labelling, the excess undissolved dye was removed by 

centrifugation at 16000 rcf. Subsequently, the labelled protein was passed through 

desalting columns several times. With the additional purification steps in place, three 

dyes, pHrodo Red, pHrodo Green and Protonex Red 600, were investigated for 

visualising endocytosis of wt7D12. These dyes were conjugated to wt7D12 via NHS 

ester reaction to primary amines in the protein. In addition, 7D12-32pcY was labelled 

with pHrodo Red, as this dye had shown some promise (data not shown).  

A431 cells were seeded into a 6-well ultra-low attachment plate containing 18mm 

glass cover slip as described above. A final concentration of 500 nM of labelled 

wt7D12 and 7D12-Y32pcY was used in a 15 minute real-time live cell imaging 

experiment and resulting fluorescence was captured and analysed (Figure 6.8). 

Despite increasing the concentration of labelled VHH to 500nM, with the additional 

purification procedures performed the observed fluorescence over a 15 minute 

period remained low. Note that an overall decrease in fluorescence is observed 

compared to previous experiments in Figure 6.7, which is consistent with the 

hypothesis that fluorescence observed in Figure 6.7 is due to residual free dye in the 

labelled sample. pHrodo red labelled 7D12 sample shows minor increase in 

fluorescence signal after 15 minutes, whereas 7D12 labelled with other dyes show 

no change in fluorescence after 15 minutes (Figure 6.8).  The relatively small increase 

in fluorescence over the cellular pH range in question from pH sensitive dyes have 

been reported as a potential limitation to their applicability (Liao-Chan 2015). Due to 

these difficulties with pH sensitive dyes, alternative methods for visualisation of 

7D12-EGFR interaction on live cells were pursued. 
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Figure 6.8: Detected fluorescence signal from pHrodo Red, Protonex Red and pHrodo Green labelled 

7D12 (wild type and Y32pcY) with additional purification steps. Images acquired with Zeiss Axiovert 

200M widefield microscope (40X) on TexRed channel (500 ms exposure) and GFP channel (750 ms 

exposure). Images were processed in Fiji (ImageJ), scale bar = 50 microns, Brightness/contrast (B/C) = 

1350/1500 (Red channel) and 750/1000 (Green channel). A) The immediate acquisition of 

fluorescence images after treatment of 500nM 7D12 (wild type and Y32pcY) to A431 cells. B) 

Fluorescent images acquired after 15 minutes time-lapse. 

 

6.2.3 Dynamic real-time live-cell imaging  

 

With minor radiant intensity increase over the time-lapse period with the use of pH-

sensitive fluorophores, an alternative experimental design was required for 

visualisation of VHH 7D12 interactions with EGFR. Due to the real-time conditions of 
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the experimental design, the use of pH insensitive fluorophores would likely impose 

experimental challenges as washing procedures to remove non-specific fluorescence 

were not implemented in the methodology. The previous real-time imaging strategy 

relied on the increase in fluorescent intensity when the VHH was internalised, and 

that unbound non-internalised labelled VHH would produce no fluorescence at 

physiological pH of the medium. If these experiments had worked, the real-time live-

cell imaging would not require washing of unbound VHH, and immediate time-lapse 

capture of receptor mediated internalisation would have been possible. However, if 

this experimental strategy was applied to pH-insensitive fluorophores, the expected 

results would be high background signal from unbound VHH that would fluoresce at 

physiological pH.  

An alternative method was adopted to remove the static nature of the experiment 

to allow use of non-pH sensitive dyes that have improved quantum yields. This was 

achieved by incorporating a peristaltic pump into the delivery system and by applying 

a constant flow of fresh medium over cells with an additional option of switching the 

flow to medium supplemented with the VHH. This setup allowed the design of a 

dynamic microscopy experiment which inherently removes non-specific fluorescence 

signal. The schematic shown in Figure 6.9 shows the details of the system including 

inputs and total running volume required.  

For the first dynamic time-lapse microscopy experiment, wt7D12 and 7D12-Y32pcY 

were labelled with BODIPY-FL as discussed earlier. A 6-well ultra-low attachment 

plate containing 18mm glass coverslip was seeded with 400,000 A431 cells per well 

and grown until 80% confluence (37°C, 5% CO2). Glass coverslip with attached A431 

cells was mounted into the Ludin microscopy chamber and washed three times with 

pre-warmed imaging medium. The peristaltic pump was connected to the 

microscope chamber, and fresh medium flowed over cells for 5 minutes. Once 

chamber volume had equalised, the time-lapse was started. The Zeiss Axiovert 

microscopy software was programmed to capture brightfield images and images 

using the GFP channel every 30 seconds for 43 minutes. 
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Figure 6.9: Diagram of dynamic microscopy setup for time-lapse experiments of live-cells with 

constant flow. Switchable line from input A/B to Ludin microscopy chamber required 1 mL total 

running volume, and 200 µL to fill chamber.  

 

For first 5 minutes of the time-lapse, fresh pre-warmed medium (input A, Figure 6.9) 

was passed over the cells at a rate of 400 µL/min. Next, the input was switch to input 

B (Figure 6.9) and medium supplemented with 200 nM 7D12-Y32pcY BODIPY-FL was 

circulated over the cells. After 5 minutes of treatment, the system was switched back 

to imaging medium for 10 minutes. A snapshot image from the GFP channel at 2.5 

minutes after the flow of labelled 7D12-32pcY was stopped show near background 

fluorescence signal (Figure 6.10A), consistent with inhibition of binding due to pcY at 

position 32 in 7D12. Next, 7D12-Y32pcY BODIPY-FL was de-caged with the DAPI 

channel (irradiated with 365 nm light) on the microscope, the same procedure as 

above for circulating 7D12-Y32pcY BODIPY-FL was used, however after 2 minutes of 

treatment the DAPI channel was turned on for 1 minute to de-cage 7D12-Y32pcY. 

Following the de-caging step, 10 minutes of imaging medium was flowed over the 
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cells. Contrary to expectation, the snapshot image from the GFP channel at 2.5 

minutes after the flow of decaged 7D12-Y32pcY was stopped, showed near 

background fluorescence signal (Figure 6.10B). It was hypothesised that this might 

be due to inefficient decaging of 7D12-Y32pcY on the microscope as caged 7D12 was 

passed over the cells for a total of 5 minutes, with only 1 minute of decaging with 

DAPI channel. Finally, control treatment with wt7D12 was performed, and wt7D12-

BODIPY-FL was passed over cells for 5 minutes. Here, as expected, the image from 

GFP channel 2.5 minutes after the flow of wt7D12 was stopped shows clear 

fluorescence signal (Figure 6.10C).  

Due to the use of non-pH sensitive dyes, highly saturated non-specific fluorescence 

was observed for each sample as they were initially passed over the cells. The initial 

saturation of non-specific fluorescence was removed by fresh complete medium, and 

remaining 7D12 interactions with A431 cells were observed (Figure 6.10 A, B, C). Full 

time-lapse video can be viewed in Appendix A.4.1. 

To further investigate if de-caging of 7D12-Y32pcY on the microscope was presenting 

a problem for these experiments, de-caging 7D12-pcY off the microscope was 

performed. Previous methods used in chapter 4 (2.1.15) were used to decage 7D12-

Y32pcY; this sample was then labelled with BODIPY-FL and applied in a similar 

dynamic experiment. Pre-warmed medium was circulated over cells for 5 minutes, 

and 200nM wt7D12 BODIPY-FL was passed over the cells for 5 minutes. As expected, 

significant fluorescence signal was observed 3 minutes after stopping the flow of 

wt7D12 BODIPY-FL (Figure 6.11A). Then 10 minutes of medium was passed over cells 

which was followed by 5 minutes of treatment with 200 nM de-caged 7D12-Y32pcY-

BODIPY-FL. Here, significant fluorescence signal was observed even after 3 minutes 

of stopping the flow of decaged 7D12-32pcY-BODIPY-FL (Figure 6.11B). For this 

experiment, brightfield and fluorescence images were acquired over 35 min time-

lapse period with images captured every 30 seconds (Figure 6.11). Full time-lapse 

video can be viewed in Appendix A.4.2.  

A significant fluorescence difference is demonstrated between the two methods of 

de-caging (via microscope DAPI channel and UV transilluminator) shown in Figure 
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6.10 and Figure 6.11 signifying that the use of the microscope DAPI channel (for one 

minute) as a method of de-caging is inefficient and further optimisation is required 

for successful de-caging by the microscope. 

 

 

Figure 6.10: Dynamic microscopy experiment investigating de-caging of Y32pcY-BODIPY-FL with 

microscope DAPI channel and measuring subsequent binding to A431 cell surface. Images acquired 

with Zeiss Axiovert 200M widefield microscope (40X) with time-lapse capturing GFP channel (500 ms 

exposure) and brightfield channel images at 1 minute intervals. De-caging of Y32pcY occurred at t=22 

with DAPI channel exposure for 1 minute. Images were processed in Fiji (ImageJ), scale bar = 50 

microns, B/C = 600/1100. A) Caged Y32pcY-BODIPY-FL (200 nM) injected over cells for 5 minutes (at a 
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rate of 400 µL/minute) resulted in minimal binding to A431 cell surface. B) Caged Y32pcY-BODIPY-FL 

(200 nM) injected over A431 cells with additional irradiation for 365 nm light for 1 minute to de-cage. 

Minor binding to A431 cell surface is observed. C) Positive control sample (wt7D12-BODIPY-FL, 200 

nM) injected over A431 cells to demonstrate wild type binding and subsequent fluorescence signal 

detected. Full time-lapse video available in Appendix A.4.1. 

 

 

Figure 6.11: Dynamic microscopy experiment investigating de-caged Y32pcY-BODIPY-FL (de-caged via 

UV transilluminator) and measurements of binding to A431 cell surface. Images acquired with Zeiss 

Axiovert 200M widefield microscope (40X) with time-lapse capturing GFP channel (500 ms exposure) 

and brightfield channel images at 1 minute intervals. Images were processed in Fiji (ImageJ), scale bar 

= 50 microns, B/C = 600/1100. A) Positive control sample (wt7D12-BODIPY-FL, 200 nM) injected over 

A431 cells to demonstrate wild type binding and subsequent fluorescence signal detected. B) De-

caged Y32pcY-BODIPY-FL (200 nM) injected over A431 cells resulted in similar fluorescence signal as 

wild type levels. Full time-lapse video available in Appendix A.4.2. 
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While it has been shown that an increase in fluorescence is observed when de-caging 

7D12-Y32pcY-BODIPY-FL before microscopy experiments, one of the aims of the 

dynamic microscopy experiment is to simulate the physiological conditions of drug 

delivery to a targeted receptor. Future application of such photoactive antibodies 

would require that: 1) such antibodies could be decaged in the presence of cells; 2) 

can bind to the receptors within the timeframe of decaging; and 3) if the presence of 

photocaging group influences the folding of the antibody, the antibody should be 

able to revert back to its native folded state after being decaged and bind to its 

receptor antigen, when unbound antibody is constantly getting removed by flowing 

blood in the body. Therefore, it was important to further explore the possibility of 

decaging on the microscope in this dynamic experiment.  

It was hypothesised that the negative result in Figure 6.10 was due to problems with 

the experimental design, such as low concentration of decaged antibody (caged 

antibody was irradiated for only 1 minute of the total 5 minutes flow time) and slower 

clearance of non-specifcally bound antibody. This prompted changes to the 

experimental design: 1) The flow rate was increased from 400 µL/min to 1000 µL 

/min. This would allow for additional delivery of sample (antibody) to the cells per 

unit time, allowing for easier detection by increased fluorescence. In addition, faster 

flow rate would help faster clearance of the non-specifically bound antibody, thus 

allowing detection of specifically bound antibody earlier. In the new experimental 

setup, the antibody (caged or decaged) was passed for 2 minutes compared to 5 

minutes in earlier experiments. The decaging was still be performed for 1 minute, 

thus increasing the fraction of decaged antibody compared to earlier experiment in 

Figure 6.10; 2) Instead of labelling 7D12 with BODIPY-FL, BODIPY-TMR-X was used. 

The latter is excited using longer wavelength, thus reducing potential phototoxicity 

due to imaging. Furthermore, as earlier static experiments in Figure 6.2 

demonstrated autofluorescence when imaging with the GFP channel, the use of 

BODIPY-TMR-X, which is excited by red light and can potentially reduce the 

background signal; and 3) The concentration of labelled antibody was increased to 

500 nM instead of 200 nM used in previous experiments. 
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Figure 6.12 shows the resulting fluorescence detected from three sample injections 

(wt7D12, caged 7D12-Y32pcY and de-caged 7D12-Y32pcY) over A431 cells during a 

41 minutes time period.  

First, pre-warmed medium was circulated over cells for 5 minutes, and background 

fluorescence was checked (Figure 6.12 A). Then, 2 mL of 500 nM caged 7D12-Y32pcY 

BODIPY-TMR-X was passed over the cells at a rate of 1000 µL/min (t: 5-7). The initial 

high fluorescence of caged 7D12-Y32pcY BODIPY-TMR-X flowing over the cells is 

observed in Figure 6.12 D, however subsequent snapshot images (Figure 6.12 E, F) 

show near background fluorescence signal, consistent with inhibition of binding due 

to pcY at position 32 in 7D12. Imaging medium was passed over the cells for 10 

minutes (t: 7-17), and background fluorescence was checked (Figure 6.12 B). Then, 2 

mL of 500nM 7D12-Y32pcY BODIPY-TMR-X was passed over the cells (t: 17-19) with 

1 minute irradiation (DAPI channel, t: 19-20) using 365 nm light to de-cage sample. 

Three snapshot images with the TexRed channel (Figure 6.12 G, H, I) show the 

fluorescence of decaged Y32pcY BODIPY-TMR-X over a 1.5 minute period. With the 

addition of 1 minute irradiation at 365nm to decage 7D12-Y32pcY a significant 

increase in fluorescence is observed (Figure 6.12 G) with longer retention time 

(Figure 6.12 H, I) of 7D12 on A431 cells. Imaging medium was then passed over the 

cells for 10 minutes (t: 19-29), and background fluorescence was checked (Figure 

6.12 C). Finally, as a control, 2 mL of 500nM wt7D12 BODIPY-TMR-X was passed over 

the cells (t: 29-31). As expected, significant fluorescence signal was observed (Figure 

6.12 J, K, L). Full time-lapse video can be viewed in Appendix A.4.3.  

The difference of fluorescence between wt7D12 and de-caged 7D12 has been 

attributed to the de-caging constraints of the experiment, where total sample 

injection time is 2 minutes, and de-caging process occurs for 1 minute. No signal was 

detected before 7D12 treatments (figure 6.12.A, B, and C) suggesting minimal signal 

contamination between sample injections. 
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Figure 6.12: Dynamic microscopy experiment investigating Y32pcY-BODIPY-TMR-X binding to A431 

cells in the presence and absence of 365 nm irradiation (via DAPI exposure for 1 minute), with 

subsequent positive control fluorescence of wt7D12-BODIPY-TMR-X binding to A431. Images were 

acquired with Zeiss Axiovert 200M widefield microscope (40X) set up to capture time-lapse images of 

TexRed channel (500 ms exposure) and brightfield channel at 30 second intervals. Flow rate = 1 

mL/min, B/C = 1150/1500, scale bar = 50 microns. A, B, and C show fluorescence signal before 

treatment of labelled 7D12. D, E, and F show caged Y32pcY-BODIPY-TMR-X (500nM) over a 1.5 minute 

period to demonstrate initial fluorescent intensity and retention time. G, H, and I show caged Y32pcY-

BODIPY-TMR-X with additional de-caging by DAPI exposure of 365 nm light (1 minute) and resulting 

fluorescence intensity. J, K, and L show fluorescence intensity of positive control wt7D12-BODIPY-

TMR-X (500nM).  
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6.2.4 Assessing the binding influence caused by fluorophore on labelled VHH 7D12 

 

During the microscopy experiments in this chapter, the labelling of VHH 7D12 with 

multiple different fluorophores has been achieved by reacting primary amines 

contained within the VHH with NHS esters reactive groups of a fluorophore to form 

stable amide bonds. Typically, this results in the fluorescence dye being labelled to 

the side chain of lysine. However, as lysine residues are frequently located in protein 

active/binding sites, the subsequent labelling of these residues can negatively 

contribute to the properties of the labelled proteins and specifically, the antigen 

binding affinity of labelled antibodies.  

To measure and compare BODIPY-TMR-X labelled and unlabelled 7D12 binding 

affinities to A431 cells, an on-cell assay was used as described in the methods chapter 

(2.1.16). The wt7D12 cell surface interactions were measured by chemiluminescence 

signal on CLARIOstar (BMG labtech) plate reader and imaged by GelDoc XR+ system 

(Figure 6.13). 

 

 

Figure 6.13: Comparison of binding of labelled and unlabelled wt7D12 to EGFR assessed using on-

cell assay on the surface of A431 cells shows a reduction in binding by approximate 1.5-fold at 

saturation due to the presence of BODIPY-TMR-X label. Representative image from three 

experiments with two replicates. 

Conjugation of wt7D12 with BODIPY-TMR-X was achieved using labelling methods 

described in chapter 2 (2.1.17). Figure 6.13 demonstrates an approximate 1.5-fold 

decrease in affinity of VHH 7D12 due to presence of BODIPY-TMR-X. This was 
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calculated by comparing the saturation chemiluminescence signal of unlabelled and 

labelled 7D12 (100-200 nM). Despite this reduction in binding due to presence of 

BODIPY-TMR-X dye, significant binding of BODIPY-TMR-X labelled 7D12 is observed, 

further validating our microscopy experiments. 

Several conjugation strategies such as the chemoselective targeting of deprotonated 

thiolate nucleophile of cysteine residues or the methods used in this chapter with 

the targeting of amine reactive lysine residues have been used to modify 

biomolecules with synthetic moieties for investigating into several fundamental 

research areas. However, these targets can often be limited by the importance of the 

targeted residue (cysteine residues are often required for correct protein folding, and 

lysine residues are often located in active/binding sites of proteins) and the number 

of residues targeted (multiple targeted sites in a protein and cause heterogeneous 

labelled protein product). An alternative labelling strategy which could be highly 

relevant to this thesis is the site-specific encoding ncAA containing bioorthogonal 

handles for specific labelling of proteins. With the precise site-selective encoding an 

ncAA with a unique moiety that is biocompatible and chemically selective with 

labelling reactions, a technique that allows control over location and number of 

reacting sites can be utilised as a conjugation strategy to avoid the potential limiting 

effects of alternative methods listed above. Research done by the Schultz group 

(Wang et al., 2003) showed the in vivo incorporation of a keto ncAA (p-acetyl-L-

phenylalanine) into proteins within E. coli for subsequent in vitro selective 

modification with a small molecule fluorophore. Applying this strategy for the 

labelling of VHH 7D12 with a fluorophore could improve the resulting binding 

affinities that had been reduced via amine targeted conjugation as shown in Figure 

6.13, however to introduce two moieties (photocontrol and bioorthogonal 

conjugation) to VHH 7D12 would require the in vivo incorporation of two distinct 

ncAA into the recombinant protein in E. coli which would require further optimisation 

of current expression and suppression systems. 
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6.2.5 Evaluating the effect of 365 nm light on cell viability  

 

One potential concern of the current experimental design is the apparent toxicity of 

365 nm irradiation to live cells when de-caging 7D12. UVB (280–315 nm) and UVC 

(100–280 nm) irradiation of live cells have been well documented as a direct cause 

of DNA damage and is widely used as a method of sterilisation. However, low doses 

of UVA (315–400 nm) have generally been accepted as biocompatible and used in 

biological settings for a wide range of biochemical applications and have been shown 

as non-toxic to live-cells. Several studies have shown that large fluxes of UVA light 

exposure on live-cells can cause the formation of free radicals and cause severe 

membrane damage (Guvendiren & Burdick, 2012; Klotz et al., 1999; Vile et al., 1995). 

However, studies employing low dose UVA exposure to live cells typically establish 

cell health via live/dead cell viability assays and microscopy after treatment to 

demonstrate non-toxic effects of irradiation at 365 nm (Jang et al., 2019; Bryant et 

al., 2000). 

To evaluate the cytotoxic effects of 365 nm exposure to live-cells in similar conditions 

as the experiments above, two cell viability assays were designed. To measure 

live/dead cells after exposure to 365 nm light, a resazurin-based assay (alamarBlue, 

Sigma-Aldrich) was used. Resaruzin exhibits a blue colour and low fluorescence in 

metabolically inactive cells but is converted to a highly fluorescent product 

(resorufin) upon metabolism by viable cells. Full methodology is described in 2.1.20. 

Briefly, A431 cells were seeded (200,000 cells/mL) into ultra-low attachment 6-well 

plate containing 18 mm coverslip and incubated overnight (37°C, 5% CO2). For 

irradiation with 365 nm light, glass coverslip was transferred to either a microscopy 

chamber for 1 minute DAPI exposure via Zeiss Axiovert 200M microscope or placed 

on UV transilluminator (GelDocMega; BioSystematica) for 4 minutes with 365 nm 

exposure. After exposure to 365 nm light, coverslips were transferred to a 6-well 

plate containing fresh complete medium for 48 hour incubation (37°C, 5% CO2). To 

measure cell viability with alamarBlue, A431 cells were detached from coverslip with 

trypsin, centrifuged (300 g, 5 minutes), resuspended in 500 µl of complete medium 
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and 200 µL/well of this solution was added in a well of 96-well plate. alamarBlue was 

added to the cells in a 1:10 dilution for 2 h at 37 °C and fluorescence was then 

measured on a Flexstation 3 plate reader (Ex= 570 nm, Em= 600 nm). Resulting 

fluorescence was analysed in figure 6.14. 

 

Figure 6.14: Cell viability assay of irradiated A431 cells demonstrated minor decreases in cell growth 

after 48 hour incubation. A) 365 nm irradiation of cells achieved with microscope DAPI channel for 1 

minute. B) 365 nm irradiation of cells achieved via UV transilluminator for 4 minutes. 

 

Positive control (0 minutes irradiation) was normalised to 100% and compared to the 

irradiated sample. Typically, to perform an alamarBlue live/dead cell viability assay 

the investigated cells would be seeded into a 96-well plate, followed by treatment, 

replacement of medium and addition of alamarBlue for direct measurements of 

fluorescence. However, a modified version of this procedure was used to replicate 

irradiation conditions for on-cell experiments (described in 2.1.15) and the 

microscopy experiments described earlier in this chapter (Section 6.2.3). In these 

experiments, the 365 nm light exposure was performed on cells attached to 18 mm 

coverslip. The procedure followed introduced variability into the experiment as the 

detachment from the coverslip, resuspending and transferring to 96-well plate can 

potentially cause loss of cells and cellular disruption. As a result, significant error bars 

are observed in Figure 6.14, and more replicates of these experiments could not be 
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performed due to time constraints. Although the results in figure 6.14 indicate a 

possible reduction in cell viability with 365 nm treatment, observations made under 

the microscopy indicated similar cellular growth (results not shown) between non-

irradiated and irradiated samples.  
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CHAPTER 7                                                     

Discussion and future work 
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7.1 Introduction 

 

The ability to genetically encode an expanding set of new chemical and physical 

properties (via noncanonical amino acids or ncAAs) into recombinant proteins have 

allowed researchers to probe and manipulate the structure and function of 

macromolecules to increase our understanding of complex molecular processes 

within biological systems. These emerging strategies have diverse applications in 

probing, imaging, and controlling protein function and has allowed for the 

unprecedented precision in the engineering of novel therapeutics.  

The site-specific incorporation of designer amino acids into antibodies could allow 

for the development of novel therapeutics. In this thesis, a photo-caged ncAA was 

genetically encoded into a heavy chain antibody fragment to allow control over 

antibody-antigen binding by light. The primary strategy used for generating 

biologically active light responsive antibodies involved the site-specific incorporation 

of photocaged ncAA with the suppression of a canonical stop codon (TAG) with 

mutually orthogonal aaRS/tRNA pairs. This modification of the protein of interest 

allowed for the incorporation of a light responsive protective group making the 

molecule inactive until exposed to light. This strategy not only enable photo-control 

over antibody-antigen binding but achieved this with a molecular weight difference 

of less than 1% from the original molecule. To the best of my knowledge, the site-

specific incorporation of a photocaged ncAA into a therapeutically relevant antibody 

fragment to gain control over bioactivity has not been achieved before. 

The overall aims of this thesis were to explore spatial and temporal control over 

antigen-antibody binding, which could allow for interesting applications in 

investigations of antibody-dependent biological processes in cell culture, tissues, and 

animals. To achieve this a few key areas were explored which are highlighted below: 

 

I. Developing expression systems for recombinant expression of antibody 

fragments in E. coli. 



 

184 
 

 

II. Investigating and improving the incorporation efficiency of ncAA into 

recombinant antibody fragments. 

 

III. Development of a novel, robust assay to measure antibody affinity to cell 

surface antigens. 

 

IV. Direct visualisation of light-mediated binding of antibody to cell surface 

antigen using live-cell microscopy. 

 

The collective data from experiments performed during this thesis should help 

further our understanding of the spatial and temporal control over antigen-antibody 

binding by light and highlight its importance as a potential therapeutic molecule. The 

novelty and importance of the work done during this thesis is emphasised with the 

patent application on photoactive antibodies and an article just accepted for 

publication in Angewandte Chemie (DOI: 10.1002/anie.201908655). 

 

7.2 Discussion 

7.2.1 Importance of immunotherapeutics to oncology   

 

Antibody therapeutic technology has become and remained the most dominant 

biological therapeutic platform in the pharmaceutical market (Urquhart, 2018). 

Significant advancements in antibody treatment strategies have allowed for the 

development in the selective targeting of numerous diseases, including autoimmune 

disorders, cancers, infections, and cardiovascular diseases. In the last few decades, 

several clinically approved cancer immunotherapies (naked whole mAb and fragment 

mAb formats) have made it to the pharmaceutical market, with hundreds more 

currently in clinical trial. Nevertheless, the single targeting approach of naked whole 

antibody therapies have suffered in poor tissue penetration due to the relatively 
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large molecular weight (140-160 kDa), limiting their transport through physiological 

barriers. A typical full-length antibody format consists of four peptide chains (two 

light and two heavy chains) that are bound together with a combination of disulfide 

bonds and interchain non-covalent interactions. A conventional antibody contains 

two paratopes (specific to a particular epitope of an antigen) and an Fc region which 

is responsible for engaging the body’s immune response and can target bound 

antigens for destruction. By selectively including or removing components of the 

antigen-binding variable region and the Fc region, researchers have radically 

improved efficacy of antibodies with the design and development of smaller antibody 

formats such as Fabs, scFv’s and VHH. These antibody fragments have reported 

enhanced tissue penetration due to a combination of the small size and high affinity 

binding capacity when compared to whole mAb formats.  

The research in this thesis has focused on the expression and characterisation of 

antibodies that target a select few of ErbB family of proteins. In humans, the ErbB 

family contains four receptor tyrosine kinases that include EGFR (ErbB-1), HER2 

(ErbB-2), HER3 (ErbB-3), and HER4 (ErbB-4). The overexpression and excessive 

signalling of these receptors have been associated with the progression of several 

human cancers and have received widespread interest as a potential 

immunotherapeutic target in oncology. Mutations, amplification or misregulations 

of ErbB receptors have been shown to lead to constant receptor activation and 

uncontrolled cell division which results in unregulated growth and tumour formation. 

However, as the native function of the ErbB receptors found on healthy cells are 

responsible for signal transduction pathways that are involved in regulating cellular 

proliferation, differentiation, and survival (Riese & Stern, 1998), the targeting of 

these receptors can lead to severe side effects through non-specific targeting. For 

example, the toxicity profile for several EGFR inhibitors that have been developed 

and clinically approved for the direct treatment of EGFR positive cancers have 

commonly reported adverse effects (found in more than 90% of patients) which 

result in a rash that primarily spreads across the face, head, and torso (Liu et al., 

2013; Herbst, 2004). These findings result in similar outcomes with the use of anti-
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EGFR monoclonal antibodies and necessitate the improvement of current 

immunotherapeutics to reduce off-target cytotoxicity. 

 

7.2.2 Spatial and temporal control over antibody-antigen binding with light 

 

In chapter 3, the periplasmic expression of VHH fragments were demonstrated for 

the targeting of EGFR (7D12) and HER2 (2Rs15d). In the subsequent chapters (5 and 

6), the characterisation of 7D12 binding to EGFR was achieved with the development 

of an on-cell assay and dynamic live-cell microscopy on the surface of A431 

epidermoid carcinoma cell line. To gain spatial and temporal control over antibody-

antigen binding of 7D12, the non-canonical amino acid (ncAA) o‐nitrobenzyl‐O‐

tyrosine (photocaged tyrosine or pcY) was genetically encoded in response to amber 

nonsense codon at three positions in 7D12 (Y32TAG, Y109TAG, and Y113TAG). The 

three tyrosine mutations were based on crystal structure analysis of 7D12:sEGFRdIII 

complex. This resulted in mutants of 7D12 that bind to EGFR upon irradiation with 

365 nm light (Figure 7.1). 

As the results demonstrate, light dependent binding control over 7D12 can be 

achieved with the site-specific incorporation of pcY in positions 32 and 113. With the 

ability to spatially and temporally control binding of 7D12 to EGFR, this methodology 

could allow for interesting applications in anti-cancer therapeutics owing to reduced 

off-target binding and subsequent reduction in undesirable side effects often 

reported in similar anti-EGFR inhibition treatments.  
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Figure 7.1: The site-specific genetic incorporation of pcY and subsequent photo-control over antibody-

antigen binding. A) The expression of three amber mutants of 7D12 (7D12-Y32TAG, 7D12-Y109TAG 

and 7D12-Y113TAG) only occurs in the presence of o‐nitrobenzyl‐O‐tyrosine (pcY). Comparison of 

band intensities for amber mutants with wt7D12 shows efficient incorporation of pcY. B) Electrospray 

Ionization Mass Spectrometry (ESI-MS) measurements of expressed 7D12 and three amber mutants 

(Y32, Y109, and Y113) before and after irradiation with light (365 nm, 4 minutes). First row represents 

before irradiation, observed mass of wild-type VHH 7D12 is 14241 Da while three mutants with pcY 

incorporation have increased mass of 14376 Da. After irradiation, the second row demonstrates de-

caging of pcY mutants and decreased mass to wild-type level. C) on-cell assay binding experiments to 

assess the interaction of EGFR with wt7D12 and amber mutants containing site-specifically 

incorporated pcY. On-cell assays performed on the surface of A431 cells demonstrates that the 

presence of pcY at positions 32 and 113 in 7D12 inhibits binding to EGFR. However, site-specific 

encoding of pcY at position 109 results in similar binding affinity to wt7D12. The binding of Y32pcY 

and Y113pcY mutants are restored upon irradiation with 365 nm light. 

 

The use of light as an activation mechanism has gained considerable attention due 

to the ability for localised non-invasive altering of chemical and physical properties 

of photodynamic molecules in a range of applications, including in the presence of 

live cells. Low-intensity long-wavelength UV light is an easily accessible and 

commonly used energy source for activation of light responsive biomolecule and has 

been used during this thesis for the photo de-caging of pcY. Two potential challenges 
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have been associated with the use of such energy sources; shallow tissue penetration 

that can limit the therapeutic viability of photoactivatable treatments, and the risk 

related to cellular damage via UV irradiation. As discussed in chapter 1, numerous 

methods are available to increase the tissue penetration and therapeutic range of 

365 nm light. Methods such as upconverting nanoparticles, two-photon absorption, 

and biocompatible LEDs that can emit UV radiations are all promising tools that can 

be used in combination with the photoactive therapeutics described in this thesis.  

UV light can be divided into three categories; UVA (315-400 nm), UVB (280–315 nm), 

and UVC (100–280 nm). The cytotoxic effects of UVB and UVC occurs via direct DNA 

damage, while UVA in some instances (dependant on environmental and intensity 

factors) may induce indirect DNA damage via the production of free radicals. 

However, typical exposure conditions for cell-based photoactivation experiments 

using low-intensity long-wavelength UV light (365 nm, Photon flux = 5-20 mW/cm2, t 

= 2-20 minutes) is generally accepted as biocompatible (Bryant et al., 2000; Jang et 

al., 2019). Cell viability assays reported in chapter 6 demonstrated 365 nm light is not 

toxic to A431 cells in two settings; 4 minutes irradiation by UV transilluminator and 

1 minute by microscope DAPI channel. 

With the combination of existing methods to increase tissue penetration range, this 

thesis has shown a novel method to precisely target EGFR expressing cells with light 

by conferring photoactivity to a current immunotherapeutic.  

 

7.2.3 Light induced delivery of toxic payload to EGFR positive cancers 

 

The demonstrated control over antibody-antigen binding by light with photocaged 

7D12 could reduce the negative consequences of non-specific targeting of healthy 

cells. However, a limitation to the described treatment is the lack of cytotoxicity to 

the cancer cell, which is required to eradicate solid tumours. Both in vivo and in vitro 

studies have shown that naked antibody fragment formats have reduced cytotoxic 
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activity and reduced stimulation of immune system response due to the omission of 

the Fc domain.  

Further improvements to these immunotherapies can be found in the combination 

of antibodies against different targets (bispecific antibodies) or with the addition of 

alternative therapeutic motifs (cytotoxic drugs or drug carriers). In chapter 6, an 

investigation into 7D12 receptor mediated endocytosis was performed to evaluate 

the efficacy of further 7D12 drug conjugation experiments as many cytotoxic 

compounds require an intracellular localization for their activity. Further work is 

required for the visualisation of 7D12 endocytosis using pH-sensitive dyes. However, 

the development of the dynamic live-cell microscopy procedure allowed for the 

visualisation of 7D12 binding to A431 cell surface EGFR and demonstrated decaging 

of 7D12-Y32pcY with the microscope in physiological relevant conditions of drug 

delivery to a targeted receptor. 

 

7.3 Future work 

7.3.1 Applying photo-control strategies to alternative antibody fragments 

 

Several examples of expressed VHH have been demonstrated by in vivo periplasmic 

expression in bacterial hosts. Current efforts towards the expression of Fab 

fragments were also illustrated but required further optimisation before successful 

production. Preliminary investigations of facilitating photo-control over 2Rs15d (anti-

HER2, VHH) has resulted in the apparent site-specific incorporation of pcY in position 

37, and investigations into the effect of codon context on genetic incorporation of 

pcY resulted in interesting outcomes of the site-specific incorporation efficiency of 

pcY. However, further research is required in the analysis and characterisation by on-

cell assay and microscopy to determin the inhibitory effects of pcY in 2Rs15d.  

Another interesting research direction for the work done in this thesis would be to 

apply photo-control strategies to full-length mAbs that have had clinical success, such 

as Cetuximab (anti-EGFR), and Trastuzumab (anti-HER2). This would require the 
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development of mammalian expression systems to generate therapeutically active 

mAbs, and investigations into efficient suppressor plasmids that could be used in 

mammalian cells. Research done by Chin and colleagues have demonstrated the 

successful site-specific incorporation of o-nitrobenzyl-O-tyrosine (photocaged 

tyrosine) into recombiant proteins using PylRS/tRNACUA pair in mammalian cells 

(Arbely et al., 2012). This research could be implemented into expression systems for 

the generation of photocaged mAbs. 

 

7.3.2 Improving binding affinity using phage display 

 

The research demonstrated in this thesis is the consolidation of work performed at 

the University of East Anglia. During this period of work, a three month scholarship 

was awarded to collaborate with Professor Umetsu at Tohoku University in Japan. 

During these three months, the research was focused on investigating improvements 

of 7D12 binding affinity with phage display (results not shown). Phage display is a 

powerful in vitro screening technique that can be used for the rapid identification 

and isolation of high specific (to a molecular target) peptides and proteins from a 

diverse library. To investigate improving 7D12 specificity to EGFR saturation 

mutagenesis was used with synthetic oligonucleotide primers to randomise residues 

in 7D12 CDR1 as NNK (N=A, C, T, or G, K=T or G). Although preliminary data indicated 

the identification of a mutant 7D12 with improved binding affinity to EGFR, due to 

time constraints it was not possible to complete full characterisation and analysis. 

Future work could include further analysis on potential 7D12 with improved binding 

affinity to EGFR and would require additional charaterisation with the use of the on-

cell assay developed in this thesis. Recently, an efficient phage display system has 

been used to incorporate ncAAs into proteins displayed on phage (Oller‐Salvia & 

Chin, 2019), and could have interesting applications in the development of improved 

therapeutic molecules. 
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Appendix 
A.1 Recipes 

A.1.1 Luria-Bertani (LB) Broth 

10 g Tryptone 

10 g NaCl 

5 g Yeast extract 

Or 25 g Pre-blended LB broth Miller (Formedium) 

Adjust to 1 L with Mili-Q H2O 

Sterilise by autoclaving on media cycle 

 

A.1.2 Super Optimal Broth (SOB) 

5 g Yeast Extract 

20 g Tryptone 

0.584 g NaCl 

0.186 g KCl 

2.4 g MgSO4 

Adjust to 1 L with Mili-Q H2O 

Sterilise by autoclaving on media cycle 

 

A.1.3 Luria-Bertani (LB) Agar 

10 g Tryptone 

10 g NaCl 
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5 g Yeast extract 

15 g Agar 

Or 40g Pre-blended LB Agar Miller (Formedium) 

Adjust to 1 L with Mili-Q H2O 

Sterilise by autoclaving on media cycle 

A.1.4 2XTY 

16 g Tryptone 

5 g NaCl 

10 g Yeast extract 

Adjust to 1 L with Mili-Q H2O 

Sterilise by autoclaving on media cycle 

 

A.1.5 Antibiotics 

Table A.1 Antibiotic stock solutions. 

Antibiotic Stock concentration Working concentration 

Ampicillin 100 mg/mL 100 µg/mL 

Chloramphenicol* 25 mg/mL 25 µg/mL 

Kanamycin 50 mg/mL 50 µg/mL 

Tetracycline 10 mg/mL 10 µg/mL 

Spectinomycin 100 mg/mL 100 µg/mL 

* Dissolve in EtOH, no filtration 

Dissolve in Mili-Q H2O and sterilise by 0.22 µm syringe filter 
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A.1.61% Agarose-TAE gel 

1 g Agarose powder 

100 mL TAE (1X) 

10 µL 10,000X SYBR safe (Fisher Scientific) 

 

A.1.7 Transformation buffer 1  

7.4 g KCl 

30 mL 1M CH3CO2K 

1.5 g CaCl2 · 2H2O 

150 g Glycerol  

Adjust to 950 mL with Mili-Q H2O and adjust pH to 6.4 with 0.2M acetic acid 

Sterilise by autoclaving on media cycle 

50 mL 1M Cl2Mn · 4H2O , filter sterilised 

 

A.1.8 Transformation buffer 2  

0.74 g KCl 

11g CaCl2 · 2H2O  

150 g Glycerol 

Adjust to 980 mL with Mili-Q H2O 

Sterilise by autoclaving on media cycle 

20ml 0.5M MOPS buffer, filter sterilised 
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A.1.9 1X Phosphate-buffered saline (PBS) 

9.93g Pre-blended Phosphate buffered saline (Formedium) 

Adjust to 1 L with Mili-Q H2O 

Sterilise by autoclaving on media cycle 

 

A.1.10 Periplasmic buffer 1 

200 g Sucrose 

Adjust to 700 mL with Mili-Q H2O and dissolve sucrose 

100 mL 1M Tris-HCL 

Adjust pH to 8 and adjust to 998 mL with Mili-Q H2O 

2 mL 0.5M EDTA 

Sterilise by 0.22 µm vacuum filter 

 

A.1.11 Periplasmic buffer 2 

5 mL 1M MgCl2 

Adjust to 1 L with Mili-Q H2O 

Sterilise by 0.22 µm vacuum filter 

 

A.1.12 Ni-NTA Wash buffer 

17.5 g NaCl 

1.36g Imidazole 
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Adjust to 950 mL with Mili-Q H2O 

50 mL 1M Tris-HCL 

Adjust pH to 8 

Sterilise by 0.22 µm vacuum filter 

 

A.1.13 Ni-NTA Elution buffer 

17.5 g NaCl 

13.6g Imidazole 

Adjust to 950 mL with Mili-Q H2O 

50 mL 1M Tris-HCL 

Adjust pH to 8 

Sterilise by 0.22 µm vacuum filter 

 

A.1.14 1X Phosphate-buffered saline-Tween 0.1% (PBST) 

1L 1X Phosphate-buffered saline (PBS) 

1 mL Tween 20 (Sigma-Aldrich) 

 

A.1.15 Western blot blocking buffer 

10 mL PBST 

1 g Milk powder 

 

A.1.16 Western blot primary antibody (1:1000) 
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1 mL Western blot blocking buffer 

9 mL PBST 

10 µL primary antibody 

 

A.1.17 Western blot secondary antibody (1:3000) 

1 mL Western blot blocking buffer 

9 mL PBST 

3.3 µL secondary antibody 

 

A.1.18 Imaging medium 

7.24 g NaCl 

0.384 g KCl 

0.303 g CaCl₂ · 2H₂O 

0.209 g MgCl2 · 6H2O 

0.161 g Na3PO4 

0.087 g NaHCO3 

6.20 g HEPES 

Adjust to 980 mL with Mili-Q H2O 

Adjust pH to 7.3 

2 g Glucose 

0.1 g myo-Inositol 

20 mL BME Amino acids (Sigma) 
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0.290 g Glutamine 

Sterilise by 0.22 µm vacuum filter 

 

A.1.19 Complete medium 

To 500 mL DMEM (containing L-glutamine, 4.5 g/L D-Glucose, 110 mg/L 

Sodium pyruvate) 

50 mL sterile-filtered foetal bovine serum (FBS) 

5.5 mL (100X) Penicillin-Streptomycin 

 

A.2 Primers 

Table A.2: Primers used throughout this study. 

Code Name Sequence 

D029 wtPylRS Forward TACGCTTTGAGGAATCCCATATGATGGATAAAAAACCG

CT 

D030 wtPylRS Reverse TTTAGCGTTTGAAACTGCAGTTACAGGTTCGTGCTAAT

GC 

D055 AS61_pULTRA_PylR

S_f 

CAATTTCACAAAGGAGGTGCGGCCGCATGATGGATAAA

AAACCGCTGGATGT 

D056 AS61_pULTRA_PylR

S_r 

GAGACCGTTTAAACGCGGCCGCTTATTACAGGTTCGTG

CTAATGCCGTTATA 

D119 2Rs15d_Y37TAG_F CTTGTGGGATGGGCTGGTAGCGCCAGTCACCGGGACGC 

D120 2Rs15d_Y37TAG_R GCGTCCCGGTGACTGGCGCTACCAGCCCATCCCACAAG 

D143 HC_pSANG-

FAB225-AraTT_F 

CCGAGGTGCAGCTGCTCGAGCAGGTGCAGTTGAAGCAG

TCAGGTCC 

D144 HC_pSANG-

FAB225-AraTT_R 

TGGCCGGCCTGGCCACTAGTGGTTTTGTCACAGCTTTT

GGGTTCAACTT 

D145 LC_pSANG-FAB225-

AraTT_F 

GTGGCCCAGGCGGCCGAGCTCGACATTCTTCTGACACA

ATCTCCGGTG 
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D146 LC_pSANG-FAB225-

AraTT_R 

TCCTAATTAATTATCTAGAATCAGCATTCGCCGCGATT

AAAGCT 

D164 RS15d SM CGC-

AGA F 

CTTGTGGGATGGGCTGGTAGAGACAGTCACCGGGACGC

GAGCG 

D165 RS15d SM CGC-

AGA R 

CGCTCGCGTCCCGGTGACTGTCTCTACCAGCCCATCCC

ACAAG 

D200 RS15d SM CGC-

CGA F 

CTTGTGGGATGGGCTGGTAGCGACAGTCACCGGGACGC

GAGCG 

D204 RS15d SM CGC-

CGA R 

CGCTCGCGTCCCGGTGACTGTCGCTACCAGCCCATCCC

ACAAG 

D214 Rs15d CGC-AGG F  TGGGATGGGCTGGTAGAGGCAGTCACCGGGACG 

D215 Rs15d CGC-AGG R  CGTCCCGGTGACTGCCTCTACCAGCCCATCCCA 

D216 Rs15d CGC-CGG F  GGATGGGCTGGTAGCGGCAGTCACCGGGA 

D217 Rs15d CGC-CGG R  TCCCGGTGACTGCCGCTACCAGCCCATCC 

D218 Rs15d CGC-CGT F  GGGATGGGCTGGTAGCGTCAGTCACCGGGAC 

D219 Rs15d CGC-CGT R GTCCCGGTGACTGACGCTACCAGCCCATCCC 

D177 pAraTT_Seq_F TGGACAAGAAAGTTGAGCCC 

D178 pAraTT_Seq_R TAGCGAAACCAGCCAGTGCC 

D181 pAraTT_Seq_F2 ATGTAGGCGGTGCTACAGAG 

D182 pAraTT_Seq_R2 GCTCATCAGATGGCGGGAAG 

D183 pAraTT_Seq_R3 GTTTAACGCCGATTGAGGCC 

D184 pAraTT_Seq_R4 CGATCAACTCTATTTCTCGC 

D185 pAraTT_Seq_F3 CGCAGTCTCCAGGCACCCTG 

D186 pAraTT_Seq_F4 GCATCGTAAAGAACATTTTG 
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A.3 gBlock list 

Table A.3: gBlocks used throughout this study. 

Name and sequence 

7D12_pSANG10_NdeI_HindIII (GB002) 

TTAACTTTAAGAAGGAGATATACATATGAAATCGCTGATTACTCCGATTGCTGCCGGATT

ACTGTTGGCGTTTTCCCAATACTCGTTGGCGCAGGTAAAATTAGAAGAATCTGGGGGTGG

GTCCGTTCAGACGGGTGGAAGTCTGCGCTTGACATGTGCCGCGTCTGGGCGCACATCACG

CTCATATGGAATGGGCTGGTTCCGTCAAGCTCCTGGCAAGGAGCGTGAGTTCGTATCCGG

TATCTCATGGCGCGGTGACTCAACCGGATATGCTGACTCAGTAAAGGGGCGTTTCACCAT

CTCTCGTGATAATGCGAAGAATACTGTCGACTTACAAATGAACTCACTTAAACCAGAGGA

TACCGCTATTTACTACTGCGCTGCTGCGGCAGGGTCTGCATGGTACGGTACACTGTACGA

GTACGACTACTGGGGGCAGGGCACCCAGGTCACGGTTTCTTCTCACCACCATCACCACCA

CTGATAAAAGCTTTAATAAGTCGAGCACC 

 

7D12_pRSF_D11-G9 (GB003) 

TATGGTGACTTAACTCGTCTGGATCCAGACCTGGTACCAGCGCCCAATACGCAAACCGCC

TCTCCCCGCGCGTTGGCCGATTCATTAATGCAGCTGGCACGACAGGTTTCCCGACTGGAA

AGCGGGCAGTGAGCGCAACGCAATTAATGTGAGTTAGCTCACTCATTAGGCACCCCAGGC

TTTACACTTTATGCTTCCGGCTCGTATGTTGTGTGGAATTGTGAGCGGCTCGAGACAATT

TTCATATCCCTCCGCAAATGAAATCCCTTATTACTCCAATCGCGGCGGGGTTATTGCTTG

CTTTTAGTCAATATAGCCTGGCACAGGTGAAGCTGGAGGAATCTGGAGGTGGAAGTGTCC

AAACAGGGGGCTCGCTTCGTCTTACCTGTGCGGCATCAGGCCGCACAAGTCGTAGTTACG

GAATGGGCTGGTTTCGCCAGGCCCCCGGTAAGGAACGTGAGTTTGTATCAGGTATTTCGT

GGCGCGGTGACTCCACAGGATATGCTGACAGCGTAAAAGGGCGCTTTACAATCAGCCGCG

ACAATGCTAAGAATACAGTGGACCTTCAAATGAACTCGTTAAAGCCTGAAGACACCGCCA

TTTACTATTGCGCCGCTGCGGCAGGGTCGGCTTGGTATGGCACGTTGTATGAGTACGACT

ACTGGGGACAGGGTACACAGGTCACGGTATCCTCACACCACCATCATCATCACTAAGACC

TTAAGGTCTCATAAGCTTAATTAGCTGACCTACTAGTCGGCCGTACGGGCCCTTTCG 

 

MpSANG10-7D12 K3TAG (GB004) 

ATTGTGAGCGGATAACAATTCCCCTCTAGAAATAATTTTGTTTAACTTTAAGAAGGAGAT

ATACATATGAAATCGCTGATTACTCCGATTGCTGCCGGATTACTGTTGGCGTTTTCCCAA

TACTCGTTGGCGCAGGTATAGTTAGAAGAATCTGGGGGTGGGTCCGTTCAGACGGGTGGA

AGTCTGCGCTTGACATGTGCCGCGTCTGGGCGCACATCACGCTCATATGGAATGGGCTGG

TTCCGTCAAGCTCCTGGCAAGGAGCGTGAGTTCGTATCCGGTATCTCATGGCGCGGTGAC

TCAACCGGATATGCTGACTCAGTAAAGGGGCGTTTCACCATCTCTCGTGATAATGCGAAG

AATACTGTCGACTTACAAATGAACTCACTTAAACCA 
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MpSANG10-7D12 K43TAG (GB005) 

ATTGTGAGCGGATAACAATTCCCCTCTAGAAATAATTTTGTTTAACTTTAAGAAGGAGAT

ATACATATGAAATCGCTGATTACTCCGATTGCTGCCGGATTACTGTTGGCGTTTTCCCAA

TACTCGTTGGCGCAGGTAAAATTAGAAGAATCTGGGGGTGGGTCCGTTCAGACGGGTGGA

AGTCTGCGCTTGACATGTGCCGCGTCTGGGCGCACATCACGCTCATATGGAATGGGCTGG

TTCCGTCAAGCTCCTGGCTAGGAGCGTGAGTTCGTATCCGGTATCTCATGGCGCGGTGAC

TCAACCGGATATGCTGACTCAGTAAAGGGGCGTTTCACCATCTCTCGTGATAATGCGAAG

AATACTGTCGACTTACAAATGAACTCACTTAAACCA 

 

MpSANG10-7D12 K65TAG (GB006) 

ATTGTGAGCGGATAACAATTCCCCTCTAGAAATAATTTTGTTTAACTTTAAGAAGGAGAT

ATACATATGAAATCGCTGATTACTCCGATTGCTGCCGGATTACTGTTGGCGTTTTCCCAA

TACTCGTTGGCGCAGGTAAAATTAGAAGAATCTGGGGGTGGGTCCGTTCAGACGGGTGGA

AGTCTGCGCTTGACATGTGCCGCGTCTGGGCGCACATCACGCTCATATGGAATGGGCTGG

TTCCGTCAAGCTCCTGGCAAGGAGCGTGAGTTCGTATCCGGTATCTCATGGCGCGGTGAC

TCAACCGGATATGCTGACTCAGTATAGGGGCGTTTCACCATCTCTCGTGATAATGCGAAG

AATACTGTCGACTTACAAATGAACTCACTTAAACCA 

 

MpSANG10-7D12 K76TAG (GB007) 

ATTGTGAGCGGATAACAATTCCCCTCTAGAAATAATTTTGTTTAACTTTAAGAAGGAGAT

ATACATATGAAATCGCTGATTACTCCGATTGCTGCCGGATTACTGTTGGCGTTTTCCCAA

TACTCGTTGGCGCAGGTAAAATTAGAAGAATCTGGGGGTGGGTCCGTTCAGACGGGTGGA

AGTCTGCGCTTGACATGTGCCGCGTCTGGGCGCACATCACGCTCATATGGAATGGGCTGG

TTCCGTCAAGCTCCTGGCAAGGAGCGTGAGTTCGTATCCGGTATCTCATGGCGCGGTGAC

TCAACCGGATATGCTGACTCAGTAAAGGGGCGTTTCACCATCTCTCGTGATAATGCGTAG

AATACTGTCGACTTACAAATGAACTCACTTAAACCA 

 

MpSANG10-7D12 K87TAG (GB008) 

TCTCGTGATAATGCGAAGAATACTGTCGACTTACAAATGAACTCACTTTAGCCAGAGGAT

ACCGCTATTTACTACTGCGCTGCTGCGGCAGGGTCTGCATGGTACGGTACACTGTACGAG

TACGACTACTGGGGGCAGGGCACCCAGGTCACGGTTTCTTCTCACCACCATCACCACCAC

TGATAAAAGCTTTAATAAGTCGAGCACCACCA 

 

FabC225_pSANG_HindIII_2 (GB015) 

AACTTCCGGCGGAACTGCAGCACTGGGATGTTTAGTTAAGGATTACTTTCCCGAACCCGT

TACTGTCAGTTGGAACAGCGGAGCCCTTACTTCAGGTGTTCACACTTTCCCTGCTGTATT

GCAAAGCTCGGGATTGTACTCTCTGAGTTCTGTCGTTACGGTTCCCTCCTCGTCCTTAGG

CACCCAGACCTACATTTGCAATGTGAACCATAAGCCCTCAAACACTAAGGTTGATAAAAA
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AGTTGAACCCAAAAGCTGTGACAAAACCCACCATCATCACCATCACTGATAAGGTACCTA

GAAATAATTTTGTTTAACTTTAAGAAGGAGATATACATATGAAGCAGTCCACAATCGCCT

TAGCGTTGTTGCCTTTGTTGTTCACCCCTGTAACCAAGGCAGACATTCTTCTGACACAAT

CTCCGGTGATTCTTTCCGTATCTCCCGGCGAACGTGTATCTTTCTCCTGTCGCGCGAGCC

AGTCAATTGGGACGAATATCCACTGGTATCAGCAACGCACCAATGGATCTCCACGTCTTC

TTATTAAATACGCGTCAGAAAGCATCAGCGGCATTCCCAGTCGCTTTTCTGGCAGCGGCA

GCGGTACAGACTTTACTTTGAGTATCAACAGCGTGGAGTCGGAAGACATTGCAGACTACT

ACTGTCAACAAAACAACAATTGGCCCACTACATTCGGAGCAGGGACTAAGCTGGAATTGA

AGCGCACGGTCGCTGCCCCAAGTGTTTTTATTTTTCCTCCGAGTGATGAACAATTGAAAT

CTGGGACTGCGTCGGTCGTCTGCTTACTTAACAATTTTTATCCGCGCGAAGCCAAAGTAC

AATGGAAAGTCGATAATGCGTTACAATCAGGCAATAGTCAGGAGTCCGTCACGGAACAGG

ACAGTAAAGATAGCACGTACAGCCTGTCGAGCACCTTGACTTTATCGAAGGCGGACTACG

AAAAACATAAGGTCTACGCCTGCGAAGTGACTCACCAGGGGCTGAGCTCGCCCGTTACCA

AGAGCTTTAATCGCGGCGAATGCTGATAAAGCTTTAATAAGTCGAGCACCACCACCAC 

 

FabC225_pSANG_XbaI_1 (GB016) 

GAATTGTGAGCGGATAACAATTCCCCTCTAGAAATAATTTTGTTTAACTTTAAGAAGGAG

ATATACATATGAAAAAGACAGCAATCGCTATCGCAGTCGCACTTGCTGGCTTCGCAACCG

TAGCGCAGGCTCAGGTGCAGTTGAAGCAGTCAGGTCCGGGTTTGGTCCAGCCGTCCCAAA

GTTTGTCCATTACGTGCACAGTGTCCGGCTTCAGCTTGACCAACTACGGGGTACACTGGG

TACGTCAATCACCAGGTAAGGGGCTTGAATGGCTTGGTGTTATCTGGTCAGGAGGAAACA

CGGACTACAACACCCCTTTCACCTCCCGTTTGTCGATTAATAAAGATAACAGTAAGTCTC

AAGTATTTTTCAAAATGAACTCGTTACAGTCAAACGATACTGCGATCTACTATTGCGCCC

GTGCCCTTACCTACTACGATTACGAATTTGCTTACTGGGGGCAGGGTACGTTAGTTACCG

TCTCAGCAGCATCGACGAAAGGGCCTAGCGTTTTCCCTTTAGCGCCTTCCTCGAAGTCAA

CTTCCGGCGGAACTGCAGCACTG 

 

7D12_Y32TAG_XbaI_SalI (GB020) 

AATTGTGAGCGGATAACAATTCCCCTCTAGAAATAATTTTGTTTAACTTTAAGAAGGAGA

TATACATATGAAATCGCTGATTACTCCGATTGCTGCCGGATTACTGTTGGCGTTTTCCCA

ATACTCGTTGGCGCAGGTAAAATTAGAAGAATCTGGGGGTGGGTCCGTTCAGACGGGTGG

AAGTCTGCGCTTGACATGTGCCGCGTCTGGGCGCACATCACGCTCATAGGGAATGGGCTG

GTTCCGTCAAGCTCCTGGCAAGGAGCGTGAGTTCGTATCCGGTATCTCATGGCGCGGTGA

CTCAACCGGATATGCTGACTCAGTAAAGGGGCGTTTCACCATCTCTCGTGATAATGCGAA

GAATACTGTCGACTTACAAATGAACTCACTTAAACCAG 

 

7D12_Y109TAG_SalI_HindIII (GB021) 

GTGATAATGCGAAGAATACTGTCGACTTACAAATGAACTCACTTAAACCAGAGGATACCG

CTATTTACTACTGCGCTGCTGCGGCAGGGTCTGCATGGTACGGTACACTGTAGGAGTACG

ACTACTGGGGGCAGGGCACCCAGGTCACGGTTTCTTCTCACCACCATCACCACCACTGAT

AAAAGCTTTAATAAGTCGAGCACCACCA 
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7D12_Y113TAG_SalI_HindIII (GB022) 

GTGATAATGCGAAGAATACTGTCGACTTACAAATGAACTCACTTAAACCAGAGGATACCG

CTATTTACTACTGCGCTGCTGCGGCAGGGTCTGCATGGTACGGTACACTGTACGAGTACG

ACTAGTGGGGGCAGGGCACCCAGGTCACGGTTTCTTCTCACCACCATCACCACCACTGAT

AAAAGCTTTAATAAGTCGAGCACCACCA 

 

pULTRA_PCY_NotI (GB024) 
 
CGGATAACAATTTCACAAAGGAGGTGCGGCCGCATGGATGAATTTGAAATGATCAAACGC

AATACGTCTGAAATCATCAGTGAAGAAGAATTGCGTGAAGTATTAAAAAAGGACGAGAAG

AGCGCGGGCATTGGTTTTGAGCCCTCGGGCAAGATTCATCTTGGACACTATCTGCAAATT

AAAAAGATGATCGACCTTCAAAACGCAGGCTTTGACATCATCATTGGGCTGGCAGACTTA

CATGCATACCTTAACCAGAAAGGTGAATTGGACGAGATTCGTAAGATTGGAGATTACAAC

AAAAAAGTTTTTGAGGCTATGGGATTGAAGGCAAAGTATGTTTACGGATCCGAAGAACAG

TTAGATAAAGACTATACGTTGAATGTGTACCGCCTTGCTCTGAAGACCACGTTGAAACGT

GCGCGTCGTTCAATGGAATTGATCGCCCGCGAAGATGAGAACCCGAAAGTGGCCGAAGTT

ATTTACCCTATCATGCAAGTAAACAGTATTCATTATGAAGGGGTGGACGTCGCAGTAGGC

GGGATGGAACAGCGTAAGATCCACATGCTTGCGCGTGAGTTGCTGCCAAAAAAAGTCGTC

TGCATTCATAATCCCGTGCTTACCGGCTTAGATGGTGAAGGGAAGATGAGCTCAAGCAAA

GGAAACTTCATCGCGGTGGACGACAGTCCAGAAGAAATTCGCGCAAAGATTAAGAAAGCC

TACTGTCCTGCTGGTGTCGTCGAGGGCAATCCTATCATGGAGATCGCGAAATACTTCTTG

GAGTATCCATTGACCATTAAACGCCCTGAGAAATTCGGTGGGGATCTTACAGTGAACAGT

TACGAAGAACTGGAATCGTTATTCAAGAACAAAGAGCTTCACCCGATGGATTTGAAGAAC

GCCGTTGCCGAAGAACTTATCAAAATTCTTGAACCGATTCGCAAGCGTCTTTAATAAGCG

GCCGCGTTTAAACGGTCTCCAGCTTGGCTG 

 

pULTRA_PyltRNA_PstI_XhoI (GB031) 

CATCCCCATAATCCTTGTTAGCCTGCAGGTAATTCCGCTTCGCAACATGTGAGCACCGGT

TTATTGACTACCGGAAGCAGTGTGACCGTGTGCTTCTCAAATGCCTGAGGCCAGTTTGCT

CAGGCTCTCCCCGTGGAGGTAATAATTGACGATATGATCAGTGCACGGCTAACTAAGCGG

CCTGCTGACTTTCTCGCCGATCAAAAGGCATTTTGCTATTAAGGGATTGACGAGGGCGTA

TCTGCGCAGTAAGATGCGCCCCGCATTGGaAACCTGATCATGTAGATCGAATGGActCTA

aaTCCGTTCAGCCGGGTTAGATTCCCGGGGTTTCCGCCAAATTCGAAAAGCCTGCTCAAC

GAGCAGGCTTTTTTGCATGCTCGAGCAGCTCAGGGTCGAATTTGCCA 

 

VHH_R2_pSANG_NdeI_HindIII (GB032) 

TGAGCGGATAACAATTCCCCTCTAGAAATAATTTTGTTTAACTTTAAGAAGGAGATATAC

ATATGAAATCGCTGATTACTCCGATTGCTGCCGGATTACTGTTGGCGTTTTCCCAATACT

CGTTGGCGCAAGTGCAGTTGCAAGAAAGTGGAGGTGGGCTGGTACAAGCGGGAGGGTCCT

TGCGTTTGTCGTGCGCGGCCTCTGGACGTGCGGCAAGCGGACACGGCCATTACGGCATGG

GCTGGTTCCGTCAAGTGCCAGGCAAGGAGCGTGAGTTCGTGGCAGCCATTCGTTGGTCCG

GCAAGGAAACTTGGTACAAAGATTCAGTAAAAGGTCGTTTCACTATTAGCCGTGACAACG

CAAAAACCACAGTGTACCTTCAAATGAACAGTTTGAAAGGCGAGGATACGGCTGTTTACT

ACTGCGCTGCTCGCCCGGTACGTGTCGCAGATATTTCGCTGCCTGTAGGGTTTGATTACT
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GGGGTCAGGGCACCCAAGTAACGGTGTCGAGTCATCACCACCATCATCATTAAAAGCTTT

AATAAGTCGAGCACCACCA 

 

2Rs15d_pSANG_NdeI_HindIII (GB033) 

 

TTAACTTTAAGAAGGAGATATACATATGAAATCGCTGATTACTCCGATTGCTGCCGGATT

ACTGTTGGCGTTTTCCCAATACTCGTTGGCGCAAGTCCAGTTACAGGAATCAGGCGGCGG

AATGTGCAGGCTGGAGGGTCTTTAAAGCTGACGTGTGCAGCATCGGGTTACATTTTCAAC

TCTTGTGGGATGGGCTGGTATCGCCAGTCACCGGGACGCGAGCGCGAACTTGTTAGCCGC

ATCTCTGGTGATGGTGACACCTGGCATAAAGAAAGCGTCAAAGGCCGTTTTACTATCTCG

CAAGATAATGTCAAGAAGACACTGTATCTGCAGATGAACTCGTTAAAGCCAGAGGATACT

GCGGTTTATTTTTGTGCGGTGTGCTATAATCTGGAAACTTACTGGGGTCAAGGGACGCAA

GTAACAGTCTCGTCTCACCACCATCACCACCACTGATAAAAGCTTTAATAAGTCGAGCAC 

 

 

 

 

 

Figure A.1: On-cell assay evaluating optimum dilutions of primary and secondary antibody for 

detection of wt7D12 binding interactions to EGFR.  
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Figure A.2: On-cell assay to determine the binding kinetics of 7D12 (wt and pcY mutants) to EGFR in 

the presence and absence of 365 nm light. On-cell assays performed on the surface of A431 cells 

demonstrates that the presence of pcY at positions 32 and 113 in 7D12 inhibits its binding to EGFR. 

However, 7D12pcY109 mutant shows binding affinity similar to wt7D12. The binding to 7D12pcY32 

and 7D12pcY113 mutants is restored upon irradiation with 365 nm light. These experiments were 

performed in triplicates, REP1, REP2 and REP3, to ensure reproducibility of data.  

 

A.4 Microscopy videos 

A.4.1 BODIPY-FL de-caging on the microscope 

Filename: A431 BODIPY FL wt7D12 and Y32 -+ de-caged on 

 

A.4.2 BODIPY-FL de-caging off the microscope 

Filename: A431 BODIPY FL wt7D12 and Y32 de-caged off 

 

A.4.3 BODIPY-TMR-X dynamic microscopy of light-dependent binding to A431 cell surface 

Filename: A431 BODIPY TMRX wt7D12 and Y32 -+ 


