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Abstract

Background: The use of statistical methods to quantify the strength of migratory connectivity is commonplace.
However, little attention has been given to their sensitivity to spatial sampling designs and scales of inference.

Methods: We examine sources of bias and imprecision in the most widely used methodology, Mantel correlations,
under a range of plausible sampling regimes using simulated migratory populations.

Results: As Mantel correlations depend fundamentally on the spatial scale and configuration of sampling, unbiased
inferences about population-scale connectivity can only be made under certain sampling regimes. Within a
contiguous population, samples drawn from smaller spatial subsets of the range generate lower connectivity
metrics than samples drawn from the range as a whole, even when the underlying migratory ecology of the
population is constant across the population. Random sampling of individuals from contiguous subsets of species
ranges can therefore underestimate population-scale connectivity. Where multiple discrete sampling sites are used,
by contrast, overestimation of connectivity can arise due to samples being biased towards larger between-
individual pairwise distances in the seasonal range where sampling occurs (typically breeding). Severity of all biases
was greater for populations with lower levels of true connectivity. When plausible sampling regimes were applied
to realistic simulated populations, accuracy of connectivity measures was maximised by increasing the number of
discrete sampling sites and ensuring an even spread of sites across the full range.

Conclusions: These results suggest strong potential for bias and imprecision when making quantitative inferences
about migratory connectivity using Mantel statistics. Researchers wishing to apply these methods should limit
inference to the spatial extent of their sampling, maximise their number of sampling sites, and avoid drawing
strong conclusions based on small sample sizes.
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Introduction
Understanding animal migration – the cyclical move-
ments of individuals between areas used across the an-
nual cycle – is challenging, yet is often a prerequisite for
effective conservation of mobile species. Our capacity to
measure migratory movements has improved greatly in
recent years through direct methods such as mark-
recapture [1] and remote-tracking technology [2], as well

as indirect methods such as genetic [3] and biogeochem-
ical approaches [4]. With an improved understanding of
individual migratory movements, researchers are increas-
ingly focussing on quantifying resultant population-level
spatial patterns. Understanding migratory connectivity
(henceforth referred to as ‘connectivity’), which describes
the extent to which spatial distributions of individuals are
maintained between two phases of the migratory cycle
(most often between breeding and non-breeding grounds),
has become a top priority [5]. High levels of connectivity
indicate that individuals residing close together in a par-
ticular season of the annual cycle are also close together
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in a subsequent season, whilst low connectivity indicates
cross-seasonal mixing of individuals from different areas.
The strength of connectivity can have important con-
servation implications, including playing a key role in
a migratory species’ propensity to adapt to a changing
environment [6, 7].
Multiple statistical approaches to estimate migratory

connectivity have been utilised in recent years [5, 8, 9].
To quantify the strength of connectivity (i.e. giving con-
nectivity a numerical value) one of the most commonly
used approaches is the Mantel test [10], which evaluates
the correlation between two distance matrices: the pair-
wise distances between locations of sampled individuals
in one season, and their equivalent pairwise distances in
another [11]. Numerous studies have examined sources
of bias in connectivity estimates derived using Mantel
correlations, including issues of imbalanced sampling
with respect to local abundance, incomplete spatial
coverage, and location uncertainty [11, 12]. An extension
to the Mantel approach [12] utilises the transition rates
of individuals between pre-defined breeding and non-
breeding zones to control for these biases, but this
method is only recommended in situations where spatial
subpopulation structure is well understood, and relative
abundances within origin regions can be estimated. Co-
hen et al. [12] recommend using Mantel correlations
when these conditions are not met, and the Mantel ap-
proach remains widely used in recent literature (e.g.
[13–16], but see [9, 17]).
One issue that has received little attention in the migra-

tory connectivity literature is the extent to which Mantel
correlations can be used to draw inferences about connect-
ivity patterns at the population scale, given that these corre-
lations show scale-dependence [18, 19]. A key aim of
migratory connectivity research is to understand migratory
patterns at large spatial scales (e.g. whole species ranges),
requiring an implicit assumption that metrics quantified for
sampled individuals accurately describe behaviour of wider
populations. However, these broad-scale inferences have
the potential to be strongly biased in some cases, as a prod-
uct of fundamental sensitivity of connectivity metrics to the
spatial extent and configuration of sampling. Estimates also
frequently suffer from low precision due to sample size
constraints, as the number of individuals tracked within a
population is often limited by available funding resources,
difficulty in retrieving tracking devices, fieldwork limitations
related to catching individuals, site fidelity, and recapture
rates [12]. These limitations reduce the proportion of the
population that is actually studied, and mean relatively
small sample sizes are commonplace in remote-tracking
studies [20]. Whilst lower precision can be partially
accounted for through bootstrapped confidence intervals,
the extent to which precision varies with sample has not
been explored in detail [12].

Here, we use simulations to elucidate the direct mech-
anisms underpinning bias and imprecision in migratory
connectivity estimates that use Mantel statistics. We
examine the efficacy of multiple sampling scenarios
across a range of connectivity levels, considering both
homogenous and spatially-clumped populations. We test
how the number of individuals sampled impacts the pre-
cision of measurements, and examine how the magni-
tude of bias depends on the extent to which estimates
from sampled individuals are used to draw inferences
about the wider populations from which they are drawn.
Alongside simple generalised simulations that allow us
to explore underlying mechanisms of bias, we also use
more realistic simulated migratory populations to provide
recommendations on study design that can maximise the
accuracy of Mantel-based connectivity measures, within
realistic limits of sampling.

Mechanisms of bias
To illustrate the fundamental issue arising from spatial
sampling bias, we first consider two hypothetical sam-
pling scenarios for a contiguous breeding population
with low connectivity (Fig. 1): one where individuals are
marked randomly within a single study region of varying
size (Fig. 1a-h) and another where individuals are
marked within discrete sampling sites that are spread
across the range (Fig. 1i-p). In both cases, the plausible
range of observable distances between marked individuals
is constrained by sampling extent in the season that mark-
ing takes place, which is the breeding range in our hypo-
thetical scenario (see Fig. 1). Importantly, however, the
maximum measurable distance between these sampled in-
dividuals in the non-breeding range is not constrained by
sampling design, only by the destinations of the animals
themselves. This could introduce a skew in the sample of
pairwise distances on the sampled range (breeding
grounds in this case), but not on the destination range
(non-breeding grounds). As Mantel correlations explicitly
compare these pairwise distance distributions between
seasons, resulting Mantel statistics calculated for spatially-
constrained samples may be very different from the ‘true’
values calculated for the whole population, despite the
underlying migratory ecology being constant across the
population (as in Fig. 1).
Biases resulting from spatially-constrained sampling

regimes could take various forms, depending on how
sampling effort is distributed across the species’ range. If
sampling is limited to a subset of the breeding distribu-
tion (e.g. Fig. 1c), the observed distribution of breeding
pairwise distances will be left-skewed relative to the true
distribution across the population (Fig. 1d), leading to
negative bias in Mantel correlations with respect to true
statistic for the wider population. If sampling occurs in
discrete areas that are widely separated across the range
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of a species, however, resulting pairwise distances may
be right-skewed relative to the population as a whole
(e.g. Fig. 1p) because site spacing introduces abrupt arti-
ficial gaps into what may be a more uniform underlying
distribution of individuals across space. Given inevitable
logistical constraints, migration studies do indeed typic-
ally focus on marking individuals at discrete sites within
spatially-constrained study areas [18, 21–23], with consid-
erable variation in the extent to which these are spread
across full ranges. This suggests there may be constraints
on the extent to which such studies can draw inferences
about the connectivity of wider populations using Mantel
statistics calculated from spatially-constrained samples. In
the next sections, we use simulations to estimate the se-
verity of these biases under a range of common sampling
scenarios.

Simulation methods
To examine fundamental sources of bias, we first simu-
lated simple migratory populations that vary in their de-
gree of migratory connectivity (Fig. A1), and applied a
range of sampling regimes to examine how Mantel

statistics resulting from realistic simulated ‘studies’ com-
pared to ‘true’ values calculated for the simulated popu-
lation as a whole.

Simulating breeding and non-breeding locations
First, we created a breeding range filled with N individ-
uals, placed at random by sampling x and y coordinates
from a bounded uniform distribution ([24], Fig. A1A,
N = 10,000), ensuring that variation in our results
reflected sampling effects alone, rather than stochasticity
arising from heterogeneous spacing of individuals. We
simulated migratory movements by 1) shifting each indi-
vidual a fixed distance due south from its breeding loca-
tion (Fig. A1A), and then 2) further shifting the
individual in a random direction (sampled from a uni-
form distribution between 0 and 360; Fig. A1B-C). The
distance of this second shift was sampled from a lognor-
mal distribution with SD = 1, and a mean that we varied
across scenarios, allowing us to simulate different
strengths of connectivity (values of 3, 5 and 7 were
used).

Fig. 1 Hypothetical examples of spatial sampling impacts on season-specific pairwise distances between individuals, considering scenarios where
sampling occurs within single regions (a-h) and discrete sites (i-p). Panels a and i show the spatial distributions of all breeding (yellow dots) and
non-breeding locations (blue dots) for two simulated migratory populations, while panels b and j show the corresponding frequency distributions of
pairwise distances between individuals during breeding (yellow line) and non-breeding (blue line) seasons. Panels c-h illustrate how sampling (yellow
box) individuals across increasingly large spatial subsections the total population influences the observed distributions of breeding pairwise distances,
while winter pairwise distances remain relatively unchanged. Panels k-p show corresponding scenarios with sampling limited to discrete sites that vary
in their spread across the breeding range, with similar impacts on observed breeding pairwise distances

Vickers et al. Movement Ecology            (2021) 9:16 Page 3 of 12



Simulating study designs
Two basic sampling designs were applied to simulated
populations (Fig. 1):

Area scenarios To test for the effect of sampling area
size, a single rectangular sampling area was used, centred
within the breeding area, within which 200 individuals
were sampled at random for tracking. The size of this
rectangular area was varied to generate three scenarios of
increasing total study area with sample size held constant
(sampling areas are illustrated in Fig. 1c, e, & g).

Spread scenarios To test for effects of sampling ‘spread’
under a fixed study area design, 200 individuals were
randomly sampled from nine rectangular sampling areas
(sites) distributed in a 3 × 3 grid formation centred
within the breeding area. Spacing between these sites
was then varied to generate three scenarios of differing
sampling spread, holding the size of sampled area and
sample size constant in each case (sampling sites are il-
lustrated in Fig. 1k, m, & o).
We generated 100 replicate datasets for each scenario

(area and spread), and repeated this for each of the three
strength levels of connectivity tested.

Estimating migratory connectivity
Using sampled individuals from each scenario, we calcu-
lated Mantel correlations using the mantel.rtest function
within the ade4 package in R [25]. In each case, we as-
sumed that all individuals sampled in the breeding range
were tracked successfully to their winter locations and
there was no location uncertainty. Scores were then
assessed with respect to: 1) the difference between the
observed Mantel score and the ‘true’ value calculated for
the entire global population of 10,000 individuals, and 2)
the difference between the observed Mantel score and
an equivalent ‘true’ value calculated using all individuals
inhabiting the strict spatial extent of sampling (hence-
forth ‘zone’).

Sample size scenarios
We tested a range of sample sizes to examine how preci-
sion varies in relation to the proportion of a population
being sampled. For each level of connectivity, we ran-
domly sampled individuals from the entire breeding
range (global population N = 10,000), applying sample
sizes of 10 (0.1%), 50 (0.5%), 100 (1%), 1000 (10%), 2500
(25%), and 5000 (50%) individuals. For each sample size
and connectivity scenario, 100 replicates were generated
with Mantel scores calculated following the previously
described method. Bias was determined as the difference
between the observed score and the values for the entire
simulated population of 10,000 individuals.

Patchy population scenarios
Populations in the real world seldom conform to contigu-
ous blocks, and often show a patchy distribution. To
examine how this patchiness influences the effect of
spatial sampling design on Mantel statistics, we simulated
populations inhabiting four equal-sized sub-populations
situated at the corners of the breeding range, within which
individuals were distributed at random (Fig. A2). Migra-
tions were then simulated using the same process de-
scribed above (see Fig. A1), but populations were then
further restricted to include only individuals that reach
four equal-sized regions in the non-breeding area. This
was to ensure clearly delimited sub-populations during
both the breeding and non-breeding period. We then ap-
plied a rectangular sampling area centred within each
breeding sub-population, across which 200 individuals
were sampled at random for tracking. The size of the rect-
angular areas was then varied to generate three scenarios
of increasing total study area (with sample size held
constant).

Simulating realistic species ranges
To examine how spatial sampling designs influence con-
nectivity estimates when applied to more realistic migratory
populations, we generated further simulated populations
that were constrained within real-world breeding and non-
breeding BirdLife range maps [26] for three bird species se-
lected to represent diverse range structures (Henslow’s
Sparrow Passerculus henslowii, Aquatic Warbler Acroce-
phalus paludicola, and Falcated Duck Mareca falcata; note
that subsequent simulated populations are not intended to
be accurate replications of these species). To simulate real-
istic distributions of individuals within each range, we ap-
plied an algorithm to generate spatially-autocorrelated
occurrence patterns (i.e. spatial clustering of individuals ra-
ther than a uniform distribution) using the nlm_gaussian-
field function from the NLMR package [27] to generate a
Gaussian random field of spatially-clustered values (scaled
to vary between 0 and 1), applying an autocorrelation range
of 10 and a magnitude of variation of 100 to generate
spatial clustering (Fig. A3A). We then distributed 50,000 in-
dividuals across each range in proportion to the resulting
random field values (Fig. A3B), with spatial autocorrelation
ensuring that individuals were clustered in space, with areas
of high and low abundance.
To generate a range of differing levels of migratory

connectivity for each simulated species range, we used
an algorithm that matched breeding and non-breeding
locations for individuals according to their longitudinal
ranks (Fig. A3C). For each individual in the breeding
range, we randomly-selected a non-breeding location
from all available points within a given bandwidth of
longitudinal rank, and controlled connectivity levels by
varying this bandwidth. For example, with a bandwidth
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of 1000, an individual of longitudinal rank of 5000 on
the breeding zone would be randomly assigned a point
from all those between longitudinal ranks 4000—6000
on the non-breeding zone. Larger bandwidths of longitu-
dinal ranking on the non-breeding zone therefore result
in lower migratory connectivity. Bandwidth sizes of
1000, 13,000, and 25,000 were used to produce three
levels of migratory connectivity for each species. To
sample the resulting populations, we assigned discrete
study areas of fixed size to the 20 highest-density cells
within a coarse grid overlain across the breeding range
(Fig. A3D–E). This reflects the common logistical con-
straints (difficulty in catching individuals for tagging, ac-
cess restrictions, and financial limitations) that may
force researchers to restrict their sampling to areas
where their chosen species are known to be more abun-
dant. We then selected 200 individuals at random from
these sampling sites. To explore the impact of variation
in spatial sampling extent on resulting connectivity esti-
mates, we varied the number of sampling sites from
which these individuals were drawn, ranging from 3 to
20 sites selected at random from the pool of 20. We re-
peated this 100 times for each possible sampling sce-
nario and level of connectivity and calculated resulting
Mantel scores as well as the mean distance between cen-
troids of sampling sites.
All simulations and statistical analysis were performed

with R 4.3.0 (R [28]). Scripts for the completed analysis,

including all simulations, are available as electronic sup-
plementary material.

Results
Spatial scale fundamentally affects migratory connectivity
scores
When calculated for increasingly-sized zones within a
single uniformly distributed breeding population, Mantel
correlation values calculated for the entire population
within the zone always increase (Fig. 2). In effect, the
‘true’ migratory connectivity of a population (measured
using all individuals) is dependent upon the absolute size
of the area sampling occurs, even when the underlying
mechanism generating connectivity for individuals is
uniform across the population. This is because the Man-
tel method fundamentally depends on the relative spatial
arrangement of individuals within each zone of interest,
and hence are highly sensitive to the spatial characteris-
tics of those zones. The more a given zone is spatially
restricted by sampling, the narrower the subset of meas-
urable pairwise distances (Fig. 1). In the case of connect-
ivity studies where individuals are marked within one
seasonal range, the censoring of pairwise distances does
not take place to the same extent on the other range.
This mis-match in censoring of pairwise distances re-
sults in lower Mantel scores relative to a population that
is less spatially restricted (Fig. 2).

Fig. 2 Migratory connectivity scores calculated by the Mantel method for all individuals (i.e. ‘true’ population-scale values) within increasingly-
sized spatial zones (rectangular areas centred within the breeding population) within the whole population. Colours represent the three levels of
migratory connectivity tested
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Therefore, inferences drawn from Mantel scores about
the migratory connectivity of whole populations may be
systematically biased if those scores come from spatially-
constrained samples of individuals. When applying area-
based sampling regimes (i.e. random sampling across a
single zone as shown in Fig. 1i), this spatial sampling
artefact resulted in consistent underestimation of con-
nectivity scores relative to ‘true’ values for the whole
population. Underestimation was more severe as the dis-
parity between the size of the sampled area and the total
area occupied by the population increases. The effect
was consistent across the three strengths of connectivity
tested, but was strongest for populations with weaker
connectivity (Fig. A4).

Making inferences at the spatial extent of sampling can
still be biased
If inferences about the strength of connectivity are made
explicitly for the individuals inhabiting the spatial extent
of sampling (and not wider populations), area-based
sampling scenarios produced Mantel scores without sig-
nificant bias (Fig. A5). However, the commonly-used
scenario of sampling from multiple discrete study areas
(‘spread’ scenarios, as shown in Fig. 1ii) lead to overesti-
mation of connectivity in medium and high spread sce-
narios, even when inference was restricted solely to the
populations within the sampled space (Fig. 3). This

overestimation results from the large distances between
sampling sites, which over-selects individuals of high
pairwise distance during the breeding season, leading to
a right-skewed sample of pairwise distances relative to
the distribution for all individuals within the spatial ex-
tent of sampling (Fig. A6).

Large sample sizes are required to achieve precision
With random sampling across a single contiguous uni-
form breeding population, we found large variation in
connectivity estimates across the 100 replicate simulated
studies with sample sizes of 100 or less (Fig. 4). Standard
deviations around the mean of connectivity estimates
were largest for lower connectivity scenarios, with SD as
high as 0.23 (under sample size of 10, ‘low’ connectivity).
With sample sizes of 1000 and above, SD around mean
connectivity estimates fell to a negligible level in the
context of a score on the scale of − 1 to + 1 (SD < 0.025
across all strengths of connectivity tested). This indicates
that with sample sizes of 100 individuals or fewer, preci-
sion of resultant scores may be very low even under
ideal sampling designs.

Patchy populations also show bias
In the scenario where random sampling was applied
within increasingly-sized sampling zones across four dis-
tinct breeding sub-populations, inferences about the

Fig. 3 Mantel scores from 100 replicate simulated studies (circles) compared to that of all individuals within the spatial extent of sampling
(crosses). Each replicate is calculated using 200 individuals sampled randomly across nine sampling areas which were varied in their spread. Error
bars indicate standard deviation around the mean score of 100 replicates
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strength of connectivity for individuals inhabiting the
strict zone of sampling produced metrics with limited
bias (Fig. 5a). However, any attempt to extend inferences
about the strength of migratory connectivity to the wider
population beyond the spatial extent of sampling would
lead to overestimation of migratory connectivity com-
pared to the whole population (Fig. 5b). This bias was

strongest in the scenario with smallest sampling area
and weak connectivity.

Complex patterns of bias emerge in more realistic
population simulations
Applying realistic sampling regimes to real-world species
range scenarios revealed how the mechanisms described

Fig. 4 How number of individuals that are sampled influences precision in Mantel scores. Each point represents a replicate simulated study for a given
sample size, randomly sampled from across the whole population. Error bars indicate standard deviation around the mean score of 100 replicates

Fig. 5 Mantel scores from 100 replicate simulated studies (circles) for each connectivity level, relative to ‘true’ values for all individuals within the zone of
inference (crosses). a ‘True’ migratory connectivity value for the populations solely within the spatial zone of sampling. b ‘True’ migratory connectivity for a
zone encompassing the entire population. Each simulated study comprised of 200 individuals sampled randomly across four equal sized sampling areas
centred within sub-populations which varied in size. Error bars indicate standard deviation around the mean score of 100 replicates
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above can lead to both over- and underestimation of
true migratory connectivity estimates, depending on the
spatial arrangement of sampled areas with respect to
range geography. Across all three simulated ‘species’,
bias was greatest when smaller numbers of discrete sam-
pling locations were used (Fig. 6). With 5 or fewer sam-
pling areas, replicate studies yielded hugely variable
connectivity estimates within each population, with true
connectivity tending to be underestimated when selected
sites were relatively close together, and overestimated
when they were far apart (Fig. 6).
The three simulated species showed subtly different

patterns of overall bias, linked to the arrangement of po-
tential sampled sites relative to the range as a whole. In
the Henslow’s Sparrow range scenario, the sampled sites
were widely dispersed across a large breeding range (Fig.
6a), leading to large between-site distances and hence
consistent overestimation of connectivity, even when
large numbers of sites were used (Fig. 6d, g, and j). In
the Falcated Duck range scenario, all sampled sites fell
within a more discrete area within the range (Fig. 6c),
resulting in systematic underestimation of population-
scale connectivity, regardless of the number of sampling
sites used (Fig. 6f, i, and l). Where the spatial extent of
sampling provided consistent coverage of the entire
population, as with the Aquatic warbler range scenario
(Fig. 6b), there was no consistent pattern of directional
bias, but estimates remained hugely variable and often
yielded large over- and underestimates of true connect-
ivity depending on the precise arrangement of sites se-
lected from the pool available (Fig. 6e, h, and k).

Discussion
There is an increasing demand in ecology and conserva-
tion for robust measures of the strength of migratory
connectivity [5]. We have shown the potential for bias
and high uncertainty when broad-scale inferences about
connectivity are made using Mantel statistics, driven by
the fundamental dependence of these metrics on the
spatial arrangement of samples. The strength of con-
nectivity in a single population, as measured by the
Mantel method, will always vary with the spatial scale of
inference, with larger spatial sub-sections of a population
likely to show higher connectivity scores. As a result,
any attempt to infer the strength of connectivity for a
contiguous species-level distribution from a spatial sub-
set of individuals may lead to biased estimates. If infer-
ence is restricted to the strict spatial extent of sampling,
random sampling across the area of inference can pro-
duce unbiased estimates of connectivity, but the use of
disparate sampling sites is likely to cause overestimation.
Even under ideal sampling practices (random sampling
across a single area), which are in many cases unachiev-
able, replicate estimates for a single population vary

widely when sample sizes are small (100 or fewer
tracked individuals). Within more complex and realistic
simulated populations, these mechanisms can generate
huge variation in connectivity estimates derived for a
single population, depending on exactly where within
the range samples are taken. These results indicate
strong dependence of Mantel metrics on the design of
spatial sampling regimes, and can help to inform best-
practice in study design and improve accuracy.
Previous studies have suggested combining the Mantel

test with cluster analysis to control for population struc-
turing [11], as well as calls for the measure to be used in
conjunction with an absolute measure of population
spread (the degree to which individuals from a single
breeding population spread out during the non-breeding
season) to better disentangle the properties of connectiv-
ity [18]. These proposals do not, however, address fun-
damental biases that arise from constraints on
observable pairwise distances under different sampling
regimes, demonstrated by our simulations. Whilst
recently-developed extensions to the Mantel approach
using between-region transition rates could plausibly ac-
count for some of these biases [12], the data require-
ments for these methods can be prohibitive, and use of
Mantel statistics remains widespread (e.g. [13–16], but
see [9, 17]). Our simulations suggest that biases can only
be avoided by careful study design, and in particular the
explicit restriction of inference to clearly delimited
spatial subsets of populations.
Our results suggest that making inferences about the

strength of connectivity for wider populations beyond
the spatial extent of sampling can lead to significant bias
(Figs. 2 and 5). As metrics of connectivity are fundamen-
tally scale dependent, ‘true’ connectivity values for sub-
populations within a small portion of the breeding range
are likely to be lower than ‘true’ values calculated for the
entire breeding range, even if movement behaviour is
universally governed by the same process. This illus-
trates that connectivity, as measured by these metrics, is
a spatial pattern and not necessarily a fundamental
species-level trait or characteristic.
Given that real-world studies may be limited to sam-

pling individuals from small subsets of their target spe-
cies’ ranges, our results suggest that underestimation of
population-scale migratory connectivity is likely to be
commonplace. However, in species with spatial hetero-
geneity in migratory programme such as migratory di-
vides (e.g. Barn Swallow Hirundo rustica in North
America [29];), the directionality of this scale-dependent
bias may be further complicated by what sub-population
is sampled. Accurate estimation of connectivity at a
population level may therefore only be possible where
sampling is exhaustive, but even here researchers must
carefully consider their sampling design. True random
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Fig. 6 (See legend on next page.)
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sampling is likely to be impossible to achieve across
large areas, especially with study species that are difficult
to trap, or tag retrieval is required. A multiple sampling
site approach may be more feasible to implement in
practice (e.g. breeding site sampling locations in [18]),
yet the sites should be well distributed throughout the
area of inference, with careful consideration of site spa-
cing. Sites either spaced very far apart, or clumped close
together, may lead to biased metrics with respect to
wider populations. Our more realistic simulated scenar-
ios suggest that more accurate estimates of connectivity
will be achieved by using larger numbers of sampling
sites spread across the area of inference, even if this
leads to lower sample sizes of marked individuals within
each site. Practitioners must therefore balance maximis-
ing the number of sampling sites used, with the practical
limitations of such study designs.
Whilst our results are limited to simulations, the sce-

narios we have examined can be considered as simplified
‘best-case’ scenarios for sampling regimes. Real-world
data collection will inevitably be more complex, and may
include additional factors of bias such as non-
representative sampling of a population and differential
survival rates between cohorts that may affect tag re-
trieval [30]. In practice, ascertaining the connectivity of
an entire large population using Mantel correlations
may always be unfeasible, and in these cases, care should
be taken to avoid making general population-level infer-
ences from subsamples. Given the potential for bias, we
suggest that researchers should carefully consider on a
case-by-case basis whether simpler visual representations
of spatial connectivity may ultimately be just as inform-
ative as quantitative connectivity metrics. In some use
cases, such as temporal comparisons of Mantel statistics
within a single study [31], biases may be consistent with
respect to the variable of interest (time) and thus allow
for robust comparisons. Comparisons of Mantel scores
between studies, however, are likely to be particularly
vulnerable to bias, especially where sampling regimes
differ substantially.

Conclusions
Due to fundamental scale-dependence, the notion of a
single ‘true’ connectivity value that applies to a species is
unlikely to be realistic. The development of new and
broadly-applicable statistical methods to control for this

spatial dependence would be extremely valuable for fu-
ture connectivity research. Nevertheless, our work sug-
gests that with good sampling design and explicit clarity
over the spatial extent where inference is made, deriving
meaningful population-level measures of connectivity
using Mantel correlations remains feasible. Where ran-
dom sampling of individuals across the whole area of in-
ference is not possible, we recommend maximising the
number of discrete sampling sites and avoid cases where
sampling site spacing (either too much or too little) is
likely to cause overt bias. We also strongly advise against
making inferences about the strength of connectivity of
a population that extends well beyond the spatial extent
of sampling. We hope that with these recommendations,
measures of connectivity will be more robust.
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Additional file 1: Figure A1. Simulating the breeding and non-
breeding locations of 10,000 individuals. A. An individual is given a breed-
ing location by placing the individual at random within the breeding
area. The individual is then moved a set distance in a southerly direction
B. The individual is then moved to a final non-breeding location. The dir-
ection of this movement is taken at random (C left) and the distance is
drawn from a log-normal distribution (C right) which we varied to change
the relative strength of migratory connectivity. D. This process is repeated
for 10,000 individuals in the simulated population.

Additional file 2: Figure A2. Hypothetical examples showing the
spatial distribution (A) of breeding (yellow dots) and non-breeding loca-
tions (blue dots) for a migratory patchy population and the correspond-
ing frequency distributions (B) of pairwise distances between individuals
during breeding (yellow line) and non-breeding (blue line). Panels C, E
and G show increasingly large spatial subsections within each sub-
population, together with the corresponding pairwise distance frequency
distributions (D, F and H), highlighting how distance distributions vary
with sampling area for breeding, but less so in non-breeding seasons.
Total population is shown as translucent and individuals within a spatial
subsection shown coloured in in plots C, E and G.

Additional file 3: Figure A3. Production and sampling of a simulated
realistic migratory population. A) Generating spatially autocorrelated
occurrence probability values across a real-world species range (breeding
range Falcated Duck Mareca falcata shown here). B) 50,000 individuals
are then distributed across the range with locations weighted by cell oc-
currence probabilities (10,000 shown here). C) Individuals are then linked
between seasons by random selection of corresponding points, varying
the level of simulated connectivity by changing the bandwidth of longi-
tudinal rank (1000 individuals shown here, low-medium migratory con-
nectivity scenario). D) A coarse grid is overlaid on the breeding zone,
across which we calculate the number of individuals in each cell. E) The
20 cells with the highest number of individuals are taken as sampling
sites.

(See figure on previous page.)
Fig. 6 Breeding (orange) and non-breeding (light-blue) distributions of three simulated species (top, a-c), with filled black rectangles indicating
the 20 potential sampling sites. Below each population are Mantel scores from replicate simulated studies applied to populations simulated
within each range with three levels of connectivity; high (top, d-f), medium (middle, g-i), and low (bottom, j-l). Each point represents a sample of
200 individuals taken from between 3 and 20 sampling sites, with sites selected at random from the pools shown in Panels a-c. Point colour
represents the mean distance between sampling sites in a given replicate study (blue is high, grey is medium, and red is low). Dashed horizontal
line (d–l) indicates mantel score for the entire population
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Additional file 4: Figure A4. Mantel scores of sampled individuals
(circles) compared to ‘true’ values for the whole population (crosses)
across three simulated connectivity levels. Each replicate is calculated
using 200 individuals sampled randomly across a single area which was
varied in size. Error bars indicate standard deviation around the mean
score of 100 replicates.

Additional file 5: Figure A5. Mantel scores from 100 replicate
simulated studies (circles) compared to that of all individuals within the
spatial extent of sampling (crosses). Samples comprised of 200 individuals
sampled randomly across a single area which was changed in size. Error
bars indicate standard deviation around the mean score of 100 replicates.

Additional file 6: Figure A6. A-C: Density plots of pairwise distances
between individuals under spread-based scenarios, depicting how the
distribution of sampled pairwise distances (solid lines) varies with the
scale of sampling, relative to true distance distributions for the whole
population (dotted lines). Inset schematics visualise the sampling regime
on the breeding ground, with highlighted region indicating the zone of
sampling. D: Mantel scores from 100 replicate simulated studies (circles),
compared to the whole population of 10,000 individuals (crosses). Sam-
ples comprised 200 individuals chosen randomly across the nine sam-
pling areas which varied in their spread. Error bars indicate standard
deviation around the mean score of 100 replicates. These examples show
the lowest level migratory connectivity simulated (Mantel MC 0.33).
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