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Abstract 

The extracellular proteoglycanase ADAMTS-1 has critical roles in organogenesis and 

angiogenesis.   We demonstrate here the functional convergence of ADAMTS-1 and 

the transmembrane heparan sulfate proteoglycan syndecan 4 in influencing 

adhesion, migration, and angiogenesis in vitro. Knockdown of ADAMTS-1 resulted in 

a parallel reduction in cell surface syndecan 4 that was not due to altered syndecan-

4 expression or internalisation, but was attributable to increased expression and 

activity of matrix metalloproteinase 9 (MMP-9), a known syndecan 4 sheddase. 

Knockdown of either syndecan 4 or ADAMTS-1 led to enhanced endothelial cell 

responses to exogenous vascular endothelial growth factor (VEGF), and 

increased microvessel sprouting in ex vivo aortic ring assays, correlating with 

reduced ability of the cells to sequester VEGF. On fibronectin, but not type 1 collagen 

matrices, knockdown of either ADAMTS-1 or syndecan 4 elicited increased migration 

and altered focal adhesion morphologies, with a higher proportion of larger focal 

adhesions and formation of long fibrillar integrin α5-containing focal adhesions. 

Integrin α5-null endothelial cells also displayed enhanced migration in response to 

ADAMTS-1/syndecan 4 knockdown, indicating that integrin α5 was not the mediator 

of the altered migratory behaviour. Plating of naïve endothelial cells on cell-

conditioned matrix from ADAMTS-1/syndecan 4 knockdown cells demonstrated that 

the altered behaviour was matrix dependent. Fibulin-1, a known ECM co-factor of 

ADAMTS-1, was expressed at reduced levels in ADAMTS-1/syndecan 4 knockdown 

cells.  These findings support the notion that ADAMTS-1 and syndecan 4 are 

functionally interconnected in regulating cell migration and angiogenesis, via the 

involvement of MMP-9 and fibulin-1 as collaborators.  
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 Introduction  

1.1 Preface 

The extracellular matrix (ECM) is a complex and dynamic structure, which has direct 

control upon numerous essential cell behaviours such as proliferation, identity, and 

survival, which it regulates through both its physical and biochemical properties.  

Cells and the ECM have a reciprocal relationship. Cells respond to their environment 

by transduction of ECM signals through cell adhesion receptors. Cells are also 

responsible for the production and secretion of ECM, and its remodelling by cellular 

proteases.  

Angiogenesis, an essential physiological process, is regulated in a complex 

mechanism which requires convergence of the ECM, cell adhesion receptors and 

proteases in order for crucial stages such as degradation of the basement membrane 

and migration of endothelial cells (ECs) to occur in a co-ordinated and stepwise 

manner. 

This thesis will explore the roles of the extracellular protease ADAMTS-1 and the cell 

surface adhesion receptor syndecan 4 in the ECM, and how they collaborate to 

regulate angiogenesis and cell migration.  

1.2 The ECM environment 

The ECM is the non-cellular component of organs, which provides structural support 

for cells and tissues. Alongside this structural role the ECM has important roles in 

adhesion, signalling and cell fate decisions, functioning both physically and 

biochemically (Frantz, Stewart and Weaver, 2010).  

Physically, the ECM functions as a barrier, an anchorage site, or as a movement track 

for cell migration. The physical properties of the ECM such as rigidity, density, 

porosity, insolubility and topography provide physical clues to cells, controlling their 

behaviour (Yue, 2014).  
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The biochemical properties of the ECM can induce signal transduction pathways in 

cells, mediated by adhesion receptors. The ECM is by no means inert and can also 

function as a reservoir of growth factors, mediating their bioavailability and thereby 

regulating signalling. 

There are two major ECM structures within tissues; the interstitial matrix, which 

consists of threadlike fibrils that form a porous and fibrous network surrounding 

cells, and the basement membrane, a sheet like structure which serves as a platform 

for cells and a boundary between tissue components (Akalu and Brooks, 2006). 

Vertebrate genomes encode hundreds of ECM proteins. While diverse and varied, 

ECM proteins share some universal properties, such as large size and complex, multi-

domain structures (Hynes, 2009). ECM proteins are largely comprised of three major 

classes of bio-molecule; structural proteins (collagen, fibrillin, elastin), specialised 

proteins (fibronectin, laminin) and proteoglycans (aggrecan, versican, perlecan) 

(Figure 1.1) (Slack, 2007).  

Extracellular matrix proteolysis and turnover is an essential part of healthy tissue 

maintenance and embryogenesis, and is achieved via a balance between proteases 

and their inhibitors (Rozario and DeSimone, 2010).   
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Figure 1.1 Schematic representation of the cell-ECM environment. The ECM is primarily 
composed of collagen, fibronectin and proteoglycans. Cells interact with the ECM via cell 
adhesion receptors such as integrins, which serve to connect the ECM to the cytoskeleton.  
Image reproduced from OpenStax biology (Rye et al., 2018). 
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1.2.1 Fibronectin  

Fibronectin (FN) is a high molecular weight extracellular matrix glycoprotein, 

consisting of roughly 4-9% carbohydrate (Pankov and Yamada, 2002). It is widely 

expressed by multiple cell types and responsible for mediating a variety of 

interactions within the ECM, and plays vital roles in adhesion and migration. 

Fibronectin is critically important in embryogenesis, exemplified by the early 

embryonic lethality of mice with FN inactivation (George et al., 1993).  

Fibronectin is secreted as a dimer, its structure consists of two nearly identical 250 

kDa subunits, covalently linked near the C-termini by a pair of disulfide bonds. Each 

monomer is assembled from three repeating units, termed FN repeats; 12 type I, two 

type II, and 15-17 type III (Rocco et al., 1987). Sites for glycosylation are primarily 

found within the type III repeats (Figure 1.2).  
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Figure 1.2 Structure of a fibronectin monomer. Fibronectin monomers consist of three types 
of repeating unit, type I, type II and type III. Binding sites for integrins and other ECM proteins 
are highlighted. 
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Fibronectin is a ligand for members of the integrin receptor family, with α5β1 

regarded as the canonical FN receptor. Integrin binding to FN occurs at the tripeptide 

sequence RGD, located in FN repeat III10, this binding is complex and dependent on 

flanking residues, 3D presentation and individual features of the integrin binding 

pocket.  For example, in the case of α5β1, a second site in FN repeat III9 (the synergy 

site – PHSRN, in the central binding domain of FN) promotes specific binding (Feng 

and Mrksich, 2004). 

Fibronectin also has binding sites for heparin, collagen, gelatin and fibrin. The two 

major heparin binding domains are heparin II in the C-terminal, and the weaker 

heparin I in the N-terminal, the heparin II domain is also capable of binding GAG and 

CS. The collagen binding domains are found in repeats I6-9 and II1,2. Fibronectin-fibrin 

interaction is important for cell adherence to and migration into fibrin clots 

(Makogonenko et al., 2002). The two major fibrin binding sites are found in the N-

terminal and formed by type I repeats 4 and 5 (Singh, Carraher and Schwarzbauer, 

2010).  

Fibronectin molecules are the product of a single gene, which in humans can be 

alternatively spliced to generate as many as 20 variants (Ffrench-Constant, 1995). 

Fibronectin is split into two categories, soluble plasma FN which is synthesised 

primarily by hepatocytes in the liver, and shows a relatively simple splicing pattern, 

and insoluble cellular FN, which is a much larger and more heterogenous group of 

proteins.  

Fibronectin is a vital part of the insoluble ECM, and most of its effects are attributed 

to this fraction. Fibronectin matrix assembly, termed fibrillogenesis, is a cell-

mediated process in which soluble dimeric FN is converted into a fibrillar network 

(Mao and Schwarzbauer, 2005). It proceeds in a series of regulated steps which drive 

FN to self-associate, and interact with other ECM proteins 

Fibronectin is secreted as compact dimers that will not polymerize into fibres without 

being activated in a cell-dependent mechanism (Singh, Carraher and Schwarzbauer, 

2010). Initiation of fibronectin matrix assembly begins at focal contacts, these are 
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sites that are rich in paxillin, vinculin and β1 and β3 integrins. Fibronectin activation 

is induced by interaction with cell surface receptors in these focal contacts, usually 

integrin α5β1. 

Integrins form an initial contact with FNI1-5, along with the essential steps of integrin 

α5β1 binding to the RGD loop on FNIII10, and the neighbouring PHSRN sequence. 

Integrin binding to the ligand fibronectin induces integrin clustering, bringing 

together the bound fibronectin,  increasing its local concentration (Wierzbicka-

Patynowski and Schwarzbauer, 2003).  

The next stage in assembling fibrils is unfolding of the compact FN structure into an 

extended one, followed by elongation. As a ligand FN induces integrin clustering, this 

brings together bound FN, increasing its local concentration. As FN fibrils form on the 

outside of the cell, the cytoplasmic domains of integrins organise cytoplasmic 

proteins, linking FN to the actin cytoskeleton and stimulating signalling pathways 

essential for propagation of FN fibril formation. Integrin linkage of FN to the actin 

cytoskeleton generates tension via actin-myosin contractility, inducing a 

conformational change in surface bound FN (Zhang, Magnusson and Mosher, 1997). 

Fibronectin unfolding is dependent on β1 integrin-FN translocation from focal 

contacts into tensin-rich fibrillar adhesion complexes. This unfolding reveals hidden 

binding sites which allow for FN self-interaction, and interaction with other ECM 

components.  

Extended FN dimers overlap and stagger to form initial thin 5 nm fibrils, which then 

become laterally associated into thicker 6-22 nm diameter fibrils (Winklbauer and 

Stoltz, 1995). Continuous FN fibril interactions allow for the formation of high 

molecular weight, complex, branched fibrillar FN matrices. These matrices are not 

static, and FN fibrils are constantly polymerised and remodelled within the matrix.  

The major fate of FN lost from the matrix is endocytosis and lysosomal degradation. 

The large size of fibronectin means in cannot be effectively internalised by cells until 

it has been cleaved. Fibronectin is a substrate of many proteases, including matrix 
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metalloproteases (MMPs), which regulate fibronectin remodelling by promoting 

fibronectin cleavage (Shi and Sottile, 2011).  

1.2.2 Collagen  

Collagen is the most abundant protein in mammals, constituting ~30% of total 

protein mass, and forms the major structural element of the ECM. It is generally 

secreted into the ECM by stromal fibroblasts, where it forms supramolecular 

assemblies (De Wever et al., 2008). There are 28 collagen types, which can be 

categorised into four groups: fibril-forming collagens (types I, II, III), network-forming 

collagens (basement membrane collagen type IV), and fibril-associated collagens 

(types IX, XII), and others (type VI) (Ricard-Blum, 2011).  

Cells interact with collagen in multiple ways. Fibril-forming collagens can be cleaved 

by MMP family members -1, -8, -13 and -14, and collagen is a ligand for β1 subunit-

containing integrin heterodimers (Heino, 2000).  

1.2.3 Laminin 

Laminins are high molecular weight glycoproteins which form a major constituent of 

the basement membrane. They are composed of three disulfide-linked polypeptide 

chains, a,b, and g. In humans, there are 11 laminin genes coding for five a, three b, 

and three g laminin subunits. Chains show tissue- and cell-specific distribution, but 

every basement membrane contains at least one member of the laminin family 

(Aumailley, 2013) 

Laminin has numerous biological activities, it is a cell adhesion molecule, and can 

influence cell growth, morphology and migration (Kleinman et al., 1985). Laminins 

physically bridge the intracellular and extracellular compartments, relaying signals 

critical for behaviour. In general, this is mediated through interactions between the 

C-terminal ends of laminins and receptors anchored in the plasma membranes of 

cells adjacent to basement membranes. The N-terminal end of laminin is mainly 

involved in interaction with other ECM molecules (Sasaki, Fässler and Hohenester, 

2004).  
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Almost all laminin receptors bind the globular G domain at the C-terminus of the 

laminin a chains; the C-terminus of these a chains is 865-900 residues longer than 

the b, and g chains, and is folded into 5 sub-domains, LG1 to LG5 which make up the 

large laminin globular domain. Depending on the laminin isoform, laminin-cell 

interactions are mediated by one of four different laminin binding integrins: α3β1, 

α6β1, α6β4, and α7β1 (Aumailley, 2013).  

1.2.4 Proteoglycans  

Proteoglycans are a key part of the ECM, and a vast and heterogenous group. All 

proteoglycans consist of a protein core with glycosaminoglycan (GAG) chains 

covalently linked to serine residues of the core protein. In general, they possess a 

single type of GAG chain such as heparan sulfate (HS), chondroitin sulfate (CS) or 

dermatan sulfate (DS), and can be categorised based on these side chains (Mizumoto 

and Sugahara, 2013). 

The chondroitin sulfate proteoglycans (CSPG) are generally secreted and serve as 

ECM molecules in the developing and mature CNS. Examples of the secreted CSPG 

include the lectican family (aggrecan, versican, brevican, neruocan), and tenascins 

(Stanton et al., 2011). Few are expressed on the cell surface, examples include the 

transmembrane CD44, and GPI-anchored brevican. 

The heparan sulfate proteoglycans (HSPG) can be both cell surface and extracellular, 

and fall into three groups depending on location: Membrane (syndecans, glypicans), 

secreted (agrin, perlecan, type XVIII collagen) and the secretory vesicle proteoglycan 

serglycin (Sarrazin, Lamanna and Esko, 2011). Many have a modular domain 

structure and can form bridges between cells and the ECM, and they are widely 

thought to be co-receptors for a variety of ligands (Park et al., 2017).  

The protein cores of proteoglycans are synthesised in the rough endoplasmic 

reticulum. In the golgi, core proteins are then posttranslationally modified with 

glycosyltransferases in a complex biosynthetic pathway (Pedersen et al., 2000). GAG 
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chain formation is initiated by the synthesis of a tetrasaccharide linkage region, 

shared by both HSPG and CSPG. The linkage region is covalently linked to serine 

residues in the core protein, and is assembled by the stepwise addition of, by 

corresponding specific glycosyltransferases: a single xylose, two successive galactose 

residues, and a single glucuronic acid.  Addition of N-acetylgalactosamine to this 

linker triggers formation of chondroitin backbone, characterised by repeating 

disaccharide of glucuronic acid and N-acetylgalactosamine. HS consists of the 

repeating disaccharide of N-acetylglucosamine and glucuronic acid, therefore 

addition of N-acetylglucosamine (GlcNAc) would trigger HS backbone formation 

(Mikami and Kitagawa, 2013). In HS, some of the N-acetylglucosamine is 

deacetylated and N-sulfated (NS). These sulfated domains then undergo 

epimerization to uronic acid, some of which is then 2-O-sulfated (Couchman and 

Pataki, 2012).  

Dynamic interactions between growth factors and the ECM are essential, and in here 

lies a key role of the proteoglycans. Binding and release of growth factors by the ECM 

can serve to sequester growth factors and control bioavailability, or may enhance 

growth factor activity. Heparan sulfate GAG side chains are highly anionic due to the 

presence of acidic sugar residues and readily bind many growth factors such as 

fibroblast growth factors (FGFs) and vascular endothelial growth factors (VEGFs). It is 

a generally held view that HSPGs act as a sink for growth factors which can be 

released by degradation of the ECM, or the glycosaminoglycan component of HSPG 

(Forsten-Williams et al., 2008). 
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1.3 Roles of extracellular proteases in ECM turnover and function  

Cells are constantly rebuilding and remodelling the ECM through synthesis and 

degradation. These processes are essential for morphogenesis, and their 

dysregulation can contribute to diseases such as osteoarthritis and fibrosis, therefore 

the ECM is tightly regulated to maintain tissue homeostasis (Bonnans, Chou and 

Werb, 2014).  

Cleavage of ECM components is the main process during ECM remodelling and is 

important for regulating ECM abundance, composition, and structure, as well as 

releasing biologically active molecules such as growth factors (Bonnans, Chou and 

Werb, 2014).  

The degradation of the extracellular matrix is essential in angiogenesis; not only must 

the basement membrane be digested to allow a new sprout to develop, but digestion 

of ECM proteins can also release ECM-bound growth factors, or expose cryptic 

regions which may have pro-, or anti- angiogenic activity (Yue, 2014). 
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1.3.1 The metzincin superfamily of proteases  

The major players in ECM remodelling belong to the metzincin gene superfamily of 

zinc dependent proteases, which encompasses astacins (BMP1, meprin), serralysins, 

matrixins/matrix metalloproteinases (MMPs), and adamalysins/reprolysins (Escalona 

et al., 2018).  

The metzincins are multidomain proteins, synthesised as zymogens. They contain a 

pro-domain, followed by a globular catalytic domain containing a characteristic ‘Met-

turn’ (a conserved methionine downstream of the catalytic Zn2+ binding motif, which 

causes a structural turn in the molecule giving the active site cleft its structure) and 

the consensus zinc binding motif HEXXHXXGXXH (Bode et al., 1996) (Figure 1.3). 

1.3.2 The Matrixins/MMPs 

The MMPs are the prototypical matrix proteinases, and can be secreted or 

membrane bound. MMPs contribute to the physiological process of bone 

remodelling, immunity and wound healing. Their activity is tightly controlled at the 

transcriptional level, and by pro-peptide activation and tissue inhibitors of 

metalloproteases (TIMPs) (Chakraborti et al., 2003).  

The MMP pro-domain directs proper folding and maintains latency via a molecular 

complex between a single cysteine residue and the zinc atom in the catalytic domain, 

blocking the active site. Protein activation can be achieved via numerous 

mechanisms, including activating factors such as the plasminogen-plasmin cascade, 

other MMPs, furin-like pro-protein convertases (PPCs), non-proteolytic compounds, 

and denaturants such as urea, which all cause the dissociation of the cysteine residue 

and removal of propeptide region, leading to activation via the so-called ‘cysteine 

switch mechanism’ (Van Wart and Birkedal-Hansen, 1990). 

There are 24 MMP genes in humans, including duplicated MMP23 genes, therefore 

there are 23 MMP proteins. MMPs are multifunctional, but can be broadly 

categorised into the collagenases (MMP-1, MMP-8, MMP-13), the gelatinases (MMP-

2, MMP-9), the stromelysins (MMP-3, MMP-10, MMP-11) the matrilysins (MMP-7, 
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MMP-26), the membrane type MMPs (MT1-MMP, MT2-MMP, MT3-MMP, MT5-

MMP), GPI anchored MMPs (MT4-MMP, MT6-MMP) and others (MMP-12, MMP-19, 

MMP-20, MMP-21, MMP-23, MMP-27, MMP-28) (Nagase, Visse and Murphy, 2006).  

Remodelling the ECM is a key role of the MMPs. Collagen proteolysis, predominantly 

by collagenases, occurs at a site three quarters from the N-terminus, cleavage 

fragments denature and form gelatin, which can in turn be degraded by gelatinases 

MMP-2 and -9 (Löffek, Schilling and Franzke, 2011). Basement membrane collagen IV 

can also be cleaved by gelatinases, as well as the stromelysins and matrilysins. 

Laminin, fibronectin, elastin, and aggrecan are substrates for most, if not all MMPs 

(Löffek, Schilling and Franzke, 2011).  

Cell surface and membrane spanning proteins are also substrates for certain MMPs, 

for example cell-cell adhesion receptors: MMP-7 and MMP-3 cleave E-cadherin, and 

MT1-MMP cleaves CD44 (Rodríguez, Morrison and Overall, 2010). The cleavage and 

release of membrane proteins, or ‘ectodomain shedding’, can function to regulate 

signalling in multiple ways, such as releasing bioactive fragments or ligands, as well 

as cleaving, and thereby preventing activation of receptors (Löffek, Schilling and 

Franzke, 2011). 

The MMPs have multiple roles in angiogenesis, ECM degradation is an important 

stage in vascular cell migration, alongside this MMPs can liberate proangiogenic 

growth factors that are sequestered in the matrix, and can conversely generate anti-

angiogenic molecules by cleaving plasma proteins, matrix molecules, or proteases 

themselves, making them highly important in the co-ordination of new vessel growth 

(Nabeshima et al., 2002). 
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Figure 1.3 The metzincin superfamily of proteases. A) Family hierarchy. The metzincin family 
consists of the subfamilies matrixins, astacins, adamalysins and serralysins. B) Domain 
structure of family members. All metzincin proteases contain a zinc metalloprotease domain 
in the N-terminal, C-terminal domains are specific to subfamilies. Figure adapted from Bode 
et al. (1996). 
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1.3.3 TIMPs 

The tissue inhibitors of metalloproteases (TIMPs) are the endogenous inhibitors of 

MMPs, as well as ADAMs and ADAMTS. Expression of TIMPs allows for precise 

regulation of proteases and prevents uncontrolled ECM turnover. There are 4 TIMP 

genes, TIMP -1, -2, -3, and -4. Each protein consist of two distinct domains, an 125 

amino acid reside N-terminal, and a 65 residue C-terminal, the conformation of each 

domain is stabilised by three disulfide bonds (Williamson et al., 1990; Baker, 2002). 

TIMPs are secreted and free, with the exception of TIMP-3, which is found tightly 

bound to glycosaminoglycans such as heparan sulfate in the ECM (Yu et al., 2000).  

TIMP-1 was the first member of the family to be discovered in the early 1970s, and 

was shown to inhibit gelatinases and collagenases. In general, the TIMPs are broad 

spectrum MMP inhibitors. TIMP-1 is slightly more restricted than the others and has 

low affinity for membrane-type MMPs. TIMP-3 has the broadest inhibition spectrum, 

and inhibits several members of the ADAM and ADAMTS family, in particular 

ADAMTS-1 and -4 (Nagase, Visse and Murphy, 2006). Interestingly, the affinity of 

TIMP-3 to ADAMTS-1 and -4 is much stronger than its affinity for MMPs, suggesting 

inhibition of aggrecanases may be its primary physiological function (Kashiwagi et al., 

2001). 

The understood mechanism of inhibition is based on the structures of TIMP-MMP 

complexes. TIMPs have a wedge shaped ridge in the N-terminal domain which slots 

into the active site of the target MMP, preventing its catalytic activity (Murphy, 

2011). 

1.3.4 Adamalysins/reprolysins  

The adamalysin/reprolysin family consists of the reprolysins, originally isolated from 

snake venom, the closely-related ADAMs (a disintegrin and metalloprotease) and the 

more recently discovered ADAMTS (a disintegrin and metalloprotease with 

thrombospondin repeats).  
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1.3.4.1 A disintegrin and metalloprotease (ADAM) 

The ADAMs are implicated in numerous biological mechanisms including tumour 

metastasis, angiogenesis, and growth factor shedding. C-terminal to the 

metalloprotease domain they possess a disintegrin domain, a cysteine-rich region, 

an EGF-like domain, a transmembrane domain, and a cytoplasmic domain.  

There are 22 known ADAM genes in human, of which at least 12 are proteolytically 

active. In contrast to the MMPs, proteolytically active ADAMs are membrane-bound, 

and thought to primarily play a role in adhesion, acting as molecular switches via 

ectodomain shedding of type I and type II transmembrane proteins (Mullooly et al., 

2016). 

1.3.4.2 A disintegrin and metalloprotease with thrombospondin repeats (ADAMTS) 

The Adamts family was identified in 1997, when a screen of genes expressed in 

murine  colon adenocarcinoma identified a novel cDNA encoding for ADAMTS-1 

(Kuno et al., 1997). Like the ADAMs, the ADAMTS have an N-terminal signal peptide 

followed by a pro-domain, metalloprotease, and disintegrin domain, however the 

ADAMTS are secreted proteases, and therefore do not have transmembrane or 

cytoplasmic domains. Instead, downstream of the disintegrin domain, they have 

multiple thrombospondin type 1 repeats (TSRs) followed by an ancillary region 

composed of a cysteine-rich region, a spacer region, and occasionally additional 

specialist domains. The ancillary region determines substrate specificity, as in 

ADAMTSs the protease domain alone unable to process native substrates (Kelwick, 

Desanlis, et al., 2015).  

With the exception of ADAMTS-6 and -10, all ADAMTS family members are predicted 

to be catalytically active, and can be broadly categorised into clades based on 

substrate: aggrecanases/proteoglycanases, procollagen N-propeptidases, cartilage 

oligomeric matrix protein-cleaving enzymes, von Willebrand factor proteinases, and 

a group of orphan enzymes (Figure 1.4). There is no evidence for the cysteine switch 

mechanism of activation well described for MMPs, however excision of the pro-
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peptide is typically a pre-requisite of catalytic activity, and all ADAMTSs contain at 

least one site for furin-like PPCs.  
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Figure 1.4 The ADAMTS proteases. The ADAMTS family can be sub-grouped into 5 clades 
based on substrate; aggrecanases, procollagen N-propeptidases, vWFCP, COMP proteinases 
and a group of orphan enzymes. All members share structural features of a signal peptide, a 
pro-domain followed by a metalloproteinase domain, a disintegrin-like domain, a 
thrombospondin type 1 motif and a spacer region, the C-terminal is specific to each protease. 
Figure adapted from Kelwick, Desanlis, et al. (2015). 
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1.3.4.3 The pro-collagen N-propeptidases 

The pro-collagen N-propeptidases (ADAMTS-2, -3 and -14) are essential for the 

maturation of triple helical collagen fibrils. Triple-helical procollagens are secreted 

with pro-peptides at both extremities, and removal of both the N- and C-terminal 

pro-domain of type I and II procollagen is required to generate soluble collagen 

monomers which can assemble into elongated and cylindrical collagen fibres.  

ADAMTS-2,-3, and -14 fulfil this role in the case of the amino terminal pro-peptide 

(Bekhouche and Colige, 2015). The importance of the pro collagen N-propeptidases 

is highlighted in human disease; mutations in ADAMTS-2 can give rise to Ehlers-

Danlos type VIIC disease, as a result of abnormal polymerisation of collagen fibres 

containing the N but not C propeptide (Colige et al., 2002).   

1.3.4.4 Cartilage oligomeric matrix protein cleaving enzymes 

The cartilage oligomeric matrix protein (COMP) proteases (ADAMTS-7 and -12), 

digest COMP, a prominent non collagenous component of cartilage. In the case of 

ADAMTS-12 the interaction is mediated via the EGF domain of COMP and the 4 C-

terminal TSP repeats of the enzyme (C. Liu et al., 2006).  

Due to the importance of COMP in cartilage, the roles of ADAMTS-7 and -12 in 

arthritis, a disease characterised by cartilage breakdown, have been closely 

investigated. Degraded fragments of COMP have been observed in arthritic patients, 

as has an upregulation of ADAMTS-7 and -12, and indeed Liu et al, showed that 

ADAMTS-7 and -12 degradation of COMP plays an important role in the initiation and 

progression of the arthritis (C. Liu et al., 2006; C.-J. Liu et al., 2006).  

1.3.4.5 von Willebrand factor proteinase 

ADAMTS-13’s major function is cleavage of von Willebrand factor (VWF) anchored 

on the endothelial surface, in circulation, and at sites of vascular injury. Cleavage of 

VWF is essential for proper haemostasis, and mutations in ADAMTS-13 can result in 

thrombocytopenic purpura (TTP), a disorder of blood coagulation where extensive 
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clots form in small blood vessels, characterised by the presence in the plasma of large 

VWF strings (Zheng, 2015).  

1.3.4.6 The Orphan Enzymes 

Several ‘orphan’ enzymes exist, whose physiological substrates are yet to be 

identified, these include ADAMTS-6, -10, -16, -17, -18 and -19. The importance of 

these ADAMTSs is highlighted by their role in human disease, but may be distinct 

from catalytic functions. For example, ADAMTS-10 is resistant to furin cleavage due 

to lack of conservation of the furin cleavage site in its pro-domain, and does not 

appear to be catalytically active, however it has an essential role in fibrillin microfibril 

function (Kutz et al., 2011). Mutations in ADAMTS-10 or fibrillin-1 result in Weill 

Marchesani syndrome (WMS), characterised by short stature, eye defects, 

hypermuscularity and thickened skin (Mularczyk et al., 2018). ADAMTS-17 is also 

capable of binding, but not cleaving, fibrilin-1, and ADAMTS-17 defects have been 

shown to lead to similar dysfunctions. Autosomal recessive ADAMTS-17 mutations 

cause WMS-like syndrome, affected individuals have short stature and eye 

abnormalities but lack joint stiffness and brachydactyly associated with WMS 

(Hubmacher et al., 2017).  

1.3.4.7 The aggrecanase/proteoglycanase clade 

The aggrecanase clade consists of 7 proteases (ADAMTS-1, -4, -5, -8, -9, -15 and -20), 

and is often referred to as the ‘angioinhibitory clade’. The primary substrates for this 

group are chondroitin sulfate proteoglycans of the hyalectan family, of which there 

are four members, aggrecan, brevican, neurocan and versican (Stanton et al., 2011). 

Whilst expression of neurocan and brevican is largely restricted to neural tissue, 

aggrecan is a major component of cartilage ECM. Studies have identified ADAMTS-4 

and -5 as the major physiologically relevant aggrecanases, and their proteolytic 

activity is important in osteoarthritis (Verma and Dalal, 2011). Subsequent studies 

have identified limited aggrecanase activity amongst ADAMTS-1, -8, -9 and -15 

however it is unlikely that this is the major role of these enzymes.  
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Versican forms highly hydrated complexes with hyaluronan, and is widely distributed 

in the provisional matrix of mammalian embryos. In cardiac development, immature 

versican-rich ECM is replaced by a collagen, proteoglycan and elastin containing 

matrix. Myocardial compaction, endocardial cushion remodelling, myogenesis and 

interdigital web regression are all developmental processes where ADAMTS-

mediated cleavage of versican is key (Nandadasa, Foulcer and Apte, 2014). ADAMTS-

1, -4, -5, -9, -15 and -20 can act as versicanases, and their importance is this context 

is highlighted by knockout models, Adamts-1, 5 and 9 -/- mice all display phenotypes 

resulting from defective cardiac development, alongside cleft palate and syndactyly 

(Kelwick, Desanlis, et al., 2015).  

ADAMTS-1 was the first member of the ADAMTS family to be identified (Kuno et al., 

1997; Kuno, Terashima and Matsushima, 1999). It is widely expressed in developing 

mammalian embryos; Adamts-1 -/-  mice show growth retardation, morphological 

defects in the kidney, adrenal gland and adipose tissue, and infertility in females due 

to ineffective cleavage of versican during ovarian maturation, demonstrating an 

essential role for this enzyme in development (Shindo et al., 2000). Adamts-1 -/- mice 

also present with a delayed wound healing response, which, alongside the 

upregulation of ADAMTS-1 seen in wounded skin, suggests a role for the protease in 

cell migration and angiogenesis (Krampert et al., 2005). 

Once secreted, ADAMTS-1 binds to the ECM (Hashimoto, Shimoda and Okada, 2004; 

Kelwick, Desanlis, et al., 2015). This ECM anchorage is mediated by its spacer region 

and three TSRs. When cultured with heparin, this interaction is disrupted and 

ADAMTS-1 can be found in cell culture media, indicating that the ADAMTS-1 ECM 

interaction is mediated by HSPG (Kuno and Matsushima, 1998). By binding ECM 

components such as GAGs, ADAMTS-1 can modulate growth factor availability and 

cell adhesion.  
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1.4 Cellular adhesion molecules and the ECM 

Cells rely upon adhesion molecules, cell surface glycoproteins, to interact with and 

respond to the ECM. The principal players in cell matrix interaction are the integrins, 

however other molecules such as selectins and syndecans can bind the ECM. 

Cell adhesion receptors also serve to form a link between the ECM and the cell 

cytoskeleton. Sites of ECM-cytoskeleton connection occur at focal adhesions (FAs), 

large and dynamic macromolecular structures. FAs are composed of adhesion 

receptors such as integrins and syndecans, which recruit adaptor and scaffold 

proteins to stabilise the adhesion (Lo, 2006). FAs provide both mechanical linkage, as 

well as allowing for the transmission of extracellular signals. The formation and 

turnover of adhesions in response to the environment is also essential for 

mesenchymal migration. 

1.4.1 Integrins  

The integrins are a family of heterodimeric transmembrane glycoproteins, which act 

as cell adhesion receptors. They form a major component of focal adhesions, and 

modulate dynamic interactions between the ECM and actin cytoskeleton during cell 

motility. Integrin molecules contain 2 subunits, an α and a β, both of which are type 

I transmembrane proteins. In mammals, there are 18 α and 8 β subunits, which form 

at least 24 distinct heterodimers (Humphries, Byron and Humphries, 2006). Integrin 

heterodimers can be roughly classified into four major classes based on ligand 

specify; RGD receptors, collagen receptors, leukocyte specific receptors and laminin 

receptors (Figure 1.5).  
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Figure 1.5 Integrins form 24 distinct heterodimers. The figure shows the mammalian 
subunits and their possible α/β combinations. Grey hatching represents inserted A/I domains 
(the principal ligand-binding domain), asterisks denote alternatively spliced cytoplasmic 
domain. Figure reproduced from Hynes (2002).  
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As well as functioning mechanically, linking the cell cytoskeleton to the ECM, 

integrins function biochemically, and signal bi-directionally in pathways called 

outside-in and inside-out signalling.  In inside-out signalling, integrins respond to 

intracellular stimuli, which initiates conformational changes influencing how the 

extracellular ‘head’ interacts with extracellular ligands. During outside-in signalling, 

integrins respond to ligand binding and mediate the transmission of extracellular 

signals across the plasma membrane, activating intracellular signalling machinery 

and mediating cellular responses such as migration or proliferation (Harburger and 

Calderwood, 2008). 

1.4.1.1 Integrin Inside-out signalling  

Inside-out signalling, or integrin activation, referrers to the ability of integrins to 

regulate their affinity for extracellular ligands. Integrins on the cell surface are 

normally in a low affinity state, and are ‘activated’ in response to intracellular 

signalling acting upon the integrin cytoplasmic tails. 

In a resting state α and β subunits are in close proximity, in order for activation to 

occur the non-covalent complex between the cytoplasmic tails of α and β subunits 

must be unclasped, this in turn unclasps the association of transmembrane helices, 

and allows transmission of a conformational change into the extracellular domain, 

exposing the ligand binding site (Plow, Meller and Byzova, 2014).  

The short cytoplasmic tail of the β subunit is responsible for interaction with proteins 

which regulate the inside out signalling process. One such key regulator is talin, a 

protein consisting of a N- terminal globular head, followed by an extended rod of 

helical bundles, containing an actin-binding motif (Moser et al., 2009). A FERM sub-

domain in the head region of talin binds the β subunit cytoplasmic tail, displacing it 

from the α subunit. Several proteins can inhibit integrin activation by competing with 

talin for integrin binding, for example Dok1 and ICAP1 (Critchley and Gingras, 2008; 

Harburger and Calderwood, 2008).  

 



38 

 

1.4.1.2 Integrin outside-in signalling  

The binding of integrins to ligands initiates outside-in signalling. Integrins form an 

initial talin-mediated connection between the cytoskeleton and ECM; additional 

proteins are then recruited and integrins cluster, stabilising and reinforcing this link. 

This results in the formation of a focal adhesion complex at the integrin cytoplasmic 

tail, and activation of downstream signal pathways which regulate cell shape, 

migration, growth and survival (Hu and Luo, 2013).  

Proteins recruited by integrins can be broadly grouped into 3 categories, integrin-

binding proteins, adaptors/scaffolding proteins and enzymes/effectors.  Integrin 

cytoplasmic tails themselves have no intrinsic catalytic activity, and therefore 

signalling requires the recruitment of effector proteins, in particular the non-

receptor tyrosine kinases focal adhesion kinase (FAK) and Src are essential in integrin 

signalling cascades. Serine threonine kinases such as PKC are also regulated by 

integrin clustering, as are lipid kinases of the PI3K family. Other important signalling 

molecules are small G proteins of the Rho GTPase family (Bustelo, Sauzeau and 

Berenjeno, 2007).  

1.4.1.3 RHO GTPases in integrin outside-in signalling 

The Rho family is a subgroup of the Ras superfamily of GTP hydrolases. One of the 

main functions of the family is to assemble or activate proteins at the cytoplasmic 

surface of membranes, and these signalling proteins are required to mediate 

assembly, disassembly, and organization of actin filament structures. Members of 

the Rho family are classified into six subgroups: Rho, Rac, Cdc42, Rnd, RhoBTB and 

RhoT/Miro (Bustelo, Sauzeau and Berenjeno, 2007). 

Most Rho GTPases act as molecular switches, active when bound to GTP, and 

inactivated when this is hydrolysed to GDP. This switch is regulated by guanine 

nucleotide exchange factors (GEFs), and GTPase-activating proteins (GAPs). The GEFs 

promote the exchange of GDP for GTP, encouraging activation the G protein, leading 

to stimulation of signalling cascades and cellular responses. Conversely, GAPs 
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promote hydrolysis of bound GTP, catalysing the return to the inactive state (Bustelo, 

Sauzeau and Berenjeno, 2007).  

Different Rho GTPases hold different cellular functions; Rac is required for 

lamellipodial protrusion, Cdc42 is required to maintain cell polarity, including 

localizing lamellipodial activity to the leading edge of migrating cells, Rho is required 

to maintain cell adhesion during movement, and Ras regulates focal adhesion and 

stress fibre turnover (Figure 1.6) (Nobes and Hall, 1999).  

 

 

 

 

 

Figure 1.6  Rho family GTPases have different cellular functions.  Charts show members of 
the family, their downstream effectors, and outcomes for the actin cytoskeleton including 
polymerisation, turnover and contraction. Figure adapted from Dráber, Sulimenko and 
Dráberová (2012).  
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Integrin inside-out signalling through small GTPases is vital during integrin-

dependent cell spreading and retraction. Rac activity, necessary for lamellipodia 

formation, is stimulated by integrin signalling. Integrin ligation induced by outside in 

signalling also dynamically regulates Rho, necessary for regulation of cell retraction. 

One proposed mechanism for the link between integrin ligation and downstream 

small GTPase activation is through Src family kinase activation, in particular c-Src, 

which has been shown to mediate phosphorylation of various GEFs for Rac (Figure 

1.7).  
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Figure 1.7  Small G proteins are essential for co-ordinated cell migration.  CDC42 and Rac 
drive forward protrusions of the cell membrane, these are stabilized by initial adhesions. 
Integrin clustering strengthens adhesions and leads to signalling via Src and FAK, activating 
adaptor molecules Cas/CRK. Rho-mediated contractility through ROCK assembles stress 
fibres and leads to maturation of adhesions. Figure reproduced from Shen, Delaney and Du 
(2012). 
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1.4.1.4 Integrin trafficking  

Integrin functions are dependent on the relative surface availability of heterodimers, 

which is regulated by membrane trafficking. Nine different integrins can bind 

fibronectin, therefore cells adherent to fibronectin can have adhesions containing 

many different integrins that can differentially affect adhesion dynamics. An 

antagonistic relationship between the recycling of α5β1 and αvβ3 has been 

demonstrated to regulate migration. On fibronectin, α5β1 adhesions are more 

dynamic, whereas αvβ3 mediated adhesions are associated with more persistent 

migration (Huttenlocher and Horwitz, 2011).   

Recycling of αvβ3, but not α5β1, is controlled by the Rab4 short loop recycling 

pathway. Recycling through this route promotes formation of αvβ3 integrin 

containing cell-matrix adhesions at the leading edge of migrating cells, which 

supports Rac and Arp2/3 mediated lamellipodial extension and maintains 

directionally persistent migration in fibroblasts. Disruption of this recycling causes 

lamellipodial collapse and promotes rapid, random migration due to an increase in 

Rab11-RCP dependent recycling of α5β1 promoting activation of the RhoA-ROCK-

Cofilin pathway, which drives ruffling protrusions and rapid migration (López-Otín 

and Matrisian, 2007; Paul, Jacquemet and Caswell, 2015). 

1.4.2 The syndecans  

A second family highly important in cell adhesion is the syndecans. The syndecans 

are a family of type I transmembrane proteoglycans, with roles in development, 

angiogenesis, wound healing, tumour growth and neurogenesis (Leonova and 

Galzitskaya, 2013). There are four family members, each consisting of a protein core 

(20-40kDa) with extracellular CS or HS GAG chains attached, which allow them to 

engage the ECM and growth factors (Morgan, Humphries and Bass, 2007). They 

possess a single transmembrane domain and short cytoplasmic tail which contains a 

pair of conserved regions and a unique variable region. The cytoplasmic domain of 

all syndecans contains a binding site for PDZ-binding proteins such as syntenin (Figure 

1.8).  
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Syndecans 1 and 3 possess both types of GAG chains, whereas syndecan 4 and 2 only 

have HS chains. Heparan sulfate chains consist of 50-150 repetitions of disaccharide 

units (mainly glucuronic acid and N-acetylglucosamine) with alternating high and low 

sulfate domains attached to conserved Ser-Gly dipeptides in the extracellular core 

protein. 

Expression of syndecans varies throughout cell types. Syndecan 1 is highly expressed 

in epithelia, syndecan 2 in endothelia and fibroblasts, whereas high expression of 

syndecan 3 can mostly be found in neuronal tissues. Syndecan 4 is the only member 

of the family to be ubiquitously expressed and is the major syndecan in endothelial 

cells (Leonova and Galzitskaya, 2013; Vuong et al., 2015) 

The syndecans interact with a large array of ligands through their GAG chains, and 

are considered to be ligand gatherers, working in co-operation with signalling 

receptors; alongside this syndecans have the capacity to signal independently 

(Couchman, 2003).  
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Figure 1.8 The syndecan family of transmembrane proteoglycans.  The syndecan family has 
four members, each has an intracellular tail with two conserved regions and a variable 
domain, a transmembrane region, and an extracellular domain to which HS or CS chains are 
covalently attached. Syndecans have an extracellular shedding site close to the membrane. 
Figure reproduced from Pap and Bertrand (2013).  
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1.4.2.1 Syndecan 4  

Syndecan-4 is of particular interest as it is the only member of the syndecan family 

reported to be enriched in focal adhesions (Woods and Couchman, 1994). The HS 

GAG chains of syndecan 4 allow it to interact with heparin-binding growth factors 

such as FGFs, VEGFs and PDGFs. In this way syndecan 4 can generate variable spatial 

distributions of growth factors and ECM components, although the physiological 

significance of this remains unclear.  

Syndecan 4 can act as a co-receptor, stabilising the interaction between growth 

factors and other cell membrane receptors. This is best defined in the case of FGFs. 

Although FGFs bind FGFRs with high affinity, this interaction and subsequent 

signalling events are amplified and can be prolonged by the presence of heparan 

sulfate chains (Sperinde and Nugent, 2000). Syndecan 4 can also function as a 

receptor in its own right; upon ligand binding syndecan 4 clusters and translocates to 

lipid rafts, specialised membrane regions rich in cholesterol and sphingolipid 

(Tkachenko and Simons, 2002). In the case of FGF2 binding, clustering of syndecan 4 

in lipid rafts leads to non-clathrin mediated, Rac-1 and CDC42-dependent 

endocytosis of FGF2-syndecan 4 complexes; cellular uptake of FGFs is believed to be 

necessary for them to exhibit their full mitogenic affect (Tkachenko et al., 2004). 

Syndecan 4 also has a role in lymphangiogenesis; the formation of lymphatic vessels 

from pre-existing lymphatic vessels, believed to be similar to angiogenesis. Syndecan 

4 has been shown to interact with VEGF receptor 3 on the lymphatic endothelial cell 

surface, and potentiate its activity. Supporting this, pathological lymphangiogenesis 

is impaired in Sdc4-/- mice (Johns et al., 2016). Conversely, Wang et al. found that 

syndecan 4 deletion lead to excessive expansion of lymphatic vasculature during 

embryonic development (Wang et al., 2016). It has therefore been proposed that 

syndecan 4 may act in a context-dependent mechanism.   

1.4.2.2 Syndecan ectodomain shedding  

Shedding refers to the proteolytic cleavage and release of syndecan ectodomains, 

believed to have a number of physiological and pathological roles. Proteases of the 
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metzincin family are largely responsible for syndecan cleavage. Mapping of MMP 

cleavage sites on syndecan 1 and 2 showed the preferred region for cleavage is two 

membrane proximal sites, 2 and 15 residues from the transmembrane domain. Other 

cleavage sites were found 35-40 residues C-terminal from HS chain substitution sites 

(Manon-Jensen, Multhaupt and Couchman, 2013).   

Known shedders of syndecans include MMP-7, MT1-MMP, MT3-MMP (syndecan 1) 

(Li et al., 2002; Endo et al., 2003), and MMP-2 and MMP-9 (syndecan 1, 2 and 4) 

(Brule et al., 2006; Fears, Gladson and Woods, 2006). It is not yet clear how 

extracellular stimuli influence these sheddases to mediate syndecan cleavage, but 

different agonists appear to activate distinct intracellular signalling pathways to 

activate shedding.  

Syndecan 4 shedding by proteases can serve to downregulate signal transduction at 

the cell membrane, however released soluble ectodomains retain their GAG chains 

and ability to bind growth factors and serve as important signalling molecules; they 

can acts as paracrine or autocrine effectors, as antagonists or competitive inhibitors 

of growth factors and can compete with intact syndecan for extracellular ligands 

(Steinfeld, Van Den Berghe and David, 1996; Manon-Jensen, Itoh and Couchman, 

2010). 
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1.5 Other molecular players in the ECM  

1.5.1 Fibulin 1 

Fibulin I is a secreted glycoprotein found in association with ECM structures such as 

fibronectin fibrils and basement membranes. It is capable of binding a number of 

matrix components, including the hepII domain of fibronectin, nidogen-1, and certain 

proteoglycans (Balbona et al., 1992).  

Fibulin 1 is a ligand for the c type lectin domain of the proteoglycans aggrecan and 

versican (Aspberg et al., 1999). The physiological relevance of the association is not 

yet fully elucidated, however tissue co-localisation of fibulin-1 with versican or 

aggrecan implies a functional association; fibulin 1 and versican are both found in the 

subintimal layer of the tunica media of rat aorta, and the expression of both is 

upregulated in damaged skin (Fässler et al., 1996; Aspberg et al., 1999). As in the case 

of skin, versican expression is greatly upregulated in response to damage in blood 

vessels, but it is unclear if fibulin 1 responds in the same way (Bode-Lesniewska et 

al., 1996). 

As aggrecan and versican are known substrates of ADAMTS-1, it seems logical to find 

a connection between ADAMTS-1 and fibulin I, and indeed a yeast two-hybrid screen 

using the c-terminal region of ADAMTS-1 as bait identified fibulin 1 as an interacting 

molecule (Lee et al., 2005). Immunoprecipitation substantiated the ability of the 

proteins to interact, and similar expression patterns were seen in vivo. Functional 

investigation revealed that fibulin 1 was not a substrate for ADAMTS-1, but instead 

its presence enhanced the capacity of ADAMTS-1 to cleave aggrecan (Lee et al., 

2005).  

Fibulin 1 has been found to have profound effects on cell adhesion and migration; 

the incorporation of fibulin 1 into fibronectin matrices inhibited cell attachment, 

spreading and migration, and cells transfected to overexpress fibulin 1 displayed 

reduced velocity. The motility suppressing effects of fibulin 1 appeared to be FN 

specific, but fibulin 1 did not perturb interactions between α5β1 or heparan sulfate 

proteoglycans with fibronectin. Fibulin 1 was found to inhibit ERK, and it was posited 
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that the effects were due to modulation of actomyosin contractility (Twal et al., 

2001). 

A more recent study comparing the migration inhibitory effects of fibulin 1 and 

tenascin C (another matrix glycoprotein) saw similar inhibition of cell adhesion, and 

demonstrated that this was correlated with inhibition of FAK and ERK activation. It 

was found that these inhibitory effects could be bypassed by activation of RhoA, and 

that the fibroblast response to fibulin 1 was dependent on expression of syndecan 4 

(Williams and Schwarzbauer, 2009).  

Studies of the extracellular protein calumenin have highlighted the importance of 

MMP proteolysis in the regulation of fibulin 1. MMP-13 cleaves fibulin 1; calumenin 

binding to fibulin 1 prevents this degradation, leading to inactivation of ERK1/2 and 

inhibition of migration.  This inhibition of ERK was dependent on calumenin and 

fibulin 1 interaction with fibronectin in an α5β1 and syndecan-4 dependent 

mechanism. These data highlight that although fibulin 1 may not perturb α5β1 or 

heparan sulfate proteoglycan interaction with fibronectin, their presence is essential 

for it to exert its anti-migratory effects.  
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1.6 Cell migration  

Cell migration, essential for growth, development, wound healing, and angiogenesis, 

is greatly influenced by interaction with the ECM. The best characterised mode of cell 

migration is mesenchymal migration, a crawling style of cell migration which requires 

polarisation of cells into a leading and trailing edge. To achieve this polarisation, the 

actin cytoskeleton, as well as adhesion and chemosensory receptors, must be 

redistributed. Actin polymerisation drives membrane protrusion, new adhesions can 

then form at this leading edge, allowing cells to generate traction required for actin 

polymerisation driven translocation of the cell body. Adhesions and the trailing edge 

then disassemble and are recycled to allow for persistent and continuous migration 

(Huttenlocher and Horwitz, 2011).  

In 3D tissues cell migration requires regulated extracellular proteolysis and 

degradation of the ECM in order to overcome physical barriers in tissue 

environments, achieved through engagement of matrix metalloproteinases at the 

cell surface (Friedl and Wolf, 2003).  

1.6.1 Formation and turnover of focal adhesions  

An initial nascent adhesion forms where a small extended membrane protrusion 

makes contact with the ECM. This early adhesive focus is formed of an integrin-ECM 

linkage, ligand binding to integrin induces clustering of integrins, and this interaction 

is then stabilised by the binding of the cytoskeletal scaffold protein talin, which 

mediates crosslinking with F-actin. Talin also facilitates the linkage of adaptor 

proteins such as paxillin and actin-binding proteins such as vinculin and α-actinin, as 

well as the recruitment of early effector proteins such as the non-receptor tyrosine 

kinase FAK (Critchley and Gingras, 2008).  

This initial ‘focal contact’ is immature and often short lived, with the potential to 

develop into a larger mature focal adhesion, or be recycled, depending on the 

environment. Maturation into a focal adhesion is controlled by tension force and 

local actin polymerisation: actomyosin contraction induces conformational changes 

in talin, which exposes further vinculin-binding sites, and promotes the formation of 
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more stable focal adhesions (De Pascalis and Etienne-Manneville, 2017).  The final 

stage of development into a mature fibrillar adhesion is regulated by Rho activity, 

and characterized by the recruitment of tensin and zyxin (Nobes and Hall, 1999; 

Wozniak et al., 2004).  

Focal adhesions grasp the ECM to generate forces necessary to pull the cell body 

forward, and therefore continued cell movement requires release and disassembly 

of trailing edge adhesions (Wolfenson, Lavelin and Geiger, 2013). The generation of 

retractive force is dependent on actin-myosin interaction, stimulated by 

phosphorylation of the myosin light chain, which occurs when Rho activates its 

downstream effector Rho kinase (ROCK) inducing phosphorylation and inhibition of 

myosin light chain phosphatase (Shen, Delaney and Du, 2012). Extension of 

microtubules into FAs triggers their disassembly and internalisation of integrins at 

the cell surface, in a mechanism mediated by the GTPase dynamin, recruited by FAK 

(Figure 1.9) (Wang et al., 2011).  
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Figure 1.9 Formation, maturation and turnover of focal adhesions.  An initial integrin ECM 
linkage forms a nascent adhesion, this matures via the recruitment of adaptor proteins such 
as talin and vinculin. In order for sustained migration adhesions at the trailing end must 
disassemble, triggered by the expansion of microtubules into the adhesion. Figure adapted 
from De Pascalis and Etienne-Manneville (2017). 
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1.6.2 Syndecan 4 and cell migration  

The role of syndecan 4 in focal adhesions is well appreciated; syndecan 4 serves as a 

direct link between the ECM and extracellular signalling proteins, since it can 

simultaneously bind fibronectin and the intracellular actin-associated protein α-

actinin,  and can recruit other proteins to sites of focal adhesions, a key example 

being the signalling molecule protein kinase C α (PKCα) (Greene et al., 2003). PKCα is 

essential for adhesion-mediated signal transduction; the Syndecan 4 cytoplasmic 

domain, when bound to phosphatidylinositol 4,5-bisphosphate, recruits PKCα to sites 

of focal adhesions through interaction with its catalytic domain and mediates its 

activation (Lim et al., 2003). This interaction also mediates the location and stability 

of PKCα (Oh, Woods and Couchman, 1997b). 

Another important role of syndecan 4 in focal adhesions is attributed to the 

activation of FAK, leading to the potentiation of many downstream signalling 

pathways. Fibroblasts spreading onto a fibronectin fragment lacking the HepII 

binding domain attach but do not fully spread or form focal adhesions, furthermore, 

FAK activation by autophosphorylation of Tyr397 does not occur in cells spreading on 

this HepII lacking fibronectin. Syndecan 4 binds to the HepII-binding domain of 

fibronectin, suggesting its importance in this context, and indeed syndecan 4 null 

fibroblasts spreading on fibronectin show reduced levels of FAK Tyr397. Further 

supporting a role for syndecan 4, focal adhesion and stress fibre formation can be 

rescued by activation of Rho or PKCα, or by clustering of syndecan 4 with antibodies 

against the syndecan 4 extracellular domain, indicating that syndecan 4 activates FAK 

in a Rho-dependent manner (Saoncella et al., 1999; Woods et al., 2000; Wilcox-

Adelman, Denhez and Goetinck, 2002). 

Despite the predicted importance of syndecan 4 in focal adhesion formation, 

fibroblasts isolated from Sdc4-/- mice retain the ability to form focal adhesions, likely 

as a result of the plasticity of adhesion mechanisms; adhesion receptors are 

numerous and varied, and it is likely cells isolated from Sdc4-/- mice adapt, and an 

alternate receptor may fulfil the roles of syndecan 4 (Echtermeyer et al., 2001). Many 
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important functions of syndecan 4 in focal adhesion formation occur in concert with 

the integrins. 

1.6.3 Co-operation of syndecans and integrins in adhesion and migration 

Nearly all ECM proteins have a binding site for both syndecans and integrins, and 

substantial evidence suggests that full adhesion response requires dual engagement 

of HSPG and integrins; one well defined example is the dual engagement of integrin 

and syndecan 4 in adhesion to fibronectin, where the two adhesion receptors work 

in conjunction to promote focal adhesion and actin stress fibre formation.  

Initial sites of attachment between α5β1 integrin and extracellular fibronectin have 

the potential to mature into focal adhesions, however this is dependent of the ability 

of syndecan 4  GAG chains to bind the heparin-binding fragment of fibronectin, and 

to active PKCa (Oh, Woods and Couchman, 1997a; Woods et al., 2000; Greene et al., 

2003).  

Syndecan 4 and integrin α5β1 dynamically regulate Rac1 and RhoA to regulate 

membrane protrusion. Rac1 functions to drive cell motility by formation of 

lamellopodia, whereas Rho signals cause membrane retraction. The balance of Rac 

and Rho activation therefore co-ordinates membrane protrusion and retraction; sites 

with high Rac 1 will supress RhoA and produce lamellopodia (Chauhan et al., 2011).  

Engagement of α5β1 alone is not sufficient to drive Rac1 activation; full activation 

requires the presence of syndecan 4.  Syndecan 4 drives localised Rac1 activation at 

sites of ECM engagement in a PKCα-dependent manner, localising Rac1 activity to 

the leading edge of cells. Syndecan 4 regulation of Rac1 is mediated by RhoG, a small 

RhoGTPase (Bass et al., 2008). 

At the same time as the wave of Rac1 activation α5β1 and syndecan 4 inhibit RhoA. 

Integrin α5β1 and syndecan 4 make individual contributions to the suppression of 

RhoA during matrix engagement, in pathways that converge upon the GTPase 

activating protein p190 (p190RhoGAP). P190RhoGAP matrix induced tyrosine 

phosphorylation is stimulated independently by α5β1 integrin. Parallel engagement 
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of syndecan 4 causes redistribution of the phosphorylated pool of p190RhoGAP 

between membrane and cytosolic fractions in a mechanism that requires direct 

activation of PKC by syndecan 4. Activation of both pathways is essential for efficient 

regulation of Rho A, and focal adhesion formation (Bass et al., 2008). 

The regulation of integrin trafficking is also in part controlled by syndecan 4. Changes 

in surface expression of integrin α5β1 and αvβ3 results in differential adhesion 

stability and migration. The phosphorylation of syndecan 4 by Src drives syntenin 

binding to syndecan 4 via its PDZ domain, supressing the activity of the Ras 

superfamily GTPase ARF6, resulting in preferential endocytosis and degradation of 

α5β1 and upregulation of αvβ3 integrin at the cell surface, stabilising focal adhesion. 

The reverse occurs upon abrogation of syndecan 4 phosphorylation, destabilising 

adhesion complexes and disrupting migration (Morgan et al., 2013). 
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1.7 Angiogenesis  

Angiogenesis is the development of new blood vessel sprouts from the existing 

vasculature, a process essential for growth and development. In mature mammals, 

angiogenesis is generally only required under specific circumstances, for example in 

the placenta during pregnancy and during wound healing. Dysregulated angiogenesis 

can contribute to pathological process such as cancer and vascular retinopathies, and 

therefore both spatial and temporal regulation is essential (Cleaver and Melton, 

2003).  

Angiogenesis is tightly controlled by cell-cell and cell-ECM interactions, as well as by 

release of growth factors and morphogens. In particular, angiogenesis requires the 

proliferation, growth, differentiation and migration of endothelial cells, processes 

which require the ECM.  

1.7.1 The Vascular system  

The cardiovascular system is the network of vessels that transports blood throughout 

the body, delivering blood and nutrients and removing waste. Blood vessels are laid 

down embryonically in a process termed vasculogenesis, when mesenchymally-

derived precursor angioblasts differentiate into ECs forming de novo networks. 

Angiogenesis is then required for the remodelling and expansion of this primitive 

network, and is triggered throughout life in hypoxic areas (Patan, 2004).  

The system is comprised of five vessel types: arteries; which carry oxygenated blood 

away from the heart, arterioles, capillaries; small vessels where gas exchange 

between blood and tissues occurs, venules, and veins; which carry deoxygenated 

back to the heart. 

The large vessels; arteries and veins, consist of three layers (Figure 1.10). The 

innermost layer, the tunica intima, consists of a single layer of endothelium 

supported by a basement membrane; this layer is anchored to the middle layer, the 

tunica media, with a layer of connective tissue, elastin and collagen. The tunica media 

is comprised of vascular mural cells such as vascular smooth muscle cells (VSMCs) 
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and pericytes, elastin and collagen. The outermost layer, the tunica externa, is 

primarily composed of connective tissue (Cleaver and Melton, 2003). Capillaries are 

the smallest type of blood vessel and unlike the larger vessels they have only one 

layer, a wall a single endothelial cell thick (Figure 1.10). 
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Figure 1.10 Structure of large blood vessels. The large vessels of the vascular system (veins 
and arteries) consist of three layers, the tunica intima, a single cell layer of endothelium 
anchored to a basement membrane, the tunica media containing vascular smooth muscle 
cells, elastin and collagen, and the tunica externa, the outermost layer which is comprised 
primarily of collagen. 
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1.7.2 The stages of angiogenesis  

Sprouting angiogenesis, new blood vessels ‘sprouting’ from existing vasculature, is 

initiated in response to hypoxia. The process involves proteolytic degradation of the 

ECM, followed by chemotactic migration and proliferation of ECs. The process of 

sprouting angiogenesis occurs via a series of highly regulated steps, which all require 

interaction with and remodelling of the ECM (Yue et al., 2007): 

1. Reception of angiogenic signals (Figure 1.11) 

2. Retraction of pericytes from abluminal surface of the vessel and proteolytic 

degradation of the ECM (Figure 1.12) 

3. Chemotactic migration of ECs under the influence of angiogenic stimuli 

(Figure 1.13) 

4. Proliferation of ECs and formation of lumen (Figure 1.14)  

5. Recruitment of pericytes, deposition of new basement membrane, and 

initiation of blood flow 

1.7.2.1 Reception of angiogenic signals  

Angiogenesis is initiated under specific conditions upon reception of angiogenic 

signals. Hypoxia-inducible factors (HIFs) are transcription factors that respond to 

decreased oxygen availability, and are responsible for triggering angiogenesis in 

response to hypoxia. The HIFs exist as heterodimeric complexes, consisting of an 

oxygen destructible α-subunit, and a β subunit. In hypoxic conditions HIFs in 

parenchymal cells are no longer hydroxylated and targeted for degradation, and 

instead initiate expression of pro-angiogenic genes, including VEGF-A (Krock, Skuli 

and Simon, 2011). 

Angiogenesis is also triggered after disruption of epidermal and vascular basement 

membranes, where damage releases ECM bound pro-angiogenic growth factors such 

as FGFs, which induce angiogenesis (Arbiser, 1996).  
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Numerous extracellular factors influence angiogenesis, including angiopoietins, 

FGFs, PDGFs, TNFα, interleukins, and the canonical regulators of angiogenesis, the 

VEGFs (Feucht, Christ and Wilting, 1997).  

The mammalian VEGF family consists of five genes; alongside VEGF-A there is also 

VEGF-B, VEGF-C, VEGF-D and placenta derived growth factor (P1GF). The role of 

VEGF-B in vivo is not fully understood and knockout mice are largely healthy, 

however its expression can be detected in human tumours and it appears to have a 

role in pathological angiogenesis (Aase et al., 2001; Zhang et al., 2009). The 

structurally similar VEGF-C and -D are primarily involved in lymphangiogenesis, but 

also have roles in pathological angiogenesis, for example in carcinoma (Kukk et al., 

1996; Achen et al., 2002; Jiang et al., 2010). Placenta derived growth factor is a ligand 

for VEGFR-1, and plays an important role in trophoblast growth and differentiation 

during embryogenesis (Luttun, Tjwa and Carmeliet, 2002). The most potent 

stimulator of angiogenesis however is VEGF-A, its functions are so essential that even 

heterozygous deletion of the gene in mice is embryonic lethal due to extensive 

vascular structural defects (Carmeliet et al., 1996).  

The VEGF-A gene is found on the short arm of chromosome 6. It has 6 exons which 

can be alternatively spliced to generate 4 major isoforms, VEGF121, 165, 189 and 206, and 

two minor isoforms, VEGF145 and 183 (Chung and Ferrara, 2011).  These variants have 

differential ability to bind HSPG in the ECM; VEGF121 is freely diffusible, whereas 

VEGF189 and VEGF206 are almost completely bound to the ECM.  The most abundant 

isoform, VEGF165, is secreted, however a substantial fraction remains bound to the 

ECM.  

Extracellular matrix-bound VEGF remains bioactive and can be converted into soluble 

forms. Addition of heparin or treatment with heparinase results in the release of 

VEGF from the ECM, as does processing by physiologically relevant proteases such as 

plasmin (Vempati, Mac Gabhann and Popel, 2010). Differential synthesis of VEGF 

isoforms alongside binding and release from the ECM are therefore key processes in 
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the regulation of angiogenesis, which allow for the generation of angiogenic 

gradients (Ferrara, 2010). 

Vascular endothelial growth factors promote angiogenesis through the binding and 

activation of the VEGF receptor family of receptor tyrosine kinases (VEGFRs). Three 

VEGF receptors exist, VEGFR1, primarily a negative regulator of angiogenesis, 

VEGFR3, expressed on lymphatic endothelial cells and for which VEGF-A is not a 

ligand, and VEGFR2, the best studied of the VEGF receptors (Shibuya, 2011). 

VEGFR1 can form homodimers, or heterodimers with VEGFR2. Binding of VEGF-A to 

VEGFR1-VEGFR2 heterodimers only induces a very weak phosphorylation, indicating 

that VEGFR1 acts as a decoy, controlling the amount of VEGF-A able to bind VEGFR2. 

VEGF-A has a much higher affinity for VEGFR1, however VEGFR2 is expressed 10-fold 

more on ECs, whereas VEGFR1 is mainly found expressed on monocytes, 

macrophages and vascular smooth muscle cells (Cao, 2009).   

VEGF receptor 2 (VEGFR2) is the major receptor expressed on endothelial cells, and 

the major pro-angiogenic receptor. In the canonical signalling pathway, VEGF-A 

isoforms bind VEGFR2 inducing autophosphorylation of tyrosine residues in the 

cytoplasmic domain of VEGFR2. Phosphorylated VEGFR2 then initiates downstream 

signalling pathways, including the RAS/MAPK cascade, that produce cellular 

responses in ECs such as proliferation, migration and survival (Clegg and Mac 

Gabhann, 2015). 

VEGFR3 is expressed on lymphatic vessels and binds VEGFC and D, initiating 

lymphogenesis (Simons, Gordon and Claesson-Welsh, 2016). 
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Figure 1.11 Activation of quiescent endothelium in response to angiogenic signals. In 
hypoxic environments, HIF-1α initiates transcription of pro-angiogenic cytokines including 
VEGF, these signal to the endothelium, initiating the process of angiogenesis.   
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1.7.2.2 Retraction of pericytes and degradation of the ECM 

The basement membrane forms a sleeve around endothelial tubules, preventing ECs 

from leaving their positions. Generation of a new sprout requires both degradation 

of the endothelial basement membrane and ECM remodelling. Degradation of the 

membrane serves not only to liberate endothelial cells, but also to release 

sequestered growth factors and detach pericytes. 

Mural cells (vascular smooth muscle cells (VSMCs) and pericytes) retract from the 

abluminal surface of existing vessels in response to angiopoietin 2 release from ECs 

(Huang et al., 2010). TIE-1 and TIE-2 are receptor tyrosine kinases for the 

angiopoietins. TIE-2 deficient mice die embryonically due to failure of the vasculature 

to remodel and mature; this is correlated with a deficiency in supporting pericytes 

and smooth muscle cells, demonstrating its importance in the maintenance of 

mature vasculature (Augustin et al., 2009). While angiopoietin 1 and 4 activate the 

TIE receptors promoting vessel maturation and stability, angiopoeitin-2 acts as a 

competitive antagonist, therefore its release by endothelial cells inhibits TIE-2, 

leading to detachment of mural cells (Scholz, Plate and Reiss, 2015).    

The degradation of the vascular basement membrane and remodelling of the ECM is 

fulfilled by matrix proteases, in particular those belonging to the metzincin 

superfamily. Filopodia on tip cells express proteases such as the cell anchored MT1-

MMP, which degrade the ECM creating a pathway for the newly forming sprout to 

develop into. Endothelial cells isolated from MT1-MMP deficient mice invade 

through Matrigel less efficiently than their WT counterparts, and the importance of 

MT1-MMP in this role is demonstrated by knockout mice, which show severe defects  

in  angiogenesis (Zhou et al., 2000; Oblander et al., 2005).  

The processing of the ECM by MMPs can release non-covalently bound growth 

factors and cytokines. One key example is the role of MMP-9 in regulation of VEGF 

bioavailability.  Vascular endothelial growth factor binds to HSPG in the ECM and is 

released upon HSPG proteolysis by MMP-9, initiating angiogenesis (Hawinkels et al., 

2008). Another example of proteases releasing growth factors is found in TGF-β; TGF-
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β is maintained in a latent state by latency associated protein (LAP), which is 

covalently bound to the fibrillin protein latent TGF binding protein (LTBP). Proteases 

can cleave these proteins to regulate TGF-β activity; LAP is a substrate of MMP-2, 

MMP-9, MMP-13 and MMP-14, and LTBP can be cleaved by MMP-7 (Robertson and 

Rifkin, 2016).  

Activity of MMPs can also uncover bioactive fragments and cryptic epitopes of ECM 

proteins, for example cleavage of collagen IV by MMP-9 unveils a cryptic site HUIV26, 

necessary to initiate angiogenesis (Hangai et al., 2002). Surprisingly, MMPs can also 

act in an angioinhibitory mechanism in some contexts, for example, MMP-12 is 

responsible for the release of angiostatin, an endogenous angiogenesis inhibitor, 

from plasminogen (Cornelius et al., 1998). Endostatin can also be formed by cleavage 

of collagen XVIII (Heljasvaara et al., 2005). 
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Figure 1.12 Mural cells retract and proteases degrade the basement membrane to allow a 
sprout to develop.  TIE-2 – angiopoietin signalling stimulates retraction of mural cells, then 
MT1-MMP degrades the basement membrane.  
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1.7.2.3 Chemotactic migration and proliferation of ECs 

Endothelial cells respond to VEGF-A gradients in specialised mechanisms, forming 

two distinct phenotypes – tip and stalk cells. Endothelial cells which lead the 

developing vasculature are termed ‘tip cells’; these express high levels of VEGFR2 on 

long and dynamic filopodia, and migrate in response to angiogenic directional cues, 

but proliferate minimally. Endothelial ‘stalk cells’ proliferate as they follow behind 

the tip cell, allowing the capillary stalk to elongate. They produce few filopodia, but 

establish adherens and tight junctions, ensuring the stability for the new sprout 

(Gerhardt et al., 2003). 

This phenotypic specialisation of ECs is transient and reversible, and depends upon a 

balance of pro and anti-angiogenic signals. Of particular importance in determining 

branching pattern is Notch signalling; the Notch receptors are large transmembrane 

receptors, with ligands including JAG-1, DLL-1 and DLL-4, and their signalling inhibits 

angiogenesis.  Tip cells express high levels of VEGFR2, and in response to VEGF-A 

signalling they produce DLL4, which activates Notch signalling in neighbouring cells 

in a lateral inhibition process (Kume, 2009). 

Cellular proteolysis is essential for Notch signalling. Ligand-mediated activation of 

Notch leads to two proteolytic cleavage events, the first by ADAM10 and the second 

by γ-secretase. Cleavage results in the release of the Notch intracellular domain 

(NICD) which translocates to the nucleus and can stimulate transcription of target 

genes.  

The tip cell is responsible for guiding the sprout properly, which relies on both 

attractive and repulsive cues. Endothelial cells express guidance receptors including 

ROBO4, UNC5B, PLEXIN-D1, NRPs and EPH family members (Garcia-Mata, Boulter 

and Burridge, 2011).  

The basement membrane is also important in regulating the proliferation and 

migration of endothelial cells. Assembled basement membrane has a complex 

structure and is highly cross-linked, and signals to inhibit proliferation and promote 

an environment that facilitates cell-cell adhesion (Form et al., 1986). As the basement 
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membrane is degraded cryptic domains of partially digested collagens are exposed, 

and these provide important pro-angiogenic cues. Detached endothelial cells are also 

in direct contact with the interstitial provisional matrix, which contains fibronectin, 

vitronectin and type I collagen, and this provisional matrix provides further 

proliferative cues (Kalluri, 2003).  

Matrix metalloproteases support EC migration., and in particular, MT1-MMP is 

required for efficient endothelial migration on diverse ECM components, such as 

gelatin, collagen type I, fibronectin, or vitronectin (Gálvez et al., 2001).  
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Figure 1.13 Tip cells guide a developing sprout, with stalk cells proliferating to develop the 
new vessel.  Tip cells express VEGFR2 in high levels, and secrete Dll4 in response to VEGF-A, 
activating Notch and inhibiting the tip cell fate in nearby cells in a lateral inhibition process.  
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1.7.2.4 Lumen formation and vessel Maturation  

A lumen forms when intracellular vacuoles develop and coalesce within a series of 

stalk cells. Maturation and stabilisation of capillary sprouts requires recruitment of 

pericytes and deposition of ECM. Major players in vessel maturation are TGF-β, 

PDGF-β and angiopoietin-1. TGF-β stimulates production of ECM, as well as mural cell 

induction, proliferation and migration (Pardali, Goumans and ten Dijke, 2010). 

Endothelial expressed PDGF-β activates the PDGF-β receptor on mural cells, 

stimulating their migration and proliferation (Gaengel et al., 2009). Angiopoietin-1 

activates TIE-2, stabilising vessels and promoting pericyte adhesion (Augustin et al., 

2009).  
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Figure 1.14 Vessel maturation requires basement membrane deposition, mural cell 
recruitment, and lumen formation. PDGF-β signalling is responsible for recruitment of mural 
cells, and TGF-β stimulates production of basement membrane 
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1.7.3 VEGFR2 signalling  

In order to efficiently regulate angiogenesis, VEGFs must bind and activate receptors. 

VEGFR2 is the primary VEGF receptor expressed on endothelial cells, it is essential 

for angiogenesis as it is the main transducer of VEGF-A mediated cellular affects. 

Vegfr2-/- mice die in utero as a result of drastically impaired vasculogenesis, 

highlighting the necessity of this receptor (Shalaby et al., 1995). 

VEGFR2 is a type III transmembrane kinase receptor consisting of a 7 immunoglobulin 

(Ig)-like domain extracellular region, a short transmembrane domain, and a 

cytoplasmic region which contains the tyrosine kinase domain, split by a 70 amino 

acid insert (Figure 1.15) (Holmes et al., 2007). 

VEGF-A binding to the second and third extracellular Ig-like domains induces receptor 

dimerization, this is stabilised by low affinity interactions between the membrane 

proximal Ig domains, which allows for trans-autophosphorylation of intracellular 

tyrosine residues. Major phosphorylation sites are Y951 in the kinase insert domain, 

Y1054 and Y1059 within kinase domain 2, and Y1175 and Y1214 in the C-terminal tail, 

with Y1054 and Y1059 being critical for kinase activity (Matsumoto et al., 2005). 

VEGFR dimerization induces a switch in configuration of the transmembrane 

domains, and this rotation of dimers is essential for full kinase activity. VEGF-A is not 

the only ligand for VEGFR2; other VEGFs, including processed forms of VEGF-C and D 

can also bind giving different cellular effects. Different ligands induce difference 

degrees of rotation, thereby giving varying degrees of receptor activation, providing 

one mechanism by which differential effects are transduced (Sarabipour, Ballmer-

Hofer and Hristova, 2016).  
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Figure 1.15 The structure of VEGFR2. VEGFR2 is a transmembrane protein with a cytoplasmic 
region containing two kinase domains separated by an insert, a single transmembrane pass, 
and an extracellular region composed of 7 Ig like domains, of which the second and third 
loop are responsible for ligand binding. Figure adapted from Holmes et al. (2007). 
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VEGFR2 signalling activates numerous pathways, controlling cell proliferation, 

migration, and survival. VEGFR2 induced activation of the classical extracellular signal 

regulated RAS/RAF/ERK/MAPK pathway is key for stimulating proliferation of 

endothelial cells in response to VEGF-A. Usually, docking proteins containing SH2 

domains, such as GRB2, bind the phosphorylated tails of RTKs; GRB2 then binds the 

GEF SOS, allowing Ras to bind GTP and become active, however VEGFR2 does not 

appear to activate Ras via this traditional pathway. Instead, VEGF pY1175 dependent 

phosphorylation of PLCγ, its hydrolysis of PIP2 and resulting accumulation of IP3  

causing calcium influx, and DAG activation of PKC, is responsible for activation of ERK 

(Takahashi, Ueno and Shibuya, 1999). 

A potential mechanism for VEGFR2 activation of Ras has also proposed, where 

VEGFR2 stimulation of sphingosine kinase downstream of PKC results in the 

sequential activation of Ras, Raf and ERK (Shu et al., 2002).  

VEGFR2 promotes cell survival via activation of PI3K.  Phosphorylation of PIP2 by PI3K 

generates membrane bound PIP3, resulting in membrane targeting and 

phosphorylation of Akt/PKB. Downstream, Akt then phosphorylates the apoptotic 

proteins Bcl-2 associated death protein (BAD) and caspase 9, inhibiting their activity 

to promote cell survival (Brunet et al., 1999). 

As well as mitogenic affects, VEGFR2 signalling is also responsible for driving the 

migration of endothelial cells. The adaptor protein Shb binds both VEGFR2 pY1175 

and focal adhesion kinase (FAK). Upon VEGF stimulation, Shb is phosphorylated in a 

Src dependent manner, leading to PI3K phosphorylation and activation of focal 

adhesion kinase (FAK), promoting the formation and turnover of focal adhesions 

(Holmqvist et al., 2004). VEGFR2 also regulates actin cytoskeleton reorganisation via 

activation of p38 MAPK and subsequently Hsp27, leading to actin polymerization and 

reorganisation into stress fibres (Lamalice et al., 2004). 
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1.7.4 ADAMTSs and angiogenesis  

The ADAMTS family proteases influence angiogenesis via both proteolytic and non-

proteolytic mechanisms. ADAMTS-1 was identified based on a search for 

thrombospondin (TSP) homologous modules (Kuno et al., 1997; Kuno, Terashima and 

Matsushima, 1999). Thrombospondins are secreted glycoproteins with 

antiangiogenetic properties; as all ADAMTS contain at least one type one 

thrombospondin like repeat (TSR) it was predicted they would all have anti-

angiogenic capabilities, and research reveals a number of ADAMTS do regulate 

angiogenesis in TSR-dependent mechanisms (Iruela-Arispe et al., 1999).  

The structurally similar aggrecanases ADAMTS-1 and -8 have been demonstrated to 

inhibit FGF-induced vascularisation in the corneal pocket assay and VEGF-induced 

angiogenesis in the CAM model (Vázquez et al., 1999). In the case of ADAMTS-1 this 

is partially attributed to its ability to sequester VEGF165 via its C-terminal spacer 

region and 3 TSRs, blocking VEGFR2 phosphorylation and endothelial cell 

proliferation. This interaction is reversible, and dependent upon the heparin-binding 

domain of VEGF165 – a splice variant lacking this domain, VEGF121, was unable to bind 

ADAMTS-1 (Luque, Carpizo and Iruela-Arispe, 2003).  

Another aggrecanase, ADAMTS-5, has also been shown to inhibit angiogenesis in a 

TSR-dependent mechanism, independent of proteolytic activity. The central TSR of 

ADAMTS-5, TSR1, inhibited endothelial tube formation on Matrigel, and reduced EC 

proliferation and promoted apoptosis (Sharghi-Namini et al., 2008; Kumar et al., 

2012). 

Although it is the prototypical anti-angiogenic ADAMTS clade, angioinhibitory 

functions are not restricted to the aggrecanase subgroup; the pro-collagen N-

propeptidase ADAMTS-2 has been seen to inhibit angiogenesis in cellular and tumour 

models in a catalytically-independent mechanism, and the COMP protease ADAMTS-

12 can inhibit angiogenesis in a mechanism reliant on its TSR (Llamazares et al., 2007; 

Dubail et al., 2010). 
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In contrast, ADAMTS-13 has been seen to both promote and inhibit angiogenesis. Full 

length ADAMTS-13 inhibited VEGF165-induced angiogenesis, but a truncated version 

lacking TSR domains did not (Lee et al., 2012). However, treatment of endothelial 

cells with full length ADAMTS-13 can also promote angiogenesis in a tube formation 

assay in a dose-dependent manner; surprisingly the mechanism also requires the 

TSR1 domain, and appears to result in upregulation of VEGFR2 (Kelwick, Desanlis, et 

al., 2015; Lee et al., 2015). ADAMTS-13 highlights the complex nature of angiogenic 

regulation, and is just one example of a protein with dual roles.  

The ADAMTS proteases also have catalytic functions in the regulation of 

angiogenesis. Wild-type ADAMTS-15, but not a catalytically inactive mutant, is able 

to inhibit angiogenesis in aortic ring and VEGF-induced sprouting models (Kelwick, 

Wagstaff, et al., 2015). Similarly, overexpression of wild-type ADAMTS-9, but not a 

catalytically dead form, reduced formation of tube-like structures on Matrigel in a 

mechanism that appears to involve downregulation of pro-angiogenic factors MMP-

9 and VEGF-A (Koo et al., 2010; Lo et al., 2010). ADAMTS-1 can cleave 

thrombospondin 1 and 2, resulting in a pool of polypeptides with strong 

angioinhibitory affects. In Adamts1-/- mice, TSP1 proteolysis is absent, this is 

correlated with delayed wound repair and increased angiogenic response (Lee et al., 

2006). In a cancer context, the presence of ADAMTS-1 is also associated with 

increased proteolysis of the basement membrane glycoproteins nidogen 1 and 2, and 

reduced vessel density in tumour models (Martino-Echarri et al., 2013). 

1.7.5 Integrins in angiogenesis 

Integrin signalling can influence cell migration, survival and proliferation, behaviours 

essential for the propagation of angiogenesis, implicating the integrins as key 

regulators of angiogenesis. Integrin heterodimers known to involved in angiogenesis 

include α1β1, α2β1, α4β1, α5β1, α6β1, α6β4, α9β1, αvβ3 and αvβ5 (Plow, Meller 

and Byzova, 2014).  

Fibronectin is the major ECM protein deposited by endothelial cells during 

angiogenesis, suggesting fibronectin-binding integrins would be of particular 
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importance, and indeed the αv family of RGD-binding integrins are central to 

angiogenesis. The first integrin shown to regulate angiogenesis was αvβ3. It is widely 

expressed on tumour vasculature, but not on the quiescent blood vessels of normal 

tissue. The upregulation of αvβ3 is therefore a marker of angiogenesis, and is seen in 

skin wounding, arthritis and diabetic retinopathy, as well as in cancer. The expression 

of αvβ3 on endothelial cells is driven by bFGF, TNFα and IL-8. Ligation of αvβ3 can 

activate MAP kinase, FAK and Src, promoting proliferation, differentiation and 

migration (Friedlander et al., 1995). 

Integrin αv also dimerises with β1, 3, 5, 6 and 8.  Different αv dimers function in 

distinct angiogenic pathways, demonstrated by the development of function 

blocking antibodies. Where αvβ3 antibodies block bFGF-driven angiogenesis, αvβ5 

antibodies block VEGF dependent angiogenesis (Friedlander et al., 1995). Activation 

of either pathway is protective from apoptosis, however the αvβ3 bFGF-driven 

pathway leads to activation of p21 activated kinase, Raf activation and MEK1-

dependent protection from extrinsic mediated apoptosis, whereas the αvβ5 integrin 

pathway downstream of VEGF causes activation of FAK and Src, leading to activation 

of Raf, and Raf 1 mitochondrial translocation, resulting in MEK1-independent 

endothelial cell protection from intrinsic pathway apoptosis (Alavi et al., 2003).  

Much like αvβ3, α5β1 is poorly expressed on quiescent endothelium, but its 

expression is upregulated during tumour and corneal angiogenesis in response to a 

number of angiogenic stimuli, including bFGF and IL8. Adhesion mediated by α5β1 

promotes migration and survival by suppressing the activity of PKA; α5β1 antagonists 

activate PKA, leading to activation of caspase 8 and inhibition of angiogenesis (Kim, 

Harris and Varner, 2000; Alavi et al., 2003).  

Integrins are important in VEGFR2 signalling, in particular β1 and β3. The full 

activation of VEGFR2 by VEGF-A requires VEGFR2-integrin β3 association. VEGF-A can 

also promote VEGFR2-integrin β1 complex formation, shifting VEGFR2 to focal 

adhesions and prolonging its activation (Somanath, Malinin and Byzova, 2009).  
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Integrin activation of Rho family GTPases is also involved in angiogenesis. Induction 

of Ras GTPases signals to the PI3K AKT and Ras MAP kinase pathways, which leads to 

the activation of transcription factors such as NF-kB and HOXD3, important 

regulators of the cell cycle and angiogenesis (Castellano and Downward, 2011). 

Activation of Rap1 is also partially dependent on αvβ3 activation, and promotes 

VEGF-A signalling in endothelial cells (Altemeier et al., 2012).  

Integrin signalling can also cross talk with other pathways, for example the Notch 

signalling pathway, important in vascular patterning as well as the recruitment of 

VSMC to maturing vessels. Vascular smooth muscle cell interaction with the Notch 

ligand Jagged 1 on endothelial cells leads to an upregulation of αvβ3, and allows the 

VSMC to adhere to the endothelial basement membrane (Scheppke et al., 2012). 

Integrins also appear to play an important role in the activation of latent TGF-β, a key 

molecule in regulating apoptosis, proliferation and migration (Nishimura, 2009) 

1.7.6 Syndecans in angiogenesis  

The endothelial glycocalyx is a layer of membrane-bound macromolecules including 

HSPG, GAGs, glycoproteins and molecules adsorbed from plasma on the luminal 

surface of the vascular endothelium (Pries, Secomb and Gaehtgens, 2000). The 

glycocalyx is required for normal vascular development, and has roles in 

mechanotransduction, haemostasis, signalling, and blood cell–vessel wall 

interactions. Endothelial cell HSPGs (syndecans 1, 2, 4 and membrane-bound 

glypican-1) are thought to be a key component that anchors the glycocalyx to the 

cell, and syndecan 1 in particular is a major constituent of the endothelial glycocalyx 

(Savery et al., 2013).  

As with cell migration, syndecans can regulate angiogenesis in concert with the 

integrins. Syndecan 1 can associate with αvβ3 and αvβ5 integrins, and these integrins 

are dependent on syndecan 1 for their activation (Beauvais, Burbach and Rapraeger, 

2004). Syndecan 1 silencing prevents HUVECs from spreading on the αvβ3 ligand 

vitronectin, and administration of a syndecan 1 inhibitor synstatin can interrupt 

syndecan 1-integrin interaction, blocking angiogenesis (Beauvais et al., 2009). A 
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suggested mechanism for this involves insulin-like growth factor 1 receptor (IGF1R); 

the association between syndecan 1 ectodomain and integrin provides a docking site 

for IGF1R and this interaction is blocked by synstatin (Rapraeger et al., 2013).  

Syndecan 2 has been implicated in angiogenesis in contrasting mechanisms. The lack 

of syndecan 2 dramatically impairs developmental angiogenesis in zebrafish, in a 

mechanism dependent upon the syndecan 2 cytoplasmic domain, as re-expression 

of a truncated mutant could not rescue the phenotype (Chen, Hermanson and Ekker, 

2004). Alternative data demonstrate an inhibitory role for the shed syndecan 2 

extracellular core protein, inhibiting angiogenesis by preventing cell migration (Rossi 

et al., 2014).  

Little research has focused on syndecan 3 in a vascular context, as it is the major 

syndecan expressed in the nervous system. Syndecan 3 knockout mice are viable and 

exhibit normal development, however a bacterially-expressed syndecan 3 

ectodomain (therefore lacking GAG chains) has been demonstrated to significantly 

inhibit angiogenesis in an aortic ring assay (De Rossi and Whiteford, 2013). 

Syndecan 4 knockout mice are viable and healthy, however display significantly 

delayed healing of skin wounds, implying roles in cell migration and angiogenesis 

(Echtermeyer et al., 2001). As is the case for syndecan 2, syndecan 4 shed by 

proteases has been shown to impair angiogenesis (Li et al., 2016). Syndecan 4 has 

also been demonstrated to be essential in mediating the pro-angiogenic effect of 

TSP1  (Nunes et al., 2008). Thrombospondin-1 is a highly anti-angiogenic protein, 

however under certain conditions it can also promote angiogenesis, and these pro-

angiogenic activities have been attributed to the N-terminal heparin-binding domain 

of the glycoprotein (Chandrasekaran et al., 2000). Nunes et al, showed that a 

syndecan 4 monoclonal antibody could block tubulogenesis induced by a 

recombinant protein encompassing the N-terminal residues of TSP-1 (Nunes et al., 

2008). 
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1.8 Functional associations of ADAMTS proteases and cell adhesion receptors 

 

Several ADAMTS proteases have been demonstrated to rely on syndecan 4 in order 

to exert their functions. Notably, ADAMTS and syndecan 4 have been seen co-

operate in the regulation of adhesion and migration. ADAMTS-10 and -6 have 

opposing roles in focal adhesion formation; ADAMTS-6 inhibits focal adhesion 

formation, whereas ADAMTS-10 is necessary. The C-termini of both proteases can 

bind syndecan 4, however in cells with ADAMTS-10 depleted, expression of syndecan 

4 is able to rescue focal adhesions, whereas in cells with ADAMTS-6 depleted a 

glycocalyx forms (Cain et al., 2016).  

Syndecan 4 is essential for ADAMTS-15’s regulation of migration; ADAMTS-15 inhibits 

migration on fibronectin in a catalytically dependent mechanism, and depletion of 

syndecan 4 is sufficient to attenuate this inhibition (Kelwick et al., 2015).  

Another instance of syndecan 4 dependent regulation of cell adhesion and migration 

is in the case of ADAMTS-1, which has been shown to cleave syndecan 4, however 

unlike in typical proteoglycan shedding this cleavage occurs near to the site of first 

GAG chain attachment. ADAMTS-1 cleavage of syndecan 4 results in decreased 

adhesion and increased cell migration; a similar phenotype was also seen in Sdc4 -/- 

endothelial  cells (Rodríguez-Manzaneque et al., 2009). 

A possible interaction between ADAMTS and integrins is less clear cut. The ADAMs 

are the metzincins best known for their interactions with integrins; the disintegrin-

like domains of many ADAMs are capable of acting as integrin ligands. Integrins 

known to interact with ADAM disintegrin-like domains include α4β1, α4β7, α5β1, 

α9β1, αvβ3 and αvβ5 (Bridges and Bowditch, 2005). ADAMTSs also possess a 

disintegrin domain, however the crystal structure of ADAMTS-1 revealed there was 

no structural homology to the disintegrin domains of other proteases, such as 

ADAM10, and suggests this may be a misnomer (Gerhardt et al., 2007).  
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Despite this, a direct ADAMTS-integrin connection cannot be ruled out, as the ADAMs 

also interact with integrins via the cysteine rich domain, a domain which ADAMTSs 

also possess (Bridges and Bowditch, 2005). 

1.9 Conclusions, research aims and objectives 

The ECM is a complex and dynamic environment that can influence many essential 

cell behaviours. Cells interact with the ECM through adhesion receptors, and secrete 

proteases which allow them to dynamically remodel their environment.  

Signals from the ECM, proteases, and adhesion receptors must converge in order to 

co-ordinate the multi-level regulation required for cell migration and angiogenesis. 

Members of the ADAMTS, syndecan and integrin families all contribute to this 

process.  

Of particular interest are ADAMTS-1 and syndecan 4. ADAMTS-1 is anchored in the 

ECM and has potent angioinhibitory activity. One mechanism to which this is 

attributed is the sequestration of VEGF165, an interaction that is predicted to require 

the contribution of HSPG such as a syndecan.  

Syndecan 4 is of specific focus due to its expression in endothelial cells and 

localisation to focal adhesions, as well as its role in ADAMTS-15’s regulation of cell 

migration (Kelwick et al., 2015).  

The possible involvement of integrins in mediating ADAMTS-1 and syndecan 4’s 

effects also had to be considered, as these receptors are essential in migration and 

angiogenesis and they function in close relationship with syndecan 4. Integrins may 

link to ADAMTS-1 either directly, or via a syndecan 4 connection. 

Given the links between ADAMTS-1 and syndecan 4, and the roles of these two 

proteins, this thesis therefore sets out to investigate any functional interaction 

between the two proteins and the consequences of any such interplay. As ADAMTS-

1 is highly anti-angiogenic, a primary target of investigation will be endothelial cell 

behaviour. Roles of these proteins in cell migration will also be examined due to the 
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clear function of syndecan 4 in focal adhesion formation, and the importance of cell 

ECM interaction in driving endothelial cell migration, which is essential for 

angiogenesis.  

This thesis explores the hypothesis that a functional interplay between syndecan 4 

and ADAMTS-1 regulates cell migration and angiogenesis, via integrin family 

receptors. 

Specific aims are as follows:  

1. Investigate an ADAMTS-1 - syndecan 4 connection in fibroblasts and 

endothelial cells  

2. Assess the contribution of syndecan 4 to angiogenesis using endothelial cells 

and ex vivo aortic ring assays 

3. Evaluate the roles of ADAMTS-1 and syndecan 4 in cell migration using siRNA 

knockdown strategies and random migration assays  

4. Examine the consequences of ADAMTS-1 or syndecan 4 depletion on integrin 

surface expression and trafficking.  
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2 Materials and Methods 

2.1 Reagents and Antibodies  

All chemicals were supplied by Sigma Aldrich (Poole, UK) unless otherwise indicated. 

Primary and secondary antibodies used are presented in Error! Reference source not 

found. and Error! Reference source not found.. qPCR probes are presented in Error! 

Reference source not found.. Details regarding siRNAs and shRNA are presented in 

Error! Reference source not found. and Error! Reference source not found. 

respectively.  
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Error! Reference source not found. List of primary antibodies used 

experimentally  

Anti- Clone/ cat # Conjugate Host Source Application 

α5 integrin 14-0493-81 PE Hamster eBioscience FC 

α5 integrin 4705S  Rabbit Cell Signalling 
Technology WB 

α5 integrin ab150361  Rabbit Abcam ICC 

αV integrin 12-0512-82 PE Hamster eBioscience FC 

β1 integrin 17-0291-82 APC Hamster eBioscience FC 

β3 integrin 11-0619-42 FITC Hamster eBioscience FC 

Biotin 3D6.6  Mouse Jackson 
Immunoresearch IP 

BrdU ab1893  Sheep Abcam ICC 

BS1-lectin L2895 FITC Mouse Sigma ARA 

ERK1/2 
(p44/42 
MAPK) 

137F5 / #4695 

 
 Rabbit Cell Signalling 

Technology WB 

Phospho 
ERK1/2    

D13.14.4E 
#4370  Rabbit Cell Signalling 

Technology WB 

Endomucin sc-53941  Rat Santa-Cruz 
Biotechnology EC pos sort 

FAK #3285  Rabbit Cell Signalling 
Technology WB 
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Phospho 
FAK (Y407) #OPA1-03887  Rabbit Cell Signalling 

Technology WB 

Fibronectin ab2413  Rabbit Abcam  

Fibulin 1 ab175204  Rabbit Abcam WB, IP 

GAPDH ab8245  Mouse Abcam WB 

HA tag 2-2.2.14  Mouse Thermo Fisher ICC 

HA tag 66006-1-Ig  Mouse Proteintech ELISA 

IgG control 
(IgG2a) 14-4724-82  Mouse Invitrogen FC, IP 

Paxillin ab32084  Rabbit Abcam ICC 

Paxillin # 2542  Rabbit Cell Signalling 
Technology WB 

Phospho 
Paxillin 
(Y118) 

#2541  Rabbit Cell Signalling 
Technology WB 

Rac1 23A8  Mouse Millipore WB 

Syndecan 4 KY/8.2  Rat BD Pharmingen FC 

Syndecan 4  ab104568  Rabbit Abcam WB 

VEGF-A ab1316  Mouse Abcam IP 

VEGFR2 55B11 / #2479  Rabbit Cell Signalling 
Technology WB 

Phospho 
VEGFR2 
(Y1175) 

19A10 / #2478 

 
 Rabbit Cell Signalling 

Technology WB 
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Abbreviations: Aortic ring assay (ARA), Flow cytometry (FC), Immunocytochemistry (ICC), 
Immunoprecipitation (IP), Western blotting (WB), endothelial cell positive sorting (EC pos 
sort), and isotype control (IgG). 

Error! Reference source not found. List of secondary antibodies used 

experimentally  

Anti- Clone/ cat 
# Conjugate Host Source Application 

Mouse P0447 HRP Goat Agilent Dako WB 

Mouse a11002 alexa flour 
532 Goat invitrogen ICC 

Rabbit P0448 HRP Goat Agilent Dako WB 

Rabbit a21206 Alexa flour 
488 Donkey invitrogen ICC 

Rat 12-4817-82 PE Mouse eBioscience FC 

Sheep ab150179 Alexa flour 
647 Donkey Abcam ICC 

Abbreviations: Aortic ring assay (ARA), Flow cytometry (FC), Immunocytochemistry (ICC), 
Immunoprecipitation (IP) and Western blotting (WB).  
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Error! Reference source not found. TaqMan qPCR assay probes  

Gene Assay ID Reporter/quencher 

18S Mm03928990 FAM-MGB-NFQ 

Itga5 Mm00439797 FAM-MGB-NFQ 

Itgav Mm00434486 FAM-MGB-NFQ 

Itgb1 Mm01253230 FAM-MGB-NFQ 

Itgb3 Mm00443980 FAM-MGB-NFQ 

Adamts1 Mm01344169 FAM-MGB-NFQ 

Adamts4 Mm00556068 FAM-MGB-NFQ 

Mmp2 Mm00439498 FAM-MGB-NFQ 

Mmp9 Mm00442991 FAM-MGB-NFQ 

Mmp14 Mm00485054 FAM-MGB-NFQ 

Sdc4 Mm00488527 FAM-MGB-NFQ 

Vegfa Mm00437306 FAM-MGB-NFQ 

Kdr Mm01222421 FAM-MGB-NFQ 
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Error! Reference source not found. List of siRNAs used to induce target 

depletion in ECs and 3T3s 

Target (murine) Catalogue number Targeted region 

Adamts1 J-04916-09 3’UTR 

Mmp9 J-065579-09 ORF 

Non-targeting control 
pool 

D-001810-10 N/A 

Sdc4 J-044221-05 ORF 

 

Error! Reference source not found. List of shRNAs used to induce target 

depletion in HUVEC.  

Target Sequence TRC number 

Human 
SDC4 

5’- 
CCGGCCTGATCCTACTGCTCATGTACTCGAGTACATGAGCAGTAG
GATCAGGTTTTTG -3’.  

 

TRCN0000123
123  

Human 
ADAMTS
1 

5’- 
CCGGTGAATTAGGCCACGTGTTTAACTCGAGTTAAACACGTGGCC
TAATTCATTTTTG -3’. 

 

TRCN0000294
254 
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2.2 Cell culture, isolation and immortalisation 

All cells were cultured at 37°C in a humidified chamber with 5% CO2. For experimental 

analyses, plates and flasks were coated with either: 10 μg human plasma fibronectin 

(FN) (Millipore) or  10 μg collagen I (Col I) (Fisher Scientific) overnight at 4°C. VEGF-

A164, the mouse equivalent of human VEGF165, was made in-house according to the 

method published by Krilleke et al. (2007). Mouse lung microvascular endothelial cell 

(MLEC) culture 

Primary mouse lung endothelial cells were cultured in MLEC media, a 1:1 mix of 

Ham’s F-12: low glucose DMEM (Invitrogen, California, USA) supplemented with 10% 

fetal bovine serum (FBS) (Invitrogen), 100 units/mL penicillin/streptomycin 

(Invitrogen), 2 mM glutamax (Invitrogen), 50 µg/mL heparin, and 25 mg/L of 

endothelial mitogen (Bio-Rad, Kidlington, UK). Tissue culture flasks for primary 

endothelial cells were coated with a mixture of 0.1% gelatin, 10 μg/mL human 

plasma fibronectin (FN) (Millipore, Massachusetts, UK) and 10 μg/mL collagen I (Col 

I) (Thermo Fisher, Massachusetts, USA).   

Immortalised mouse lung endothelial cells (ECs) were cultured in immortalised 

mouse lung endothelial cells (IMMLEC) media, a 1:1 mix of Ham’s F-12: DMEM 

medium (low glucose) supplemented with 10% FBS, 100 units/mL 

penicillin/streptomycin (pen/strep), 2 mM glutamax, 50 μg/mL heparin. Flasks for 

routine sub-culture were pre-coated with 0.1% gelatin from porcine skin. 

Immortalised ECs were used between passages 5-22.  

2.2.1 Other cell culture 

Human umbilical vein endothelial cells (HUVECs) from pooled donors (Lonza, Slough, 

UK) were cultured in EBM-2 media supplemented with the SingleQuotsä kit (Lonza), 

and used between passages 1-6. HEK293 and 3T3 fibroblasts (ATCC, Virgina, USA) 

were cultured in high glucose DMEM (Invitrogen) supplemented with 10% fetal 

bovine serum (FBS) (HyClone, Invitrogen), 100 units/mL penicillin/streptomycin 

(Invitrogen), and 2 mM glutamax (Invitrogen). 
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2.2.2 EC isolation and immortalisation 

The primary mouse lung endothelial cells used in this project were taken from in 

house stocks. Originally they were isolated from adult C57BL/6 mice as previously 

described in detail by Reynolds & Hodivala-Dilke (Reynolds and Hodivala-Dilke, 

2006). Briefly, lungs were harvested from 6-8 week-old mice, followed by 

homogenisation and digestion in 0.1% collagenase I (Invitrogen). The cellular digests 

were passed once through a 16-gauge needle, and twice through a 19-gauge needle, 

followed by filtering through a 70 µm cell strainer (Thermo Fisher). Cells were 

collected by centrifugation at 300 x g, resuspended in MLEC and seeded onto a 

fibronectin, gelatin and collagen coated 10 cm dish. The following day, phosphate 

buffered saline (PBS) washes were performed to remove red blood cells. Once 

endothelial cell colonies were established, positive sorts were performed to remove 

contaminants (macrophages and fibroblasts) from the culture. Magnetic activated 

cell sorting (MACS) was used for the positive sort, cells were incubated with 

endomucin (1:1000 in PBS) for 30 minutes at 4°C, washed with PBS then incubated 

with sheep-anti-rat IgG coated magnetic beads for another 30 minutes. Cells were 

detached using trypsin and resuspended in MLEC media, and then placed on a 

magnet. The supernatant was removed, and after washing in media cells attached to 

the beads were resuspended in MLEC media and plated in a coated 6 cm dish. Once 

cells reached near confluency, a second positive sort was performed to ensure purity.  

To immortalise, ECs were treated with polyoma-middle-T-antigen (PyMT) retroviral 

transfection as described by Robinson et al. (2009). PyMT conditioned media isolated 

from packaging GgP+E cells was added to the primary ECs with 8 μg/mL polybrene 

infection reagent for 6 hours at 37°C, this media was then replaced with MLEC. The 

PyMT-conditioned medium treatment was repeated the following day, after 

removal of the second PyMT media treatment, IMMLEC was added, and cells 

were henceforth cultured in IMMLEC.   
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2.3 RNAi and plasmid expression 

Cells were manipulated with the use of siRNA and shRNA to induce target depletion, 

and plasmid overexpression of tagged ADAMTS-1 and syndecan 4. 

2.3.1 siRNA transfection  

ON-TARGET plus siRNAs (Dharmacon, Colarado, USA), were used for all siRNA 

transfections. Full details are outlined in Error! Reference source not found..  

For EC siRNA transfections, the electroporation method was used. Endothelial cells 

were transfected with 50 nM siRNA using the Amaxa Nucleofector System (Lonza) 

according to the manufacturer’s instructions. Endothelial cells were trypsinised and 

counted, 1x106 cells were resuspended in 100 μl transfection buffer (200 mM 

HEPES, 137 mM NaCl, 5 mM KCl, 6 mM D-glucose, 7 mM Na2HPO4), siRNA was 

added to a final concentration of 50 nM, and the T-005 nucleofector setting was 

used. 

For 3T3 cells, lipid-based transfection was used. Cells were plated at a density of 

250,000 cells / well into 6 well plates, and allowed to adhere overnight.  Two 

transfection mixtures were then prepared, the first containing 6 µl Dharmafect 1 

(Dharmacon), and 194 µl  OptiMEM® medium (Invitrogen), the second containing 20 

µl siRNA (20 nM final concentration) and 180 µl OptiMEM®. Mixtures were incubated 

at room temperature for 5 minutes, then combined and incubated for a further 20 

minutes. The 400 µl transfection mix in 1600 µl OptiMEM® was then added to 

relevant wells, and incubated overnight. The following day, the transfection mixture 

was removed, and replaced with fresh DMEM.  

For RNA analysis, cells were collected 24 hours post transfection while for protein 

analysis, 48 hours post transfection was allowed. Media used for siRNA transfections 

omitted the addition of pen/strep. 
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2.3.2 Transformation with and isolation of plasmid DNA  

Several plasmid constructs were used throughout this work, the following stages 

outline how plasmids were amplified and purified for use in transfection of 

mammalian cells  

2.3.3 Bacterial transformation  

Plasmid DNA was introduced into One Shot™ Stbl3™ chemically competent E. coli by 

heat shocking. Bacterial vials had 1 µg of plasmid DNA added to them, followed by 

incubation at 4°C for 20 minutes, 42°C for 30 seconds, then returned to 4°C for a final 

5 minutes. Bacterial cultures were added to 250 µl Super Optimal broth with 

catabolite repression (S.O.C) media (Thermo Fisher), and incubated for 1 hour at 37°C 

with shaking at 225 rpm. The bacterial transformation mix was then spread onto 1.5% 

agar plates with antibiotic selection (100 µg/mL ampicillin). Plates were incubated 

overnight at 37°C. The following day single colonies were picked using a sterile 

pipette tip, and inoculated into sterile lysogeny broth (LB) containing 100 µg/mL 

ampicillin. Colonies were grown overnight at 37°C with shaking at 225 rpm prior to 

plasmid isolation.  

2.3.4 Plasmid preparation  

Plasmids were isolated from bacterial cultures using Qiagen® spin kits (Qiagen, 

Hilden, Germany). For a mini prep, 2 ml of bacterial sample was used while for a maxi 

prep, it was 50 ml. Kits were used according to manufactures instructions. Plasmids 

were eluted in molecular biology grade water (Invitrogen), and concentrations were 

determined using a NanoDrop™ 1000 spectrophotometer 

2.3.5 Transfection with ADAMTS-1 overexpression plasmids 

For studies involving overexpression of ADAMTS-1 we utilised constructs generated 

by Rodriguez-Manzeneque et al. (Rodriguez-Manzaneque et al., 2000; Rodríguez-

Manzaneque et al., 2002). Constructs consisted of a pcDNA3.1 backbone containing 

ampicillin and G418 resistance allowing for bacterial and mammalian selection 

respectively. The two constructs used were ADAMTS1-myc, which contained the full 
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length human ADAMTS1 sequence and a carboxyl Myc tag, and ADAMTS-1-Z11, 

which in addition to the Myc tag had a zinc-binding site mutation, caused by a single 

base substitution A1154>C.  

To transfect cells with plasmid, 3x105 3T3 cells were seeded onto a 6 well plate with 

4.5 ml DMEM and allowed to adhere overnight. The following day two transfection 

mixes were made, the first containing 0.2 ml OptiMEM® and 1 μg plasmid, the second 

with 0.2 ml OptiMEM® and 20 μl lipofectamine 2000 (Thermo Fisher), mixes were 

incubated at room temperate for 5 minutes, then combined and incubated for a 

further 30 minutes. The transfection mixture was then added to cells followed by 

incubation under normal tissue culture conditions for 15 hours. The media was then 

removed and replaced with fresh DMEM. To gain polyclonal pools of overexpressing 

cells, media was replaced with DMEM containing 500 μg/mL G418 48 hours post 

transfection. After incubation in G418 containing media for 1 week, presence of the 

Myc tag was determined by western blot. Transfected cultures were maintained in 

media containing G418 (500 μg/mL) 

2.3.6 Lentivirus production in HEK293 cells and viral transfection 

To generate stable knockdowns of syndecan 4/ADAMTS-1 in HUVECs, shRNA was 

used, shRNAs were Mission shRNA (Sigma Aldrich). Full details and sequences of 

shRNAs are outlined in Error! Reference source not found..  

For syndecan 4 immunocytochemistry and ELISA, ECs and 3T3s were transfected with 

HA-tagged Sdc4 construct (a generous gift from James Whiteford). The construct 

contained the murine syndecan 4 cDNA mutated to contain the HA epitope tag 

between I32 and D33 upstream of an IRES element, followed by a sequence coding 

eGFP.  

Constructs were packaged in HEK293 cells. Two mixes were prepared; in mix one 750 

ng packaging plasmid (psPAX2) (Addgene, Massachusetts, USA) and 250 ng envelope 

plasmid (pMD2.G) (Addgene) were mixed with 1 μg shRNA plasmid or Sdc4-HA 

plasmid in 200 μl OptiMEM®. Mixture two contained 20 μl lipofectamine in 200 μl 

free OptiMEM®. Mixtures were incubated for 5 minutes at room temperature, then 
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combined and incubated for a further 30 minutes. The final mixture was transferred 

onto 80% confluent 293T cells in 10cm dishes for 15 h. The medium was replaced 

with high glucose DMEM containing 10% FBS and collected after 48 h. Media was 

centrifuged at 300 g to pellet cell debris, and supernatant containing virus was then 

filtered through a 0.45 μm filter. Virus containing media was aliquoted and stored at 

-80°C until use. 

To induce shRNA depletion of targets, HUVEC were seeded at a density of 2.5x105, 

media was removed and replaced with virus containing media and 8 μg/mL 

Polybrene. After 48 hours incubation, transfected cells were selected by incubating 

in media containing 2.2 μg/mL puromycin. For expression of HA-SDC4, 3T3s or ECs 

were seeded at a density of 2.5x105, media was removed and replaced with virus 

containing media and 8 μg/mL Polybrene. After 48 hours incubation, transfected cells 

were selected using fluorescent activated cell sorting (FACS) for GFP.   

2.4 Flow cytometry  

For flow cytometric analysis, cells were removed from culture plates using citric 

saline buffer (1.35 M KCl, 0.15 M Na3C6H5O7). Cells were collected by centrifugation, 

resuspended in FACS buffer (5% FBS in PBS) then labelled with the appropriate 

primary antibodies for 1 hour at 4°C on a rocker (full antibody details in Error! 

Reference source not found.). Cells were washed three times in PBS, and 

resuspended in FACS buffer. If primary antibodies were not directly conjugated, cells 

were then incubated with a fluorophore-conjugated secondary antibody 

(eBioscience, California, USA) for 30 minutes at 4°C. Data was collected using a 

Beckman CytoFLEX (Beckman Coulter, California, USA) and analysed using FlowJo.  

For treatment with MMP inhibitors, one of the following:  5 μM BB-94 (Abcam, 

Cambridge, UK), 10 μM CT1746 (CellTech, Slough, UK), 10 μM GM-6001 (Merck), 1  

μM SB-3CT (Abcam) in 10 μL DMSO, or DMSO vehicle control, was added to cells 18 

hours prior to flow cytometric analysis.  
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2.5 RNA extraction, reverse transcription–PCR and real-time quantitative RT–

PCR analyses 

2.5.1 RNA extraction 

To collect RNA, media was removed from cultured cells, followed by two washes in 

PBS. The PBS wash was removed and cells were scraped into 200 µl RNA-Bee 

(Amsbio, Abingdon, UK) per 2.5x105 cells. Phase separation was induced by addition 

of 100 µl chloroform, 15 seconds of agitation, then incubation at 4°C followed by 

centrifugation at 13,000 g for 15 minutes. The colourless top fraction was kept, and 

total cell RNA was extracted using the SV Total RNA Isolation Kit (Promega, 

Wisconsin, USA) according to the manufacturer’s instructions. RNA concentration 

and quality were assessed using a Nanodrop (NR-1000, Labtech, Sussex, UK); 260 nm/ 

280 nm absorbance ratios were used to identify any DNA contamination, and 260 

nm/ 230 nm absorbance ratios to identify protein or phenol contamination. RNA 

samples were stored at -80°C. 

2.5.2 Reverse transcription  

RNA samples were reverse transcribed using GoScript™ Reverse Transcriptase 

system (Promega) according to manufacturer’s instructions. Typically 1 µg of RNA 

was used per reaction. RNasin® inhibitor (Promega) was added to the reaction mix 

(40 U/µl). cDNA samples were stored at -20°C.  

2.5.3 Taqman qPCR 

To quantify relative levels of gene expression in samples Quantitative real-time 

TaqMan PCR was carried out as described previously (López-Otín and Matrisian, 

2007). Briefly, 1 ng cDNA for housekeeping control (18s ribosomal RNA) or 5 ng cDNA  

for gene of interest (GOI) was included in a reaction mixture containing 1 µl of specific 

TaqMan mix (containing probe, and forward and reverse primers) (full details in 

Error! Reference source not found.) 8.33 µl qPCRBIO Probe Mix Lo-ROX (PCR 

Biosystems (London, UK), which was made up to a final reaction volume of 25 µl with 

nuclease free water (Promega). Reaction cycles were as follows: 2 minutes at 50°C, 

10 minutes at 95°C then 40 cycles of 95°C for 15 seconds followed by 60°C for 1 
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minute. PCR was performed and data collected using 7500 Real-Time PCR System 

(Applied Biosystems, California, USA). The Comparative CT method was used to 

display relative gene expression (Schmittgen and Livak, 2008). 

2.6 Immunocytochemistry 

For visualisation of filamentous-(F) actin, siRNA transfected cells were seeded at a 

density of 2x105 cells/well in 24 well plates on acid-washed, oven-sterilised glass 

coverslips pre-coated with FN, then allowed to adhere overnight. The following day, 

cells were serum starved for 3 hours in OptiMEM®, followed by stimulation with 30 

ng/mL VEGF-A164 for 30 minutes at 37°C.  

For analysis of paxillin containing focal adhesions, siRNA transfected cells were 

seeded at a density of 2x105 cells/well on acid-washed, oven-sterilised glass 

coverslips pre-coated with FN or Col I for 90 and 180 minutes in IMMLEC media. 

For imaging of syndecan 4, HA-SDC4-eGFP cells were siRNA transfected and seeded 

at a density of 2x105 cells/well on acid-washed, oven-sterilised glass coverslips pre-

coated with FN and allowed to adhere overnight. 

Cells were fixed at indicated time points in 4% paraformaldehyde for 10 minutes, 

followed by 3 times washing in PBS, coverslips were then blocked and permeabilised 

with 0.3% Triton X-100, 10% serum (corresponding to species of secondary antibody) 

(Thermo Fisher) for 1 hour. To stain, coverslips were incubated with primary antibody 

diluted 1:100 in PBS for 1 h. Primary antibodies used from Table 2.1 were: anti-HA 

tag, anti-paxillin, anti-α5 integrin. Coverslips were washed with PBS,  then incubated 

with the relevant Alexa-Fluor®-conjugated secondary antibody (Invitrogen) diluted 

1:500 in PBS for 45 minutes in the dark. To stain for F-actin, Alexa-Fluor®-568–

phalloidin (Invitrogen) was used 1:300 in PBS at the secondary-antibody incubation 

stage. Coverslips were washed in PBS again before mounting on slides with Prolong® 

Gold containing DAPI (Invitrogen). All stages were conducted at room temperature. 

Focal adhesion area calculations were carried out in FIJI™. Images were adjusted by 

subtracting background with a rolling ball radius of 45, enhancing local contrasts 
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using the FIJI™ plugin CLAHE, which implements contrast-limited adaptive histogram 

equalisation using the following settings: blocksize 19, histogram bins 256, maximum 

slope 6, no mask, fast. Images were then auto-thresholded and the analyse particles 

command was used to calculate size and number of focal adhesions, with parameters 

set to size 0.2 – infinity. 

Radial orientation of actin filaments was quantified using SOAX, a software for 

quantification of 2D and 3D biopolymer networks (available for download at: 

http://athena.physics.lehigh.edu/soax/), followed by graphing of density in R (Xu et 

al., 2015).  

 
2.7 Internalisation and recycling assays 

Cell surface biotintylation based assays were used to quantify membrane protein 

internalisation and recycling.  

2.7.1 Internalisation  

For the internalisation assay, 1x106 siRNA transfected cells were seeded into 10 cm 

dishes. After adhering overnight, cells were serum starved for 3 hours in OptiMEM®, 

then chilled on ice, followed by two ice cold PBS washes. Cells were surface labelled 

at 4°C with 0.3 mg/ml NHS-SS-biotin (Thermo Fisher) in Sorensen's buffer (SBS) 

(14.7mM KH2PO4, 2mm Na2HPO4, 120mM) for 30 min. Labelled cells were then 

washed in ice cold PBS, the wash was replaced with pre-warmed IMMLEC and cells 

were incubated at 37°C to allow internalization. At indicated time points, medium 

was removed, dishes were transferred to ice and washed twice with ice-cold PBS.  

To allow for quantification of internalised protein biotin was removed from proteins 

remaining on the cell surface by incubation with the membrane impermeable 

reducing agent sodium methanethiolate (MesNa) (20 mM MesNa in 50 mM Tris-HCL 

(pH 8.6)) for 1 hour at 4°C. MesNa was quenched by the addition of 20 mM 

iodoacetamide (IAA) in SBS for 10 mins. Cells were lysed in 200 mM NaCl, 75 mM Tris, 

15 mM NaF, 1.5 mM Na3VO4, 7.5 mM EDTA, 7.5 mM EGTA, 1.5% Triton X-100, 

supplemented with protease inhibitor (1:200) (Merck, New Jersey, USA). Lysates 
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were cleared by centrifugation at 10,000 × g for 10 min. Levels of syndecan 4 

internalisation were determined by capture ELISA. For a5 integrin internalisation 

analysis, the biotinylated protein was isolated by immunoprecipitation using anti-

biotin (Jackson Immunoresearch, Ely, UK), and levels of a5 integrin assessed by SDS-

PAGE. 

2.7.2 Recycling 

After surface labelling with biotin, cells were incubated in IMMLEC at 37°C for 20 

minutes to allow internalization. Following removal of biotin from surface proteins 

using MesNA, the internalized fraction was then allowed to recycle to the membrane 

by returning cells to 37°C in IMMLEC. At the indicated times, cells were returned to 

ice and biotin was removed from recycled proteins by a second reduction with 

MesNa. Biotinylated SDC4 was then determined by capture-ELISA. 

2.7.3 Capture-ELISA 

96-well microplates (R&D Systems, Minnesota, USA) were coated overnight with 5 

μg/mL HA-tag antibody (Proteintech) in PBS at room temperature. The plates were 

blocked in PBS containing 0.05% Tween-20 (0.05% PBS-T) with 1% BSA for 1 hr at 

room temperature. HA-SDC4 was captured by 2 hour incubation of 100 μl cell lysate 

(1 μg/μL) at room temperature. Unbound material was removed by extensive 

washing with 300 μl 0.05% PBS-T per well, for three washes. Wells were incubated 

with streptavidin-conjugated horseradish peroxidase (R&D Systems) in 0.05% PBS-T 

containing 1% BSA for 1 hr at room temperature. Following a further three washes, 

biotinylated HA-SDC4 was detected with Tetramethylbenzidine-based colour change 

reaction (R&D systems). Absorbance was read at 450 nm with wavelength correction 

set to 540 nm.  

2.7.4 Immunoprecipitation and western blot  

For each immunoprecipitation (IP) 400 μg of protein was used, and sample volumes 

were equalised to 1 ml. The immunoprecipitation protocol was then followed as in 

section 2.10, without the addition of NuPAGE® sample reducing agent (Life 

Technologies), followed by western blotting as described in Section 2.9. 
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2.8 Zymography 

Zymography was performed using SDS-PAGE (7.5%) gels co-polymerized with 1 

mg/ml gelatin. Media samples were collected from 1x106 ECs cultured on a 10 cm 

dish, equal volumes were added to 5 μl 5X non-reducing sample buffer (Thermo 

Scientific). Gels were run for 1 hour 50 minutes at 100 V. After electrophoresis, gels 

were washed twice for 30 minutes in wash buffer (2.5% Triton X-100, 50 mM Tris HCl 

pH 7.5, 5 mM CaCl2, 1 μM ZnCl2) at room temperature to remove SDS and allow 

refolding of proteases. Gels were then incubated overnight in incubation buffer (1% 

Triton X-100, 50 mM Tris-HCl pH 7.5, 5 mM CaCl2, 1 µM ZnCl2) at 37°C. Gels were 

stained in Coomassie Blue R 250 (Thermo Fisher) in a mixture of methanol:acetic 

acid:water (4:1:5) for 1 hour and destained in the same solution without dye. 

Gelatinase activity was visualized as distinct bands of digestion.  

2.9 Western blot analysis 

Samples for western blot analysis were collected using a cell scraper to scrape 

adherent cells into RIPA buffer (25mM Tris, pH 7.5, 150 mM NaCl, 0.1% SDS, 0.5% 

sodium deoxycholate, 1% Triton X-100, supplemented with protease inhibitor (1:200) 

(Merck), roughly 100 μl of RIPA was used per every 250,000 cells. Samples were 

centrifuged at 13,000 g for 10 minutes at 4°C to pellet nuclear debris. The 

supernatant was transferred to a new tube and protein levels quantified using the 

DC BioRad assay according to manufacturer’s instructions, to ensure equal sample 

loading.  

NuPAGE® sample reducing agent (500 mM dithiothreitol) and NuPAGE® LDS sample 

buffer (lithium dodecyl sulfate pH 8.4, Coomassie G250 and Phenol Red) (Life 

Technologies) were added to protein samples prior to boiling at 95°C for 5 minutes 

on a heating block. In general for a western blot, 20 μg protein per sample was loaded 

into 8% polyacrylamide gels. Following SDS-PAGE separation at 100 V for 1 hour 50 

minutes, proteins were transferred onto a nitrocellulose membrane (Thermo) using 

a Bio-Rad Trans-Blot® wet transfer system, according to manufacturer’s instructions. 

Proteins were transferred for 2 hours at 80 V. The nitrocellulose membrane was 
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blocked by incubation in 5% milk powder in PBS plus 0.1% Tween-20 (PBS-T) for 1 hr 

at room temperature (RT), followed by an overnight incubation in primary antibody 

diluted 1:1000 in 5% bovine serum albumin (BSA)/ PBS-T) at 4°C. The blots were then 

washed 3x with 0.1% PBS-T and incubated with the relevant horseradish peroxidase 

(HRP)-conjugated secondary antibody (Agilent, California, USA) diluted 1:2000 in 5% 

milk/PBS-T, for 2 hrs at RT. Chemiluminescence was detected following addition of 

Pierce ECL (Thermo) on a Bio-Rad Gel Doc XR + (Bio-Rad).  

For VEGF time course assays, siRNA transfected ECs were seeded at 2.5x105 cells per 

well into 6 well plates coated with 10 μg/ml FN. After 48 hours of recovery, cells were 

starved for 3 hours in serum free medium (OptiMEM®). VEGF-A164 was then added 

to a final concentration of 30 ng/ml. Cells were lysed at the indicated times  in RIPA 

buffer.  After protein quantification as above, 30 μg of protein from each sample was 

loaded onto 8% polyacrylamide gels. For paxillin analysis, samples were loaded onto 

a 4-12% gradient gel (Bio-Rad) for better resolution.  

Primary antibodies (Table 2.1) used were as follows: anti-phospho (Y1175) VEGFR2); 

anti-VEGFR-2; anti-phospho (Thr202/Tyr204) p44/42 MAPK Erk1/2, anti-total p44/42 

MAPK Erk1/2, anti-HSC70, anti-human SDC4, anti-phospho (Tyr118) paxillin, anti-

phospho (Tyr925) FAK, anti-FAK, anti-GAPDH. All primary antibodies were used at a 

1:1000 dilution. 

FIJI™ was used for quantification of band densities. Band densities were normalised 

to loading controls.   

2.10 Immunoprecipitation assays 

HUVECs were grown to 80-90% confluency in 10 cm dishes coated with 10 μg/ml FN 

in PBS. Media was removed and cells washed in PBS. Cells were lysed in RIPA buffer 

containing protease inhibitor (1:200) (Merck). Samples were centrifuged at 13,000 g 

for 10 minutes at 4°C, the supernatant was kept, and protein concentration 

quantified.  
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Primary antibodies were diluted in 0.02% Tween in PBS and coupled to protein-G 

Dynabeads® (Invitrogen) by rotating incubation for 10 minutes at room temperature. 

The antibody solution was removed, and the coupled beads were resuspended in PBS 

(20 μl per sample). Coupled beads were added to samples,  typically 400 μg of total 

protein from each sample was immunoprecipitated by incubation with coupled 

beads a on a rotator overnight at 4°C. Immunoprecipitated complexes were washed 

three times with 0.2 ml of RIPA buffer, beads were then resuspended in 100 μl PBS  

and transferred to a new tube, followed by one further PBS wash before being added 

to, and boiled in NuPAGE® sample reducing agent and sample buffer (Life 

Technologies) for western blotting as described in Section 2.9.   

Primary antibodies used for immunoprecipitation were mouse-anti-human VEGF-A 

antibody and mouse anti-biotin as listed in Table 2.1 

2.11 Active Rac1 pulldowns  

To quantify active Rac1, the ‘Rac1 Activation magnetic beads pulldown assay kit’ 

(Merk, 7-10393) was used according to manufacturer’s instructions. ECs were seeded 

at a density of 1x106 cells/10 cm plate and allowed to adhere for 90 minutes, the 

plate was washed and adherent cells were lysed in a magnesium lysis buffer (MLB) 

(125 mM, HEPES pH 7.5, 750 mM NaCl, 5% Igepal CA-630, 50mM MgCl2, 5 mM EDTA 

and 10% glycerol, supplemented with protease inhibitor (1:200, Merk)). Lysates were 

incubated with Pak-1 p21 binding domain (PBD) magnetic beads for 45 minutes at 

4°C with gentle agitation. Beads were washed in MLB, resuspended in NuPAGE® 

sample reducing agent and sample buffer (Life Technologies), boiled at 95°C for 5 

minutes and loaded directly into a gel for western blotting as in 2.9. Membranes were 

probed using an anti Rac1 antibody at 1:1000 dilution.  

2.12 VEGF ELISA  

For quantification of free VEGF-A164 present in media, ECs were plated at a density of 

2.5x105 cells per well on a FN coated 6 well plate. Following adherence overnight, 

cells were chilled to 4°C, media was removed and cells were washed twice in ice cold 
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PBS. Media was replaced with ice cold OptiMEM® containing VEGF-A164 at a final 

concentration of 30 ng/ml, followed by incubation at 4°C for 30 minutes.  

For the ELISA, media was removed from samples and diluted 1:10 in 1% BSA in PBS. 

VEGF-A164 concentration was quantified using a mouse VEGF duo-set ELISA, 

according to manufacturer’s instructions (DY493, R&D Systems). Generation of 

standard curve and determination of concentrations was performed in R.  

Cell lysates were collected to quantify VEGF signalling via western blotting as 

described in section 2.9.  

2.13 BrdU Proliferation Assay 

siRNA-transfected ECs were seeded onto 10 μg/ml FN-coated glass coverslips 

(1.5x104 cells/well of a 24 well plate). After 4 hours, the media was replaced with 

IMMLEC containing 10 nM BrdU (Abcam). Cells were incubated with BrdU for 12 

hours, followed by fixation in 4% PFA. To stain, cells were incubated in 1 M HCl for 

30 mins at room temperature, then permeabilized with PBS 0.25% Triton X-100 for 

10 minutes and blocked by a 20 minute incubation in DAKO Block (Agilent). 

Incorporated BrdU was detected by incubation with anti-BrdU (ICR1, Abcam) diluted 

1:100 in PBS for 1 hour at room temperature. Coverslips were washed in PBS, then 

incubated with anti-sheep Alexa-Fluor® 647 (Invitrogen) for 1 hour at RT. After 

further PBS washes, coverslips were mounted in Pro-long gold® containing DAPI 

(Invitrogen). The number of BrdU positive nuclei were counted, and expressed as a 

percentage of total DAPI positive nuclei.  

2.14 Random-migration assay 

siRNA-transfected ECs were trypsinised and seeded at a density of 1.5x104 cells/well 

in 24-well plates coated with 10 μg/ml FN or 10 μg/ml  Col I in PBS, and allowed to 

adhere overnight. The media was then replaced with fresh IMMLEC. One phase 

contrast image/well was taken live every 16 min in a fixed field of view using an 

inverted Axiovert (Zeiss, Oberkochen, Germany) microscope for 16 h at 37°C and 5% 
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CO2. Individual cells were then manually tracked using the FIJI™ cell tracking plugin, 

MTrackJ and the speed of random migration was calculated in nM moved/second. 

2.15 Ex Vivo Aortic Ring Assay  

Thoracic aortae were isolated from 6 to 8 week-old adult C57BL6 mice and prepared 

for culture as described extensively by Baker et al. (2012). Briefly, aortas were 

removed and defatted, then sliced into rings roughly 1 mm thick, rings were 

distributed evenly into individual wells of a 24 well plate, one well per condition, with 

roughly 25 rings per well, and incubated in 800 μl OptiMEM®. Syndecan 4 or 

ADAMTS-1 depletion was induced using 1 μM siRNA. Transfection master mixes were 

created, mix 1 contained 1 μl siRNA (from 100 μm stock) and 184 μl OptiMEM®, mix 

2 contained 3 μl oligofectamine and 12 μl OptiMEM®, mixes were combined and 

incubated for 20 minutes at room temperature, followed by addition to the 

appropriate wells of aortic rings. Rings were incubated overnight in siRNA, followed 

by embedding in a collagen matrix. Each ring was embedded into an individual well 

of a 96 well plate containing 1 mg/mL type collagen I from rat tail (Thermo Fisher) 

and 0.5 ml 10 x DMEM which was polymerized by incubation at 37°C for 1 hour. Rings 

were fed with OptiMEM® containing 2% FBS, which was replenished every 3 days, 

and incubated at 37°C. Where indicated, VEGF-A164 was added at 30 ng/mL. After 10 

days, rings were fixed with 4 % PFA, permeabilized with 0.2% Triton, and stained with 

FITC BS1-Lectin. A Zeiss inverted microscope was used to visualise and count 

sprouting micro vessels.  

To confirm siRNA knockdown of target genes, ~10 rings per condition were 

homogenized in 250 μl RNAbee, followed by RNA extraction and qPCR as in 2.5.3. 

2.16 Conditioned matrix generation 

To generate conditioned matrix (CM) for immunocytochemistry and western 

blotting, siRNA treated cells were seeded at ~70% confluence onto uncoated plates 

(glass coverslips in 24 well plates for ICC, 6 cm dishes for western blotting) and 

allowed to produce matrix for 48 hours. Under sterile conditions, media was 

removed and plates were washed with PBS.  Adherent cells were removed while 
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preserving the ECM by incubation in a 20 mM ammonium hydroxide solution l (3 mL 

per 100 mm area). Plates were incubated for 5 minutes with gentle agitation, after 

which complete removal of cells was checked for microscopically. Ammonium 

hydroxide was removed, and cells were washed 5 times in sterile de-ionised H2O with 

rocking. Untreated, or ‘naïve’ cells could now be plated onto this CM. For 

immunocytochemistry experiments 1.5x104 naïve cells were seeded per well for 180 

minutes, followed by fixation and staining as in section 2.6. For western blot analysis 

of signalling pathways 2.5x105 cells were seeded per well, and collected at multiple 

time points as in section 2.9. 

2.17 Statistics 

Statistical analysis was conducted in R. Graphing was conducted in R or GraphPad. 

Where data were normally distributed a Student’s T test or ANOVA (if comparing 

multiple groups) were used to determine statistically significant differences between 

conditions. Normal distributions were tested for using a Shapiro-Wilk test. Where 

data did not fit the normal distribution (focal adhesion sizes) a Kruskal-Wallis non-

parametric test was used to determine statistical significance. Bar charts represent 

the mean and the standard error of the mean (SEM), unless otherwise stated. 

Asterisks represent P values as follows: * P < 0.05, ** P < 0.01, *** P < 0.001 and **** 

P < 0.0001. 

  



103 

 

3 ADAMTS-1 regulates Syndecan 4 cell surface expression in an 

MMP-9 dependent mechanism 

This chapter sought to investigate a potential connection between ADAMTS-1 and 

syndecan 4. The ADAMTS family of proteases, in particular those of the 

proteoglycanase clade, have been shown to function in collaboration with syndecan 

family members in several incidences. 

One key example is in osteoarthritis; ADAMTS-4 and -5 are important in this context, 

and their roles require syndecans. The activation of ADAMTS-4 involves binding of 

the CS and HS chains of syndecan 1, and the expression of both ADAMTS-4 and -5 is 

dependent on syndecan 2 (Gao et al., 2004; Yan et al., 2018). Syndecan 4 is also 

involved in ADAMTS-5 activation, and its knockout in mice is cartilage protective; 

through direct engagement of its HS and the protease, syndecan 4 regulates MAPK 

dependent synthesis of the ADAMTS-5 activator MMP-3 (Echtermeyer et al., 2009).  

ADAMTS-syndecan functional links are also found in the regulation of cell adhesion 

and migration. In the case of ADAMTS-15, its regulation of adhesion and migration is 

dependent on syndecan 4; Kelwick et al. found that expression of ADAMTS-15 

reduced migration of breast cancer cells, and that knockdown of syndecan 4 

attenuated these effects (Kelwick, Wagstaff, et al., 2015).  

ADAMTS-1 is a particularly interesting member of the family. It belongs to the 

proteoglycanase clade, and has potent anti-angiogenic activity via a number of 

mechanisms, both requiring and independent of catalytic activity (Kuno et al., 1997; 

Luque, Carpizo and Iruela-Arispe, 2003; Lee et al., 2006). ADAMTS-1 has been linked 

to syndecan-4 under several circumstances.  

The functions of ADAMTS-1 and syndecan 4 centre around the ECM. ADAMTS-1 is 

secreted and anchors to the matrix via its TSRs, in an interaction that is mediated by 

GAGs such as HS (Kuno and Matsushima, 1998). Syndecan 4 consists of a 

transmembrane core protein with extracellular covalently attached HS GAG chains, 
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which allow it to interact with growth factors and ECM proteins such as fibronectin, 

which contains syndecan 4 binding sites (Elfenbein and Simons, 2013).  

In the context of angiogenesis, the interaction of ADAMTS-1 and VEGF in the ECM 

requires the contribution of a heparin-like molecule, and it has been hypothesised 

that syndecan 4 may fulfil this role, assisting in ADAMTS-1’s sequestration of VEGF165 

by acting as a bridge between the two proteins (Luque, Carpizo and Iruela-Arispe, 

2003). Circumstantially, these observations indicate that ADAMTS-1 and syndecan 4 

co-exist in the same extracellular space, and may physically interact with each other. 

Much like with ADAMTS-15 and syndecan 4, an ADAMTS-1 syndecan 4 interplay has 

been implicated in the regulation of cell adhesion and migration. N-terminal clipping 

of syndecan 4 by ADAMTS-1 results in defects in adhesion and promotion of 

migration. Complementing this, the overexpression of syndecan 4 was correlated 

with inhibition of migration, suggesting that the balance of this protein is essential 

for co-ordinated cell movement (Rodríguez-Manzaneque et al., 2009).  

ADAMTS-1 and syndecan 4 are clearly involved in cell migration and angiogenesis, 

and therefore research was focused on these ECM dependent functions. It was 

hypothesised that ADAMTS-1 and syndecan 4 may regulate cell migration and 

angiogenesis through downstream modification of the integrins, cell adhesion 

receptors essential for both processes (Barczyk, Carracedo and Gullberg, 2010). 

Functional links between syndecan 4 and integrins have been widely reported. 

Syndecan 4 functions co-operatively with integrins in the formation of focal 

adhesions on fibronectin, and its phosphorylation by Src regulates integrin 

membrane traffic with consequences for cell migration (Saoncella et al., 1999; 

Morgan et al., 2013). The integrins are a large family of heterodimers; integrins α5β1 

and αvβ3 were initially considered to be the most interesting, as these are the 

fibronectin binding integrins, their trafficking is regulated by syndecan 4, and their 

endothelial expression is upregulated during angiogenesis (Kim et al., 2002; Bass et 

al., 2008; Morgan et al., 2013). 
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ADAMTS-1 has not been reported to interact with integrins, or to influence integrin 

behaviour, however its roles in cell migration and angiogenesis hint at a possible 

relationship. The expression of ADAMTS-15 was shown to alter the integrin profile in 

in MDA-MB-231 breast cancer cells, proposing a potential mechanism for its effects 

on cell motility. Due to the closely related structure and roles of ADAMTS-1 and -15 

it is therefore possible that ADAMTS-1 regulates migration in a similar manner 

(Kelwick, Desanlis, et al., 2015).  

Predicted associations between ADAMTS-1, syndecan 4 (SDC4), fibronectin and 

selected integrins are demonstrated in a network map generated in STRING (Figure 

3.1). Colours represent different lines of evidence used in predicting associations.  

Based on these hypothesised interactions, this work sought to investigate the 

functional association of ADAMTS-1 and syndecan 4, and to explore mechanisms 

through which they may co-operate in the regulation of integrins, migration and 

angiogenesis. This chapter outlines the characterisation of the cell models utilised 

and demonstrates an interdependency between the expression of ADAMTS-1 and 

syndecan 4 in the context of both endothelial cells and fibroblasts.  
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Figure 3.1 Predicted interactions between Mus musculus ADAMTS-1, syndecan 4, 
fibronectin and selected integrins. The map shows a network view of predicted associations 
for a group of proteins generated using STRING©. Edges represent predicted functional 
associations. Colours signify type of evidence used in predicting association. Green: 
neighbourhood evidence, Blue: co-occurrence evidence, purple: experimental evidence, 
black: co-expression evidence. 
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3.1 Characterisation of mammalian cell models 

Two cell culture models were used in this work, namely 3T3 cells; fibroblasts 

originally isolated from swiss albino mouse embryos and spontaneously 

immortalised in cell culture (3T3s), and mouse lung microvascular endothelial cells 

(ECs); originally isolated from C57BL/6 mice followed by PyMT immortalisation 

(Todao and Green, 1963; Wang et al., 2019).   

Experiments were performed in two cell lines to assess the universality of any 

phenotypes. Conflicting reports exist with regards to the roles of ADAMTS-1 and 

syndecan 4, and this may be due to cell type specificity, or different contributing 

growth factors. Using two cell lines may help unpick these contradictions (Bass et al., 

2007; Rodríguez-Manzaneque et al., 2009; Esselens et al., 2010; Ham et al., 2017). 

As it is highly likely that any interaction between ADAMTS-1 and syndecan 4 centres 

around the ECM, fibroblast cells were chosen due to their high degree of ECM 

interaction. Fibroblasts are stromal cells and are responsible for the production and 

secretion of all ECM components, including collagen, fibronectin and 

glycosaminoglycan. Physiologically, fibroblasts play pivotal roles in ECM 

maintenance, wound healing, and angiogenesis (Kendall and Feghali-Bostwick, 

2014). 

Both Adamts1 and Sdc4 knockout mice show defective wound healing phenotypes; 

this further invites the use of fibroblast cells, as during wound healing fibroblasts 

become activated, secreting ECM proteins. Fibroblasts must proliferate and migrate 

to the site of injury in order to generate the contraction of the matrix required to seal 

an open wound (Gabbiani, 2003).  

Fibroblasts interact closely with endothelial cells, and are important for facilitating 

angiogenesis; reducing fibroblast ECM synthesis results in a reduction in EC tube 

formation (Berthod et al., 2006). Fibroblast derived matrix proteins are essential for 

endothelial cell lumen formation; in the absence of fibroblasts angiopoietin-1 can 

drive vessel sprouting but lumens do not form (Newman et al., 2011). Fibroblasts can 
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also produce and secrete pro-angiogenic growth factors including VEGF, PDGF and 

TGF-β (Fukumura et al., 1998). 

Fibroblasts are highly motile cells, and most previous work on syndecan 4 in adhesion 

and migration has focused on fibroblasts isolated from the Echtermeyer Sdc4-/- 

knockout mouse, therefore utilising fibroblasts from an alternate source with siRNA 

knockdowns allows for comparison with current literature (Echtermeyer et al., 2001).  

The ECM interactive, migratory, and angiogenic properties of fibroblasts therefore 

make them a good cellular model for investigation of interactions between ADAMTS-

1 and syndecan 4.  The 3T3 fibroblast cell line was chosen, and these cells are known 

to be easy to work with, rapidly proliferating, highly migratory and responsive to 

growth factors. 

The second cell line chosen was ECs. ECs  line the interior surface of blood vessels, a 

single cell layer covers the entire luminal surface of all vessels; they are in direct 

contact with circulating blood (Michiels, 2003). This interface allows ECs to 

participate in homeostasis, as well as pathological and physiological processes such 

as inflammation and angiogenesis.  

Endothelial cells maintain their capacity for proliferation throughout life; this ability 

is essential for repair of vessel damage, and grow of new sprouts. Endothelial cell 

signalling, proliferation and migration in response to VEGF is necessary to direct 

proper angiogenesis. Endothelial cells also secrete signalling molecules such as 

PDGFB, needed to recruit pericytes and promote vessel maturation (Kourembanas 

and Faller, 1989).  

As ECs are the key cellular mediators of angiogenesis, they were chosen as a good 

model in which to study the effects of ADAMTS-1 and syndecan 4 in angiogenesis. 

PyMT immortalised murine lung microvascular ECs were utilised in order to generate 

cell numbers required for experiments; these cells have been used extensively as 

models for angiogenesis research and have been demonstrated to maintain their 

endothelial identity (Robinson et al., 2009; Ellison et al., 2015).  
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3.1.1 Endothelial cells and fibroblasts express genes of interest at varying levels  

To determine expression levels of genes of interest, including Adamts1, Adamts14, 

Sdc4, Kdr, Itga5, Itgav, Itgb1, and Itgb3, TaqMan qPCR was utilised. Surprisingly, 

Adamts15 expression was not detected in either cell line. Sdc4 and Adamts1 were 

expressed in both cell lines, although at much higher levels in ECs, hinting at their 

potential importance in the regulation of endothelial cell behaviour and 

angiogenesis. All four integrins were expressed in both cell lines at varying levels. As 

expected, high levels of Kdr were found in ECs, and very low expression in the 3T3s, 

representative of the relative importance of VEGF signalling in these cell lines (Figure 

3.2) 
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Figure 3.2  Expression profile of genes relevant to angiogenesis and cell migration in 3T3s 
and ECs. RNA was isolated from cultured ECs and 3T3, RNA was reverse transcribed, and 
TaqMan qPCR was performed to determine gene expression levels. Recorded Ct values are 
represented in a heatmap. Displayed Ct values are averaged from three independently 
collected RNA samples.   
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3.1.2 siRNA mediated knockdown is effective at depleting targets in both cell lines  

In order to assess the functions of ADAMTS-1 and syndecan 4, depletion of the 

targets in cell culture was necessary. The choice of siRNA for depletion of targets was 

made due to ease of use in difficult to transfect ECs, and because it generally elicits 

efficient short-term depletion of targets in these cells. Moreover, compensation 

effects confounding interpretation of results have been seen in previous studies 

when using constitutive syndecan 4 knockout models (Wilcox-Adelman, Denhez and 

Goetinck, 2002; Bass et al., 2007). Therefore, short term depletion may give a more 

complete picture of syndecan 4’s functions. Treatment with siRNA of both ECs and 

3T3s in culture gave robust and reliable depletion of either ADAMTS-1 or syndecan 

4, as assessed by TaqMan qPCR (Figure 3.3). 
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Figure 3.3 siRNA is effective at depleting targets in cell culture. 3T3s or ECs were treated 
with 50 nM non targeting control (NTC), Adamts1 or Sdc4 siRNA. RNA was collected 24 hours 
post transfection, and gene expression levels were determined using TaqMan qPCR. N=3, 
Bars represent S.E.M, *P <0.05, ns = not significant. 
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3.2 ADAMTS-1 depletion results in a loss of cell surface syndecan 4  

As qPCR confirmed efficient knockdown of targets at the RNA level, we therefore 

next aimed to establish knockdown at the protein level. Unfortunately in our hands, 

commercially available antibodies were not able to reliably detect murine ADAMTS-

1 or syndecan 4 by western blotting. As syndecan 4 is membrane bound, flow 

cytometry was used as an alternative. 

As well as establishing knockdowns, flow cytometry provides a means to quantify cell 

surface syndecan 4, and therefore also allows for the effect of ADAMTS-1 on 

syndecan 4 expression to be evaluated in a way that qPCR could not. Syndecan 4 

expression has been previously linked to ADAMTS family proteases; the expression 

of ADAMTS-15 in cultured MDA-MB-231 cells results in an increase of syndecan 4 

surface expression (Kelwick, Wagstaff, et al., 2015). ADAMTS-1 is also predicted to 

affect syndecan 4 surface expression as it has been shown to clip a small (6kDa) 

fragment from the extracellular N-terminus of syndecan 4. It was therefore predicted 

that the loss of ADAMTS-1 would enhance syndecan 4 surface expression (Rodríguez-

Manzaneque et al., 2009).  

3.2.1 Optimisation of cell detachment for flow cytometry  

In order to perform flow cytometry experiments, the adherent cell lines used needed 

to be detached from tissue culture plates. As trypsin detachment may result in 

cleavage of cell surface proteins, including syndecans, alternative cell detachment 

methods had to be investigated (Subramanian, Fitzgerald and Bernfield, 1997).  

Flow cytometry experiments confirmed trypsin removed syndecan 4 from the cell 

surface, and that this surface syndecan 4 did not recover when cells were incubated 

in suspension in growth media for up to 90 minutes post trypsinisation. Treatment 

with TrypLE, a synthetic replacement for trypsin, also resulted in the loss of syndecan 

4. Frequently EDTA is used as a non-enzymatic cell dissociation reagent for flow 

cytometry, however although EDTA detached 3T3s from cell culture plates and 

maintained cell surface syndecan 4, EDTA was not able to successfully detach ECs. An 

alternative non-enzymatic cell detachment method using citric saline was found to 
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successfully detach both cell types while preserving syndecan 4 surface expression 

(Figure 3.4). 
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Figure 3.4. Citric saline detachment buffer retains syndecan 4 on the cell surface. 3T3s were 
collected using several cell detachment buffers, and levels of cell surface syndecan 4 were 
assessed using flow cytometry with an anti-syndecan 4 antibody (BD Bioscience) A) trypsin 
or EDTA detachment B) cells were detached using trypsin, followed by incubation in 
suspension at 37°C for indicated timepoints. C) cells detached with TrypLE D) detachment 
with citric saline. N=1. 
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Cell surface syndecan 4 expression is dependent on ADAMTS-1  

To determine knockdown of syndecan 4 at the cell surface level, and begin to unpick 

the interaction between ADAMTS-1 and syndecan 4, the effect of siRNA target 

depletion on cell surface syndecan 4 was  evaluated. Flow cytometry was performed 

on ECs and 3T3s siRNA treated for ADAMTS-1 or syndecan 4, and collected in citric 

saline buffer. Flow cytometry revealed that the syndecan 4 siRNA gave good 

depletion of the target at the protein level. Flow cytometry also revealed that 

contrary to the initial hypothesis, depletion of ADAMTS-1 resulted in a reduction of 

syndecan 4 at the cell surface (Figure 3.5). 
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Figure 3.5. siRNA depletion of ADAMTS-1 results in a corresponding loss of syndecan 4 at 
the cell surface.  3T3s and ECs were siRNA treated for Adamts1 or Sdc4. After 48 hours cells 
were detached using citric saline buffer, and levels of SDC4 were analysed using flow 
cytometry. A) Bar chart showing median fluorescent intensities, calculated after gating based 
on forward and side scatter and normalising to an isotype control,  medians were averaged  
from three independent experiments. Error bars represent S.E.M, * = P< 0.05. B) 
Representative flow cytometry histogram.  

  

A 

3T3s
0

50000

100000

150000

200000

250000

ECs
0

2000

4000

6000

8000

M
ed

ia
n

flu
or

es
ce

nc
e

in
te

ns
ity

SDC4 expression

NTC
SDC4 siRNA
ADAMTS1 siRNA

*
*

* *

NTC

SDC4  siRNA

ADAM TS1 siRNA
Isotyp e cont rol

A 

B 



118 

 

In order to validate the flow cytometry data, and gain some insight into syndecan 4 

localisation, immunocytochemistry was utilised. Unfortunately in our hands, 

antibodies directed against syndecan 4 were not successful for use in visualising 

syndecan 4. To overcome this, an HA-tagged syndecan 4 construct was utilised. 

Endothelial cells were transduced with a lentivirus containing the murine syndecan 4 

cDNA mutated to contain the HA epitope tag between I32 and D33 in the 

extracellular region, and a sequence encoding eGFP (HA-SDC4).  

Immunocytochemical visualisation of the HA-SDC4 cells using antibodies directed 

against the HA epitope tag resulted in a staining pattern fitting with the reported 

cellular localisation of syndecan 4, with syndecan 4 being primarily seen in the Golgi 

apparatus and at the plasma membrane (Rønning et al., 2015; Uhlén et al., 2015) 

Further validating the use of the HA-tag construct,  staining of HA-SDC4 was only seen 

in cells which co-expressed the GFP reporter (Figure 3.6). For future experimental 

use, transfected cells expressing the SDC4-HA tag construct and therefore also GFP 

were selected for using FACS.   
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Figure 3.6 Expression of a HA-tagged syndecan 4 construct allows visualisation of syndecan 
4 via immunocytochemistry. Representative image of ECs transfected to express eGFP and 
N-terminal HA-tagged syndecan 4. Transfected cells were seeded onto fibronectin coated 
coverslips (20 μg/ml). After adhering for 24 hours, cells were fixed and immunostained for 
HA tag (red) and DAPI (blue). Scale bar = 20 µm. 
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To both visualise and validate the loss of syndecan 4 seen upon ADAMTS-1 depletion 

via flow cytometry, HA-SDC4 transfected cells were treated with siRNA targeting 

Adamts1 or NTC. Transfected cells were seeded onto fibronectin overnight, followed 

by fixation and immunostaining for HA-SDC4.  

Supporting the flow cytometry data, immunocytochemistry revealed an altered 

distribution of syndecan 4 upon ADAMTS-1 knockdown. Compared to NTC cells, 

reduced syndecan 4 expression was seen at the cell periphery; syndecan 4 also 

seemed to no longer localise in focal adhesions (indicated with white arrows in the 

NTC panel), and instead appeared to be accumulating in vesicles or the endoplasmic 

reticulum (Figure 3.7).  
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Figure 3.7 Adamts1 siRNA treatment alters the cellular distribution of syndecan 4.  Cells 
transfected to express HA-Syndecan 4 were treated with siRNA against Adamts1, or NTC. 
Cells were seeded onto fibronectin overnight, then fixed and stained for HA tag (red) and 
DAPI (blue). White arrows indicate putative focal adhesions. Images are representative from 
three independent experiments. Scale bar = 20 µm. 
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3.3 Plasma membrane trafficking of syndecan 4 is unaltered in response to 

ADAMTS-1 siRNA treatment 

Several possibilities were considered when establishing possible causes of the 

syndecan 4 cell surface loss. Reduced transcription of syndecan 4 may lead to a 

concomitant reduction in protein expression, however syndecan 4 still appeared to 

be found intracellularly after ADAMTS-1 knockdown (Figure 3.7) and TaqMan qPCR 

revealed no significant change in syndecan 4 RNA expression after Adamts1 siRNA 

treatment (Figure 3.3). Other potential mechanisms included altered transport of 

syndecan 4 protein to the membrane, ectodomain shedding of membrane bound 

syndecan 4, or altered syndecan 4 membrane trafficking. 

Initially, altered membrane trafficking was selected as the most likely cause of the 

loss of cell surface syndecan 4 in response to Adamts1 siRNA treatment. Adhesion 

receptors frequently internalise and then are either degraded, or recycled back to 

the cell surface. This phenomenon is well documented for integrin family members, 

and accumulating evidence demonstrates syndecan function can be regulated by 

endocytic trafficking, with functional consequences (Zimmermann et al., 2005). 

Syndecan recycling is regulated by the PDZ domain containing protein syntenin, PIP2, 

and the G protein Arf6. Regulation of syndecan recycling in this way is essential for 

embryogenesis (Lambaerts et al., 2012). In cells which cannot recycle syndecan via 

this pathway, syndecan becomes trapped intracellularly and inhibits cell spreading 

(Zimmermann et al., 2005).  

Cell surface biotinylation based assays were used to investigate syndecan 4 

trafficking at the membrane. Endothelial cells were surface-labelled with cleavable 

biotin, incubated for various times to allow internalisation, then biotin remaining on 

the cell surface was cleaved.  For the recycling assay, cells were incubated at 37°C 

again (i.e. after biotin cleavage), to allow biotinylated protein to recycle to the 

surface. Syndecan 4 internalisation was quantified by a syndecan 4 capture ELISA and 

biotin detection using streptavidin.  
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Biotinylation membrane trafficking assays revealed no change in the speed of either 

the internalisation or recycling of syndecan 4 in response to ADAMTS-1 siRNA, 

implying that altered membrane trafficking was not the mechanism by which cell 

surface syndecan 4 was lost (Figure 3.8). 
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Figure 3.8 ADAMTS-1 depletion does not affect the internalisation or recycling of syndecan 
4 at the plasma membrane. A) A diagram outlining the protocol of cell surface biotinylation 
based internalisation and recycling assays. B) Internalisation; EC surface proteins were 
biotinylated using a cleavable, membrane non-permeable biotin. ECs were incubated to 
allow internalisation, remaining surface biotin was removed using the reducing agent 
MESNA. A SDC4 capture ELISA was performed on lysed ECs. Streptavidin was used to detect 
biotinylated SDC4 (N=3, bars represent S.E.M). C) SDC4 recycling assay; after the first MesNa 
treatment, internalised biotin was allowed to return to cell surface. Biotinylated protein that 
had returned to the surface was again removed using MesNa and an ELISA was performed 
as in B (N=3, bars represent S.E.M).    
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3.4 The loss of cell surface syndecan 4 is the result of MMP activity  

As Figure 3.8 demonstrated that the surface trafficking of syndecan 4 was unaffected, 

alternate mechanisms of syndecan 4 regulation needed to be evaluated.  The next 

possibility to be considered was surface shedding of syndecan 4. 

Ectodomain shedding is an important syndecan regulatory mechanism, altering 

surface receptor dynamics and generating soluble ectodomains that have potential 

to act as autocrine or paracrine effectors (Manon-Jensen, Itoh and Couchman, 2010).  

Syndecan ectodomain shedding occurs constitutively in many cell lines, and can be 

accelerated in response to wound healing and other diverse pathophysiological 

events. Cleavage of syndecans is primarily carried out by the MMPs; therefore they 

were the first to be considered as potential mediators of syndecan 4 cell surface loss 

via shedding (Manon-Jensen, Itoh and Couchman, 2010).  
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3.4.1 MMP inhibitors prevent the loss of syndecan 4  

To establish if MMP mediated shedding was responsible for the loss of cell surface 

syndecan 4 seen in response to Adamts1 siRNA treatment, cells were treated with 

commercially available broad spectrum MMP inhibitors, followed by flow cytometry 

to assess changes in levels of cell surface syndecan 4.  

Endothelial cells were transfected with Adamts1 or NTC siRNA, followed by 

treatment with one of the following MMP inhibitors: BB-94, CT1746, GM6001, or a 

DMSO vehicle control. Cells were collected and flow cytometry was used to quantify 

syndecan 4 expression.  

In the case of NTC treated cells, treatment with MMP inhibitors resulted in an 

accumulation in cell surface syndecan 4, supporting an important role for MMPs in 

the regulation of cell surface syndecan 4 expression, however this was not 

statistically significant. For Adamts1 siRNA treated cells, when a DMSO vehicle 

control was added, as before a statistically significant decrease in syndecan 4 was 

seen in comparison to NTC, however when Adamts1 siRNA depleted cells were 

treated with MMP inhibitors this phenotype was lost, and a statistically significant 

increase in syndecan 4 was seen, with expression levels similar to those seen in NTC-

treated cells (Figure 3.9).  

The recovery of the phenotype when MMPs are inhibited strongly suggests that 

MMPs are responsible for the cell surface loss of syndecan 4 in response to loss of 

ADAMTS-1. The predicted mechanism is via ectodomain shedding, however 

unfortunately shed syndecan 4 could not be detected under any conditions.  
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Figure 3.9 MMPs are responsible for the loss of cell surface syndecan 4 in response to 
ADAMTS-1 siRNA.  Cells were transfected with NTC or Adamts1 siRNA, followed by 
treatment for 18 hours with one of the following broad spectrum MMP inhibitors: 5 µM BB-
94, 10 µM CT1746, 10 µM GM6001 or a DMSO vehicle control. Levels of surface syndecan 4 
were assessed using flow cytometric analysis. Bar chart shows percentage of syndecan 4 
expression compared to NTC cells treated with DMSO. N= 3 independent experiments, bars 
represent S.E.M, * P< 0.05, ** p <0.01. 
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3.4.2 ADAMTS-1 siRNA treatment is correlated with increased MMP-9 activity  

The inhibitors used in 3.4.1 are broad spectrum, and therefore affect a wide cache of 

metalloproteinases, including MMPs and other related enzymes. To establish which 

specific protease was responsible for the loss of syndecan 4, gene expression levels 

of MMPs in Adamts1 siRNA treated cells were profiled. A panel of MMPs known to 

be expressed in endothelial cells and predicted to cleave syndecan 4 were selected. 

These included MMP-2, MMP-9, ADAMTS-4 and MT1-MMP (MMP-14) (Rodríguez-

Manzaneque et al., 2009; Manon-Jensen, Multhaupt and Couchman, 2013; Ramnath 

et al., 2014).  

These MMPs are generally regarded as inducible, and they are often not expressed 

by the quiescent endothelium; instead their expression is activated as part of the 

‘angiogenic switch’, where the balance of angiogenic factors tilts towards a pro-

angiogenic outcome. This is the case for MT1-MMP, which upon activation initiates 

endothelial cell migration via degradation of the basement membrane, as well as 

MMP-9, which releases VEGF trapped in the ECM promoting pro-angiogenic 

signalling (Bergers et al., 2000; Genís et al., 2006). Although the role of MMP-2 in 

angiogenesis is less well defined, its expression is induced in activated endothelium, 

and inhibition of MMP-2 has been shown to inhibit angiogenesis and cell migration 

(Webb et al., 2017). These MMPs have all been shown to cleave the ectodomains of 

syndecan 1 and syndecan 4 at two membrane proximal regions (Manon-Jensen, 

Multhaupt and Couchman, 2013). 

The fourth protease considered was ADAMTS-4. ADAMTS-4 is expressed by 

endothelial cells, however as opposed to the other proteases investigated ADAMTS-

4 acts in an anti-angiogenic mechanism (Hsu et al., 2012). Further separating 

ADAMTS-4 from the other MMP candidates where cleavage is membrane proximal, 

ADAMTS-4 has been shown to clip a small N-terminal fragment, in the same manner 

as demonstrated for ADAMTS-1 (Rodríguez-Manzaneque et al., 2009).  

Cells were siRNA treated, RNA was collected, and TaqMan qPCR was used to 

determine protease gene expression levels. In the case of ECs, of the four proteases 
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profiled, Mmp9 was the only target seen to be upregulated. Under NTC or syndecan 

4 siRNA treated conditions Mmp9 expression was almost undetectable, however 

after treatment with Adamts1 siRNA, Mmp9 expression spiked, indicating that Mmp9 

is selectively induced following ADAMTS-1 depletion and is potentially the protease 

responsible for the loss of cell surface syndecan 4 (Figure 3.10A). As both ECs and 

3T3s displayed the phenotype of cell surface syndecan 4 loss, to determine if the 

mechanism was universal, Mmp9 expression was also profiled in 3T3 fibroblasts. In 

this instance, while a trend in increased Mmp9 expression was seen, this was not 

significant (Figure 3.10B).  
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Figure 3.10 Mmp9 transcription is upregulated in endothelial cells siRNA depleted for 
ADAMTS-1. A) ECs were siRNA depleted of Adamts1, Sdc4 or NTC, RNA was collected 24 
hours post transfection, and TaqMan qPCR was performed for proteases: Mmp2, Mmp9, 
Mmp14 and Adamts4. or B) 3T3s were siRNA depleted of Adamts1,, syndecan 4 or NTC, RNA 
was collected 24 hours post transfection, and TaqMan qPCR was performed for Mmp9. 
Graphs display relative gene expression (2-DCt), values are averaged from three independent 
experiments. Bars = S.E.M, *P < 0.05, NS = not significant. 
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Although an upregulation in Mmp9 expression was seen, the functional relevance of 

this was yet to be established. Total quantity of MMP protein does not always reflect 

the level of MMP activity, often due to the complicated balance between proteases 

and their endogenous inhibitors (Lowrey et al., 2008). To establish whether the 

transcriptional increase in Mmp9 was reflected by an increase in MMP-9 activity, 

gelatin zymography was performed. Gelatin zymography utilises the digestion of the 

major substrate of MMP-2 and -9, gelatin, as a marker of gelatinase activity.  

Zymography using media samples of ECs treated with NTC, Adamts1 or Sdc4 siRNA 

revealed increased MMP-9 activity (105 kDa) in ADAMTS-1 depleted cells, as 

compared to NTC or syndecan 4 (Figure 3.11). No MMP-2 activity was detected (72 

kDa). These data support the qPCR results, and demonstrate that the increased 

Mmp9 transcription in response to ADAMTS-1 knockdown resulted in a functionally 

relevant increase in MMP-9 activity. 

 

Figure 3.11 MMP-9 activity is increased in response to Adamts1 siRNA.  Cells were siRNA 
depleted using NTC, Sdc4 or Adamts1 siRNA. Serum free media was added to cells and 
collected after 16 hours incubation. Media samples were run on a gelatin embedded 
polyacrylamide gel. The gel was incubated to allow gelatinases to unfold and cleave gelatin, 
followed by Coomasie staining to reveal sites of digestion. Image is representative of three 
independent experiments.  
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3.4.3 MMP-9 specific inhibition prevents the loss of syndecan 4 

TaqMan and zymography revealed a clear induction of MMP-9 activity in response to 

ADAMTS-1 knockdown. To confirm that syndecan 4 cell surface loss was dependent 

on the induction of MMP-9, MMP-9 was inhibited using the specific small molecule 

inhibitor SB-3CT or siRNA, followed by quantification of syndecan 4 using flow 

cytometry.  

Treatment with Mmp9 siRNA resulted in accumulation of syndecan 4 on the cell 

surface relative to NTC, supporting a role for MMP-9 in homeostatic regulation of 

syndecan 4. Treatment with Adamts1 and Mmp9 siRNA together did not result in a 

reduction in surface syndecan 4, indicating that MMP-9 is necessary for this 

phenotype (Figure 3.12). 

Experiments with the specific inhibitor SB-3CT supported the siRNA data. The loss of 

syndecan 4 after treatment with Sdc4 siRNA could not be rescued by MMP-9 

inhibition, however syndecan 4 expression in Adamts1 siRNA treated cells was 

massively upregulated after SB-3CT treatment (Figure 3.12). These data provide 

convincing evidence that the loss of syndecan 4 in response to ADAMTS-1 knockdown 

is dependent upon the induction and activity of MMP-9.  
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Figure 3.12 Loss of syndecan 4 in response to Adamts1 siRNA is dependent on MMP-9. A) 
Cells were treated with NTC, Sdc4 or Adamts1 siRNA, followed by 16 hour treatment with 
the MMP-9 specific inhibitor SB-3CT or a DMSO vehicle control. Cells were collected and flow 
cytometric analysis was performed to quantify surface SDC4 levels. N = 3, Bars represent 
S.E.M, * = P<0.05. B) Endothelial cells were treated with NTC, Adamts1, Mmp9 or Adamts1 
and Mmp9 siRNA, cells were collected and flow cytometry for syndecan 4 was performed. 
Graph shows percentage expression of Sdc4 compared to NTC. 
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MMP-9 can be regulated in a number of ways. Regulation of Mmp9 transcription is 

one mechanism, however other factors such as signalling and TIMP activity play 

important roles. The TIMPs tightly regulate MMP activity, and therefore when trying 

to uncover the mechanism behind increased MMP-9 activity TIMPs were a likely 

target.   

TaqMan qPCR was performed for all four mammalian Timps to determine their 

expression levels, as they have all been shown to regulate MMP-9 activity to some 

degree (Murphy, 2011). Timp3 was the only TIMP whose expression could be 

detected in endothelial cells. There was a trend toward decreased Timp3 expression 

in response to ADAMTS-1 knockdown, but this was not statistically significant (Figure 

3.13) 
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Figure 3.13 Timp3 expression in siRNA treated ECs. Endothelial cells were treated with 
siRNA against NTC, Sdc4 or Adamts1, 24 hours post transfection RNA was collected, and 
reverse transcribed.  TaqMan qPCR was performed to determine levels of Timp3 expression. 
Relative gene expression (2-ΔCt) was averaged from three independent experiments, error 
bars represent S.E.M.  
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3.5 ADAMTS-1 overexpression results in the loss of cell surface syndecan 4  

It was initially hypothesised that the loss of ADAMTS-1 would protect syndecan 4 

from shedding by this protease, increasing syndecan 4 cell surface level, however our 

data revealed that Adamts1 siRNA decreased syndecan 4 at the cell surface. 

Therefore, to build upon this data, we utilised constructs to overexpress ADAMTS-1. 

3.5.1 ADAMTS-1 overexpression using plasmid vectors 

3T3s were transfected with an empty vector, a myc-labelled full length human 

ADAMTS-1 (ADAMTS-1-myc) or a myc labelled catalytically dead human ADAMTS-1 

(ADAMTS-1-Z11). Antibiotic selection was used to give stably transfected lines, and 

expression of constructs was validated using western blotting. Unfortunately we 

were unable to successfully transfect ECs with these constructs.  

 

 

 

Figure 3.14 ADAMTS-1 overexpression plasmids were successfully transfected into 3T3 
fibroblasts. Lipofectamine was used to transfect 3T3 fibroblasts with ADAMTS-1 plasmids, 
followed by antibiotic selection. Cells were lysed, and protein was western blotted for myc-
tagged ADAMTS-1.  
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3.5.2 Overexpression of WT, but not catalytically inactive ADAMTS-1 results in a loss 

of cell surface syndecan 4 

Fibroblasts expressing ADAMTS-1-Myc or ADAMTS-1-Z11, were collected in citric 

saline buffer, followed by flow cytometry for syndecan 4. Flow cytometry found that 

overexpression of full length, but not catalytically inactive ADAMTS-1 causes a 

statistically significant reduction in the level of cell surface syndecan 4 (Figure 3.15). 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.15 Overexpression of full length ADAMTS-1 decreases cell surface syndecan 4.  
3T3s overexpressing ADAMTS-1 or a catalytically inactive mutant were collected in citric 
saline buffer, followed by immunolabelling of syndecan 4 and quantification via flow 
cytometry. Graph shows median fluorescence intensity values relative to an isotype control. 
Values represent means averaged from three independent experiments. Bars = S.E.M. ** = 
P <0.01.  
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3.6 Discussion  

It is clear from the literature that connections exist between members of the 

ADAMTS and syndecan families. We set out to investigate possible interconnections 

between ADAMTS-1 and syndecan 4 using two cell models, ECs and 3T3s. 

The results of this chapter demonstrate an interdependence between ADAMTS-1 and 

syndecan 4. Upon siRNA depletion of ADAMTS-1, a corresponding reduction in cell 

surface syndecan 4 is seen. This phenotype was dependent on the action of 

proteases, and could be abrogated through the inhibition of MMP-9.  

Previous work by Rodríguez-Manzaneque et al. found that ADAMTS-1 is capable of 

cleaving syndecan 4, clipping the N-terminal (Rodríguez-Manzaneque et al., 2009). 

The hypothesis at the outset of this project was therefore that ADAMTS-1 knockdown 

would increase the surface expression of syndecan 4, however the contrary was 

found. In Adamts1 siRNA treated ECs and 3T3s, a statistically significant reduction in 

cell surface syndecan 4 was detected by flow cytometry. The possibility of off-target 

effects of the siRNA was considered, however 4 different siRNAs were trialled, all of 

which induced this phenotype (data not shown).  

The mechanism of ADAMTS-1-syndecan 4 cleavage may go some way towards 

explaining this result. Cleavage of syndecans is typically carried out by metzincin 

family proteases and occurs juxta membrane. In this manner, intact proteoglycan 

fragments which retain their growth factor binding ability are often generated. 

ADAMTS-1’s cleavage of syndecan 4 is, however, atypical, as only a small 6 kDa 

fragment at the N- terminal is clipped from the protein. This cleavage was shown to 

be physiologically relevant, resulting in defects in adhesion and gain of migratory 

capacities. However, this cleavage mechanism does not necessarily result in loss of 

syndecan 4 from the cell surface, as the proteoglycan is merely adapted. It is possible 

that clipping of syndecan 4 in this way may protect the proteoglycan from further 

protease activity and shedding, but further investigation would be needed to support 

this hypothesis.  
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It is also important to note that ADAMTS-1 overexpression also resulted in a loss of 

syndecan 4 at the cell surface, in a mechanism that was dependent upon ADAMTS-

1’s catalytic activity. These data support a role for ADAMTS-1 in the shedding of 

syndecan 4, however we were unable to detect shed syndecan 4 in the media to 

support this conclusion. There are also several other difficulties when interpreting 

these data; firstly, the constructs overexpressed human ADAMTS-1, as these studies 

were conducted in mouse cells this may lead to unexpected results. Secondly, we 

were unable to detect murine or human ADAMTS-1 using western blotting, and 

therefore expression levels of ADAMTS-1 could not be validated. Finally, we were 

unable to successfully transfect ECs, which prohibited validating results using this 

second cell line.   

Despite these issues, the contrasting knockdown/overexpression data highlight a 

need to consider ‘dose dependent’ effects, as it is possible that ADAMTS-1 has 

different functions depending upon expression level. Concentration dependent 

phenomena have been previously reported for ADAMTS-1; in work by Werner et al, 

low ADAMTS-1 concentrations stimulated migration, whereas high doses were 

inhibitory (Krampert et al., 2005).  

The mechanism by which syndecan 4 is lost from the cell surface in response to 

Adamts1 siRNA is not completely clear, however it seems plausible that it is due to 

increased shedding of the proteoglycan by MMP-9. A clear increase in MMP-9 

expression and activity was seen upon Adamts1 siRNA treatment, and specific 

disruption of MMP-9 activity via an inhibitor or siRNA was sufficient to reverse the 

phenotype. MMP-9 has been reported to cleave syndecan 4 in response to TNF-α; 

therefore it is reasonable to conclude that the increase in MMP-9 leads to increased 

shedding of syndecan 4, as unlike the clipping of ADAMTS-1 by syndecan 4, MMP-9 

mediated cleavage results in the shedding of intact proteoglycan ectodomains 

(Ramnath et al., 2014). Unfortunately, in the context of this work, shed fragments of 

syndecan 4 could not be detected in the media under any conditions, limiting the 

strength of this conclusion. It is also not yet fully clear if this is mechanism is universal. 
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MMP-9 transcription was seen to be upregulated in fibroblast cells, but this remains 

inconclusive as changes were not significant.  

Ectodomain shedding is an important mechanism required to properly regulate 

syndecan function, and the accumulation of syndecan 4 in response to MMP 

inhibitors supports homeostatic roles of these proteases in governing syndecan 

expression. Of note, specific blockade or knockdown of MMP-9 demonstrates its key 

role, as inhibition of this protease alone was sufficient to cause significant 

accumulation of cell surface syndecan 4.  

As well as being part of regulated cell behaviour, syndecan shedding can be 

accelerated in response to pathophysiological events to alter signalling, adhesion and 

migration, as the ectodomain has the potential to act as a paracrine or autocrine 

effector, whereas the remaining membrane bound portion is unable to interact with 

growth factors (Manon-Jensen, Itoh and Couchman, 2010). For example, enzymes 

such as MMPs upregulated in glioma tumorigenesis stimulate shedding of the 

syndecan 2 ectodomain from endothelial cells, however the role of this ectodomain 

in either promoting or inhibiting angiogenesis is controversial, with differing reports 

existing (Fears, Gladson and Woods, 2006; Rossi et al., 2014).  

Further work to identify a shed syndecan 4 fragment, followed by investigation into 

any contributions it may make to angiogenic signalling would greatly advance this 

work.  

As of yet, it remains unclear how the loss of ADAMTS-1 expression results in an 

upregulation of MMP-9 expression and activity. MMP-9 can be regulated in a number 

of ways. MMP-9 expression is inducible and regulated by transcription factors. An 

Ap-1 consensus sequence is considered the most critical binding motif for MMP 

transcriptional activity, yet maximal expression of the protease requires other 

transcription factors including Sp-1 and NF-κb (Mittelstadt and Patel, 2012). MMP 

expression is also tightly regulated by TIMPs, however although an increase in Timp3 

expression was seen, this was not significant.  
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Signalling is also important in MMP-9 expression, in particular there is a link between 

MMP-9 expression and PKC, with PKC inhibitors seen to suppress MMP-9 expression. 

This is of particular  interest as syndecan 4 has been seen to regulate the localisation 

and activity of PKCα (Oh, Woods and Couchman, 1997b; Keum et al., 2004). The PKC 

cascade can regulate the recruitment of MMP-9 to podosomes, and its release and 

activation (Xiao et al., 2010).  It is also not completely clear how sheddases are 

influenced to cleave syndecan, however it is thought to be stimulated by numerous 

growth factors and chemokines (Manon-Jensen, Itoh and Couchman, 2010).  

Both ADAMTS-1 and MMP-9 are involved in VEGF signalling, and their regulation 

therefore may be dependent on a fine angiogenic signalling balance. ADAMTS-1 is 

anti-angiogenic, and can bind and sequester VEGF165, whereas MMP-9 is highly pro-

angiogenic, and can trigger the  ‘angiogenic switch’, a process in tumours where the 

balance of pro and anti- angiogenic factors swings towards a pro-angiogenic outcome 

(Bergers et al., 2000). MMP-9 promotes release of VEGF, primarily VEGF165, bound in 

the matrix to heparan-sulfate chains through cleavage (Hawinkels et al., 2008). VEGF 

induces MMP-9 expression which leads to elevated VEGF levels resulting in a positive 

feedback loop (Hollborn et al., 2007). Similarly, VEGF can upregulate ADAMTS-1 

expression - suggesting a negative feedback mechanism at play (Xu, Yu and Duh, 

2006).  It seems possible that loss of ADAMTS-1 disturbs the fine balance of VEGF 

signalling, resulting in the cells switching to a more angiogenic phenotype, and the 

upregulation of MMP-9, cleavage of syndecan 4 and other HS chains, release of VEGF 

and more pro-angiogenic signalling.  Alterations to the VEGF signalling balance 

triggering MMP-9 activation may also explain why expression of MMP-9 was not as 

dramatic in the fibroblast cells, which are traditionally more responsive to growth 

factors such as FGF. Future work investigating signalling and transcriptional 

regulation of MMP-9 would hopefully shed some light on these unanswered 

questions.  
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3.7 Chapter summary  

In conclusion, the loss of ADAMTS-1 results in a corresponding loss of syndecan 4 in 

an MMP-9 dependent manner, although it remains unclear how MMP-9 activity is 

triggered. Overexpression of ADAMTS-1 also results in a reduction of syndecan 4 at 

the cell surface, in a mechanism dependent upon ADAMTS-1’s catalytic activity. The 

next chapters set out to answer questions with regards to the physiological relevance 

of this interdependency. As the overexpression strategy involved the use of human 

rather than mouse constructs, siRNA mediated knockdowns were the focus of future 

studies.  

 

 

Figure 3.16 Graphical summary of chapter three findings. Knockdown of ADAMTS-1 in 
endothelial cells via siRNA results in a loss of cell surface syndecan 4, dependent upon 
increased MMP-9 transcription and activation.  
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 Syndecan 4 and ADAMTS-1 sequester VEGF-A164 and 

inhibit angiogenesis 

As chapter three demonstrated an interdependency between ADAMTS-1 and 

syndecan 4, the next stage was to therefore evaluate the functions of these two 

proteins, and potential collaboration within their roles. The roles of ADAMTS-1 and 

syndecan 4 centre around the ECM, and therefore processes which rely upon a high 

degree of ECM interaction were considered most likely to be affected by ADAMTS-1 

and syndecan 4. The ECM plays a number of key roles in angiogenesis, it must be 

degraded to release ECs, growth factors, and cryptic bioactive sites, and released ECs 

must migrate upon the matrix (Neve et al., 2014). As ADAMTS-1 is a well-defined 

anti-angiogenic protein, the initial focus of the roles of these proteins therefore 

focused upon angiogenesis.  

ADAMTS-1 inhibits angiogenesis via two distinct mechanisms; firstly it can function 

catalytically, generating a pool of anti-angiogenic peptides by cleavage of TSP1 and 

2. Secondly, ADAMTS-1 can act independent from its catalytic activity, binding and 

sequestering VEGF165, preventing it from activating its major receptor VEGFR2 and 

thereby inhibiting pro-angiogenic signalling (Luque, Carpizo and Iruela-Arispe, 2003; 

Lee et al., 2006).  

The role of syndecan 4 in angiogenesis is less well defined, however in the case of 

diabetes mellitus, the shedding of syndecan 4 has been seen to inhibit angiogenesis 

(Li et al., 2016). Syndecan 4 has also been demonstrated to function in non-VEGF 

induced angiogenesis; the process of angiogenesis is dependent upon multifactorial 

signalling pathways, and emerging evidence highlights its interconnection with 

inflammation. During inflammation recruited immune cells secrete pro-angiogenic 

factors, and the two processes are believed to be interdependent, as newly 

developed vasculature supports the recruitment of immune cells to sites of 

inflammation. PGE2  is a pro-inflammatory lipid, which functions via activation of 

GPCRs, and has been seen to promote tube formation of HUVECs in vitro (Zhang and 

Daaka, 2011). Induction of angiogenesis by PGE2 appears to rely on syndecan 4 



144 

 

activation of PKCα, as in Sdc4-/- endothelial cells PGE2 induction of ERK is reduced 

(Corti et al., 2013).  

This chapter therefore sought to investigate the roles of these two proteins in 

angiogenesis, with the aim of exploring any co-operation between the them, and of 

clarifying the role of syndecan 4.   
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4.1 ADAMTS-1, syndecan 4 and VEGF-A associate in vitro  

Several lines of evidence hint at a physical interaction between ADAMTS-1 and 

syndecan 4. Both proteins bind the extracellular matrix, and in the case of ADAMTS-

1 this interaction is likely mediated by GAGs (Kuno and Matsushima, 1998). 

Glycosaminoglycans are unbranched polysaccharides consisting of a repeating 

disaccharide unit. When attached to a protein they from a proteoglycan, such as the 

ECM protein, and major substrate of ADAMTS-1, aggrecan. Core proteins are 

synthesised in the rough endoplasmic reticulum, they then transit the secretory 

pathway, and are posttranslationally modified in the Golgi by glycosylation, 

generating the GAG chains (Zulueta et al., 2015). One source of ECM GAGs is in the 

HS-GAG chains covalently attached to the syndecan 4 core protein, intimating the 

possibility that syndecan 4 provides a linkage between ADAMTS-1 and the ECM 

(Woods and Couchman, 1994).  

Another potential interaction between syndecan 4 and ADAMTS-1 intersects at 

VEGF. Syndecan 4 has been predicted to bind VEGF due to its capabilities for 

interaction with heparin binding growth factors (Elfenbein and Simons, 2013). 

ADAMTS-1 binds and sequesters VEGF; this interaction is exclusive to VEGF165 as this 

isoform contains a heparin binding domain upon which the connection is dependent 

(Iruela-Arispe, Carpizo and Luque, 2003). Previous work by Ireula-Irispe et al. has 

suggested that heparin functions as a chaperone to facilitate the ADAMTS-1 VEGF 

interaction, as in vitro, addition of exogenous heparin increased ADAMTS-1 to VEGF 

binding. Interestingly, in vivo, the exogenous addition of heparin was not a 

requirement for ADAMTS-1 VEGF binding, and it was therefore hypothesised that a 

heparan sulfate proteoglycan, such as a member of the syndecan family, may act as 

a bridge to facilitate this contact (Iruela-Arispe, Carpizo and Luque, 2003). 

To establish if physical connections between these proteins exists in the context of 

endothelial cells, and to test the hypothesis that syndecan 4 may contribute to the 

regulation of angiogenesis via aiding in ADAMTS-1’s sequestration of VEGF, co-

immunoprecipitations were performed. As reliable antibodies against mouse 
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syndecan 4 could not be found, human umbilical vein endothelial cells (HUVEC) were 

utilised. Unfortunately, neither mouse nor human antibodies were able to reliably 

detect ADAMTS-1.  Depletion of targets in culture was achieved using lentiviral 

shRNAs, and successfully transfected cells were selected for using puromycin. Cells 

were lysed in RIPA buffer and lysates were immunoprecipitated for VEGF-A. 

Immunoprecipitations for VEGF-A were able to co-precipitate syndecan 4, revealing 

that syndecan 4 either directly or indirectly binds VEGF-A. Lentiviral silencing of 

ADAMTS-1 reduced the amount of syndecan 4 co-precipitated, suggesting a 

functional connection dependent on both proteins (Figure 4.1). However, since 

chapter 3 showed that depletion of ADAMTS-1 reduced cell surface syndecan 4, this 

may also be a contributing factor.  
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Figure 4.1 VEGF-A and Syndecan 4 form complexes in endothelial cells. Lentiviral shRNAs 
against NTC, Sdc4 or Adamts1 were used to silence targets in HUVECs. Transfected cells were 
lysed and protein concentrations equalised, followed by immunoprecipitations using a VEGF-
A antibody. An IgG control was used to rule out non-specific binding. The presence of co-
precipitated SDC4 was determined by western blotting. A) representative image of western 
blotting of immunoprecipitated protein, bands represent SDC4. B) Image J densitometric 
quantification of three independent western blots (error bars represent S.E.M, **P<0.01, 
****P<0.0001).  
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4.2 Loss of ADAMTS-1 or Syndecan 4 increases signalling in response to 

VEGF-A164 

Immunoprecipitations clearly demonstrate that syndecan 4 is capable of binding 

VEGF, however the physiological relevance of this was yet to be established. The 

formation of Syndecan 4-VEGF complexes could imply that Syndecan 4 acts as a VEGF 

receptor or co-receptor as it does for other growth factors such as FGF2 (Jang et al., 

2012). Alternatively, syndecan 4 could be functioning with ADAMTS-1 and 

sequestering VEGF, a hypothesis supported by the function of other HSPGs in VEGF 

trapping (Tkachenko et al., 2004; Kadenhe-Chiweshe et al., 2008).  

To gain initial insight into the role of syndecan 4 in angiogenesis, the impact of 

ADAMTS-1 or syndecan 4 knockdown on VEGF signalling was investigated. In the 

major pro-angiogenic pathway, VEGF-A activates the receptor tyrosine kinase 

VEGFR2, activating downstream signalling pathways controlling proliferation, 

survival, migration, and inhibiting apoptosis. One well described signalling response 

to VEGF is MAPK pathway activation, and therefore VEGFR2 and ERK phosphorylation 

were used as markers of pro-angiogenic signalling in response to exogenous VEGF 

addition.  

For this work we returned to the murine endothelial cells, as VEGF164 (the mouse 

equivalent of human VEGF165) was prepared in house, and prior work had established 

VEGF dosing protocols for these cells (Ellison et al., 2015). Endothelial cells were 

serum-starved for 3 hours to synchronise background signalling, then stimulated 

with 30 ng/mL VEGF-A164 in serum free media. Cells were lysed at 0, 5, 15, and 30 

minutes post stimulation and western blotted to assess any changes in signalling.  

Western blotting revealed increased levels of phospho-VEGFR2 and phospho-ERK in 

ADAMTS-1 or syndecan 4 siRNA knockdown cells, indicating increased VEGF induced 

pro-angiogenic signalling (Figure 4.2). These data suggest that syndecan 4 is not 

acting as a VEGF co-receptor, and instead support the hypothesis that ADAMTS-1 and 

syndecan 4 sequester VEGF-A164 to inhibit angiogenesis, and that when they are 

depleted VEGF is more readily available to activate its receptor.  
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Figure 4.2 Depletion of ADAMTS-1 or syndecan 4 results in increased VEGF signalling.  
Endothelial cells were serum starved for 3 hours, then stimulated with VEGF-A164 and lysed 
at 0, 5, 15 or 30 minutes post stimulation. Western blots were performed on lysates with 
anti-VEGFR2, ERK, and their phosphorylated forms. HSC70 was used as a loading control. A) 
Representative blot from 4 independent experiments. B) densitometric quantification 
performed in ImageJ, levels of phosphorylated protein are shown relative to total protein, 
N=3 independent experiments, error bars represent S.E.M.  
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4.3  ADAMTS-1 and syndecan 4 sequester VEGF-A164 

Based on the capacity of syndecan 4 to bind VEGF-A, and the increased signalling 

seen upon its depletion, it was hypothesised that syndecan 4 was contributing to 

ADAMTS-1’s sequestration of VEGF. To confirm this, the capability of endothelial cells 

to bind and sequester VEGF-A164 was assessed using an ELISA.  

Endothelial cells were cooled to 4°C to inhibit signalling, 30 ng/mL VEGF-A164 in ice 

cold serum free media was then added to ECs, followed by incubation for 30 minutes 

at 4°C, allowing cells to bind the VEGF. The media was then recovered, and a 

sandwich ELISA was performed to determine the amount of VEGF-A164 remaining free 

in the media. Both Adamts1 and Sdc4 siRNA treatment increased the amount of free 

VEGF-A164 in the media compared to NTC cells, and when Adamts1 and Sdc4 siRNA 

treatments were given in combination, virtually all added VEGF-A164 could be 

recovered (Figure 4.3A).  

This increase in free VEGF-A164 could reflect reduced ability of the ADAMTS-

1/syndecan 4 knockdown cells to sequester VEGF-A164, and could also explain the 

increased VEGF-A164 signalling seen in these cells in Figure 4.2. However, before a 

firm conclusion was made, other possibilities were explored. To confirm that 

incubation at 4°C was adequate to prevent cell signalling, and thereby uptake of 

VEGF-A164 by receptor internalisation, which would affect the concentration of VEGF 

in the media, western blots for VEGF-A signalling cascade proteins were performed. 

Western blots revealed no increase in VEGFR2 phosphorylation, indicating that 

signalling was not activated (Figure 4.3B). An alternate possibility was that the 

increase in VEGF-A164 seen was due to increased production and secretion in 

ADAMTS-1 and syndecan 4 siRNA cells. TaqMan qPCR was used to investigate this 

concept, and it was found that levels of VegfA transcription were unchanged 

between NTC, syndecan 4 and ADAMTS-1 siRNA treated cells. These data combined 

allow for the conclusion that ADAMTS-1 and syndecan 4 conspire to sequester VEGF-

A164.  
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Figure 4.3 ADAMTS-1 and syndecan 4 conspire to sequester VEGF.  VEGF-A164 (30ng/mL) in 
ice cold serum free media was added to ECs siRNA treated for NTC, Sdc4 or Adamts1, and 
incubated at 4°C for 30 minutes. A) Media was recovered and a VEGF-A164 sandwich ELISA 
was performed to quantify VEGF-A164 remaining in the media. (N=3, bars represent S.E.M, 
*P<0.05, **P<0.01). B) Cells were lysed and western blot analysis performed to assess 
signalling pathway activation. C) TaqMan qRT-PCR was performed on RNA isolated from cells 
to determine levels of VegfA transcription. 
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4.4 Adamts1 siRNA treatment increases proliferation in endothelial cells, 

but not fibroblasts  

The physiological relevance of the sequestration of VEGF-A164 by ADAMTS-1 and 

syndecan 4 was next investigated. Increased ERK phosphorylation in response to 

VEGF-A164 treatment was seen in ADAMTS-1 and syndecan 4 knockdown cells (Figure 

4.2). Activation of the RAS-MAPK kinase pathway downstream of VEGFR2 leads to 

phosphorylated and activated ERK, which translocates to the nucleus and 

transactivates transcription factors, promoting proliferation. The proliferation of 

endothelial cells in response to VEGF is an essential step in angiogenesis, and 

therefore as ERK phosphorylation was upregulated in response to ADAMTS-1 or 

syndecan 4 depletion it seemed likely that this would result in a corresponding 

increase in proliferation.    

Bromodeoxyuridine (BrdU) incorporation was used to quantify cell proliferation. 

Endothelial cells were siRNA treated, and incubated with BrdU over a 14 hour period. 

To quantify the percentage of proliferating cells, they were then fixed and 

immunolabelled with and anti-BrdU antibody, and DAPI nuclear stain. An increase in 

proliferation was seen in ADAMTS-1 depleted cells, but not in syndecan 4 depleted 

cells.  To determine if the mechanism was VEGF specific, experiments were repeated 

in 3T3 fibroblast cells, as these cells express little VEGFR2 and primarily respond to 

FGFs. No increase in proliferation was seen in 3T3 cells with either Adamts1 or Sdc4 

siRNA treatment, and in fact a non-significant decrease in proliferation was seen 

(Figure 4.4).  

These data support an important role for ADAMTS-1 in the mediation of VEGF 

signalling. The data for syndecan 4 were less clear. However, as syndecan 4 is known 

to interact with a number of other growth factors, this may be a result of multiple 

signalling pathway involvement, particularly as the fibroblasts siRNA treated for 

syndecan 4 show a trend for a decrease in proliferation (Harburger and Calderwood, 

2008).  
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Figure 4.4 ADAMTS-1 inhibits proliferation of endothelial cells. siRNA-treated ECs and 3T3s  
were allowed to incorporate BrdU for 14 hours. Cells were fixed and stained for BrdU and 
DAPI. Total number of nuclei and BrdU positive nuclei were counted, bar chart shows the 
percentage of proliferating cells (N=4, **P<0.01, ns = not significant).  
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4.5 ADAMTS-1 or Syndecan 4 treatment increases sprouting in the mouse 

aortic ring assay  

To assess the role of ADAMTS-1 and syndecan 4 sequestration of VEGF in a more 

physiologically relevant context, a mouse aortic ring assay was utilised. This ex vivo 

assay is a model of sprouting angiogenesis which takes advantage of the capacity of 

aortic grafts to develop de novo sprouts when appropriately stimulated with pro-

angiogenic factors (Baker et al., 2012).  

Aortas were harvested from 6-8 week-old mice, the fat layer was removed and they 

were sliced into rings. The rings were then treated with siRNA against ADAMTS-1 or 

syndecan 4 overnight, followed by embedding into a collagen matrix. The rings were 

stimulated with VEGF-A164 periodically over 6 days. They were then fixed and stained 

with FITC-conjugated BS1-lectin, which demarcates endothelial cells. The number of 

sprouts that formed from each ring were counted, and this was used as a marker of 

angiogenesis (Baker et al., 2012).   Quantitative RT-PCR was used to confirm that both 

siRNAs successfully depleted their targets in the aortic rings (Figure 4.5A).  

Both ADAMTS-1 and syndecan 4 depletion resulted in a marked increase in new 

vessel sprouting (Figure 4.5B,C) demonstrating a physiologically relevant 

contribution of ADAMTS-1 and syndecan 4 to angiogenesis. The increased vessel 

sprouting seen supports an anti-angiogenic role for ADAMTS-1 and syndecan 4, 

regulating VEGF bioavailability and signalling via sequestration.  
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Figure 4.5 ADAMTS-1 and syndecan 4 siRNA depletion results in increased vessel sprouting 
in the mouse aortic ring assay. Aortas were harvested from 6-8 week old mice, the fat layer 
was removed, and they were cut into rings. Rings were siRNA treated and embedded in 
collagen and periodically treated with VEGF-A164 where indicated. A) TaqMan qPCR showing 
relative levels of Sdc4 and Adamts1 in 3 independent experiments, bars represent S.E.M, 
**p<0.001.B) Bar chart showing the total number of micro vessel sprouts per aortic ring 6 
days post-VEGF-stimulation (n≥50 rings per condition, N = 4 independent experiments, error 
bars represent S.E.M, **P<0.001, ***P<0.0001). C) representative images of aortic rings 
stained with FITC-conjugated BS1-lectin, scale bar = 200 µm. 
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4.6 Discussion  

We sought to explore the roles of ADAMTS-1 and syndecan 4 in angiogenesis through 

investigation essential angiogenic stages, including VEGF signalling and cell 

proliferation, with a focus on mouse endothelial cells. This chapter demonstrates 

that ADAMTS-1 and syndecan 4 sequester VEGF-A164, inhibiting activation of VEGFR2 

and preventing signalling, with functionally relevant consequences on endothelial 

cell behaviour and angiogenesis. 

ADAMTS-1 is already well established as an angio-inhibitory protein, however the 

contribution of syndecan 4 to new vessel growth has remained somewhat unclear. 

This project worked from two contrasting hypotheses: Firstly, that syndecan 4 was 

acting as a bridge between ADAMTS-1 and VEGF-A aiding in its sequestration and 

inhibiting angiogenesis. This hypothesis was supported by evidence of the roles of 

HSPG as a reservoir of growth factors which can be released upon proteoglycan 

cleavage (Ruoslahti and Yamaguchi, 1991). The second hypothesis suggested that 

syndecan 4 acts as a VEGF co-receptor, acting to either promote or enhance VEGF 

signalling to encourage angiogenesis. This hypothesis was drawn from syndecan 4’s 

interactions with other heparin binding growth factors; syndecan 4 has been shown 

to function as a co-receptor, supporting signalling. Syndecan 4 delivered in 

proteoliposome form can enhance the activity of PDGF-BB and FGF2 activity 

(Sperinde and Nugent, 2000; Jang et al., 2012; Das, Majid and Baker, 2016). In the 

case of FGF2, syndecan 4 binding of PIP2 and downstream PKCα activation can 

mediate FGF2 signalling. Mutations of the syndecan 4 cytoplasmic tail which alter its 

affinity for PIP2 reduced migration, growth, and tube formation in endothelial cells 

in response to FGF2 (Horowitz, Tkachenko and Simons, 2002). Full activity of FGFs 

requires internalisation of the growth factor as well as receptor interaction (Goldfarb, 

2001). The internalisation of FGF2 is dependent upon syndecan 4 clustering 

dependent activation of Rac1 and the CDC42 dependent macropinocytic pathway 

(Tkachenko et al., 2004). 
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Co-Immunoprecipitations demonstrated an association between VEGF-A and 

syndecan 4, however VEGF-A164 signalling was enhanced upon syndecan 4 depletion, 

contrasting with the suggestion that syndecan 4 was acting as a VEGF-A co-receptor. 

As an increase in free VEGF-A164 was seen upon syndecan 4 depletion, this led to the 

conclusion that syndecan 4 was sequestering VEGF-A164. These data, in combination 

with evidence that ADAMTS-1 and syndecan 4 depletion increases micro-vessel 

sprouting in a physiologically relevant ex vivo model, strongly suggest that syndecan 

4 does not promote VEGF signalling, but instead alongside ADAMTS-1, sequesters 

VEGF-A164 to inhibit angiogenesis. Unfortunately antibodies were unable to detect 

ADAMTS-1, and therefore a direct link to the protease could not be demonstrated, 

however a physical connection between ADAMTS-1 and VEGF165 has been previously 

demonstrated in work by Iruela-Arispe et al (Luque, Carpizo and Iruela-Arispe, 2003). 

The function of syndecan 4 in sequestering VEGF-A164, and its differing roles in VEGF 

and FGF2 signalling is not completely unexpected, as differential functions of 

syndecan 4 on different growth factors have been demonstrated in vivo. Mice 

overexpressing syndecan 4 in cardiac endothelial cells saw an augmentation of FGF2 

but not VEGF-A induced NO-release (Zhang et al., 2003). Syndecan 4 is an HSPG, and 

these complex biopolymers can regulate growth factor signalling in numerous ways, 

often dependent upon context. In addition to promoting signalling, HSPGs have been 

seen to sequester growth factors, reducing pro-proliferative signals. One example of 

a glycoprotein acting in both pro and anti-proliferative mechanisms is glypican, which 

can both promote and inhibit Wnt signalling (Steinfeld, Van Den Berghe and David, 

1996; Zittermann et al., 2010). 

FGF-2 signalling also promotes and supports angiogenesis, and therefore future work 

investigating a connection between ADAMTS-1, syndecan 4 and FGF2 would 

hopefully provide more insight into multifunctional contributions of syndecan 4 

(Cross and Claesson-Welsh, 2001). In particular, assessing the sprouting of aortic 

rings stimulated with FGF2 rather than VEGF may give deeper insight into syndecan 

4’s multifactorial roles. 
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Regulation of VEGF bioavailability is one important mechanism in the control of 

angiogenesis. The VEGF-A isoforms 189, 206 and 165 bind the ECM in an interaction 

mediated by HSPG, generating a pool of VEGF which can be released by MMP 

mediated HSPG cleavage (Houck et al., 1992). Manipulation of VEGF gradients in this 

way can have profound effects on development and cancer (Schlieve et al., 2016). In 

one important mechanism MMP-9 cleavage of HSPG releases VEGF, triggering the 

angiogenic switch, increasing circulating VEGF and inducing colorectal cancer 

angiogenesis (Hawinkels et al., 2008). Based on this it seems highly plausible that 

syndecan 4 is functioning as a reservoir of VEGF, which can be released by MMPs in 

a pro-angiogenic context. 

Although both Adamts1 and Sdc4 siRNA treatment increased VEGF-A164 initiated ERK 

signalling, only Adamts1 siRNA had an effect on the proliferation of endothelial cells. 

Reasons for this may be multifold; as previously discussed, syndecan 4 is an 

important signalling nexus, and its depletion may have consequences for signalling 

by growth factors other than VEGF. A key example is found in FGF2. FGF2 activation 

of FGFR1 can induce endothelial cell migration and angiogenesis, and as syndecan 4 

is important in shaping cell responses to FGF2 the loss of syndecan 4 is likely to 

influence FGF2s contribution to endothelial cell proliferation (Elfenbein et al., 2012). 

The possibility that the contribution of other growth factors influences proliferation 

is supported by data collected in 3T3 fibroblasts. Adamts1 a siRNA only increased 

proliferation in ECs, not fibroblasts, and in the case of fibroblasts Sdc4 siRNA treated 

cells had a non-statistically significant decrease in proliferation. Fibroblasts only 

express low levels of VEGFR2 and are much more responsive to FGF2, whereas 

endothelial cells have high VEGFR2 levels, thus the differing actions of syndecan 4 

depending on the specific growth factor may therefore explain the proliferation data, 

and suggest that syndecan 4 modulation of FGF signalling has a role in endothelial 

cells. Investigating proliferation in response to specific growth factor stimulation may 

help develop understanding of this phenotype.  

It is also important to consider the other roles of ADAMTS-1, independent of 

syndecan 4. The sequestration of VEGF is just one mechanism by which it exerts its 



159 

 

anti-angiogenic affects. ADAMTS-1 also has important catalytically dependent 

functions. One such role is the cleavage of thrombospondin 1 and 2, releasing a pool 

of anti-angiogenic polypeptides (Lee et al., 2006). In a broader sense, although 

syndecan 4 and ADAMTS-1 null mice share a delayed wound healing response the 

models do not phenocopy each other (Echtermeyer et al., 2001). Whilst syndecan 4 

knockout mice are relatively healthy, ADAMTS-1 knockout mice exhibit 

developmental issues with stunted growth and high embryonic mortality (Shindo et 

al., 2000). 

4.7 Chapter summary  

In conclusion, ADAMTS-1 and syndecan 4 intersect in the sequestration of VEGF-A164 

and inhibit angiogenesis. It is likely that they exist in an equilibrium with MMP-9 

which is able to cleave syndecan and release VEGF to initiate angiogenesis. Although 

ADAMTS-1 and syndecan 4 functions co-operate in this instance, it remains 

important to consider their unique functions, an evaluation of the contribution of 

FGF2 in this context would hopefully give deeper insight into the mechanisms at play.  
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Figure 4.6 Graphical summary of the findings of chapter 4. ADAMTS-1 and syndecan 4 
bind and sequester VEGF-A164, preventing it from binding and activating VEGFR2, and 
inhibiting angiogenesis.  
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 Syndecan 4 and ADAMTS-1 regulate endothelial cell 

adhesion and migration in an ECM dependent mechanism  

Cell migration is an essential step in the process of angiogenesis; endothelial cells 

must migrate under the influence of VEGF to drive the formation of new vessel 

sprouts. As ADAMTS-1 and syndecan 4 had a profound influence on angiogenic 

sprouting and VEGF-A bioavailability, their contribution to cell migration was next 

investigated.  

Both ADAMTS-1 and syndecan 4 null mice have phenotypes of delayed wound 

healing, attributed to altered cell migration and angiogenesis, and indeed syndecan 

4 has a clear contribution to the process of cell migration (Echtermeyer et al., 2001; 

Krampert et al., 2005). It binds fibronectin in co-operation with α5 integrin, as well 

as regulating small G proteins to generate sustained directional migration (Bass et 

al., 2007, 2008).  

The role of ADAMTS-1 in cell migration is less well defined. ADAMTS-1 has been 

shown to cleave semaphorin 3C, promoting migration of breast cancer cells in a 

mechanism which may promote metastasis (Esselens et al., 2010). Conversely, 

ADAMTS-1 has also been demonstrated to inhibit cell migration; in the context of 

breast cancer cell invasion and migration, activation of the receptor PPARδ increased 

ADAMTS-1 expression, inducing a marked inhibition of cell migration and TSP1 

expression, and these effects could be mitigated by siRNA mediated ADAMTS-1 

knockdown (Ham et al., 2017).  

Members of the ADAMTS family have been previously shown to regulate cell 

migration in a syndecan 4 dependent mechanism. ADAMTS-6 and -10 have opposing 

roles in focal adhesion formation: ADAMTS-6 inhibits whereas ADAMTS-10 is 

required for focal adhesions, since cells overexpressing ADAMTS-10 have more 

prominent focal adhesions, whereas those overexpressing ADAMTS-6 did not form 

focal adhesions. This relationship holds true in reverse, as ADAMTS-6 siRNA 

treatment induced prominent adhesions, and cells siRNA depleted of ADAMTS-10 

formed very few focal adhesions. The functions of ADAMTS-6 and -10 were linked to 
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syndecan 4, as the C-termini of both proteases were shown to bind syndecan 4, and 

in ADAMTS-10 depleted cultures expression of syndecan-4 rescued focal adhesions 

(Cain et al., 2016). Similar syndecan 4 dependent effects have been seen with 

ADAMTS-15. Addition of ADAMTS-15 to aortic rings inhibited their sprouting, and 

expression of ADAMTS-15 in culture  inhibited the migration of MDA-MB-231 breast 

cancer cells on fibronectin, which could be abrogated by siRNA depletion of syndecan 

4 leading to recovery of migration speed (Kelwick, Wagstaff, et al., 2015). 

There is thus a clear connection between ADAMTS family members and syndecan 4 

in cell migration, and it is hypothesised that this extends to ADAMTS-1. Both 

ADAMTS-1 and syndecan 4 interact with the ECM, placing them in an ideal location 

to facilitate cell movement (Kuno and Matsushima, 1998; Elfenbein and Simons, 

2013).  A connection between ADAMTS-1 and syndecan 4 in the regulation of cell 

migration was demonstrated by Rodriquez-Manzeneqe et al. Somewhat 

contradictory to previous work on syndecan 4 in cell migration, they found that 

cleavage of syndecan 4 by ADAMTS-1 promoted cell migration, in a manner that 

resembled genetic deletion of the proteoglycan (Rodríguez-Manzaneque et al., 

2009). This essential interplay between ADAMTS-1 and syndecan 4 was supported by 

data from Chapter three, however these experiments demonstrated the 

requirement of ADAMTS-1 for syndecan 4 expression, and therefore the relative 

contribution of a cleavage mechanism is unclear in this context.  

As of yet, investigation of ADAMTS-1 and syndecan 4 regulation of migration in an 

endothelial cell specific context has been limited, since work on syndecan 4 primarily 

focused on fibroblasts, and ADAMTS-1 in cancer cell lines. Therefore, the aim of this 

chapter was to investigate the roles of ADAMTS-1 and syndecan 4 in the regulation 

of endothelial cell migration, and how this may contribute to their angio-inhibitory 

functions.  
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5.1 ADAMTS-1 and Syndecan 4 inhibit cell migration in a fibronectin-specific 

manner  

Given the current contradictions in the reported roles of ADAMTS-1 and syndecan 4 

in cell migration, we investigated their migratory roles both in fibroblasts to allow for 

comparison with existing literature regarding syndecan 4, and in endothelial cells, to 

give context to our angiogenesis studies. To gain an initial perspective of the relative 

contributions of these two proteins to cell motility, random migration assays were 

carried out. Cells were siRNA treated and seeded onto collagen I and fibronectin 

matrices, and time-lapse videomicroscopy was then performed, followed by 

quantification of migration speed using the ImageJ plugin MTrackJ. 

An increase of migration speed was seen upon ADAMTS-1 or syndecan 4 knockdown 

in both ECs and fibroblasts. Of note, this effect was specific to fibronectin, and in fact 

a decrease in migration speed was seen in Sdc4 siRNA treated cells migrating on a 

collagen I matrix (Figure 5.1). 
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Figure 5.1 Adamts1 or Sdc4 siRNA depletion increases random migration speed on 
fibronectin matrices only. 3T3 fibroblasts or ECs were treated with siRNA, and plated onto 
10 µg/mL collagen I (Col I) or fibronectin (FN) matrix and allowed to adhere overnight. Time-
lapse video microscopy was used to image cells every 16 minutes, over a period of 16 hours. 
Migration speed (nm/sec) was calculated using the MTrackJ plugin in FIJIÒ. n= ≥100 cells in 
4 independent experiments, error bars represent S.E.M, **P<0.001).  
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These data suggested that ADAMTS-1 and syndecan 4 were acting to inhibit cell 

migration on fibronectin. Signalling by VEGF can drive endothelial cell migration 

though the activation of several signalling pathways downstream of VEGFR2; two key 

pathways are activation of p38MAPK which drives actin polymerization, and FAK, 

which in-turn drives focal adhesion turnover (Abhinand et al., 2016). As chapter four 

showed ADAMTS-1 and syndecan 4 depletion increased VEGF-A164 availability and 

signalling, this was hypothesised to be the mechanism behind the increased random 

migration speed.    

To determine the contribution of VEGF signalling to increased migration speed, 

random migration experiments were repeated using ECs in growth factor free 

conditions. An increase in random migration speed was still seen in ADAMTS-1 and 

syndecan 4 siRNA depleted cells, despite the lack of VEGF (Figure 5.2). This, combined 

with the increased speed seen in fibroblasts, which are largely not responsive to VEGF 

signalling, and the specificity of the increased speed to fibronectin, suggested that a 

different, more complex mechanism was at play.  
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Figure 5.2 Increased random migration speed is independent of VEGF.  Endothelial cells 
were treated with siRNA, plated onto 10 µg/mL FN matrix, and allowed to adhere overnight. 
Complete media was replaced with serum free OptiMemÒ. Time-lapse video microscopy 
was used to image cells every 16 minutes, over a period of 16 hours. Migration speed 
(nm/sec) was calculated using the MTrackJ plugin in FIJIÒ. n= ≥50 cells in 3 independent 
experiments, error bars represent S.E.M, *P<0.05.  

M
ig

ra
tio

n 
S

pe
ed

 
(n

m
/s

ec
)

NTC

SDC4 s
iR

NA

ADAMTS1 s
iR

NA
0

2

4

6

8

*
*



167 

 

5.3  Immunocytochemistry experiments reveal a more migratory phenotype 

with altered actin distribution when ADAMTS-1 or syndecan 4 are siRNA 

depleted  

To begin to understand the phenotypes driving the increased cell migration speed, 

immunocytochemistry experiments were performed to visualise migrating cells. 

Two essential structural components of migration, focal adhesions and F-actin were 

imaged. Actin forms a part of the cytoskeleton that is temporally and spatially 

regulated and redistributed, and is required to generate force in migrating cells 

(Wozniak et al., 2004). Focal adhesions are sites of cytoskeleton – ECM connection 

and allow the cell to generate the traction required to translocate the cell body when 

migrating. These are highly dynamic structures that respond to the environment, and 

therefore imaging these two components gives a static snapshot of these two 

structures, and could reveal any gross changes in their morphology, providing insight 

into the migratory behaviour of the cells.  

Endothelial cells were siRNA treated and serum starved, then stimulated with VEGF-

A164 10 minutes prior to fixation and staining. In quiescent endothelium, actin forms 

a cortical rim that interacts with both cell-cell and cell-matrix adhesion complexes. In 

contrast, stress fibres, actin-myosin bundles necessary for inducing cell contraction, 

form when cells are activated. Immunocytochemistry revealed differences in actin 

distribution between NTC and Adamts1/Sdc4 siRNA depleted cells. Non-target 

control cells displayed mostly cortical actin with a largely heterogeneous distribution, 

whereas cells treated with Adamts1 or Sdc4 siRNA seemed to have more stress fibres, 

aligned along the cell axis, in a distribution fitting with a more migratory phenotype 

(Figure 5.3).  

To quantify the images, a software for analysis of 2D and 3D biopolymer networks, 

SOAX, was used to calculate the radial orientation of actin fibres (Xu et al., 2015). A 

density plot of azuthimal angles of actin filaments was generated in R (Figure 5.4). 

Quantification confirmed that the actin of  Adamts1 and Sdc4 siRNA treated cells was 

more aligned along the cell axis, with most fibres orientated at a 0° angle.  
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Figure 5.3 Adamts1 or Sdc4 siRNA alters actin distribution. ECs were siRNA treated and 
plated onto fibronectin overnight. Cells were then serum starved for 3 hours in OptiMemÒ, 
followed by stimulation of migration by the addition of VEGF-A164 (30 ng/ml). After 10 
minutes of stimulation, cells were fixed in PFA and immuno-labelled for paxillin, as a marker 
of focal adhesions, and for F-actin. The final panel shows actin filaments coloured by their 
azimuthal angle, analysis was performed in SOAX (Xu et al., 2015). Images are representative 
of three independent experiments.  
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Figure 5.4 Actin filaments are more linearly arranged in Adamts1 and Sdc4 siRNA treated 
cells.  ECs were siRNA treated and plated onto fibronectin overnight. Cells were then serum 
starved for 3 hours in OptiMemÒ, followed by stimulation of migration by the addition of 
VEGF-A164 (30 ng/mL). After 10 minutes of stimulation, cells were fixed in PFA and stained 
for F-actin. Radial orientation of actin filaments was quantified using SOAX, and azuthimal 
angles were plotted using R. 
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5.4 Focal adhesion size is altered by Adamts1 or Sdc4 siRNA depletion, in a 

fibronectin-dependent manner 

Given the actin distribution typical of migratory cells seen with ADAMTS-1 and 

syndecan 4 depletion, we wished to gain more insight into focal adhesion formation 

and turnover. Cells were siRNA depleted for ADAMTS-1 or syndecan 4, and fixed after 

90 or 180 minutes of adhesion to fibronectin coated coverslips. Focal adhesions were 

visualised using immunocytochemistry with the adaptor protein paxillin, which 

incorporates into focal adhesions via direct interaction with integrin β chain 

cytoplasmic tails, as a focal adhesion marker (Schaller et al., 1995) (Figure 5.5). 

Computational analysis of images found that the number of focal adhesions formed 

was unchanged at either timepoint, however at 90 minutes of adhesion, focal 

adhesions in siRNA treated cells had a larger average area (Figure 5.6).  

Nascent adhesions form when an initial integrin mediated cell-ECM connection 

occurs. Depending on the environment, this initial adhesion has the potential to 

mature into a focal adhesion. A more detailed breakdown of focal adhesion data 

revealed a higher percentage of mature focal adhesions (2-6 μm2) in Adamts1 and 

Sdc4 siRNA treated cells as opposed to NTC cells. While only 4.2% of adhesions in 

NTC treated cells could be classed as focal adhesions, 8.5 and 7.2% of syndecan-4 and 

ADAMTS-1 adhesions fell into this category. This increase in focal adhesions was 

reflected in a decrease in nascent adhesions, with 95.6% of NTC, 90.9% of syndecan 

4 and 92% of ADAMTS-1 adhesions classed as this type. Only a very small percentage 

of adhesions under any condition became super-mature adhesions within the 90 

minute timeframe, with these adhesions representing 0.2%, 0.6%, and 0.7% of NTC, 

syndecan 4 and ADAMTS-1 adhesions respectively. The differences in focal adhesion 

maturity state were statistically significant, as assessed with a Chi Square test. These 

data suggest that the increase in focal adhesions size is due to the faster maturation 

of nascent adhesions into focal adhesions when ADAMTS-1 or syndecan 4 are 

knocked down, as opposed to the generation of extra-large adhesions (Figure 5.7).   
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Figure 5.5 Focal adhesions are larger at 90 minutes when ADAMTS-1 or Syndecan 4 are 
siRNA depleted. ECs were treated with indicated siRNA, and allowed to recover for 48 hours. 
siRNA treated cells were then plated onto glass coverslips coated with 10 µg/mL fibronectin, 
and allowed to adhere for 90 or 180 minutes. Cells were then fixed and stained for paxillin 
as a marker of focal adhesions. Images are representative of three independent experiments, 
scale bar = 10 µm.  
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Figure 5.6 Quantification of focal adhesions revels larger average area at 90 minutes when 
ADAMTS-1 or syndecan 4 are siRNA depleted, but the number of adhesions is unchanged.  
Focal adhesion images (as in 5.5) were analysed using FIJIÒ. Graphs show average number 
of focal adhesions per cell and average area of focal adhesion. n= 20 cells from three 
independent experiments, statistical significance was determined using a Kruskal Wallis test, 
**** = P< 0.00001.  
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Figure 5.7 Categorising focal adhesions by maturity reveals Adamts1 or Sdc4 siRNA 
increases the percentage of mature focal adhesions. Individual adhesion areas calculated 
from Figure 5.5 were categorised into maturity state, with adhesions 0-2 µm2 being classes 
as nascent, 2-62 µm as focal adhesions, and >6 µm2 as super mature.  ****P >0.00001, 
assessed using a Chi Square test, compared to NTC.  

Size (um2) Category Percentage in range 
  

NTC SDC4 
SIRNA 

ADAMTS-1 
SIRNA 

0-2 Small nascent  95.6 90.9 92.0 

2-6 Focal adhesion 4.2 8.5 7.2 

6+ supermature 0.2 0.6 0.7 

0.5

2.0

8.0

32.0

NTC SDC4 ADAMTS1
Treatment

Si
ze

siRNA NTC SDC4 ADAMTS1

0.
2-
2µ

m
2

2-
6µ

m
2

>6
µm

2

**** **** 



174 

 

ADAMTS-1 and syndecan 4’s effects on cell migration were limited to fibronectin 

matrices. To determine if the focal adhesion alterations were also specific to this 

matrix, focal adhesion imaging experiments were repeated using collagen coated 

coverslips. Immunocytochemical visualisation of focal adhesions followed by 

computational analysis revealed no changes in the size of focal adhesions in siRNA 

treated cells when adhering to collagen, supporting a fibronectin specific mechanism 

of action of ADAMTS-1 and syndecan 4 (Figure 5.8).  
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Figure 5.8 ADAMTS-1 and Syndecan 4 do not affect focal adhesion formation on collagen.   ECs were 
treated with indicated siRNAs. After 48 hours recovery, cells were seeded onto a collagen I matrix for 
90 or 180 minutes. Cells were fixed and stained for paxillin as a marker of focal adhesions. A) 
representative immunocytochemistry images of cells adhered to collagen, scale bar = 10 μm. B) 
quantification of focal adhesion area and numberusing FIJI. n= 20 cells from three independent 
experiments, bars represent S.E.M. 
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5.5 ADAMTS-1 or syndecan 4 depletion promotes pro-migratory signalling 

Cell signalling is important during cell migration, as well as focal adhesion formation, 

maturation and turnover. Paxillin functions as a scaffold, or adaptor protein, and is 

key in recruiting and organising kinases and other adaptors to facilitate signalling 

(Turner, 2000). Paxillin is a target for phosphorylation, which can occur as a result of 

integrin engagement with the ECM, during cell spreading, after stimulation with 

growth factors or cytokines or upon focal adhesion formation (Burridge, Turner and 

Romer, 1992). Of note, activation of VEGFR2 can lead to downstream 

phosphorylation of paxillin via phosphorylation and activation of FAK (Yang et al., 

2015).  

Paxillin phosphorylation can regulate the assembly and turnover of focal adhesions, 

and has been associated with the formation of stress fibres and their dynamic 

regulation (Frame, 2004). Paxillin phosphorylation on tyrosine residues is driven by 

FAK, in association with Src, and occurs at two main sites, tyrosine 31 and tyrosine 

118. Phosphorylation of paxillin at these residues generates two SH2 binding sites, to 

which adaptor proteins of the Crk family can bind.  Crk can also bind p130Cas, and 

the association of Crk with both p130Cas and phosphorylated paxillin is important in 

coordinating integrin mediated cell motility (Petit et al., 2000). FAK preferentially 

interacts with phosphorylated paxillin, and its recruitment is implicated in high FA 

turnover and translocation of focal adhesions. Tyrosine 119 phosphorylation of 

paxillin has also been shown to enhance migration in several cancer cell lines (Petit 

et al., 2000; Iwasaki et al., 2002). Due to the demonstration of increased migration 

speed, altered actin distribution and altered focal adhesions, it was therefore 

deemed important to investigate paxillin phosphorylation.  

Endothelial cells were siRNA treated, seeded onto fibronectin and allowed to adhere 

overnight. Cells were then serum starved, followed by stimulation with VEGF-A164. 

Cells were collected and lysed at sequential time points and western blotted for 

levels of Tyr118 phosphorylated paxillin (pPax). ADAMTS-1 and syndecan 4 siRNA 

treated cells had higher levels of pPax both prior to stimulation (0 minutes) and in 
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response to VEGF-A164 addition; concurrent with the increased migration speed and 

focal adhesion formation (Figure 5.9). 
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Figure 5.9 Depletion of ADAMTS-1 or syndecan 4 results in increased paxillin signalling.  
Western blot analysis of paxillin signalling using an anti phospho-paxillin antibody in siRNA-
treated ECs adhered to fibronectin, serum starved for 3 hours then stimulated with 30 ng/mL 
VEGF-A164 for 0, 5 15 and 30 minutes. GAPDH was used as a loading control. Image is 
representative of 3 independent experiments. Densitometric quantification of western blots 
performed in FIJIÒ, bars represent S.E.M. *P<0.05 calculated using a Student’s T test 
compared to timepoint control (N=3). 
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5.6 Levels of endothelial integrins appear unchanged  

As mentioned previously, the increase in random migration speed observed with 

ADAMTS-1 and syndecan 4 depletion was independent of VEGF. Therefore the 

question of how ADAMTS-1 and syndecan 4 are regulating cell migration was raised. 

The initial candidate target was integrins. The original project hypothesis considered 

the involvement of these transmembrane receptors due to their essential roles in cell 

migration and angiogenesis, and strong connections to syndecan 4. Data regarding 

perturbation of adhesion and migration upon ADAMTS-1 or syndecan 4 depletion 

further hints at their involvement.  

ADAMTS-1 and syndecan 4 regulation of adhesion and migration was specific to 

fibronectin, and therefore the RGD binding integrin heterodimers α5β1 and αvβ3 

were considered potential targets for regulation. These were also good targets as 

syndecan 4 has been implicated in the alternate recycling of α5β1 and αvβ3. 

Phosphorylation of syndecan 4 by Src leads to suppression of ARF6 and recycling of 

αvβ3 to the membrane, at the expense of α5β1, altering adhesion and migration 

dynamics by promoting stabilisation of focal adhesions (Morgan et al., 2013).  

Changes in migration can be correlated with changes in the integrin repertoire of a 

cell. In particular there is a dynamic relationship between α5β1 and αvβ3. On 

fibronectin, integrin α5β1-integrin-mediated adhesions are more dynamic than 

αvβ3-mediated adhesions. The relative expression levels of the two heterodimers 

can therefore regulate migration and could explain how ADAMTS-1 and syndecan 4 

control migration (Truong and Danen, 2009). 

TaqMan qPCR and flow cytometry were used initially, to profile levels of integrin 

expression in both 3T3s and ECs after ADAMTS-1 or syndecan 4 knockdown.  

Quantitative PCR showed no changes in integrin gene expression levels (Figure 5.10), 

and this was reflected in the flow cytometry data which displayed no changes in cell 

surface levels of integrin proteins (Figure 5.11).  
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Figure 5.10 RNA expression levels of fibronectin binding integrins are unchanged. ECs or 
3T3 fibroblasts were siRNA depleted for syndecan 4 or ADAMTS-1. RNA was collected 24 
hours post transfection, and reverse transcribed. TaqMan qRT-PCR was used to determine 
relative RNA expression levels (2-DCt). N = 3 independent experiments, bars represent S.E.M.   

 

 

 

Figure 5.11 Flow cytometry reveals no change in cell surface levels of fibronectin binding 
integrins.  ECs or 3T3 fibroblasts were siRNA depleted of ADAMTS-1 or syndecan 4 and 
seeded onto gelatin, 48 hours post transfection cells were collected in citric saline buffer. 
Flow cytometric analysis was used to determine levels of integrins. Median fluorescence 
intensities were averaged from three independent experiments, error bars represent S.E.M.  
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5.7 ADAMTS-1 and syndecan 4 play a role in α5 integrin trafficking  

Although flow cytometry showed no changes in cell surface integrin expression upon 

ADAMTS-1 or syndecan 4 knockdown, these experiments had to be performed on 

cells adhered to gelatin, due to limitations in detaching cells adhered to fibronectin. 

Flow cytometry experiments also did not provide information about overall integrin 

localisation. Therefore, to get a more comprehensive understanding of integrin 

behaviour, immunocytochemistry was used to visualise α5 integrin. This integrin was 

chosen as it is the canonical fibronectin receptor, and functions co-operatively with 

syndecan 4 to form focal adhesions on fibronectin (Bass, Morgan and Humphries, 

2007).  

Immunocytochemical visualisation found striking differences in integrin α5 

presentation upon ADAMTS-1 or syndecan 4 knockdown. At 90 minutes, the 

phenotype resembled that seen with paxillin, with larger adhesions forming in the 

Adamts1 or Sdc4 siRNA treated cells as opposed to NTC. At 180 minutes of adhesion 

to fibronectin, while α5 expression in NTC treated cells resembled typical EC focal 

adhesions, in Adamts1 or Sdc4 siRNA treated cells the α5 integrin formed long, 

fibrillar-like adhesions (Figure 5.12). 
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Figure 5.12 Adamts1 or Sdc4 siRNA treatment alters α5 integrin distribution.  Endothelial 

cells were treated with indicated siRNA, after 48 hours recovery, they were seeded onto 

fibronectin coated glass coverslips and allowed to adhere for 90 or 180 minutes. Cells were 

then fixed and immunostained for α5 integrin. Images are representative of three 

independent experiments. Scale bar = 10 µm.  
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This altered integrin α5 distribution was predicted to be a result of altered membrane 

trafficking, due to the key role of syndecan 4 in integrin recycling. Accordingly, cell 

surface biotinylation based assays were used to assess α5 integrin internalisation 

rates. Cells treated with siRNA were seeded onto fibronectin and allowed to adhere. 

Cell surface proteins were then biotinylated via incubation with a cleavable biotin; 

cells were then stimulated to induce internalisation of cell surface integrins, followed 

by removal of cell surface biotin by incubation with the membrane impermeable 

reducing agent Mesna. Cells were lysed and immunoprecipitations were performed 

to collect internalised biotinylated protein. Lysates were then western blotted to 

quantify levels of α5 integrin uptake.  

Internalisation assays revealed that there was an increase in total cell surface integrin 

α5 in Adamts1 or Sdc4 siRNA depleted cells, and that integrin α5 internalises at a 

reduced rate in these cells (Figure 5.13). These data strongly suggest that the α5 

phenotype seen in immunocytochemistry is a result of reduced α5 internalisation. 
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Figure 5.13 Depletion of ADAMTS-1 or syndecan 4 inhibits α5 integrin internalisation. A) 
schematic outlining biotinylation based internalisation assay. Cells are surface biotinylated 
with a cleavable biotin, then stimulated to allow internalisation, biotin remaining on the cell 
surface can be removed by incubation with a membrane impermeable reducing agent 
(Mesna). B) representative western blot of internalisation assays. C) densitometric 
quantification of internalisation western blots, N = 3 independent experiments, bars 
represent S.E.M.  *P<0.05 calculated using a Student’s T test, compared to NTC timepoint 
control.  
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5.8 ADAMTS-1 and Syndecan 4 phenotypes are not dependent on α5 integrin  

As α5 integrin is highly important in migration, and ADAMTS-1 and syndecan 4 have 

profound effects on its trafficking, it seemed plausible that their effects on adhesion, 

migration, and potentially angiogenesis, were mediated via this integrin.  

To determine the contribution of α5 integrin to ADAMTS-1/syndecan 4 depletion 

induced phenotypes, ECs with a Cre-recombinase mediated deletion of α5 were 

utilised. Experiments to determine random migration speed, focal adhesion sizes, 

and capability to sequester VEGF-A164 upon ADAMTS-1 or syndecan 4 knockdown 

were repeated in these α5 deleted cells. If ADAMTS-1 and syndecan 4 were 

modulating α5 to exert their affects, it was predicted that phenotypes would be lost 

in α5 null cells.  

The α5 null cells displayed reduced migration as compared to wild-types, as would 

be expected upon loss of this important fibronectin binding integrin. Focal adhesion 

sizes were also slightly reduced, again expected as α5 integrin is important in 

initiating focal adhesion formation on fibronectin. Interestingly the loss of α5 also 

affected VEGF-A164 sequestration, with less VEGF-A164 found in media compared to 

wild-type, suggesting increased binding of VEGF-A164, although this did not reach the 

threshold for statistical significance it is nevertheless an interesting observation. 

Despite the phenotypes seen in the α5 null cells, experiments found that 

Adamts1/Sdc4 siRNA treatment of these cells induced the same phenotypes as seen 

in wild-type cells; random migration speed was increased upon ADAMTS-1/syndecan 

4 depletion, larger focal adhesions were seen, and VEGF-A164 availability increased 

(Figure 5.14).  These data strongly suggested that alterations in α5 integrin behaviour 

were not responsible for the affects induced by Adamts1 or Sdc4 siRNA depletion. 
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Figure 5.14 ADAMTS-1 and syndecan 4 phenotypes are maintained in α5 null cells.  
Experiments were repeated in ECs isolated from α5 null mice and their wildtype controls. A) 
VEGF-A164 ELISA, 30 ng VEGF-A164was added to ECs at 4°C B) Average size of focal adhesions 
in cells adhered to 10 µg/mL fibronectin for 90 or 180 minutes. C) Random migration speed, 
cells were seeded onto fibronectin and timelapse videomicroscopy was performed over a 
period of 16 hours, cells were tracked using the MTrackJ plugin in FIJI. (N=3 independent 
experiments, error bars represent S.E.M, *P<0.05, **P<0.01, ****P<0.00001). 
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5.9 Active Rac1 levels are not altered by ADAMTS-1 or syndecan 4 knockdown  

When assessing other mechanisms by which ADAMTS-1 and syndecan 4 may regulate 

cell migration, Rac1 presented as a strong candidate. Rac1 Is a small G protein, and 

its activation by RhoG promotes cell migration, additionally, syndecan 4 has been 

shown to determine directional migration via Rac1 (Katoh, Hiramoto and Negishi, 

2006; Bass et al., 2007).  

An active Rac1 pulldown and detection kit was used to isolate active Rac1, followed 

by western blotting to facilitate quantification. Western blots revealed no differences 

in levels of active Rac1 in ADAMTS-1 or syndecan 4 conditions, suggesting the 

mechanism was likely Rac1 independent.  

 

 

 

 

Figure 5.15 Active Rac1 levels are not affected by ADAMTS-1 or syndecan 4 knockdown.  
Endothelial cells were treated with Adamts1, Sdc4 or NTC siRNA, then seeded on fibronectin 
for 90 minutes, protein was collected and active Rac1 pulldowns performed. Pulldown 
samples were western blotted and probed for Rac1. Image is representative of three 
independent repeats. 
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5.10 Conditioned matrix experiments reveal a contribution of the ECM to 

ADAMTS-1 and syndecan 4 knockdown phenotypes 

As ADAMTS-1 and syndecan 4 appeared not to rely upon α5 integrin or Rac1 to exert 

their effects, other avenues had to be considered. Cell-ECM interactions are essential 

for cell motility, and the ECM can regulate cell migration, proliferation and survival, 

as well as function as a reservoir of growth factors, and therefore the roles of the 

ECM in this context were assessed. 

Several lines of evidence hinted at a contribution of the ECM: both ADAMTS-1 and 

syndecan 4 localise at and can interact with the ECM, positioning them well to modify 

it. Furthermore, phenotypes were specific to fibronectin, implying the importance of 

this matrix protein in ADAMTS-1 and syndecan 4’s regulation of cell behaviour. 

Therefore, it was hypothesised that changes in migration, adhesion and altered α5 

integrin localisation and trafficking were occurring in response to alterations in the 

extracellular matrix.  

Endothelial cells have the capability to synthesise and remodel the ECM. Therefore, 

to assess the contribution of the ECM modification to ADAMTS-1/syndecan 4 

knockdown phenotypes, ‘conditioned matrix’ experiments using cell generated 

matrix were undertaken (Davis and Senger, 2005). Endothelial cells were siRNA 

treated, seeded onto glass coverslips, and allowed to produced matrix over a 48-hour 

period. Cells were removed from plates using ammonium hydroxide, and after 

extensive washing, untreated cells could be seeded onto this conditioned matrix 

(CM).  

To determine if the altered α5 patterning seen was due to an altered ECM, untreated, 

or ‘naïve’ endothelial cells were seeded onto NTC, ADAMTS-1 or syndecan 4 

knockdown CM, followed by immunocytochemistry to visualise α5 integrin. Much 

like the Adamts1 or Sdc4 siRNA treated cells, naïve cells plated onto a syndecan 4 or 

Adamts1 siRNA CM displayed the accumulation of α5 integrin into fibrillar adhesions 

after 180 minutes of adhesion, whereas cells seeded onto an NTC matrix did not 

(Figure 5.16).  
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Figure 5.16 Naïve endothelial cells displayed altered α5 integrin distribution in response to 
conditioned matrix from ADAMTS-1 or syndecan 4 knockdown cells. Cells treated with 
siRNA were seeded onto uncoated coverslips and allowed to produce matrix for 48 hours, 
the matrix was then decellularized and after extensive washing untreated cells were plated. 
Images are representative of three independent experiments, scale bar = 10 µm. 
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From the immunocytochemistry data, it was clear that the ECM was responsible for 

the altered α5 integrin expression. To gain further perspective, and to assess if the 

ECM was contributing more widely to the phenotypes of increased migration and 

angiogenesis, cell signalling in response to CM was assessed. Endothelial cells were 

seeded onto NTC, ADAMTS-1 or syndecan 4 knockdown CM and allowed to adhere 

for 45, 90 or 180 minutes, at the respective timepoints cells were lysed, followed by 

western blotting for signalling proteins involved in migration and angiogenesis: FAK, 

paxillin and ERK. Cells seeded onto CM from ADAMTS-1 or syndecan 4 knockdown 

cells had greater signalling responses than those seeded onto NTC CM,. This was 

demonstrated by increased levels of phosphorylated paxillin and ERK, indicating that 

the altered ECM contributes to the increased cell migration and angiogenesis seen 

upon ADAMTS-1 or syndecan 4 depletion (Figure 5.17).  
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Figure 5.17 ECs have increased pro-angiogenic and pro-migratory signalling in response to 
seeding on ADAMTS-1 or syndecan 4 conditioned matrix.  Naïve cells were seeded onto 
NTC, ADAMTS-1 or syndecan 4 knockdown CM for 45, 90 or 180 minutes, cells were then 
lysed and western blotted for signalling pathways. A) representative western blot. B) 
densitometric quantification performed in FIJIÒ, phosphorylated protein normalised to 
total, N = three independent experiments, bars = S.E.M. *P<0.05 calculated using a Student’s 
T test.  

 

  

A 

 

B 

 
pFAK

45 90 18
0

0.0

0.5

1.0

1.5

2.0

pPaxillin

45 90 18
0

0.0

0.2

0.4

0.6

0.8

1.0

pERK

45 90 18
0

0.0

0.5

1.0

1.5
NTC siRNA
SDC4 siRNA
ADAMTS1 siRNA

pFAK

45 90 18
0

0.0

0.5

1.0

1.5

2.0

pPaxillin

45 90 18
0

0.0

0.2

0.4

0.6

0.8

1.0

pERK

45 90 18
0

0.0

0.5

1.0

1.5
NTC siRNA
SDC4 siRNA
ADAMTS1 siRNA

pFAK

45 90 18
0

0.0

0.5

1.0

1.5

2.0

pPaxillin

45 90 18
0

0.0

0.2

0.4

0.6

0.8

1.0

pERK

45 90 18
0

0.0

0.5

1.0

1.5
NTC siRNA
SDC4 siRNA
ADAMTS1 siRNA*

*
**

*
*

*

*
*

*

*

*
* *

* *

 pPaxillin

Time of VEGF stimulation

Re
la

tiv
e

Ex
pr

es
si

on

0

2

4

6

8

10
NTC siRNA
SDC4 siRNA
ADAMTS1 siRNA

Fibulin 1 expression

Time of Adhesion (min)

R
el

at
iv

e 
E

xp
re

ss
io

n

45 90 18
0

0.0

0.5

1.0

1.5
NTC 

SDC4 siRNA

ADAMTS1 siRNA

*
*

NTC SDC4 ADAMTS1

45 90 180

tFAK

pFAK

pPaxillin

tPaxillin

pERK

tERK

GAPDH

B

siRNA:

Timepoint: 45 90 180 45 90 180



192 

 

5.11 ADAMTS-1 and syndecan 4 activate fibulin 1 expression  

Based on conditioned matrix studies, ADAMTS-1 and syndecan 4 appeared to be 

altering the extracellular matrix in order to inhibit cell migration and angiogenesis, 

however the mechanism by which this was achieved was unclear.  

Fibulin 1 was chosen as a possible target of ADAMTS-1 and syndecan 4 regulation 

based on extensive review of potential candidate effectors. Fibulin 1 is an 

extracellular matrix protein which functions as a co-factor for ADAMTS-1, enhancing 

its aggrecanase activity (Lee et al., 2005). The inhibitory effects of ADAMTS-1 and 

syndecan 4 on migration are specific to fibronectin; this is in keeping with the 

proposition of a fibulin 1 mediated mechanism, as fibulin 1 has been shown to 

suppress migration in a fibronectin-dependent manner (Twal et al., 2001). Fibulin 1 

is frequently found in association with fibronectin in vivo, and it can be detected with 

fibronectin in focal adhesion sites an hour after seeding (Argraves et al., 1989; 

Balbona et al., 1992). Through this close interaction with fibronectin, fibulin 1 is able 

to modify fibronectin’s important biological activities. 

To assess any contribution of fibulin 1 to the phenotype, siRNA treated ECs were 

seeded onto a fibronectin matrix. After 45, 90 or 180 minutes of adhesion, cells were 

lysed and western blotting for fibulin 1 was performed. A statistically significant 

increase in fibulin 1 expression was seen by 180 minutes of adhesion in NTC cells, 

however no increase was seen in ADAMTS-1 or syndecan 4 knockdown cells (Figure 

5.18). As fibulin 1 inhibits migration on fibronectin, but not on collagen, this lack of 

fibulin 1 expression may go some way to explain the increased random migration 

speed of ADAMTS-1 and syndecan 4 knockdown cells specific to fibronectin seen in 

Figure 5.2. 
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Figure 5.18 Fibulin 1 expression is upregulated in NTC but not Adamts1 or Sdc4 siRNA 
treated cells. Endothelial cells were treated with indicated siRNAs, cells were seeded into 10 
µg/ml fibronectin coated wells. After adherence for the indicated timepoints, cells were 
lysed and western blotting for fibulin 1 was performed. A) representative western blot 
image. B) densitometric quantification performed in FIJIÒ, N=3 independent experiments, 
error bars represent S.E.M, *P<0.05 calculated using a Student’s T test.    
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5.12 Discussion  

Chapter four found that ADAMTS-1 and syndecan 4 loss drives angiogenic sprouting. 

As both proteins are reportedly involved in cell migration, this suggested that 

ADAMTS-1 and syndecan 4 interaction with the ECM may regulate cell migration, 

contributing to their regulation of angiogenesis. These data revealed key roles for 

ADAMTS-1 and syndecan 4 in endothelial and fibroblast cell migration. These 

proteins can activate fibulin 1 expression in the ECM, which leads to inhibition of cell 

migration, internalisation of α5, and inhibition of nascent adhesion maturation.  

Cell migration experiments were performed on fibronectin and collagen I matrices. 

These matrices were chosen due to their roles in angiogenesis. Fibronectin is strongly 

expressed around developing vessels and interacts with many ECM components, as 

well as integrin receptors (Peters, Chen and Hynes, 1996). While synthesis and 

deposition of various collagens affects EC survival and vessel formation, type I 

collagen is the main ECM component to which ECs are exposed in an injured tissue.  

Of note, the effects of ADAMTS-1 and syndecan 4 on cell migration and adhesion 

were specific to fibronectin. This specificity was not entirely unexpected; ADAMTS-

15 has been shown to inhibit breast cancer cell migration in a syndecan 4 dependent 

mechanism on fibronectin or laminin matrices, but motility on type 1 collagen was 

unimpaired (Kelwick, Wagstaff, et al., 2015). The profound effects on fibronectin only 

are also consistent with the key role of syndecan 4 in binding to the heparin binding 

domains of fibronectin, important in focal adhesion formation (Woods et al., 2000). 

The specificity of the phenotype can also be explained by the involvement of fibulin 

1. Fibulin 1 binds fibronectin, but not other ECM proteins such as laminin, or type I 

or IV collagen. The binding site for fibulin 1 in fibronectin is in the C-terminal heparin 

binding region, however heparin does not compete for the interaction, suggesting 

distinct binding sites (Balbona et al., 1992). Incorporation of fibulin  1 into FN-

containing type I collagen cells inhibits migration, but not in those lacking fibronectin, 

demonstrating the specificity of fibulin 1’s actions to fibronectin (Twal et al., 2001).  
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As ADAMTS-15 also affects migration on laminin, it would be interesting to see how 

fibulin 1, ADAMTS-1 and syndecan 4 affect cell migration on this substrate. 

Furthermore, migration and adhesion experiments were conducted in 2D 

environments using a single matrix coating, however this is not overly representative 

of the environment in which angiogenesis occurs, which is 3D and contains many 

interacting ECM proteins. It is also important to understand the style in which 

endothelial cell migration occurs: cells migrate collectively, with the tip cell leading, 

followed by proliferating stalk cells (Gerhardt et al., 2003). Therefore, using 3D 

migration models more representative of the in vivo tissue environment could 

enhance understanding of ADAMTS-1 and syndecan 4 in cell migration.  

The role of ADAMTS-1 in cell migration has remained somewhat controversial, with 

work demonstrating both pro- and anti- migratory functions (Rocks et al., 2008; 

Esselens et al., 2010; Freitas et al., 2013; Ham et al., 2017). The apparent contrasting 

roles of ADAMTS-1 may be in some part explained by the work of Werner et al. which 

demonstrates a dual role for ADAMTS-1 in cell motility; exogenous addition of low 

concentrations of ADAMTS-1 stimulated migration, whereas high concentrations 

were inhibitory (Krampert et al., 2005). Furthermore, work by Lui et al, demonstrated 

that the catalytically active ADAMTS-1 has different functions to a fragment lacking 

the catalytic domain, with the full length promoting metastasis and the fragment 

inhibiting (Liu, Xu and Yu, 2006).  

The function of ADAMTS-1 in cell migration may also be context dependent; it 

appears as though work showing ADAMTS-1 to be pro migratory uses overexpression 

systems, whereas those demonstrating antimigratory functions focused on cell 

expressed ADAMTS-1. Research showing ADAMTS-1 cleaves semaphorin 3C to 

promote cell migration utilised breast cancer cells transfected to overexpress 

ADAMTS-1, and the in vivo data supporting a pro-migratory role of ADAMTS-1 also 

overexpressed the protease in lung carcinoma cells (BZR), prior to tumour injection 

into mice (Rocks et al., 2008; Esselens et al., 2010). To contrast, in work showing 

ADAMTS-1 to be anti-migratory, for example in the research which described PPARδ 

activation resulting in expression of ADAMTS-1 to inhibit migration, the role of 
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endogenous ADAMTS-1 was investigated via the use of knockdowns. This was the 

same for in vivo data investigating the migratory roles of ADAMTS-1;  lower levels of 

ADAMTS-1 protein were detected in human breast cancers as opposed to normal 

tissue, with a striking decrease in high-malignancy cases, which was supported by 

ADAMTS-1 knockdown in MDA-MB-231 cells being shown to increase migration and 

invasion (Freitas et al., 2013; Ham et al., 2017).  

The syndecan 4 cell migration data seemed to contrast with the wider literature. 

While here syndecan 4 seems to function in an anti-migratory capacity, Bass et al, 

found that syndecan 4 was required to maintain directional migration (Bass et al., 

2007). Several hypotheses exist which may help to explain these contrasting data. 

The first regards the use of cells isolated from knockout animals. Data demonstrating 

syndecan 4 is needed for cell migration was performed in fibroblast cells isolated 

from the Sdc4-/- knockout mouse.  

The Sdc4-/- knockout mouse was generated in the 129/SVJ strain, via introduction of 

an IRESβgeo cassette, followed by injection into the C57BL/6 line generating 

chimeras, which were then backcrossed onto the C57BL/6 line.  Generation of 

knockout mice in this way gives the potential for ‘passenger mutations’; the carry-

over of aberrant genes which can influence the phenotype. Passenger mutations are 

caused by 129 embryonic stem cell derived genetic material that has remained in the 

genome, which is a problem as the 129 genome contains 1,089 SNPs resulting in 

alternative or aberrant amino acid sequences (Vanden Berghe et al., 2015). Modified 

genes are carried over alongside the knockout, and backcrossing to the C57BL/6 line 

replaces 129 genetic material, however a problem arises when 129 mutant genes are 

close to the gene of interest. Flanking regions have a high degree of genetic linkage 

and therefore even extensive backcrossing may not result in complete replacement 

of these mutant 129 regions with C57BL/6 genetic material (Eisener-Dorman, 

Lawrence and Bolivar, 2009).  

A Me-PaMuFind-It web tool developed to identify passenger mutations in congenic 

mice identified several potential passenger mutations in Sdc4-/- mice (Figure 5.19). 
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Therefore, when assessing differences between the siRNA mediated knockdown cells 

and the Sdc4-/- cells it is important to take into consideration the contribution of the 

129 background.   

 

 

Figure 5.19 Potential passenger mutations in Sdc4-/- mice.  Image shows gene indels/SNPs 
in a genomic region of 10 mbp upstream and downstream from Sdc4. Gene of interest is 
coloured in green, flanking genes with SNPs affecting their amino acid sequences are in pink 
(Vanden Berghe et al., 2015).  

 

Passenger mutations are not the only issue confounding interpretation of 

phenotypes observed in constitutive knockout models. Phenotypic differences 

between knockouts and knockdowns have been previously reported in the mouse. 

These changes may be as a result of off target effects, however they may also be a 

result of gene compensation (De Souza et al., 2006).  Genetic compensation in 

response to gene knockout is a widespread phenomenon; cells are highly robust and 

maintain their viability despite genetic perturbation (El-Brolosy and Stainier, 2017). 

Transcriptional adaptation to counteract the effects of the constitutive knockout may 

therefore affect the phenotype. Furthermore, the Sdc4-/- mouse is an embryonic 

constitutive knockout, and reduction or absence of a phenotype in germline mutants 
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compared to conditional or tissue specific counterparts has also been reported in 

mouse studies (El-Brolosy and Stainier, 2017).  

The premise, therefore, is that inconsistencies between the data presented here, and 

that reported in the literature, can be explained by the use of knockout mouse 

models. This is specifically supported by the work of Cavalheiro et al.  Using RNAi 

(shRNA) to induce syndecan 4 knockdown in ECs they found, much like this work, that 

syndecan 4 knockdown cells migrated at an increased rate (Cavalheiro et al., 2017).  

The generation of an inducible, and endothelial cell specific Sdc4-/- mouse model 

may go a long way in answering some of the contradictions posed by this report, by 

assisting in negating the effects of passenger mutations and genetic compensation 

which may contribute to the knockout mouse phenotype.  

A further consideration regards the type of migration investigated; syndecan 4 was 

shown to be essential in directional migration, whereas in this thesis the focus was 

speed. While scratch wound assays were performed to assess directionality, no 

changes were seen, and experiments were discontinued due to concerns that the 

effect of ADAMTS-1 on proliferation would confound interpretation of results. In 

future research, directional migration should be examined in a more sophisticated 

system, perhaps in scratch wounds with the use of mitomycin C as a proliferation 

blocker, or to gain more physiological relevance, assays with the use of chemotactic 

gradients such as a Boyden chamber assay (Chen, 2005; Nishimura, 2009). Either 

way, despite some contradictions, syndecan 4 is clearly essential for co-ordinating 

cell migration and its loss has profound affects.  

Actin appears to be of importance in ADAMTS-1 and syndecan 4’s regulation of cell 

migration, as its distribution was dramatically altered upon their perturbation. Actin 

is essential for cell migration. Its polymerisation drives lamellipodial protrusion, and 

stress fibre formation and actomyosin activity are enhanced during cell migration. 

Reports of syndecan 4 interaction with actin exist, with the coupling of vinculin to F-

actin reportedly depending on syndecan 4 (Cavalheiro et al., 2017). Syndecan 4 siRNA 

knockdown driving an altered actin distribution has been also been reported 
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previously; Vuong et al, found that actin filaments in syndecan 4 knockdown cells 

became thinner in appearance, and aligned in parallel with the cell axis, as opposed 

to thick bundles in a more heterogenous pattern seen in control cells (Vuong et al., 

2015). How syndecan 4/ADAMTS-1 regulate actin organisation is unclear, however it 

may include the involvement of fibulin 1.  

Naïve cells plated onto ADAMTS-1 and syndecan 4 cell conditioned matrix 

demonstrated phenotypes resembling those of ADAMTS-1 or syndecan 4 knockdown 

cells on fibronectin, suggesting ADAMTS-1 and syndecan 4 inhibit cell migration by 

modulating the ECM. These ECM dependent anti-migratory activities were attributed 

to activation of fibulin 1 expression. Fibulin 1 is an ECM protein, and a co-factor for 

ADAMTS-1(Lee et al., 2005); expression of fibulin 1 has been reported to result in a 

fibronectin-specific inhibition of migration in a syndecan 4 dependent manner (Twal 

et al., 2001; Williams and Schwarzbauer, 2009). As fibulin 1 expression is upregulated 

at 180 minutes post adhesion in NTC-treated cells, but not in Adamts1 or Sdc4 siRNA 

cells, the increase in migration speed seen upon ADAMTS-1 or syndecan-4 depletion 

could be attributed to the lack of fibulin 1. At present it remains unclear how fibulin 

1 regulates migration, however it has been hypothesised to involve regulation of 

acto-myosin contractility (Twal et al., 2001). 

Focal adhesions were also assessed. They were visualised and the average size 

calculated. The size of focal adhesions is important as it can predict cell speed, 

independently of focal adhesion surface density and molecular composition (Kim and 

Wirtz, 2013). Alongside the altered actin distribution, larger focal adhesions were 

found in the Adamts1 and Sdc4 siRNA treated cells. This alteration was attributed to 

faster maturation of focal adhesions, due to the higher percentage of mature 

adhesions found in these cells as opposed to nascent adhesions. Despite this 

conclusion, alternative possibilities exist, such as delayed turnover or prevention of 

degradation, therefore to fully understand focal adhesion behaviour it would be 

useful to investigate focal adhesion turnover with the use of a fluorescent reporter 

paxillin construct and live microscopy. 
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The increase in random migration speed upon Adamts1 and Sdc4 siRNA depletion 

was concluded to be independent of increased VEGF signalling activity, as cells in 

serum-free media still displayed a statistically significant increase in random 

migration speed. This hypothesis was supported by western blots to quantify levels 

of phosphorylated paxillin; Adamts1 and Sdc4 siRNA depleted cells did exhibit 

increased phosphorylated paxillin in response to VEGF-A164compared to NTC cells. 

However, the baseline levels of phosphorylated paxillin, prior to addition of 

exogenous VEGF-A164, were also much higher in these cells, indicating VEGF is not 

required for this phenotype. In future studies, knocking down VEGFR2 expression in 

these cells could confirm the lack of VEGF requirement.  

Integrins have some involvement in this process, although to what extent is not 

entirely clear. No changes in relative levels of integrins were seen via qPCR or flow 

cytometry. The lack of change in RNA expression is not entirely surprising as integrin 

dynamics must be regulated rapidly in order to respond to the environment and 

regulate migration. Therefore they are primarily regulated by trafficking at the cell 

membrane and by internalisation followed by either recycling or degradation, more 

rapid processes than regulation by synthesis (Caswell and Norman, 2006). In light of 

the immunocytochemisty and internalisation data showing clear accumulation of α5 

integrin on the cell surface, the flow cytometry data showing no change in the 

integrin profile was more unexpected, however this may be explained by the matrix. 

In our hands, it was not possible to non-enzymatically detach cells from fibronectin, 

and therefore cells used for flow cytometry experiments had been cultured on a 

gelatin matrix. As the integrins profiled are fibronectin binding, and migration and 

adhesion phenotypes were specific to fibronectin, it is likely that no change would be 

seen on a gelatin matrix.  

A deeper investigation into integrin α5 revealed that in Adamts1 and Sdc4 siRNA 

cells, the rate of α5 integrin internalisation was reduced. Immunocytochemistry 

experiments showed an altered expression pattern, with α5 incorporating into what 

were determined to be fibrillar adhesions, based on their morphology. Fibrillar 

adhesions appear as long streaks, and are developed exclusively on fibronectin when 
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α5β1 integrins translocate from focal adhesions along fibronectin fibrils in the ECM 

(Smilenov et al., 1999). Despite this clear perturbation of integrin α5, phenotypes of 

increased random migration, increased focal adhesion size, and decreased 

sequestration of VEGF-A164 were all maintained upon Adamts1 or Sdc4 siRNA 

depletion in α5 deleted cells, strongly suggesting that the alterations to α5 integrin 

occur downstream, or as a response to fibulin 1 expression and alteration to the ECM, 

rather than acting as the driving force behind phenotypic changes. Supporting this 

conclusion is strong evidence that the ECM influences the formation of fibrillar 

adhesions (Katz et al., 2000).  

Integrin α5 internalisation was inhibited in Adamts1 and Sdc4 siRNA treated cells. As 

previously discussed syndecan 4 phosphorylation is a control point in integrin 

recycling. Upon its phosphorylation, αVβ3 recycling to the plasma membrane is 

promoted at the expense of α5β1. The loss of syndecan 4 can therefore explain this 

disrupted α5 integrin internalisation. Furthermore,  differential regulation of these 

two integrins has been shown to regulate cell migration, with more α5 adhesions 

promoting focal adhesion turnover, and more αv adhesions stabilising focal 

adhesions (Morgan et al., 2013). 

Although syndecan 4 is clearly involved in integrin recycling, the connection to 

ADAMTS-1 is less clear. ADAMTS-1 contains a disintegrin domain, however 

crystallisation found this had no structural homology to integrin-interacting 

disintegrin domains of ADAM proteins and suggested this ‘disintegrin’ may be a 

misnomer (Gerhardt et al., 2007). It therefore remains unclear if ADAMTS-1 has a 

direct contribution to α 5 internalisation, or if it is simply a consequence of the loss 

of syndecan 4 upon Adamts1 siRNA depletion.  

Although in this instance the mechanism was not mediated by integrin α5, the loss 

of this integrin resulted in some relevant phenotypes. Integrin α5 is essential for 

adhesion to and migration upon fibronectin, and therefore the smaller focal 

adhesions and decreased migration speed in integrin α5 null cells is not hard to 
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rationalise. What was more interesting was a trend towards decreased VEGF-

A164availability, an unexpected consequence that merits further consideration. 

5.13 Chapter summary  

The key findings of this chapter were that ADAMTS-1 and syndecan 4 inhibit cell 

migration on fibronectin via an ECM dependent, VEGF-independent mechanism, 

which involves expression of the ADAMTS-1 co-factor fibulin. Further work is needed 

to fully understand the roles and activities of fibulin 1 with regards to migration and 

ECM modification.  

 

 

 

Reduced speed 
Reduced fibulin 1 
Reduced integrin α5 internalisation

ADAMTS-1 or syndecan 4  siRNA 

fibulin 1 

Syndecan 4
Integrin α5

Figure 5.20 Graphical summary of chapter five results. Adamts1 or Sdc4 siRNA treatment 
reduces random migration speed and inhibits alpha 5 integrin internalisation. These 
changes are dependent upon the ECM, and are associated with decreased fibulin 1 
expression.   
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 Final discussion and future work  

The extracellular matrix is a diverse and complex environment which influences every 

aspect of cell biology through its physical properties, and by direct interactions with 

cell surface receptors (Hynes, 2009). The ECM can be remodelled by proteases, in 

particular the zinc dependent metalloproteases of the metzincin family, which 

includes the ‘A Disintegrin and Metalloproteinase with Thrombospondin Motifs’, or 

ADAMTS subfamily.  The ADAMTS family of matrix proteases have proved an 

interesting topic of research due to their diverse roles in tissue development and 

growth, as well as in diseases such as CVD, cancer and arthritis (Kelwick, Desanlis, et 

al., 2015). Notably,  members of the aggrecanase subgroup have displayed numerous 

functions in the regulation of angiogenesis, a process which relies upon remodelling 

of, and interaction with, the ECM. Of particular interest is ADAMTS-1, an ECM 

anchored member of this clade which acts as a key antiangiogenic factor(Luque, 

Carpizo and Iruela-Arispe, 2003).  

This thesis sought to investigate how ADAMTS-1 may contribute to the regulation of 

cell-ECM interactions, to mediate physiological processes such as cell migration and 

angiogenesis. It was hypothesised that ADAMTS-1 may exert its functions through 

interaction with syndecan 4, a transmembrane heparan sulfate proteoglycan, and 

indeed whilst this thesis does not present any evidence of a direct association 

between ADAMTS-1 and syndecan 4, an interplay between the two was 

demonstrated, and experiments found that ADAMTS-1 and syndecan 4 share roles in 

sequestering VEGF-A164 to inhibit angiogenesis, as well as inhibiting cell migration via 

alterations to the ECM, suggesting a functional association between these two 

proteins.  

6.1 ADAMTS and syndecans  

Syndecan 4 belongs to the syndecan family of 4 transmembrane heparan sulfate 

proteoglycans, syndecan 1, 2, 3 and 4. All members of the syndecan family have 

heparan sulfate chains, allowing them to interact with a large number of ligands, 

which has led to debate over their specificity and roles. While almost all cells express 
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one or more syndecan, each family member has a distinct spatial and temporal 

expression patterns; these unique and developmentally regulated patterns may 

contribute to distinctive functions (David et al., 1993; Kim et al., 1994). In adult 

tissues, syndecan 1 is primarily expressed in epithelial cells, syndecan 2 in epithelial 

and mesenchymal cells, syndecan 3 is primarily expressed in the neural crest, and 

syndecan 4 is found ubiquitously (Teng, Aquino and Park, 2012).  

Interestingly, several ADAMTS family members appear to rely on the syndecans in 

order to exert their functions; in particular syndecan 4, which is ubiquitously 

expressed and important for focal adhesion formation. Examples include ADAMTS-

15, which requires syndecan 4 to inhibit cell migration, ADAMTS-6 and -10 which 

contrastingly regulate cell migration in a mechanism which involves syndecan 4, and 

in osteoarthritis, where syndecan 4 activates ADAMTS-5’s cleavage of aggrecan 

(Echtermeyer et al., 2009; Kelwick, Wagstaff, et al., 2015; Cain et al., 2016).  

Syndecan 4 was chosen as the initial target of investigation due to reported 

connections to ADAMTS-1, specifically, ADAMTS-1 has been reported to clip 

syndecan 4, leading to increased migration (Rodríguez-Manzaneque et al., 2009). 

In order to investigate a potential relationship between ADAMTS-1 and syndecan 4, 

the targets were siRNA depleted in two cell types key to interactions with the ECM, 

which are both migratory and important for angiogenesis: fibroblasts and ECs. Flow 

cytometry found that loss of ADAMTS-1 resulted in a concomitant loss in syndecan 

4, in contrast with data showing ADAMTS-1 cleaves syndecan 4, yet supporting a 

collaborative role for the two proteins (Rodríguez-Manzaneque et al., 2009). Despite 

this, due to difficulty in antibody based detection of ADAMTS-1, a direct connection 

between syndecan 4 and ADAMTS-1 could not be demonstrated. However, ADAMTS-

1 has been previously shown to co-immunoprecipitate with VEGF-A, and this thesis 

was able to demonstrate an interaction between VEGF-A and syndecan 4 using co-

immunoprecipitation. As both proteins are capable of interacting with VEGF, it is 

therefore likely that, at least under certain conditions, ADAMTS-1 and syndecan 4 co-

localise.   
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6.2 MMP-9  

The loss of syndecan 4 upon ADAMTS-1 depletion was dependent upon an 

upregulation of MMP-9 activity. A large increase in Mmp9 transcription was seen in 

ADAMTS-1 knockdown cells, and specific inhibition of MMP-9 was sufficient to 

prevent the loss of cell surface syndecan 4. As MMP-9 is a known syndecan 4 

sheddase, this suggests that an upregulation in MMP-9 is responsible for increased 

syndecan 4 shedding, thereby reducing the cell surface levels (Ramnath et al., 2014; 

Reine et al., 2019). How MMP-9 transcription is upregulated, and how MMP-9 is 

further involved in the ADAMTS-1 syndecan 4 interaction is as yet unclear, leading to 

many new avenues for exploration. 

The regulation of MMPs is complex and multilevel; dysregulation of MMPs is a 

hallmark of many diseases, thus strict spatiotemporal regulation, primarily achieved 

by transcriptional control, is essential. Signalling pathways that activate transcription 

factors that bind to cis regulatory elements in MMP promoters facilitate this 

(Murphy, 2011). Posttranslational modifications such as acetylation and methylation 

can also serve to regulate MMP expression, and MMP activity is further regulated at 

the protein level; pro-MMPs are secreted as zymogens which must be activated, and 

TIMPs inhibit the activity of active MMPs (Fanjul-Fernández et al., 2010). Although 

this thesis found a small, non significant, change in Timp3 expression, a striking 

upregulation of Mmp9 mRNA transcription in response to ADAMTS-1 siRNA 

treatment was seen, suggesting Mmp9 transcriptional regulation is where future 

research should focus when attempting to understand how the loss of ADAMTS-1 

triggers MMP-9 mediated loss of cell surface syndecan 4.  

MMP-9 is highly inducible, and its expression, driven by the MMP-9 promoter, is 

triggered in contexts such as wound healing, tumorigenesis and angiogenesis. Several 

of the MMP promotors are highly similar in structure, and all contain multiple cis-

elements, allowing for precise regulation of gene expression. In the case of the MMP-

9 promotor, it contains, relative to the transcription start site, a TATA box at around 

-30, and an AP-1 site at roughly -70 (Yan and Boyd, 2007). Although the AP-1 site is 

the major mediator of MMP transcription, it does not act alone and relies upon 
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several other regulatory elements and composite site within the promote, which also 

allow for specificity of responses (Benbow and Brinckerhoff, 1997). In the case of the 

MMP-9 promoter, there is a PEA-3 biding motif upstream proximal to the AP-1 site, 

as well as Sp1 and NF-ĸB binding sites (Clark et al., 2008).  

Expression of MMPs is driven by a variety of cytokines and growth factors including 

interleukins, interferon, EGF, HGF, bFGF, VEGF, PDGF, TNF-α and TGF-β. They 

function to trigger cell signalling involving MAPK, NF-ĸB and Smad-dependant 

pathways, culminating in trans-activation of MMP promoters. These signals depend 

at least partially on the AP-1 site as transcriptional increase in MMPs is preceded by 

an increase in Fos and Jun protein components of AP-1, yet the other regulatory 

elements are often essential (Benbow and Brinckerhoff, 1997). Activation of the 

Mmp9 promotor by TNFα requires co-operation of the AP-1 and PEA3 sites with an 

NFkB site at -600 bp and the Sp1 site at 558 bp. In another example, the MAPK 

pathway serves to upregulate Ets transcription factors for PEA3, as well as AP-1 

transcription factors, and these act synergistically with NF-ĸB, SP1, and AP1 binding 

sites when cells are activated by Ras (Gum et al., 1996). Notably, signals originating 

from ECM proteins also converge upon the AP-1 element; engagement of integrins 

activates FAK, transmitting signals resulting in increased transcriptional activity of 

AP-1 (Yan and Boyd, 2007).   

It is clear that Mmp9 transcription is upregulated in response to ADAMTS-1 

depletion, yet the question remains as to which transcription factors are responsible 

for the spike in Mmp9 transcript, and how they are induced to do so. Due to the 

complex nature of Mmp9 regulation, several areas of research would be required to 

understand the mechanisms leading to its upregulation.   

When beginning to understand the mechanism that leads to the upregulation of 

MMP-9 it is important to consider the roles of these proteins in angiogenesis. 

Investigating the roles of ADAMTS-1 and syndecan 4 using the aortic ring assay found 

that these proteins were anti-angiogenic, and investigation of VEGF-A164 signalling 

revealed the mechanism behind this was sequestration of VEGF-A164. Depletion of 
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ADAMTS-1 or syndecan 4 thereby increased VEGF-A164 dependent angiogenic 

signalling, demonstrated by increased ERK phosphorylation. The ability of these 

proteins to influence signalling provides potential opportunities for downstream 

activation of MMP-9.  

While ADAMTS-1 and syndecan 4 act in an angioinhibitory fashion, sequestering 

VEGF, MMP-9 is a highly pro-angiogenic protein, and as part of the ‘angiogenic-

switch’ it cleaves HSPG in the ECM, releasing trapped VEGF and triggering 

angiogenesis (Bergers et al., 2000). Based upon this, we can form a hypothesis that a 

syndecan 4 – ADAMTS-1 – MMP-9 axis in the ECM regulates angiogenesis: in the 

quiescent vasculature ADAMTS-1 and syndecan 4 complex with VEGF sequestering 

it, however in activated vessels, or when ADAMTS-1 is lost, MMP-9 expression is 

initiated, MMP-9 then cleaves syndecan 4, a HSPG, disrupting the sequestration 

complex, releasing the trapped VEGF and initiating a pro-angiogenic cascade.  

These signalling pathways provide numerous opportunities for downstream 

activation of MMP-9. Both ADAMTS-1 and MMP-9 are involved in VEGF signalling 

feedback loops and it is possible that the fine angiogenic signalling balance is 

disrupted when ADAMTS-1 is lost, which triggers MMP-9 expression(Xu, Yu and Duh, 

2006; Hollborn et al., 2007). As previously mentioned, upon ADAMTS-1 siRNA 

depletion, an increase in ERK signalling is seen, ERK is known to drive MMP-9 

expression, however complicating this syndecan 4 depletion also resulted in an 

increase in ERK but no increase in MMP-9 (Yang et al., 2014). The TNFα pathway 

should also be considered,  as TNFa induces MMP-9 to shed syndecan 4, as well as 

having roles in angiogenesis (Sainson et al., 2008).  

Specific inhibition of signalling pathway components may help resolve how Mmp9 

transcription is upregulated. Furthermore, profiling transcription factors may give 

clues as to which upstream pathways are affected, and how they are exerting their 

functions. Blockers of specific signalling pathways, for example those inhibiting 

inhibitory kappa b kinases (IKKs), regulators of the NF-ĸB cascade, and those which 

target the MAPK pathway are commercially available, as are small molecule inhibits 
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that target AP-1 transcription factors (Burkhard and Shapiro, 2010; Gamble et al., 

2012; Ye et al., 2014) 

Another possibility to be considered regards the catalytic activity of ADAMTS-1. 

Inhibitory factors in serum have been reported to negatively regulate MMP-9 

expression, and as a protease ADAMTS-1 has the potential to cleave and activate 

these factors, or release them from inhibitory complexes or sequestration (Lee, Tran 

and Quang, 2009). Several factors have been shown to inhibit Mmp9 transcription,  

examples include suppression of TNF-α induced Mmp9 transcription by TGF-β (Vaday 

et al., 2001). Alongside IFN-gamma, TGF-β can also inhibit MMP transcription in 

response to LPS (Xie, Dong and Fidler, 1994). Another example is suppression of 

MMP-9 by cortisol via the glucocorticoid receptor (Rae et al., 2009). Advancement of 

this work requires broadening our understanding of ADAMTS-1, possibly with the use 

of proteomic techniques, which will be discussed in greater detail later.  

Furthermore, as Mmp9 transcription is influence by epigenetic mechanisms, for 

example an inverse correlation is seen between level of MMP-9 promotor 

methylation and level of Mmp9 expression, our understanding could be advanced by 

analysis of protein-DNA interactions through methods such as ChIP-sequencing 

(Chicoine et al., 2002).  

6.3 Syndecan shedding  

Further work is needed to support the conclusion that MMP-9 sheds syndecan 4 as 

part of an angiogenic balancing act, particularly as we were unable to detect a shed 

fragment of syndecan 4. There are also several unanswered questions with regards 

to ADAMTS-1’s role in syndecan 4 shedding; ADAMTS-1 had been previously shown 

to cleave syndecan 4, clipping a small N-terminal fragment (Rodríguez-Manzaneque 

et al., 2009). This is somewhat contradictory with the work of this thesis which 

demonstrates that ADAMTS-1 is necessary for syndecan 4 cell surface expression. 

One potential explanation is that clipping of syndecan 4 by ADAMTS-1 does not shed 

the proteoglycan, and is instead protective against shedding by other proteases, 

therefore when ADAMTS-1 is lost syndecan 4 can be shed by MMP-9. A protective 
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effect of ADAMTS protease on syndecan shedding has been seen previously with 

ADAMTS-15, giving potential weight to this hypothesis (Kelwick, Wagstaff, et al., 

2015).  

Finally, shed syndecan ectodomains have biological roles, and it is therefore 

necessary to assess the functions of a shed syndecan 4 ectodomain in this context. It 

remains largely unclear what exact roles the shed syndecan ectodomain fulfils, 

however shed syndecan ectodomains can be detected in humans, particularly in 

disease states, suggesting it has roles (Bollmann et al., 2017). Importantly, due to the 

migration effect seen, the syndecan 4 ectodomain has been reported to modulate 

RhoA and Rac1 activation (Kim, Roshanravan and Dryer, 2015)   

6.4 Syndecan 4 in angiogenesis and cell migration 

ADAMTS-1 is already well established as an antiangiogenic protein, however the 

description of syndecan 4 as antiangiogenic is novel, and somewhat unexpected. 

Previous research into syndecan 4 has demonstrated roles in maintaining directed 

cell migration, and in perpetuating signalling by FGFR (Horowitz, Tkachenko and 

Simons, 2002; Bass et al., 2007). Therefore, it could be hypothesised that in the 

context of angiogenesis its loss would inhibit cell migration and growth factor 

signalling, inhibiting angiogenesis, however the contrary was found; loss of syndecan 

4 resulted in increased cell migration and increased angiogenesis.  

While attempting to resolve these contrasting sets of data it is highly important to 

consider the models used. Previous work on syndecan 4 has focused on the use of 

Sdc4-/- mice, and cells isolated from these, whereas the work in this thesis was 

conducted using siRNA depletion of targets. The choice to use siRNA was made due 

to the speed and simplicity of siRNA transfection. Initial experiments with CRIPSR 

cas9 were also performed to give long term knockouts. The CRISPR deletion of targets 

was successful in fibroblasts, and showed the same phenotypes with regards to cell 

migration, however as the angiogenesis aspect of the project developed the use of 

endothelial cells was primarily required, and these proved difficult to transfect with 

the CRISPR construct. There were also concerns with regards to off-target effects, 
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reported to be a problem with CRISPR, with some publications reporting frequencies 

as high as 50% (Zhang et al., 2015). Off target affects are also possible using siRNA, 

but to minimise these effects, Dharmacon onTarget-plus siRNAs were chosen, which 

are chemically modified to reduce off target effects. The minimum dose required to 

give effective knockdown was also established and used henceforth, as siRNA off 

target effects are often concentration dependent. Furthermore, an initial pool of 4 

siRNAs was used, and using any of the 4 Adamts1 siRNAs individually induced the loss 

of cell surface syndecan 4.  

Differences between the knockout mouse model and cells siRNA depleted for 

syndecan 4 suggest interesting differences between the developmental lack of 

syndecan 4, as opposed to acute loss. This invites consideration of compensation 

mechanisms, and consideration of other syndecan family members.  

The data presented in this thesis connect ADAMTS-1 and syndecan 4, and support an 

essential interplay between ADAMTS family proteases and syndecans, whether the 

functions of ADAMTS-1 extend to other syndecans is yet to be determined, but may 

prove an interesting area for future work. The other syndecans also have roles in cell 

migration and angiogenesis, particularly syndecan 1 and 2, which can also be shed by 

MMP-9 (Brule et al., 2006; Fears, Gladson and Woods, 2006; Manon-Jensen, 

Multhaupt and Couchman, 2013). 

Syndecan 1 binds to many mediators of disease pathogenesis, and through these 

interactions mediates cancer cell proliferation and invasion, as well as angiogenesis 

and matrix remodelling(Teng, Aquino and Park, 2012). Supporting an important role 

for syndecans in matrix remodelling, Sdc1-/- mice have abnormal infarct healing, 

associated with assembly of a disorganised matrix with smaller and fragmented 

collagen fibres (Vanhoutte et al., 2007). Syndecan 1 has also exacerbates cardiac 

fibrosis in an angiotensin II induced mouse model of cardiac fibrosis (Schellings et al., 

2010). 
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In the context of cell ECM interaction and migration, syndecan 1 promotes adhesion 

to the ECM and inhibits cell migration. Similar to the interaction of syndecan 4 and 

α5β1 in binding fibronectin, syndecan 1 functions as a collagen 1 co-receptor 

alongside α2β1 integrin, regulating Rac1 and RhoA to control filopodial and 

lamellipodial formation (Ishikawa and Kramer, 2010). The shed syndecan ectodomain 

can also contribute to cell migration, however whereas cell surface syndecan 1 

inhibits migration, the shed ectodomain is pro-migratory (Endo et al., 2003).  

Syndecan 1 has clear links to ADAMTS proteases. The activation of ADAMTS-4 

involves both cleavage by MT4-MMP, and binding of ADAMTS-4 to the CS and HS 

chains of syndecan 1 (Gao et al., 2004). This interaction is supported by studies 

regarding the treatment of OA, since the cannabinoid win-55,212-2 inhibits ADAMTS-

4 activity via inhibiting expression of syndecan 1 (Kong et al., 2016). This invites 

consideration of an ADAMTS-1/syndecan 1 connection, as ADAMTS-1 and ADAMTS-

4 are closely related members of the aggrecanase subgroup, and have been 

previously shown to function similarly: ADAMTS-4 shares ADAMTS-1’s capability to 

cleave syndecan 4 (Rodríguez-Manzaneque et al., 2009).  

Syndecan 2 is also of high interest, as it has been shown to be essential for angiogenic 

sprouting (Chen, Hermanson and Ekker, 2004). Furthermore, the shed syndecan 2 

ectodomain functions to inhibit angiogenesis via inhibition of endothelial cell 

migration (Rossi et al., 2014). Syndecan 2 has been previously linked to ADAMTS-4 

and -5, as siRNA knockdown of syndecan 2 results in a loss of ADAMTS-4 and -5 

expression (Yan et al., 2018).  

Syndecan 3 should also not be forgotten, despite being primarily expressed in the 

nervous system and less well studied than the others, as the syndecan 3 extracellular 

core protein is able to inhibit angiogenesis by reducing the migratory potential of ECs 

(De Rossi and Whiteford, 2013). 

It is also important to consider cell-non-autonomous effects. With the exception of 

aortic rings assays, this thesis primarily profiled 3T3s or ECs in isolation, however a 

more global picture may result in different outcomes. Therefore, it would be of 
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interest to assess how universal these phenotypes are: while both 3T3s and 

endothelial cells showed the same adhesion and migration phenotypes in response 

to ADAMTS-1 or syndecan 4 knockdown, it can be assumed that the angiogenesis 

linked VEGF dependent phenotypes are limited to the ECs. Supporting this, increased 

proliferation in response to ADAMTS-1 knockdown was only seen in the ECs and not 

fibroblasts, suggesting this mechanism is specific to the VEGF responsive ECs. With 

regards to induction of MMP-9, while fibroblasts did see increased Mmp9 

transcription when ADAMTS-1 was depleted, this did not reach the threshold for 

statistical significance and therefore needs further investigation. Syndecan 4 is 

ubiquitously expressed, although at varying levels, whereas ADAMTS-1 shows a more 

restricted distribution, expressing in brain, fibroblasts, endothelium, renal, and 

breast and female reproductive tissues. It would be interesting to repeat 

experiments in a wider range of cell types, to determine whether the roles of 

ADAMTS-1 and syndecan 4, as well as the MMP-9 connection, is universal. 

Particularly interesting cell types would be other vascular cells such as VSMCs, further 

investigation of the human endothelial cells (HUVEC), as well as cancer cell lines – 

particularly as the ADAMTS-15/syndecan 4 link has been reported there. It is 

plausible that the roles of syndecan 4 are dependent on which growth factors the cell 

type is responsive to, and syndecan 4 may function differently depending on whether 

or not it is co-expressed with ADAMTS-1. Alternate interactions may also be found 

between ADAMTS-1 and other syndecan family members, and as cell lines have 

different syndecan profiles this may greatly affect the role of ADAMTS-1 in these 

cells.  

In the future, our understanding of syndecan 4 in angiogenesis and cell migration 

would also be greatly advanced by the development of conditional and endothelial 

specific knockout mice, where the role of this protein could be investigated in a 

physiological environment, without the limitations posed by traditional knockout 

models. This also may help understand the universality of the phenotype, as well as 

giving depth to the consideration of physiological impact. For example the 

upregulation of MMP-9 in endothelial cells may affect syndecan 4 in other proximal 

cell types, secreted MMP-9 can diffuse and therefore there is scope to hypothesise 
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that epithelium, mural cells, or even tumour cells in proximity would have varying 

responses (Collier et al., 2011).  

6.5 ADAMTS-1 and syndecan 4 as key modifiers of the ECM 

Upon Adamts1 or Sdc4 siRNA depletion, the migratory and adhesive properties of 

cells on fibronectin matrices were altered. ADAMTS-1 or syndecan 4 knockdown cells 

migrated faster, and α5 integrin internalisation was inhibited. When initially 

exploring how ADAMTS-1 and syndecan 4 may effect cell migration, α5 integrin was 

hypothesised to be the mediator, as it is the fibronectin receptor, it has multiple 

reported links to syndecan, and it showed changes in its distribution and trafficking. 

To investigate the contribution of α5 integrin, endothelial cells were isolated from 

the lungs of α5 null mice. When syndecan 4 or ADAMTS-1 was depleted in these cells 

an increase in migration speed was seen, as with the wild type cells, implying that 

ADAMTS-1 and syndecan 4 regulate cell migration in a pathway independent of α5 

integrin.  

Although α5 integrin was not the mediator of the migratory phenotypes, it was 

clearly affected by the loss of ADAMTS-1 or syndecan 4. These effects, as well as the 

increase in migration were attributed to alteration of the ECM, as the plating of 

untreated cells on matrix derived from Adamts1 and Sdc4 siRNA depleted cells was 

sufficient to induce α5 integrin accumulation, and upregulate pro-migratory and pro-

angiogenic signalling. These data suggest roles for ADAMTS-1 and syndecan 4 in 

maintaining ECM homeostasis, and highlight the high importance of the ECM in 

regulating cell migration. These data also serve as an example of how the 

environment in which a cell exists can be as important as the cell itself in controlling 

behaviour.  

The extracellular matrix is known to regulate cell migration, particularly in 3D 

environments. Physiological process such as angiogenesis are highly dependent on 

their 3D extracellular matrix surrounding, cells must migrate through the complex 

macromolecular structure, of which the content is dependent upon tissue. In these 

situations, structural features of the matrix such as stiffness play important roles 
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(Pathak and Kumar, 2012). Cell-ECM interactions are also far more complex, and 

proteases are usually required to degrade the extracellular environment. As this work 

was primarily conducted in 2D, the investigation of cell migration in more 

physiologically relevant 3D models could greatly advance our understanding of how 

ADAMTS-1 and syndecan 4 modulate the ECM biochemically and structurally. 

When regarding cancer cell migration, spheroid models are often used to evaluate 

3D migration and invasion (Vinci, Box and Eccles, 2015). More sophisticated 

customisable systems have also been developed, one such model is synthetic 

hydrogels. Hydrogels have highly tuneable compositions and elastic properties, and 

recent advances in hydrogels have enabled the design of improved 3D scaffolds and 

microenvironments, which have shown that migratory trends on 2D can be 

significantly different in 3D (Vu et al., 2015; Dietrich et al., 2018). Synthetic hydrogels 

have been used to develop a model to study angiogenesis, constructed of moulded 

tubular channels seeded with endothelial cells inside the hydrogel, which can be 

submitted to chemokine gradients. Using this model Trappmann et al, demonstrated 

how matrix crosslinking influences angiogenic sprouting, as does the degradability of 

the matrix (Trappmann et al., 2017). This is just one example of how newer 

technologies can provide insight into previously unexplored areas, and using such 

models could help in our understanding of ADAMTS-1 and syndecan 4. 

The adhesion and migration phenotypes reported here were only seen in cells plated 

onto a fibronectin, not collagen type 1 matrix, suggesting that ADAMTS-1 and 

syndecan 4 modify the ECM through interaction with fibronectin. Matrix specific 

effects have previously been seen with the ADAMTSs, and as ADAMTS-15 expression 

inhibits migration on laminin and fibronectin, but not type 1 collagen, this suggests it 

would be of interest to follow up these studies using laminin matrices. The lack of 

phenotype on collagen may be due to differential preferences of syndecans for ECM 

ligands. While syndecan 4 and integrin α5β1 co-operate in adhesion and migration 

on fibronectin, it appears that syndecan 1 and α1β1 fill this niche for type 1 collagen. 

Syndecan 1 promotes adhesion and inhibits migration on collagen, much like as is 
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reported here for syndecan 4 and fibronectin, reiterating the need to consider other 

syndecan family members when moving forwards (Endo et al., 2003). 

6.6 Fibulin 1  

The ECM driven phenotypes of altered α5 integrin adhesion and promigratory 

signalling were accompanied by a reduction in expression of fibulin 1 in syndecan 4 

or ADAMTS-1 siRNA depleted cells. Fibulin 1 is an ECM protein, and a co-factor for 

ADAMTS-1. The incorporation of fibulin 1 into matrices inhibits cell migration in a 

fibronectin dependent manner. We therefore hypothesise a mechanism where 

ADAMTS-1 and or syndecan 4 activate fibulin 1 expression and secretion into the 

ECM, inhibiting cell migration and promoting α5 integrin internalisation.  

In future, it is essential to confirm that fibulin 1 is responsible for the phenotypes 

seen with regards to α5 integrin and migration. This could be achieved via siRNA 

depletion of fibulin 1, to see if it gives similar phenotypes as ADAMTS-1 and syndecan 

4 depletion, as well as using exogenous fibulin 1 in matrices, to see if this can rescue 

the ADAMTS-1 and syndecan 4 knockout phenotypes.  

If the mechanism is indeed fibulin 1 dependent, further questions are raised, 

including how fibulin 1 in the ECM influences both integrin expression and cell 

migration. Although fibulin 1 has been reported to inhibit migration, the mechanism 

by which this occurs is not entirely clear, yet does not involve the perturbation of 

interactions between integrin α5β1 or heparan sulfate proteoglycans with FN. Pre-

incubation of FN conjugated beads with fibulin 1 did not affect the level of integrin 

β1 subunit that bound to the beads, and an ELISA to evaluate binding of α5β1 to 

fibronectin found no difference in the binding affinity in the presence of fibulin 1. In 

the case of HSPGs, cells treated with chlorate to inhibit GAG sulfation of 

proteoglycans still responded to fibulin 1’s motility suppressive effects. Interestingly, 

fibulin 1 modulated signalling associated with actin-myosin complex assembly, and 

could inhibit FN mediated activation of ERK (Twal et al., 2001). This notion, that 

fibulin 1 regulates actomyosin contraction,  is in keeping with the altered actin 

distribution seen when ADAMTS-1 and syndecan 4 are siRNA depleted, thus further 
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researching regarding actin, including live microscopic visualisation of the 

cytoskeleton may therefore advance our understanding of fibulin 1.  

The involvement of fibulin 1 further supports the need to investigate varying cell 

types. The role of ADAMTS-1 in cell migration has been somewhat debated, and there 

is a possibility that this is due to fibulin 1. A molecular interaction between ADAMTS-

1 and fibulin 1 contributes to breast cancer biology, expression of ADAMTS-1 alone 

increased proliferation and invasion of MDA-MB-231 and MCF-7 cell lines, but 

expression of both impaired effects, therefore whether or not a cell expresses fibulin 

1 could alter the role of ADAMTS-1 (Mohamedi et al., 2019).  

The contribution of fibulin 1 to other phenotypes is yet to be investigated, and 

therefore its involvement may not be limited to adhesion and migration. Fibulins 

have demonstrated contributions to angiogenesis; basement membrane derived 

fibulin-1 and fibulin-5 function as angiogenesis inhibitors and suppress tumour 

growth, although the mechanism by which this is achieved has not been elucidated 

(Xie et al., 2008). It would also be of interest to understand if fibulin 1 contributes to 

the closely related ADAMTS-15s syndecan 4 dependent regulation of cell migration, 

as the mechanism here remained ambiguous.  

6.7 Proteases in cancer and angiogenesis 

Angiogenesis, proliferation and cell migration are processes important in cancer 

development and metastasis, and therefore it would be of interest to see how 

ADAMTS-1 and syndecan 4 regulation of these processes contribute to cancer, 

particularly as the ADAMTS-15/syndecan 4 link has been implicated in this context.  

Proteases , particularly MMPs, have been traditionally regarded as pro-tumorigenic, 

driving cancer growth and supporting processes such as metastasis and angiogenesis, 

however after MMP inhibitors failed to improve prognosis of cancer patients in 

clinical trial the roles of MMPs were re-evaluated (Winer, Adams and Mignatti, 2018). 

This led to accumulating evidence of MMPs functioning in anti-tumorigenic 
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mechanisms, which are of great interest in cancer research, and this interest extends 

into the wider metzincin family.  

ADAMTS-15 is one such anti-tumorigenic protein; via protease dependent and 

independent mechanisms it functions to inhibit breast cancer cell migration and 

angiogenesis and influenced metastasis.  Based on the similarities both in structure 

and functions of ADAMTS-1 and ADAMTS-15, and their shared syndecan 4 

connection it would be of interest to investigate the contributions of ADAMTS-1 in a 

cancer context. This work could begin with investigation of cancer cell lines, then 

extend into more sophisticated experiments such as the use of mouse cancer models, 

either using ADAMTS-1 or syndecan 4 knockdown cancer cell injections, or 

implantation of tumours into ADAMTS-1 or syndecan 4 null mice. These experiments 

would allow for assessment of the contribution of ADAMTS-1 and syndecan 4 to 

tumour growth, metastasis, and angiogenesis from both a stromal and tumoral 

standpoint (Cheon and Orsulic, 2011).  

The protease web in general is highly important for cancer, and loss of ADAMTS-1 or 

syndecan 4 clearly perturbs this network as the large increase in MMP-9 is seen. 

MMP-9 has been widely found to relate to the pathology of cancers(Huang, 2018), 

tumour cell derived MMP-9 drives malignant progression and metastasis of breast 

cancer (Mehner et al., 2014), and breast cancer cells have been seen to induce 

stromal fibroblasts to express MMP-9. As ADAMTS-1 depletion results in increased 

expression of MMP-9 the implications of this for cancer would be interesting to 

consider, particularly as decreased expression of ADAMTS-1 in breast tumours has 

been seen to stimulate migration and invasion (Freitas et al., 2013). 

6.8 Moving forward with ADAMTS-1  

Whilst the connection between ADAMTS-1 and syndecan 4 is interesting, it is likely 

only one function of ADAMTS-1. Although cell lines with ADAMTS-1 and syndecan 4 

depletion show phenotypic similarity here, Adamts1-/- mice present with many 

severe developmental defects not seen in syndecan 4 null mice. ADAMTS-1 is highly 

important in development; versican cleavage by the protease is essential for cardiac 
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development. Interestingly, fibulin 1 is expressed very early in embryogenesis, and is 

expressed prominently in the endocardial cushion in the heart, and this 

colocalisation, combined with fibulin 1’s role as an ADAMTS-1 cofactor suggests their 

functions may be linked in multiple contexts (Bouchey, Argraves and Little, 1996; Lee 

et al., 2005).  

The loss of syndecan 4 upon ADAMTS-1 depletion make it somewhat difficult to pick 

apart the individual roles of these proteins, and as syndecan 4 is ubiquitously 

expressed, it is not simple to study ADAMTS-1 in a syndecan 4-less system. However, 

independent roles of ADAMTS-1 are demonstrated by the upregulation of MMP-9 

and increase in proliferation in ADAMTS-1 knockdowns alone. Moving forward, 

experiments to establish the ADAMTS-1 interactome may highlight new roles for 

ADAMTS-1. Proteins which bind to ADAMTS-1, either directly or indirectly could be 

established using IP mass-spectrometry; one limitation is the lack of a reliable 

ADAMTS-1 antibody, and therefore the ADAMTS-1-Myc construct, or similarly tagged 

mutant would have to be utilised.  

Another consideration is catalytic vs non catalytic functions of ADAMTS-1. An avenue 

that was not followed up, as it involved expression of human ADAMTS-1 in mouse 

cells, was data which showed that overexpression of ADAMTS-1, but not a 

catalytically dead mutant resulted in the loss of cell surface syndecan 4. This suggests 

a ‘Goldilocks’ effect, where a just right balance of ADAMTS-1 and syndecan 4 is 

necessary. It also suggests roles for ADAMTS-1’s catalytic activity in this context. To 

resolve the question, and shed some light onto the function of ADAMTS-1, CRISPR 

ADAMTS-1 knockouts could be made in human cells, followed by re-expression of the 

catalytically dead ADAMTS-1, if this reverses the phenotype then clearly these roles 

of ADAMTS-1 do not require proteolysis, however if it does not, it would demonstrate 

a need for ADAMTS-1’s catalytic functions.  

Catalytically dead ADAMTS-1 mutants can have different roles to the active protease; 

the overexpression of ADAMTS-1 promoted metastasis and angiogenesis, whereas 

the proteinase-dead version inhibits these events (Liu, Xu and Yu, 2006). These data 
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showing a role for overexpression of ADAMTS-1 support the notion that ADAMTS-1 

has ‘Goldilocks-type effects’, and that too much or too little ADAMTS-1 can disrupt 

normal cell-ECM homeostatic relationships.  

Although ADAMTS-1 is an aggrecanase, it only has weak aggrecan degrading activity, 

and ADAMTS-5 is regarded as the major aggrecanase (Stanton et al., 2005). This 

suggests that ADAMTS-1 may have other catalytic functions. Proteomic techniques 

such as terminal amine isotopic labelling of substrates (TAILS) have been developed 

to identify novel substrates of proteases; this technique uses isotopic labelling of 

primary amines in intact proteins to identify novel cleavage sites. Samples are 

combined with or without a protease, N-terminals are then labelled, samples are 

trypsinised, unlabelled peptides remove and mass spectrometry performed to 

identify protease generated neo-N-termini (Prudova et al., 2016; Madzharova, 

Sabino and Auf dem Keller, 2019). Identifying substrates and binding partners of 

ADAMTS-1 may give clues to its functions, and mechanisms.  

6.9 Final conclusions and schematic  

In conclusion, we present a model of a functional interplay between ADAMTS-1 and 

syndecan 4 in the extracellular matrix, where they sequester VEGF-A164 inhibiting 

angiogenesis, and activate fibulin 1 expression resulting in inhibition of cell migration 

and internalisation of α5 integrin. This work highlights the importance of ECM 

proteins in physiological processes, and provides several exciting avenues of future 

research (Figure 6.1). 

  

 

 

 



220 

 

 

 

Figure 6.1 Proposed model of ADAMTS-1 and syndecan 4’s functions in endothelial cells. 
ADAMTS-1 and syndecan-4 sequester VEGF-A164, inhibiting its signalling, and 
promote expression of fibulin 1, inhibiting cell migration and promoting α5 integrin 
internalisation.   
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