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Abstract

Enormous amounts of personalised data is generated daily from social me-
dia platforms today. Twitter in particular, generates vast textual streams
in real-time, accompanied with personal information. This big social me-
dia data offers a potential avenue for inferring public and social patterns.
This PhD thesis investigates the use of Twitter data to deliver signals for
syndromic surveillance in order to assess its ability to augment existing syn-
dromic surveillance efforts and give a better understanding of symptomatic
people who do not seek healthcare advice directly. We focus on a specific syn-
drome - asthma/difficulty breathing. We seek to develop means of extracting
reliable signals from the Twitter signal, to be used for syndromic surveil-
lance purposes. We begin by outlining our data collection and preprocessing
methods. However, we observe that even with keyword-based data collection,
many of the collected tweets are not relevant because they represent chatter,
or talk of awareness instead of an individual suffering a particular condition.
In light of this, we set out to identify relevant tweets to collect a strong and
reliable signal. We first develop novel features based on the emoji content
of Tweets and apply semi-supervised learning techniques to filter Tweets.
Next, we investigate the effectiveness of deep learning at this task. We pro-
pose a novel classification algorithm based on neural language models, and
compare it to existing successful and popular deep learning algorithms. Fol-
lowing this, we go on to propose an attentive bi-directional Recurrent Neural
Network architecture for filtering Tweets which also offers additional syn-
dromic surveillance utility by identifying keywords among syndromic Tweets.
In doing so, we are not only able to detect alarms, but also have some clues
into what the alarm involves. Lastly, we look towards optimizing the Twitter
syndromic surveillance pipeline by selecting the best possible keywords to be
supplied to the Twitter API. We developed algorithms to intelligently and
automatically select keywords such that the quality, in terms of relevance,
and quantity of Tweets collected is maximised.
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Chapter 1

Introduction

1.1 Twitter Mining for Syndromic Surveil-

lance

We are currently living in the golden age of information. The internet and
big data has become prominent in many of our lives. Today, people are in-
terconnected and have a web (or social media) presence which reflects a bit
of their lives, experiences and who they are. Public Health England (PHE)
is always looking to improve on the current monitoring system and is par-
ticularly keen to investigate the use of additional data sources to increase
the sensitivity and specificity of alarms. Web activity and social media
data may capture aspects of behaviour that are not captured by more tra-
ditional data sources. In fact, the use of data from social media sites such as
Facebook or Twitter has been gaining momentum for disease surveillance.
Furthermore, in developing countries where access to medical experts may
be restricted but where use of mobile phones and social media is becoming
more common, it is possible that such data may provide insights into the
health of the population that are not otherwise available, alert to outbreaks
and also provide a platform to spread information to combat such outbreaks.

Twitter and social media as a means of public health monitoring is not
intended to replace traditional forms of syndromic surveillance, but rather
augment it. Twitter data could be useful as an additional data source, of-
fering us insight into a different demographic of the general population, who
have different health reporting behaviours. If required, such as in scenarios
where traditional syndromic surveillance is reduced or limited in operation,
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like periods of public strikes or countries with reduced infrastructure, Twit-
ter data could also be used as a proxy for traditional syndromic surveillance.

There already exists research into the utility of social media data for public
health varying from global models of disease, to the prediction of an indi-
vidual’s health and when they may fall ill [226]. Ginsberg et al. [84] put
forward an approach for estimating Flu trends using the relative frequency
of certain Google search terms as an indicator for physician visits related to
influenza-like symptoms. This was possible because the relative frequency
of certain queries is highly correlated with the percentage of physician vis-
its in which a patient presents influenza-like symptoms. They found that
there was a correlation between the volume of these Google search terms
and the recorded Influenza-Like Illnesses (ILI) physician visits reported by
the Centre for Disease Control (CDC). Harrison et al [226] carried out an
investigation into whether online Yelp reviews might signal threats to food
safety. They reported that their results suggest that Yelp surveillance may
identify small outbreaks of foodborne illness that traditional surveillance
techniques miss.

De Quincey and Kostkova [67] introduced the potential of Twitter in de-
tecting outbreaks. They posited that the amount of real-time information
present on Twitter, either with regards to users reporting their own ill-
ness, the illness of others or reporting confirmed cases from the media, is
both rich and highly accessible. We believe that Twitter could be a po-
tent source of syndromic surveillance data. Firstly, unlike (Google) search
queries, Twitter provides full text posts which provide domain experts with
more descriptive information. Also, Twitter profiles and posts contain semi-
structured metadata (such as age or location) allowing for a more detailed
statistical analysis. And, despite the fact that Twitter appears targeted to
a young demographic, it in fact has quite a diverse set of users. The major-
ity of Twitter’s nearly 10 million unique visitors in February 2009 were 35
years or older, and a nearly equal percentage of users are between ages 55
and 64 as are between 18 and 24 [55]. Chen et al. [42] managed to distin-
guish different biological phases of the flu from the content of tweets using
a temporal topic model. Many of the published work on tracking flu or ILI
is based on the USA where the volume of Tweets is greatest. While some
work has also been done in the UK [146], it is few and far between, and
has usually been mirroring the research in the US which is predominantly
concerned with the flu of ILIs.

Given the differences in health-seeking and health-reporting behaviour be-
tween age groups in a population, Twitter’s popularity with the younger
age groups who do not seek medical advice through traditional routes may
give some insight into possible gaps in the current syndromic surveillance
systems. As such, it offers us the opportunity to capture and understand
health-seeking behaviour within these subsets of the population that may
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not have been previously captured. In addition, given the real-time nature
of the Twitter stream, syndromic surveillance using Twitter could provide
a faster means of observing and identfying incidents. Also, it could alert us
to the type of language colloquially used to express concern about different
syndromes, increasing understanding of how the population may discuss or
report incidents when they may not be interacting directly with the health
care system. Finally, from our research, we learn that reported trends on
Twitter can predict the trends observed by traditional syndromic surveil-
lance systems. This means that Twitter has some potential for detecting
public health incidents before traditional surveillance systems.

1.2 Research Questions

This project, inspired and motivated by the ideas described in section 1.1,
set out to investigate the utility of Twitter, as a social media data source, for
syndromic surveillance. A lot of the existing research in this area has been
carried out in the US and focused on ILIs as a syndrome. We look towards
not only investigating Twitter for syndromic surveillance in the UK, where
the volume of Tweets is lower than in the US, but also examining its utility
for the syndrome of asthma/difficulty breathing. In doing so, we seek to
answer the following questions with our research:

ls there useful, extratable information in the large amounts
of Twitter data available? We know that enormous volumes of
social media data is being produced everyday. We begin with the
simple hypothesis that there is value in this big data, as the data is
so expansive that statistically speaking, there must be something of
use among it. As part of the initial stages of this project, we encoun-
tered literature, along with our own experiments, that confirmed this
hypothesis. However, this leads on to our next question.

How can useful information effectively and efficiently be ex-
tracted from Twitter? This question has been at the center of this
project, as a lot of the time and effort was dedicated towards develop-
ing techniques for mining textual Twitter data. Partly owing to this
question, this project contains overlapping elements of various com-
puting and scientific fields including data mining, machine learning,
pattern recognition and information retrieval. As these are all well-
developed fields of research, we have the advantage of having access
to a plethora of established techiques. As such, we make use of state-
of-the-art algorithms and techniques, but also try to achieve novel
adaptations or improvements in methods or algorithms in relation to
our work.

Does the information extracted from Twitter mirror the real-
world such that it is a reasonable data source for syndromic
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surveillance? While we can measure the ability of our proposed
methods and algorithms to extract information from Twitter, success
in such an evaluation does not equate to success in mirroring the
public health state. This is because despite us evaluating our results
against real-world syndromic surveillance data, we cannot be sure that
such syndromic surveillance data is capturing any health care event
entirely, or even that we are dealing with non-overlapping subsets of
the population.

These questions informed the aims and objectives of this project which
we present in the following section

1.3 Research Aims and Objectives

As was mentioned previously, research into Twitter data for syndromic
surveillance has been predominantly focused around the study of ILIs as
a syndrome in the US. This PhD project is based in the UK and looks
at the syndrome of asthma/difficulty breathing. This is an interesting syn-
drome as it is a non infectious disease in contrast to ILIs, as well as the other
diseases commonly studied in relevant literature, which focus on infectious
diseases. This is understandable as the spread of dangerous infectious dis-
eases can be very debilitating for a country. However, that is not to say
that there is no need to study non-infectious diseases. An uptick in reports
for non-infectious diseases is still a cause for concern as this could be a
sign of biological attack, adverse meteorological phenomena or even a so-
cial or infrastructural failure, which all need to be detected and understood
for the sake of public health and safety. Hence, our aim is to establish
if social media data, and specifically, Twitter data can be used
in the context of syndromic surveillance in order to generate or
contribute to alarms for a specific (non-infectious) syndrome -
asthma/difficulty breathing - in the UK.. To this end, we carried out
this project with the following objectives:

i To conduct a comprehensive review to evaluate state-of-the art tech-
niques that have the potential to improve our ability in detecting and
understanding events.

ii To conduct a practical study using a number of past events detected by
existing syndromic surveillance systems to assess the value of alternative
data sources.

iii To investigate the challenges of capturing, storing and handling real-
time data in the context of syndromic surveillance.

iv To investigate novel data modelling techniques that can be used with
Twitter data to generate public health alarms.
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1.4 Research Contributions and Outputs

The research carried out as part of this PhD project makes the following
contributions:

• A thorough study mapping the field of Twitter mining for public
health and syndromic surveillance purposes. This study identified and
described the various ways in which Twitter has been mined for health
purposes, as well as algorithms, ideas and approaches implemented.

• The introduction of the use of semi-supervised classification for Tweet
classification in the context of syndromic surveillance.

• Highlighting the efficacy and discriminatory power of emojis in text
classification problems, together with capable features for Tweet clas-
sification within the context of syndromic surveillance

• A different and experimental approach to text classification based on
deep generative neural network models.

• An attention-based bi-directional Recurrent Neural Network model
for syndromic surveillance.

• A novel general framework for the automatic and optimal selection of
keywords for Twitter data collection based on evolutionary algorithms
and deep learning.

These contributions have led to the following peer-reviewd publications
first-authored by Oduwa Edo-Osagie during this PhD project:

• Edo-Osagie, Oduwa, et al. ”Twitter mining using semi-supervised
classification for relevance filtering in syndromic surveillance.” PloS
one 14.7 (2019): e0210689.

• Edo-Osagie, Oduwa, et al. ”Deep learning for relevance filtering
in syndromic surveillance: a case study in asthma/difficulty breath-
ing.” International Conference on Pattern Recognition Applications
and Methods. No. 8. 2019.

• Edo-Osagie, Oduwa, et al. ”Attention-Based Recurrent Neural Net-
works (RNNs) for Short Text Classification: An Application in Pub-
lic Health Monitoring.” International Work-Conference on Artificial
Neural Networks. Springer, Cham, 2019.

• Edo-Osagie, Oduwa, et al. ”A Scoping Review of the use of Twitter
for Public Health Research”. Currently under review for publication
in the European Journal of Public Health journal.

Through our research efforts, we developed methods for a Twitter syn-
dromic surveillance pipeline which we present in this thesis. Ths pipeline is
shown in figure 1.4.1. It involves setting up a reliable stream from Twitter
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Figure 1.4.1: Twitter Syndromic Surveillance Pipeline

with which we can access data in real-time. This data is then subject to
necessary cleaning and pre-processing operations. The cleaned data is then
passed through our relevance filtering algorithms which allow us to extract
informaition pertinent to distress over our syndromes of concern. Following
this, a signal is extracted from the relevant data which can be potentially
joined with data from other syndromic surveillance systems and used to
help understand the public health state.

1.5 Big Data and Social Media

Mankind has seen rapid developments in data communication, storage and
computation infrastructure in recent times. Due to the availability and pro-
liferation of reliable and affordable computing hardware, a large percentage
of daily human activity is connected to computers in some way. Each of
these daily activities creates, and itself consists, data. It is estimated that
2.5 quintillion bytes of data are created each day from our collective ac-
tivities [72]. This grand scale of data creation consequentally, requires the
means for manipulation on a similar scale. These grand amounts of data
and the ideas and techniques involving it are commonly referred to as “big
data”.

The World Wide Web is arguably one of the most important and perva-
sive tools in modern everyday life. As much of our daily activities involve
computers, these activities are usually also supported by the internet. The
internet is changing the way we work, spend our leisure time and commu-
nicate with one another. It is estimated that the number of internet users
worldwide reached 3.4 billion in 2016 [184]. An accompanying development
that arguably, has been intertwined with the rise in internet use is that
of mobile phones. Most mobile phones have internet capabilities. As such,
they offer reliable, portable and readily available internet access at all times.
Every large technological development in history has had an impact on the
behaviour of society. Take the television as one simple example. Not only



Chapter 1: Introduction 8

did the television change the way family units spent time together, but it
also created entire new industries. The onset of the internet is no different.
In fact, as the internet has evolved, the manner in which people interact
with it has evolved in kind. For instance, while it would have once been
considered strange behaviour to eschew privacy, and broadcast the ins and
outs of one’s life, today, it is becoming a mainstream approach to life [174].
Social media is one of the forms in which this phenomenon has appeared in.

Social media refers to online user-generated content created and shared
within a network or community of people. The creation of social networking
websites such as MySpace (in 2003), and Facebook (in 2004) popularised the
concept. Today, many years later, the social network is thriving harder than
ever with many different platforms such as Instagram, Twitter, Snapchat,
TikTok etc. each with their own offerings and idiosyncracies. One of the
results of this is the fact that there now exist enormous streams of data
created which has already attracted the attention of politicians [52], social
scientists [190] and economists [25]. Social media creates public streams
of communication, and scientists are starting to understand that such data
can provide some level of access into the people’s opinions and situations.

1.6 Syndromic Surveillance

Surveillance, described by the World Health Organisation (WHO) as “the
cornerstone of public health security” [280], is aimed at the detection of
elevated disease and death rates, implementation of control measures and
reporting to the WHO of any event that may constitute a public health
emergency or international concern. Disease surveillance systems often rely
on laboratory reports. More recently some countries such as the UK and
USA have implemented a novel approach called “syndromic surveillance”,
which uses pre-diagnosis data and statistical algorithms to detect health
events earlier than traditional surveillance [77]. Syndromic surveillance can
be described as the real-time (or near real-time) collection, analysis, in-
terpretation, and dissemination of health-related data, to enable the early
identification of the impact (or absence of impact) of potential human or
veterinary public health threats that require effective public health action
[255]. For example, they use emergency department attendances or general
practitioner (GP, family doctor) consultations to track specific syndromes
such as influenza-like illnesses (ILI).

The current syndromic surveillance systems in the UK are advanced and
have proved their worth, for example in the context of the Olympic Games
that took place in London in 2012 [237]. They monitor syndromes such as
seasonal flu, air pollution, flooding, heatwaves, etc. Reports are produced
on a weekly basis, with alerts raised when statistical signals for each spe-
cific syndrome reach certain levels. Statistically significant aberrations or
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“signals” are investigated to determine their public health importance. If
deemed appropriate by human experts, alerts are converted to alarms and
appropriate action taken.

As syndromic surveillance is concerned with the detection and understand-
ing of public health threats, there is interest in rich, interesting and effi-
cient data scources. As such, in addition to clinical data sources, there are
sometimes investigations into alternative data sources. Examples of such
alternative data sources include school and work absenteeism information,
over-the-counter medication sales and animal illnesses or deaths [103]. Such
alternative sources can be vital to improving existing syndromic surveillance
solutions. They can offer advantages over traditional clinical data. For ex-
ample, looking towards electronic or internet based data could provide a
passive yet flexible system. While manual and traditional data sources can
be detailed and rich, they can be labour-intensive and require human in-
tervention and frequent maintenance. In this thesis, we turn our attention
towards internet and social media data as a potential data source for syn-
dromic surveillance.

1.7 Organisation of Thesis

The remainder of this thesis is organised as follows: In chapter 2, we provide
a background, through which the reader is familiarised with the concepts
with which this thesis is involved. We build on this in chapter 3, where
we present a comprehensive scoping review of the use of Twitter for public
health research. In that chapter, we make use of the PRISMA framework
to map the literature and understand the current state of affairs. With this
undersatnding, we then identify gaps in the literature which inform the the-
sis in its following chapters. In the first part of chapter 4, we describe the
Twitter platform and Application Programmer Interface (API) with which
we interact with the platform. We then describe our process of collecting,
processing and storing Twitter data in the second part. We also discuss a
number of feature extraction and representation techniques, (some of which
are novel contributions of our work), which we apply to the collected Twit-
ter data. In chapter 5, we discuss the issues necessitating further relevance
filtering of collected Twitter data, in order to build a signal for syndromic
surveillance. We then propose and describe semi-supervised learning tech-
niques to accomplish this. In chapter 6, we carry out and describe synoptic
empirical studies with the goal of evaluating our proposed approaches to
Tweet classification and relevance filtering for syndromic surveillance, and
discuss the observed results. The final contribution is presented in chap-
ter 7. There, we propose two frameworks facilitating the automatic and
optimal selection of keywords to be used for capturing and collecting rele-
vant Twitter data. We empirically evaluate these frameworks and compare
them to standard manual human keyword selection. Finally, the thesis is
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concluded in chapter 8, where our results and contributions are discussed,
referring also to possible future work.



Chapter 2

Technical Background

We view the research question posed in this thesis broadly as a data mining
application problem. However, due to the descriptive and narrative nature
of the social media data in which we are interested, we will also be dealing
with large amounts of user-generated textual data. For this reason, it may
also be useful to view the problem as related to the field of natural language
processing (NLP). In this chapter, we first investigate textual data mining
applications and paradigms. After this, we take a look at techniques and
activities carried out to process and undertsand text data by delving into the
field of natural language processing. We then explore the field of machine
learning which can be, and is applied to text data. FInally, we explore
deep learning, a relatively new field of machine learning which has raised
expectations in data science and artificial intelligence due to its success in
lots of machine learning tasks.

2.1 Text Mining

Text mining, also known as text data mining or knowledge discovery from
textual databases[102] generally refers to the process of extracting inter-
esting patterns or knowledge from unstructured text documents and is an
extension of data mining. It usually involves first structuring the input text
using a variety of techniques and potentially adding or removing some lin-
guistic features deemed important or unimportant. After this, patterns are
derived within the newly structured data which can then be evaluated and
interpreted to give some output. Below are some of the main examples of
text mining tasks
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2.1.1 Text Categorization

Text categorization (also known as document classification or text classi-
fication) is a task where the aim is to assign a document to one or more
predefined categories or classes. The automated categorization (or classi-
fication) of texts into predefined categories has seen an increased interest
in the last ten years, due to the rapidly growing availability of documents
in digital form [240] and the ensuing need to organize them. Until the
late ’80s the most popular approach to text categorization was a knowl-
edge engineering one, involving manually defining a set of rules encoding
expert knowledge on how to classify documents under the given categories
[213, 48, 121]. From the ’90s, such rule based classifiers lost popularity in
favour of machine learning based approaches. The advantages of these ap-
proaches are an accuracy comparable to that achieved by human experts,
and a considerable savings in terms of expert manpower, since no interven-
tion from either knowledge engineers or domain experts is needed for the
construction of the rules for the classifier or for its porting to a different set
of categories or classes [233]. Today, text categorization in its essence, is the
classic statistics and machine learning classification problem specialized for
textual data. The idea is to be able to do this automatically, that is, without
any human intervention. To accomplish this, a dataset of text documents
is collected. None or some of the documents in this dataset could already
be categorized and have a label associated with them. A statistical model
is then built on the collected data which can be seen as approximating a
function for determining a document’s class label. The statistical technique
used to construct this model is what determines whether the dataset needs
to be labeled or not. There are many applications of text classification in
the commercial world [112] with email spam filtering now being the most
ubiquitous. Other applications of text categorization are genre classification
and readability assessment[208, 51].

2.1.2 Sentiment Analysis

Sentiment analysis (also known as opinion mining) refers to the systematic
process of identifying and extracting subjective information from textual
data. In its simplest form - classifying the polarity (positive, negative or
neutral) of a given text excerpt or document - sentiment analysis is an off-
shoot of text categorization/document classification. However, sentiment
analysis is not necessarily always as simple as that. The document’s sen-
timent may be classified against a multi-point scale. Pang and Lee[198]
expanded on the task of classifying a movie review as either positive or
negative to predict star ratings on either a 3 or a 4-star scale. Snyder and
Barzilay[246] performed an analysis of restaurant reviews in order to pre-
dict ratings for various aspects of a given restaurant, such as the food and
atmosphere on a 5-star scale. While it has been a popular area of research
and commercial implementation recently, there has been a steady interest
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in sentiment analysis since the 1980s [275]. Early work in this area focused
mostly on interpretation of metaphor, narrative, point of view, affect and
evidentiality in text [101, 110, 128] and could be viewed as a forerunner
of the field as it is today. From around 2001 however, there occurred a
widespread awareness of the research problems and opportunities that sen-
timent analysis raises [35, 62, 63, 181, 188, 274, 284]. Since then, there have
been hundreds or papers published on the subject.

Also, while it is similar to text categorization, sentiment analysis poses
a new set of challenges. In contrast with text categorization, in sentiment
analysis, we often have relatively few classes that generalize across many
domains. In addition, while the different classes in topic-based text catego-
rization can be completely unrelated, the target classes in sentiment analysis
typically represent opposing categories, if the task is structured as a binary
classification, or different intensities of one objective on a sliding scale, in
the case of multi-class classification [199].

In tackling syndromic surveillance through Twitter data, we perform rel-
evance filtering of Tweets. While this task is similar to sentiment analysis
as it is also a classification task, the techniques used are not always directly
transferable. While sentiment analysis aims to establish the emotional po-
larity of a text, relevance filtering aims to achieve semantic understanding
of the text. Establishing whether the tone of a Tweet is positive or negative
is secondary to the task of relevance filtering, which needs to understand the
intention of the Tweet. Knowing whether a Tweet is positive or negative
alone does not help establish its relevance for syndromic surveillance. Sec-
ondly, while some of the techniques we propose for solving the problems of
relevance filtering and syndromic surveillance work well at such tasks, they
would not lend themselves well to the sentiment analysis task. One exam-
ple of such an algorithm is the Generative Classification Network, which is
discussed in section 5. However, the novel automatic keyword search algo-
rithm we propose in section 7 is not only relevant to our work, but could
also be useful in a sentiment analysis scenario.

2.1.3 Information Retrieval

Information retrieval can be defined as the process of finding unstructured
data (usually of a textual nature) that satisfies an information need, within
large collections of data. The term information overload (or infobesity)
which refers to the difficulty of understanding an issue and effectively mak-
ing decisions when one has too much information about that issue [283] is the
reason information retrieval is so important today. With the vast amounts of
ever-growing data in the world today, information retrieval tries to provide
efficient representation, storage, organization of, and access to information
items. Information retrieval can be a bit tricky because it usually deals with
natural language text which is not always well structured and could be se-
mantically ambiguous. Information retrieval systems can be distinguished
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by their scale of operation. An example of large scale information retrieval
is a web search engine. Here, the information retrieval system has to provide
search over billions of documents. An important issue for systems operating
at this scale is efficiently storing and indexing documents. In addition to
this, such systems may need to efficiently distribute files across devices if
distributed computing is used. Conversely, an example of small scale infor-
mation retrieval is personal information retrieval. Consumer applications
and operating systems fall under this category and they increasingly pro-
vide search capabilities albeit ranging in sophistication. Some examples of
these are search in email client application and Spotlight Search on Mac
OS X[10]. Issues here include handling the broad range of document types
on a typical personal computer, and making the search system maintenance
free and sufficiently lightweight in terms of startup, processing, and disk
space usage that it can run on one machine while still providing a good user
experience. In between these two categories are the middle scale informa-
tion retrieval systems. Such systems involve institutional or domain-specific
search engines. In order to effectively retrieve relevant documents, the doc-
uments are usually transformed into suitable representations. There are a
number of different information retrieval strategies and each of these strate-
gies incorporates a specific model for its document representation purposes.
The models differentiating these strategies are as follows:

• Set-Theoretic Models: These models represent the data as sets of
words or phrases. This allows us to apply operations based in set
theory on the data in order to compute values such as similarity. The
main example of this kind of model is the standard boolean model
of information retrieval [169]. This model is based on Boolean logic
and classical set theory such that the documents to be searched and
the user’s query are conceived as sets of terms. Retrieval is based on
whether or not the documents contain the query terms.

• Algebraic Models: Algebraic models represent documents as vec-
tors or matrices. With this, linear algebra operations can be carried
out on the documents and the similarity of the query vector and doc-
ument vector is represented as a scalar value. An example of such a
model is the vector space model which is explored in detail below.

• Probabilistic Models: These models view the process of informa-
tion retrieval as a probabilistic inference problem. Similarities are
computed as probabilities that a document is relevant for a given
query.

• Feature-based Models: These are a sort of free-form model. Such
models view documents as vectors of values or feature functions (or
just features) computed on the document, and seek the best way to
combine these features into a single relevance score. Such features can
incorporate expert domain knowledge to formulate domain-specific
features to look out for. Feature functions are arbitrary functions of
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document and query, and as such can contain any of the above models
as part of it.

2.1.4 Text Clustering

Text Clustering (or document clustering) refers to the process of automat-
ically grouping bodies of textual data, usually based on their content simi-
larity, into previously undefined categories or classes. The problem of text
clustering can be defined as follows: Given a set of n documents noted as
D and a predefined cluster number K, D is split into K document clusters
{D1, D2...DK} with D1∪D2∪...∪Dk = D so that the documents in the same
document cluster are similar to one another while documents from different
clusters are dissimilar. Text clustering was initially developed to improve
the performance of search engines through pre-clustering the entire corpus
[58]. Text clustering later has also been investigated as a post-retrieval
document browsing technique [54, 58, 153]. Research into the clustering
problem precedes its applicability to the text domain. Traditional meth-
ods for clustering have generally focused on the case of quantitative data
[89, 113, 130] and categorical data [8, 82, 90]. A broad overview of cluster-
ing is given later below. Text clustering however, poses a slightly different
challenge in that the dimensionality of the data is very high (because each
document consists of many terms) and sparse (because the terms present in
a document will only consist of a relatively small sample of the total vocab-
ulary of terms). The standard clustering algorithms can be categorized into
partitioning algorithms such as k-means or k-medoid and hierarchical algo-
rithms such as Single-Link or Average-Link [130]. Scatter/Gather [58] is
a well-known hybrid algorithm which has been proposed for text clustering
that uses both approaches to clustering. It uses a hierarchical clustering
algorithm to compute an initial clustering which it then refines using the
k-means clustering algorithm. However, the above methods of text cluster-
ing algorithms do not really address the special challenges of text clustering
[15]. This has motivated the development of clustering methods tailored to
text data such as SuffixTree Clustering [291] and frequent term-based clus-
tering [15]. The clustering problem finds numerous applications in customer
segmentation, classification, collaborative filtering, visualization, document
organization, indexing and discovering meaningful implicit subjects across
a body of documents.
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2.2 Text Processing: Natural Language Pro-

cessing

Natural Language Processing (often abbreviated to NLP) is a field in com-
puter science that is concerned with the automatic (or semi automatic)
processing of natural human language by a computer rather than in a spe-
cialized artificial computer language. Natural Language Processing is a very
broad field consisting of signal and speech processing and recognition, syn-
tactic analysis, semantic analysis and pragmatics to name a few. However,
for our purposes, we are really only concerned with the aspects of natural
language most applicable to processing text data. With this in consider-
ation, we take a look at syntactic analysis and semantic analysis.
Before going into this any further, we would like to define some linguistic
terminology:

• Morphology: This refers to the structure of a word. For example,
undoubtedly can be thought of as composed of a prefix un-, a stem
doubted, and an affix -ly.

• Syntax: This refers to the way words are used to form phrases and
sentences and is heavily concerned with language grammar and its
rules. e.g., it is part of English syntax that a determiner such as the
will come before a noun.

• Semantics: Semantics can be distinguished into two types: compo-
sitional semantics and lexical semantics. Compositional semantics
refers to the derivation of meaning based on syntax. Lexical seman-
tics on the other hand, is concerned with the meaning of individual
words.

• Pragmatics: This is concerned with the meaning of words and phrases
in different contexts.

Now we can take a closer look at the tasks with which natural language
processing is concerned:

2.2.1 Syntactical Analysis

Parsing

Parsing is a process of analyzing a sentence (or string of words) by taking
each word and determining its structure from its constituent parts. Parsing
process makes use of two components: a parser and a grammar. Before
parsing natural language data, a grammar must first be established. A
grammar is a set of structural rules governing the composition of clauses,
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Figure 2.2.1: Example parse tree for the sentence Fed raises interest rates

phrases, and words in any given natural language. The parser is a procedu-
ral component and is a computer program that can builds a constituency
graph for a sentence using a specified grammar. The constituency graph
shows the underlying phrase structure in a sentence. For example, employ-
ing a parser on the sentence Fed raises interest rates Grammar yields the
parse tree (S (NP (N Fed)) (VP (V raises) (NP (N interest) (N
rates))) using bracket graph notation [261]. A visual representation of the
tree is shown in fig 2.2.1.

Lemmatisation

Lemmatisation is the task of grouping together word forms that belong
to the same inflectional morphological paradigm and assigning to each
paradigm its corresponding canonical form called lemma. For example,
English word forms go, goes, going, went, gone constitute a single morpho-
logical paradigm which is assigned the lemma go [81]. Simply put, it is
the process of removing inflectional endings from a word in order to return
it to its dictionary form. Lemmatisation is one of the techniques used in
text mining to make sure that variants of words are not left out when texts
are considered. It is a valuable preprocessing step in text mining. Tradi-
tionally, lemmatisation rules were hand-crafted. However, machine learning
approaches to morphological analysis and lemmatisation became an increas-
ingly interesting research subject. Jursic et al [125] treat lemmatisation as
a classification problem. They treat lemmas as classes and lemmatise pre-
viously unseen word forms by classifying them as one of the lemma classes
using a classifier previously trained on known word forms and their lemmas.
Gesmundo and Samardzic[81] approach lemmatisation as a tagging problem
and assigns to each word a label which encodes the transformation required
to obtain the lemma string from the given word string. Chrupala[47] pro-
posed a system which learned the lemmatisation rules from a corpus. The
mappings between word forms and lemmas were encoded by means of the
shortest edit script [185]. The sets of edit instructions are considered as class
labels.
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Stemming

Stemming is another one of the techniques used in text mining to make sure
that variants of words are not left out when texts are considered. Stemming,
similar to lemmatisation, is a technique used to reduce different grammatical
forms of a word to its root form. Both of these processes reduce a word to a
base form - stem in stemming and lemma in lemmatisation. The difference
between the two processes is that the ‘stem’ is obtaining after applying a set
of rules but without bothering about the part of speech (POS) or the con-
text of the word occurrence. Studies based on stemming and lemmatization
techniques have reported improved performance in a number of text mining
tasks and are almost required as part of the preprocessing stage in tasks such
as text clustering and text categorization [14, 119]. Since the lemmatization
problem was first introduced in 1968 [162], there has been much research
into stemming algorithms and as such, many different approaches have been
proposed. Broadly speaking, these algorithms can be classified into three
groups - truncating, statistical and mixed. Examples of truncating
stemmers are the Lovins stemmer, Porters stemmer, Paice/Husk stemmer
and the Dawson stemmer [163, 214, 215, 46, 64]. Examples of statistical
stemming stemmers are the Hidden Markov Model (HMM) stemmer and
the Yet Another Suffix Stripper (YASS) stemmer [175, 168]. Examples of
mixed stemmers are the Krovetz stemmer (KSTEM) and the corpus-based
stemmer [142, 282]. As of now, Porters stemming algorithm is the most
widely used [5].

Sentence Boundary Disambiguation

Sentence boundary disambiguation (also known as sentence segmentation)
refers to the task of identifying where sentences in a body of text begin
and end. It is a surprisingly complex task as punctuation marks are often
not a reliable marker of sentence boundaries. About 47% of the periods
in the Wall Street Journal corpus denote abbreviations [249]. Approaches
to sentence segmentation can be broadly divided into two classes: tradi-
tional rule-based approaches and machine-learning approaches. Traditional
rule based approaches involve hand-crafting a set of rules for identifying
a sentence boundary. Cutting et al[57] proposed such an approach. They
tried to find sentence delimiters by tokenizing the text stream and apply-
ing a regular expression grammar with some amount of look-ahead, with a
hand-crafted list of possible abbreviations and a list of exception rules. The
machine learning-based approaches automatically learn a set of rules from
a set of documents where the sentence boundaries have been pre-labeled.
Riley[221] presents an early application of machine learning to SBD, inves-
tigating the use of decision tree classifiers in determining whether instances
of full stops (periods, in American English) mark sentence boundaries [219].
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Another example is the SATZ architecture which used a neural network to
disambiguate sentence boundaries and achieves 98.5% accuracy [197].

2.2.2 Semantic Analysis

Part-of-Speech Tagging

Commonly referred to as POS tagging, part-of-speech tagging is the pro-
cess of marking the words in a piece of text as being their corresponding
part-of-speech (i.e. noun, verb, pronoun, preposition, adjective, determi-
nant etc.) based on their meaning and context. Each tag corresponds to
a part-of-speech and collectively form a tagset. More fine-grained tagsets
than the one described above could exist. For example, the Penn Treebank
uses a tagset of 36 tags1. POS tagging is difficult because sentences can
be ambiguous and it is often hard to determine the correct context. Take
the string Flies like a flower. Flies could be referring to the insect being
fond of flowers or the string could be a clause characterizing some subject
as flying in a certain manner. Essentially, flies in that string could be a
noun or a verb. Similarly, like could be a preposition or a verb in that
string. There are three main approaches to POS tagging: rule-based POS
tagging, transformation-based POS tagging and Probabilistic POS tagging.
An example of a rule-based POS tagging approach is the ENGTWOL tagger
[129]. An example of a transformation-based approach is the Brill tagger
[29]. And an example of a probabilistic approach is Trigrams’n’Tags (TNT)
[27]. POS tagging is used in text-to-speech programs to determine what
syllables in a word need to be stressed when they are spoken. For instance,
the word object has emphasis as object when used as a noun and object
when used as a verb.

Named Entity Recognition

The term “Named Entity” was coined for the sixth Message Understanding
Conference (MUC-6) [88]. At that time, MUC was focused on Information
Extraction tasks in which structured information of company activities were
extracted from unstructured text, such as newspaper articles. In defining
the task, people noticed that it is essential to recognize information units
like names, including person, organization and location names. Identifying
references to these entities in text was recognized as an important task and
was called Named Entity Recognition (NER). Over the years that passed,

1https://www.ling.upenn.edu/courses/Fall 2003/ling001/penn treebank pos.html
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Named Entity Recognition received a lot of attention from the natural lan-
guage research community. Early Named Entity Recognition systems used
hand-crafted rules to identify named entities [218]. Modern systems, how-
ever, use machine learning techniques to automatically learn these rules.
The current dominant technique for named entity recognition uses super-
vised learning, with models such as Hidden Markov Models (HMM), deci-
sion trees, Maximum Entropy models (ME) and support vector machines
[20, 235, 26, 12]. The idea of the supervised machine learning class of named
entity recognition approaches is to study the features of positive and nega-
tive examples of named entities over a large collection of labeled documents
and design rules that capture instances of a given type.

2.3 Machine Learning for Text Mining

Even though machine learning has been around for a long time, until the
late 1980s, the common approaches to most text mining tasks were based
on knowledge engineering or manually crafted rule-based systems. From
the 1990s, that approach increasingly lost popularity in favour of the ma-
chine learning paradigm. In 1959, Arthur Samuel defined machine learning
as “a field of study that gives computers the ability to learn without being
explicitly programmed” [229]. Machine learning explores the study and con-
struction of algorithms that can learn from and make predictions on data.
Machine learning approaches can be divided into two categories: supervised
learning and unsupervised learning.

2.3.1 Supervised Learning

In supervised learning, data usually consists of examples (records of given
attribute values) which are labeled by the class to which they belong. The
task here, is to find a model - known as a classifier - that will enable a newly
encountered instance to be identified as one of the classes to which the data
might belong to. In text mining, this basically means taking a collection of
documents that have been labeled for some feature, like categories or parts-
of-speech. These documents are then used as a “training set” to produce a
statistical model which can then be applied to new text. Below are some
popular models used for such purposes.
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Support Vector Machines

The Support Vector Machine is a machine learning tool that is usually
used for classification tasks but can be extended to regression tasks as well.
An SVM model is a representation of the training examples as points in
space, mapped so that the examples of the separate classes are separated
by a hyperplane (or set of hyperplanes in high dimension problems) while
maximizing the distance from the hyperplanes to the nearest training point.
Given a set D of n training points,

D = {(x1, x2) . . . (xn, yn)} (2.3.1)

with a hyperplane described by the equation

〈w, x〉+ b = 0 (2.3.2)

To minimize the margin of the hyperplane, the idea is to solve the optimiza-
tion problem

minimize ||w|| such that yi(〈w, x〉 − b) ≥ 1, i = 1 . . . n (2.3.3)

For non-linearly separable scenarios, a loss function may be applied to the
SVM. Usually the hinge-loss function is used for this. SVMs can be ex-
tended to regression problems by the introduction of an alternative loss
function [244]. The alternative loss function must be modified to include a
distance measure. Some possible loss functions are the quadratic function,
Laplacian function and Huber function.

2.3.2 Unsupervised Learning

In unsupervised learning, the data is not labeled and the task is to uncover
some hidden structure from the unlabeled data. Basically, unsupervised
learning involves employing statistical techniques to tease meaning out of a
collection of text without any pre-training. Below are some popular exam-
ples of unsupervised learning.
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Clustering

Clustering (or cluster analysis) is a term that refers to methods for group-
ing unlabeled data. It is the unsupervised classification of observations or
documents into groups (termed clusters). Documents in a valid cluster are
more similar to each other than they are to documents that are members of a
different cluster. While they are both somewhat similar, clustering is funda-
mentally different from classification. In classification (which is a supervised
task), we are provided with a collection of pre-labeled (ie. pre-classified as
belonging to one or more groups) observations or documents. The task is to
use that information to automatically label new and previously unseen ob-
servations. In clustering, the task is to group a given collection of unlabeled
patterns into meaningful clusters and in doing so, label unlabeled data.
Clustering is a multi-disciplinary field of research with applications in biol-
ogy, image processing and information retrieval [194, 114, 217]. Clustering
algorithms can broadly be divided into two groups: hierarchical clustering
and partitional clustering.

Hierarchical clustering is based on the idea that clusters can have sub-
clusters and organizes data such that we can obtain a set of nested clusters
that are organized as a tree. Each node (cluster) in the tree (except for the
leaf nodes) is the union of its children (sub-clusters), and the root of the
tree is the cluster containing all the objects [257]. Hierarchical clustering
algorithms can be divided into two groups:

• Agglomerative: This is a ”bottom up” approach: each observation
starts in its own cluster, and pairs of clusters are merged as one moves
up the hierarchy.

• Divisive: This is a ”top down” approach: all observations start in
one cluster, and splits are performed recursively as one moves down
the hierarchy.

Most hierarchical clustering algorithms are based on the single-link [245] and
complete-link [136] algorithms. These two algorithms differ in the way that
they characterize the similarity between a pair of clusters. In the single-link
method, the distance between two clusters is the minimum of the distances
between all pairs of patterns drawn from the two clusters. In the complete-
link algorithm, the distance between two clusters is the maximum of all
pairwise distances between patterns in the two clusters. In either case, two
clusters are merged to form a larger cluster based on minimum distance
criteria.

A partitional clustering is simply a division of the set of data objects into
non-overlapping subsets (clusters) such that each data object is in exactly
one subset. It obtains a single arrangement of the data instead of a struc-
ture. The main partitional clustering algorithm is the k-means algorithm.
In k-means, We first choose k initial centroids, where k is a user-specified
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parameter, representing the number of clusters desired. Each point is then
assigned to the closest centroid, and each collection of points assigned to a
centroid is a cluster. The centroid of each cluster is then updated based on
the points assigned to the cluster. We repeat these assignment and update
steps until no point changes cluster membership.

Hierarchical clustering is often portrayed as the better quality clustering ap-
proach, but is limited because of its quadratic time complexity (O(n2(logn))
for agglomerative clustering and O(n2) for divisive clustering [222]). In con-
trast, K-means and its variants have a time complexity that is linear in the
number of documents (O(n)), but are thought to produce inferior clusters
[250]. In order to circumvent these downsides, hierarchical and partitional
clustering are sometimes combined like in the case of the Scatter/Gather
algorithm described above in section 2.1.4.

Latent Dirichlet Allocation (LDA)

Latent Dirichlet Allocation (or LDA for short) is a generative probabilistic
model usually applied to text data. It is a Bayesian model which means
that like the Naive Bayes model described in section 2.3.1, it is based on
Bayes’ theorem. and was first introduced by Blei et al. [21].

It is a hierarchical model where each document in a text corpora is mod-
eled as a mixture of topics. A topic is in turn modeled as a multinomial
probability distribution over a set of words. The general idea of LDA is
based on the hypothesis that when a person writes a document, they have
certain topics in mind. Writing about a topic means picking a word with
a certain probability from the set of words of that topic. A whole docu-
ment can then be represented as a mixture of different topics. When the
author of a document is one person, these topics reflect the author’s view
of a document and their particular vocabulary [139]. The LDA algorithm
can be described as follows: Given a set of documents D, a set of topics Z
and a vocabulary of words W , the goal of LDA is to predict which topic z,
a given document d belongs to after considering its words w. It does this
by estimating P (w|d) in such a way that it is a function of z and d so that
is tells us the probability that a topic z generated word w. P (z|d) can be
given by the product of P (w|z) and P (z|d). For simplicity, P (w|z) can be
thought of as the proportion of assignments to topic z over all documents
that come from this word w. Similarly, P (z|d) can be thought of as the
proportion of words in document d that are currently assigned to topic Z.
This gives

P (wi|d) =
Z∑
j=1

P (wi|zi = j)P (zi = j|d)
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Note that the number of latent topics Z has to be defined in advance so
that we can adjust the degree of specialization of the topics. LDA aims to
estimate the topic–word distribution (P (w|z)) and the document–topic dis-
tribution (P (z|d))) from an unlabeled corpus of documents using Dirichlet
priors for the distributions [139]. Usually Gibbs sampling [87] is used for
this. It iterates multiple times over each word wi in document di, and for
each word, iterates through each topic, z, calculating the the topic–word
distributions (P (wi|zij)) until convergence. Since its introduction, LDA has
had many applications in fields such as information retrieval (particularly
topic modeling)[33, 178, 191], image processing[79] and bioinformatics[212].

2.3.3 Semi-Supervised Learning

In semi-supervised learning, both labelled and unlabelled data are employed.
Usually, in such scenarios, there is a small amount of labelled data and a
large amount of unlabelled data. Semi-supervised approaches are motivated
by the fact that unlabelled data is plentiful and cheap while labelled data
can be expensive (in time, effort or sometimes monetary cost). The ultimate
goal of semi-supervised learning is to build models which achieve better per-
formance than one would observe using labelled or unlabelled data alone.
In order for semi-supervised learning to be applicable, the data must usu-
ally meet some assumptions we make about its structure. Semi-supervised
learning usually make one or more of the following assumptions [36]:

1. Continuity assumption Data points which are geometrically close
to each other are more likely to share a label.

2. Cluster assumption Data for separable problems will form discrete
clusters, and data points in the same cluster are more likely to share
a label.

3. Manifold assumption The data points lie approximately on a man-
ifold of much lower dimension than the input space.

Below are some popular approaches and ideas for semi-supervised learning.

Self-Training

Self-training is a heuristic method for semi-supervised learning and is the
oldest approach, dating back to the 1960s [232]. Self-training starts with a
set of labeled data, and builds a classifier in a fully supervised manner. The
constructed classifier is then applied to the set of unlabelled data to yield
labels. Classified instances with a classification confidence exceeding a cer-
tain threshold, are added to the labeled set. The classifier is then retrained
on the new set of labeled examples, and the process is repeated until some
satisfactory stopping condition is reached. Self-training makes an impor-
tant assumption that the labelling classifier’s high-confidence predictions
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are correct. There exist variations of the iterative labelling procedure and
policy of self-training. For example, instead of incorporating only classified
unlabelled instances with high classification confidence, in some cases, all
classified unlabelled instances are assimilated. It is even possible to build on
this further by not simply adding all classified unlabelled instances, but by
also weighing the assimilated instances according to their classification con-
fidences. There also exist some extensions to the self-training algorithm,
such as co-training . Like self-training, co-training begins with a set of
labelled and unlabelled data, and tries to increase the labelled set by assim-
ilating instances from the unlabelled set. However, co-training makes use
of two or more classifiers, each usually with a different view of the dataset,
with each view condtionally independent from others [23]. Self-training ap-
proaches to semi-supervised learning are simple to use, but because they are
wrapper algorithms, can also leverage the power of complex algorithms for
the fully supervised classifier aspect, seeing the best of both worlds. How-
ever, because the labelling of previously unlabelled instances is automatic,
early mistakes reinforce themselves throughout the self-training process.

Graph-Based Semi-Supervised Learning

Graph-based semi-supervised learning approaches assess and take advantage
of similarity between labelled and unlabelled instances in order to grow the
labelled set. To accomplish this, a graph is constructed from the set of
labelled and unlabelled data. In this graph, nodes are specified by labelled
and unlabelled instances, while edges are specified by the similarities be-
tween nodes. Graph-based approaches make the assumption that instances
connected by a heavy edge should belong to the same class or label. More
formally, the graph G can be represented as an ordered set of vertices, V ,
and edges, E.

G = (V,E)

V represents the set of vertices which includes both labelled instances, L,
and unlabelled instances, U . E represents a set of edges which represent
similarity between instances in the dataset. A distance metric such as eu-
clidean distance could be used to measure similairty between instances. The
label of each sample from L is propagated to its unleabelled neighbours.

Transductive Support Vector Machines

The support vector machine described above in section 2.3.1 can be ex-
tended to work in a semi-supervised context. Recall that SVMs attempt
to learn the maximum spearating hyperlane between the different classes of
the labelled data. The transductive SVM (or TSVM), seeks the largest sep-
aration between labeled and unlabeled data [267]. TSVMs are a means of
improving the generalization performance od SVMs using unlabelled data.
The TSVM approach can be distilled into three main steps. First, we must
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Figure 2.3.1: Illustration of Label Propagation

enumerate through all |C||U | labellings for unlabelled instances, where C is
the set of possible labels or classes and U is the set unlabelled instances.
An SVM is then built for each Xû as well as each Xc, where Xû is the set
of formerly unlabelled instances that had been assigned possible labels in
the previous step, and Xc is the set of instances from the labelled set be-
longing to class c. Finally, the SVM with the largest separating margin for
its hyperplane is selected. However, in application, it may be impractical
to solve the TSVM for |C||U | combinations when there is even a moderate
amount of data involved. To address this issue, there exist heuristic such
as deterministic annealing [223] and concave-convex programming [290].
Because, the TSVM focuses on a paricular working set to achieve the op-
timal classification in that working set, it has been shown to sometimes
have issues with generalization [75]. There exist some more variations to
the SVM which attempt to solve the semi-supervised learning problem bet-
ter than the standard TSVM including Progressive Transductive SVMs (or
PTSVMs) [43], Laplacian SVMs [16] and SVMs with cluster kernels [37].
While transductive and other semi-supervised SVMs have the advantage
of having a clear mathematical framework, optimization can be difficult.
Additionally, they make more modest assumptions than self-training and
graph-based semi-supervised approaches.

2.4 Neural Networks and Deep Learning

Artificial neural networks are a family of machine learning models inspired
by the way that biological nervous systems, such as the brain, process infor-
mation. A neuron is a cell that has several inputs that can be activated by
some outside process. Depending on the amount of activation, the neuron
produces its own activity and sends this along its outputs. In addition, spe-
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cific input or output paths may be “strengthened” or weighted higher than
other paths. The artificial neural network equivalent of a neuron is a node.
A node receives a set of inputs, performs a weighted sum φ of these inputs,
and passes the result to nodes further down the network. This operation
can more formally be represented as such

φ =
n∑
i=1

wi.ai (2.4.1)

where wi is the weight for node i, ai is the input to node i, and n is the
number of nodes in a layer of the network. Many such layers are chained
together to form a network, passing their outputs along. The network is
trained with labeled data by feeding inputs into the network and fine-tuning
the weights until the network always yields the expected class label as its
output. This is not very different from regression in that parameters are
being tuned to create a function that yields certain values. Hence, artificial
neural networks can easily be adapted to solve regression problems.

Deep learning is a broad branch of machine learning concerned with
learning representations for data through the application of a stack of con-
secutive non-linear transformations. The “deep” in the name “deep learn-
ing” refers to the number of layers through which the data is transformed.
Modern deep learning is based on artificial neural networks. Shallow neural
networks are usually distinguished from deep neural networks by having
fewer than 2 layers.

Shallow architectures, particularly ones employing kernel-based learn-
ing suffer from the “curse of dimensionality”. Bengio and LeCun reviewed
kernel-based learning and deep learning, producing a structured theoreti-
cal comparison [17]. They found that unless certain assumptions are met,
methods relying on local kernels may need an exponential number of pa-
rameters to approximate the target function which relates the input to the
output. Kernel based methods, such as the Support Vector Machine, are
shown to have an expected error, which rises exponentially with the num-
ber of dimensions of the input space [97]. “curse of dimensionality” which
such methods suffer from. However, It is worth noting that many prac-
tical problems adhere to the assumptions of kernel based models. Hence,
these models are effective on these problems and may be the most suitable
method to use in such cases.

Shallow learning usually relies on manual feature engineering. The input
is subjected some preprocessing to simplify the input to represent the input
data in a concise yet meaningful way, in order to circumvent the limitation
highlighted above. The aim of feature engineering is to reduce the dimen-
sions of the input data and create a (more) separable and smooth structure
of the data such that a classifier can efficiently and effectively be applied to
the data. However, this process can be domain-specific and relies on human
intuition around the nature of the problem. Arguably, the biggest success
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of deep learning is the fact that it is able to automatically learn represen-
tations of the raw data. In fact, deep learning is sometimes alternatively
referred to as representation learning.

The relatively new field of deep learning has seen a lot of interest and
activity. As a result, a lot of different architectures have been experimented
with. Below, we discuss some of the most successful and well-researched
architectures relevant to this thesis.

2.4.1 Recurrent Neural Networks

Recurrent Neural Networks (RNNs) are a category of neural networks that
incorporate sequential information. In such networks, connections between
neurons, or nodes, form a directed graph along the input sequence. That
is to say, while in a traditional neural network inputs are independent,
in RNNs each node depends on the output of the previous node. This is
particularly useful for sequential data such as text where each word depends
on the previous one. While in theory, RNNs can make use of information
in arbitrarily long lengths of text, in practice they are limited to looking
back only a few steps due to the vanishing gradient problem. This problem
is a phenomenon that occurs during the workings of the backpropagation
algorithm, responsible for tuning the parameters of the network. Due to
long sequences of matrix multiplications, gradient values shrink fast and
gradient contributions from earlier neurons become zero. As a result of
this, information from earlier inputs (words in the text) do not contribute
to the overall algorithm. Long Short Term Memory (LSTM) [104] networks
and Gated Recurrent Unit (GRU) [44] networks are flavours of the RNN
architecture which make use of gating mechanisms to combat the vanishing
gradient problem.

Figure 2.4.1: Illustration of RNN architecture [71]

Long Short Term Memory (LSTM) Networks

The LSTM model adds some complexity to the regular neural network ar-
chitecture. The network has an input layer x, hidden layer h, LSTM cell
state c and output layer y. Input to the network at timestep t is x(t), output
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is denoted as y(t), hidden layer state is h(t) and LSTM cell state is c(t).
The LSTM cell state is controlled by the gating mechanism as highlighted
above briefly. Each cell consists of the following gates which interact with
each other to dictate the overall cell state:

• input gate (i)

• forget gate (f)

• write gate (g)

• output gate (o)

Each of these gates has its own weights and biases and is a function of the
previous timestep’s hidden state h(t − 1). The hidden state of a layer can
then be computed as a function of the cell state as shown below:

c(t) = f(t) · c(t− 1) + i(t) · g(t) (2.4.2)

h(t) = o(t) · tanh(c(t)) (2.4.3)

For the sake of brevity and simplicity of our equations, let us assume that
there is only one hidden layer l so that we do not have to specify different
equations for the different edge cases that would come with multiple layers,
such as when execution is in the first layer and has no previous layer or when
it is in a middle layer or the final layer. In the real world scenario, this is
not the case as each hidden layer state is influenced by the hidden state in
the previous timestep as well as the state of the previous hidden layer. To
adapt this, one may simply add the product of the weights and input of the
previous layer to each activation function. The activation functions for the
gates are computed as:

f(t) = sigmoid(Wxf · xt +Whf · ht−1 + bf ) (2.4.4)

g(t) = tanh(Wxg · xt +Whg · ht−1 + bg) (2.4.5)

i(t) = sigmoid(Wxi · xt +Whi · ht−1 + bi) (2.4.6)

o(t) = sigmoid(Wxo · xt +Who · ht−1 + bo) (2.4.7)

where Wpq are the weights that map p to q and bp refers to the bias vector
of p. For example, if we look at equation 2.4.4, Wxf refers to the weights
going from input x to the forget gate f and so on while bf refers to the bias
of the forget gate f
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Gated Recurrent Unit (GRU) Networks

The GRU is another solution for the short-term memory problem that sim-
ple RNNs possess, where they cannot properly update and learn weights for
earlier inputs in a sequence. LSTMs and GRUs are very similar, the main
difference is that GRUs have less parameters than LSTMs. Again, for the
sake of brevity and simplicity of our equations, let us assume that there
is only one hidden layer l. The GRU cell state is controlled by a gating
mechanism, similar to the LSTM. Each cell consists of the following gates
which interact with each other to dictate the overall cell state:

• update gate (z)

• reset gate (r)

The gates can be formalised as follows:

z(t) = sigmoid(Wxz · xt +Wz · ht−1 + bz) (2.4.8)

r(t) = sigmoid(Wxr · xt +Wr · ht−1 + br) (2.4.9)

The hidden state of a layer is computed as a function of the input and gates
as shown below:

h(t) = z(t) ·h(t−1)+(1−z(t−1)) · tanh(Wx+r(t) ·Wh ·h(t−1)) (2.4.10)

where Wpq are the weights that map p to q and bp refers to the bias vector
of p. For example, if we look at equation 2.4.8, Wxz refers to the weights
going from input x to the update gate z and so on, while bz refers to the
bias of the update gate z and Wz refers to the weights for the update gate
itself.

2.4.2 Convolutional Neural Networks

Convolutional Neural Networks (CNNs) are a category of neural networks
that have proven very effective for image classification [141]. CNNs intro-
duce one or more convolutional layers, often with pooling layers for sub-
sequent subsampling, which are then followed by one or more fully con-
nected layers as in a standard multilayer neural network. This architecture
is designed to consume 2D input which is why it is typically applied to
images. The convolution layer involves applying one or more convolution
filters/kernels to the input volume. The filter can be seen as a selector look-
ing for a certain characteristic like a line, curve or shape. After this process,
we are left with a flattened feature map of the input volume. The pooling
layer is used to reduce the size of the feature map using a pooling filter.
The pooling layer usually downsamples the coonvolved input by taking the
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average or maximum value in an input region. Because of the consecutive
pooling procedures in each layer, the output grows increasingly tolerant to
small variations in the input. An invariance (or tolerance) to such changes
is one of the core challenges in object recognition. While CNNs are typically
applied to image data, they have also seen some success being applied to
text data [134].

Figure 2.4.2: Illustration of CNN architecture [227]

2.5 Text Transformation and the Vector Space

Model

As was mentioned in section 2.1, before text mining processes are carried
out, the text data is usually first structured into a form better suited to com-
plex computations. The most popular of such transformations is the Vector
Space Model. The vector space model was developed for the SMART infor-
mation retrieval system in the ’70s [228]. The idea of the vector space model
is to represent each document in a collection as a point in a space. Consider
such a space D of n documents, with each document Di represented by k
(index) terms T with {k ∈ R|k ≥ 1} forming a k-dimensional vector like

Di = {T1, T2, ..., Tk}

Figure 2.5.1 shows an example 3-dimensional space. Points that are near
each other in this space are semantically similar and points that are far
apart are semantically distant. An example similarity measure for two doc-
uments in such an arrangement would be to compute an inverse function
of the angle between the corresponding vectors for the documents. If the
documents are the same - their vectors are identical - the angle between
them will be zero.
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Figure 2.5.1: Example 3-dimensional vector space [228]

Not all uses of vectors count as employing a vector space model. Usu-
ally, the defining property of vector space models is that the values of their
elements must be derived from event frequencies (eg. the number of times
a word occurs in some, if any, context). Vectors are common in Artificial
Intelligence and machine learning. In machine learning, a typical problem
is to learn to classify or cluster a set of items. These items are usually
represented as feature vectors [179, 278]. The novelty of the vector space
model is that it uses frequencies of events in text corpora. Based on this,
varieties of the vector space model have been organized into three groups:
term–document, word–context, and pair–pattern [259].

2.5.1 The Term-Document Matrix

With a large collection of documents, (and hence, a large number of vec-
tors), it is often convenient to organize the vectors into a matrix. In such
a matrix, the column vectors represent the documents in the collection
while the row vectors represent the terms (usually words) that could be in
these documents. Such a matrix is called a term-document matrix. In the
term–document matrix, each document vector represents the corresponding
document as a bag of words. A bag is an unordered list without duplicates
and the i-th element in the bag of words represents the count of the i-th word
in some document. In information retrieval, the bag of words hypothesis is
that we can estimate the relevance of documents to a query by representing
the documents and the query as bags of words. That is, the frequencies of
words in a document tend to indicate the relevance of the document to a
query [259]. Such matrices are sparse because most documents will only use
a small portion of the whole vocabulary leaving many zeros in the matrix.

2.5.2 The Word-Context Matrix

When the vector space model was introduced, Salton et al[228] focused on
measuring document similarity, transforming queries into the vector space
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in order to make them pseudo-documents. The relevance of a document to
a query was given by the similarity of their vectors. Deerwester et al[69]
observed that we could actually also measure word similarity, instead of
document similarity, by looking at row vectors in the term–document ma-
trix, instead of column vectors. This application of the vector space model
is based on the distributional hypothesis. The distributional hypothesis in
linguistics is that words that occur in similar contexts tend to have simi-
lar meanings [99]. In this space, a word may be represented by a vector
whose elements are derived from the occurrences of the word in various
contexts, such as windows of words and grammatical dependencies. Similar
row vectors in the word–context matrix indicate similar word meanings.

2.5.3 The Pair-Pattern Matrix

In a pair–pattern matrix, row vectors correspond to pairs of words, such
as mason:stone and carpenter:wood, and column vectors correspond to the
patterns in which the pairs co- occur [259]. The pair-pattern matrix is
based on the extended distributional hypothesis which states that patterns
that co-occur with similar pairs tend to have similar meanings. Lin and
Pantel[155] introduced the pair-pattern matrix, using it to measure the
semantic similarity of patterns (ie. the similarity of column vectors) and
reported that it could be used to determine when sentences are paraphrases
of each other. Turney and Littman[258] proposed the use of the pair–pattern
matrix for measuring the semantic similarity of word pairs (ie. the similarity
of row vectors). They based it on the latent relation hypothesis which states
that pairs of words that co-occur in similar patterns tend to have similar
semantic relations [257] and is the inverse of the extended distributional
hypothesis.

2.6 Learning Neural Representations of Text

Deep learning, applied with some of the techniques above has seen a lot of
success in obtaining powerful text representations. Most popular of these
are the word-context embeddings word2vec [177] and GloVe [205]. Both of
these techniques are able to embed words in a vector space which manages to
preserve semantic information. They make use of word contexts, building a
statistical understanding of which words appear together and inferring the
relationships between words in this way. However, these algorithms only
work on words or tokens from a body of text. To obtain an embedding or
vector representation for a whole sentence or document, one would have to
perform some aggregative operation such as a sum or a mean of the vectors
of constituent words. While this approach sometimes offers satisfactory
performance, some information is lost in this process. To remedy this,
there also exist some text embedding approaches operating on the sentence
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or document embeddings. One such algorithm is paragraph2vec. Below, we
describe these techniques in more detail.

2.6.1 Word2Vec

Word2Vec is an algorithm for embedding words in a meaningul vector space.
It makes use of a two layer neural network trained to reconstruct the lin-
guistic context of words. It is an unsupervised learning method which takes
in large text corpora and builds this space with words from these corpora.
There are two forms of word2vec, namely the Skipgram model and the
Continuous Bag-of-Words (CBOW) model.

Skipgram

The Skipgram model is taught to learn word representations using a neu-
ral network with the training objective being to predict the surrounding
words in a sentence or document. More formally, given a sequence of train-
ing words w1, w2, w3, . . . , wT , the objective of the skipgram model is to
maximize the average log probability

T∑
t=1

∑
−c≤j≥c

logp(wt + j|wt) (2.6.1)

where c is the size of the training context. Simply put, it is the window
size, left and right of how many words to be considered.

Continuous Bag of Words (CBOW)

The continuous bag of words model is very similar to the skipgram model
but has a slightly different training objective. While skipgram uses a given
word to predict the other words around it, the continuous bag of words
model uses a context of words to predict the word that they surround.
Formally speaking, given a sequence of training words w1, w2, w3, . . . , wT ,
the objective of the continuous bag of words model is to maximize the
average log probability

T∑
t=1

logp(wt|
∑
−c≤j≤c

wj) (2.6.2)

where c is the size of the training context.
The skipgram model and continuous bag of words model are illustrated

in figure 2.6.1. By using a sum of words in a context to predict a target
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word, CBOW smoothes over a lot of the distributional information (as a
result of treating an entire context as one observation). For this reason,
CBOW tends to work best with larger datasets and shorter sentences. The
skipgram model treats each context-target pair as a new observation and is
useful for smaller datasets, with longer sentences.

Figure 2.6.1: Illustration of word2vec architectures [177]

2.6.2 GloVe

Global Vectors (or GloVe) for short, is a text embedding algorithm that
not only makes use of local statistics, similar to word2vec, but also employs
global count statistics. The problem with word2vec that GloVe tries to
solve is similar to the problem that tf-idf solves for word count bag of
words. Word2vec only takes local contexts into account. For example, the
words “the” and “man” might be used together often, but word2vec cannot
differentiate whether this is because “the” is a common word or if it is
because “the” and “man” have a strong intrinsic relationship. Using global
count statistics, i.e. counts across the entire corpora, can help alleviate
this issue. GloVe builds a co-occurence matrix of the words in the corpora.
It learns word representations using a neural network with the training
objective being to predict the co-occurrence ratios.

2.6.3 Paragraph2Vec

Paragraph2vec is an extension of the word2vec algorithms which can be used
to infer meaningful vectors for variable-length pieces of texts - sentences and
documents. Here, variable length texts are denoted as paragraphs. Every
paragraph is mapped to a unique vector, and every word in the paragraph
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is mapped to a word vector. SImilar to word2vec, paragraph2vec has two
forms, namely, the Distributed Memory Model of Paragraph Vectors (PV-
DM) and the Distributed Bag of Words version of Paragraph Vector (PV-
DBOW).

Distributed Memory Model of Paragraph Vectors (PV-DM)

PV-DM is an extension of the CBOW word2vec algorithm. Each paragraph
in the corpus is represented by a paragraph vector d. These paragraph
vectors are randomly initialized before training. Each word in a paragraph
is represented by a word vector w. For each paragraph, similar to CBOW,
we aim to predict a word given its surrounding context. The paragraph
vector and word vectors are concatenated to predict the next word in a
context. The contexts are fixed-length and sampled from a sliding window
over the paragraph. FIgure 2.6.2 shows an illustration of the algorithm.

Figure 2.6.2: Illustration of the Distributed Memory Model of Paragraph
Vectors (PV-DM) [147]

Distributed Bag of Words version of Paragraph Vector (PV-DBOW)

PV-DBOW is an extension to the skipgram word2vec algorothm. PV-DM
considers the concatenation of the paragraph vector with the word vectors
to predict the next word in a context window. PV-DBOW, on the other
hand, ignores the context words in the input, and instead forces the model
to predict words randomly sampled from the paragraph in the output. In
more detail, at each iteration of stochastic gradient descent, we first sample
a text window. Next, we sample a word at random from the text window.
We then train the network on the task of predicting the words in the text
window using the paragraph vector and word vector of the one sampled
word. Figure 2.6.3 shows an illustration of the algorithm.
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Figure 2.6.3: Illustration of the Distributed Bag of Words version of Para-
graph Vector (PV-DBOW) [147]

2.7 Summary

This chapter gave a summary of the theoretical background underpinning
our research. As we aim to wade through textual Twitter data in order
to evaluate its utility for syndromic surveillance, our work is related to the
field of text mining as well as that of natural language processing to aid in
the manipulation and understanding of our data. The core scientific field of
our work, however, is defined by the branch of artificial intelligence known
as machine learning, which aims to automatically discover patterns within
data that can be used to inform or make decisions. Particularly, supervised
and semi-supervised learning represents the main focus of our work. The
problem in such scenarios is formulated as follows: Given a set of input data
X and corresponding target responses or outputs, y, we seek to discover a
function f which maps from X to y. In our work, we make use of classifica-
tion algorithms such as bayesian modelling and support vector machines as
well as self-training and graph-based learning. As explained in this chapter,
such approaches require some degree of manual feature engineering. For
this reason, we also investigated deep learning approaches. In addition,
we incoporated basic ideas and practices from natural language proecessing
such as stemming, lemmatization and forms of the term-document matrix
and word-context matrix. The theoretical ideas and notions in this chapter
inform the work in subsequent chapters.



Chapter 3

A Scoping Review of the use of Twitter for Public

Health Research

3.1 Introduction

Surveillance, described by the World Health Organisation (WHO) as “the
cornerstone of public health security” [281], is aimed at the detection of el-
evated disease and death rates, implementation of control measures and re-
porting to the WHO of any event that may constitute a public health emer-
gency or international concern. Syndromic surveillance can be described
as the real-time (or near real-time) collection, analysis, interpretation, and
dissemination of health-related data, to enable the early identification of
the impact (or absence of impact) of potential human or veterinary public
health threats that require effective public health action [256]. The task of
syndromic surveillance is an undertaking motivated by the notion of public
health. Public health has been defined as the science and art of prevent-
ing disease, prolonging life and promoting human health through organized
efforts and informed choices of society, organizations, public and private,
communities and individuals [277]. In this sense, the concept of health en-
compasses the physical, emotional and social well-being. Historically, public
health practitioners have used data from multiple sources for measuring the
burden of diseases and other health outcomes, preventing and controlling
diseases and guiding healthcare activities. Eemergency department atten-
dances or general practitioner (GP, family doctor) consultations are some of
the sources traditionally used to track specific syndromes such as influenza-
like illnesses (ILI). With the proliferation of the internet and the advent
of modern technology, potential new data sources present themself. In re-
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cent years, researchers have recognized that social media platforms, such as
Twitter and Facebook, could also provide data about national-level health
and behaviour [189].
Among these social media platforms, Twitter offers a unique and poten-
tially powerful data source due to its ease of access, real-time nature and
richness in detail. In this paper, we look towards Twitter with the aim of
investigating and assessing its utility as a public health tool by performing
a scoping review on the subject. While we seek to review the literature of
Public health research making use of Twitter, our interest in such literature
is limited to research concerning the monitoring, detection and forecasting
of public health conditions. We are not interested in social science research
investigating the use of Twitter for recruitment or public awareness and
dissemination of public health information. We are similarly not interested
in research concerned with opinion mining to understand public opinion on
public health issues.
A scoping review such as ours is pertinent as there exist no broad and recent
evidence-reviews on the use of Twitter data for health research purposes.
Wargon et al. [271] performed a systematic review on syndromic surveil-
lance models used in forecasting emergency department visits, however, only
9 studies were found and none of them made use of Twitter or any social
media. Subsequently, Charles-Smithe et al. [38] carried out a systematic
review of the use of social media (not limited to Twitter) specifically for dis-
ease surveillance and outbreak management. Sinnenberg et al. performed
another systematic review looking at Twitter as a tool for health research
[243]. Their systematic review encompassed research in both the sciences
and social sciences. We seek to carry out a scoping review in order to map
the broad area of Twitter for public health research as well as to produce an
updated review containing more recent studies carried out since the above
reviews were published.

3.2 Method

A scoping review methodology was chosen to achieve our goal of mapping
the state of Twitter applications in the field of public health research. The
scoping review is defined by Arskey and O’Malley [11] as a study that aims
“to map rapidly the key concepts underpinning a research area and the main
sources and types of evidence available, and can be undertaken as stand-
alone projects in their own right, especially where an area is complex”. For
our scoping review, we made use of the Arksey and O’Malley framework
which adopts a rigorous process of transparency, enabling replication of the
search strategy and increasing the reliability of the study findings.
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3.2.1 Search Strategy

To gain a broad coverage of the available literature, the general terms “Twit-
ter” and “Public Health” were used as search keywords. We chose these two
keywords as “Twitter” covers every discussion of the Twitter platform, and
used together with “Public Health” covers all mention of Twitter in a health
context. As our work is multidisciplinary in that it spans multiple fields,
we conducted our search in both health and Information Technology (IT)
databases. First, we performed a literature search in the health/medical
database PubMed. Next, we searched the IT databases IEEE Xplore and
the ACM Digital Library. Finally, we searched a general database that
indexed both fields, Scopus. Our searches were refined such that we only
included research articles which were peer-reviewed and in English. We also
limited our search to only return results within the date range of January
2009 and March 2019, which was when the search was carried out. We
started our search from 2009 because of the highly influential Google Flu
Trends paper published that year which inspired and kickstarted the use of
social media as a data source for public health research [85].

3.2.2 Study Selection

754 research articles were returned by our search and 1 paper was added
from the bibliographic listings of relevant retrieved papers. Of these 755
articles, we found 550 to be unique. We then drew up a list of criteria for
inclusion and exclusion of articles in our review similar to those used by
Shatte et al [239]. These criteria are shown in table 3.1. In short, articles
were included if all the following criteria were met: (i) the article reported on
a method or application of Twitter data to address a public health issue; (ii)
the article evaluated the performance of the statistical or machine learning
technique used in drawing utility from the Twitter data; (iii) the article was
published in a peer-reviewed publication and (iv) the article was available
in English. Articles were exluded if any of the following criteria were met:
(i) the article did not report an original contribution (e.g. review papers or
articles commenting or speculating on the state or future of such research);
(ii) the article was focused on the use of Twitter for public health in the
context of recruitment and outreach, public awareness and communication,
information dissemination or opinion mining; (iii) the article did not make
known the statistical or machine learning technique being used; (iv) the full
text of the article was not available (e.g. conference abstracts). Guided by
our inclusion and exclusion criteria, we identified and selected 92 articles to
be included for the review.



Chapter 3: A Scoping Review of the use of Twitter for Public Health
Research 41

Criterion Inclusion Exclusion

Time period 2009 - 2019 Studies outside these dates

Language English Non-english articles

Article Type Original peer-reviewed re-
search

Research that was not peer-
reviewed

Literature focus ·Articles reporting on a
method or application of
Twitter data to address a
public health issue.

·Articles which evaluated
the performance of the sta-
tistical or machine learn-
ing technique used in draw-
ing utility from the Twitter
data.

·Review articles and other
articles not reporting an
original contribution.

·Articles not focused on our
above definition of pub-
lic health but rather con-
cerned with public health
in the context of recruit-
ment and outreach, public
awareness and communica-
tion, information dissemi-
nation or opinion mining.

·Articles which do not make
known the statistical or ma-
chine learning technique be-
ing used.

·Articles which are works in
progress or otherwise do not
contain the full-text, such as
conference abstracts.

Table 3.1: Inclusion and exclusion criteria.

3.2.3 Information extraction and analysis plan

The focus of our review was to get an exploratory map of the key problems
and concepts being tackled in the public health space through the use of
Twitter and the techniques being used. To this effect, for each article in our
review, data was collected on (i) the aim of the research (ii) the disease or
illness of focus (iii) sources of data for the study (iv) statistical or machine
learning algorithms and methods used (v) the country for which the study
was carried out (vi) the year in which the study was carried out. To analyse
the collected information, we used a narrative review synthesis to capture
the broad range of research studying Twitter for public health in our scoping
review.
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Figure 3.2.1: PRISMA flow diagram for the identification and selection of
studies

3.3 Results

3.3.1 Study Characteristics

Figure 3.3.1: Word cloud of statistical and machine learning methods dis-
covered in review

The search strategies identified 755 articles, with 92 of these articles
meeting the criteria for inclusion in this review. See fig 3.2.1 for PRISMA
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flowchart [180]. The mode publication year for articles was 2017 with a
range of 2011 - 2019. 19 countries were represented in the studies, with
the top 5 countries being the United States of America (US), United King-
dom (UK), Canada, India and China. See fig 3.3.2 for a breakdown of
study activity by country. The use of Twitter data was evident for a varied

Figure 3.3.2: Breakdown of studies by country

number of different diseases and health conditions. We observed a range
of applications dealing with physical health and illnesses (n = 82) [e.g.
influenza-like illnesses (ILIs), adverse drug events and reactions, sexually
transmitted diseases, food-borne illneses], mental health (n = 6) [e.g. sui-
cide and depression], natural disasters and environmental issues (n = 5)
[e.g. earthquakes, heat waves, air pollution] and social issues (n = 8)
[e.g. drug abuse, smoking, alcoholism]. We examined the subjects of the
studies for trends in Twitter applications. We analyzed and plotted the
three most studied diseases for each year. Fig 3.3.3 shows the result of
this analysis. Taking a closer look at the diseases, conditions and public
health phenomena studied using Twitter data, we observed ILIs to be the
most common. The next most common subject of public health research
using Twitter were drug abuse and adverse drug events and/or reactions
(ADE/R). Furthermore, we observed a general rise in the quantity of re-
search into the use of Twitter for public health. Research activity appears
to have peaked in 2016 but seems to be on the rise from 2018. As this
scoping review looks at studies up until March 2019, the data for 2019 is
incomplete. This limitation is due to the fact that this review can only in-
vestigate studies until the time of its writing, which happened to be early in
the year. A myriad of statistical and machine learning techniques were used
in the analysis of Twitter data for public health. Most studies implemented
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Figure 3.3.3: Most studied diseases each year.1

just one technique (n = 54) but some others made use of a mix of methods
and techniques (n = 38). The articles made use of a range of statistical
and machine learning techniques including supervised learning (n = 70)
[e.g.Support Vector Machine (SVM), naive bayes, decision trees, logistic re-
gression], unsupervised learning (n = 18) [e.g. clustering, association rule
mining], semi-supervised learning (n = 4) [e.g. graph learning, transduc-
tive support vector machine (t-SVM)], text analysis and natural language
processing (n = 23) [e.g. latent Dirichlet allocation (LDA), biterm topic
modelling, lexicon analysis], deep learning (n = 16) [e.g. Recurrent Neu-
ral Networks (RNNs), Convolutional Neural Networks (CNNs), word and
document embeddings], statistical modelling and analysis (n = 12) [e.g.
correclation analysis, partial differntial equation (PDE), TRAP] and time
series analysis (n = 7) [e.g. Autoregressive Integrated Moving Average
(ARIMA), time-series Susceptible-Infected-Recovered (TSIR) model]. The
average number of Tweets used in the reviewed studies was roughly twenty
thousand. A closer look at the research towards Twitter use for public
health revealed that the SVM was a popular tool in this research field. We
hypothesize that this is due to the SVM’s popularity and strength in text
classification problems [120]. We also analyzed the surveyed studies to find
out which statistical or machine learning algorithms were popular, as well
as if and how this might have shifted over time. Fig 3.3.4 shows a plot
of the most used algorithms for each year covered in this review. Lexicon-
based analysis proved popular between 2012 until 2014. After this, Bayesian
learning seemed to be the method of choice, followed by the SVM. From
2018, the widespread popularity of deep learning appears to have made its
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way into public health research with Twitter data, as it is becoming the
dominant method used since then.

Figure 3.3.4: Most applied algorithms each year

3.3.2 Application Domains of Twitter in Public Health

Through the synthesis of the data obtained from the reviewed articles, we
broadly identified 6 different ways in which Twitter data is used for public
health research. The identified domains were: (i) surveillance (n = 41); (ii)
event detection (n = 38); (iii) pharmacovigilance (n = 19); (iv) forecasting
(n = 15); (v) disease tracking (n = 12) and (vi) geographic identification
(n = 7). Surveillance includes articles aiming to monitor some status over
a period of time. Event detection includes articles that aim to discover
and/or identify a health-related event from Twitter data. Pharmocovigi-
lance includes articles which were concerned with public drug consumption
and reactions to said drugs. Forecasting includes articles which aim to pre-
dict the trends for health-related events. Disease tracking includes articles
attempting to observe or predict the spread of diseases in the public through
Twitter. Geographic identification includes articles whose aim is to geolo-
cate Twitter users, usually in order to faciliate or improve the application
of one of the other domains.

We were interested in examining the trends, if any, in the public health
application domains studied over the years. We constructed a bubble trend
chart from the reviewed papers. This chart, included in fig 3.3.5, illustrates
the research activity in each domain for each year. It shows that there ap-
pears to indeed be a trend in activity for different public health domains.
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In 2011, there is little to moderate activity across the board. In the years
following that, we see research in some domains drop off and on the map,
and some growing steadily in size. Event detection, surveillance and phar-
macovigilance appear to have seen steady increases in activity, leading the
other domains. However, since 2016, research in those three domains has
reduced slightly, with some focus switching to the other domains. The data
for the year 2019 is not particularly informative, as the scoping review was
only carried out in the first quarter of 2019.
We were also interested in the different techniques applied across different

Figure 3.3.5: Bubble chart showing the trends of research activity in public
health application domains with time.

public health research domains. We computed a matrix of the applica-
tion domains against the techniques applied and visualised it as a heatmap.
This heatmap is shown in fig 3.3.6. Darker colours in the heatmap indicate
higher activity for that cell. Supervised learning appears to see a lot of util-
ity across the board. Deep learning and natural language processing also
see a fair amount of utility, particularly in event detection, pharmacovigi-
lance and surveillance. Unsupervised learning seems to see some utility use
in surveillance and event detection. On the other hand, semi-supervised
learning appears to see the least use across the board.

The reviewed articles were found to exist within one or more of these
domains. These domains are discussed in more detail below.

1Note that the information shown for 2019 is not comparable to that for other years
due to the fact that, at the time of plotting the graph, 2019 had not elapsed.
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Figure 3.3.6: Most applied algorithms each year

Surveillance

Surveillance was the most popular research domain with around 43% of the
reviewed articles represented. Research on surveillance focused on employ-
ing machine learning in order to utilize Twitter as an alternative or aug-
mentative resource to traditional health surveillance systems. Naturally,
the surveillance domain encompasses the field of syndromic surveillance
[93, 40, 115]. However, it is broad and also includes additional applications
such as the tracking of vaccination efforts [247] and monitoring of envi-
ronmental conditions [107, 123], as well as for natural disaster reporting
and alarming [13]. That being said, the most common application was the
syndromic surveillance of influenza-like illnesses (ILIs). Besides ILIs, other
diseases and conditions that were studied include dengue, HIV, gastroenteri-
tis, ebola, diarrhoea and allergies. Due to the extensive research carried out
in this area, a wide range of techniques were used. For example, supervised
learning applied in the form of k-Nearest Neighours (kNN) was used to mon-
itor allergy trends and occurences [187]. Unsupervised learning was used
in the form of Density-based Spatial Clustering of Applications with Noise
(DBSCAN) clustering in order to exploit the spatial and temporal prop-
erties of the Twitter stream for dengue surveillance [86]. Semi-supervised
learning was used in the form of transductive SVMs for the surveillance of
ILIs, gastroenteritis, diarrhoea and vomiting [254].
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Table 3.2: Summary of statistical and machine learning methods and data
sources for surveillance using Twitter data

Public Health Issue Method Comparative Data Source

Cancer Simple Statistical Analy-
sis [150]

CDC

Hepatitis A Support Vector Machine
[140]

Gastrointestinal
Illnesses

Correlation Analysis
[132]

Government of
ontario, Kingston,
Frontenac and
Lennox & Adding-
ton Public Health

Suicide ARIMA (Autoregressive
Integrated Moving Aver-
age [173]

HIV Graph Modelling [253],
Word2Vec [28], Doc2Vec
[28], Dynamic Topic
Modeling [28]

Allergies K-Nearest Neighbour
[187], Bayesian Inference
[187], Support Vector
Machine [187]

Heat Wave Near Regression [123],
ARIMA (Autoregressive
Integrated Moving Aver-
age) [123]

The US National
Oceanic and At-
mospheric Admin-
istration (NOAA)
National Centers
for Environmen-
tal Information
(NCEI)

Heat Related Ill-
nesses

Correlation Analysis
[132]

Government of
ontario, Kingston,
Frontenac and
Lennox & Adding-
ton Public Health

Depression ARIMA (Autoregressive
Integrated Moving Aver-
age [173]

Syphilis Binomial Regressions
[289]

CDC

Ebola Bayesian Inference [195],
Lexicon Analysis [195]
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Respiratory
Ilnnesses

Correlation Analysis
[132]

Government of
ontario, Kingston,
Frontenac and
Lennox & Adding-
ton Public Health

E Coli Latent Dirichlet Alloca-
tion [73], Lexicon Analy-
sis [73]

Robert Koch Insti-
tute

Measles Support Vector Machine
[140]

Influenze-
like Illnesses
(Hemophilus)

Bayesian Inference [115] Genbank

Vomiting TSVM [254], ARIMA
(Autoregressive Inte-
grated Moving Average)
[254]

Public Health Eng-
land

Gastroenteritis TSVM [254], Latent
Dirichlet Allocation [73],
Lexicon Analysis [73],
ARIMA (Autoregres-
sive Integrated Moving
Average) [254]

Public Health Eng-
land, Robert Koch
Institute

Salmonella Support Vector Machine
[140]

Food Borne Ill-
ness

Support Vector Machine
[225]

Southern Nevada
Health District
(SNHD)

Earthquake Clustering [13], Bayesian
Inference [13]

Stress Ordinal Regression [159]
Air Pollution Self-Organizing Map

(Clustering) [220],
Cross-Correlation [107]

The European
Centre for
Medium-Range
Weather Forecasts
(ECMWF), Lon-
don Air Quality
Network
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Influenze-like Ill-
nesses (ILI)

Lexicon Analysis [156],
Deep Learning (CNN)
[296], Fp-Growth [201],
Bayesian Inference
[238],[109], Correla-
tion Analysis [132],
Deep Learning (RNN)
[296], Deep Learning
(MLP) [152], Fasttext
[296], Bayesian Infer-
ence [34],[156], ARIMA
(Autoregressive Inte-
grated Moving Average)
[254],[31], Simple Sta-
tistical Analysis [150],
Support Vector Machine
[6],[201], Glove [296],
Maximum Entropy [34],
TSVM [254], Partial
Differential Equation
[266], Autoregressive
Moving Average (Arma)
[2], Outlier Detection
[60], Topic Model [41],
Temporal Topic Model
[40], Logistic Regression
[31], Count Correlation
[247]

Public Health
England, Fron-
tenac and Lennox
& Addington
Public Health,
Chinese CDC,
Pan American
Health Organiza-
tion (PAHO),
CDC, HHS
data, Kingston,
FluWatch, Govern-
ment of ontario,
The Pan American
Health Organi-
zation (PAHO)

General Health1 Topic Model (Ailment
Topic Aspect Model
(Atam)) [200], Lexicon
Analysis [56], Regression
[56], Simple Statistical
Analysis [288], Temporal
Ailment Topic Aspect
Model (TM-ATAM)
[241]

CDC, U.S. Census’
State-Based Coun-
ties Gazetteer

Dengue Dbscan (Clustering) [86],
Deep Learning (RNN)
[160], Word Embeddings
(Glove) [160], Simple
Statistical Analysis [66]

Brazilian Health
Ministry, Philip-
pine’s Department
of Health, Brazil-
ian Official Dengue
case data

1Generic feelings of unwellness and non-specific illness
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Diarrhoea TSVM [254], ARIMA
(Autoregressive Inte-
grated Moving Average)
[254]

Public Health Eng-
land

Obesity Dbscan (Clustering)
[133]

Event Detection

Detection was another popular domain which saw around 40% of the re-
viewed articles represented. Research in this domain seeks to automatically
discover events and describe the magnitude and trend of disease, as well as
the impact of control measures. Event detection differs from surveillance in
that surveillance is an activity of vigilance, with the aim of finding things
before they become full-blown events. Event detection aims to find exist-
ing full-blown occurences. Research in this domain seeks to automatically
detect events and describe the magnitude and trend of disease, as well as
the impact of control measures. Examples of applications in this domain
are automatically detecting drug abuse within the population [166], depres-
sion and suicide [173], ebola [224] and most common of all, ILI [59]. Such
research tends to be fairly recent with the mode publication year being
2016. The statistical and machine learning techniques used were typically
supervised, with most studies employing either classification or regression to
make the predictions necessary for detection. For example, SVMs were used
to detect mention of “dabbing”, a method of marijuana consumption that
involves inhaling vapors from heating marijuana concentrates [83]. CNNs
were used to detect harmful algal blooms from pictures posted on Twitter
[143]. Additionally, stepwise regression was used to detect depression from
Tweets in order to explore the effect of climate and seasonality on mood
[286].

Table 3.3: Summary of statistical and machine learning methods and data
sources for event detection using Twitter data

Public Health Issue Method Complementary Data

Cancer Support Vector Machine
[78]

CDC

Smoking Bayesian Logistic Re-
gression [9]

Suicide ARIMA (Autoregressive
Integrated Moving Aver-
age [173]
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Harmful Algal
Blooms (HABS)

Deep Learning (CNN)
[143]

HIV Decision Tree [3], Sup-
port Vector Machine [3],
Graph Modelling [253],
Multilayer Perceptron [3]

Allergies [151], Bayesian Inference
[151]

pollen.com, Na-
tional Climatic
Data Center Cli-
mate Data Online
(CDO)

Drug Abuse Biterm Topic Model
[166], Decision Tree
[210], Support Vector
Machine [83], Topic
Model [167]

HPV Decision Tree [172], Lin-
ear Classifier [172]

Infectious In-
testinal Diseases
(IID)

Word2Vec [295], Gaus-
sian Process [295]

Public Health Eng-
land

Adverse Drug
Events (ADE)

Multi-Instance Logistic
Regression [269]

Depression Non-Negative Matrix
Factorization [285],
ARIMA (Autoregres-
sive Integrated Moving
Average) [173], Simple
Statistical Analysis
[186], Stepwise Regres-
sion [286]

National Climatic
Data Center, Na-
tional Oceanic
and Atmospheric
Administration
(NOAA)

Ebola Lexicon Analysis [224],
Support Vector Machine
[224]

Back Pain Logistic Regression [149]
Vomiting TSVM [254], ARIMA

(Autoregressive Inte-
grated Moving Average)
[254]

Public Health Eng-
land

Gastroenteritis TSVM [254], ARIMA
(Autoregressive Inte-
grated Moving Average)
[254]

Public Health Eng-
land

Asthma Support Vector Machine
[78]

CDC
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Food Borne Ill-
ness

K-Nearest Neighbour
[98], Support Vector
Machine [225]

Southern Nevada
Health District
(SNHD), CDC

Earthquake Clustering [13], Bayesian
Inference [13]

Diabetes Support Vector Machine
[78]

CDC

Dental Pain Simple Statistical Analy-
sis [100]

Influenze-like Ill-
nesses (ILIs)

Clustering [61], Lexicon
Analysis [59],[154],[156],
Deep Learning (RNN)
[296], Logistic Regression
[30], Gaussian Process
[264], Deep Learning
(CNN) [296], Outlier
Detection [60], Bayesian
Inference [59],[156], Fast-
text [296], ARIMA (Au-
toregressive Integrated
Moving Average) [254],
GloVe [296], FP-Growth
[201], Trap Model [265],
Support Vector Machine
[201],[279],[30], Shal-
low MLP [108], TSVM
[254], Word2Vec [61],
Regression [279]

Penn State’s
Health Services,
Infectious Disease
Surveillance Cen-
ter, Royal College
of General Prac-
titioners (RCGP),
Public Health
England, CDC

General Health1 Support Vector Machine
[144], Lexicon Analysis
[144]

Diarrhoea TSVM [254], ARIMA
(Autoregressive Inte-
grated Moving Average)
[254]

Public Health Eng-
land

Obesity Dbscan (Clustering)
[133]

Middle East
Respiratory
Syndrome
(Mers)

Lexicon Analysis [224],
Support Vector Machine
[224]

1Generic feelings of unwellness and non-specific illness
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Pharmacovigilance

Research in pharmocovigilance focused mainly on adverse drug reactions
and events, but also investigated with recreational drug use and abuse.
Pharmacovigilance involves monitoring Twitter for signs of ill or unintended
effects and side-effects of pharmaceutical products. Usually, when study-
ing the use of Twitter to detect adverse drug reactions and events, articles
searched for a range of names obtained from a thesaurus of drugs and events,
such as the Medline Plus Drug Information [204]. However, other such stud-
ies focused on a drug for a particular disease such as HIV [3]. In addition,
studies also investigated drug habits and their effects on the population.
For example, one article studied the use of e-cigarettes and their utility
for smoking cessation [9]. Another article studied the variability of alco-
holism with time [273]. A number of the pharmacovigilance studies utilized
sentiment analysis, usually a form of supervised text classification, to aid
in their efforts [3, 204, 28]. In fact, most of the studies make use of su-
pervised learning in the form of text classification using mostly SVMs and
decision trees. Of the 19 articles in this domain, three made use of deep
learning [28, 157, 91], one employed a semi-supervised multi-instance learn-
ing approach [91] and three used unsupervised natural language processing
[28, 127, 167].

Table 3.4: Summary of statistical and machine learning methods and data
sources for pharmacovigilance using Twitter data

Public Health Issue Method Complementary Data

Smoking Bayesian Logistic Re-
gression [9]

HIV Support Vector Machine
[3], Word2Vec [28],
Doc2Vec [28], Multilayer
Perceptron [3], Decision
Tree [3], Dynamic Topic
Modeling [28]

Vaccination Semantic Network Anal-
ysis [127]

Drug Abuse Decision Tree [210], Sup-
port Vector Machine [83],
Topic Model [167], Sim-
ple Statistical Analysis
[39]

National Surveys
on Drug Usage and
Health (NSDUH)
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Adverse Drug
Reactions
(ADRs)

Conditional Random
Field [137],[157], Lexicon
Analysis [137],[196],
Deep Learning (RNN)
[91], Word Embeddings
(Glove) [91], Word2Vec
[157]

ADRMine

Adverse Drug
Events (ADEs)

Multi-Instance Logistic
Regression (Milr) [269],
Semi-Supervised Multi-
Instance (Nssm) [268],
Bayesian Inference [204],
Support Vector Ma-
chine [204],[19], Lexicon
Analysis [19]

Alcoholism Simple Statistical Analy-
sis [273]

Miscellaneous Decision Tree [92], Sup-
port Vector Machine
[126], Latent Dirichlet
Allocation [126]

Forecasting

Forecasting research studies the prediction of public health trends, as well
as means of nowcasting which is the prediction of the present state of public
health. It can be seen as a part of the syndromic surveillance effort, aimed
at predicting epidemics in order to improve crisis response. Research in this
domain is focused predominantly on ILIs. Around 67% of the reviewed lit-
erature studied ILI. However, other diseases such as dengue, gastroenteritis,
cancer and asthma were also studied [66, 254, 150, 216]. While a mix of
statistics and machine learning is used in this domain, there is a heavier
focus on statistics. In fact most studies made use of statistical techniques
like regression and time series analysis. For example, dynamic regression
was used to predict infuenza trends in Boston, USA [164]. AutoRegressive
Integrated Moving Average (ARIMA) was used to forecast influenza cases
on a city level in Chongqing, China, as well as for predicting gatroenteritis
in the UK [251, 254]. Partial differential equations were used to forecast
influenza cases on a regional level across the USA [266]. Deep learning was
also used to aid in the forecasting problem of predicting influenza cases
[152] and in the creation of SENTINEL, a software system system capa-
ble of nowcasting diseases being monitored by the US Centre for Disease
Control (CDC) [236]. Unsupervised learning was used in the form of topic
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modelling in a study aiming to predict health transition trends without any
a priori diseases [241].

Table 3.5: Summary of statistical and machine learning methods and data
sources for forecasting using Twitter data

Public Health Issue Method Complementary Data

Cancer Simple Statistical Analy-
sis [150], Linear Regres-
sion [262]

CDC

E Coli Latent Dirichlet Alloca-
tion [73], Lexicon Analy-
sis [73]

Robert Koch Insti-
tute

Vomiting TSVM [254], ARIMA
(Autoregressive Inte-
grated Moving Average)
[254]

Public Health Eng-
land

Gastroenteritis TSVM [254], Latent
Dirichlet Allocation [73],
Lexicon Analysis [73],
ARIMA (Autoregres-
sive Integrated Moving
Average) [254]

Public Health Eng-
land, Robert Koch
Institute

Asthma Decision Tree [216], Shal-
low MLP [216]

Children’s Medical
Center (CMC)

Influenze-like Ill-
nesses (H1N1)

Support Vector Regres-
sion [242]

CDC

Influenze-like Ill-
nesses

Deep Learning (RNN)
[296], Deep Learning
(MLP) [152], Fasttext
[296], Deep Learning
(CNN) [296], ARIMA
(Autoregressive Inte-
grated Moving Average)
[254],[251], GloVe [296],
Temporal Topic Model
[40], Dynamic Regression
[164], TSVM [254], Par-
tial Differential Equation
[266], Simple Statistical
Analysis [150], Autore-
gressive Moving Average
(ARMA) [2]

Boston Public
Health Commis-
sion, Public Health
England, Pan
American Health
Organization
(PAHO), Chinese
CDC, CDC
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General Health1 Temporal Ailment
Topic Aspect Model
(TM-ATAM) [241]

CDC

Dengue Simple Statistical Analy-
sis [66]

Brazilian Official
Dengue case data

Diarrhoea TSVM [254], ARIMA
(Autoregressive Inte-
grated Moving Average)
[254]

Public Health Eng-
land

Disease tracking

Disease tracking is a domain that seeks to support epidemiology by offering
insight into the spread of infectious diseases. Research in this domain is pri-
marily interested in understanding the way in which diseases spread through
a population. It looks toward not only gaining a better understanding of the
spread of diseases, but also to keep track of the public health state during
recognized outbreaks and mass gatherings which could be a breeding ground
for disease. For example, one study investigated and proposed a means of
traking flu transmission in China using Twitter [109]. Another study ret-
rospectively tracked the spread of measles during the 2015 outbreak [252].
Additionally, there was a study to detect the occurence and spread of dis-
ease symptoms which could signify a potential outbreak at a number of
British music festivals and a religious event in Mecca, Saudi Arabia [288].
Most studies in this domain made use of machine learning methods, leaning
towards supervised learning. In particular, regression learning proved popu-
lar, as two studies utilized dynamic regression and support vector regression
to track the spread of influenza [164, 242]. Another study proposed a gaus-
sian mixture regression approach to estimating the geographic origin of a
tweet for use during an outbreak [111]. There were also some studies which
used statistical analysis to obtain impressive results. One of such studies
made use of the TSIR (time-series Susceptible-Infected-Recovered) model to
understand human mobility and the spread of the dengue virus in Lahore,
Pakistan [138]. While it was rare, one study made use of semi-supervised
learning and deep learning to simulate influenza epidemics.

1Generic feelings of unwellness and non-specific illness



Chapter 3: A Scoping Review of the use of Twitter for Public Health
Research 58

Table 3.6: Summary of statistical and machine learning methods and data
sources for disease tracking using Twitter data

Public Health Issue Method Complementary Data

Measles Semantic Network Anal-
ysis [252]

CDC

Influenze-
like Illnesses
(Hemophilus)

Bayesian Inference [115] Genbank

Influenze-like Ill-
nesses (H1N1)

Semi-Superviseddeep
Learning (MLP) [294],
Support Vector Regres-
sion [242]

CDC

Influenze-like Ill-
nesses

Bayesian Inference [109],
Bayesian Inference [34],
Dynamic Regression
[164], Maximum Entropy
[34]

FluWatch, Boston
Public Health
Commission, Chi-
nese CDC

General Health1 Temporal Ailment
Topic Aspect Model
(TM-ATAM) [241]

CDC

Dengue Time-Series Susceptible-
Infected-Recovered
Model [138], Simple
Statistical Analysis [66]

Brazilian Official
Dengue case data

Miscellaneous Gaussian Mixture Re-
gression (Gmr) [111]

Map data

Geographic identification

Geographic identification is a small domain which involves the extraction
of geographical information from Twitter data and typically sees little use
alone. Rather, it is used in conjunction with other domains to improve the
efficacy of solutions or provide added benefit. It is most often used with
surveillance and disease tracking. Methods used in geograhic identification
are typically based on unsupervised learning. For example, DBSCAN clus-
tering was used to monitor and track obesity levels within the population
[133], as well as track the spread of the dengue virus [86]. Another study
utilized hot spot analysis to examine spatial patterns of depression on Twit-
ter. Some supervised learning, typically in the form of classification is also
used in geographic identification. Here, a classifier is used to predict the
location of a tweet based on some features of the tweet, usually its word

1Generic feelings of unwellness and non-specific illness
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collocations. As an example, one study in the review made use of a random
forest classifier to predict which city and province a tweet determined to
be from Canada (according to the Twitter API), was from [230]. While
geographic identification in itself is not of major use to the field of public
health, when combined with other identified public health research domains,
it offers improvements on the specificity and granularity of their results.

Table 3.7: Summary of statistical and machine learning methods and data
sources for geographic identification using Twitter data

Public Health Issue Method Complementary Data

Depression Non-Negative Matrix
Factorization (Nmf)
[285]

Dengue Time-Series Susceptible-
Infected-Recovered
Model [138], Dbscan
(Clustering) [86]

Brazilian Health
Ministry

Obesity Dbscan (Clustering)
[133]

Miscellaneous Latent Dirichlet Alloca-
tion [230], Support Vec-
tor Machine [230],[116],
Bayesian Inference [230],
Random Forest [230],
Multilayer Perceptron
[230], Gaussian Mixture
Regression (GMR) [111],
HDBSCAN (Clustering)
[116]

Map data

Our work looks toward syndromic surveillance. Syndromic surveillance
encompasses a number of these applications. Recall from chapter ?? the
definition of syndromic surveillance as the real-time (or near real-time) col-
lection, analysis, interpretation, and dissemination of health-related data,
to enable the early identification of the impact (or absence of impact) of
potential human public health threats. As such syndromic surveillance s
not only a surveillance application, but also one of forecasting and event
detection. Due to the political nature of syndromic surveillance, as a result
of it being carried out for a country or state’s population, it can also involve
geographic identification in order to delineate boundaries and observation
points of interests as needed.
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3.4 Discussion

This review aims to canvass the published literature on the use of Twitter
data for public health, highlighting popular and current research and appli-
cations. Three findings were produced from the review. First, we identified
the key application domains being studied: (i) surveillance; (ii) event de-
tection; (iii) pharmacovigilance; (iv) forecasting ; (v) disease tracking and
(vi) geographic identification. Studies were found to predominantly be con-
cerned with surveillance, event detection and pharmacovigilance. Next, the
conditions and diseases being tackled using Twitter data were identified. We
discovered a wide range of illnesses to which Twitter data is being applied to
including infectious diseases, mental health problems, environmental issues
and social issues. Finally, we mapped out the statistical and machine learn-
ing algorithms and approaches being used to process and analyse Twitter
data for public health purposes. In doing so, we observed trends in these
approaches. Bayesian learning and SVMs appear to be popular algorithms
of choice, however, in the past two years the focus seems to have shifted
towards deep learning.
While research toward using Twitter for public health has been extensive,
there exist some gaps for future research to fill. Understandably, studies are
focused on infectious diseases. In particular, the reviewed research focused
on the surveillance and detection of influenza. There is significant scope
to explore whether Twitter data is adequate to study other infectious dis-
eases. We do not expect Twitter data to be of use to the study of sexually
transmitted diseases (STDs) as such a study would rely on Twitter user-
reporting. Individuals infected with an STD may not be likely to report
this on a public platform. That being said, other infectious diseases such
as cholera could be studied. Furthermore, it would also be interesting to
see if the utility of Twitter and social media for public health extends to
non-infectious diseases, such as asthma or celiac disease. Our review did not
identify any articles that used Twitter to examine the occurrence of positive
health states/outcomes, although this might be a result of the limitations
of our scoping methodology.
It was also apparent that the reviewed studies employed a lot of supervised
learning techniques. This is somewhat understandable as the most popular
application domains were surveillance and detection, and supervised learn-
ing deals heavily with classification and prediction. The average number
of Tweets used in the reviewed studies was roughly twenty thousand. This
suggests that most of the reviewed articles had large amounts of labelled
Twitter data available to them. Such large labeled datasets lend themselves
well to supervised learning tasks. Unfortunately, such labeling could con-
stitute a sizeable effort. There could be some merit in using Twitter data
in an unsupervised manner, for positive outcomes. In fact, both approaches
may be combined, making use of Twitter data in both a structured and
unstructured way. This is what semi-supervised learning is for. Such ap-
proaches would reduce the amount of labeled Twitter data required by also



Chapter 3: A Scoping Review of the use of Twitter for Public Health
Research 61

taking advantage of the unlabeled data. Some articles were already starting
to look toward such approaches [268, 294]. However, there are very few of
these articles and they are all focused on ILI.
Furthermore, despite the rich potential for success from using Twitter data
for public health which was identifed in the literature, there were few arti-
cles describing active Twitter-based systems and/or their evaluation in an
operational context for routine public health practice. This may suggest
that it is somewhat difficult to translate research using Twitter for public
health into practice. We believe the bulk of this challenge might come from
the ethical issues involved and the lack of an ethical framework for the in-
tegration of social media into surveillance systems. That being said, public
health institutions around the world may already be using Twitter as such
a tool, and just not reporting their efforts.
It is also important to note that this review had some limitations. Con-
straints in the search methodology such as the use of broad search terms
and the exlusion of works-in-progress may have resulted in some relevant
studies being missed. However, this is a common limitation of scoping re-
views as they are intended to broadly map topics, achieving a good balance
of breadth and depth in a relatively quick time-frame [209]. As such, this
review successfully gives an overiew of the state of the field and provides
insightful analysis of the existing literature in the field. Such information
could be useful in aiding researchers, clinicians and policy makers in un-
derstanding the modern landscape of public health applications for social
media. To conclude, research into the application of Twitter data for pub-
lic health has uncovered interesting and inspiring advances, especially in
recent years, and identified gaps in the knowledge thus allowing targeted
research in the future. Overall, we see that Twitter data can be used to aid
in pubic health efforts concerned with surveillance, event detection, phar-
macovigilance, forecasting, disease tracking and geographic identification,
demonstrating positive results. With the richness of Twitter as a dataset,
together with the development of machine learning tools and their increas-
ing accessibility, we expect to see more interesting ideas and applications of
Twitter to public health.



Chapter 4

Working with Twitter Data: Extraction, Prepa-

ration and Processing

4.1 Introduction

The focus of this thesis is on the use of Twitter for syndromic surveillance.
As such, a large part of our data comes from Twitter. Twitter is a popular
free micro-blogging platform. The service allows registered members to
publish short posts called “Tweets”. It has around 275 million users [49],
with 500 million Tweets posted per day [53]. From this, we can see that
large amounts of data are produced by Twitter. This is one of the qualities
of the platform that we want to capitalise on. In order to effectively do
this, some consideration must be put into the means and manner by which
we collect, organise and utilize this data. In this chapter, we discuss the
Twitter Application Programmer’s Interface (API) and describe the ways
through which we interact with it, as well as the data we obtain. As a
starting point, we make use of the free version of the API. We go on to
highlight the preprocessing procedures used to prepare the collected raw
data for our purposes. We then discuss the transformations and processes
used to extract meaningful feature representations from the Twitter data.
We present novel means of Tweet feature extraction and representation
using emojis
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4.2 The Twitter Application Programmer’s

Interface (API)

Twitter offers 6 main classes of its API.

(i) Search API

(ii) Stream API

(iii) Account Activity API

(iv) Direct Message API

(v) Website API

(vi) Ads API

The search API is used to sample historical Tweets looking back within the
past seven days. The stream API is used to collect Tweets in real-time as
they are published. The account activity API is used to subscribe to a num-
ber of user actions, such as posting a Tweet, or following a user. It makes it
possible to keep track of the actions of up to 15 users. The direct message
API enables the automation of sending and receiving private messages and
can be used to make chatbots. The website API is used for embedding
Twitter content within a third-party website. Finally, the ads API is used
to create and target advertising campaigns towards Twitter users. Our in-
terest is in the thoughts and feelings of Twitter users. Subsequently, we
look to the Tweets posted by users. While the search and streaming APIs
make Tweets available to us, the streaming API is more befitting due to the
fact that its real-time nature is more appropriate for the task of syndromic
surveillance.

We made use the official Twitter streaming API for collecting Tweets. The
streaming API provides a subset of the Twitter stream free of charge. The
whole stream can be accessed on a commercial basis. Studies have esti-
mated that using the Twitter streaming API, users can expect to receive
anywhere from 1% of the tweets to 40% of tweets in near real-time [182].
The streaming API offers some filtering capabilities. It allows the use of
up to 400 keywords, used to filter and control the Tweets collected. It also
allows filtering by up to 50,000 user IDs and up to 25 geolocation bounding
boxes. However, with the free API, it is only possible to choose one route
for filtering (i.e. keywords, user IDs or location bounding boxes) at a time.
A breakdown of the data contained within a Tweet is shown in figure 4.2.1.
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Figure 4.2.1: Map of a Tweet as obtained from the Twitter API

4.3 Data Collection and Preprocessing

For our syndromic surveillance experiments, Tweets were collected in differ-
ent periods to account for the seasonality of the syndromes under study (i.e.
asthma/difficulty breathing), and to have a better chance of observing a sig-
nificant episode, which is largely unpredictable. Observing different periods
also enable us to monitor changes in the use of Twitter, as well as changes
in the language used on Twitter over time. We started with an Autumn
period (September 2015 to November, 2015), followed by a summer period



Chapter 4: Working with Twitter Data: Extraction, Preparation and
Processing 65

(June 2016 to August, 2016) and a winter through to mid-summer period
(January 2017 to July, 2017). We extracted Tweets in the English language
with specific keywords that may be relevant to a particular syndrome. To
generate this set of keywords we worked in conjunction with experts from
Public Health England (PHE), to create a set of terms that may be con-
nected to the specific syndrome under scrutiny, in this case asthma/difficulty
breathing. We then expanded on this set using synonyms from regular the-
sauri, as well as from the urban dictionary1 as those may capture some of
the more colloquial language used by the youth on Twitter. Examples of
our keywords are “asthma”, “wheezing”, “couldn’t breathe” etc. The full
list of keywords is included in the appendices.

Filtering by keyword can be implemented through the Twitter API by us-
ing the provided “track” parameter, followed by a comma-separated list
of phrases which will be used to determine which Tweets will be delivered
from the real-time stream. A phrase may be one or more terms separated by
spaces, and a phrase will match if all of the terms in the phrase are present
in the tweet, regardless of order and case. Hence, in the API, commas act as
logical ORs, and spaces are equivalent to logical ANDs. The tracked terms
are matched against a number of attributes of the tweet including the text
of the Tweet, expanded url and display url of links and media in the Tweet,
and screen name of the user.

10 million Tweets were retreived over the three collection periods. The
general characteristics of the collected tweets are reported in Table 4.1.
There are several attributes associated with a Tweet which are available
to our analysis and they can be seen in figure 4.2.1. Not all of the avail-
able attributes are useful for our experiments. As such, we collected only
those that could help us in our task. We collected “Tweet Id”, “text”,
“created at”, “user id”, “source” as well as information that may help us
establish location such as “coordinates”, “time zone” and “place.country”.
We stored the collected tweets using MongoDB2, which is an open source no-
SQL database whose associative document-store architecture is well suited
to the easy storage of the JSON Twitter responses.

4.3.1 Location Filtering

Syndromic surveillance is a location-sensitive activity. Being a public health
effort, agents of syndromic surveillance will usually be acting in the interest
of a nation or local government. Consequently, any efforts to employ Twit-
ter for syndromic surveillance will have to take the geographical location of

1https://www.urbandictionary.com
2https://www.mongodb.com

https://www.urbandictionary.com
https://www.mongodb.com
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Counts

Tweets 10,702,063

URLs 2,225,155

Hashtags 177,506

Emojis 3,103,598

Number of unique users 5,861,247

Number of tweets per user 4.1

Table 4.1: Information on the data corpus collected before cleaning

Tweets into consideration. Because this project is concerned with means
of using Twitter data for syndromic surveillance systems in England, we
would like to exclude tweets originating from outside England. While doing
so will yield a more useful signal, it is a non-trivial problem and an active
area of research [4]. Although Twitter users have the option to disclose their
city-level location, fewer than 14% of users do so [74], and up to 30% may
give false or fictitious locations [192]. Less than 0.5% of users turn on the
location function, which would give accurate GPS coordinate information,
owing to concerns over privacy.

The time zone, coordinates and place attributes, which we collected, can

Percentage of Tweets Containing attributes

Data Collection Period Coordinates Timezone Place

September 23, 2015 - November 30, 2015 0.30% 57.90% 2.17%

June 15, 2016 - August 30, 2016 0.29% 61.12% 2.10%

January 27, 2017 - July 31, 2017 0.21% 59.21% 1.61%

Table 4.2: Availability of geolocation attribute in collected Twitter Data

help in the geolocation of a tweet but are not always present. The time zone
attribute can be optionally set by a Twitter user as part of their Twitter
profile and may not be accurate, or may represent the user’s home loca-
tion but not that where a specific tweet originated. The place attribute is
also optional for the user to set with the same caveats. The coordinates
attribute is available when a user chooses to publish their location at the
time of tweeting from a mobile device. The coordinates attribute is the
most reliable, but only present in a small percentage of Tweets, as shown
in table 4.2. Therefore, we employ all three geolocation attributes, filtering
out tweets that do not have a UK timezone, a place in the UK or coordi-
nates in the UK.
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4.4 Data Cleaning and Preprocessing

After the data was collected, we examined its the suitability for our purpose.
In doing so, we noticed the following data quality problems, which we solved,
developing suitable pre-processing algorithms where necessary.

4.4.1 Retweets

A Retweet (sometimes abbreviated to RT) is a re-post of a Tweet. The
Retweet feature allows users to quickly share an existing post - which could
have been made by them or some other user - while also attributing creation
of the post to the original poster [76]. If some user finds a Tweet relatable,
they may decide to retweet it. This could lead to duplication in our dataset
and could result in the raising of false signals. Retweets are always of
two forms: either they contain the original post with the username of the
original poster in quotes; or they just contain the original post along with
the username of the original poster with the word “RT” preceding it or
following it. Tweets in our dataset which satisfied either of these criteria
were removed.

4.4.2 Duplicate Tweets

Even when not immediately identifiable as Retweets, Tweets containing ex-
actly the same text with maybe different URLs appended may be duplicates
and may give raise to amplified signals. Even after removing Retweets, we
noticed a significant number of duplicate Tweets of this nature, many asso-
ciated with news items or blogs. Those were dealt with by removing Tweets
that contained exactly the same text, once URLs where discounted. How-
ever, it is worth noting that it is possible for different people to express the
same sentiment with the same or very similar words, as twitter encourages
very short communication (e.g. “asthma bad” or “can’t breathe”). We also
reasoned that a user expressing a condition should only be counted once
per day for the purposes of syndromic surveillance, so we removed multiple
Tweets for the same user on a given day.

4.4.3 URLs

Some Tweets contain web links to other pages. Usually these links point
to pages which explain the content of the Tweet in more detail. However,
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Tweets containing URLs often constitute external reports (such as news
articles and blog posts), as opposed to individual reports (ie. an individual
expressing concern or opinion). Because of this, we removed URLs and
replaced them with the token “<URL>”. This not only allowed us to avoid
introducing noise to our system, but was also helped us recognize Tweets
that originate from individual user accounts as opposed to news and spam
accounts.

4.4.4 Spambots and Articles

A “bot” is the term used for when a computer program interacts with web
services that are intended for human use. It is possible to create a Twitter
account and then through the use of the Twitter API automatically post
tweets, follow other users and even send direct messages to other users.
Tweets made by such accounts are not genuine individual sentiments and
so are not of any relevance to our endeavour. News accounts and web blog
accounts which usually post links to news and blog articles fall into a similar
category and are not relevant in the context of our investigation. Tweets
made from such accounts were removed from the dataset.

To recognise those, we looked for Tweets containing a URL, and then we
check if the user had a very skewed following/follower ratio and a relatively
high number of Tweets as those characteristics may be associated with spam
accounts [276]. We trained and employed a K-Nearest-Neighbour (KNN)
[7] classifier to automatically determine which Tweets were not posted by
individuals.

Counts

Tweets 127,145

URLs 147,102

Hashtags 23,189

Emojis 36,872

Number of unique users 115,583

Number of tweets per user 5.3

Table 4.3: Information on the data corpus collected after cleaning

4.4.5 Labelling

3,500 Tweets from the first data collection period were randomly sampled
and labelled as “relevant” or “not relevant”. A Tweet was labelled as rele-
vant if it declared or hinted at an individual experiencing symptoms pertain-
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ing to the syndrome of choice - asthma/difficulty breathing. The labelling
was done by three volunteers from the computer science department of the
University of East Anglia. A first person initially labelled the Tweets. This
took approximately 1 hour per 1,000 Tweets. A second volunteer checked
the labels, and flagged up any Tweets with labels that they did not agree
with. These flagged Tweets were then sent to a third volunteer who made
the decision on which label to use. 23% of the labelled Tweets were la-
belled as “relevant” while 77% were labelled as “irrelevant”. A second set
of 2,000 Tweets, selected at random, were later labelled following the same
procedure from the third data collection period. 32% of these Tweets were
labelled as relevant and 68% were labelled as irrelevant. For the sake of
clarity, we refer to the first labelled dataset as Dataset A and the second la-
belled dataset as Dataset B. Together, these two datasets make up our total
collection of labelled Tweets, which we refer to as Dataset L. The Inter-
Rater Agreement was computed using Fleiss’ Kappa [80] which is given by
the following equation:

κ =
P̄ − Pe
1− Pe

where P̄ is the mean agreement between raters and Pe is the probability
of agreement by chance calculated from the observed data using the prob-
abilities of each rater randomly labelling a tweet as relevant or irrelevant.
The Fleiss’ kappa was chosen over other kappas due to the fact that it is
intended to be used when assessing the agreement between three or more
raters which is appropriate for our scenario. A value of 1 suggests complete
agreement while a value of 0 suggests total disagreement. We obtained a
value of 0.906 for κ.

4.5 Feature Extraction

A goal of this thesis is to develop ways of dealing with Twitter data using
semi-supervised means. Using semi-supervised methods enable us to use a
small amount of labelled data, thereby reducing the initial labelling effort
required to build a classifier. Relatively little research has gone into semi-
supervised learning for Twitter mining as was evidenced by our scoping
review in chapter 3. This is most likely owing to the fact that it is difficult
to develop useful machine learning systems with limited data. Nonetheless,
due to its merit, we set our sights on developing semi-supervised systems
for syndromic surveillance using Twitter.

Although it is possible to use any sequence of letters or language tokens to
represent text, words are often identified and used in text mining. Word n-
grams have been used successfully in language modelling and speech recog-
nition [124, 293, 203]. Words are identified and extracted after a process of
tokenisation and can then be used to represent a document by their pres-
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ence or absence without trying to retain any information on the ordering of
words or their relationship to one another. That approach is called “bag of
words” and despite its relative simplicity can work well in many text min-
ing scenarios [122]. However, some authors [18, 145, 287] have argued that
more complex features will dramatically decrease the feature space while
leading to better classification performance. More recently, deep learning
has been utilized to extract features from raw text data. Word embed-
dings (sometimes referred to as word vectors) are a powerful distributed
representation of text learned using neural networks. Word embeddings are
often used to encode semantic information of texts in dense low-dimensional
vectors, and have been shown to perform well in similarity-based tasks [117].

Classification of Tweets may be challenging as they are texts which are
usually very short in length. Furthermore, in our scenario, the classes may
share common vocabularies. That is, both relevant and irrelevant Tweets
contain the same words. Twitter has specific language and styles of commu-
nication that people use. In particular, we found that emojis and emoticons
are promising additional tokens that we could exploit in classification:

• An emoticon is a pictorial representation of a facial expression using
punctuation marks, numbers and letters, usually written to express a
person’s feelings or mood. :-) is an example of an emoticon.

• Emojis on the other hand are miniature graphics of various objects
and concepts including facial expressions. is an example of an
emoji.

Emoticons have previously been used successfully as features for Tweet clas-
sification performance in sentiment analysis, as well as syndromic surveil-
lance [145]. In a pragmatic sense, emojis can be used for the same pur-
poses as emoticons. However, emojis have seen a recent surge in popularity,
presumably due to the fact that emojis provide colourful graphical repre-
sentations, as well as a richer selection of symbols [161]. In fact, as table
4.1 shows, we observed a large number of emojis in our corpus. A fur-
ther advantage of emojis is that while emoticon use can differ around the
world, emoji features are less variant. Take for example the crying emoti-
con. In Western countries, it is usually represented by :'( or :'-(. In Asian
countries, “kaomoji”, which refers to emoticons depicting faces and made
from a combination of Western punctuation characters and CJK (Chinese-
Japanese-Korean) characters, are more popular than regular emoticons [22].

An example of a popular kaomoji is “ ”. Now, using the earlier
example of the crying face, we could now also expect to see (T T) for the
same concept. Emojis on the other hand are a predefined set of unicode
characters. Even though they may be rendered differently on different de-
vices, the underlying mapping between a concept and an emoji remains the
same. In this sense, emojis may transcend language barriers. In light of
these observations, we extended existing emoticon feature techniques with
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the inclusion of emojis.

We believe that emoticons and emojis can help with assessing the tone of a
tweet. Tweets which we are interested in, will most likely have a negative
tone as they reflect people expressing that they are unwell or suffer some
symptoms. This means that they may contain one or more sadness, anger
or tiredness-related emojis/emoticons, for example. On the other hand, the
presence of emojis/emoticons denoting happiness and laughter in a Tweet
may be an indication that it is not relevant to our context of syndromic
surveillance. In this section, we explore different avenues for feature ex-
traction and representations for our Tweets, including but not limited to
complex features derived from ideas such as emojis.

4.5.1 Word Classes

Word classes are labels that Lamb et al. [145] found useful in their efforts
to analyse Tweets and categorise them as related to infection or awareness.
The idea behind word classes is that many words can behave similarly with
regard to a class label. A list of words is created for different categories such
as “possessive words” or “infection words”. Word classes function similarly
to bag of word features in that the presence of a word from a distinct class in
a Tweet triggers a count based feature. We manually curated a list of words
and classes which are shown in table 4.4. As we applied lemmatisation, we
did not include multiple inflections of the words in our word classes.

Word Class Member Words

Infection sick, down, ill, infect,
caught, recover

Possession have, contain, contami-
nated, my

Concern awful, worried, scared,
afraid, terrified, fear, sad,
unhappy, feel

Humour laugh, ha, haha, hahaha,
lol, lmao, rofl, funny, hilari-
ous, amused

Symptomatic runny nose, cough, spray,
shots, wheezing, mucus,
cold

Table 4.4: Our list of word classes with their member words
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4.5.2 Positive and negative word counts

We constructed two dictionaries of positive and negative words respectively.
These dictionaries are included in the appendix. For every tweet, the num-
ber of positive words and negative words contained within it is computed.
Our manually curated dictionaries are used as a reference point for which
words are positive or negative. Words which do not appear in either of our
dictionaries are not counted. This is because our dictionaries are concerned
specifically with positive and negative words which are likely to appear in
the context of health. In essence, this feature produces two figures for ev-
ery tweet - a positive count and negative count. Our hypothesis is that
tweets which contain more negative words than positive words are likely to
be relevant in the sense that they are an individual reporting symptoms
or expressing concern over a syndrome. It is then the duty of our learning
algorithm to learn a matching between ratios of positive to negative counts
to tweet relevance.

4.5.3 Indicates Asthma Possession

This feature tests for the presence of the word “asthma” in close prox-
imity together with a personal pronoun. In particular we check for close
proximity with “i’m”, “im”, “my”, “i”, “am” and “me”. The aim of this
feature is to determine when a tweet has a user reporting concern over their
condition and distinguish this from a tweet where a tweet just happens
to mention asthma. For some perspective, only 44% of the Tweets in the
dataset contain the word “asthma” and 35% of these Tweets are relevant.
When applied to the dataset, the feature had a value of “True” in 8% of
the dataset, and of this 8%, 53% were relevant. As such, this feature shows
that it is better to check that a tweet contains “asthma” used in a particular
way than to just check whether a tweet contains “asthma”, and is one we
decided to investigate.

4.5.4 Contains “Asthma-Verb” Conjugate:

This is a very specific feature to our syndrome. A verb conjugate is a form
of a verb derived from its base-form according to the rules of grammar, due
to a change in person, tense, number or other grammatical categories [202].
Contains “Asthma-Verb” Conjugate is a syntactic binary feature which is
concerned with whether or not there is a verb form appearing with the
word asthma (or its symptomatic words) as its object. For example, the
Tweet “I can’t believe I’m only just recovering from my asthma attack”
contains the word asthma used as the object of the verb recover, while the
Tweet “People with asthma shouldn’t come to school” sees it being used as
part of the subject of the verb. The WordNet3 interface of NLTK (Natural

3https://wordnet.princeton.edu

https://wordnet.princeton.edu


Chapter 4: Working with Twitter Data: Extraction, Preparation and
Processing 73

Language ToolKit) was used to perform Part of Speech (POS) tagging in
order to extract these type of features. NLTK is a platform for building
Python programs to work with human language data. As the same words
may appear in both classes, it can sometimes be problematic to rely solely
on features based on the presence or absence of a word. We hypothesize
that using syntactical features may help us alleviate such issues.

4.5.5 Denotes laughter:

This is a simple binary feature which measures the presence of an emoji
and/or emoticon that might suggest laughter or positivity. We manually
curated and saved a list of positive emojis/emoticons for this. The usefulness
of this feature was augmented by also checking for the presence of a small list
of more established and popular internet slang for laughter or humour such
as “lol” or “lmao” which stand for “Laughing Out Loud” and “Laughing
My Ass Off” respectively.

4.5.6 Negative emojis/emoticons:

This is similar to the Denotes Laughter feature but this time looking at
the presence of an emoji or emoticon that can be associated with an illness
or the symptoms that it may bring, i.e. negative emotions. We decided
to include these features because we discovered the ubiquity of emojis on
Twitter and wanted to investigate their potential. Table 4.5 shows this
feature’s distribution over the data. We find that this feature may be the
most discriminative of the two emoji-based features. Of the instances with
a positive value, a high percentage belong to the “relevant” class and of
the instances with a negative value, a high percentage belong to the “not
relevant” class.

For each tweet, we can append all of the above features together to
form one feature vector. Each Tweet Ti is therefore represented by an f
dimensional vector, where f is a sum of the number of terms, n, in the
constructed vocabulary, and the dimensionalities of our custom features C
(Word Classes, Positive and Negative Word Counts, Contains Asthma-Verb
Conjugate, Indicates Asthma Possession, Denotes Laughter and Negative
Emojis/Emoticons). This gives us

Ti = {ti1, ti2, ..., tin} ∪ {C1
i } ∪ {C2

i } ∪ {C3
i } ∪ {C4

i } ∪ {C5
i }

where tij represents the weight of the j-th vocabulary term in the i-th Tweet
and Ck

i represents the value of the k-th custom feature in the i-th Tweet.
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Class Distribution

Feature Value Distribution Relevant
Not

Rele-
vant

Contains Asthma-Verb Conjugate
TRUE 20.9% 45.6% 54.4%

FALSE 79.1% 18.9% 81.1%

Indicates Asthma Possession
TRUE 8.3% 53.6% 46.4%

FALSE 91.7% 20.1% 79.9%

Denotes Laughter
TRUE 3.9% 31.8% 68.2%

FALSE 96.3% 24.2% 75.8%

Negative Emojis/Emoticons
TRUE 5.5% 74.8% 25.2%

FALSE 94.5% 21.6% 78.4%

Table 4.5: Distribution of constructed features and classes across the dataset

4.5.7 Text Embeddings

Text embeddings are models which learn a mapping from a set of words
and/or phrases to numerical vectors. Word embeddings map words to dense
distributed low-dimensional vectors. While training a neural network for
some task, and estimating its weights and biases, we can also implicitly
learn/estimate embeddings for words in a vocabulary. In this embedding
space, similar words are close to each other. For example, the vector for ‘dog’
should be close to the vector for ‘puppy’. This representation will allow us to
perform interesting vector operations such as kitten−cat+dog ≈ puppy.
This means that semantic information can be inferred from the vectors as
opposed to merely syntactical or count-based information. In addition, such
vectors are of a fixed size that is independent of the vocabulary size. A word
vector can have a length of 200 or some other arbitrary size selected based
on trial or error or some other heuristic. This reduces dimensionality and
saves significant computational and memory overheads.

There are two algorithms which have seen widespread use for computing
word vectors. The first is word2vec [177] which has two different archi-
tectures namely Skipgram and Continuous Bag-Of-Words (CBOW). The
second is Global Vectors for Word Representation (GloVe) [205]. We built
our word vectors on a set of 5 million unlabelled Tweets collected without
any keyword restrictions. Our implementations were tested on similarity by
using a random sample of words, converting them to word vector space and
determining the words most similar to each of them, as the words whose
vectors were closest to the vectors of the query words. Table 4.6 shows the
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Word Similar Words

china tourists, demonstration, de-
scent, 247, germany, octo-
bers, hgv, round

kids lowest, action, syrup, w,
birth, tapped, 43, till

controversy breathenncos, againlol,
#hypocrite, weightlifter,
maseratis, #wemissboris,
#americasnexttopmodel,
defended

fit mad, sext, 2hrs, blurred,
ellen, helped, impotent,
blocked

obese #londonsair, , cops,
#euref, included, choking,
scientifically, suffer

Table 4.6: A random sample of words and their 8 most similar words as
computed from a Twitter dataset using Skipgram embeddings.

results of our Skipgram word vector model. For some of the words (e.g.
China and demonstration or China and hgv or hypersonic glide vehicle) the
connection is somewhat obvious, whereas for others, it is more opaque. We
also see that this approach can establish connections between words and
hashtags or emojis giving more possibilities for expanding vocabularies.

While we have word embeddings, the data we are dealing with is largely
in the form of Tweets, which are collections of words. This means that we
still need to combine the word vectors within a Tweet in a meaningful way,
which preserves the useful semantic relationships between constituent words
such that we obtain a powerful understanding of the Tweet as a whole. One
way of achieving this is by computing the mean of the word vectors in a
text, and using that mean vector to represent the text as a whole. How-
ever, in this way, we lose some of the positional information of the text.
An alternative is to concatenate the vectors, but this does not represent the
complex relationships between the different words particularly well. A more
involved solution would be to learn vectors for entire documents. From an
NLP point of view, we can view a Tweet as a document. For the construc-
tion of vector representations for documents, there are models which are
extensions to the word embedding models that we can adopt. One such
model is paragraph2vec [147] which is an extension of the word2vec model.
While word2vec has the Skipgram and CBOW variants, paragraph2vec ex-
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tends them to the Distributed Memory Paragraph Vectors (PV-DM) and
the Distributed Bag of Words Paragraph Vector (PV-DBOW). We imple-
mented both variants of the paragraph2vec model, building them from the
same Twitter dataset that the word2vec models were built. We tested our
paragraph2vec models by way of similarity as before. Table 4.7 shows the
results obtained from our PV-DM paragraph2vec model. Again, we can ob-
serve that some meaning and semantic similarities are being captured by this
approach. We built our text embeddings from our around 5 million Tweets.

Tweet Similar Tweets

do you know an
elderly person
with a bad
cough trouble
breathing a cold
or sore throat
get advice from
nhs direct before
it gets worse

might go to ca-
sualty and see if
i can get an in-
haler worth a try
anyway

<usermention>
i know a few
with asthma and
peanut allergies

usermention but
what is that i
cant even
breathe

i cant breathe
what even

usermention
hannah im
wheezing i dont
even need the
translation

Table 4.7: A random sample of Tweets and their 2 most similar Tweets as
computed using PV-DM embeddings.

We experimented with different hyperparameters when building our embed-
dings and report the best performing combination. Our word vectors were
built using a neural network with the following hyperparameters: We used
batch sizes of 128, context windows 1 word wide. For learning weights we
used a cross entropy loss function with an Adagrad optimizer[270] with a
learning rate of 1.0 and ran the optimization for 100 epochs. As for our
document vectors, they were built using the popular gensim python library.
Similarly, we used a batch size of 128 and a window size of 1. The document
embedding models were trained for 100 epochs.
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4.6 Summary

In this chapter, we described the Twitter API and its workings. We ex-
plained how we made use of it to collect Tweets in real-time for analy-
sis and syndromic surveillance. We described the data contained within a
Tweet and performed some content analysis on our collected Tweets. We
found that emoji use was ubiquitous among Tweets. We developed and
implemented a number of compound features from the data. One of these
features took a novel approach, making use of emojis in its computation. We
also implemented popular text embedding features using our large volumes
of data. Following this, we look towards employing our extracted processed
data in its different feature representations.



Chapter 5

Experimental Methodology: Semi-supervised Clas-

sification for Relevance Filtering

5.1 Introduction

In order to assess the utility of Twitter for syndromic surveillance, we must
be able to efficiently extract a relevant signal from it. To achieve this, we
must be able to effectively identify and extract Tweets expressing discom-
fort and/or concern related to a syndrome of interest, and reflecting cur-
rent events. Simply relying on keyword-based data collection, many of the
tweets collected are not be relevant because they represent chatter, or talk
of awareness instead of suffering a particular condition. Using the keyword
filtering capabilities of the Twitter API during data collection as described
in chapter 4, we get rid of a large portion of irrelevant Tweets. However,
most of the Tweets we collect may mention keywords such as “asthma”, “air
pollution” or “wheeze”, but may not necessarily be relevant in that they do
not represent a user expressing discomfort. For some context, examples of
Tweets containing the keyword “asthma” include “oh I used to have asthma
but I managed to control it with will power” or “Does your asthma get worse
when you exercise?”. However, we do not consider these Tweets relevant.
On the other hand, Tweets such as “why is my asthma so bad today?’ ’ ex-
press a person currently affected and we would like to consider such a Tweet
as relevant. In light of this, we set out to automatically identify relevant
tweets to collect a strong and reliable signal.

We look at the problem of relevance filtering as a text classification task. In
particular, we focus on semi-supervised techniques. We are able to collect
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large amounts of Twitter data with relative ease. In this work, we have hun-
dreds of millions of Tweets. We are only able to label a minuscule percentage
of this data. Semi-supervised learning will not only reduce the labelling bur-
den, but also allow us to capitalize on the vast amounts of data available to
us. In this chapter, we discuss the semi-supervised classification algorithms
that we developed and applied to our Twitter data. We also investigated
the capacity of deep learning as a solution to the relevance filtering problem.
We apply the feature representations put forward in chapter 4 in order to
prepare the data for manipulation by the classification algorithms.

5.2 Iterative Labelling Algorithms

Iterative labelling algorithms refer to a family of semi-supervised techniques
which select and label unlabeled data in an iterative process [94]. In par-
ticular, we make use of self-training, and describe our own incarnation of
the algorithm. We then build on our self-training approach, extending it in
order to make it more robust through co-training.

5.2.1 Self-Training

Self-training is an iterative labelling algorithm that is closely related to, and
is essentially an extension of the Expectation-Maximization (EM) algorithm
put forward by Dempster et al. [70]. It is a sort of meta-algorithm which
uses a data set S of labelled instances L, unlabelled instances U , and a
supervised learning algorithm A with

S = {L ∪ U}

Self-training aims to derive a function f which provides a mapping from S
to a new dataset S ′:

f(S,A) = S ′ ↔ {L′ ∪ U ′ } | |U ′| ≤ |U |, |L′| ≥ |L|

Such an algorithm can be defined simplistically as an iterative execution of
three functions: Choose-Label-Set(U,L,A) selects and returns a new set,
R, of unlabelled examples to be labelled; Assign-Labels(R,A) generates
labels for the instances selected by Choose-Label-Set(U,L,A); Stopping-
Condition(S, S ′) dictates when the algorithm should stop iterating. For
our choice of supervised learning base-algorithm, we selected the Multilayer
Perceptron (MLP) classifier after experimenting with different supervised
models and finding it to perform best. We used the trained MLP clas-
sifier’s predictions to label previously unlabelled instances in the Assign-
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Algorithm 1 Iterative labelling Algorithm

1: function TrainClassifier(A, L)
2: return A(L)
3: end function
4: function Iterativelabelling(U , L, A)
5: repeat
6: A← TrainClassifier(A, L)
7: R← Choose-Label-Set(U, L, A)
8: R′ ← Assign-Labels(R, A)
9: U ← Replace-Instances(U, R′)

10: S ′ ← R′ ∪ L ∪ U
11: until Stopping-Condition(S, S ′) = True
12: end function

Labels function. We set our stopping condition such that the iteration
stops either when all the unlabelled data is exhausted or when there begins
to be a continued deterioration in performance with the labelling of more
data. Along with the class of an applied instance, we also compute the
model’s confidence in its classification. Our algorithm, inspired by Trun-
cated Expectation-Maximization (EM) [148], then grows the labelled set,
L, based on the confidence of our model’s classification. When an instance
from R is classified, if the confidence of the classification is greater than some
predetermined threshold θ, the instance is labelled. With this in mind, our
algorithm falls within the confidence-based category of iterative labelling
algorithms because it selects instances for which the trained classifier has a
high confidence in its predictions.

Confidence-based iterative labelling algorithms can tend toward excessively
conservative updates to the hypothesis, since training on high-confidence ex-
amples that the current hypothesis already agrees with will have relatively
little effect [70]. Furthermore, it has been proven that in certain situations,
many semi-supervised learning algorithms can significantly degrade the per-
formance relative to strictly supervised learning [50, 211]. Because of this,
we make extra considerations around our self-training algorithm, extending
it using co-training.

5.2.2 Co-Training

To address the issues associated with self-training, we take some ideas from
co-training [24]. Co-training requires different views of the data so that
multiple classifiers can be maintained for the purpose of labelling new in-
stances. Recall that each Tweet can be represented as a feature vector Ti
containing various features. We now distinguish two representations. The
first is a concatenation of our n-grams, Word Classes, Denotes Laughter
and Negative Emojis/Emoticons features. We represent this feature space
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as X1. The second kind of feature vector is a concatenation of our n-grams,
Positive and Negative Word Counts, Denotes Laughter and Negative Emo-
jis/Emoticons features. We represent this feature space as X2. We can
think of X1 as the taxonomical feature space as is characterised by its
inclusion of the Word Classes feature while X2 can be the sentimental
feature space and this is characterised by its inclusion of the Positive and
Negative Word Counts feature. As such, X1 and X2 offer different, though
overlapping, views of the dataset. Each tweet is then represented as a fea-
ture vector from each of these spaces.

With this setup, we now maintain two separate classifiers trained on differ-
ent views of the data. During the iterative labelling process, we only label
instances for which at least one of the classifiers has a high confidence in
its prediction, and take the result of that classification as the label. Sim-
ilar to self-training, at the end of each iteration, the newly labelled data
is incorporated into each of the classifiers to update their hypotheses. On
completion of the iterative labelling process, the prior training examples for
both classifiers, as well as the newly labelled examples are joined together
and used to train a new classifier using all the features which will then be
applied in practice. The benefit of co-training is that the instances labelled
by one classifier are also presented to another classifier to update the hy-
pothesis on a complementary view. Thus, the examples, as represented in
each view, receive at least some of their labels from a source other than the
classifier that will be updated with them.

5.3 Generative Classification Network

We investigate the use of deep neural networks for our task. According
to the universal approximation theorem, deep neural networks are univer-
sal function approximators. The universal approximation theorem states
that a feed-forward network with a single hidden layer containing a finite
number of neurons (i.e. a multilayer perceptron), can approximate contin-
uous functions on compact subsets of Rn, under mild assumptions on the
activation function. It has been shown that it is not the specific choice of
the activation function, but rather the multilayer feedforward architecture
itself which gives neural networks the potential of being universal approx-
imators [105]. With all this in mind, we introduce adifferent approach to
text classification and relevance filtering obtained from combining machine
learning techniques - the Generative Classification Network (GCN).
The GCN is a sem-supervised text classification algorithm that makes use
of neural language models built on both labelled and unlabelled data to
perform classifications.

Given a sequence of words, neural language models predict the probabil-
ity of a word occurring next given the previous words. They also allow us
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to measure how likely a sentence is. However, these models can also be used
in a generative context. That is, they can be used to generate new texts by
sampling from the output probabilities. GCNs take advantage of this, and
classify texts in a semi-supervised manner.

5.3.1 Architecture

The Generative Classification Network relies on two or more generative
neural models. Recurrent Neural Networks (RNNs) are a category of neu-
ral networks that incorporate sequential information, and are well suited
to language modelling [170]. While in a traditional neural network, inputs
are independent, in RNNs each node depends on the output of its preceding
node. This is particularly useful for sequential data, such as text, where each
word depends on the previous one. While in theory, RNNs can make use of
information in arbitrarily long lengths of text, practically speaking, they are
limited to looking back only a few steps due to the vanishing gradient prob-
lem which occurs during the back-propagation algorithm. When tuning the
parameters of the network, due to long sequences of matrix multiplications,
gradient values shrink fast and gradient contributions from earlier neurons
become zero. As a result of this, information from earlier inputs (words in
the text) do not contribute to the overall algorithm. Long Short Term Mem-
ory (LSTM) networks are a flavour of the RNN architecture which make
use of a gating mechanism to combat the vanishing gradient problem. In
our implementation, we make use of LSTM RNNs for our generative neural
language models. A regular neural network would simply consist of a single
layer with an activation function which is related to the output as below,
where wi represent the weights and ai the inputs for all L layers:

φ =
L∑
i=1

wi · ai (5.3.1)

y = tanh(φ) (5.3.2)

The LSTM model adds some complexity to the regular neural network ar-
chitecture. The LSTMs we used for our generative model contained only
one LSTM layer. The network has an input layer x, hidden layer h, LSTM
cell state c and output layer y. Input to the network at timestep t is x(t),
output is denoted as y(t), hidden layer state is h(t) and LSTM cell state is
c(t). The LSTM cell state is controlled by the gating mechanism as high-
lighted above briefly. Each cell consists of the following gates which interact
with each other to dictate the overall cell state:

• input gate (i)

• forget gate (f)
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• write gate (g)

• output gate (o)

Each of these gates has its own weights and biases and is a function of the
previous timestep’s hidden state h(t − 1). The hidden state of a layer can
then be computed as a function of the cell state as shown below:

c(t) = f(t) · c(t− 1) + i(t) · g(t) (5.3.3)

h(t) = o(t) · tanh(c(t)) (5.3.4)

For the sake of brevity and simplicity of our equations, let us assume that
there is only one hidden layer l so that we do not have to specify different
equations for the different edge cases that would come with multiple layers,
such as when execution is in the first layer and has no previous layer or when
it is in a middle layer or the final layer. In the real world scenario, this is
not the case as each hidden layer state is influenced by the hidden state in
the previous timestep as well as the state of the previous hidden layer. To
adapt this, one may simply add the product of the weights and input of the
previous layer to each activation function. The activation functions for the
gates are computed as:

f(t) = sigmoid(Wxf · xt +Whf · ht−1 + bf ) (5.3.5)

g(t) = tanh(Wxg · xt +Whg · ht−1 + bg) (5.3.6)

i(t) = sigmoid(Wxi · xt +Whi · ht−1 + bi) (5.3.7)

o(t) = sigmoid(Wxo · xt +Who · ht−1 + bo) (5.3.8)

where Wpq are the weights that map p to q and bp refers to the bias vector
of p. For example, if we look at equation 5.3.5, Wxf refers to the weights
going from input x to the forget gate f and so on while bf refers to the bias
of the forget gate f .

Our language models were trained on the word level using GloVe vectors
to represent each word. Our models predicted the next single word for an
input of three words. Our models were 512 layers deep with a learning
rate of 0.001. The model for the irrelevant class had more epochs and was
trained over 40,000 iterations while that of the relevant class was trained
over 17,500 iterations. We did this because there were a lot more irrelevant
tweets than relevant tweets. This meant that the irrelevant model had more
data to be built on than the relevant model, so couldn’t be trained in the
same way in order to avoid overfitting one class.
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5.3.2 Algorithm

The generative classification network employs neural language models for
the purpose of text generation. For each class c ∈ C, a language model
Mc is constructed from the unlabelled text and texts pertaining to that
class. Recall that a language model predicts the probability of a piece of
text (essentially a sequence of words) occurring. Given a test text with an
unknown class, each of these language models can then be applied to this
text in order to predict how probable it is for that text to occur within the
context of the language model which is concerned with a particular class.
The class c of the model Mc which yields the highest probability should be
assigned to the test text. Note that in our problem scenario, a ‘text’ refers
to a Tweet, but this algorithm may be applied to other problems so we gen-
eralise our descriptions by using ‘text’, which simply refers to an arbitrarily
long sequence of words.

More formally, we can define the algorithm given the set of labelled texts L
and unlabelled texts U and the set of classes C with k possible classes.

C = {c1, c2 . . . ck} (5.3.9)

L is partitioned into k disjoint sets with each disjoint set containing only
texts labelled to a particular class.

L = Lc1 t Lc2 t . . . t Lck (5.3.10)

For each class c, language models Mci are built using labeled texts with
that class’ label and the unlabelled texts.

∀Lci i∈{1,...,k},Mci = LSTM(U,Lci) (5.3.11)

The probability of a given text x belonging to a class ci is equal to the
probability with which a language model Mci predicts the text as likely. We
can then assign a class to x as shown below:

P (ci) = P (x|ci) = Mci(x) (5.3.12)

c = argmaxi∈{1,...,k}P (ci) (5.3.13)
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5.4 Attentive Bi-directional Recurrent Neu-

ral Network

Much of the difficulty in classifying Tweets comes from the fact that they are
usually very short texts. Most popular text classification algorithms expect
rich informative texts as input. For this reason, we propose an attention-
based approach to short text classification, which we have created for the
practical application of Twitter mining for syndromic surveillance. We rea-
son that with the lack of surplus of (informative) words, it is useful for our
models to know which words or regions of text are important, particularly
with regards to informing the relevance of a Tweet.

Traditional text classification approaches assume that independent key-
words or phrases are important to the text category and extract vector
features representing those keywords or phrases using statistical methods
[234].These methods generally yield successful results but the assumption
is an oversimplification that brings some shortcomings. While independent
keywords and phrases are important, there are other linking words which
also give meaning to a text. The way words relate can provide context
and disambiguation and without this, we potentially lose some information.
Recently, deep-learning-based methods have seen a lot of success for text
classification. This is largely due to the fact that such methods can auto-
matically and effectively learn underlying features and interrelationships in
data. But while deep learning models have seen widespread success, they
treat all the words in a text as blocks of input without giving any words or
phrases special treatment. We would like to leverage the advantages of both
the classical text categorization approaches, which employ keywords, and
the modern deep learning approaches, which learn underlying relationships,
for text classification.

We experiment with a bi-directional Recurrent Neural Network architec-
ture with an attention layer (termed ABRNN) which allows the network
to weigh words in a Tweet differently based on their perceived importance.
We further distinguish between two variants of our ABRNN based on the
Long Short Term Memory and Gated Recurrent Unit architectures respec-
tively, termed the ABLSTM and ABGRU. We combine the self-learning and
intrinsic pattern recognition capabilities of deep learning, with the use of
keywords in classification that is typically employed by traditional classifi-
cation methods.

In this section, we describe the proposed attention-based RNN. The model
can be broken down into four parts:

1. Word Embedding : This step vectorises the Tweet. It involves map-
ping each word in the Tweet to a fixed-dimension word embedding.
In our work, we make use of GloVe embeddings which we build from
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a large unlabelled corpus of Tweets.

2. RNN : Takes the output of the previous step as input. The RNN
learns high level features from the given input.

3. Attention Layer : Produces a weight vector which it uses in con-
junction with the output states of the RNN to form a new Tweet
representation.

4. Classification : The attention-powered vector representation of the
Tweet is fed into a classifier to obtain a prediction

Figure 5.4.1: Attention-based RNN model

Figure 5.4.1 illustrates the architecture of our attentive RNN model.
Each component of the model will subsequently be explored in more detail
below.

5.4.1 Word Embeddings

Word embeddings as described in chapter 4, (sometimes referred to as word
vectors), are a powerful distributed representation of text learned using
neural networks that have been shown to perform well in similarity tasks
[118]. They encode semantic information of words in dense low-dimensional
vectors. After we build a word embedding model, an embedding matrix
X of size |V | × d is produced where V is the set of all the words in our
vocabulary and d is the dimension of each word embedding. Given a Tweet
T consisting of n words, T = {w1, w2, ..., wn}, each word wi is converted to
a real-valued vector xi by performing a lookup from the embedding matrix
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X. For this work, we built GloVe embeddings [206] from a set of 5 million
unlabelled Tweets.

5.4.2 Bi-directional Recurrent Neural Network

Similarly to the generative classification model (GCN) described in section
5.3.1, this model makes use of RNNs. Recall the vanishing gradient prob-
lem which plagues RNNs and can be solved by a number of flavours of the
RNN architecture which make use of gated mechanisms. In section 5.3.1,
we make use of LSTMs as a workaround for the vanishing gradient problem.
In our attentive bi-directional RNN model, we again make use of LSTMs,
but also employ Gated Recurrent Unit (GRU) RNNs. The GRU is another
solution for the short-term memory problem that simple RNNs possess,
where they cannot properly update and learn weights for earlier inputs in
a sequence. LSTMs and GRUs are very similar, the main difference is that
GRUs have less parameters than LSTMs. As such, GRUs are faster and
have been observed to exhibit better performance on some smaller datasets
[45]. However, LSTMs have been shown to be better at learning in general
[272]. We have already described LSTMs in detail in section 5.3.1. We will
now describe the GRU flavour of the RNN.

Gated Recurrent Unit (GRU) Again, for the sake of brevity and sim-
plicity of our equations, let us assume that there is only one hidden layer
l. The GRU cell state is controlled by a gating mechanism, similar to the
LSTM. Each cell consists of the following gates which interact with each
other to dictate the overall cell state:

• update gate (z)

• reset gate (r)

The gates can be formalised as follows:

z(t) = sigmoid(Wxz · xt +Wz · ht−1 + bz) (5.4.1)

r(t) = sigmoid(Wxr · xt +Wr · ht−1 + br) (5.4.2)

The hidden state of a layer is computed as a function of the input and gates
as shown below:

h(t) = z(t) ·h(t− 1) + (1− z(t− 1)) · tanh(Wx + r(t) ·Wh ·h(t− 1)) (5.4.3)

where Wpq are the weights that map p to q and bp refers to the bias vector
of p. For example, if we look at equation 5.4.1, Wxz refers to the weights
going from input x to the update gate z and so on, while bz refers to the
bias of the update gate z and Wz refers to the weights for the update gate
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itself.

Bi-directional Networks The above RNNs process sequences in time
steps with subsequent time steps taking in information from the hidden
state of the previous time steps. This means that they ignore future con-
text. Bi-directional RNNs (Bi-RNNs) extend this by adding a second layer
where execution flows in reverse order [231]. Hence, each layer in a Bi-RNN
has two sub-layers: one moving forward in time steps and one moving back-
wards in time steps. To compute the hidden state h(t) of a Bi-RNN layer,
we perform an element-wise sum of the hidden states computed from both
its sublayers:

h(t) =
−−→
h(t)

⊕←−−
h(t) (5.4.4)

where
−−→
h(t) and

←−−
h(t) are the hidden states of the forward and backward

traversals of the bi-directional RNN.

5.4.3 Attention

In this section, we describe the attention mechanism used. The Bi-RNN
layer takes in a sequence of vectors for each of the words in an n-worded
Tweet {x1, x2, ..., xn}, resulting in hidden states {h1, h2, ..., hn} where hi
is a vector derived from equation 5.4.4. That is, the hidden state of the
Bi-RNN for the ith word, wi, is hi. Let H be the matrix containing these
vectors such that H ∈ Rk×n where k is the number of neurons in the hidden
layer. A Tweet representation t can be derived by taking a weighted sum
of the hidden vectors with the attention weight for the relevant words. We
represent the attention weights as α, such that αi represents the attention
weight for wi. α is obtained from trainable parameters and so is adjusted
as the optimization algorithm trains the network. We have:

M = tanh(H) (5.4.5)

α = softmax(wTM) (5.4.6)

t = MαT (5.4.7)

where w is a trainable parameter in the network and wT is its transpose. w,
α and t have the dimensions k, n and k respectively. Finally, the hyperbolic
tangent function (tanh) is applied to t, the Tweet attention vector, in order
to squash it between the range [-1,1] and make it easier to train with the
network:

t∗ = tanh(t) (5.4.8)
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5.4.4 Softmax Layer

Once the new attention-based representation for the Tweet has been ob-
tained, it is passed to a softmax classifier to make the class prediction. The
softmax layer predicts a class y from a discrete set of m classes Y by calcu-
lating the probability with which the observed Tweet belongs to each class,
P (y|T ), and assigning that Tweet the class for which the highest probability
was observed. In more formal terms, we have:

P (y|T ) = softmax(Wst
∗ + bs) (5.4.9)

y = argmaxyP (y|T ) (5.4.10)

where Ws represents the softmax classifier network weight and bs represents
its bias term. The loss function we used to train the entire network was the
cross entropy loss function [32]:

L = − 1

m

m∑
i

eilog(oi) (5.4.11)

where L estimates the loss between the observed and expected values. e is
a one-hot encoded vector of the ground truth for t and o is the probability
of each class being the target according to the softmax classifier.

The hyperparameters of the attention networks were selected using grid
search. The dimension of our word vectors d was 200. The hidden layer
size k was also 200. The learning rate of the optimization algorithm was
0.001. The dropout rate was set to 0.3 and the networks were trained for
50 epochs. The other parameters such as weights and biases were initialised
randomly.

5.5 Evaluation and Performance Metrics

5.5.1 Model Evaluation

Accuracy is a statistical measure of how well a binary classifier correctly
makes a prediction [176]. Simply put, accuracy is the proportion of cor-
rect results among the total number of cases examined and is computed as
follows:

Accuracy =
TP + TN

TP + FN + TN + FP
,
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where
TP is the number of true positive cases;
FN is the number of false negative cases;
FP is the number of false positive cases;
TN is the number of true negative cases.
Accuracy can be a misleading measure [263], as it may only be reflecting the
prevalence of the majority class. This is known as the accuracy paradox. It
means that we could get high values of accuracy by classifying all Tweets as
irrelevant (the majority class). This would, however, not improve our sig-
nal. Our goal to identify Tweets which might suggest an increase in cases
for a particular syndrome, asthma/difficulty breathing, for the purpose of
syndromic surveillance. The signal for some syndromes can be quite weak
as not many cases may occur at a national level and even less may be talked
about on Twitter. Because of this, we are very concerned with identifying
and keeping instances of the positive class (i.e. relevant Tweets). We would
indeed like to reduce the number of irrelevant Tweets, but not at the ex-
pense of losing the relevant Tweets. This means that for our classifier, errors
are not of equal cost. Relevant Tweets that are classified as irrelevant, also
known as False Negative (FN) errors, should have a higher cost and hence
be minimised; we can have more tolerance of irrelevant Tweets classified as
relevant, also known as False Positive (FP) errors. Those subtleties are well
captured by alternative measures of model performance.

Recall is the probability that a relevant Tweet is identified by the model
[106], and is defined as:

Recall =
TP

TP + FN
,

Precision is the probability that a Tweet predicted as relevant is actu-
ally relevant [106], and is defined as:

Precision =
TP

TP + FP
.

Precision and recall are often trading quantities.

F-measure is a metric that combines precision and recall by taking their
harmonic mean [106]. The standard F -measure or balanced F -score is de-
fined as:

F = 2× Precision×Recall
Precision+Recall
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F2 score is a variation of the standard F -measure which weighs recall
higher than precision. As such, it may be more appropriate for our pur-
poses. The formula for positive real β = 2 is defined as:

Fβ = (1 + β2)× Precision×Recall
(β2 × Precision) +Recall

.

5.5.2 Feature Evaluation

We assessed the discriminative ability of our features by performing feature
ablation experiments [158]. For each featue, we evaluated the performance
of a given model when using every feature, and then again after removing
this feature. The observed difference is used as a measure of the importance
of the feature.

We also performed some analysis on the word (i.e. n-gram) features in
order to learn which words in our vocabulary were the best indicators of
relevance. We analysed the n-gram component of our compound feature vec-
tors in order to calculate the informativeness, or information gain of each
word unigram. The information gain of each feature is based on the prior
probability of the feature pair occurring for each class label. A higher in-
formation gain, corresponding with a more informative feature, is obtained
from a feature which occurs primarily in one class and not in the other.
Similarly, less informative features occur evenly in both classes. The infor-
mation gain idea is pivotal to the decision tree algorithm but generalises to
others and was adapted in the NLTK package for use in a broader sense.
In NLTK, informativeness of a word w was calculated as the highest value
of P (w = feature value|class) for any class, divided by the lowest value
of P (w = feature value|class) [95]. This informativeness I, is summarised
below:

I =
∀c ∈ C : max(P (feature = feature value|c))
∀c ∈ C : min(P (feature = feature value|c))

where C is the set of all classes and c is a possible class, and feature value
is a boolean indicating the presence or absence of that word.

Recall that to collect tweets, we make use of Twitter’s streaming API
which allows us to specify keywords that restrict the data collection only
to Tweets containing those specific terms. We try to measure the useful-
ness of the keywords we selected. To do this, we assess their information
retrieval performance. Specifically, we used the precision-recall metric. In
an information retrieval context, precision and recall are defined in terms of
a set of retrieved documents and their relevance. We use our set of labelled
tweets for this assessment. Here, the labelled tweets make up the set of
retrieved documents and the tweets labelled as belonging to the “relevant”
class make up the set of relevant documents. In this context, recall measures
the fraction of relevant tweets that are successfully retrieved while precision
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measures the fraction of retrieved tweets that are relevant to the query.

5.5.3 Generalization and Validation

We cannot use the same data that we use in building our models, to also
test them. Instead, a separate test set is required for the purpose of evalu-
ating the performance of the constructed model. The constructed model is
then applied to each instance in the test set, and its performance evaluated
by comparing its predictions to the actual known labels of the instances. In
doing this, the separate test set acts as an approximation for new data, and
allows us some insight on the generalization capabilities of our models.

We make use of a hold-out validation setup when building and evaluat-
ing our models. The labelled data set is randomly partitioned into train-
ing/validation/test splits with the ratios 65/5/30. The training set is used
to build the models. The validation set is used to select hyperparameters
for models where necessary. The test set is used for evaluating the models.

5.5.4 Correcting the Class Imbalance

27% of our labelled tweets were marked as relevant, while 73% was labelled
as irrelevant. Imbalanced data causes well known problems to classifica-
tion models [1]. We initially tried both oversampling and undersampling
techniques to create a balanced training dataset, as well as, just using the
unbalanced data. We found no major difference between the balancing ap-
proaches, but they gave some advantage over the unbalanced data, so we
opted for over sampling. The class distribution over the balanced training
set had 47% of tweets as relevant and 53% as irrelevant. The test set, how-
ever, was not balanced, and left as it was. This was done with the goal of
our test set simulating the real application scenario as closely as possible.

5.5.5 Statistical Tests

It is sometimes useful to check whether the observed differences between
the performances of two models is merely due to chance, or statistically
significant. For this, we made use of the paired t-test.

Paired t-Test The paired t-test is used to determine whether an observed
within-pair difference is larger than would be expected to have occurred by
chance. The assumptions of the paired t-test are:

1. The data is continuous

2. The data follow a normal probability distribution.
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3. The data is independent.

The paired t-test is calculated as:

t =
d̄√
s2

n

where d̄ is the mean difference, s2 is the sample variance and n is the sample
size. The probability that an observed difference is a chance occurrence is
given by the p-value obtained from the test.

Pearson Correlation Correlation analysis is typically used to test the
strength and direction of the relationship between two variables. Pearson
correlation, also known as Pearson’s r or the bivariate correlation, is one
such measure of the linear correlation between two variables. The Pearson
correlation, ρ, is defined as:

ρx,y =
E((x− µx)(y − µy))

σxσy

5.6 Summary

In building a syndromic surveillance system from Twitter data, we need to
be able to extract a signal from the streamed Tweets. For this, we must
process the collected data in order to extract the relevant content from the
noisy Twitter data. In this chapter, we described the methodology involved
in the relevance filtering used to de-noise the Twitter data and build a re-
liable signal. We proposed and describe a number of approaches to solving
the relevance filtering problem. We looked towards techniques based on
semi-supervised learning due to the fact that such techniques offer us the
much appreciated benefit of getting the most out of our vast amounts of
unlabelled data, without requiring any extensive labelling efforts. Addi-
tionally, as shown in chapter 3, we identified a gap in the literature with
regards to semi-supervised approaches to syndromic surveillance despite its
advantages and sought to explore this further. First, we investigated itera-
tive labelling algorithms, making use of both self-training and co-training.
We then looked towards techniques also based on deep learning. While do-
ing this, we conceptualized and experimented with a novel deep learning
algorithm which we termed the Generative Classification Network (or GCN
for short). The GCN is a semi-supervised text classification algorithm that
makes use of neural language models built on both labelled and unlabelled
data to perform classifications. Next, we applied an attention-based bi-
direction Recurrent Neural Network. We further distinguished between two
variants of our proposed neural network architecture, based on the Long
Short Term Memory and Gated Recurrent Unit architectures respectively,
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termed the ABLSTM and ABGRU. In doing so, we combined the inher-
ent pattern recognition capabilities of deep learning, with the identification
and use of keywords that is typically employed by traditional classification
methods. Finally, we also described the evaluation methodology used to
analyse the performance of our proposed algorithms.



Chapter 6

Results of Relevance Filtering and Syndromic Surveil-

lance

6.1 Introduction

Our proposed system is intended to collect and process Twitter data in
real-time. However, we found that the collected data is very noisy. In
order to obtain a reliable syndromic surveillance signal from the data, we
attempted to denoise the data. We carried out this denoising by means of
autoatically filtering relevant and irrelevant Tweets. This relevance filter-
ing was implemented through semi-supervised text classification. In this
chapter, we present and discuss the results of our efforts to build a syn-
dromic surveillance system from Twitter data. First, we present the results
of our feature experimentation which was carried out to inform us on the
best feature extraction routes and representations to apply to our data.
Once this was determined, we implemented our proposed semi-supervised
learning approaches to relevance filtering. We drew comparisons between
the performances of our algorithms and other successful and popular ap-
proaches to text classification. For the sake of completeness, we also apply
popular fully supervised techniques to the task of relevance filtering and
compare our approaches to them.

6.2 Feature Analysis

We assessed the discriminative ability of each hand-crafted features in order
to assess their utility, as well as ascertain if any of them hindered our per-
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formance. This analysis was performed for both our hand-crafted features
and our text embeddings, which are automatically learned from patterns in
the data.

6.2.1 Hand-made Features

We evaluated the performance of these features using feature ablation ex-
periments. We evaluated the performance of a given classifier (we chose
the fully supervised Naive Bayes classifier for its simplicity) when using all
our features, and then again after removing each one of these features. The
difference in the performance is used as a measure of the importance of the
feature. Our hand-crafted features are meant to be used on top of a tradi-
tional n-gram approach. Out of curiosity, we also performed the ablation
experiment on the n-gram feature in order to understand its contribution.
Table 6.1 shows the results of this experiment. As was expected, n-grams,
are an effective and reliable feature, and serve a a good staring point to
build additional features on top of. We found that our supporting features
yield some additional improvements in performance on top of the n-gram
features. For each of these supporting features, their omission results in a
performance drop of around 0.1. Of our additional features, we found that
Negative Emojis/Emoticons were the most discriminative, followed by the
Denotes Laughter feature. Both of these features capture emojis in addition
to colloquialisms. We also observed that Contains Asthma-Verb Conjugate
and Indicates Asthma Possession underperformed compared to the other
features. These features only contributed a margin of 0.02 and 0.01 respec-
tively. Consequently, these features were discarded and not utilized in our
systems.

Ablated Feature F2 Score

None 0.714

n-grams 0.596

Contains Asthma-Verb Conjugate 0.690

Indicates Asthma Possession 0.693

Denotes Laughter 0.643

Negative Emojis/Emoticons 0.620

Word Classes 0.637

Positive/Negative Word Count 0.625

Table 6.1: F1 scores after feature ablation
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Next, we sought to learn which words in our vocabulary were the best indi-
cators of relevance. We were also curious as to which words in our n-gram
model were the most discriminatory. We analysed the n-gram component
of our compound feature vectors to calculate the informativeness, I of each
word. In Table 6.2, we present the results of this analysis, showing the words
we found to be most informative. For example, the table shows that, of the
tweets containing the word chest, 96% are relevant and only 4% are irrel-
evant. A surprising negative predictor was the word health. When health
appeared in a tweet, the tweet was irrelevant 94% of the time. The word
pollution shows a similar trend. This suggests that when Twitter users are
expressing health issues, they may not use precise or formal terms, opting
for simple symptomatic and emotional words such as chest, cold or wow.
The more formal terms may be more often associated with news items or
general chat or discussion. Using this information, we could include some of
the more relevant but perhaps unexpected keywords as keywords when col-
lecting streaming tweets from Twitter in order to better target and collect
relevant tweets.

Figure 6.2.1: Bar chart showing emoji frequency in labelled data

After confirming the efficacy of emojis for the relevance filtering classi-
fication task, we sought to understand which emojis were most prevalent in
our data set as well as how often each emoji appeared in tweets for each
class. Figure 6.2.1 shows the frequency with which each emoji occurred in
the labelled tweets. It shows that only a few emojis appear very frequently
in tweets collected in our context. This means that only a few important
emojis were needed for determining tweet relevancy as opposed to monitor-
ing for the full emoji dictionary. Furthermore, table 6.3 shows a list of some
emojis and the distribution of classes that tweets belonged to whenever
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Word I (Rele-
vant:Irrelevant)

Relevant
Prior

Probabil-
ity

Irrelevant
Prior

Probabil-
ity

chest 22/4 0.96 0.04

throat 17/1 0.95 0.05

wow 17/1 0.95 0.05

health 1/17 0.06 0.94

cold 16/1 0.94 0.06

moment 15/1 0.94 0.06

forecast 1/14 0.07 0.93

awake 13/1 0.93 0.07

awful 13/1 0.93 0.07

sick 13/1 0.93 0.07

cough 12/1 0.92 0.08

pollution 1/12 0.08 0.92

bed 11/1 0.91 0.09

hate 11/1 0.91 0.09

watch 10/1 0.91 0.09

Table 6.2: Most informative words measured by their Informativeness and
their relevant:irrelevant prior probabilities

they contained said emoji. Overall, it can be seen that each of these emojis
tends to lean heavily toward one class. This confirms that they can be quite
discriminative and useful indicators of class membership and hence, helpful
features.

6.2.2 Text Embeddings

Following our experiments around the hand-crafted features, We sought to
determine which of our text embedding feature was best for our purposes.
We tried not only to understand which word embedding algorithm per-
formed best, also which method for building a representation for a sequence
of words, was most appropriate for representing Tweets in our systems. To
do this, we constructed Multilayer Perceptron (MLP) neural networks using
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Emoji

Occurrences
for

Relevant:Not-
relevant
Classes

Emoji

Occurrences
for

Relevant:Not-
relevant
Classes

17:49 5:2

31:9 6:1

27:9 5:2

21:12 3:2

17:6 4:1

11:6 3:1

12:3 3:1

10:3 3:0

11:0 0:3

8:2 2:1

Table 6.3: Most frequent emojis in labeled data and their distributions

Skipgram word vectors, CBOW word vectors, GloVe word vectors, PV-DM
document vectors and PV-DBOW document vectors as feature represen-
tations of tweets. When using word vectors for feature representations of
Tweets, we considered the feature vector of a Tweet to be the mean of the
embeddings for the words in the tweet. Table 6.4 shows the results we ob-
served. We found that taking the mean of the GloVe vectors of the words
in a Tweet gave us the best performance. Because of this, we decided to
use GloVe to represent words and Tweets in our experiments moving on.

6.3 Iterative Labelling Experimentation

6.3.1 Experiments and Results

We implemented both of our prooposed semi-supervised iterative labelling
algorithms - self-training and co-training, and applied them to our rele-
vance filtering problem and dataset. We also applied a variety of popular
and powerful supervised classification algorithms to the problem namely
- Naive Bayes, Decision Trees, Logistic Regression, Support Vector Ma-
chines (SVMs) and Multilayer Perceptron (MLP) neural networks. We
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Table 6.4: Classification performance of different Tweet feature representa-
tions obtained from deep embeddings

Tweet Embed-
ding Algorithm

F-Measure

Skipgram Mean

Precision 0.775

Recall 0.720

F2 0.732

CBOW Mean

Precision 0.675

Recall 0.647

F2 0.652

GloVe Mean

Precision 0.729

Recall 0.765

F2 0.757

PV-DM

Precision 0.588

Recall 0.625

F2 0.618

PV-CBOW

Precision 0.675

Recall 0.718

F2 0.708

used the Python implementations found in the Natural Language ToolKit
(NLTK) and Sci-Kit Learn [96]. The results of our fully-supervised and
semi-supervised classification are presented in table 6.5. Of the fully-supervised
classifiers, Logistic Regression, SVM and MLP are very sensitive to hyper-
parameters. The values for these hyper-parameters were found using grid-
search with a hold-out validation setup. In the following evaluation, we use
the discovered optimal hyper-parameters according to the grid-search. For
Logistic regression, we used L2 regularisation with a regularisation strength
C of 0.00001. We experimented with C within the range of {1e−5, 10} in
steps of e1. For the SVM, we used a Radial Basis Function kernel and C of
0.01. We experimented with C within the range of {1e−5, 1} in steps of e1.
For the MLP, we used 2 hidden layers, each with 128 neurons, a learning
rate of 0.001, a regularisation α of 0.0001, a batch size of 200 and trained
for 100 epochs. We experimented with learning rates within the ranges of
{1e−5, 1} in steps of e1 and α within the ranges of {1e−5, 1}. The Adam
optimiser [65] was used in minimising the loss function. For the iterative
labelling experiments, we varied and tuned the confidence thresholds until
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we found the best results and reported those. Below, we also discuss in more
detail how the confidence threshold affected the iterative labelling perfor-
mance as it is a key aspect of the algorithms. The best fully-supervised
approach according to a combination of the F1 and F2 scores was the MLP,
which achieved an F2 score of 0.888 on the test data. This equated to an
overall prediction accuracy of 95.5%. The best semi-supervised approach,
which was the co-training algorithm (using the best fully-supervised clas-
sifier - MLP as its base), achieved an F2 score of 0.929 on the test data,
also with a predictive accuracy of 95.5%. Overall, our iterative labelling
approach achieves higher F scores. To confirm what we concluded from the
results, we applied a paired t-test to test the difference in F2 scores between
the fully-supervised MLP algorithm and the co-training algorithm. Before
carrying out this test, we confirmed that the data satisfied the assumptions
necessary for the paired t-test to be relevant - continuous, independent,
normally distributed data without outliers. For the paired t-stest, the train
and test sets were concatenated to form the whole dataset and randomly
split for each iteration of the test. This resulted in a t-statistic of 7.7 and a
p-value of 1.7× 10−13 which suggests that the difference between the F2

scores of the two algorithms was not due to chance.

Supervised

Algorithms Precision Recall Accuracy F2 Score

NB 0.636 0.804 84.2% 0.764

DT 0.915 0.629 89.7% 0.671

RF 0.832 0.815 90.4% 0.818

LR 0.885 0.739 91.5% 0.764

SVM 0.864 0.722 90.6% 0.747

MLP 0.928 0.878 95.5% 0.888

Semi-Supervised

Algorithms Precision Recall Accuracy F2 Score

Self-training 0.897 0.924 95.6% 0.919

Co-training 0.881 0.942 95.5% 0.929

Table 6.5: Results of relevance classification on the test data. Naive Bayes
(NB), Decision Tree (DT), Random Forest (RF) Logistic Regression (LR),
Support Vector Machine (SVM) and Multilayer Perceptron (MLP) algo-
rithms are reported together with the self-training and co-training iterative
labelling algorithms.
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To give a better understanding of how the different measures manage to
balance the number of FP and FN, we also present the confusion matrices
for both the best performing fully supervised and iterative labelling methods
on the test data. These confusion matrices are shown in tables 6.6 and 6.7
respectively. From the confusion matrices, we see that the iterative labelling
approach performs better for the purpose of syndromic surveillance as it
yields only 17 false negatives even though it also yields 37 false positives.
Considering that our aim is to develop a filtering system to identify the
few relevant tweets in order to register a signal for syndromic surveillance,
it is critical to have high recall, hopefully accompanied by high precision,
and therefore high accuracy. The iterative labelling method is able to iden-
tify and retain relevant tweets more often, while also being able to identify
irrelevant tweets to a reasonable degree. Hence, even with a shortage of
labelled data, the iterative labelling algorithms can be used to filter and
retain relevant tweets effectively.

Actual Response

True False Total

Predicted Response
True TP (256) FP (20) 276

False FN (35) TN (891) 926

Total 291 911 N = 1202

Table 6.6: Confusion matrix for MLP fully-supervised classification on the
test data

Actual Response

True False Total

Predicted Response
True TP (274) FP (37) 311

False FN (17) TN (874) 891

Total 291 911 N = 1202

Table 6.7: Confusion matrix for Co-training iterative labelling algorithm on
the test data

Figure 6.3.1 shows how the performances of our iterative labelling systems
change as the confidence threshold changes. The confidence threshold con-
trols how conservatively the iterative labelling system assimilates unlabelled
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instances as it represents how confident the iterative labelling system needs
to be in its classification before assimilating the instance to inform future
decisions. We observed co-training with MLP to perform best. We also ob-
served that for lower confidence thresholds between 0.1 and 0.5, self-training
performance is usually lower and does not change much between thresholds.
Co-training on the other hand, appears to be less sensitive to this param-
eter. Figure 6.3.1 also reiterates what we learned from table 6.5 that the
MLP is our strongest fully-supervised model. In addition, while the logistic
regression classifier does not perform as well as the MLP, it appears to be
robust to different confidence thresholds when used in an iterative labelling
context. We hypothesise that this advantage arises because the logistic re-
gression classifier has considerably less hyper-parameters to optimise. This
means that if a set of hyperparameters, which is impactful on performance,
is not optimal for a certain threshold, such a set would be less of a hinder-
ance to the logistic regression model.

The main issue with our iterative labelling approach is that, because
the classifiers are not perfect and do not have 100% accuracy, we cannot
be sure that the unlabelled instances that they label for assimilation are al-
ways correct. This means that their initial performance before any labelling
iterations is vital. Consider a classifier, initially of poor performance (with
an accuracy of 0.2 for example). When classifying unlabelled instance with
which to train itself, 80% of its classifications will be wrong, so it will assim-
ilate false hypotheses, which will in turn make its performance in the next
iteration even worse and so on. Conversely, if the initial accuracy is high, it
is more likely to correctly classify unlabelled instance and be less resistant
to the drop in performance from assimilating false hypotheses. We con-
ducted an experiment to measure the quality of the automatically labelled
instances assimilated by our iterative labelling classifiers. For this exer-
cise, we used the second set of labelled tweets from a different time period
as the “unlabelled” set with to which the iterative labelling is applied to.
The same training set as in our other experiments was used for the initial
training stage. The self-training and co-training processes were initiated,
applying these classifiers to the alternative set of labelled data (around 2000
instances) in steps of 200. Figure 6.3.2 shows a plot of the proportion of
correctly classified instances that the iterative labelling process assimilated.
The co-training approach had a higher rate of being correct when making
new additions. This was in fact the aim of adopting co-training with its
multiple different views of the same data. The proportion of correct assimi-
lations of both the self-training and co-training methods rises as more data
is assimilated, due to the fact that the systems are getting more intelligent.
Although we could not test beyond 2000 instances (because of our limited
labelled data), we believe that the proportion of correct assimilations will
increase until a certain point, after which it will plateau. We expect this
plateau due to the fact that at a certain point, the iterative learning classi-
fiers will have nothing new to learn from new data after having been exposed
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Figure 6.3.1: Graph of F2 performance of Iterative Labelling using different
confidence thresholds

to so much.

6.3.2 Discussion

We made use of our initial labelled dataset from collection period 1 to
assess the proficiency of our proposed semi-supervised iterative labelling al-
gorithms. Using this algorithm for text classification in filtering Tweets,
we achieved an accuracy of 95.5% and F1 and F2 scores of 0.910 and 0.929
respectively. We argue that recall is very important for us because we want
to keep all the relevant Tweets so that we can have some signal, even if
amplified by some misclassified irrelevant Tweets. The best recall, obtained
by the co-training algorithm, equated to retaining over 90% of the relevant
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Figure 6.3.2: Graph showing how many correct assimilations the iterative
labeling algorithms make per iteration using labelled data from a different
time period

tweets after classification. Also, due to the semi-supervised nature of the
proposed algorithm, we were able to use 8000 previously unlabelled Tweets
before it started to see a deterioration in performance. This allowed us to
make more use of the data collected.

In terms of training and inference speeds, the iterative labelling algorithms
are somewhat interesting, with them being meta-algorithms which wrap
around other algorithms. As such, their time complexity is closely depen-
dent on that of their seed algorithms. Self-training and co-training are
relatively slow to train as their training time complexity are dependent on
not only the training time complexity of their seed algorithms, but also on
the inference time complexities. The best and worst case training time com-
plexities of an iterative labelling algorithm f , with an unlabelled dataset U ,
a labelled dataset L, a seed algorithm A, and a CHOOSE−LABEL−SET
sample size, k, are shown in equations 6.3.1 and 6.3.2 respectively.

f(U,L,A) = Θ((Θ(TRAINA(U)) + Θ(INFERENCEA(k))) (6.3.1)

f(U,L,A) = Θ((Θ(TRAINA(U))+Θ(INFERENCEA(k)))× U
k

) (6.3.2)

In the best case, there is only one training iteration, and the seed algorithm
A is trained once, used to relabel and the stopping condition is met. In the
worst case, the stopping condition is not met until all of the unlabelled data
is iterated through. The choice of seed algorithm is a very important con-
sideration when using iterative labelling algorithms as the seed algorithm
plays a big part in the overall time complexity. The inference time com-
plexity of an iterative labelling algorithm is exactly equal to the inference
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time complexity of its seed algorithm.

6.4 Generative Classification Network Exper-

imentation

6.4.1 Experiments and Results

We now to look to deep learning approaches to solving the relevance filter-
ing problem for syndromic surveillance. We implemented our experimental
Generative Classification Network (GCN) model, which is a model based
on deep generative neural language models. As described in chapter 4, we
underwent a number of labelling efforts over the course of the project. Our
GCN was implemented and evaluated using the expanded labelled set of
size 5000. For the sake of comparison, we also experimented with popular
deep learning algorithms which have seen wide success in text classification
tasks. We made use of the Multilayer Perceptron (MLP) model, Convo-
lutional Neural Network (CNN) model and Long Short Term Memory Re-
current Neural Network (LSTM RNN) models. We made use of the text
classification CNN introduced by Kim [135] and the short-text classifica-
tion RNN by Nowak et al. [193]. We compared the results obtained using
these models to those achieved by our proposed GCN model. We present
the results of this experiment in table 6.8. Note that all our results were
computed from the test partition. The experimental GCN outperformed
the CNN at the task of relevance filtering. However, we found that the
LSTM classifier performed best, outperforming both the GCN and CNN
and yielding the highest F2 score, our preferred measure.

When evaluating our deep learning approaches, we also considered the time
taken to perform the relevance filtering. We measured and plotted the times
taken for the GCN, MLP, LSTM and CNN to perform the relevance filter-
ing, varying the number of Tweets they were fed up to 10,000 Tweets. For
this experiment, we used unlabelled Tweets from the second collection
period June 21, 2016 - August 30, 2016. This plot is shown in figure 6.4.1.
From the plot, we can see that the LSTM RNN takes the most time while
the MLP takes the least time. The GCN takes considerably less time than
the LSTM RNN and CNN. This is likely due to the fact that the GCN
doesnt use the neural network for the actual act of classification. Recall
that instead, it generates what it thinks is a relevant and irrelevant Tweet
using the first k words in a query Tweet and uses a distance measure to
make its classification. With this in mind, the GCN understandably takes
up less time in its operation than the other complex deep classification mod-
els. The MLP model is also a very simple model which does not take a lot
of time to classify Tweets. While the MLP beats the GCN in time, the
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Deep Classifier F-Measure

Multilayer Perceptron

Precision 0.729

Recall 0.765

F2 0.757

Convolutional Neural
Network

Precision 0.521

Recall 0.779

F2 0.709

Recurrent Neural Network
(LSTM)

Precision 0.638

Recall 0.841

F2 0.791

Generative Classification
Network

Precision 0.500

Recall 0.800

F2 0.714

Table 6.8: Performance of Generative Classification Network with baselines
on relevance filtering task.

GCN yields better results than the MLP. We also observed that the time

Figure 6.4.1: Time taken to perform relevance classification on a collection
of Tweets.

taken for relevance filtering rises steadily with the number of Tweets up
until about 4000 Tweets. After this, the time taken changes very little as
the number of Tweets rises. This is due to the fact that all Tweets get
classified at once (at the cost of increased memory usage) by making use
of the batch processing of TensorFlow. In the cases with 4000 Tweets and
above, it would appear that the computer could not manipulate all of the
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data together at once with its available RAM, so larger ROM or swap space
is used which eliminates the need for incremental processing (as more space
is available in that scenario). Nonetheless, this does not change the fact
that the different neural networks spend different amounts of time on the
relevance classification, despite the RAM or ROM memory conditions. The
bulk of the difference in time spent on classification is down to the architec-
ture of the network and the amount of setup required. From figure 6.4.1,
we find that the relatively simple architecture of the MLP perfoms much
quicker than that of the RNN, CNN and GCN. Furthermore, the RNN sees
more drastic jumps in time taken for relevance filtering as the number of
Tweets increase than the GCN or MLP.

6.4.2 Discussion

We found that the LSTM performed best, yielding the highest F2 score,
our preferred measure. RNNs take advantage of the sequential nature of
text which is also exhibited by Tweets (which are short-texts). CNNs on
the other hand are good at extracting position-invariant features in space.
Because of the short nature of Tweets, even when they are represented in
2D space, CNNs do not have a lot of salient spatial information to work
with and are outperformed by even the MLP as well. While we found our
proposed GCN was outperformed by the LSTM, it still achieved better re-
sults than the CNN at the short-text classification task of relevance filtering.

It is also worth noting that language models are usually trained on large
amounts of data while those used in our GCN were built using a compara-
tively small dataset, For reference, the models used in the Stanford GloVe
experiments were built on crawls of Wikipedia yielding billions of tokens
and a vocabulary consisting of millions of unique words [207]. In compari-
son, the language models in our GCN were built using a collection of 5,000
tweets each with a maximum length of 140 characters. TWe are currently
limited in this way because the GCN requires labels along with the data it
ia built on. Considering this, we believe that the GCN might show some
promise in a setting with lots more data. Having only introduced the GCN,
we intend to perform further investigations with the GCN using standard
data sets for text classification.
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6.5 Attentive Bi-directional Recurrent Neu-

ral Network Experimentation

6.5.1 Experiments and Results

We evaluate the performance of our attention-based Bi-RNN for relevance
filtering. We assess our proposed approach’s ability to automatically classify
Tweets as “relevant” or “irrelevant” based on whether they associate with an
individual expressing concern or discomfort over asthma/difficulty breath-
ing or its symptoms. In these experiments, we compare the classifica- tion
ability of our proposed approach to that of existing successful and popular
approaches. Again, we make use of the text classification CNN introduced
by Kim [135] and the short-text classification RNN by Nowak et al. [193]
as baselines for our comparisons. As described in chapter 4, we underwent
a number of labelling efforts over the course of the project. Our experi-
ments were carried out using the expanded labelled set of size 8000. We
implemented and applied both the ABLSTM and ABGRU flavours of our
proposed algorithm to the Tweet relevance classification task. After apply-
ing our proposed algorithms and the baseline algorithms to the relevance
filtering task and dataset, we observed the results presented in table 6.9.
Note that all our results were computed from the test partition.

We found that the attentive RNNs outperformed the other architectures,
with the ABLSTM being the stronger attentive RNN. As shown in chap-
ter 5, the gating mechanism used by the GRU is smaller and less complex
than that of the LSTM. This means that ABGRU is faster but not quite as
accurate as the ABLSTM. The LSTM RNN was seen to achieve a higher
precision than the ABLSTM and ABGRU but it fell behind in terms of
recall. Its recall was quite low and negatively impacted its overall perfor-
mance. In effect, this translates to it being more likely to find negative
class examples, which were the majority class in the dataset. This suggests
that it may be more suited to balanced datasets. However, our task of
syndromic surveillance using Twitter deals with highly unbalanced data as
most Tweets are not about health reporting. We also observed that the text
CNN scored the worst in every metric, and as such, performed quite badly
at the Tweet relevance classification, even though it had performed well at
other text classification tasks [135].

When we described our attentive bi-directional Recurrent Neural Network
In chapter 5, we communicated that the output of the attention layer is a
Tweet attention vector, t. This vector summarizes the input word vectors
while putting emphasis on important words. t is subsequently used as a
vector representation for the Tweet in the classification part of the model.
As such, the described model could also be applied to documents in other
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Classifier Metric

ABGRU

Accuracy 0.900

Precision 0.734

Recall 0.656

F2 0.666

ABLSTM

Accuracy 0.906

Precision 0.752

Recall 0.672

F2 0.687

Convolutional Neural
Network (CNN)

Accuracy 0.850

Precision 0.507

Recall 0.562

F2 0.550

Recurrent Neural
Network (LSTM)

Accuracy 0.889

Precision 0.762

Recall 0.557

F2 0.589

Table 6.9: Performance of Attentive Bi-directional Recurrent Neural Net-
work and baselines on Tweet relevance classification task.

problems to create meaningful embeddings for them.

To test this, we collected a random sample of Tweets, computed their at-
tention vectors and performed t-distributed stochastic neighbour embedding
(t-SNE) [165] dimensionality reduction to reduce their dimensions to 2. We
then plotted these 2D attention vectors, shown in figure 6.5.1, in order to
spatially visualize them. We found that Tweets with similar meanings and
words appeared to be clustered together. In fact, in figure 6.5.1, it is pos-
sible to draw a decision boundary line that roughly separates both classes.
This line is shown in red. Below the red line, we see Tweets which are symp-
tomatic of the asthma/dificulty breathing syndrome. Above the line, we see
Tweets which may contain keywords related to asthma/difficulty breathing
but are not expressing concern or suffering. It is also worth noting that
“wheezing” is often used as slang to exaggerate laughter. Twitter contains
a lot of slang. The Tweet attention vectors capture the semantics of the
different contexts of slang words, such as “wheezing”, and this boosts its
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Figure 6.5.1: Plot of Tweets representative of distances in attention embed-
ding space. The axes represent t-SNE dimensional values.

discriminatory ability. The attention vectors give us a semantic and dis-
criminatory vector representation for our Tweets. As such, in addition to
its utility for short text classification, our attentive model has the added
ability to create useful document embeddings.

6.5.2 Discussion

We find from the literature that most Neural Network models used to clas-
sify Tweets treat all words as equal while focusing on making use of semantic
relationships between words to get the overall meaning. Our proposed at-
tentive bi-directional RNN approach takes this a step further by not only
trying to employ these semantic relation- ships, but also acknowledging the
presence of key words and capitalizing on them. We experimented with
LSTM and GRU units for the cells in our attentive bi-directional RNN.
The attentive bi-directional LSTM (ABLSTM) approach was found to out-
perform the popular text-CNN and LSTM at the task of Tweet relevance
classification.

As a demonstration, figure 6.5.2 shows a sample Tweet with our attentive

Figure 6.5.2: Heatmap showing weights placed on words in a Tweet by our
attentive bi-RNN model

bi-RNN model applied to it. It shows the results of the attention layer. The
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darker areas/words represent words which the model deems key to the mes-
sage of the Tweet. We can see that the model does a good job of recognizing
that swelling, throat and difficulty, breathing are important for determining
whether the Tweet is relevant to our health context. We learned that the
ABLTSTM model has strong understanding capabilities that can not only
be used for accurate relevance filtering, but could also be taken advantage
of for building informative document embeddings.

6.6 Syndromic Surveillance

While we have proposed and experimentedwith various approaches to text
classification for relevance filtering, we would like to understand their po-
tential utility for the generation of signals for syndromic surveillance. After
constructing and evaluating our semi-supervised filtering systems, we as-
sessed their utility for syndromic surveillance purposes by retrospectively
applying them to Twitter data, and comparing the results against data
for existing syndromic indicators from the Public Health England (PHE)
Real-time Syndromic Surveillance Service. For this experiment, we made
use of unlabelled tweets from our second collection period, June to Au-
gust 2016. We performed comparisons with identified relevant anonymised
data from PHE’s syndromic surveillance systems for this time period. PHE
syndromic surveillance systems use primary care (general practitioner in
hours and out of hours) consultations, emergency department (ED) atten-
dances and tele-health (NHS 111) calls. For this analysis, a number of
‘syndromic indicators’ monitored by PHE’s syndromic surveillance systems
were selected based upon their availability, quality and potential associ-
ation to asthma/difficulty breathing. These indicators were “difficulty
breathing” and “asthma/wheeze/difficulty breathing”. As a control
and sense check, we also compared our detected Twitter signal time series
against non-respiratory syndrome data in the form of “diarrhoea” data.

6.6.1 Difficulty Breathing

The Difficulty breathing syndrome was generated from NHS 111 calls where
callers made complaints about difficult or laboured breathing specifically.
Similarly, the control diarrhoea syndrome data was also generated from NHS
111 calls. Daily counts of NHS 111 calls for difficulty breathing, together
with daily counts of overall consultations were used to compute daily pro-
portions of syndrome prominence. Similarly, for our Twitter systems, we
employed our relevance filtering models to compute daily proportions of
Tweets that were relevant to the difficulty breathing syndrome, relative to
the number of Tweets collected each day. The resulting time series are
shown in figures 6.6.1 - 6.6.5.



Chapter 6: Results of Relevance Filtering and Syndromic Surveillance 113

Figure 6.6.1: Comparison for Twitter signal extraction using LSTM rele-
vance filtering

Figure 6.6.2: Comparison for Twitter signal extraction using ABLSTM rel-
evance filtering

6.6.2 Asthma/Difficulty Breathing/Wheezing

The Asthma/Difficulty Breathing/Wheezing syndrome was generated from
NHS GP Out-of-hours (GPOOH) consultations. This syndrome is a mix of
different symptoms and point to the general afflication of respiratory disease.
Again, the control diarrhoea syndrome data was also generated from NHS
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Figure 6.6.3: Comparison for Twitter signal extraction using Self Training
relevance filtering

Figure 6.6.4: Comparison for Twitter signal extraction using Co-Training
relevance filtering

111 calls. Daily counts of GPOOH consultations for asthma/wheeze/difficulty
breathing, together with daily counts of overall consultations were used to
compute daily proportions of syndrome prominence. Similarly, for our Twit-
ter systems, we employed our relevance filtering models to compute daily
proportions of Tweets that were relevant to the asthma/wheeze/difficulty
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Figure 6.6.5: Comparison for Twitter signal extraction using MLP relevance
filtering

breathing syndrome, relative to the number of Tweets collected each day.
The resulting time series are shown in figures 6.6.6 - 6.6.12.

Figure 6.6.6: Comparison for Twitter signal extraction using LSTM rele-
vance filtering
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Figure 6.6.7: Comparison for Twitter signal extraction using ABLSTM rel-
evance filtering

Figure 6.6.8: Comparison for Twitter signal extraction using Self Training
relevance filtering

6.6.3 Control Syndrome: Diarrhoea

In this section, we compare the outputs of Twitter syndromic surveillance
using our relevance filtering algorithms for asthma and difficulty breathing
related Tweets, to recorded public health diarrhoea signals. These com-
parisons are shown in figures 6.6.11 and 6.6.11. Like with our research
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Figure 6.6.9: Comparison for Twitter signal extraction using Co-Training
relevance filtering

Figure 6.6.10: Comparison for Twitter signal extraction using MLP rele-
vance filtering

signals, we used daily counts of NHS 111 calls for diarrhoea, together with
daily counts of overall consultations to compute daily proportions of the
diarrhoea syndrome prominence.
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Figure 6.6.11: Comparison of Deep Learning Twitter signal extractions with
control signal

Figure 6.6.12: Comparison of Iterative Labelling Twitter signal extractions
with control signal

6.6.4 Discussion

Figures 6.6.4 and 6.6.9 show the performance of our best iterative labelling
algorithm, the co-training classifier. Figures 6.6.1 and 6.6.6 show the per-
formance of the LSTM RNN found to outperform our Generative Classi-
fication Network (GCN). Figures 6.6.2 and 6.6.7 show the performance of
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our ABLSTM. We also show a time series for the Twitter system without
any relevance filtering. To do this, we took the daily counts of collected
Tweets and normalised each day’s count by the average Tweet count for
that week. We smoothed the time series signals using a 7-day average to
minimise the irregularities caused by the differences between weekend and
weekday activities for GP out-of-hours services. In every figure, we see that
the unfiltered Twitter signal is noisy and does not fit well with the signals
for asthma/wheeze/difficulty breathing and difficulty breathing. Conversely,
once our relevance filtering models have been applied, the Twitter sig-
nals follow a more similar shape and trend to the asthma/wheeze/difficulty
breathing and difficulty breathing. The signal for diarrhoea, shown in figures
on the other hand, does not appear to be related to any others as we may
expect.

To gain a clearer picture of how well the signals matched, we performed
some correlation analysis on them. We calculated the Pearson correlation
coefficient to determine the strength and direction of any monotonic re-
lationship between the indicators and our signals extracted from Twitter
(table 6.10). Between the signal obtained by means of co-training and the

Relevance Filtering Syndrome

Algorithm Asthma/Wheezing/DB Difficulty Breathing Diarrhoea

Co-Training 0.255(p = 0.03) 0.214(p = 0.07) 0.05(p = 0.7)

MLP Neural Network 0.414(p = 0.0004) 0.424(p = 0.0002) 0.04(p = 0.7)

LSTM RNN 0.637(p < 0.001) 0.586(p < 0.001) 0.125(p = 0.3)

ABLSTM 0.792(p < 0.001) 0.830(p < 0.001) 0.207(p = 0.09)

Table 6.10: Pearson correlations and P-Values for detected signals with
syndromic surveillance signals

public health data, we observed a weak but statististically significant sig-
nal (r = 0.424). That being said, the signal produced by the co-training
algorithm possessed a stronger correlation than that the signal produced
by the best fully-supervised method examined in the iterative labelling ex-
periments - the MLP classifier. The signal produced by the LSTM RNN,
which beat our GCN model yielded a moderate statistifically correlation
with the public health data (r = 0.586). Finally, the signal obtained using
the ABLSTM model has a strong and statistically significant correlation
with the public health data (r = 0.830).

It is worth thinking about some potential causes of deviation of the Twitter
signal from the ground truth. We identified two possible reasons for this:

• The Twitter signal could either be behind or ahead of the ground truth



Chapter 6: Results of Relevance Filtering and Syndromic Surveillance 120

signal. To investigate the first point, we performed some lagged corre-
lation on the best Twitter signal, obtained using the ABLSTM and the
ground truth asthma and asthma/difficulty breathing/wheezing sig-
nals. We computed the cross correlation between the raw counts of
daily incidents identified on Twitter and the counts of reports from
the public health data, varying the lag to produce the correlograms
shown in figures 6.6.13a and 6.6.13b. These figures show that the
highest cross correlation is observed at a lag of -4. This suggests that
the Twitter signals are 4 days ahead of the ground truth data and
might be a predictor of the ground truth.

(a) Cross correlation of ABLSTM Twitter signal with
asthma/difficulty breathing/wheezing signal

(b) Cross correlation of ABLSTM Twitter signal
with difficulty breathing signal

• The Twitter signal could be inadvertently picking up additional un-
foreseen events taking place at the time. For example, we noticed that
in the time series figures, the raw Twitter signal peaked around the
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date 20/06/2018. In order to better understand the reason for this
spike, we examined the Tweets collected by our Twitter syndromic
surveillance system around this period and found that a large pro-
portion of them were Tweets like “Its too hot i cant breathe”. We
then looked towards the historical meteorological data for that pe-
riod, obtaining publicly available data from the London Met Office.
This chart can be seen in figure 6.6.14. According to the London
Met Office data, the hottest day in that period was around the date
20/06/2018, the same day we observed the spike in our Twitter sig-
nal. From this we learn that syndromes may not be clearly and

Figure 6.6.14: Chart of mean UK temperature for the time period of summer
2016 1

systematically expressed by reporters on Twitter, so our signals may
be slightly perturbed by related events, such as meteorological events,
causing difficulty breathing.

1https://www.metoffice.gov.uk/research/climate/maps-and-data/

summaries/index

https://www.metoffice.gov.uk/research/climate/maps-and-data/summaries/index
https://www.metoffice.gov.uk/research/climate/maps-and-data/summaries/index
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6.7 Summary

In previous chapters, we introduced and proposed our ideas for effectively
and efficiently obtaining a reliable syndromic surveillance signal from Twit-
ter. In this chapter, we evaluated and assessed each of our proposed ideas.
We introduced some novel features extraction techniques for Twitter data
based around emojis and found them to work well. Upon evaluation, we
found that our proposed Generative Classification Network (GCN) network
did not perform as well as existing, more popular techniques. We argue
that this is due to the fact that the GCN model is a data-hungry technique
and insufficient data was used. Further experimentation on a standard text
classification dataset is required to verify its general profitability. However,
it was found inadequate for the task of relevance filtering. Our proposed at-
tentive bi-directional RNN proved effective at the task of relevance filtering,
beating out popular, widely successful deep learning techniques. Finally, we
sought to evaluate the signals generated by each of our proposed relevance
filtering algorithms. We found a strong statistically significant correlation
between the signal generated by our attentive bi-directional RNN.



Chapter 7

Optimizing the Twitter Syndromic Surveillance

Stream: Intelligent and Automatic Keyword Se-

lection for Twitter Streaming

7.1 Introduction

In investigating the use of Twitter data for syndromic surveillance purposes,
we have discussed the collection and effective filtering of this data in order to
obtain a strong signal from it. We have studied in detail, the use of various
statistical and machine learning algorithms to understand and filter Tweets
relevant to a syndrome of interest. This objective is made doubly necessary
when Tweets obtained from the Twitter stream through the official API are
loosely filtered.

Recall from chapter 4, that we collect Tweets using the API in a real-
time stream which can be filtered by location and content. The API allows
provides the ability to filter Tweets based on content by specifying a set of
keywords. Only Tweets matching the keywords are passed from the stream
by the API. Choosing the right set of keywords can have a big impact on
the syndromic surveillance system as it controls which Tweets our system
collects. Choosing keywords that are too precise and strict will result in
our system collecting mostly relevant Tweets, but also simultaneously only
observing few Tweets, which will most likely only be a small sample of
the relevant Tweets available. Conversely, choosing keywords that are too
broad will result in our system observing a great deal of Tweets, most of
which will not be relevant. Also, if the right keywords are used to initially
stream the Tweets, there is less burden on the classification system used for
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subsequent filtering. Therefore, selecting the right keywords is an important
and difficult task.

In this chapter, we propose an intelligent and automatic approach to
effective keyword selection. We leverage our knowledge from previous chap-
ters, making use of machine learning to quantify, represent and distinguish
semantic information in Tweets and short-texts, to propose two methods
for intelligent and automatic keyword selection. The first method takes
a heuristic approach [68], while the second method takes an optimization
approach, employing evolutionary algorithms [248]. We describe the two
methods, and compare and contrast them. For the sake of comparison, we
also discuss the manual method of keyword selection, as carried out by hu-
mans. We then evaluated the results of all three approaches, discussing our
findings. We found that our automatic keyword selection algorithms were
able to outperform the manual, human approach.

7.2 Approaches to Intelligent and Automatic

Keyword Selection

Before we begin thinking about automatic keyword selection, we must first
take a look at how keyword selection normally occurs. While this process
might differ based on the purpose of the data collection, it will typically
involve some domain knowledge relating to the purpose of the data collec-
tion. However, in addition to this, it is often useful to keep in mind that
language on Twitter is usually very informal and colloquial. This must also
be taken into account when selecting a set of keywords for any purpose. For
syndromic surveillance, our goal when selecting keywords for collection was
to choose keywords which may be relevant to our particular syndrome of in-
terest. We worked in conjunction with experts from Public Health England
(PHE), to create a set of formal terms that may be connected to the specific
syndrome under scrutiny. This set of keywords was then further expanded
using synonyms from thesauri and the urban dictionary1. Urban dictionary
is a web resource which serves as an encyclopedia of sorts for slangs, so it
was used to account for informal language that may occur in Twitter.

Given our understanding of how keyword selection normally occurs, we
can begin to build on it in order to arrive at more effective data collection.
In this section we propose two approaches to automatic keyword selection.
A simple approach would be through trial and error. A set of keywords can
be drawn up, used for collection and then assessed. This assessment can be
based on the amount of relevant information that was retrieved using the
keywords. Depending on the result of the assessment, the terms used are
changed or removed. The process can be repeated until a desirable result
is obtained from the assessment. While such a process can be automated

1https://www.urbandictionary.com

https://www.urbandictionary.com
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programmatically, user intervention will be required at the stage of changing
or removing keywords. Our first proposed approach works using a similar
heuristic method, but sidesteps the need for this user intervention by making
use of semantic representations of (key)words which encapsulate the ideas
and sentiments behind the terms we use.

Our second approach is makes use of evolutionary optimization. Here,
the task of keyword selection is modelled as an optimization problem. Each
possible set of keywords is seen as a candidate solution and the goal is to
find the optimal solution. In this approach, we make use of Particle Swarm
Optimization (PSO) which is an evolutionary algorithm based on swarm
intelligence put forward by J. Kennedy in 1995 [131]. Loosely speaking,
we model each potential set of keywords as a particle in the swarm. Each
particle is moved around the search space with some velocity, which is in-
fluenced by its known best position, as well as the best positions found by
other members of the swarm.

7.2.1 Similarity Heuristic-Based Keyword Selection

Figure 7.2.1: Flow chart for simple trial and error keyword selection

This method automates the heuristic trial and error technique for key-
word selection. The heuristic trial and error technique simply involves pro-
ducing a set of terms to be used as keywords, employing them and then
adjusting the set based on the results obtained. Fig 7.2.1 illustrates this
process. Arguably, the important aspect of this approach is how the set of
terms is adjusted. It is a trivial matter automating the collection and anal-
ysis of its results. As for the matter of adjusting the terms in the keyword
set, some more effort is required. The simplest approach to this would be to
have human observers examine the results of the collection, together with
the keywords used and draw conclusions which can aid their fine-tuning of
the keyword set. Unfortunately, this could be time consuming, depending
on the number of iterations undertaken. Thankfully, this is not entirely nec-
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Algorithm 2 Heuristic-Based Automatic Keyword Selection

function KeywordSelection
K ← InitializeKeywordSet()
R THRESHOLD ← C1 . C1 is some numeric constant
I THRESHOLD ← C2 . C2 is some numeric constant
while NOT STOPPING CONDITION S do

T ← Stream(K)
for all k ∈ K do

rProp, iProp← RelevanceAnalysis(T, k)
if rProp ≥ R THRESHOLD then

Sm← FindSimilarWords(k)
K ← K + Sm

else if iProp ≥ I THRESHOLD then
Sm← FindSimilarWords(k)
K ← K − k
K ← K − Sm

end if
end for
S ← IsStoppingConditionMet(K)

end while
end function

function InitializeKeywordSet. Returns the initial set of keywords
end function

function Stream(K) . Run the Tweet streaming using a set of
keywords K
end function . Returns a list of Tweets collected

function RelevanceAnalysis(T, k) . T : A list of Tweets, k : A
keyword

. Returns the proportions of relevant and irrelevant Tweets in T for
keyword k
end function

function FindSimilarWords(w) . w : a word
. Returns a list of words similar to word w

end function

function IsStoppingConditionMet(K) . K : A set of keywords
. Returns a boolean answer

end function
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essary. The analysis of the Tweets obtained from the collection process can
be performed using simple statistical analysis. The proportion of relevant
and irrelevant Tweets collected can be calculated. Similarly, terms which
frequently occur in and associate with relevant and irrelevant Tweets can
be uncovered. Once these terms are uncovered, we can carry out any of the
following actions to adjust the collection keyword set:

• Terms which appear to associate mostly with irrelevant Tweets can
be discarded from the set of keywords, if they were a part of it.

• Terms which are similar to those that associate mostly with irrelevant
Tweets can also be discarded if they exist in the collection keyword
set.

• Additionally, terms which appear to associate mostly with relevant
Tweets can be included in the collection keyword set if they were not
previously included.

• Going further, if any terms which appear in the collection keyword
set appear to associate strongly with relevant Tweets, other similar
terms can be added to the keyword set.

With this in mind, we now consider how to assess the similarities of terms.
For this, we encode semantic relationships and meanings using GloVe word
embeddings. As previously discussed in chapter 4, such embeddings encode
the semantic information of words in continuous distributed vectors, learn-
ing this from the contexts within which they are used. We can make use
of the cosine distance of these vectors as a measurement of their similarity.
With this, we can infer which words are similar to keyword terms that either
work well or don’t. A more formal explanation of the process is shown in
algorithm 2.

Before beginning, a number of variables must be initialized. The first
of these is the initial keyword set. This set is seen as a rough guess of
the ideal keyword set and serves as the starting point for the algorithm.
R THRESHOLD and I THRESHOLD represent the cut-off values for
the proportion of relevant and irrelevant Tweets respectively that a keyword
brings in for it to either be expanded on in the keyword set or removed
from the keyword set. These variables take the values C1 and C2 which
are floating point numbers. The Stopping condition S for the algorithm
may differ based on preference or what is desired from the algorithm. Some
examples of such condition might involve assessing the total proportion of
relevant Tweets collected by the current set of keywords and checking if it is
above or below some threshold, or if it has converged or does not appear to
be changing significantly. The proposed heuristic-based approach is quite
flexible and rather customisable to suit the needs or idiosyncracies of the
particular collection task at hand.
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7.2.2 Particle Swarm Optimization-Based Keyword Se-

lection

Evolutionary algorithms and Particle Swarm Optimization (PSO)

Our second proposed approach to keyword selection employs evolutionary
computation and algorithms to solve the problem. Evolutionary algorithms
are a family of algorithms which are heavily inspired by biology and nature,
specifically evolution [171]. The underlying idea behind such algorithms is
that given a population of individuals, the environmental pressure causes
natural selection and survival of the fittest, thereby improving the fitness of
the population. The process of natural selection and survival of the fittest
can be seen as a form of optimization. It brings the best individuals in
the population to the front, leaving weaker individuals behind. In a com-
putational optimization sense, the population may be represented by the
search space and the individuals in said population, represented as poten-
tial solutions. The algorithm finds the fittest individual (or solution) in
order to solve the optimization problem. Here, the fitness of an individual
is modelled by some objective function which we aim to minimize or max-
imize. The evolutionary algorithm we employ is known as Particle Swarm
Optimization (or PSO).

(a) A small example problem space (b) A larger, more realistic example
problem space

Figure 7.2.2: Illustration of different problem search spaces.

PSO is a stochastic population-based algorithm. Unlike other evolu-
tionary algorithms, it does not actually use natural selection; instead, all
population members survive from the beginning of a simulation until the
end. However, their interactions result in iterative improvement of the qual-
ity of solutions over time [292]. With all this in mind, we propose to model
the keyword selection task as an optimization problem. Here an individual
or particle or solution is a set of keywords. In this problem, the goal is to
find the set of keywords that provide the maximum (or minimum) of some
objective function. While the obvious solution to such a problem would be
simply to check each possible solution in the search space and select the



Chapter 7: Optimizing the Twitter Syndromic Surveillance Stream:
Intelligent and Automatic Keyword Selection for Twitter Streaming 129

best, this is not often feasible. Consider the problem space shown in fig
7.2.2a. It is of a low dimensionality and is a very limited space with only 3
possible values for each dimension. The simple approach described earlier
would suffice for such a space. However, once in a more realistic space like
the one shown in fig 7.2.2b, such an approach is no longer feasible as it
would become computationally expensive and time consuming. PSO solves
this problem by making use of a set population of particles, where each
particle is a potential solution. Fig X shows an illustration of the particles
in a problem space. These particles are then set loose to explore the search
space in order to find an optimal solution. They tend to swarm and form
clusters in optimal regions of the problem space.

Figure 7.2.3: Illustration of PSO particles in a search space

Applying Particle Swarm Optimization to Keywords

We now look towards how we can model the keyword selection problem
using PSO. First we need to produce a larger set of candidate keywords,
C, from which our optimal set will be selected. This is done by producing
the initial set, I, in the standard way described in section 7.1. Once this
has been done, we can build on this initial set by making use of our Glove
embeddings to infer words similar to the words in the initial set. That is,
for each keyword in the initial set, words similar in meaning to it are added
to the initial keyword set to create the candidate keyword set. We make
use of the candidate keyword set, C, to collect Tweets, T , for a set period
using the streaming API. These Tweets are labelled as relevant or irrelevant
using the classification-based filtering systems discussed in chapter 5. We
then take the candidate keyword set, C, and encode each keyword contained
within it as a unique integer ranging from 1 to |C|. With this, we can now
represent a set of keywords as a vector of integers, k, where each integer
in the vector maps to a keyword in C. The size of k, denoted as D, must
be determined before-hand and equates to the maximum size of the desired
final optimal keyword set. Additionally, while values of 1 to |C| represent
keywords, a value of zero will be used to represent the absence of a keyword.
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With this, when keyword vectors are mapped back to keyword sets, it will
be possible to have sets of varying sizes (of up to |k|). Having developed a
way to represent a set of keywords as a vector, we can also represent a set of
keywords as a particle, as a particle is represented by a vector. With this, we
can apply PSO to our candidate set, C, to intelligently and automatically
select a set of keywords.

We start by randomly initializing a population of particles (i.e. keyword
sets) from C. In essence, we create a set number of random vectors of size
D, with values ranging from 0 to |C|. Each particle possesses a position, x
and a velocity, v, and keeps track of the best position it has found, that is,
its “personal best” or pbest. The system keeps track of the “global best”
or gbest, which is simply the best position that has ever been found by
any particle. The position of the ith particle, xi = (x1i , x

2
i , x

3
i , ...x

D
i ). The

particles are all moved around the search space, with their positions updated
based on their velocities, pbest values and gbest. More formally, after each
iteration at time t, the position of the ith particle is updated according to
equation 7.2.1

xt+1
i = xti + vt+1

i (7.2.1)

The velocity of the particle, vt+1
i , (at time t+ 1) used to update its position

can be computed as shown in equation 7.2.2 where ω is the inertia coefficient,
c1 and c2 are acceleration coefficients and r1 and r2 are random floating point
values between 0 and 1.

vt+1
i = ωvti + c1r1(pbest− xti) + c2r2(gbest− xti) (7.2.2)

There are three main components to the way the velocity of a particle is
updated:

• Inertia Component: This component is intended to keep the par-
ticle moving (or not moving) in the direction it is headed, and is
controlled by ω. Lower values of ω will speed up convergence while
higher values encourage particle exploration of the search space [260].

• Learning Component: This component controls the size of the
step a particle takes towards its next position in exploring the search
space. It is controlled by the coefficient, c1 [68].

• Social Component: This component implements swarm mentality,
and causes a particle to move towards the best regions the swarm has
discovered so far. It is controlled by c2 [68].

Largely speaking, the particles in the swarm explore the search space
based on the pbests and gbest within the swarm. These values are com-
puted for a particle’s position using the objective function, Z. Our goal
is to minimize the value of the Z, which represents the underlying desire
of the swarm system. It is the function to be optimized. We make use of
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an objective function that is particular to the task of selecting a keyword
set. We wish to maximize the number of relevant Tweets (or minimize the
number of irrelevant Tweets) collected by a set of keywords. However, we
don’t wish to achieve this by being too selective and only collecting very few
Tweets. Our goal is a combination of the relevancy of the Tweets we collect
and the volume of Tweets we collect. Both of these figures are important
to us. As such, we developed an objective function that belies this. The
objective function, Z, is computed as the mean of two terms, α and β. α is
the irrelevance factor shown in equation 7.2.3, while β is the retrieval
factor shown in equation 7.2.4.

α =
D∑
i=1

(

∑|T |
j=1 k[i] ∈ T [j]∑|T |

j=1 T [j] == irrelevant
) (7.2.3)

β =
D∑
i=1

(1− (

∑|T |
j=1 k[i] ∈ T [j]

|T |
)) (7.2.4)

Z is computed as:

Z =
α + β

2
(7.2.5)

Finally, putting this all together, PSO keyword selection can be carried
out by iterating over the following steps:

1. The objective function is computed by each particle for their current
position.

2. Each particle updates their pbest and the gbest.

3. Each particle is moved once their velocity and position are updated,
using the pbest and gbest values computed from the objective function.

The steps are repeated either until the values converge, or a predetermined
maximum number of iterations is reached.

7.3 Experiments and Results

We were interested in evaluating whether our proposed approaches solved
the task of intelligent and automatic keyword selection and if so, also under-
standing how well they did so. We implemented and ran Tweet collections
for the asthma/difficulty breathing syndrome using both of our keyword
selection approaches. We also simultaneously ran a Tweet collection using
the typical approach used, which we described in section 7.2, as a baseline
for our comparisons.
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We undertook two sets of collection periods. The first collection pe-
riod was a sort of “validation” collection period, inspired by the train-
ing/validation/test splits adopted when building data models. This valida-
tion collection period was used by our proposed approaches to automatically
generate keywords. These generated keywords were subsequently utilized
in a second collection period, intended to allow us to measure how well
the generated keywords perform. This can be seen as our “test” collection
period. Our validation collection period ran for a seven day period from
the 24th of May, 2019 till the 1st of July, 2019. Our test collection period
ran for a further seven day period from the 1st of July, 2019 till the 8th of
July, 2019. Only the similarity heuristic-based approach and the PSO-based
approach were involved in the validation collection period, as the baseline
approach does not need any data for building. During the test collection
period however, all three approaches are involved.

One caveat to consider is that even though the evaluatory Tweet collec-
tions were performed simultaneously in parallel, due to the workings of the
Twitter API, there is no guarantee that all three collection systems will be
exposed to the exact same Tweets at the exact same time. This is because
of the fact that the Twitter streaming API only offers a sample of the en-
tire real-time stream, the percentage of which will vary depending on the
activity loads at the time. Despite this limitation of the free Twitter API,
we should still be able to get some picture of how well our approaches per-
form. In this section, we describe the experimental setup for each approach,
including the baseline standard keyword selection approach. After that, we
present and discuss the results we obtained.

7.3.1 Experimental Setup: Baseline Approach

The baseline approach involved working with a group of domain experts to
come up with useful keywords and augmenting these keywords with some
terms from the Urban Dictionary. We came up with a list of keywords
which are included in the appendices. Using these keywords, we ran a Tweet
collection during the test collection period, from the 1st of July, 2019, till
the 8th of July, 2019. The validation collection period was not used for
this part of the experiments as there was no automatic keyword generation,
rendering such a period unnecessary.

7.3.2 Experimental Setup: Similarity Heuristic-Based

Keyword Selection Approach

This approach involved starting from a minimal set of keyword and ex-
panding and/or reducing this keyword through trial and error and drawing
from a pool of terms which the system infers to be similar. This system
was applied during the validation collection period starting from the 24th of
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Step Keyword Set

1st Iteration asthma

2nd Iteration asthma, wheezing, difficulty
breathing, trouble breathing,

tight chest, inhaler

3rd Iteration asthma, wheezing, difficulty
breathing, trouble breathing,

tight chest, inhaler,
hyperventilating, coughing,

choking, throat, hurts,
breath

4th Iteration asthma, wheezing, difficulty
breathing, trouble breathing,

tight chest, inhaler,
hyperventilating, breath

Table 7.1: Keywords at each iteration of the Similarity Heuristic Keyword
Selection Process

May, 2019 till the 1st of July 2019. We started with the minimal keyword
set consisting solely of the term “asthma”. We put in place a stopping
condition which terminates the process once a consecutive deterioration in
performance between iterations is observed. Each iteration is set to last 24
hours. The system ran, adjusting the keyword set for 4 iterations. Table
7.1 shows the keywords used at each step of the keyword selection process,
and the final keywords generated at the end of the 4th iteration. We then
applied the final keywords obtained from this method to be used as query
inputs in the test collection period.

7.3.3 Experimental Setup: Particle Swarm Optimization-

Based Keyword Selection Approach

The standard keyword set used in the baseline approach was used as the seed
for creating the candidate set C. For each word in the standard keyword
set (which can be found in the appendices), their five most similar words as
inferred from our GloVe embeddings were added to the set. This resulted
in the large candidate set shown in appendix D. Using the candidate set
of keywords, Tweets were collected during the validation collection period.
At the end of this period, the PSO-based keyword generation algorithm
was applied using the collected Tweets. We set our D, representing the
maximum size of a keyword set to be 10. We made use of the PySwarm
library of evolutionary algorithms to implement our PSO algorithm. Our
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setup had a swarm size of 100. After some experimentation, we set our ω to
0.8., and c1 and c2 to 1. This resulted in the following set of keywords being
selected as the optimal arrangement: wheezing, panting, gasping, puffing,
coudn’t breathe, wheeze, asthma, inhaler, sore eyes. After obtaining the
automatically selected keywords, we applied them during the test collection
period, using them as query inputs.

7.4 Results

We utilized the two sets of keywords we obtained from our keyword selec-
tion algorithms as query inputs for Tweet collection. We also utilized the
keywords obtained using the standard baseline approach. We applied the
three distinct sets of keywords in parallel during our test collection period
- 1st of July, 2019, till the 8th of July, 2019. We then analyzed the Tweets
collected by each set of keywords in order to understand how useful each
keyword set was. We assessed the keyword sets based on their information
retrieval ability. A lot of the traditional information retrieval metrics do
not translate well, or cannot be calculated for our problem. For example,
recall, which measures the fraction of relevant documents retrieved cannot
be calculated because we have no way of knowing the total amount of rel-
evant Tweets out there. Because of this, we made use of a combination of
traditional metrics and developed problem-specific metrics. These metrics
are precision and reach.

Precision is a popular information retrieval metric which represents the
proportion of retrieved documents which are relevant. In such an informa-
tion retrieval context, precision is calculated as:

precision =
|RelevantTweets| ∩ |CollectedTweets|

|CollectedTweets|
(7.4.1)

In our scenario, precision measures the proportion of the collected Tweets
which are relevant. When calculating the precision values for each keyword
appraoch, we computed the precision over a random sample of the retrieved
Tweets. We took random 2000-large samples of the Tweets colletected
using each keyword selection approach and computed the precision from
this sample. We did this because we wanted to manually label and count
the number of relevant Tweets, instead of relying on one of our trained
classifiers which are not perfect. Doing so allowed us to get an accurate and
exact value for the number of relevant Tweets, and would not be feasible
with the complete set of collected Tweets which are very large and would
be incredibly time-consuming to manually label.

Reach is a metric we developed to help us capture the ability of a set of
keywords to retrieve as many Tweets as possible, relevant or not. This is
important because while it is useful to collect relevant Tweets, if we only
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Keyword Selection Approach Precision Reach TRP

Baseline Human Approach 0.23 0.75 0.35

Similarity Heuristic Approach 0.40 0.64 0.49

PSO Approach 0.48 0.65 0.55

Table 7.2: Performances of different approaches to keyword selection

observe a small amount of Tweets, we cannot create a useful signal which
is appropriately representative of the activity related to the syndrome of
interest. As such, reach measures the quantity of Tweets a set of keywords
is able to collect. This could be computed simply as the proportion of the
general Tweet stream that is collected using a set of keywords. However,
the inner workings of the Twitter API is unknown to us. To overcome any
bias introduced by the API and any rate limits it may impose, we calculate
the reach of a set of keywords in relation to the simplest singular keyword
possible. This can be formally represented as shown below:

reach =
|CollectedTweets|k̂ − |CollectedTweets|K

|CollectedTweets|K
(7.4.2)

k̂ represents some arbitrary single unit keyword which is a simple and
straightforward keyword. For example, in our scenario of asthma/difficulty
breathing surveillance, we make use of the keyword “asthma” as k̂.

Finally, we combined the precision and reach metrics into one metric
by taking their harmonic mean, similar to the F -measure. We term this
combined metric, the Tweet Retrieval Power (TRP).

TRP = 2
precision× reach
precision+ reach

(7.4.3)

The TRP weights precision and reach evenly but similarly to the F -measure,
it is possible to calculate variations of the TRP score which place different
weights on precision and reach as below:

TRPβ = (1 + β2)
precision× reach

β2(precision+ reach)
(7.4.4)

where TRPβ measures the Tweet retrieval ability when β times as much
importance is placed on reach than precision.

Table 7.2 shows the results observed at the end of our analysis. We found
the PSO approach to have the best Tweet Retrieval Power. Both the PSO
approach and the similarity heuristic approach yielded fair improvements in
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precision and reach over the baseline human approach. These approaches
also resulted in a decrease in reach however. The PSO approach only gives
a modest improvement in reach over the similarity heuristic approach. In
fact this improvement is very small and there could be some question over
its statistical significance. Unfortunately, computing the reach is a time
consuming process, as one calculation necessitates a collection endeavor for
a period of one week. At this time, we cannot feasibly repeat this process
sufficient times to test for statistical significance. On the precision side of
things, the PSO approach appears to produce clear improvements and be the
best bet for collecting relevant Tweets. All in all, the PSO approach yields
the highest TRP and appears to possess a reasonable balance of precision
and reach.

7.5 Discussion

In this section, we investigated methods of intelligently and automatically
selecting keywords for use in collecting Tweets. We proposed two tech-
niques for accomplishing this. The first approach was a heuristic method
which made use of similarity to automatically expand and reduce a key-
word set, in an iterative manner. The second approach was an evolutionary
algorithm inspired method which modelled the keyword selection task as
an optimization problem. It made use of Particle Swarm Optimization
(PSO) to determine the optimal set of keywords. We implemented and ap-
plied both approaches to the task of collecting Tweets for the surveillane of
the asthma/difficulty breathing syndrome. For the sake of comparison, we
also carried out a Tweet collection with keywords selected using a manual,
human approach. We then evaluated the results of all three approaches,
making comparisons between them.

We found that the PSO-based method performed the best, outperform-
ing the manual, human approach by a fair margin. The similarity heuristic
method also performed better than the baseline human approach but was
not as strong as the PSO method. While we observed a fair increase in
relevance (precision) using our automatic keyword selection algorithms, we
saw the opposite when looking at the reach metric. The baseline human
approach to curating keywords seemed to have the most reach. Despite this,
the boost in precision offered by the automatic keyword selection algorithms
meant that they outperformed the baseline approach, with both algorithms
yielding higher TRP values. However, it is also important to remember that
while we tried to keep things constant in our experiments, applying each
keyword selection approach in parallel during the same periods, we cannot
guarantee that they were exposed to the same environments and Tweets
as that is an issue dependent on the Twitter API. Studies have estimated
that using the Twitter streaming API, users can expect to receive anywhere
from 1% of the tweets to 40% of tweets available in real-time, depending on
the amount of activity at the time [183].
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While we have introduced these techniques for the intelligent and au-
tomatic selection of keywords and used them for surveilling the syndrome
of asthma/difficulty breathing, this does not mean it does not generalize to
other tasks. These techniques cannot only be applied for the purposes of
surveilling other syndromes on Twitter, but also for any Tweet collection
exercise, regardless of the purpose of said exercise. This is due to the fact
that these techniques aim to maximize the relevance of collected Tweets to
some query, together with the volume of Tweets collected. As long as there
exists some defined query, the notion of “relevance” for its results must also
exist. Because these are the main ideas behind our proposed approaches,
they can be very easily adapted to any other problem and generalize very
well.

While both the similarity heuristic approach and PSO approach work
better than the manual approach, we have established that the PSO method
yield the best results. In addition, the PSO approach is a lot less time con-
suming to run. This is because the similarity heuristic method involves a
series of automated trial and error iterations which allow it to make adjust-
ments to the keyword set. To adequately evaluate a trial, a fair amount of
data must be available for it. This means that a trial (or single iteration),
would typically have to last 1 day. Naturally, multiple iterations means the
process of selecting a set of keywords can take multiple days. This is not
the case for the PSO method. Recall that for the PSO method, the data
used to evaluate the objective function is all collected in advance. As such,
the time taken for each iteration is determined by how many particles the
swarm contains and the dimension of each particle, as well as the computa-
tional resources available. Even with a mid-tier computer, a single iteration
could never take longer than an hour in the absolute worst case. As such
the PSO method is not only superior in terms of the quality of the keywords
produced, but also in terms of the amount of time taken to produce said
keywords.



Chapter 8

Conclusions of the Thesis

This chapter summarizes the contributions of the research carried out as
part of this thesis. It begins with a chapter-by-chapter synopsis of the
contents of this work. We then discuss the general outcomes of the research,
looking back in hindsight to our aims and objectives, while also highlighting
its impact and contributions. Finally, we finish by proposing directions for
further research that may be interesting to explore in the future.

8.1 Summary of Thesis

The main goal of this project was to establish whether social media data,
and specifically, Twitter data can be used in the context of syndromic
surveillance in order to generate or contribute to alarms for a specific (non-
infectious) syndrome - asthma/difficulty breathing - in the UK. After ap-
plying various preprocessing operations to the Twitter data, we needed to
filter relevant Tweets as even though Tweets contained teling keywords such
as “asthma”, they were not always related to individuals who were symp-
tomatic or concernced, and were sometimes merely reference or passing
mentions. We found that the quality of the Twitter syndromic surveil-
lance system was improved with relevance filtering, with an attentive bi-
directional LSTM performing best at the task. The syndromic Twitter
signal obtained from the attentive bi-directional LSTM had the strongest
correlation with the ground truth. We also discovered that that Twitter
has some potential for detecting public health incidents before traditional
surveillance systems. We performed some lag analysis between our gener-
ated Twitter signals and ground-truth syndromic surveillance signals. The
results of this analysis suggest that we can use Twitter to catch wind of
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trends in public health before they reach formal reporting routes. Lastly,
we proposed that this, coupled with an evolutionary algorithm approach to
automatic keyword selection for streaming Tweets in, resulted in a perfor-
mant syndromic surveillance system. Figure 8.1.1 shows the signal obtained
from our proposed methodology.

Figure 8.1.1: Time series plot showing generated Twitter syndromic surveil-
lance signal with a ground truth signal for comparison

In Chapter 1, we introduced our project, highlighting our aims and objec-
tives and describing the motivations to undergo the project. Here, we set
the stage for the rest of the thesis, providing an outline of this script and
finally briefly highlighting the research outputs and contributions of this
project to the wider academic community.

Chapter 2 presented a technical and methodological background, famil-
iarizing the reader with the relevant fields of pattern recognition, natural
language processing and statistical machine learning, and summarized popu-
lar algorithms, techniques and ideas in these fields. This chapter introduced
theoretical notions which aid the reader in understanding the thesis moving
forward.

In Chapter 3, we carried out a comprehensive review of the literature
surrounding the use of Twitter data for public health purposes, including
but not limited to syndromic surveillance. Through this review, we gain a
clear picture of the state of the literature, understanding research attitudes
and directions. In doing so, we are able to identify state-of-the-art appli-
cations and algorithms, as well as gaps in the field, which helped motivate



Chapter 8: Conclusions of the Thesis 140

and guide the direction of this project.

Chapter 4 gave a characterization of Twitter describing its main attributes
and offerings. In this chapter, we explain in detail how we collect, prepro-
cess and store data from Twitter. We also described the data collected
from Twitter. In the second part of this chapter, we proposed and de-
scribed our approaches to extracting meaningful features from the collected
Twitter data and producing useful feature representations of it. We intro-
duced novel hand-crafted features, some of which capitlize on emoji content
in their construction. Embedding-based tweet feature representations were
also explored in this chapter.

In Chapter 5, we identified the steps vital to syndromic surveillance using
Twitter data. In doing so we recognized the need for further filtering of
Tweets based on their relevance to a syndrome of interest, as well as its
exigency to our syndromic surveillance efforts. In order to build a reliable
syndromic surveillance signal, we need to extract only Tweets expressing
discomfort and/or concern related to a syndrome of interest, and reflecting
current events. In this chapter, we proposed various methodologies for ef-
fectively achieving this. We focused on algorithms based on semi-supervised
learning ideas, as very little research has been carried out in the area and
such techniques allowed us to minimize our labelling efforts, make use of our
vast amounts of labelled data. We described an iterative labelling methodol-
ogy for Tweet relevance filtering. We also looked towards (semi-supervised)
algorithms based on the prevalent and powerful field of deep learning. In
doing so, we also experimented with a novel classification algorithm based
on neural language models termed the Generative Classification Network
(GCN), comparing it to popular deep learning classification algorithms. FI-
nally, we also proposed a novel attention based bi-directional Recurrent
Neural Network.

In Chapter 6, we described the experiments we carried out to evaluate
our proposed methodologies and approaches to Tweet relevance filtering,
along with our results. We also described our experimental evaluations
of our various proposed feature extraction and representation approaches.
Emojis were found to make informative and useful features. On the side
of relevance filtering, semi-supervised iterative labelling was observed to
outperform popular fully-supervised algorithms at the task of Tweet rele-
vance filtering. Our experimental GCN deep classification algorithm was
outperformed by RNNs at the task of relevance filtering. However, it was
also able to give better results than CNNs at the same task. We found
the attentive bi-directional RNN to perform the best at the task of rele-
vance filtering. In the second part of this chapter, we directly evaluated
and compared the signals generated by our proposed methodologies. The
attentive bi-directional RNN was found to produce the best signals, giving
us a strong and statistically significant correlation with real public health
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data (r = 0.830), confirming the utility for Twitter as a data source for
syndromic surveillance in the UK.

Lastly, Chapter 7 narrated a novel study into the improvement of the
Twitter syndromic surveillance pipeline by intelligently and automatically
selecting the optimal keywords to collect as relevant, and as many Tweets as
possible, in order produce a better signal. We proposed and compared two
algorithms which make use of deep learning to this effect: (a) an iterative
heuristic approach and (b) an evolutionary computing approach. We found
that the second approach, which modelled the task of automatic keyword
selection as an optimization problem, performed better. This approach was
also found to outperform the baseline human approach, resulting in a better
quality of collected Tweets, as well as requiring less manual effort and time.

8.2 Research Conclusions

This research project was carried out with the goal of establishing Twit-
ter’s utility for syndromic surveillance and the development of techniques
for such. In doing so, a number of questions were raised which we aimed to
answer through our research. We summarize the results of this project by
discussing the answers we have learned from it.

Q1: ls there useful, extratable information in the large amounts
of Twitter data available?

Through our comprehensive scoping review of the use of Twit-
ter data for public health purposes, we obtained some insight
into the value of Twitter as a data source, as well as the qual-
ity of information present in Twitter data. We confirmed our
hypothesis that the enormous volumes of data contained some
meaningful, useable information. We learned that Twitter data
can be effectively employed for multitudinous purposes ranging
from surveillance to pharmacovigilance to the capturing of envi-
ronmental and social issues. With all of this in mind, we moved
forward in our project to understand how we can employ Twit-
ter data for syndromic surveillance in the UK.

Q2: How can useful information effectively and efficiently be ex-
tracted from Twitter?

We sought to answer this question specifically for the context
of syndromic surveillance in the UK. This was the heart of the
research carried out in this project. We investigated a number
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of supervised, semi-supervised and unsupervised algorithms for
extracting information from Twitter. In doing so, we also devel-
oped our own algorithms to this effect. We found that emojis
proved helpful in constructing feature to better understand and
classify Tweets. We observed a distinct absence of the use of
semi-supervised learning being applied to extract information
from Twitter within the relevant literature. However, due to
the advantages which semi-supervised learning has to offer, we
investigated its utility for our goals. Semi-supervised iterative
labelling was found to outperform popular fully-supervised al-
gorithms at extracting information from Twitter for syndromic
surveillance. In addition, we successfully applied deep learn-
ing algorithms to the understanding and classification Twitter
data. Our proposed GCN algorithm proved somewhat useful,
as it was observed to outperform the popular CNN deep learn-
ing classification algorithm. However, it was itself outperformed
by RNNs. Learning from this, we developed an attention-based
bi-directional RNN which not only allowed us to accurately and
efficiently identify relevant Tweets for syndromic surveillance,
but also allowed us to automatically identify and extract key-
words in collected Tweets. Lastly, we also developed algorithms
for the intelligent and automatic selection of keywords to im-
prove the Twitter data collection. We learned that this was
possible through a combination of deep learning and evolution-
ary computing, specifically Particle Swarm Optimization (PSO).
We found that we were able to come up with better keywords
and collect more relevant Tweets.

Q3: Does the information extracted from Twitter mirror the
real-world such that it is a reasonable data source for syndromic
surveillance?

While we found that we were able to effectively and efficiently
extract meaningful information surrounding syndromic surveil-
lance from collected Twitter data, this alone did not confirm its
potential for syndromic surveillance. We were able to automati-
cally identify symptomatic and relevant Tweets, but this did not
answer the question of whether Twitter could be a reasonable
data source for syndromic surveillance. The results of our ex-
periments using real-world syndromic surveillance data provided
by Public Health England (PHE) as ground truth helped us an-
swer this question. We made use of our developed algorithms
to extract a signal from Twitter data. We then also extracted
a signal from the ground truth data. We compared these sig-
nals and found a strong and statistically significant correlation
between them. As such, we were able to confirm that Twitter
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sufficiently mirrors the real-world to the point that it could be
a potential data source for syndromic surveillance.

8.3 Research Novelty and Contributions

There were a number of novel aspects and contributions generated through
the research carried out as part of this project. Some of these novelties
have been published in scientific journals and conference proceedings, while
others are either under consideration for publication or in the process of
being submitted for publication at the time of writing this thesis. The
novelty and contributions of our research can be summarized as follows:

• We carried out a comprehensive and methodical scoping review to map
the field of Twitter mining for public health purposes from January
2009 till March 2019. This study identified and described the various
ways in which Twitter has been mined for health purposes over a ten
year period, as well as algorithms, ideas and approaches implemented.
As such, it is of use to any researchers interested in obtaining some
insight into the field or some direction or clues as to what techniques
may be worth applying. It is currently under review for publication
in the European Journal of Public Health.

• We introduced and verified the efficacy of semi-supervised learning
within the context of syndromic surveillance. This contribution was
published as a journal article in PLOS One. In this study, we showed
that the collected and unlabelled data did not have to go to waste
and could in fact, improve results with minimal labelling efforts. Ac-
cording to our scoping review, other similar studies seem to make
use of an average of 10,000 labelled Tweets. Despite the fact that
we only labelled 3500 Tweets, we obtained competitive results and
outperformed a number of fully supervised algorithms.

• As part of the above published study, we also highlighted the poten-
tial and discriminatory power of emojis in text classification problems,
together with capable features for Tweet classification within the con-
text of syndromic surveillance.

• We also developed the Generative Classification Network (GCN), a
novel and experimental classification algorithm based on deep gen-
erative neural network models. We carried out a study comparing
the GCN to other deep learning approaches to relevance filtering and
Tweet classification which was published as part of the 2019 Interna-
tional Conference on Pattern Recognition Applications and Methods.
The GCN was outperformed by RNNs at Tweet classification, but per-
formed better than CNNs at the same task. While this algorithm does
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not obtain better results than the current state-of-the-art, it still out-
performs some popular and powerful models. Also, the GCN relies on
language models as part of its classification process. Language mod-
els are usually built using large amounts of unlabelled data. However,
because the GCN uses language models in a supervised way, it needs
labelled data to construct its language models. As such, the GCN is a
very data-hungry algorithm and would require large amounts of data
to perform at its best. While this is of course, a disadvantage, twe
believe the GCN could still be of some merit in some scenarios.

• We experimented with an attentive bi-directional RNN architecture
and applied it to the task of syndromic surveillance. This architecture
was found to be effective at the task of relevance filtering and also pro-
duced reliable syndromic surveillance signals. A conference paper de-
tailing this architecture and our applications was published as part of
the conference proceedings of the 2019 International Work-Conference
on Artificial Neural Networks. The paper was well received and we
have been invited to submit an extended version for consideration in
a special issue of PLOS One.

• We also introduced a general framework for the automatic and optimal
selection of keywords for Twitter data collection based on evolution-
ary algorithms and deep learning. This framework minimised manual
efforts and human intervention, while simultaneously maximizing the
quality and quantity of Tweets collected using the Twitter API.

8.4 Limitations and Directions for Future Work

The results for syndromic surveillance using Twitter data were promising.
However, this work could still be extended in a number of different direc-
tions. Firstly, the location filtering aspect of our methodology only relied on
the Twitter API. The avenues for location filtering provided by the Twitter
API are not entirely reliable. Further research could be carried out looking
into more sophisticated ways of inferring the geographical origin of a Tweet.
This problem was found to be an active research area through our scoping
review. However, this field of Twitter mining has seen the least amount of
activity when looking at Twitter mining for public health. More attention
should be paid to tackling this problem in future work.

Trying to improve the core theories of the proposed methodologies is al-
ways a viable direction for future research. Some work could be done cre-
ating more complex features, as well as more powerful neural network ar-
chitectures to aid the syndromic surveillance effort. Additionally, including
further syndromic case studies to the experiments may help us understand
which key properties our learning functions require. While a lot of research
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has previously been carried out applying Twitter to infectious diseases, and
this project tries to look towards non-infectious diseases, we only look at
asthma/difficulty breathing. Other non-infectious diseases could be investi-
gated. Furthermore, the utility of Twitter data for the syndromic surveil-
lance of other kinds of diseases and public health threats could also be
investigated. Examples of such kinds of threats are sexually transmitted
diseases, mental health disorders and riot or terrorist activity.

Twitter is only one of a number of different and unique social media plat-
forms. Another avenue for future research would be to examine the util-
ity of other social media platforms for syndromic surveillance. The ways
through which users interact with different social media platforms can vary.
For example the main forms of media on Snapchat are images and videos.
Facebook allows long form texts and videos, and images. On instagram,
users make use of images and short videos. The methodologies involved
in text-centric Twitter mining will not readily lend themselves to Insta-
gram mining for example. Research into using some of these social media
platforms will require new methodologies created to suit the nature of the
content on their platforms.

Such future research could also invlolve the use of multimodal data sources.
While Twitter does offer the opportunity for multimodal approaches to data
mining, such approaches would not be particularly useful within the context
of syndromic suurveillance. Most Tweets do not contain images. Addition-
ally, people suffering from health symptoms, for example asthma, do not
tend to post pictures to go with their symptom complaints. On the other
hand, posts on Instagram take the form of captioned images. Algorithms
which consider both the text and image data could be investigated to han-
dle such a platform. Video classification, which poses an important and
interesting challenge, could also be investigated for mining video blogging
platforms such as YouTube. Furthermore, signals could be collected from
multiple social media platforms simultaneously and combined in a mean-
ingful way to produce more complex and/or detailed signals for syndromic
surveillance.

As a final but important note, we would like to highlight the need for the
ethical issues and implications surrounding social media surveillance to be
seriously considered while pushing for new developments. There is cause for
concern over the privacy rights of social media users from whom the data is
generated. Developments in Twitter mining, albeit for syndromic surveil-
lance and public health purposes, could indirectly compromise the safety
of Twitter users. Future work in the area should include social scientists
and legislators before putting such infoveillance systems into production, in
order to ensure that society’s freedom of speech and right to privacy is not
infringed upon.
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[86] Janáına Gomide, Adriano Veloso, Wagner Meira, Virǵılio Almeida,
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[125] Matjaz Juršic, Igor Mozetic, Tomaz Erjavec, and Nada Lavrac. Lem-
magen: Multilingual lemmatisation with induced ripple-down rules.
Journal of Universal Computer Science, 16(9):1190–1214, 2010.

[126] Ireneus Kagashe, Zhijun Yan, and Imran Suheryani. Enhancing sea-
sonal influenza surveillance: Topic analysis of widely used medici-
nal drugs using twitter data. Journal of Medical Internet Research,
19(9):e315, sep 2017.

[127] Gloria J. Kang, Sinclair R. Ewing-Nelson, Lauren Mackey, James T.
Schlitt, Achla Marathe, Kaja M. Abbas, and Samarth Swarup. Se-
mantic network analysis of vaccine sentiment in online social media.
Vaccine, 35(29):3621–3638, jun 2017.

[128] Mark Kantrowitz. Method and apparatus for analyzing affect and
emotion in text, September 16 2003. US Patent 6,622,140.

[129] Fred Karlsson, Atro Voutilainen, Juha Heikkilae, and Arto Anttila.
Constraint Grammar: a language-independent system for parsing un-
restricted text, volume 4. Walter de Gruyter, 1995.

[130] Leonard Kaufman and Peter J Rousseeuw. Finding groups in data:
an introduction to cluster analysis, volume 344. John Wiley & Sons,
2009.

[131] James Kennedy. Particle swarm optimization. Encyclopedia of ma-
chine learning, pages 760–766, 2010.

[132] Yasmin Khan, Garvin J. Leung, Paul Belanger, Effie Gournis,
David L. Buckeridge, Li Liu, Ye Li, and Ian L. Johnson. Compar-
ing twitter data to routine data sources in public health surveillance
for the 2015 pan/parapan american games: an ecological study. Cana-
dian Journal of Public Health, 109(3):419–426, apr 2018.



Chapter 8: Conclusions of the Thesis 158

[133] David Khanaferov, Christopher Luc, and Taehyung Wang. Social
network data mining using natural language processing and density
based clustering. In 2014 IEEE International Conference on Semantic
Computing. IEEE, jun 2014.

[134] Yoon Kim. Convolutional neural networks for sentence classification.
arXiv preprint arXiv:1408.5882, 2014.

[135] Yoon Kim. Convolutional neural networks for sentence classification.
In Proceedings of the 2014 Conference on Empirical Methods in Nat-
ural Language Processing (EMNLP), pages 1746–1751, 2014.

[136] Benjamin King. Step-wise clustering procedures. Journal of the Amer-
ican Statistical Association, 62(317):86–101, 1967.

[137] Ioannis Korkontzelos, Azadeh Nikfarjam, Matthew Shardlow, Abeed
Sarker, Sophia Ananiadou, and Graciela H. Gonzalez. Analysis of the
effect of sentiment analysis on extracting adverse drug reactions from
tweets and forum posts. Journal of Biomedical Informatics, 62:148–
158, aug 2016.

[138] Moritz U. G. Kraemer, D. Bisanzio, R. C. Reiner, R. Zakar, J. B.
Hawkins, C. C. Freifeld, D. L. Smith, S. I. Hay, J. S. Brownstein,
and T. Alex Perkins. Inferences about spatiotemporal variation in
dengue virus transmission are sensitive to assumptions about human
mobility: a case study using geolocated tweets from lahore, pakistan.
EPJ Data Science, 7(1), jun 2018.

[139] Ralf Krestel, Peter Fankhauser, and Wolfgang Nejdl. Latent dirichlet
allocation for tag recommendation. In Proceedings of the third ACM
conference on Recommender systems, pages 61–68. ACM, 2009.

[140] M. Krieck, L. Otrusina, P. Smrz, P. Dolog, W. Nejdl, E. Velasco, and
K. Denecke. How to exploit twitter for public health monitoring?
Methods of Information in Medicine, 52(04):326–339, 2013.

[141] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. Imagenet
classification with deep convolutional neural networks. In Advances
in neural information processing systems, pages 1097–1105, 2012.

[142] Robert Krovetz. Viewing morphology as an inference process. In
Proceedings of the 16th annual international ACM SIGIR conference
on Research and development in information retrieval, pages 191–202.
ACM, 1993.

[143] Arun CS Kumar and Suchendra M. Bhandarkar. A deep learning
paradigm for detection of harmful algal blooms. In 2017 IEEE Winter
Conference on Applications of Computer Vision (WACV). IEEE, mar
2017.



Chapter 8: Conclusions of the Thesis 159
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Eyke Hüllermeier, Stan Matwin, Yasubumi Sakakibara, Pierre Flener,
Ute Schmid, Cecilia M. Procopiuc, Nicolas Lachiche, and Johannes
Fürnkranz. Particle swarm optimization. In Encyclopedia of Machine
Learning, pages 760–766. Springer US, 2011.

[293] Dell Zhang and Wee Sun Lee. Question classification using support
vector machines. In Proceedings of the 26th annual international ACM
SIGIR conference on Research and development in informaion re-
trieval, pages 26–32. ACM, 2003.



Chapter 8: Conclusions of the Thesis 172

[294] Liang Zhao, Jiangzhuo Chen, Feng Chen, Wei Wang, Chang-Tien Lu,
and Naren Ramakrishnan. Simnest: Social media nested epidemic
simulation via online semi-supervised deep learning. In 2015 IEEE
International Conference on Data Mining, pages 639–648. IEEE, 2015.

[295] Bin Zou, Vasileios Lampos, Russell Gorton, and Ingemar J. Cox. On
infectious intestinal disease surveillance using social media content.
In Proceedings of the 6th International Conference on Digital Health
Conference - DH '16. ACM Press, 2016.

[296] Ovidiu S, erban, Nicholas Thapen, Brendan Maginnis, Chris Hankin,
and Virginia Foot. Real-time processing of social media with SEN-
TINEL: A syndromic surveillance system incorporating deep learn-
ing for health classification. Information Processing & Management,
56(3):1166–1184, may 2019.



A:

Twitter Data Collection

Keywords

pollution, smog, poor air quality, wheeze, wheezing, difficulty breathing,
asthma, inhaler, air pollution, itchy eyes, sore eyes, trouble breathing, can-
not breathe, could not breathe, can’t breathe, coudn’t breathe, asma, short
of breath, tight chest, chest tightness, respiratory disease, pea souper, murk,
fumes, acid rain, gasping, puffing, panting.



B:

Positive Word Dictionary

adore, adorable, accomplish, achievement, achieve, action, active, admire,
adventure, agree, agreeable, amaze, amazing, angel, approve, attractive,
awesome, beautiful, brilliant, bubbly, calm, celebrate, celebrating, charm-
ing, cheery, cheer, clean, congratulation, cool, cute, divine, earnest, easy,
ecstasy, ecstatic, effective, effective, efficient, effortless, elegant, enchant-
ing, encouraging, energetic, energized, enthusiastic, enthusiasm, excellent,
exciting, excited, fabulous, fair, familiar, famous, fantastic, fine, fit, fortu-
nate, free, fresh, friend, fun, generous, genius, glowing, good, great, grin,
handsome, happy, hilarious, hilarity, lmao, lol, rofl, haha, healthy, ideal,
impressive, independent, intellectual, intelligent, inventive, joy, keen, laugh,
legendary, light, lively, lovely, lucky, marvel, nice, okay, paradise, perfect,
pleasant, popular, positive, powerful, pretty, progress, proud, quality, re-
fresh, restore, right, smile, success, sunny, super, wealthy, money, cash,
well, wonderful, wow, yes, yum.



C:

Negative Word Dictionary

abysmal, adverse, alarming, angry, rage, annoy, anxious, anxiety, attack,
appalling, atrocious, awful, bad, broken, can’t, not, cant, cannot, cold, col-
lapse, crazy, cruel, cry, damage, damaging, depressed, depression, dirty,
disease, disgust, distress, don’t, dont, dreading, dreadful, dreary, fail, fear,
scare, feeble, foul, fright, ghastly, grave, greed, grim, gross, grotesque, grue-
some, guilty, hard, harm, hate, hideous, horrible, hostile, hurt, icky, ill,
impossible, injure, injury, jealous, lose, lousy, messy, nasty, negative, never,
no, nonsense, crap, shit, fuck, fukk, fuxk, nausea, nauseous, pain, reject,
repulsive, repulse, revenge, revolting, rotten, rude, ruthless, sad, scary, se-
vere, sick, slimy, smelly, sorry, sticky, stinky, stormy, stress, stuck, stupid,
tense, terrible, terrifying, threaten, ugly, unfair, unhappy, unhealthy, un-
just, unlucky, unpleasant, upset, unwanted, unwelcome, vile, wary, weary,
wicked, worthless, wound, yell, yucky



D:

PSO-Based Keyword Selection

Candidate Set

pollution, smog, poor air quality, wheeze, wheezing, difficulty breathing,
asthma, inhaler, air pollution, itchy eyes, sore eyes, trouble breathing, can-
not breathe, could not breathe, can’t breathe, coudn’t breathe, asma, short
of breath, tight chest, chest tightness, respiratory disease, pea souper, murk,
fumes, acid rain, gasping, puffing, panting, breath, breathing, cant, cannot,
crying, omfg, murked, nigha, knocc, bodied, snuffed, cuhz, allergy, aller-
gies, bronchitis, disease, inhaler, symptoms, groaning, whimpering, purring,
sweating, shivering, sighing, fume, critiques, tomes, tires, bois, insultes,
neck, shoulders, stomach, arms, shoulder, arm, hyperventilating, coughing,
sniffling, whimpering, coughin, chokinggasps, facepalm, headdesk, faints,
chuckle, groan, puffin, huffing, passin, blowin, belching, puffed, asthma,
vicks, earpiece, ventolin, tissues.
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