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Abstract 37 

Most neuroimaging experiments that investigate how tools and their actions are represented in 38 

the brain use visual paradigms where tools or hands are displayed as 2D images and no real 39 

movements are performed. These studies discovered selective visual responses in occipito-40 

temporal and parietal cortices for viewing pictures of hands or tools, which are assumed to reflect 41 

action processing, but this has rarely been directly investigated. Here, we examined the 42 

responses of independently visually defined category-selective brain areas when participants 43 

grasped 3D tools (N=20; 9 females). Using real action fMRI and multi-voxel pattern analysis, we 44 

found that grasp typicality representations (i.e., whether a tool is grasped appropriately for use) 45 

were decodable from hand-selective areas in occipito-temporal and parietal cortices, but not from 46 

tool-, object-, or body-selective areas, even if partially overlapping. Importantly, these effects 47 

were exclusive for actions with tools, but not for biomechanically matched actions with control 48 

non-tools. In addition, grasp typicality decoding was significantly higher in hand than tool-49 

selective parietal regions. Notably, grasp typicality representations were automatically evoked 50 

even when there was no requirement for tool use and participants were naïve to object category 51 

(tool vs non-tools). Finding a specificity for typical tool grasping in hand-, rather than tool-, 52 

selective regions challenges the long-standing assumption that activation for viewing tool images 53 

reflects sensorimotor processing linked to tool manipulation. Instead, our results show that 54 

typicality representations for tool grasping are automatically evoked in visual regions specialised 55 

for representing the human hand, the brain’s primary tool for interacting with the world. 56 

 57 

Significance Statement 58 

The unique ability of humans to manufacture and use tools is unsurpassed across the animal 59 

kingdom, with tool use considered a defining feature of our species. Most neuroscientific studies 60 

that investigate the brain mechanisms that support tool use, record brain activity while people 61 

simply view images of tools or hands and not when people perform actual hand movements with 62 

tools. Here we show that specific areas of the human visual system that preferentially process 63 

hands automatically encode how to appropriately grasp 3D tools, even when no actual tool use is 64 

required. These findings suggest that visual areas optimized for processing hands represent 65 
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fundamental aspects of tool grasping in humans, such as which side they should be grasped for 66 

correct manipulation.  67 
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INTRODUCTION 68 

The emergence of handheld tools (e.g., a spoon) marks the beginning of a major discontinuity 69 

between humans and our closest primate relatives (Ambrose, 2001). Unlike other manipulable 70 

objects (e.g., books), tools are tightly associated with predictable motor routines (Johnson-Frey, 71 

2004). A highly replicable functional imaging finding is that simply viewing tool pictures activates 72 

sensorimotor brain areas (Lewis, 2006), but what drives this functional selectivity? One popular 73 

idea is that this visually-evoked activation reflects the automatic extraction of information about 74 

the actions tools afford, like the hand movements required for their use (e.g., Martin et al., 1996; 75 

Fang & He, 2005). Similarly, tool-selective visual responses in Supramarginal (SMG) or posterior 76 

Middle Temporal Gyri (pMTG) are often interpreted as indirect evidence that these regions are 77 

involved in real tool manipulation (e.g., Buxbaum et al., 2006; Bach et al., 2010). Nevertheless, 78 

we would never grasp a picture of a tool and, more importantly, finding spatially overlapping 79 

activation between two tasks does not directly imply that the same neural representations are 80 

being triggered (Dinstein et al., 2008; Martin, 2016). In fact, intraparietal activation for viewing 81 

tool pictures vs grasping shows poor correspondence (Valyear et al., 2007; Gallivan et al., 2013), 82 

questioning the long-standing assumption that visual tool-selectivity represents sensorimotor 83 

aspects of manipulation. 84 

Curiously, the visual regions activated by viewing pictures of hands in the left Intraparietal 85 

Sulcus (IPS-Hand) and Lateral Occipital Temporal Cortex (LOTC-Hand) overlap with their 86 

respective tool-selective areas (IPS-Tool; LOTC-Tool; Bracci et al., 2012; 2013; 2016). Stimulus 87 

features often described to drive the organisation of category-selective areas, like form (Coggan 88 

et al., 2016), animacy (Konkle & Caramazza, 2013) or manipulability (Mahon et al., 2007) poorly 89 

explain this shared topography because hands and tools differ on these dimensions. Instead, 90 

their overlap is suggested to result from a joint representation of high-level action information 91 

related to skilful object manipulation (Bracci et al., 2012; 2016; Striem-Amit et al., 2017), perhaps 92 

coding the function of hand configurations (Perini et al., 2014; Bracci et al., 2018). Arguably, the 93 

only way to directly test whether tool- or hand-selective visual areas carry information about tool 94 

actions is to examine their responses during real 3D tool manipulation. Yet, very few fMRI 95 

studies involve real tool manipulation (e.g., Gallivan, et al., 2009; Valyear et al., 2012; Brandi et 96 
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al., 2014; Styrkowiec et al., 2019). To date, only Gallivan et al. (2013) investigated real tool 97 

manipulation in visually defined tool-selective regions and showed that IPS-/LOTC-Tool are 98 

indeed sensitive to coarsely different biomechanical actions (reaching vs grasping) with a pair of 99 

tongs. However, it remains unknown whether hand-selective visual areas represent properties of 100 

real hand movements with 3D tools, like the way they are typically grasped for subsequent use. 101 

 Here, an fMRI experiment involving real hand actions (Fig. 1) tested if visually defined 102 

hand- and tool-selective areas represented how to typically grasp 3D tools. Specifically, 103 

participants grasped 3D-printed tools in ways either consistent with their use (typical: by their 104 

handle) or not (atypical: by their functional-end; e.g., knife blade). As a control, non-tool bars 105 

(matched with the tools for elongation, width and depth; adapted from Brandi et al., 2014) were 106 

also grasped on their right or left sides to match as much as possible any biomechanical 107 

differences between typical and atypical actions. Multivoxel Pattern Analysis (MVPA) was used 108 

to assess whether different tool grasps (typical vs atypical) and non-tool grasps (right vs left), 109 

could be decoded from fMRI activity patterns within independent visually defined Regions of 110 

Interest (ROIs). Greater-than-chance decoding accuracy of typical vs atypical actions for tools, 111 

but not control non-tools, was interpreted as evidence that an area contains high-level typicality 112 

representations about how a tool should be grasped correctly for use (i.e., by its handle). This 113 

pattern of findings was expected only for the tool- and hand-selective areas since these are 114 

thought to support tool manipulation (e.g., Mahon & Caramazza, 2009; Striem-Amit et al., 2017). 115 

 116 

**************************************************************************************** 117 

Please insert Figure 1 here 118 

**************************************************************************************** 119 

 120 

Materials and Methods 121 

Participants. Twenty healthy participants (11 males) completed the real action fMRI experiment 122 

followed by a visual localizer experiment on a separate day. Data from one participant (male) 123 

was excluded from statistical analysis due to excessive head movements during the real action 124 

experiment (i.e., translation and rotation exceeded 1.5mm and 1.5° rotation) leaving a total 125 



 

6 

 

sample of 19 participants (mean age = 23 years ± 4.2 years; age range = 18 - 34). All 126 

participants had normal or corrected-to-normal vision, no history of neurological or psychiatric 127 

disorders, were right-handed (Oldfield, 1971) and gave written consent in line with procedures 128 

approved by the School of Psychology ethics committee at the University of East Anglia. 129 

 130 

Real action 3D stimuli. Tool and non-tool object categories were designed (Autodesk Inc.) and 131 

3D-printed (Objet30 Desktop) in VeroWhite material (Statasys): three common kitchen tools 132 

(knife, spoon and pizzacutter) and three non-tool control bars (see Fig.1A). Objects were secured 133 

to slots placed onto black pedestals used for stimulus presentation. Tools had identical handles 134 

(length x width x depth dimensions of 11.6cm x 1.9cm x 1.1cm) with different functional-ends 135 

attached (knife = 10.1cm x 1.9cm x 0.2cm; spoon = 10.1cm x 4.1cm x 0.7cm; pizzacutter = 136 

10.1cm x 7.5cm x 0.2cm). To avoid motor or visual confounds, tools and non-tool pairs were 137 

carefully matched in terms of visual properties and kinematic requirements as much as possible. 138 

Specifically, non-tools were comprised of three cylindrical shapes (adapted from Brandi et al., 139 

2014) with handle, neck and functional-end dimensions matched to each tool they controlled for, 140 

ensuring that grip size was matched between tool and non-tool pairs. In addition, all objects had 141 

small black stickers placed at pre-specified locations to indicate grasp points, ensuring that grasp 142 

position/reach-distance were identical between tool and non-tool pairs regardless of side to be 143 

grasped. To avoid familiarity confounds between tools and non-tool control stimuli we chose to 144 

use bars instead of scrambled tools and thus, our control non-tools were familiar, but had no 145 

specific associated function. Furthermore, each tool and non-tool pair were carefully matched for 146 

elongation so that any differences between conditions could not be explained by low-level shape 147 

preferences (e.g., Sakuraba et al., 2012; Brandi et al., 2014). 148 

 149 

Real action setup and apparatus. Participants were scanned in complete darkness using a 150 

head-tilted configuration that allowed direct viewing of the workspace and 3D stimuli without the 151 

use of mirrors (Fig. 1B) by tilting the head coil ~20° and padding the underside of each 152 

participants heads with foam cushions (NoMoCo Pillow, La Jolla, CA, USA). Objects were placed 153 

by an experimenter on a turntable above the participant’s pelvis and were only visible when 154 
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illuminated (e.g., Fernández-Espejo et al., 2015; Fig. 1B). All stimuli were mounted such that they 155 

were aligned with participants’ midlines, never changed position while visible and were tilted 156 

away from the horizontal at an angle (~15°) to maximize visibility and grasp comfort. For stimulus 157 

presentation, the workspace and object were illuminated from the front using a bright white Light 158 

Emitting Diode (LED) attached to a flexible plastic stalk (Loc-line, Lockwood Products; Fig. 1B). 159 

To control for eye movements, participants were instructed to fixate a small red LED positioned 160 

above and behind objects such that they appeared in the lower visual field (Rossit et al., 2013). 161 

Throughout the experiment, participants’ right eye and arm movements were monitored online 162 

and recorded using two MR-compatible infrared-sensitive cameras (MRC Systems GmbH) to 163 

verify that participants performed the correct grasping movement (hand camera positioned over 164 

the left shoulder; Fig. 1B) and maintained fixation (eye camera beside the right eye; Fig. 1B).  165 

The likelihood of motion artefacts related to grasping was reduced by restraining the upper-right 166 

arm and providing support with additional cushions so that movements were performed by flexion 167 

around the elbow only (Culham, 2006). Auditory instructions were delivered to the participants 168 

through earphones (Sensimetrics MRI-Compatible Insert Earphones Model S14, USA). At the 169 

beginning of the real action session, participant setup involved adjusting the exact position of: 1) 170 

stimuli and the hand to ensure reachability (average grasping distance between the “home” 171 

position and object = 43cm), 2) the illuminator to equally light all objects, 3) the fixation LED to 172 

meet the natural line of gaze (average distance from fixation to bridge nose = 91cm; visual angle 173 

= ~20°) and 4) the infrared-sensitive eye and hand cameras to monitor eye and hand movement 174 

errors. The experiment was controlled by a Matlab script (The MathWorks, USA R2010a) using 175 

the Psychophysics Toolbox (Brainard, 1997). 176 

 177 

Real action experimental paradigm. We used a powerful block-design fMRI paradigm, that 178 

maximised the contrast-to-noise ratio to generate a reliable estimate of the average response 179 

pattern (Mur et al., 2009) and improved detection of blood oxygenation level-dependent (BOLD) 180 

signal changes without significant interference from artefacts during overt movement (Birn et al., 181 

2004). A block began with an auditory instruction (‘Left’ or ‘Right’; 0.5s) specifying which side of 182 

the upcoming object to grasp (Fig. 1C). During the ON-block (10s), the object was briefly 183 
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illuminated for 0.25s five consecutive times (within 2s intervals) cueing the participant to grasp 184 

with a right-handed precision grip (i.e., index finger and thumb) along the vertical axis. Between 185 

actions, participants returned their hand to a “home” position with their right hand closed in a fist 186 

on their chest (see Fig. 1B). This brief object flashing presentation cycle during ON-blocks has 187 

been shown to maximise the signal-to-noise ratio in previous perceptual decoding experiments 188 

(Kay et al., 2008; Smith & Muckli, 2010) and eliminates the sensory confound from viewing hand 189 

movements (Rossit et al., 2013; Monaco et al., 2015). An OFF-block (10s) followed the 190 

stimulation block where the workspace remained dark and the experimenter placed the next 191 

stimulus. A single fMRI run included 16 blocks involving the four grasping conditions (i.e., typical 192 

tool, atypical tool, right non-tool and left non-tool) each with three repetitions (one per exemplar; 193 

every object was presented twice and grasped on each side once). An additional tool (whisk) and 194 

a non-tool object were presented on the remaining four blocks per run, but not analysed as they 195 

were not matched in dimensions due to a technical problem (the original control non-tool for the 196 

whisk was too large to allow rotation of the turntable within the scanner bore). On average 197 

participants completed six runs (minimum five, maximum seven) for a total of 18 repetitions per 198 

grasping condition. Block orders were pseudorandomised such that conditions were never 199 

repeated (two-back) and were preceded an equal number of times by other conditions. Each 200 

functional scan lasted 356s, inclusive of start / end baseline fixation periods (14s). Each 201 

experimental session lasted ~2.25 hours (including setup, task practice and anatomical scan). 202 

Prior to the fMRI experiment, participants were familiarised with the setup and practiced the 203 

grasping tasks in a separate lab session (30 minutes) outside of the scanner. The hand and eye 204 

movement videos were monitored online and offline to identify error trials. Two runs (of two 205 

separate participants) from the entire dataset were excluded from further analysis. In one of 206 

these blocks the participant failed to follow the grasping task instructions correctly (i.e., 207 

performing alternated left and right grasps) and for the remaining block another participant did 208 

not maintain fixation (i.e., made downward saccades toward objects). In the remaining runs that 209 

were analysed, participants made performance errors in <1% of experimental trials. The types of 210 

errors included: not reaching (3 trials, 2 participants), reaching in the wrong direction (1 trial, 1 211 

participant) and downward eye saccades (5 trials, 3 participants). A one-way repeated measures 212 
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ANOVA with 12 levels (i.e., the six exemplars across both left vs right grasping conditions) 213 

showed that the percentage of errors were equally distributed amongst trial types regardless of 214 

whether the percentage of hand and eye errors were combined or treated separately (all p’s > 215 

0.28). 216 

Crucially, since the tools’ handles were always oriented rightward, the right and left tool 217 

trials involved grasping tools either by their handle (typical) or functional-end (atypical), 218 

respectively. On the other hand, grasping non-tools did not involve a typical manipulation but 219 

only differed in grasp direction with right vs left grasps (Fig. 1C). We chose to present rightward 220 

oriented tool handles only, rather than alternate object orientation randomly between trials, to 221 

reduce total trial numbers (scanning times was already quite extensive with set-up) and due to 222 

technical limitations (i.e., the turntable’s rotation direction was fixed and it was difficult for the 223 

experimenter to manipulate tool orientation in the dark). Nevertheless, by comparing the 224 

decoding accuracies for each region between tool and non-tool grasps (which were matched for 225 

biomechanics) we ruled out the possibility that our typically manipulation simply reflected grasp 226 

direction. Specifically, we took the conservative approach that for an area to be sensitive to tool 227 

grasping typicality, it should not only show greater-than-chance decoding for typical vs atypical 228 

actions with tools (i.e., typicality), but also that the typicality decoding accuracy should be 229 

significantly greater than accuracy for biomechanically matched actions with our control non-tools 230 

(i.e. right vs left actions with non-tools). 231 

 232 

Visual Localizer. On a separate day from the real action experiment, participants completed a 233 

Bodies, Chairs, Tools and Hands (BOTH) visual localizer (adapted from Bracci et al., 2012; 2013; 234 

2016) using a standard coil configuration (see MRI acquisition for details). Two sets of exemplar 235 

images were selected from previous stimuli databases (Bracci et al., 2012; 2013; 2016) that were 236 

chosen to match, as much as possible, the characteristics within the tool (i.e., identity & 237 

orientation), body (i.e., gender, body position & amount of skin shown), hand (i.e., position & 238 

orientation) and chair (i.e., materials, type & style) categories. Using a mirror attached to the 239 

head coil, participants viewed separate blocks (14s) of 14 different grayscale 2D pictures from a 240 

given category (400 x 400 pixels; 0.5s). Blank intervals separated individual stimuli (0.5s) and 241 
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scrambled image blocks separated cycles of the four randomised category blocks (Fig. 1D). 242 

Throughout, participants fixated a superimposed bullseye on the centre of each image and, to 243 

encourage attention, performed a one-back repetition detection task where they made a right-244 

handed button press whenever 2 successive photographs were identical. The 2D images stimuli 245 

were presented with an LCD projector (SilentVision SV-6011 LCD, Avotech Inc.). A single fMRI 246 

run included 24 category blocks (6 reps per condition) with blank fixation baseline periods (14s) 247 

at the beginning and the end of the experiment. Each localizer scan lasted 448s and, on 248 

average, participants completed 4 runs (minimum 3, maximum 4) for a total of 24 reps per 249 

condition. The entire localizer session lasted ~50 minutes after including the time taken to 250 

acquire a high-resolution anatomical scan and setup participants. 251 

 252 

MRI Acquisition. The BOLD fMRI measurements were acquired using a 3T wide bore GE-750 253 

Discovery MR scanner at the Norfolk & Norwich University Hospital (Norwich, UK). To achieve a 254 

good signal to noise ratio during the real action fMRI experiment, the posterior half of a 21-255 

channel receive-only coil was tilted and a 16-channel receive-only flex coil was suspended over 256 

the anterior-superior part of the skull (see Fig. 1B). A T2*-weighted single-shot gradient Echo-257 

Planer Imaging (EPI) sequence was used throughout the real action experiment to acquire 178 258 

functional MRI volumes (Time to Repetition (TR) = 2000ms; Voxel Resolution (VR) = 3.3 x 3.3 x 259 

3.3mm; Time to Echo (TE) = 30ms; Flip Angle (FA) = 78°; Field of View (FOV) = 211x 211mm; 260 

Matrix Size (MS) = 64 x 64) that comprised 35 oblique slices (no gap) acquired at 30° with 261 

respect to AC-PC, to provide near whole brain coverage. A T1-weighted anatomical image with 262 

196 slices was acquired at the beginning of the session using BRAVO sequences (TR = 2000ms; 263 

TE = 30ms; FOV = 230mm x 230mm x 230mm; FA = 9°; MS = 256 x 256; Voxel size = 0.9 x 0.9 264 

x 0.9mm).  265 

For visual localizer sessions, a full 21-channel head coil was used to obtain 224 266 

functional MRI volumes (Time to Repetition (TR) = 2000ms; Voxel Resolution (VR) = 3.3 x 3.3 x 267 

3.3mm; Time to Echo (TE) = 30ms; Flip Angle (FA) = 78°; Field of View (FOV) = 211x 211mm; 268 

Matrix Size (MS) = 64 x 64). A high resolution T1-weighted anatomical image with 196 slices was 269 

acquired before the localizer runs (TR = 2000ms; TE = 30ms; FOV = 230mm x 230mm x 270 
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230mm; FA = 9°; MS = 256 x 256; Voxel size = 0.9 x 0.9 x 0.9mm). Localizer datasets for two 271 

participants were retrieved from another study from our group (Rossit et al., 2018) where the 272 

identical paradigm was performed when acquiring volumes using a Siemens whole-body 3T 273 

MAGNETOM Prisma fit scanner with a 64-channel head coil and integrated parallel imaging 274 

techniques at the Scannexus imaging centre (Maastricht, The Netherlands) and comparable 275 

acquisition parameters (Functional scans: TR = 2000ms; TE = 30ms; FA = 77°; FOV = 216mm; 276 

MS = 72 x 72; Anatomical scan: T1-weighted anatomical image: TR = 2250ms; TE = 2.21ms; FA 277 

= 9°; FOV = 256 mm; MS = 256 x 256). 278 

 279 

Data Preprocessing. Preprocessing and ROI definitions were performed using BrainVoyager 280 

QX (version 2.8.2) (Brain Innovation, Maastricht, The Netherlands). BrainVoyager’s 3D motion 281 

correction (sinc interpolation) aligned each functional volume within a run to the functional 282 

volume acquired closest in time to the anatomical scan (e.g., Rossit et al., 2013). Slice scan time 283 

correction (ascending and interleaved) and high-pass temporal filtering (2 cycles/run) was also 284 

performed. Functional data were superimposed on to the anatomical brain images acquired 285 

during the localizer paradigm that were previously aligned to the plane of the anterior-posterior 286 

commissure and transformed into standard stereotaxic space (Talairach, & Tournoux, 1988). 287 

Excessive motion was screened by examining the time-course movies and motion plots created 288 

with the motion-correction algorithms for each run. No spatial smoothing was applied. 289 

 To estimate activity in the localizer experiment, a predictor was used per image condition 290 

(i.e., Bodies, Objects, Tools, Hands and Scrambled) in a single-subject general linear model 291 

(GLM). Predictors were created from boxcar functions that were convolved with a standard 2y 292 

model of the hemodynamic response function (Boynton et al., 1996) and aligned to the onset of 293 

the stimulus with durations matching block length. The baseline epochs were excluded from the 294 

model, and therefore, all regression coefficients were defined relative to this baseline activity. 295 

This process was repeated for the real action experiment, using 16 separate predictors for each 296 

block of stimulation independently per run (12 exemplars - knife typical, knife atypical, spoon 297 

typical etc. plus 4 foil trials) and 6 motion regressors (confound predictors). These estimates 298 

(beta weights) from the real action experiment were used as the input to the pattern classifier. 299 
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Visual Localizer Regions of interest (ROIs). Twelve visual ROIs were defined at the individual 300 

participant level from the independent BOTH localizer data by drawing a cube (15 voxels
3
) 301 

around the peak of activity from previously reported volumetric contrasts (see list below; Fig. 1E; 302 

Table 1) set at a threshold of p < .005 (Gallivan et al., 2013) or, if no activity was identified, of p < 303 

.01 (Bracci et al., 2016). In cases where no activity was observed, the ROI was omitted for that 304 

participant (see Table 1). Given the predominantly left lateralised nature of tool-processing 305 

(Lewis, 2006), all individual participant ROIs were defined in the left hemisphere (Bracci et al., 306 

2012; 2013; 2016; Peelen et al., 2013). Six tool-selective ROIs commonly described in left 307 

frontoparietal and occipitotemporal cortices were identified by contrasting activation for tool 308 

pictures vs other object pictures (IPS-Tool; SMG; dorsal and ventral Premotor Cortex (PMd; 309 

PMv), LOTC-Tool; pMTG; Martin et al., 1996; Grafton et al., 1997). Moreover, two hand-selective 310 

ROIs were identified in LOTC (LOTC-Hand) and IPS (IPS-Hand) by contrasting activation for 311 

hand pictures vs pictures of other body parts (Bracci et al., 2012; 2016; 2018; Peelen et al., 312 

2013; Palser & Cavina-Pratesi, 2018). Additionally, we defined a body-selective (LOTC-Body; 313 

Bodies > Chairs; Bracci & de Beeck, 2016), two object-selective ROIs (LOTC-Object; posterior 314 

Fusiform, pFs; Chairs > Scrambled; Bracci & de Beeck, 2016; Hutchison et al., 2014) and an 315 

Early Visual Cortex ROI (EVC; All Categories > Baseline; Bracci & de Beeck, 2016). The ROI 316 

locations were verified by a senior author (S.R.) with respect to the following anatomical 317 

guidelines and contrasts: 318 

 Lateral Occipitotemporal Cortex-Object selective (LOTC-Object) - (Chairs > Scrambled) 319 

(Hutchison et al., 2014; Bracci & de Beeck, 2016) - defined by selecting the peak of 320 

activation near the Lateral Occipital Sulcus (LOS; Hutchison et al., 2014; Bracci & de 321 

Beeck, 2016; Malach et al., 1995; Grill-Spector et al., 1999; 2001). 322 

 Lateral Occipitotemporal Cortex-Body selective (LOTC-Body) - (Bodies > Chairs) (Bracci 323 

& de Beeck, 2016) - defined by selecting the peak of activation near the LOS and inferior 324 

to the left Extrastriate Body Area (EBA; Valyear & Culham, 2010) which was identified by 325 

the contrast ((Bodies + Hands) > Chairs) (adapted from Bracci, et al., 2010; ((Whole 326 

Bodies + Body Parts) > (Hands + Chairs))). EBA was not included in the analysis. 327 
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 Lateral Occipitotemporal Cortex-Hand selective (LOTC-Hand) - ((Hands > Chairs) AND 328 

(Hands > Bodies)) (Bracci & de Beeck, 2016) - defined by selecting the peak of activation 329 

near the LOS. These were often anterior to LOTC-Body (Bracci et al., 2010; 2016). 330 

 Lateral Occipitotemporal Cortex-Tool selective (LOTC-Tool) - (Tools > Chairs) (Bracci, et 331 

al., 2012; Hutchison et al., 2014) - defined by selecting the peak of activation near the 332 

LOS. These often closely overlapped LOTC-Hand (Bracci, et al., 2012). 333 

 Posterior Middle Temporal Gyrus (pMTG) - (Tools > Chairs) (Hutchison, et al., 2014; 334 

Valyear & Culham, 2010) – defined by selecting the peak of activation on the pMTG, 335 

more lateral, ventral and anterior to EBA (Hutchison et al., 2014). We selected the peak 336 

anterior to the Anterior Occipital Sulcus (AOS), as the MTG is in the temporal lobe and 337 

the AOS separates the temporal from the occipital (Damasio, 1995). 338 

 Posterior Fusiform Sulcus (pFs) - (Chairs > Scrambled) (Hutchison, et al., 2014) - defined 339 

by selecting the peak of activation in the posterior aspect of the fusiform gyrus, extending 340 

into the occipitotemporal sulcus (Hutchison, et al., 2014). 341 

 Intraparietal Sulcus-Hand selective (IPS-Hand) - (Hands > Chairs) (Bracci, et al. 2016; 342 

Bracci & de Beeck, 2016) – defined by selecting the peak of activation on the IPS (Bracci 343 

& de Beeck, 2016). 344 

 Intraparietal Sulcus-Tool selective (IPS-Tool) - (Tools > Scrambled) (Bracci, et al., 2016; 345 

Bracci et al., 2016) - defined by selecting the peak of activation on the IPS (Bracci & Op 346 

de Beeck, 2016). 347 

 Supramarginal Gyrus (SMG) - (Tools > Scrambled) (Creem-Regehr, et al., 2007) - 348 

defined by selecting the peak of activation located most anterior along the SMG (Peeters, 349 

et al., 2013), lateral to the anterior segment of the IPS (Gallivan, et al., 2013), posterior to 350 

the Precentral Suclus (PreCS) and superior to the lateral sulcus (Ariani, et al., 2015). 351 

 Dorsal Premotor Cortex (PMd) - (Tools > Scrambled) - defined by selecting the peak of 352 

activation at the junction of the PreCS and the superior frontal sulcus (Gallivan et al., 353 

2013; Ariani, et al., 2015). 354 
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 Ventral Premotor Cortex (PMv) - (Tools > Scrambled) (Creem-Regehr, et al., 2007) - 355 

defined by selecting the voxels inferior and posterior to the junction between the inferior 356 

frontal sulcus and the PreCS (Gallivan et al., 2013). 357 

 Early Visual Cortex (EVC) - (All Conditions > Baseline) (Bracci & de Beeck, 2016) - 358 

defined by selecting the voxels in the occipital cortex near the calcarine sulcus (Singhal, 359 

et al., 2013). 360 

 361 

**************************************************************************************** 362 

Please insert Table 1 here 363 

**************************************************************************************** 364 

 365 

Pattern Classification. We performed MVPA independently for tool and non-tool trial types. 366 

Independent linear pattern classifiers (linear Support Vector Machine; SVM), were trained to 367 

learn the mapping between a set of brain-activity patterns (beta values computed from single 368 

blocks of activity) from the visual ROIs and the type of grasp being performed with the tools 369 

(typical vs atypical) or non-tools (right vs left). To test the performance of our classifiers, 370 

decoding accuracy was assessed using an n-fold leave-one-run-out cross validation procedure; 371 

thus, our models were built from n – 1 runs and were tested on the independent nth run 372 

(repeated for the n different possible partitions of runs in this scheme (Duda et al., 2001; Smith et 373 

al., 2010; 2015; Gallivan et al., 2016) before averaging across n iterations to produce a 374 

representative decoding accuracy measure per participant and per ROI. Beta estimates for each 375 

voxel were normalised (separately for training and test data) within a range of -1 to +1 before 376 

input to the SVM (Chang & Lin, 2011) and the linear SVM algorithm was implemented using the 377 

default parameters provided in the LibSVM toolbox (C = 1). Pattern classification was performed 378 

with a combination of in-house scripts (Smith et al., 2010; 2015) using Matlab with the Neuroelf 379 

toolbox (version 0.9c; http://neuroelf.net) and a linear SVM classifier (libSVM 2.12 toolbox; 380 

https://csie.ntu.edu.tw/~cjlin/libsvm). 381 

 382 

https://csie.ntu.edu.tw/~cjlin/libsvm/
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Statistical Analysis. One-tailed one-sample t-tests were used to test for above chance decoding 383 

for tool and non-tool action classifications in every ROI independently. If the pattern of results 384 

was consistent with our hypothesis (i.e., decoding accuracy was significantly above chance for 385 

tools, but not non-tools), we further ran a one-tailed pairwise t-tests to compare if decoding 386 

accuracy was significantly higher for tools than non-tools. Additionally, to test for differences in 387 

decoding accuracy between ROIs we used repeated measures 2 x 2 ANOVAs with ROI (tool vs 388 

hand selective) and object category (tool vs non-tool) as within-subject factors. Then, to test if 389 

univariate differences would differ between grasp types for the tools, but not non-tools we ran 2 x 390 

2 ANOVAs with grasp type (typical/right vs atypical/left) and object category (tools vs non-tools) 391 

by entering mean beta weights for each ROI. Separately for each set of analyses we corrected 392 

for multiple comparisons with False Discovery Rate (FDR) correction of q ≤ 0.05 (Benjamini & 393 

Hochberg, 1995; Benjamini & Yekutieli, 2001) across the number of tests. Only significant results 394 

are reported (see Fig. 2). Our sample size was based on similar motor studies using MVPA (e.g., 395 

Ariani et al., 2015; 2018; Gallivan et al., 2009; 2013; 2014), though no power analysis was 396 

performed prior to data collection. 397 

To test for evidence for the null hypothesis over an alternative hypothesis, we 398 

supplemented null-hypothesis significance tests with Bayes factors (BF; Wagenmakers, 2007; 399 

Rouder et al., 2009). Bayes factors were estimated using the bayesFactor toolbox in Matlab 400 

(version 1.1; https://klabhub.github.io/bayesFactor). The Jeffreys–Zellner–Siow default prior on 401 

effect sizes was used (Rouder, Morey, Speckman, & Province, 2012) and BF’s were interpreted 402 

according to criteria set out by Jeffreys (1961; cited from Jarosz & Wiley, 2014) where a BF01 403 

between 1-3 and > 3 indicates ‘anecdotal’ and ‘substantial’ evidence in favour of the null, 404 

respectively. 405 

 406 

Data Availability. Stimuli, code for running experiment and for MVPA analyses and ROI data are 407 

accessible from Open Science Framework at: https://osf.io/zxnpv. Full raw MRI dataset (real 408 

action and visual localizer) is accessible from OpenNEURO at: 409 

https://openneuro.org/datasets/ds003342/versions/1.0.0. 410 

 411 

https://osf.io/zxnpv/
https://openneuro.org/datasets/ds003342/versions/1.0.0
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Results 412 

In line with our predictions, as can be seen in Fig. 2, a one-sample t-test against chance (50%) 413 

showed that SVM decoding accuracy (FDR-corrected) from hand-selective ROIs in LOTC and 414 

IPS were significantly greater-than-chance when discriminating typical vs atypical actions with 415 

tools (LOTC-Hand accuracy = 56% ± (SD) 0.9%, t(16) = 2.73, p = 0.007, d = 0.66; IPS-Hand 416 

accuracy = 57% ± 0.11%, t(18) = 2.72, p = 0.007, d = 0.62), but not biomechanically-matched 417 

actions with non-tools (right vs left; LOTC-Hand: p = 0.252, IPS-Hand: p = 0.844). In fact, there 418 

was substantial evidence in favour of null decoding of non-tool actions for the IPS ROI (LOTC-419 

Hand: BF01 = 2.29; IPS-Hand = 8.4). Importantly, results from a stringent between-classification 420 

paired samples t-test also further supported this: typicality decoding accuracy from both LOTC-421 

Hand and IPS-Hand was significantly higher for tools than for biomechanically-matched actions 422 

with non-tools (LOTC-Hand: t(16) = 2.11, p = 0.026, d = 0.51; IPS-Hand: t(18) = 3.26, p = 0.002, 423 

d = 0.75; Fig. 2A and Fig. 2B).  424 

 425 

**************************************************************************************** 426 

Please insert Figure 2 here 427 

**************************************************************************************** 428 

 429 

No other visual ROI, including tool-selective areas, displayed the same significant effects 430 

as hand-selective areas (Fig. 2A and Fig. 2B). For tool-selective ROIs, decoding accuracy was 431 

not significantly greater-than-chance for classifying actions with tools or non-tools (all p’s > 432 

0.024), with the Bayesian approach demonstrating strong evidence in favour of the null for PMv 433 

(tool: BF01 = 3.23; non-tool: BF01 = 6.85) and SMG tool decoding (tool: BF01 = 8.85; other BF01‘s < 434 

1.08). The exception to this was tool-selective PMd which was found to decode significantly 435 

above chance actions with non-tools (accuracy = 59% ± 0.08% t(13) = 4.11, p = 0.001, d = 1.1; 436 

Fig. 2A), but not tools (BF01 = 4.42). As for object- and body-selective areas, LOTC-Object 437 

decoding accuracy did not differ from chance for tools or non-tools (p > 0.026), though evidence 438 

in favour of the null was anecdotal (BF01’s < 1.33), whereas pFs and LOTC-Body decoded 439 

actions above chance with both tools (pFs: accuracy = 58% ± 0.14% t(18) = 2.57, p = 0.01, d = 440 
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0.59; LOTC-Body: accuracy = 59% ± 0.08% (t(17) = 4.75, p < 0.001, d = 1.12) and non-tools 441 

(pFs: accuracy = 57% ± 0.12% t(18) = 2.59, p = 0.009, d = 0.59; LOTC-Body: accuracy = 56% ± 442 

0.10% (t(17) = 2.46, p = 0.012, d = 0.58; Fig. 2A). Like many of the tool-selective ROIs, the 443 

control EVC ROI was not found to decode actions with either type of object (p’s < 0.026), albeit 444 

evidence in favour of the null was anecdotal (BF01’s > 0.37). 445 

Since we obtained a different pattern of results for LOTC and IPS ROIs that were hand- 446 

vs tool-selective, we compared the decoding accuracies between these regions with a repeated 447 

measures ANOVA with ROI (hands vs tool-selective) and object category (tool vs non-tools) as 448 

within-factors. As shown in Fig. 2B, there was a significant interaction between ROI and object 449 

category in IPS (F(1,18) = 5.94, p = 0.025, η
2
 = 0.25). Post-hoc t-tests showed that for IPS-Hand, 450 

grasp type decoding was significantly higher for tools than non-tools (mean difference = 0.1%, 451 

SE = 0.03%; p = 0.004), but not for IPS-Tool (mean difference = 0.02%, SE = 0.03%). However, 452 

for LOTC this interaction was not significant (p = 0.379; Fig. 2B), nor were the remaining main 453 

effects (all p’s > 0.367). 454 

Next, we examined whether significant decoding in hand-selective cortex could be 455 

accounted for by low-level sensory differences between the tools’ handles and functional-ends. 456 

First, to test the possibility that tool-specific decoding in hand-selective cortex could be driven by 457 

simple textural differences (e.g., a smooth handle vs a serrated knife blade), we repeated the 458 

analysis using a left somatosensory cortex ROI (SC; defined by selecting the peak voxel in the 459 

postcentral gyrus in the same subjects with an independent univariate contrast of All Grasps > 460 

Baseline; Fabbri et al., 2014, 2016). However, unlike the higher accuracies for grasping tools 461 

than non-tools in the hand-selective ROIs, grasp type decoding in SC was significantly greater-462 

than-chance for both tool (accuracy = 57% ± 0.11%, t(18) = 3.04, p = 0.004, d = 0.7) and non-463 

tools (accuracy = 57% ± 0.09% t(18) = 3.45, p = 0.001, d = 0.79; Fig. 2C). This indicates that 464 

tool-specific decoding in hand-selective cortex cannot be solely explained by somatosensory 465 

differences in the stimuli. Second, we tested if size differences between our objects, and thus 466 

grip size, could drive tool-specific decoding in hand-selective cortex (i.e., the functional-end of 467 

the tool being wider than its handle for the spoon and pizza cutter). As shown in Fig. 3A, we 468 

decoded smaller vs larger objects in three separate decoding analysis, regardless of whether the 469 
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objects were tools or non-tools. Each separate grip size pair decoding analysis is shown in each 470 

row of images of Fig. 3A (from top to bottom: small vs medium; small vs large; medium vs large). 471 

Decoding accuracies for each grip size pair where then averaged and tested against chance 472 

using a one-tailed one-sample t-test. Decoding of grip size was not significant for any visual ROI 473 

(all p’s ≥ 0.1; Fig. 3B) and evidence in favour of the null was strong for most ROIs including IPS-474 

Hand (BF01 = 8), EVC (BF01 = 3.22), LOTC-Object (BF01 = 4.93), pFs (BF01 = 5.97), SMG (BF01 = 475 

3.33), PMv (BF01 = 3.91) and PMd (BF01 = 3.56; all other BF01’s > 1.84). Taken together, these 476 

findings suggest that hand-selective regions, particularly in the IPS, are sensitive to whether a 477 

tool is grasped correctly by its handle or not, and that these effects are not simply due to textural 478 

or size differences between the stimuli used or actions performed. 479 

In addition, we found that the significant decoding accuracies reported here do not simply 480 

reflect the overall response amplitudes within each ROI. When we analysed the mean beta 481 

weights in ANOVAs with grasp type and object category as within-subject factors for each ROI 482 

(i.e., as done in conventional univariate analysis; see Fig. 4), the only significant effect observed 483 

was a main effect of object category (unrelated to typicality), where greater activation was found 484 

for tools relative to non-tools in LOTC-Tool (F(1,16) = 9.25, p = 0.008, η
2
 = 0.37; mean difference 485 

= 0.1, SE = 0.03), pFs (F(1,18) = 8.68, p = 0.009, η
2
 = 0.33; mean difference = 0.07, SE = 0.02) 486 

and SMG (F(1,16) = 10.5, p = 0.005, η
2
 = 0.4; mean difference = 0.089, SE = 0.03). 487 

 488 

**************************************************************************************** 489 

Please insert Figures 3 and 4 here 490 

**************************************************************************************** 491 

 492 

Discussion 493 

Our understanding of how the human brain represents object properties (Kanwisher, 2010) and 494 

simple hand movements (Gallivan & Culham, 2015) has significantly advanced in the last few 495 

decades, however, far less is known about the neural representations that underpin real actions 496 

involving 3D tools (Valyear et al., 2017). Most neuroimaging experiments that investigate how 497 

tools and their associated actions are represented in the brain have used visual paradigms 498 
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where objects and body-parts are displayed as 2D images (Ishibashi et al., 2016). These studies 499 

have discovered a tight anatomical and functional relationship between hand- and tool-selective 500 

areas in LOTC and IPS, thought to reflect action-related processing, however this was yet to be 501 

directly tested (Bracci et al., 2012; 2013; 2016; Peelen et al., 2013; Striem-Amit et al., 2017; 502 

Maimon Mor, 2020). Here we defined visually category-selective areas and investigated if they 503 

were sensitive to real action affordances involving 3D tools. We found the first evidence that 504 

hand-selective cortex (left IPS-Hand and LOTC-Hand) represents whether a 3D tool is being 505 

grasped appropriately by its handle. Remarkably, the same effects were not observed in tool-, 506 

object-, or body-selective areas, even when these areas overlapped with hand-selective voxels in 507 

IPS and LOTC.  508 

Our results indicate that visual hand-selective areas in parietal and occipital cortices 509 

process sensorimotor affordances of typicality for hand movements with 3D tools. Importantly, 510 

these action-related representations were detected exclusively for actions with tools, but not for 511 

biomechanically matched actions with non-tools. This tool-specificity was particularly evident in 512 

IPS-hand because Bayesian evidence demonstrated that decoding of grasp type with non-tools 513 

was not possible. In a similar vein, while the IPS ANOVA demonstrated boosted tool-specific 514 

decoding specifically for the hand-selective ROI, this effect was not significant in LOTC. This 515 

suggests that typicality effects may be less robust for LOTC-hand. Our findings shed light into the 516 

features of sensorimotor processing in hand-selective areas. First, their representations are 517 

sensitive to concepts acquired through experience (i.e., knowing how to grasp tools appropriately 518 

is a learnt skill; Martin, 2007), fitting with evidence showing that learning about how to manipulate 519 

tools (Weisberg et al., 2007) or even performing such actions (Valyear et al., 2012; Brandi et al., 520 

2014; Styrkowiec et al., 2019) affects LOTC and IPS activity. For example, our results are 521 

compatible with those from Brandi et al. (2014) who showed coactivation of these regions during 522 

‘use’ actions of tools/non-tools. Our results, however, additionally suggest that this learnt 523 

information, at least for grasping, is coded in specific category-selective parts of LOTC and IPS. 524 

Second, information processed by hand-selective cortex is represented in an abstract format 525 

beyond low level properties (e.g., basic kinematics), since Bayesian evidence strongly suggested 526 

that decoding grip size was not possible. This fits well with reports that hand-/tool-selective 527 
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overlap exists in people born without vision (Peelen et al., 2013) or without hands (Striem-Amit et 528 

al., 2017) suggesting that their development is driven by similarities in how they process non-529 

sensory tool information. In addition, our data also resonates with previous studies showing that 530 

tool-selective areas in pMTG/LOTC and IPS represent abstract action goals (reach vs grasp) 531 

regardless of biomechanics (Gallivan et al., 2013; Jacobs et al., 2010), albeit our findings were 532 

observed for hand-selective areas only. Third, our study shows that these high-level 533 

representations are automatically evoked (Valyear et al., 2012) as throughout the real-action 534 

fMRI task there was no explicit requirement to use the tools and participants were never told that 535 

we were investigating ‘tools’. Here we demonstrate that these principles, frequently described to 536 

support tool-use (Gibson, 1979; Imamizu et al., 2003; Maravita & Iriki 2004; Umilta et al., 2008; 537 

Lingnau & Downing, 2015), apply to brain areas specialised for representing the human hand, 538 

our primary tool for interacting with the world. 539 

An intriguing aspect of our results is that typicality decoding was successful using activity 540 

patterns from hand-selective, but not overlapping parts of tool-selective cortex in the LOTC and 541 

IPS. Bayesian evidence only anecdotally supported the possibility that decoding was null from 542 

tool-selective areas, but significantly stronger typicality decoding was observed for IPS-Hand 543 

than IPS-Tool during tool, but not non-tool grasps. In contrast to previous picture viewing fMRI 544 

studies showing that overlapping hand- and tool-selective regions exhibit similar responses 545 

(Bracci et al., 2012; 2013; 2016), our findings uniquely support previous speculations that hand-546 

selective IPS, and possibly LOTC, could be functionally distinct from tool-selective regions 547 

despite their anatomical overlap (e.g., Striem-Amit et al., 2017). This pattern of results is unlikely 548 

to be driven by differences in ROI radius (Etzel et al., 2013) since voxel size differences were 549 

negligible between hand- and tool-selective ROIs (mean difference: IPS: 29; LOTC: 4). In fact, if 550 

category-related results were merely caused by ROI size, then significant decoding should have 551 

also been observed in the much larger LOTC-Object ROI (see Table 1). Alternatively, successful 552 

higher decoding in hand than tool-selective areas might reflect that our task simply required 553 

grasping-to-touch the tools, rather than their utilisation. That is, coding in category-selective 554 

areas might operate in an effector-dependent manner, akin to how tool-selective pMTG/LOTC 555 

codes the type of action being performed when holding a pair of tongs, but not if being performed 556 
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by the hand alone (Gallivan et al., 2013). In line with this interpretation, neural representations in 557 

LOTC-Hand of one-handed amputees are also known to become richer as prosthetic usage 558 

increases (Van den Heiligenberg 2018), which, again, indicates that the representations in hand-559 

selective cortex depend on effector use. An alternative, but not mutually exclusive, possibility is 560 

that only tool-use actions elicit tool-selective representations (see Randerath et al., 2010) 561 

because of the cognitively taxing demands these complex actions rely on, such as retrieving 562 

knowledge about manipulation hierarchies (Buxbaum, 2017) or the laws that constrain object 563 

movement (Fischer et al., 2016). In either case, the specificity of decoding typical tool grasps in 564 

hand-, rather than tool- and hand-, selective cortex challenges the popular interpretation that 565 

brain activation for viewing tool images is a reflection of sensorimotor processing linked to tool 566 

manipulation (Martin et al., 1996; Mahon et al., 2007; Fang & He, 2005; Grafton et al., 1997; 567 

Martin & Chao, 2001; also see Mahon & Caramazza, 2009). 568 

There are several differences between our study and previous research. First our 569 

univariate analysis revealed no relationship between mean activity and typicality. Previous 570 

studies have found greater univariate activation in occipito-temporal and/or fronto-parietal cortex 571 

for typical relative to atypical actions when participants viewed pictures and movies or 572 

pantomimed (Johnson-Frey et al., 2003; Valyear & Culham, 2010; Yoon et al., 2012; Mizelle et 573 

al., 2013; Przybylski & Króliczak, 2017). Our results fit the claim that MVPA can reveal fine-574 

grained effects (Kriegeskorte, et al., 2006), as recently argued by Buchwald et al. (2018) when 575 

showing that pantomimed typical tool vs non-tool grasps could be decoded from a range of 576 

regions including premotor and intraparietal areas. We suspect that task differences are also an 577 

important contributing factor to the general lack of univariate effects. For example, our 578 

experiment involved fewer, less varied, exemplars than in these previous picture studies. 579 

Likewise, our grasp-to-touch paradigm is simpler than studies showing greater univariate 580 

activations in the left SMG, premotor cortex, LOTC and IPS when performing real tool-use 581 

actions (Brandi et al., 2014; Valyear et al., 2012) or haptically-guided typical tool grasps 582 

(Styrkowiec et al., 2019) relative to tool/non-tool control actions. Finally, in our study, grasping 583 

always involved a precision grip whereas previous studies employed power grasps which are 584 

better suited for certain actions with some specific tools. This factor may have led to the lack of 585 
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typicality decoding effects in tool-selective cortex as these areas could be sensitive to both the 586 

side of the object being grasped and the function of particular grips (Buxbaum et al., 2006). We 587 

designed our precision grasping task to investigate tool affordances while carefully equating 588 

biomechanics between actions, such that decoding typicality was unlikely to be attributed to 589 

motor-related differences. Future real action studies manipulating the type of grasp (e.g., grasp 590 

vs use) are needed to further identify the content of information coded by visual hand-/tool- 591 

selective areas. 592 

It is worth noting that we were unable to match the visual symmetry between object 593 

categories (our tools were asymmetric while the non-tools were symmetric) because asymmetric 594 

non-tool bars were perceived as tools by participants (i.e., the wider side perceived as a 595 

functional-end). Nonetheless, tool-specific decoding in hand-selective cortex is unlikely to be 596 

explained by simple effects of symmetry: if effects were related to symmetry comparable 597 

decoding effects should have been observed in symmetry-responsive regions (e.g., LOTC-598 

Object; EVC; Beck, et al., 2006), particularly since they are also known to code motor-related 599 

information (e.g., Gallivan & Culham, 2015; Monaco et al., 2020). 600 

In conclusion, parietal and occipital visual regions specialised for representing hands 601 

were found to encode information about the functional relationship between the grasping hand 602 

and a tool, implicating hand-selective cortex in motor control. These findings raise novel 603 

questions about the possibility that overlapping hand- and tool-selective regions are functionally 604 

distinct and begin to uncover which brain regions evolved to support tool-use, a defining feature 605 

of our species. 606 

 607 
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Figure Legends 836 

Figure 1. Experimental set-up and design. (A) 3D-printed tool and non-tool control object pairs 837 

(black markers on objects indicate grasp points) which were matched for elongation, width and 838 

depth such that tool and non-tool actions were biomechanically similar. (B) Side view of real 839 

action participant set-up used to present 3D objects at grasping distance (without the use of 840 

mirrors). Red star indicates fixation LED. The hand is shown at its starting position. (C) Timing 841 

and grasping tasks from subject’s point of view for the real action experiment. During the 10s 842 

ON-block the object was illuminated 5 times cueing the participant to grasp the object each time 843 

by its left or right side (as per preceding auditory cue) with the right hand. Exemplar videos of trial 844 

types can be accessed here: https://osf.io/gsmyw/. This was followed by a 10s OFF-block 845 

involving no stimulation where the workspace remained dark. For MVPA, we treated tool and 846 

non-tool trials independently, where for the tools only, right- and left-sided grasps were typical 847 

and atypical grasps respectively (based on handle orientation). (D) Timing of visual localizer 848 

experiment. In the visual localizer, blocks of tools, hands, chairs, bodies and scrambled 2D 849 

image stimuli were presented in between fixation-only screens. (E) For each individual participant 850 

independent ROIs were defined for MVPA using functional activity from the visual localizer 851 

(Table 1). The representative ROI locations are displayed on a group activation contrast map 852 

from the visual localizer (All conditions > (Baseline*5)) projected onto a left hemisphere cortical 853 

surface reconstruction of a reference brain (COLIN27 Talairach) available from the neuroElf 854 

package (http://neuroelf.net).  855 

 856 

Figure 2. Grasp type decoding results in left hemisphere ROIs. (A) Violin plots of MVPA data 857 

from visual localizer ROIs for the typical vs atypical classification of grasping tools (white violins) 858 

and, non-tool control grasping (right vs left decoding; grey violins). Box plot centre lines are mean 859 

decoding accuracy while their edges and whiskers show ± 1 SD and ± 2 SEM, respectively. 860 

Decoding accuracies of typical vs atypical grasping in IPS and LOTC hand-selective cortex (pink) 861 

are significantly greater-than-chance for tools, but not non-tools. (B) ANOVA results comparing 862 

the difference of decoding accuracy between tools (typical vs atypical) and non-tools (right vs 863 

left) for the partially overlapping hand- and tool-selective ROIs within the IPS and LOTC. (C) 864 

https://osf.io/gsmyw/
http://neuroelf.net/
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Violin plot of MVPA data for control ROI in somatosensory cortex (SC) based on an independent 865 

contrast (all actions > baseline) from real action experiment showing significant decoding of 866 

grasp type for both tools and non-tools. Red asterisks show FDR-corrected results while black 867 

asterisks show uncorrected results. 868 

 869 

Figure 3. Grip size decoding. (A) We decoded smaller vs larger objects in three separate 870 

decoding analysis, regardless of whether the objects were tools or non-tools. Each separate grip 871 

size pair decoding analysis is shown in each row of images of Fig.3A (from top to bottom: small 872 

vs. medium; small vs. large; medium vs. large). The heads of the knife, spoon and pizzacutter 873 

tools and their paired non-tools had matched small, medium and large widths, respectively. 874 

Decoding accuracies for each grip size pair were then averaged and tested against chance using 875 

a one-tailed one-sample t-test. In all cases, object category was collapsed to maximise power 876 

and generalisability (i.e., grasping tools and non-tools), and reach direction was matched to 877 

minimise kinematic variance (i.e., all actions were leftward). (B) Mean decoding accuracy in 878 

visual localizer ROIs for the small versus large classification collapsed across object category. 879 

Error bars represent ±1 SEM. 880 

 881 

Figure 4. Mean activation (β) per ROI and condition used as input for pattern classification and 882 

univariate analyses. Error bars represent ± 1 SEM. 883 

 884 

 885 

 886 

  887 
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Table 1. Visual Localizer ROI descriptives. ROI subject counts with their mean sizes (voxels) and 888 

peak coordinates (Talairach). 889 

 890 

 

ROI 

N Subjects 

with ROI 

Mean size  

(SD) 

Mean peak coordinates  

(SD) 

  X Y Z 

EVC 19 114 (35) -14 (6) -89 (4) -9 (9) 

LOTC-Object 19 148 (34) -42(4) -77 (4) -7 (4) 

LOTC-Body 18 55 (30) -45 (3) -76 (5) 2 (6) 

LOTC-Hand 17 81 (44) -47 (4) -71 (4) -1 (5) 

LOTC-Tool 17 77 (45) -47 (5) -71 (5) -2 (6) 

pMTG 17 96(48) -45 (4) -57 (3) 3 (4) 

pFs 19 105 (41) -40 (4) -54 (4) -14 (4) 

SMG 17 69 (43) -53 (6) -28 (4) 27 (6) 

IPS-Hand 19 110 (57) -38 (4) -46 (7) 42 (3) 

IPS-Tool 19 81 (55) -37 (5) -41 (7) 42 (5) 

PMv 14 61 (42) -45 (7) -1 (6) 31 (5) 

PMd 14 47 (28) -29 (5) -13 (4) 51 (4) 
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