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Aggressive behaviours are among the most striking displayed by animals,

and aggression strongly impacts fitness in many species. Aggression varies
plastically in response to the social environment, but we lack direct tests of
how aggression evolves in response to intra-sexual competition. We investi-
gated how aggression in both sexes evolves in response to the competitive
environment, using populations of Drosophila melanogaster that we experimen-
tally evolved under female-biased, equal, and male-biased sex ratios. We found
that after evolution in a female-biased environment—with less male compe-
tition for mates—males fought less often on food patches, although the total
Subject Category: frequency and duration of aggressive behaviour did not change. In females,
Behaviour evolution in a female-biased environment—where female competition for
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resources is higher—resulted in more frequent aggressive interactions among
mated females, along with a greater increase in post-mating aggression.
These changes in female aggression could not be attributed solely to evolution
either in females or in male stimulation of female aggression, suggesting that
coevolved interactions between the sexes determine female post-mating
Keywords: aggression. We found evidence consistent with a positive genetic correlation
sexual selection, aggression, experimental for aggression between males and females, suggesting a shared genetic basis.
evolution, Drosophila melanogaster, sexual This study demonstrates the experimental evolution of a behaviour strongly
conflict, sex ratio linked to fitness, and the potential for the social environment to shape the
evolution of contest behaviours.
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Eleanor Bath 1. Introduction

e-mail: eleanor.bath@zoo.ox.ac.uk Aggressive contests occur in males and females across diverse animal taxa [1].
The nature of aggressive contests often differs between the sexes: males largely
compete for reproductive opportunities and females largely for reproductive
resources [2]. Because aggression significantly impacts fitness in both sexes
[3-5], aggressive contests form an important part of reproductive competition
[6-8]. Hence, the intensity of reproductive competition in a population
should determine the strength of sexual and social selection on aggressive
behaviours [2,9,10].

More intense reproductive competition is predicted to lead to heightened
aggression [11]. This prediction has received empirical support. Comparative
studies of chernetid false scorpions and dung beetles have found that the pres-
ence and size of male weapons is positively correlated with population density
and degree of male bias in the sex ratio across species [12,13]. Behavioural
studies have reported increased aggression in the sex in excess within popu-
lations in fish [14,15]. However, comparative studies cannot eliminate the
possibility that variation in aggression is due to other factors that covary
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with the intensity of competition, such as conspecific density
or resource distribution [16]. Likewise, behavioural studies do
not show how the competitive environment shapes diversity
in aggression across groups. Hence, direct tests of how
aggression evolves in response to the intensity of competition
are lacking.

An additional challenge to studying adaptive variation
in aggression is that male and female aggression might
be constrained by their shared genome, preventing either
or both sexes from reaching their optimum [17]. Indeed,
intra-sexual aggression has sometimes been considered a pre-
dominantly male trait, with female aggression assumed to
arise as a by-product of an intersex genetic correlation ([4]
and references therein). Recently, female-female aggression
has gained attention as an adaptive strategy for maximiz-
ing access to resources required for reproduction [8,18],
leading to improved reproductive success or offspring
survival [19-21]. However, we currently lack data on the
independence of the evolution of aggression in each sex.

Beyond constraints through the shared genome, female
aggression might also depart from the female optimum if
female behaviour is subject to manipulation by males [22].
In polygynous mating systems, the optimal level of female-
female aggression will be higher for males than for females
whenever female aggression confers immediate reproductive
benefits that both mating partners experience, but incurs
longer-term costs to females in lifetime reproduction.
Mating offers males an opportunity to influence female be-
haviour through ejaculate transfer, and ejaculate-stimulated
changes in female behaviour are well-documented [23]. In
several species, shifts in female aggression are associated
with mating [20,24,25]. Overall, because female aggression
has been under-researched relative to male aggression, key
facets of the evolution of female aggression, including
sexual conflict, the intersex genetic correlation, and responses
to intra-sexual competition, are not yet fully understood.

Here, we used experimental evolution to ask how male
and female aggression evolve in response to the intensity of
intra-sexual competition. We exposed replicate populations
of fruit flies, Drosophila melanogaster, to different competitive
environments for greater than 75 generations via manipu-
lation of the population sex ratio, a common proxy for the
intensity of competition [11,26,27]. Aggression is heritable
in D. melanogaster and can evolve rapidly under laboratory
conditions [28]. Both sexes engage in contests over food
patches. For females, food patches provide nutrition required
for egg production [29]. For males, which display limited
adult feeding [30], food patches predominantly provide
access to mates [6,7,31,32]. Both sexes display aggressive
behaviours including fencing, male lunging and female head-
butting [7,33]. Mating increases female aggression [33,34] due
to the effects of sperm and seminal fluid proteins received at
mating [35]. Therefore, evolved differences in female aggres-
sion could represent a response to evolved differences in male
stimulation of aggression—mediated by sexual conflict—as
well as the direct evolution of female behaviour.

We addressed the following questions: does the evolu-
tionary sex ratio drive the evolution of male and female
aggression? Does the evolutionary sex ratio affect the post-
mating increase in female aggression? Is there evidence for a
genetic correlation between male and female aggression?
We predicted, first, that males and females evolving in a popu-
lation biased towards their sex would display heightened

aggression. Second, if increased aggression after mating is
adaptive for females, then we expected a greater increase in
aggression after mating in females from female-biased popu-
lations. Third, if female aggression responds to the sex ratio
through female adaptation, then we expected that sex ratio
effects would occur when experimentally evolved females
mated with males from stock populations, whereas if female
aggression responds to the sex ratio through male adaptation
to the sex ratio, then we expected that experimentally evolved
males would induce altered aggression in female mates from
stock populations. Finally, if the sexes share a genetic basis
for aggression, then we expected congruent changes in
aggression across populations.

We conducted two experiments. First, we measured intra-sexual
aggression in virgin females, mated females, and mated males
that had evolved under male-biased, equal and female-biased
evolutionary sex ratios (Experiment 1—‘coevolved’). In this
experiment, all mated individuals mated with partners from the
same replicate population. We tested both virgin and mated
females because females show a distinct increase in aggression
post-mating [33,35], but tested only mated males because, to our
knowledge, male aggression does not change with mating
(though there is some evidence for mate guarding [36]). We
then conducted a second, two-stage experiment to test whether
differences in female aggression among sex ratio treatments
arise from the evolution of female aggression itself or of male
stimulation of female aggression. To do this, we mated experimen-
tally evolved females with stock males (Experiment 2—‘evolved
female’), and stock females with experimentally evolved males
(Experiment 2—’evolved male’), and measured female aggres-
sion before and after mating. Stock individuals were derived
from the same wild-type Dahomey background from which
experimentally evolved populations were generated.
Experimentally evolved flies were maintained in three inde-
pendent replicate populations per sex ratio (see electronic
supplementary material and [37] for details). We assayed behav-
iour after 78 generations for the Experiment 1 and 92 generations
for Experiment 2. Fly husbandry and experiments were conducted
at25°C on a 12:12 hlight : dark cycle with uncontrolled humidity.

We collected eggs from each of the nine replicate populations
and the stock population and raised larvae at a standardized
density on standard laboratory medium [38].

At eclosion (day 1), we collected virgin flies under ice anaes-
thesia. Flies used in aggression trials were housed singly. Males
that were used as mates only (in Experiment 2) were housed in
pairs. We randomly assigned females to the virgin or the
mated treatment. Females assigned to the virgin treatment
were housed singly and transferred to new vials on day 3 after
eclosion (to mirror how mated females were handled). On
day 3, we transferred pairs of males and females (those assigned
to the mating treatment) from the same replicate population into
fresh vials, recorded mating latency and duration, and separated
pairs into individual vials when copulation ended. We discarded
pairs that did not mate within 3 h.

On day 4, we placed all flies singly into food deprivation vials con-
taining only damp cotton wool for 2 h to increase aggressive
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motivation. We randomly assigned flies to a same-sex dyad, with
both flies in the dyad coming from the same replicate population
and mating status (N =10-29 per population; electronic sup-
plementary material, tables 52-54) to standardize the difference
between competitors within contests and to expose individuals
to the type of competitor encountered in their recent evolutionary
history. We transferred dyads into observation chambers (20 mm
diameter, 5 mm depth) containing a central food cup (56 mm diam-
eter, standard laboratory medium and live yeast paste). We
randomly assigned dyads a trial time between 2 and 6 h Zeitgeber
time and allowed 5 min acclimatization before recording aggres-
sion trials of 15min (Toshiba Camileo X400 cameras). We
observed each dyad once and discarded flies after trials.

(d) Behavioural data extraction

All videos were scored by observers blind to treatment using
JWarcher v. 1.0 (Macquarie University & UCLA) and BORIS
v. 7.7.3 [39]. We recorded aggressive behaviours as described in
electronic supplementary material, table S1. To avoid pseudo-
replication, the dyad was taken as the unit of replication, with
behaviour measures summed for the two individuals. Lunging,
chasing and tussling (in males) and headbutts (in females) rep-
resent high-intensity aggression and fencing in both sexes
represents low-intensity aggression [32]. We calculated a male
high-intensity aggression score by summing the amount of time
each dyad spent lunging, chasing and tussling. Because food
patches can represent breeding territories for males [16,40], and
attractive nutritional resources for females [33,35], we calculated
food patch occupancy as the average duration the two flies in a
dyad spent on the food patch so that we could assess the relation-
ship between aggression and patch occupancy. We recorded the
sum of the duration the two flies in a dyad spent walking to test
for locomotor differences that might influence aggression. For
females, all videos were scored for headbutts as the main high-
intensity aggressive behaviour. A subset was also scored for
female fencing so that we could assess whether differences
extended to low-intensity aggression.

(e) Statistical analyses

Statistical analyses were conducted in R v. 3.6.2 (2019-12-12),
using packages ‘MASS’ [41], ‘emmeans’ [42], ‘lmed’ [43],
‘survminer’ [44] and ‘coxme’ [45]. We identified outliers by
inspection of boxplots or, where data were non-normally distrib-
uted, adjusted boxplots [46]. We replaced points outside 1.5* the
interquartile range with the value of the lower or upper 1.5*
interquartile range (i.e. winsorization [47]).

For all experiments, we ran linear mixed effects models
(LMMs; Ime4 Imer() function) to test the influence of evolutionary
sex ratio on the number of lunges (in males) or headbutts (in
females), fencing duration, intense male aggression duration,
locomotion duration and food patch occupancy. We ran binomial
general linear mixed effect models (GLMMs) to test the influence
of evolutionary sex ratio on the proportion of male total
aggression (fencing, chasing, lunging and tussling) or female
headbutting performed on the food patch. For models of female
behaviour in Experiment 1—'coevolved’ and Experiment
2—‘evolved female’, we included evolutionary sex ratio, mating
status, their interaction and observer as fixed factors. For models
of male behaviour in the Experiment 1—‘coevolved’, we included
evolutionary sex ratio as a fixed factor (a single observer extracted
male data). All models included replicate population and day as
random factors and Zeitgeber time as a covariate, and models of
female behaviour in Experiment 1—’'coevolved” and Experiment
2—'evolved female’ also included the interaction between repli-
cate population and mating status as a random effect. For
Experiment 2—‘evolved male’, we had a single virgin female
treatment and three mated female treatments (i.e. stock females

mated to males from each sex ratio). We first assessed the effect
of mating on aggression and food occupancy in an LMM with
mating status as a fixed factor. For mated females, we then ran a
model including evolutionary sex ratio as a fixed factor. Both
models included replicate population and day as random factors
and Zeitgeber time as a covariate. We found no influence of evol-
utionary sex ratio on mating latency or duration (electronic
supplementary material, table S5), so we did not include mating
behaviour as a covariate in any models.

We examined model fit by inspection of diagnostic plots, and
where necessary, applied transformations. We analysed LMMs
with Wald F-tests with Kenward-Roger degrees of freedom
[48] (type III for models with significant interactions, type II
for models without significant interactions) and analysed bino-
mial GLMMs with Wald y*tests. In female models, when we
found a significant interaction between sex ratio and mating
status, we re-ran models separately for virgin and mated females
to explore sex ratio effects within each group. When sex ratio was
significant, we explored the effect using post-hoc Tukey tests. For
females, we compared the magnitude of the post-mating changes
in behaviours among sex ratios using post-hoc effect size tests.

When we found an effect of evolutionary sex ratio on food
patch occupancy, we investigated the relationship between
aggression and food patch occupancy. We used binomial general
linear mixed models as described above to test whether the indi-
vidual that performs the greatest proportion of total aggression (in
males) or headbutts (in females) within a dyad also spends the
highest proportion of time on the food patch, and whether this
relationship was influenced by evolutionary sex ratio. Individuals
that performed equal aggression (16 male dyads, 24 female dyads)
were excluded from this analysis. Full model output for all LMMs
is included in electronic supplementary material.

To explore whether the evolution of sex-specific aggression
might be constrained by a shared genetic basis between the
sexes, we assessed the correlation between the aggressive behav-
iour of males and females that evolved in the same replicate
population, using data from Experiment 1—‘coevolved’. A posi-
tive correlation might arise from a shared genetic basis, from
similar effects of the time and day of behavioural observations
in both sexes, or from congruent evolution in response to the evol-
utionary sex ratio. To control for the influence of time and day
(and observer, for female data for which multiple observers
were involved) on variation in aggression among vials, we ran
linear models of lunging, headbutting and fencing against time
and day (and observer, for female data), and used model residuals
to calculate a mean behaviour score for males, virgin females and
mated females for each replicate population (N = 9). We controlled
for effects of the evolutionary sex ratio on variation in aggression
among replicate populations by extracting the residuals from
linear models of these nine data points against evolutionary sex
ratio. We used the residual values to test for correlations in aggres-
sion (female headbutts and male lunges, and fencing in both
sexes) between males and virgin or mated females. We tested
for a correlation between virgin and mated female aggression to
assess evidence for a shared genetic basis to female aggression
pre- and post-mating.

3. Results
(a) Male aggression and food patch occupancy

We detected no significant influence of the evolutionary sex
ratio on the frequency of lunges (F¢0=1.3, p =0.339, square
root-transformation; figure 14), the duration of high-intensity
aggression (chasing, lunging and tussling; Fre0=14,
p =0.322, log-transformation), or the duration of low-intensity
fencing (Fp 60 = 3.4, p = 0.104, square root-transformation).
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Figure 1. Male aggressive behaviour in Experiment 1—'coevolved’. Male
aggressive behavior after experimental evolution at female-biased (FB),
equal (EQ) or male-biased (MB) sex ratios: lunging (a, back-transformed
data) and the proportion of aggression performed on food patches (b). Circles
indicate means. Grey bars indicate 95% confidence intervals; *** indicates
p <0.001, * indicates 0.01<p<0.05 ns. (not significant) indicates
p > 0.05. (Online version in colour.)

We found that males from female-biased populations spent
less time on the food patch compared with male-biased and
equal sex ratio populations (F; 5 ¢ = 14.0, p = 0.006 electronic sup-
plementary material, figure S1B). Males from female-biased
populations also performed a lower proportion of total aggres-
sion on the food patch relative to males from the other
treatments (3 = 44.7, p<0.001; figure 1b), suggesting differ-
ences in resource defence. Aggressive behaviour was related
to food patch occupancy. Across all sex ratios, the individual
that performed relatively more aggression within a dyad
spent relatively more time on the food patch (2 = 56.5,
p <0.001), and this relationship was weaker as the evolutionary
sex ratio became more female-biased (fz =113.8, p<0.001,
figure 2a). The reduction in food patch use by males from
female-biased populations was accompanied by a weak trend
towards increased locomotion in these males, relative to
those from other sex ratios (F,60=4.8, p=0.056, electronic
supplementary material, figure S1A).

(b) Female aggression and food patch occupancy in
Experiment 1—'coevolved’

We found that mating status and evolutionary sex ratio inter-
acted to influence female headbutt frequency (interaction:

Fy61=5.2, p=0.048; mating status: F;53=46.4, p<0.001; sex
ratio: F,41=2.0, p=0.213; figure 3a). Headbutting increased
after mating in all evolutionary sex ratios, but females from
female-biased populations increased headbutting twice as
much females from male-biased or equal sex ratio populations
(figure 3a and electronic supplementary material, table S6). In
virgin females, we found no significant effect of evolutionary
sex ratio on headbutt frequency (Fp61=2.7, p=0.149), but
after mating, females from female-biased populations per-
formed more headbutts than females from male-biased
populations (F560=>5.1, p=0.050; post-hoc male-biased versus
female-biased comparison: ¢ = 3.2, d.f. = 6.1, adjusted p = 0.043).

There was no evidence of an interaction between mating
status and evolutionary sex ratio for female fencing duration,
nor evidence for a main effect of evolutionary sex ratio (inter-
action: Fp¢0=2.8, p=0.142, square root-transformation; sex
ratio: F»55=3.0, p=0.127; electronic supplementary material,
figure S2A). Fencing duration increased after mating within
all evolutionary sex ratios (mating status: F;¢0=42.9, p<
0.001; electronic supplementary material, figure S2A and
table S6).

We found no interaction between mating status and evol-
utionary sex ratio for food patch occupancy, nor a main effect
of evolutionary sex ratio (interaction: F, ¢ = 1.1, p = 0.382; sex
ratio: Fp60=1.4, p=0.312; electronic supplementary material,
figure S2C). Food patch occupancy increased post-mating in
all evolutionary sex ratios (Fjs5g=15.3, p=0.008; electronic
supplementary material, figure S2C). As in males, the more
aggressive mated female within a dyad spent relatively
more time occupying the food patch ()2 = 197.5, p <0.001),
with the strongest positive correlation in mated females
from male-biased sex ratios (interaction: X% =28.4, p<0.001;
sex ratio: x5 =27.3, p<0.001; figure 2b). However, virgin
females showed the opposite pattern: more aggressive
virgin females within a dyad spent relatively less time
occupying the food patch (33 =7.1, p=0.008), with the
strongest negative correlation in male-biased sex ratios (sex
ratio: x5 = 15.5, p<0.001; interaction: x3 = 35.6, p<0.001;
electronic supplementary material, figure S3).

Mating reduced female locomotion (F; ¢ o =33.6, p =0.001,
square supplementary
material, figure S2B), but we detected no influence of evol-

root-transformation;  electronic
utionary sex ratio on locomotion, and no interaction between
mating and evolutionary sex ratio (evolutionary sex ratio:
Fy59=2.5, p=0.162; interaction: F 4= 1.6, p =0.280).

(c) Female aggression and food patch occupancy in
Experiment 2—'evolved female’

In Experiment 1, the effect of sex ratio on female headbutting
might have arisen from evolutionary change in females,
from changes in male stimulation of female aggression,
or from changes in both sexes. To test whether differences
arose from females alone, we mated experimentally evolved
females to stock males. As expected, mating caused a general
increase in headbutting (F; o =10.0, p = 0.019). However, the
evolutionary sex ratio did not influence the magnitude of this
post-mating increase (evolutionary sex ratio x mating inter-
action: Fy60=0.1, p=0.947, square root-transformation;
figure 3b and electronic supplementary material, table S6).
Females from equal sex ratio populations tended to headbutt
more, relative to female-biased and male-biased females
(F2,60=>5.0, p=0.053), regardless of mating status.
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Figure 2. The relationship between aggression and food patch occupancy within dyads. The relationship between the proportion of aggression (male total aggres-
sion and female headbutts) performed by the most aggressive individual in a pair and the proportion of food patch occupancy for that individual, for males (a) and
mated females (b) at female-biased (FB), equal (EQ) or male-biased (MB) sex ratios. Grey shading indicates 95% confidence intervals. (Online version in colour.)

We observed no significant increase in fencing post-
mating (F;61=0.1, p=0.745, log(constant-x)-transformation;
electronic supplementary material, figure 54A), in contrast
to results from the previous experiment. We found no overall
effect of evolutionary sex ratio on female fencing (F,59=10.8,
p=0.497), nor an interaction between evolutionary sex ratio
and mating (F260=0.6, p=0.559).

Similar to Experiment 1, we found no interaction between
evolutionary sex ratio and mating status for female food
patch occupancy (F;60=0.6, p=0.601; electronic supplemen-
tary material, figure S4C), nor a main effect of evolutionary
sex ratio (Fy50=15, p=0.307), when evolved females
mated with stock males. Mating caused a general increase
in food patch occupancy (Fy 61 =5.7, p=0.053).

(d) Female aggression and food patch occupancy in
Experiment 2—'evolved male’

To test whether the differences in female headbutting
observed in Experiment 1 were due to evolved differences
in male stimulation of female aggression, we mated exper-
imentally evolved males to stock females. All females
showed a similar increase in headbutting post-mating

(F179=40.2, p<0.001). There was no effect of male evolu-
tionary sex ratio on headbutt number post-mating (Fy61=
0.4, p=0.706, figure 3c).

Males did not stimulate a significant increase in fencing in
stock females post-mating (F;79=0.4, p=0.553), and we
found no effect of male evolutionary sex ratio on female
post-mating fencing duration (F, ¢ =1.1, p =0.401; electronic
supplementary material, figure S4B).

We detected no interaction between evolutionary sex ratio
and mating status on food patch occupancy when stock
females mated with experimentally evolved males. Regardless
of evolutionary sex ratio, all males stimulated increases in food
patch occupancy in stock females post-mating (F;;5=8.7, p =
0.019), but there was no significant effect of male evolutionary
sex ratio on female post-mating food patch occupancy (F 61 =
0.3, p =0.719; electronic supplementary material, figure S4D).

(e) The correlation between male and female
aggression

We found a positive correlation between the number of male
lunges and female headbutts across replicate populations
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Figure 3. Female headbutting. Female headbutting after experimental evol-
ution at female-biased (FB), equal (EQ) or male-biased (MB) sex ratios, for
virgin (V) or mated (M) females. Female headbutting was measured when
experimentally evolved females mated with experimentally evolved males
(a; Experiment 1—'coevolved’), when experimentally evolved females
mated with stock males (b; Experiment 2—'evolved female’; back-
transformed data), and when stock females mated with experimentally
evolved males (¢; Experiment 2—'evolved male’). Circles indicate means.
Grey bars indicate 95% confidence intervals; *** indicates p < 0.001, ** indi-
cates 0.001 < p < 0.01, * indicates 0.01 < p < 0.05, ns. (not significant)
indicates p > 0.05. (Online version in colour.)

(Spearman’s rank correlation, males and virgin females,
0=0.72, S=34, p=0.037; males and mated females, o = 0.63,
S=44, p=0.076; figure 4a,b), but found no correlation in
fencing duration between the sexes (males and virgin
females, 0 =-0.02, S=122, p=0982; males and mated
females, o =—0.25, S=150, p =0.521).

(f) The correlation between virgin and mated female
aggression

We found a positive correlation between pre- and post-mating
female headbutting frequency across replicate populations
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Figure 4. Correlations between male and female aggressive behaviours. The
relationship between male and female aggressive behaviour (male lunges
and headbutts by virgin (a) or mated females (b)) and between virgin
and mated female headbutts (c). Points are residual values from models con-
trolling for day, time and sex ratio. Lines indicate the monotonic fit from
Spearman’s correlation; grey shading indicates the 95% confidence interval.

(Spearman’s rank correlation, ¢ =0.70, S=36, p=0.043,
figure 4c), but found no correlation in fencing behaviour
(o = 0.07, S=112, p=0.880).

4. Discussion

We investigated how aggression evolves in response to the inten-
sity of intra-sexual competition by assaying aggression after
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experimentally manipulating the population sex ratio for greater
than 75 generations. We predicted that males and females would
evolve increased aggression after evolution in populations
biased towards their sex, and our results support this prediction
strongly in females and weakly in males. We observed a greater
increase in aggression after mating in females from female-
biased populations, as predicted if higher post-mating
aggression is adaptive for females. Surprisingly, differences in
the magnitude of this increase among sex ratios occurred only
after matings between experimentally evolved males and
females, and not when experimentally evolved individuals
mated with stock flies. These results suggest that differences in
the post-mating increase in aggression do not arise through
evolution in either sex independently, but might depend on
coevolved interactions between the sexes. We found positive
correlations in aggression between the sexes, consistent with a
shared genetic basis for aggression. Our results suggest that
the intensity of competition can determine the strength of
sexual and social selection on aspects of aggression and food
patch occupancy in both male and female D. melanogaster,
shaping the evolution of these behaviours.

(a) The evolution of male aggression with sex ratio
We predicted that evolution under stronger sexual selection,
through more intense competition for mates in male-biased
populations, should lead to increased male aggression, mir-
roring plastic changes in response to sex ratio in a wide
range of species [14,15,49]. The results offer only weak sup-
port for this prediction. On the one hand, the absence of
evolved differences in the frequency and duration of male
aggression in response to sex ratio does not support the pre-
diction. Two possible explanations for the absence of
response are that selection favours plasticity in aggression
rather than fixed increases or decreases [50]; or that changes
in the strength of competition for mates with sex ratio are
balanced by changes in rival density and costs of fighting
[10,51-53]. However, neither hypothesis accounts for our
observations of sex ratio effects on the evolution of female
aggression and male aggression in relation to food patches.
On the other hand, we observed the evolution of reduced
food patch occupancy, a reduced proportion of aggression
performed on food, and a weaker relationship between aggres-
sion and food occupancy, in males from female-biased
populations relative to other males. The function of male aggres-
sion in gaining access to food resources is supported both by our
finding that more aggressive males spend relatively more time
occupying the food patch, and by previous reports that aggres-
sive male D. melanogaster win access to food patches [54,55],
which increases their access to mates [16,40,55]. Our results are
consistent with weaker selection for the use of aggression to
attain access to food patches under female-biased conditions,
in which weaker competition for mates is expected to reduce
the benefits of dominating breeding sites [15,56]. An alternative
hypothesis is that reduced male food patch occupancy after evol-
ution in female-biased populations might reflect reduced female
aggregation on food patches. However, females aggregate more,
not less, on food patches in our female-biased populations [37].

(b) The evolution of female aggression with sex ratio
Females increase aggression after mating in many species
[20,24,25,33,35]. Our results are consistent with this pattern.
Increased aggression post-mating might represent an

adaptive response that relates to the acquisition or defence of
nutritional resources required for reproduction, as the switch
to a post-mating reproductive state increases female feeding
and protein requirements [29,57,58]. Our findings that females
from all sex ratio treatments display increased food patch occu-
pation post-mating, and that aggression is positively related to
food occupancy in mated females, support this idea.

We found that the evolutionary sex ratio influences both the
level of aggression in mated females and the magnitude of
the post-mating increase in aggression, with more headbutts
and a greater increase in headbutt frequency post-mating in
females from female-biased populations. The greater intensity
of female competition in female-biased populations might
impose stronger selection favouring aggression in the nutrition-
ally demanding mated state. Our results suggest that the
intensity of intra-sexual competition can shape the evolution
of female aggression, and that this might relate to nutritional
defence, although causality in this relationship is unclear.
Future work testing the relationship between female aggression,
defence of food and reproductive success would improve
understanding of the function of aggression in this species.

Our findings are inconsistent with the hypotheses that
evolution in either sex alone explains the observed effect of
sex ratio on the female post-mating increase in aggression.
Previous work has demonstrated that the receipt of male
sperm and the seminal fluid protein ‘sex peptide’ directly
influence female aggression in D. melanogaster [35]. Moreover,
some properties of the male ejaculate such as sperm competi-
tiveness and ejaculate expenditure show evolvability in
response to the sex ratio [27,59-61]. However, a male’s ability
to stimulate female aggression did not appear to evolve in the
conditions of our experiment.

We are left with the hypothesis that the female post-
mating behaviours observed when both sexes had exper-
imentally evolved reflect coevolved interactions between the
sexes, such that evolved changes occur only after matings
between individuals from the same social environment. Simi-
lar complex interactions between male and female genotypes
are known in Drosophila. For example, the effect of some male
sex peptide alleles on sperm competitiveness depends on the
female sex peptide receptor allele [62]. Likewise, sperm suc-
cess can depend on interactions between male and female
genotypes [63]. Although we know that female post-mating
aggression is linked to the receipt of male ejaculates [35],
the downstream mechanism within females remains elusive.
Research into the post-mating regulation of female aggression
would help further evaluation of the coevolution hypothesis.

(c) A positive correlation in aggression between
the sexes

Studying the evolution of male and female aggression simul-
taneously allowed us to evaluate the hypothesis that
aggression is genetically correlated between the sexes. This
is especially relevant because female aggression has some-
times been considered a mnon-adaptive by-product of
selection for male aggression [4,64] and has only recently
been studied as an adaptive female trait [21].

Our observation of a positive correlation between male
lunging and female headbutting across replicate populations
is consistent with a shared genetic basis for aggression.
There is evidence that selection for aggression in male
D. melanogaster results in correlated responses in female
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aggression [65], supporting this idea. This suggests the possi-
bility that genetic constraints might impede the evolution of
sex-specific optimal aggression. However, our observation
of divergent responses to sex ratio for males and females
suggests that a genetic correlation for aggression does not
completely restrict its independent evolution in each sex.
Alternatively, a positive correlation could arise if aggression
forms a behavioural syndrome with other coevolving inter-
sexual behaviours, such as male harassment of females and
female resistance. However, this seems unlikely because
there is little evidence that aggression covaries across contexts
in D. melanogaster [66] and intra-sexual aggressive behaviours
are rarely directed at the opposite sex [67]. Furthermore, the
positive correlation between headbutting by virgin and
mated females suggests a consistent genetic basis for female
aggression pre- and post-mating, such that females have a
baseline level of aggression that is enhanced by mating. By
contrast, the absence of correlations in fencing behaviour
between males and females, and between virgin and mated
females, across replicate populations might reflect differences
in the function of this low-intensity aggressive behaviour
between the sexes, and within females depending on their
mating status. Fencing is performed by both sexes, but there
are distinct differences in the aggressive strategies of males
and females [33] and in females pre- and post-mating [35]. If
there are distinct genetic pathways underlying low- and
high-intensity aggression, then the extent to which sex-specific
aggression is constrained by a shared genetic basis may vary
for different aggressive behaviours.

Our study provides evidence that the strength of sexual and
social selection, mediated by competition for mates and
resources, can shape the evolution of aggressive behaviours in
both male and female D. melanogaster. These effects differ
between the sexes, which might reflect different routes by
which aggression influences reproductive success [2]. The

higher energy demands of reproduction in females might [ 8 |

result in greater reproductive costs from energetically expensive
aggression in females than in males, causing reduced female
aggression with greater sensitivity to the ecological setting.

Furthermore, although we found evidence consistent
with a shared genetic basis for aggression, our observation
of divergent responses to sex ratio for males and females
suggests that a genetic correlation for aggression does not
completely restrict its independent evolution. Our study
also highlights that increased female aggression in response
to mating might be sensitive to adaptations in both sexes.
This underscores the value of future study of the mechanisms
underlying the female post-mating increase in aggression,
and of studying behaviour in both sexes.

Data are available from the Oxford University
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