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Abstract

In this thesis, we investigate several aspects of asset price volatility dynamics
in financial markets.

In Chapter 1, we focus on the long memory property of financial volatil-
ity and study whether the long memory in the volatility is true (genuine) or
spurious. We address the problem of a correct identification of a memory
structure of financial volatility by considering it in the context of tempo-
ral aggregation. Firstly, we generalize the up-to-date theoretical knowledge
about temporal aggregation in long memory processes to show that the long
memory property of ARFIMA series is invariant to temporal aggregation.
Secondly, we conduct a Monte Carlo simulation experiment and provide a re-
gression analysis of the experiment results in order to validate the established
theoretical implications for the semiparametric GPH method of ARFIMA
estimation. Finally, we analyze empirically the long memory property of
volatility of the GBP/USD foreign exchange rate returns at various time
scales. We focus on different established volatility proxies (such as absolute
returns, squared returns and realized volatility) and use the semiparametric
ARFIMA estimation methods to investigate the long memory dynamics of
the volatility at various levels of temporal aggregation. Based on the the-
oretical implications, we formally test the hypothesis of equivalence of the
estimated long memory parameters at different time scales. We have found
evidence that volatility of the returns is a true long memory process as it
is characterized by the same fractional differencing parameter across the ob-
served time scales. The evidence is particularly strong in case of realized
volatility.

In Chapter 2, we investigate the connection between the phenomenon
of volatility asymmetry and the asymmetry of investor attention to good
and bad market news. As an advanced and direct measure of investor at-
tention, we utilize the Search Volume Index (SVI) provided by the Google
Trends service. We use a long span of daily data for a range of international
stock market indexes and employ a methodological framework of SVAR and
ARDL models to study the direction and timing of the asymmetric effects.
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Our findings indicate that both volatility and investor attention are similarly
asymmetric in their response to market news represented by index return:
a negative return has a stronger impact on both volatility and investor at-
tention than a positive return of the same absolute magnitude. We provide
new evidence of positive relationship between volatility and investor atten-
tion and demonstrate that the magnitude of the impact of investor attention
on volatility is stronger during periods of negative returns. We show that,
in the established theoretical framework, retail investor attention can con-
tribute to volatility asymmetry and create temporary asymmetric volatility
fluctuations but is unlikely to be responsible for permanent shifts in market
volatility.

In Chapter 3, we introduce a new realized volatility forecasting technique
based on the component structure of the volatility dynamics. Time series
of financial volatility is well known for having a complex structure including
several heterogeneous patterns: linear and nonlinear, long-run and short-run,
etc. We propose a new two-component model of realized volatility that is
based on combination of econometric and machine learning approaches. In
our model, the ARFIMA framework is used to capture the linear compo-
nent of realized volatility while the artificial neural network is used to model
the corresponding nonlinear part. The model exploits both the strength
of ARFIMA in linear modeling and the high nonlinear modeling capability
of artificial neural networks. We also develop a modification of the cycli-
cal volatility model where artificial neural networks are used to model both
trend and cyclical components of realized volatility. We apply the proposed
hybrid approaches to produce out-of-sample forecasts of realized volatility of
the GBP/USD and the EUR/GBP exchange rates returns. The proposed
models provide an improvement in out-of-sample forecasting accuracy over
the competing approaches.
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Introduction

The importance of volatility in the area of financial economics should never
be underestimated. Volatility as a phenomenon as well as a concept has
been central to financial markets and academic research in recent decades.
Loosely speaking, volatility is defined as a measure of asset price variability
over some period of time. Arguably, it is the most common measure of
financial risk involved in investments in traded securities. When volatility is
interpreted as risk or uncertainty, it becomes an essential input to financial
investment decisions and portfolio design. For example, in the seminal work
of Markowitz (1952) on portfolio theory, a rational investor aims to maximize
his profit, measured as the expected portfolio return, and minimize his risk,
measured as the portfolio’s variance of return (i.e., volatility).

Volatility plays a crucial role in the pricing of derivative securities, such as
options and futures contracts. The market of financial derivatives is gigantic,
the trading volume of the market is often estimated as trillions of dollars.
In the well-known option pricing framework of Black and Scholes (1973),
the most important variable is the volatility of the underlying asset between
the settlement and expiry of the option. Moreover, in recent years new
derivative contracts have been introduced. These new contracts are written
on volatility itself, which means that volatility now serves as the underlying
asset. Currently, the futures and options written on the CBOE Volatility
Index (VIX) are among the most actively traded derivative contracts at the
Chicago Board Options Exchange (CBOE).

During periods of financial and economic turmoil, market volatility at-
tracts particularly close attention from financial professionals. The financial
crisis of 2007-2008 has demonstrated that extreme financial market volatility
is costly not only for financial industry but also affects the economy as a
whole. In particular, high market volatility negatively influences aggregate
investment behaviour which significantly limits the possibilities for compa-
nies to attract external financing. Recently, in March 2020, the COVID-19
pandemic contributed to extreme price fluctuations for various groups of
assets which caused panic among traders and massive outflow of investors

8



from financial markets. These cases clearly demonstrate the important link
between market uncertainty and collective behaviour of investors.

Volatility is closely tracked by retail investors and institutional investors
like investment funds, pension funds and policy makers. For central banks,
market estimates of volatility often serve as a barometer for the vulnerability
of financial markets and the economy as a whole. In particular, the Federal
Reserve of the United States and the Bank of England usually take into ac-
count the volatility of different securities and commodities in developing and
establishing monetary policy. Since introduction of the first Basel Accords,
volatility has become an important variable for determining capital require-
ments for many financial institutions around the world, such as banks and
trading houses.

The indisputable importance of volatility in the practice of financial and
economic risk management explains the fact that the concept of volatility
has been at the center of academic research in both finance and econometrics
in recent decades. The research efforts of economists globally are aimed at
explaining the various empirical features of volatility as well as enhancing the
ability to model and forecast it. The link between volatility and economic
fundamentals is another active research area. The dominant paradigm in
financial market research, the Efficient Market Hypothesis (EMH) of Fama
(1970), claims that the volatility of stock prices should reflect changes in the
true investment value. However, as pointed out by Shiller (1981), historical
volatility of security prices is too high to be justified just by changes in
market fundamentals. The rich evidence of other empirical characteristics of
financial volatility, such as volatility clustering, is another direct violation of
the EMH.

Every new study on volatility often establishes a lot of new questions while
attempting to answer the already existing ones. Hence, financial volatility
can still be considered an active research topic. This thesis contributes to
the literature by investigating several relevant aspects of volatility in finan-
cial markets. First, we focus on the long memory property of volatility and
study whether the long memory in volatility is true or spurious. Second,
we investigate the phenomenon of volatility asymmetry and consider how
asymmetry in investor attention can contribute to the asymmetry in volatil-
ity. Finally, we analyze the factor structure of volatility, with the particular
focus on using the factor decomposition for volatility forecasting techniques.

The structure of the thesis is organized as follows. Every chapter of the
thesis is self-contained and can thus be read independently.

In Chapter 1, we consider the long memory feature of financial volatility
through the concept of temporal aggregation. Long-range dependence, i.e.,
the phenomenon of slow hyperbolic decay of the autocorrelation function of
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a process, is widely documented for volatility of returns of various assets.
Nowadays, the research in the area of long-range dependence in volatility fo-
cuses on the source and the nature of this long memory property. There is no
consensus in the literature whether the long memory in volatility is true and
an intrinsic characteristic of the volatility generating process or it is spurious
and nothing more than a temporary anomaly that arises at a certain time
scale as a result of occasional structural shifts or regime breaks. At the same
time, the increased availability of high frequency financial data of good qual-
ity provides a chance for academic researchers to investigate the persistence
of volatility at different time scales more substantially. We address the prob-
lem of correct identification of the memory structure of financial volatility by
considering it in the context of temporal aggregation. It is a well known the-
oretical result that the long memory property of Autoregressive Fractionally
Integrated Moving Average (ARFIMA) processes is invariant to temporal ag-
gregation. In the first step, we conduct a Monte Carlo simulation to validate
this theoretical result for the particular semiparametric ARFIMA estima-
tion method. In the second step, we analyze empirically the long memory
property of volatility of the GBP/USD foreign exchange rate at various time
scales. We focus on different established volatility proxies (such as absolute
returns, squared returns and realized volatility) and use the semiparametric
ARFIMA estimation methods to investigate the long memory dynamics of
the volatility at various levels of temporal aggregation. Based on the the-
oretical implications, we formally test the hypothesis of equivalence of the
estimated long memory parameters at different time scales and draw conclu-
sions about the nature of long memory in volatility of the foreign exchange
rate returns.

In Chapter 2, we investigate the phenomenon of volatility asymmetry and
explore the link between volatility asymmetry and the asymmetry of investor
attention to positive and negative returns. Volatility asymmetry describes
the relationship between price changes and its volatility and refers to the fact
that negative returns have stronger effect on volatility than positive returns
of the same absolute magnitude. Generally, positive or negative returns are
associated respectively with good or bad market news. In the literature,
there is still no clearly recognized explanation of volatility asymmetry, de-
spite longstanding attempts to explain it. The current research in academic
literature shows that the most common hypotheses, such as the leverage
effect or volatility feedback, are clearly incapable to fully explain volatil-
ity asymmetry, and that there are other factor driving the effect. Several
promising hypotheses come from the area of behavioral finance, proposing
the link between volatility asymmetry and individual aspects of investor be-
havior, in particular, investor attention. However, empirical investigations of
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the connection between investor attention and volatility were limited due to
the problem of measuring and quantifying the attention, the absence of an
adequate proxy. In our study, we use a recently introduced direct measure
of investor attention which is based on the number of internet searches and
provided by the Google Trends service. For several international stock mar-
ket indexes, we employ a Structural Vector Autoregressive (SVAR) frame-
work along with impulse response analysis to investigate the short-term and
long-term relationship between index return, volatility and investor atten-
tion. We use an Autoregressive Distributed Lag (ARDL) model to explore
the asymmetric reaction of both investor attention and volatility to positive
and negative returns. We graphically illustrate the asymmetric effect with
news impact curves. Finally, in the ARDL framework, we explore the impact
of investor attention on volatility and suggest how, according to the estab-
lished theoretical model, asymmetric attention can contribute to volatility
asymmetry.

In Chapter 3, we introduce a new realized volatility forecasting technique
based on the component structure of the volatility dynamics. Time series
of financial volatility is well known for having a complex structure including
several heterogeneous patterns. In particular, there is a widely documented
evidence that volatility dynamics includes not only linear but also complex
nonlinear dependencies. However, standard realized volatility forecasting
models (such as ARFIMA) are essentially linear and are not able to effectively
capture the nonlinear patterns in the time series of financial volatility. To
address this issue, we propose a new two-component volatility model which is
based on the combination of econometric and machine learning approaches.
In our model, the time series of realized volatility is decomposed into the
linear and nonlinear components, then ARFIMA model is used to forecast the
linear part and the nonlinear autoregressive artificial neural network (ANN)
is used to forecast the nonlinear part of the process. The proposed hybrid
ARFIMA-ANN model is intended to capture both phenomena: long memory
and nonlinearity in the volatility dynamics. The model exploits both the
strength of ARFIMA in linear modeling and the high nonlinear modeling
capability of artificial neural networks. We apply the proposed hybrid model
to produce out-of-sample forecasts of realized volatility of the GBP/USD and
the EUR/GBP exchange rates returns and compare the forecasting accuracy
of the ARFIMA-ANN approach with several modifications of the recently
introduced cyclical volatility model.

The final section of the thesis provides some concluding remarks, where we
summarize the results of the chapters and attempt to identify the emerging
themes for future research.
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Chapter 1

On the long memory feature
through temporal aggregation:
an application to financial
volatility

1.1 Introduction

The discovery of the long memory phenomenon has had a significant impact
on the science of time series analysis and on our understanding of the nature
of stochastic processes. Under the concept of long-range dependence, the be-
havior of a system depends on the state of its parameters in the distant past.
Technically speaking, the long memory behavior of a stationary stochastic
process is represented by the slow hyperbolic decay rate of the autocorrela-
tion function of the series as a function of the time lag. In the frequency
domain, the long memory behavior is characterized by a burst of the power
spectral density function of a series near the origin (frequencies very close to
zero).

The fundamentals of the long memory framework were developed by
H.Hurst and B.Mandelbrot. Hurst introduced a concept of long memory
and proposed a special test for the long-range dependence which is known as
Hurst’s rescaled range test (Hurst, 1951; Hurst, 1957). Mandelbrot was the
one who laid the foundation of a long memory concept applied to the sub-
ject of mathematical finance. Mandelbrot and Van Ness (1968) proposed the
first paradigmatic models of long memory processes - the fractional Gaussian
noise (FGN) and the fractional Brownian motion (FBM). Mandelbrot (1971)
found the long-range dependence in asset returns and proved the relevance
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of the rescaled range test to detect long memory in financial and economic
time series. Since the early seminal works of Hurst and Mandelbrot, long
memory processes are also known as self-similar processes (fractals).

The application of the long memory concept in statistics and quantita-
tive finance significantly increased after introduction of the fractional au-
toregressive integrated moving average (ARFIMA) model. The model was
independently developed by Granger and Joyeux (1980) and Hosking (1981)
on the basis of the standard time series modeling ARIMA framework (Box
and Jenkins, 1976). In the ARFIMA model, the mathematical trick of frac-
tional differentiation has allowed to capture effectively the special autocorre-
lation structure of time series with long memory properties. The ARFIMA
model has become an important instrument for modeling and forecasting the
dynamics of financial and economic time series. The development of the con-
cept of long memory in the context of economics and financial science is of
particular importance. Many different financial and economic time series ex-
hibit the properties of a long-range dependence: GDP growth rates, inflation
rates, forward premiums, volatility of assets returns, etc. The discovery of the
phenomenon of long memory in financial and economic processes provides a
new methodological tool for describing the behavior of economic agents and
systems.

One of the key features of empirical work with economic or financial time
series is that the time series under consideration is often aggregated in time.
There are several reasons for this. Sometimes the true data generating pro-
cess in not observable directly or the time scale of the data generating process
is unknown. In some cases, the true data generating process includes “noise”
components or periodic behavior that complicates its modeling. Hence, in fi-
nance and economics, it is natural to work with temporally aggregated data.
In the context of this work, we refer to temporal aggregation when the low
frequency variable is the sum of the high frequency variables over several
periods.

In the practice of financial econometrics, aggregated data is often used
in empirical investigations for time series modeling, including testing for and
modeling a long memory dynamics. This fact naturally raises many im-
portant questions about the consequences of temporal aggregation in long
memory processes. Is the long memory property of a series invariant to the
sampling frequency? Is it possible to identify correctly the nature of the
true data generating process when observing the series in the temporally
aggregated form?

In some cases, the slow hyperbolic decay rate of the autocorrelation func-
tion of a process might be just a statistical artifact that does not reflect the
true long memory property of the series and that is observable only in a
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certain period and at a certain time resolution. This artifact can occur, for
example, due to structural breaks or regime shifts. In this regard, investi-
gating the process and testing for long memory based on only one particular
time scale can lead to misleading conclusions about the nature of the pro-
cess and, as a consequence, to model misspecification and serious forecasting
errors. Following the very essence of self-similar processes, exploring their
statistical properties at different time scales is of particular importance. The
knowledge about the consequences of temporal aggregation allows more pre-
cise identification of the memory properties of a series and the nature of the
system that generates the process.

The earliest works which study temporal aggregation in the context of
long memory are Granger (1980), Diebold and Rudebusch (1989) and Ding,
Granger, and Engle (1993). Granger (1980) explained that aggregation of
dynamic equations could lead to the situation when the aggregated series
exhibit fundamentally different statistical properties than the original se-
ries. Diebold and Rudebusch (1989), using annually and quarterly sampled
macroeconomic data, found that the estimated long memory parameter is
not the same at different aggregation frequencies. On the other hand, Ding,
Granger, and Engle (1993), based on simulation studies, made a conjecture
that temporal aggregation does not change the decay rate of the autocorre-
lation function or the spectral density function and, hence, does not affect
the long memory parameter of ARFIMA series.

Chambers (1998) investigates temporal aggregation in discrete time and
continuous time long memory processes using the frequency domain analysis.
His findings indicate that, in case of temporal aggregation, the decay rate of
the spectral density function is not affected by sampling intervals and that
temporally aggregated variable retains the same order of fractional differenc-
ing as the original series. His empirical analysis of the U.K. macroeconomic
data, however, shows the contradictory results as the long memory parame-
ter is affected by aggregation. Chambers (1998) notes that semiparametric
methods are superior for the purposes of estimating the true long memory pa-
rameter of ARFIMA series than parametric methods. Hwang (2000) follows
the steps of Chambers (1998) and finds that in short lags the autocorrela-
tion function of ARFIMA process is affected as an outcome of aggregation,
whereas in large lags the autocorrelation function remains unaffected. Be-
cause of that, although temporal aggregation does not change the true long
memory parameter of the series, the estimated long memory parameter can
be biased. Hwang’s (2000) results of the simulation analysis are consistent
with the proposition of Chambers (1998) that semiparametric methods per-
form better in estimation the true long memory parameter than parametric
techniques.
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Baillie, Nijman, and Tschernig (1994) and Tschernig et al. (1995) found
that the class of ARFIMA processes is not closed with respect to temporal
aggregation and that, as a result of the aggregation, ARFIMA(p, d, q) process
turns out to be an ARFIMA(p, d,∞). Similar results were obtained by Teles,
Wei, and Crato (1999) and Man and Tiao (2006).

In finance, volatility of asset returns is well known for exhibiting long
memory dynamics. The empirical literature that documents the presence of
long memory in the various volatility proxies, such as absolute or squared
returns, is extensive. Here we list the most important works. For example,
Ding, Granger, and Engle (1993), Ding and Granger (1996) find the presence
of substantially high autocorrelation between daily absolute returns of S&P
500 stocks. Lobato and Savin (1998) finds the strong evidence of long memory
in squared S&P 500 daily stocks returns. Dacorogna et al. (1993), Bhar
(1994), Tschernig et al. (1995), Wang (2004), Dufrénot et al. (2008), Aloy
et al. (2011) report the presence of long memory in absolute and squared
returns on the foreign exchange market.

Increased availability of high frequency financial data of good quality gave
a chance for academic researchers to investigate more deeply the structure
of financial returns at high frequencies. In seminal paper, Andersen and
Bollerslev (1997a) find long-range dependence in the series of high frequency
absolute and squared the Deutschemark and the US dollar exchange rate
returns. Andersen and Bollerslev (1997a) document that the degree of frac-
tional integration in the absolute and the squared returns is invariant with
respect to temporal aggregation. Dacorogna et al. (1998) and Caporale and
Gil-Alana (2013) document long-term dependence in high frequency volatil-
ity data on the various exchange rates. Gurgul, Wójtowicz, et al. (2006),
Tan, Khan, et al. (2010), Kang, Cheong, and Yoon (2010) find the property
of long-range dependence in the volatility of stock market high frequency
returns.

Bollerslev and Wright (2000) use semiparametric estimation methods to
investigate the property of long memory in high frequency squared, log-
squared and absolute foreign exchange returns under temporal aggregation.
Bollerslev and Wright (2000) show that different volatility estimators can
provide different conclusions about the value of the fractional differencing pa-
rameter estimated on various levels of temporal aggregation. Similar results
are obtained by Mcmillan and Speight (2008) who show that the property of
invariance of long memory parameter with respect to temporal aggregation
does not hold if noisy volatility estimators are used to estimate temporal de-
pendencies. Deo and Hurvich (2001) and Arteche (2004) also claim that noisy
volatility proxies may induce bias in estimating long memory parameter.

Andersen et al. (2001), Andersen et al. (2003) propose a new volatility
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estimator based on high frequency returns which is called realized volatility
and provide wide evidence of long memory in realized volatility of exchange
rate returns. The literature that provides further evidence of long memory
in realized measure of returns volatility is massive and includes papers of
Barndorff-Nielsen and Shephard (2002), Corsi (2009), Choi, Yu, and Zivot
(2010), Raggi and Bordignon (2012), Rossi and De Magistris (2013) as well
as more recent works of Wenger, Leschinski, and Sibbertsen (2017), Baillie
et al. (2018), etc.

The question of the current research of long-range dependence in volatil-
ity is not even the existence of the long memory but rather its strength and
source. The debates in the literature about the nature of long memory in
volatility of various financial assets returns are active. There is no consensus
whether the long memory in volatility is true and an intrinsic characteris-
tic of the volatility generating process or it is spurious and nothing more
than a temporary anomaly that arises only at a certain time scale. Ander-
sen and Bollerslev (1997a), on the basis of the empirical analysis of foreign
exchange market, propose that long memory characteristics constitute an
intrinsic feature of the return generating process and is not caused by oc-
casional structural shifts. On the contrary, Diebold and Inoue (2001) show
theoretically and using simulation analysis that structural breaks can cause
a strong persistence in the autocorrelation function of a time series and gen-
erate spurious long memory. Granger and Hyung (2004) propose that occa-
sional structural breaks can cause spurious long memory in S&P500 absolute
stock returns. Choi, Yu, and Zivot (2010) claim that long memory in realized
volatility can be explained by the presence of structural breaks. The works
of Bollerslev and Wright (2000) and Mcmillan and Speight (2008) show that
identification of the true long memory volatility dynamics is highly dependent
on the choice of volatility measures. Ohanissian, Russell, and Tsay (2008)
find that volatility in exchange rates returns is a true long memory process.
Wenger, Leschinski, and Sibbertsen (2017) propose that the volatility of ex-
change rates is subject to spurious long memory while Baillie, Cecen, and
Han (2015) and Baillie et al. (2018) claim that the volatility of exchange rates
is consistent with dynamics of self similar processes with true long memory.

The discussion about the nature of long memory in volatility is far from
being over. At the same time, the problem of a correct identification of
a memory structure of financial volatility is crucial in the context of its
predictive modeling. Large forecasting errors due to the use of incorrectly
specified volatility time series models may lead to excessive risk of financial
losses.

The present work seeks to extend the literature by providing a new evi-
dence of the long memory phenomenon in financial volatility in the context of
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temporal aggregation. In the first step, we generalize the up to date theoreti-
cal knowledge about temporal aggregation in long memory time series. Com-
bining both time and frequency domain analyses, we describe the properties
of the autocorrelation, the autocovariance and the spectral density functions
of temporally aggregated ARFIMA processes. We demonstrate that a long
memory property of ARFIMA series is, in theory, invariant with respect to
temporal aggregation. In the next step, we conduct a Monte Carlo simulation
experiment in order to validate the theoretical implications about the effect
of temporal aggregation on long memory processes. We also contribute to
the literature by providing a regression analysis of the numerical experiment
results. In line with the studies of Chambers (1998) and Hwang (2000), the
simulation experiment results show that the semiparametric ARFIMA esti-
mation methods are able to obtain a correct estimate of the long memory
parameter on any level of temporal aggregation. Finally, we use the theo-
retical implications about temporal aggregation in long memory processes to
analyze empirically the long memory property of volatility of the GBP/USD
foreign exchange rates returns at various time scales and contribute to the
recent discussion (Wenger, Leschinski, and Sibbertsen, 2017; Baillie et al.,
2018) about the nature and the source of long memory in financial volatil-
ity. We use a long dataset of the high frequency foreign exchange data for
the seven years from 2010 to 2016 and concentrate our attention on differ-
ent established volatility measures (such as absolute returns, squared returns
and realized volatility). The rescaled range test of Hurst (1951), the mod-
ified rescaled range test of Lo (1991) and the semiparametric methodology
of Geweke and Porter-Hudak (1983) are used to investigate and model the
long memory dynamics of the exchange rate returns volatility on different
levels of temporal aggregation. Based on the empirical results, we discuss
the properties of using the stated volatility proxies in modeling long mem-
ory in volatility and draw a conclusion about the source of long memory in
volatility of the foreign exchange rate returns.

The remainder of the chapter is organized as follows. In Section 1.2, we
present the theoretical framework of long memory processes in the context
of temporal aggregation. Section 1.3 describes the design of the numerical
experiment and the corresponding results. Section 1.4 describes the data
utilized in the empirical analysis. Section 1.5 presents the empirical results.
In Section 1.6, we provide a summary and suggest potential directions of
further research.
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1.2 Theoretical framework

1.2.1 Long memory processes

In this section we observe different definitions of long memory processes.
Following Parzen (1980), we define the concept of long memory thorough the
time domain and the frequency domain time series analysis.

Let us consider {yt; t = 0, 1, 2...} - a discrete time stationary stochastic
process. Also, let γj denote the autocovariance, ρj denote the autocorrela-
tion, f (ω) denote the spectral density of the process yt.

Definition 1.2.1 A stationary process yt with the autocovariance function
γj is a long memory process in the covariance sense if

∞∑
j=−∞

|γj| =∞. (1.1)

In other words, a long memory process has the autocovariance sequence
that is not absolutely summable. It is also possible to define long memory
using a speed of convergence of the autocovariance function towards zero
(Granger and Joyeux, 1980).

Definition 1.2.2 A stationary process yt with the autocovariance function γj
is a long memory process in the covariance sense with a speed of convergence
of order 2d if,

γj = C (d) j2d−1 as j →∞ (1.2)

with d ∈ (0, 0.5) and C (d) is a constant that depends on d.

In the present context, the parameter d is interpreted as a fractional
differencing parameter. Fractional differencing is the essential instrument of
modeling the long range behavior of a time series in such models as ARFIMA
which detailed description will be given later.

Now we shall present the definition of a long memory in the spectral
density sense (Cox et al., 1981).

Definition 1.2.3 A stationary process yt with the spectral density function
f (ω) is a long memory process in the spectral density sense with a power law
of order 2d if f (ω) is bounded above on [δ, π] for every δ > 0 and if

f (ω) = c|ω|−2d as ω → 0, (1.3)

where ω ∈ [−π, π], d ∈ (0, 0.5) and for some 0 < c <∞.
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Again, in the stated definition, d represents the fractional differencing
parameter.

We shall note that, in general, the definitions of a long memory in the
covariance sense and in the spectral density sense are not equivalent. There
are processes which have long memory behavior in the covariance sense but
not in the spectral density sense, and the opposite case also exists. The
non-equivalence of the definitions arises when the fractional differencing pa-
rameter d has negative values −0.5 < d < 0. However, for the values
0 < d < 0.5 of the fractional differencing parameter d, the definitions of a
long memory through the time domain condition and the frequency domain
condition are equivalent. That is why the case 0 < d < 0.5 is of particular
interest in time series analysis in the financial or economic context.

Figure 1.1: Typical autocovariance function of short memory and long mem-
ory processes
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Figure 1.1 shows the graphs of the typical autocovariance functions of
short memory and long memory processes. As we can see, the autocovari-
ance function of the short memory process converges quickly to a zero value
after few lags, with a decay rate that is exponential. On the other hand,
the decay rate of the autocovariance function of the long memory process
with increasing number of lags is hyperbolic and it takes many lags for the
autocovariance function to reach zero.
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1.2.2 ARFIMA model

Autoregressive fractionally integrated moving average (ARFIMA), proposed
by Granger and Joyeux (1980) and Hosking (1981), is a widely used approach
to model long memory in the dynamics of a time series. ARFIMA model is
a generalization of autoregressive integrated moving average (ARIMA) - the
popular linear univariate time series model of Box and Jenkins (1976).

Formally, a standard ARIMA(p, d, q) process yt can be defined as

φ (L) (1− L)d yt = θ (L) εt, (1.4)

where L is the backshift (lag) operator, φ (L) = 1 −
∑p

j=1 φjL
j and θ (L) =

1 +
∑q

j=1 θjL
j are autoregressive and moving average polynomials of orders

p and q respectively, εt is a white noise process with variance σ2 and d is a
differencing parameter that is a non-negative integer.

The family of ARIMA processes can be generalized by permitting the
degree of differencing to take fractional values. Granger and Joyeux (1980)
and Hosking (1981) suggested that non-integer values of the differencing pa-
rameter d can be useful and introduced autoregressive fractionally integrated
moving average (ARFIMA) model.

An ARFIMA(p, d, q) process is given by:

φ (L) (1− L)d yt = θ (L) εt, (1.5)

where −0.5 < d < 0.5.
The fractional differencing operator (1− L)d can be represented in the

following form using the binomial series expansion:

(1− L)d =
∞∑
j=0

Γ (j − d)

Γ (j + 1) Γ (−d)
Lj, (1.6)

where Γ (·) is the gamma function.
ARFIMA model offers a parsimonious way to model a long memory - the

phenomenon of a slowly decaying autocorrelation function of a time series.
The characteristics of an ARFIMA(p, d, q) series depend on the value of the
fractional differencing parameter d. For −0.5 < d < 0.5 the process is sta-
tionary and for 0 < d < 0.5 the process exhibit long memory properties.
In an ARFIMA(p, d, q) model, parameter d describes the long run behav-
ior of the underlying process yt (it describes the autocorrelation structure
of distant observations of the process), whereas autoregressive and moving
average polynomials φ (L) = 1 −

∑p
j=1 φjL

j and θ (L) = 1 +
∑q

j=1 θjL
j de-

scribes the behavior of the series in the short run (and, respectively, capture
the process’s autocorrelation structure for low lags).
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Now we present the spectral density, the autocovariance and the autocor-
relation functions of an ARFIMA(p, d, q) process (the detailed derivations of
the functions can be found in Sowell (1992)).

The spectral density function for an ARFIMA(p, d, q) process is given by:

f (ω) =
σ2

2π

∣∣1− e−iω∣∣−2d

∣∣∣∣ θ (e−iω)

φ (e−iω)

∣∣∣∣2, (1.7)

where ω ∈ [−π, π] and −0.5 < d < 0.5.
The autocovariance function of an ARFIMA(p, d, q) process is given by:

γj = σ2

q∑
l=−q

p∑
h=1

ψ (l) ζhC(d, p+ l − j, φh), (1.8)

where

ψ (l) =

min(q,q+l)∑
k=max(0,l)

θkθk−l (1.9)

ζh =

(
φh

p∏
l=1

(1− φlφh)
∏
m 6=h

(φh − φm)

)−1

(1.10)

and

C(d, j, φ) =
Γ (1− 2d) Γ (d+ j)

Γ (1− d+ j) Γ (1− d) Γ (d)

× [φ2pF (d+ j, 1; 1− d+ j;φ)

+ F (d− j, 1; 1− d− j;φ)− 1],

(1.11)

where F (a, b; c;x) is the Gaussian hypergeometric function (Gradshteyn and
Ryzhik, 2014).

The autocorrelation function of an ARFIMA(p, d, q) process is given by:

ρj =
γj
γ0

=

∑q
l=−q

∑p
h=1 ψ (l) ζhC(d, p+ l − j, φh)∑q

l=−q
∑p

h=1 ψ (l) ζhC1(d, p+ l − j, φh)
, (1.12)

where

C1(d, j, φ) =
Γ (1− 2d)

Γ (1− d) Γ (1− d)

× [φ2pF (d, 1; 1− d;φ)

+ F (d, 1; 1− d;φ)− 1].

(1.13)
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In the absence of autoregressive and moving average parameters (so that
p = 0 and q = 0) we obtain an ARFIMA(0, d, 0) specification that is a special
case of an ARFIMA(p, d, q) model. An ARFIMA(0, d, 0) is called a fractional
white noise process and its spectral density and autocovariance functions take
the following forms:

f (ω) =
σ2

2π

∣∣1− e−iω∣∣−2d
=
σ2

2π

(
2 sin

ω

2

)−2d

, (1.14)

γj = σ2 Γ (1− 2d) Γ (d+ j)

Γ (1− d+ j) Γ (1− d) Γ (d)
, (1.15)

where ω ∈ [−π, π], d ∈ (0, 0.5) and j ≥ 0.
It is also possible to obtain the autocorrelation function of an ARFIMA(0, d, 0)

process:

ρj =
γj
γ0

=
σ2 Γ(1−2d)Γ(d+j)

Γ(1−d+j)Γ(1−d)Γ(d)

σ2 Γ(1−2d)Γ(d)
Γ(1−d)Γ(1−d)Γ(d)

=
Γ (1− d) Γ (j + d)

Γ (d) Γ (j + 1− d)
. (1.16)

Now we shall examine the convergence of the spectral density, the auto-
covariance and the autocorrelation functions of an ARFIMA(0, d, 0) process
for extreme values of parameters ω and j.

f (ω) ≈ σ2

2π
ω−2d as ω → 0, (1.17)

γj ≈
Γ (1− 2d)σ2

Γ (d) Γ (1− d)
j2d−1 as j →∞, (1.18)

ρj ≈
Γ (1− d)

Γ (d)
j2d−1 as j →∞. (1.19)

1.2.3 Estimation of an ARFIMA model

The estimation procedure of an ARFIMA model is not trivial and includes
several approaches. The approaches can be classified into two groups: semi-
parametric and parametric methods. In the methodology of the semipara-
metric methods, it is assumed that the short memory ARMA components of
a time series are relatively less important and the focus is only on estimat-
ing the fractional differencing parameter d. The parametric methods imply
estimating not only the long memory parameter d but also the short run au-
toregressive and moving average components of an ARFIMA(p, d, q) model.
Within the first group of methods, the most popular, usually referred to as
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the GPH method, was proposed by Geweke and Porter-Hudak (1983). In the
latter, the methods proposed by Fox and Taqqu (1986), Haslett and Raftery
(1989) and Sowell (1992), which involve the maximum likelihood estimation
of the model, are the most popular.

In the context of the present work, we are particularly interested in the
semiparametric estimator of Geweke and Porter-Hudak (1983). The GPH
method uses a spectral regression estimator to evaluate the d parameter
without any specifications of the short memory parameters of the series. The
approach makes use of the fact that the low frequency dynamics of a long
memory process are parameterized by the fractional differencing parameter
d. So, the GPH semiparametric method obtains an estimate of the memory
parameter d for a long memory ARFIMA process yt.

The periodogram for yt is defined as the squared modulus of the discrete-
time Fourier transformation of the process:

Iy (ωs) =
1

2πn

∣∣∣∣∣
n∑
t=1

yte
−itωs

∣∣∣∣∣
2

, (1.20)

where ωs = 2πs
n

and s = 1, ...,m;m < n and n is a sample size.
The GPH method is based on the regression equation using the peri-

odogram function as an estimate of the spectral density. The estimate of d
is obtained from the following regression model:

log (Iy (ωs)) = c− d log
∣∣1− e−iωs

∣∣2 + es, (1.21)

where c is a constant and es is the error term which is asymptotically
independent identically distributed (i.i.d.) across harmonic frequencies.

Then, setting xs = log |1− e−iωs|, d can be estimated by applying an
ordinary least squares regression to Equation 1.21 which gives:

d̂ = 0.5

∑m
s=1 xs log (Iy (ωs))∑m

s=1 x
2
s

. (1.22)

The choice of m, the number of Fourier frequencies included in the re-
gression, is essential to the estimate of the parameter d. The regression slope
estimate is an estimate of the slope of the spectral density function of the
series in the vicinity of the zero frequency. If m is small, then the slope is
estimated from a small sample, and if a large m is chosen, then the medium
and high frequency components of the spectrum will also be included in the
regression which could contaminate the estimate. Often, by default, the value
of m = n0.5 is chosen.
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1.2.4 Temporal aggregation

In economics, the ways in which variables aggregate could take three dif-
ferent forms: 1) aggregation of a stock variable through time or systematic
sampling, 2) aggregation of a flow variable or temporal aggregation, 3) cross-
sectional aggregation or contemporaneous. In the context of the present
work, we are particularly interested in temporal aggregation.

Assume that a process is observed at a lower frequency than it is generated
at. We denote η as a sampling interval or level of aggregation. Hence, if the
dynamics of the true underlying discrete time process yDt take place at every
1/η period, then the behavior of the observed process yt takes place at every
unit moment of time. As we can see, the level of aggregation η is the number
of times the dynamics of the true underlying process yDt take place between
observations. Under the assumption that the true process is observed at a
lower frequency, η is an integer strictly greater than 1. In case η = 1, the
observed process takes place at the same frequency as the true one and both
time series are equivalent.

If the true underlying process yDt is temporally aggregated then its values
are aggregated between sampling intervals. The formal definition is given as
follows: a discrete-time temporally aggregated process yDAt , whose true pro-

cess yDt has 1/η dynamic periods, consists of
{
yDAt =

∑η−1
k=0 y

D
t−(k/η) ; t = 1, 2, 3...

}
.

The procedure of temporal aggregation with the value of η = 5 is demon-
strated in the Figure 1.2. The temporally aggregated process yDAt is gener-
ated by summing every 5 values of the true underlying process yDt .

Figure 1.2: Temporal aggregation
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yDA
1 yDA
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We shall also give a financial time series example. If the true process is the
returns series that is generated every business day, then temporal aggregation
in intervals of 5 days allows to obtain the weekly returns series. The example
can be illustrated formally. Assume that Pt is a price process where t =
1, 2, 3... represent business weeks. The daily continuously compounded rate
of return is given by:

24



rDt = ln

(
Pt

Pt−1/5

)
. (1.23)

Then, the weekly continuously compounded rate of return is given by:

rDAt = ln

(
Pt
Pt−1

)
. (1.24)

The equation above can be expanded as:

rDAt = ln

[(
Pt

Pt−1/5

)(
Pt−1/5

Pt−2/5

)(
Pt−2/5

Pt−3/5

)(
Pt−3/5

Pt−4/5

)(
Pt−4/5

Pt−1

)]
, (1.25)

and so

rDAt = ln

(
Pt

Pt−1/5

)
+ ln

(
Pt−1/5

Pt−2/5

)
+ ln

(
Pt−2/5

Pt−3/5

)
+ ln

(
Pt−3/5

Pt−4/5

)
+ ln

(
Pt−4/5

Pt−1

)
= rDt + rDt−1/5 + rDt−2/5 + rDt−3/5 + rDt−4/5.

(1.26)

Hence, the weekly returns series is a temporally aggregated daily returns
series with the level of aggregation of η = 5.

1.2.5 Temporal aggregation in ARFIMA processes

In this section we investigate the effect of temporal aggregation on long mem-
ory processes following ARFIMA model. Firstly, we present the spectral den-
sity, the autocovariance and the autocorrelation functions of the aggregated
ARFIMA(0, d, 0) processes and compare them with those of not aggregated
series in order to investigate the effect of aggregation on a system’s response
to innovation (we borrow from Chambers, 1998 and Hwang, 2000). Then we
observe the order structure of the temporally aggregated ARFIMA(0, d, 0)
processes.

Following the notations we introduced earlier, if the true process yDt has
1/η dynamic periods, its ARFIMA(0, d, 0) specification is given by:

(
1− L1/η

)d
yDt = εt, t = 1, 1 + 1/η, 1 + 2/η, 1 + 3/η, ..., (1.27)

where εt is a white noise process with variance σ2.
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Theorem 1.2.1 (Temporally aggregated ARFIMA(0,d,0) process) If
we sum a discrete true ARFIMA(0, d, 0) process yDt up to (η − 1) /η lags, we
obtain a discrete temporally aggregated ARFIMA(0, d, 0) process yDAt :

yDAt =

η−1∑
j=0

yDt−(j/η)

=
(
1 + L1/η + L2/η+, ...,+L(η−1)/η

) (
1− L1/η

)−d
εt

= (1− L)
(
1− L1/η

)−d−1
εt

=

η−1∑
j=0

∞∑
k=0

Γ (k + d)

Γ (d) Γ (k + 1)
εt−(k/η)−(j/η), t = 1, 2, 3, ....

(1.28)

The spectral density fDA (ω), the autocovariance γDAj and the autocorrelation
ρDAj functions are given by: 1

fDA (ω) =
σ2

2π

(
2 sin

ω

2η

)−2(d+1) (
2 sin

ω

2

)2

≈ σ2

2π
η2d+2ω−2d as ω → 0,

(1.29)

γDAj =
σ2Γ (1− 2d)

2 (1 + 2d) Γ (1 + d) Γ (1− d)
×
[

Γ (1 + jη + d+ η)

Γ (jη − d+ η)

+
Γ (1 + jη + d− η)

Γ (jη − d− η)
− 2

Γ (1 + jη + d)

Γ (jη − d)

]
≈ σ2Γ (1− 2d)

2 (1 + 2d) Γ (1 + d) Γ (1− d)

× η1+2d
[
(j + 1)1+2d + (j − 1)1+2d − 2j1+2d

]
for large η

≈ σ2Γ (1− 2d)

Γ (d) Γ (1− d)
η1+2dj2d−1 as j →∞,

(1.30)

1The expression for the spectral density fDA (ω) in Theorem 1.2.1 does not account
for the aliasing effect. See Section 1.7.1 (Appendix) for the expression for the fDA (ω)
that accounts for the aliasing effect provided by Souza (2005) and subsequent discussion.
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ρDAj =

Γ(1+jη+d+η)
Γ(jη−d+η)

+ Γ(1+jη+d−η)
Γ(jη−d−η)

− 2Γ(1+jη+d)
Γ(jη−d)

2Γ(1+d+η)
Γ(−d+η)

− 2Γ(1+d)
Γ(−d)

≈
η1+2d

[
(j + 1)1+2d + (j − 1)1+2d − 2j1+2d

]
2η1+2d − 2Γ(1+d)

Γ(−d)

for large η

≈ η1+2dd (1 + 2d)

η1+2d − Γ(1+d)
Γ(−d)

j2d−1 as j →∞,

(1.31)

where σ2 is a variance of a white noise process εt, ω is a frequency, d is
a fractional differencing parameter, j is a lag, η is a sampling interval and
ω ∈ [−π, π], d ∈ (0, 0.5), j ≥ 0, η ≥ 1.

The proof of the stated theorem can be found in Chambers (1998) or
Hwang (2000).

Now we shall compare the properties of the spectral density, the autoco-
variance and the autocorrelation functions of temporally aggregated process
with those of the true process. To do that, we compare Equations 1.17 -
1.19 with Equations 1.29 - 1.31 of Theorem 1.2.1. First of all, as we can see,
the decay rate of the spectral density function of the temporally aggregated
ARFIMA(0, d, 0) process at low frequencies, −2d, is the same as that of the
true ARFIMA(0, d, 0) process. The decay rate of the autocovariance and the
autocorrelation functions of temporally aggregated ARFIMA(0, d, 0) series
for large lags, j2d−1, is also the same as the decay rate of those functions for
the true disaggregated series.

However, the value of the autocovariance and the autocorrelation func-
tions of temporally aggregated ARFIMA(0, d, 0) process is always larger
than the value of those functions of the true ARFIMA(0, d, 0) process for
0 < d < 0.5. To see why:

γDAj
γDj

=

σ2Γ(1−2d)
Γ(d)Γ(1−d)

η1+2dj2d−1

σ2 Γ(1−2d)
Γ(d)Γ(1−d)

j2d−1
= η1+2d > 1, (1.32)

as η1+2d is always larger than 1 for positive integer η > 1 and 0 < d < 0.5.
In case of the autocorrelation function:

ρDAj
ρDj

=

η1+2dd(1+2d)

η1+2d−Γ(1+d)
Γ(−d)

j2d−1

Γ(1−d)
Γ(d)

j2d−1
=

η1+2dd(1+2d)

η1+2d−Γ(1+d)
Γ(−d)

Γ(1−d)
Γ(d)

> 1, (1.33)

27



as the denominator is always smaller than the numerator for for positive
integer η > 1 and 0 < d < 0.5. Figure 1.3 illustrates this implication and
shows the graphs of the autocorrelation function of temporally aggregated
ARFIMA(0, d, 0) process for the sampling intervals of η = 1, 2, 5, 10, 20, the
value of d = 0.2 and for the lag values of 1 ≤ j ≤ 10. Moreover, as mentioned
by Hwang (2000), the major changes in the levels of the autocorrelation
function of temporally aggregated ARFIMA(0, d, 0) processes occur at short
lags.

Figure 1.3: Autocorrelation function of the temporally aggregated ARFIMA
process for different sampling intervals (d = 0.2)
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Now we observe the order structure of the temporally aggregated ARFIMA
processes. We follow Baillie, Nijman, and Tschernig (1994), Tschernig et al.
(1995) and Man and Tiao (2006) in our explanations. Recall that if the
true process yDt has 1/η dynamic periods, its ARFIMA(0, d, 0) specification
is given by:

(
1− L1/η

)d
yDt = εt, t = 1, 1 + 1/η, 1 + 2/η, 1 + 3/η, ..., (1.34)

the discrete temporally aggregated ARFIMA(0, d, 0) process yDAt is then
given by:
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yDAt =

η−1∑
j=0

yDt−(j/η) =

= yDt + yDt−(1/η) + ...+ yDt−((η−1)/η)

=
(
1 + L1/η + L2/η+, ...,+L(η−1)/η

)
yDt

=
(1− L)

(1− L1/η)
yDt , t = 1, 2, 3....

(1.35)

Then, according to Baillie, Nijman, and Tschernig (1994), Tschernig et al.
(1995) and Man and Tiao (2006), to preserve the long memory characteristics
for the aggregates, it is possible to write:

(
1− L1/η

)d (1− L)

(1− L1/η)

(1− L)d

(1− L1/η)
d
yDt =

(1− L)d+1

(1− L1/η)
d+1

εt. (1.36)

As Tschernig et al. (1995) and Man and Tiao (2006) claim, from the above
we can notice that the moving average process εt is of infinite order if d 6= 0

because the power series expansion of
(
1 + L1/η + L2/η+, ...,+L(η−1)/η

)d
is

infinite for any noninteger d (in other words, for noninteger d, the RHS of
Equation 1.36 consists of non-terminating terms in L and hence does not
have a finite moving average structure in the aggregate time scale). Hence,
it is possible to generalize and conclude that any ARFIMA(p, d, q) process
is not closed with respect to temporal aggregation since its aggregated form
does not admit a finite moving average structure. In other words, as a re-
sult of temporal aggregation, ARFIMA(p, d, q) process turns out to be an
ARFIMA(p, d,∞).

Overall, as the decay rate of the spectral density function at low frequen-
cies and the decay rate of the autocorrelation function at large lags are not
affected by temporal aggregation, the long memory property of an ARFIMA
process is invariant with respect to temporal aggregation. In other words,
the long memory parameter d of an ARFIMA series is irrelevant to temporal
aggregation and remains unchanged as a result of the latter. However, the
autocorrelation function at short lags is affected by temporal aggregation
which implies that the short run components of an ARFIMA process change
as a result of the aggregation.

The findings of Chambers (1998) and Hwang (2000) indicate that, as
the short run components of an ARFIMA series are affected by temporal
aggregation, the fully parametric maximum likelihood estimates of the pa-
rameter d in temporally aggregated ARFIMA processes, if the changes in
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the short run specification of the model are not considered, are biased and
incorrect. However, as Chambers (1998) and Hwang (2000) also show, the
correct estimate of the true long memory parameter d in temporally aggre-
gated ARFIMA processes can be obtained by the semiparametric method of
Geweke and Porter-Hudak (1983). Recall that the GPH method concentrates
solely on the low frequency properties of the spectral density function which
are not affected by temporal aggregation. In the next section, we perform
a numerical experiment to validate the stated implications about estimating
the true long memory parameter in temporally aggregated ARFIMA series
by the semiparametric GPH approach.
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1.3 Simulation studies

In this section, we conduct Monte Carlo simulation analysis to investigate
the effect of temporal aggregation on the ARFIMA(0, d, 0) processes. The
main goal of the simulation analysis is to validate the theoretical implications
about estimating the true long memory parameter of ARFIMA processes at
various levels of temporal aggregation by the semiparametric approach of
Geweke and Porter-Hudak (1983). Recall that ARFIMA(0, d, 0) model is
given by:

(1− L)d yt = εt, (1.37)

where εt is a white noise process.
The numerical experiment design consists of simulating 50 replications

with series of 100000 observations from ARFIMA(0, d, 0) model with the
values of the long memory parameter d = 0.2, d = 0.3 and d = 0.4. The three
different values of the d parameter are chosen in order to obtain the robust
conclusion, that does not depend on the particular value of d, about the
behavior of the memory parameter on different frequencies. The simulated
ARFIMA(0, d, 0) series is then temporally aggregated at different levels η =
2, 5, 10, 20 and 50 (recall that we denote η as a level of aggregation). The
sample sizes of the aggregated data within each replication are: 50000, 20000,
10000, 5000 and 2000 observations for the aggregation levels η = 2, 5, 10, 20
and 50 respectively.

Theoretical findings in the previous section imply that the true long mem-
ory parameter d in temporally aggregated ARFIMA processes can be cor-
rectly estimated by the semiparametric methodology of Geweke and Porter-
Hudak (1983) as the decay rate of the spectral density function at low fre-
quencies is not affected by temporal aggregation. Hence, we estimate the
long memory parameter d in the ARFIMA(0, d, 0) model by applying the
semiparametric GPH approach. The number of frequencies used in the GPH
regression is chosen to be N0.5, where N is a sample size. The mean and
the standard deviation of the parameter d estimates over the 50 replications
are reported. For the temporally aggregated ARFIMA(0, d, 0) process, the
estimation results using the GPH method are reported in Table 1.1.

As we can see in Table 1.1, for the disaggregated series, the mean of the
estimated d parameters over the 50 replications is very close to the true value
of the long memory parameter. As for the temporally aggregated series,
we can see that the mean value of the d parameter estimates is relatively
stable for all sampling intervals and all values of the true d. However, the
standard deviation of the d parameter estimates increases significantly as
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the η increases (for example, in case of the series with d = 0.3, the standard
deviation of the d estimates for the level of aggregation η = 50 is 3 times
larger than the standard deviation of the d estimates for the disaggregated
series). Such increase in the standard deviation of the d parameter estimates
can be explained by decrease in the sample size as the η increases. Indeed,
the sample size for the aggregation level η = 50 is 50 times smaller than
the sample size for the disaggregated series, which impacts the regression
estimate of the fractional integration parameter.

Table 1.1: Semiparametric estimation of Geweke and Porter-Hudak (1983)
of temporally aggregated ARFIMA(0, d, 0) series

d η = 1 η = 2 η = 5 η = 10 η = 20 η = 50

0.2 0.208 0.210 0.218 0.218 0.207 0.204
(0.041) (0.050) (0.060) (0.077) (0.088) (0.114)

0.3 0.304 0.301 0.297 0.303 0.295 0.295
(0.030) (0.037) (0.053) (0.057) (0.066) (0.090)

0.4 0.409 0.413 0.411 0.418 0.425 0.426
(0.034) (0.038) (0.051) (0.069) (0.070) (0.078)

Obs. 100000 50000 20000 10000 5000 2000

This table presents the average value and standard deviation (in parenthesis) of estimated long memory

parameter d over the 50 replications and the corresponding sample sizes of the aggregated data in each

replication.

On the next step, we contribute to the previous studies (such as Hwang,
2000) by also providing a regression analysis of the simulation experiment
results. The aim is to formally test the hypothesis of statistical equivalence of
the means of the estimated long memory parameters d across all the observed
levels of aggregation against the alternative hypothesis that the means of the
d estimates are statistically different across the aggregation levels. Formally,
we test the null hypothesis

H0 : µ1 = µ2 = µ5 = µ10 = µ20 = µ50

against the alternative

H1 : µ1 6= µ2 6= µ5 6= µ10 6= µ20 6= µ50,

where µ1, µ2, µ5, µ10, µ20, µ50 are the means of the estimated long memory
parameters d across the aggregation levels η = 1, 2, 5, 10, 20, 50.

Firstly, we run a simple OLS linear regression where we regress the esti-
mated parameter d on the categorical variable which represents the particular
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aggregation level. Let i denote the ith of I = 300 estimates of d in the sample.
The regression equation can be formally written as:

di = γ + η2iβ2 + η5iβ3 + η10iβ4 + η20iβ5 + η50iβ6 + ui, (1.38)

where di is the estimated value of the long memory parameter; γ is a con-
stant; η2i, η5i, η10i, η20i, η50i are dummy variables representing the level of
aggregation η = 2, 5, 10, 20, 50 respectively and correspondingly taking value
one or zero; ui is the error term and i = 1, ..., 300.

Secondly, we also run the same linear regression as stated above but
with standard errors clustered by the replication number to account for the
positive correlation between the d estimates at different aggregation levels
within each replication. Let r denote the rth of R = 50 clusters corresponding
to 50 replications. Then, the regression equation is given by:

djr = γ + η2jrβ2 + η5jrβ3 + η10jrβ4 + η20jrβ5 + η50jrβ6 + ujr, (1.39)

where djr is the estimated value of the long memory parameter; γ is a con-
stant; η2jr, η5jr, η10jr, η20jr, η50jr are dummy variables representing the level
of aggregation η = 2, 5, 10, 20, 50 respectively and correspondingly taking
value one or zero; ujr is the error term; j = 1, ..., 6 and r = 1, ..., 50.

In the stated regression models, the F -test of joint significance of the
regression coefficients is also a test of our null hypothesis of statistical equiv-
alence of the means of the estimated long memory parameters d across the
levels of aggregation. The F -statistics with the corresponding p-values for
the simple OLS regression and for the OLS regression with clustered standard
errors applied to the experiment results with the estimates of d obtained by
the GPH method are shown in Table 1.2.

Table 1.2: Regression analysis of the GPH estimation of temporally aggre-
gated ARFIMA(0, d, 0) series

d F -stat(simple) p-value(simple) F -stat(clustered) p-value(clustered)

0.2 0.32 0.9023 1.13 0.3558

0.3 0.63 0.6772 1.82 0.1265

0.4 0.78 0.5662 1.23 0.3107

This table presents the F -statistics with the corresponding p-values for the simple OLS and the clustered

OLS linear regressions applied to the experiment results with the simulated data.

As we can see in Table 1.2 for the GPH estimation of the temporally
aggregated series, the null hypothesis of statistical equivalence of the means
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of the estimated long memory parameters d across the levels of aggregation
is not rejected for the experiments with the true d = 0.2, d = 0.3 and d = 0.4
in both simple and clustered regression models.

Overall, the results of our Monte Carlo simulation experiment with the
ARFIMA(0, d, 0) series coincide with the results obtained by Chambers (1998)
and Hwang (2000) for much smaller sample sizes. The result is consistent
with the theoretical implications that temporal aggregation does not affect
the long memory properties of the series and that the semiparametric esti-
mation procedure of Geweke and Porter-Hudak (1983) is able to obtain a
correct estimate of the true d parameter on any level of temporal aggrega-
tion. We proceed with the empirical analysis of financial volatility on the
foreign exchange market.
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1.4 Data

1.4.1 Preparation and volatility measures

The empirical analysis in the present work focuses on the long-term depen-
dence in the volatility of returns on the foreign exchange market on different
levels of temporal aggregation.

The raw dataset consists of the high frequency tick-by-tick spot exchange
rates quotation data with fractional pip spreads in millisecond resolution
for the pound sterling and the US dollar (GBP/USD) currency pair over a
sample period from January 4, 2010 to December 30, 2016. The dataset
consists of approximately 900 million observations of tick-by-tick quotations
over the full sample period of seven years. We perform automated filtering
to avoid data errors which raw intraday high frequency data is subject to. A
data error is simply defined as a price quotation that does not reflect the real
situation on the market. Such errors include, for example, price quotation
that is significantly different from the two neighboring ticks, decimal error,
missing bid or ask value, incorrect time stamp, etc.

From the raw tick-by-tick quotation data that is irregularly spaced we
construct a natural evenly spaced grid of prices following methodology that
was proposed by Dacorogna et al. (1993) and Wasserfallen and Zimmermann
(1985). Let N be a number of raw tick prices, pt(j), j = 0, ..., N , observed
during a trading day. Then, t (0) , ..., t (N) are moments of time at which tick
prices pt(j) are observed. We refer to a tick price pt(j) as a mid-quote at time
t (j):

pt(j) =
p (bid)t(j) + p (ask)t(j)

2

We denote τ as any arbitrary point in the time interval [t (0) , t (N)).
Then, the artificial continuous time process is

p (τ) = pt(j), τ ∈ [t (j) , t (j + 1))

So, when any price grid point p (τ) falls between two adjacent randomly
spaced ticks pt(j) and pt(j+1), we choose price p (τ) to be equal to pt(j). This is
the idea of the previous-tick method to construct an equidistant grid of prices
from raw non-equidistant tick-by-tick data. The artificial continuous time
price process allows to construct evenly spaced intraday and non-intraday
returns for any frequency, using the definition of returns as the first differ-
ence of logarithmic prices and temporal aggregation technique. In order to
avoid complicating the inference by the slower trading activity on weekends
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and holiday periods, we exclude from the data sample all the price quota-
tions from Saturday 00:00:00 GMT to Sunday 23:59:59 GMT and some other
inactive days.

In the present work, we analyze volatility of the GBP/USD exchange
rate returns sampled at the following time scales: 30 minutes, 1 hour, 2
hours, 3 hours, 4 hours, 1 day. The choice of the analyzed time scales is
motivated by the previous literature (such as Mcmillan and Speight, 2008)
and computational resources required to estimate long memory models for
the stated time series. For volatility measures, we use absolute and squared
returns which are widely used in the literature as the most common proxies
of the conditional variability of financial returns (see, e.g, Andersen and
Bollerslev, 1997a; Bollerslev and Wright, 2000; etc). We also use the realized
measure of returns volatility proposed by Andersen et al. (2001). The returns
volatility measures used the study are discussed below.

Assume that the logarithmic price p(t) of a liquid asset follows the stan-
dard continuous time process

dp(t) = µ(t) dt+ σ(t) dW (t), (1.40)

where W (t) is a standard Brownian motion, µ(t) is an instantaneous condi-
tional mean and σ(t) is an instantaneous conditional volatility of the process
which is assumed to follow a long memory dynamics with the fractional pa-
rameter d (0 < d < 0.5).2

The integrated volatility associated with day t, for this diffusion process,
is the integral of the instantaneous volatility over the one day interval (t −
1d; t), where a full trading day is represented by the time interval 1d,

σ
(d)
t =

( ∫ t

t−1d

σ2(ω)dω

)1/2

. (1.41)

As demonstrated by Rossi and De Magistris (2014), the integrated volatil-
ity is also a long memory process and characterized by the same order of
fractional differencing d as the instantaneous volatility.

As firstly proposed by Merton (1980) and then by Andersen et al. (2001),
the sum of intraday squared returns can be used to approximate the inte-
grated volatility σ

(d)
t to an arbitrary precision. The nonparametric estimator

2For example, the instantaneous volatility can follow the fractional Ornstein-Uhlenbeck
process of Comte and Renault (1998):

d lnσ2(t) = −k lnσ2(t)dt+ γdWd(t),

where k > 0 is the drift parameter, γ > 0 and Wd(t) is the fractional Brownian motion.
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of the integrated (actual) volatility based on the sum of intraday squared re-
turns is called realized volatility. Following Andersen et al. (2001) and Corsi
(2009), the realized volatility over a time interval of one day can be defined
as

RV
(d)
t =

√√√√M−1∑
j=0

r2
t−j∆, (1.42)

where ∆ = 1d
M

(1d indicates one trading day; M indicates the number of
intraday periods) and rt−j∆ = p(t−j∆)−p(t−(j+1)∆) defines continuously
compounded ∆-frequency returns, that is, intraday returns sampled at time
interval ∆ (the subscript t indexes the day, while j indexes the time within
the day t).

In other words, realized volatility over a time interval of one day is the
square root of the sum of squared high frequency intraday returns. In the
similar manner to daily return, realized volatility can be constructed for any
arbitrary return time scale. Under certain assumptions, realized volatility is
an unbiased volatility estimator and, as the sampling frequency ∆ increases,
the realized volatility provides a consistent nonparametric measure of the in-
tegrated volatility of returns over the fixed time interval (see Andersen et al.
(2003) and Corsi (2009) for details). Rossi and De Magistris (2014) also show
that realized volatility has the same long memory dynamics as the integrated
volatility and the instantaneous volatility with the equal value of the differ-
encing parameter d. Moreover, in absence of market microstructure noise,
the spectral density of realized volatility converges to that of the integrated
volatility as the sampling frequency ∆ increases.

However, in practice, realized measure of returns volatility suffers from
the market microstructure noise bias if sampling frequency ∆ of squared
returns is too high (Andersen et al., 2001). For the foreign exchange market,
for the purpose of constructing realized volatility, it is generally accepted in
the literature that returns sampled at 5 minutes frequency provide an optimal
trade off between the precision of volatility estimator and bias induced by
the market microstructure noise (see, e.g., Barndorff-Nielsen and Shephard,
2002; Andersen et al., 2003; etc). Hence, in the present work, we use 5
minutes returns to construct realized volatility measures for the 30 minutes,
1 hour, 2 hours, 3 hours, 4 hours and daily returns.

For the purpose of comparison, we also apply the more traditional volatil-
ity proxies than realized volatility, such as absolute and squared returns. It is
important to mention the differences between realized volatility and absolute
or squared returns as volatility measures. Absolute and squared returns are
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considered as proxies for the latent conditional volatility and are typically
contaminated by substantial measurement error which dwarfs the variation
in the actual volatility process. On the contrary, realized volatility, as an
estimate of the integrated volatility, can be treated as observable variable
rather than latent. Moreover, under general conditions, realized volatility is
approximately free of measurement error (see Andersen et al., 2001; Hansen,
Huang, and Shek, 2012).

1.4.2 Descriptive statistics and intraday periodicity

Now we present the summary of the descriptive statistics of the GBP/USD
exchange rate returns series for all the observed time resolutions (30 minutes,
1 hour, 2 hours, 3 hours, 4 hours, 1 day) and for the 5 minutes returns used
to calculate realized volatility. Table 1.3 reports the descriptive statistics for
the returns for different frequencies: number of observations, mean, stan-
dard deviation, skewness, kurtosis and the Ljung-Box (Ljung and Box, 1978)
portmanteau tests statistics for up to 100-order and up to 1000-order serial
correlation.

Table 1.3: Descriptive statistics

Frequency Obs. Mean Std Dev Skewness Kurtosis Q(100) Q(1000)

5 min 518370 -5.15e-07 0.0003667 -6.479783 961.5511 4754.9118*** 6839.0358***
30 min 86395 -3.10e-06 0.0008268 -1.444307 78.07625 351.8650*** 1767.0417***
1 hour 43197 -6.18e-06 0.0011752 -3.091013 166.1308 256.0069*** 1416.6112***
2 hours 21598 -0.0000123 0.0016712 -3.640864 149.6781 241.8622*** 1338.1674***
3 hours 14399 -0.0000185 0.0020211 -3.063773 107.0523 199.8560*** 1171.1478***
4 hours 10799 -0.0000245 0.0023634 -3.589248 127.8814 197.734*** 1158.4292***
1 day 1799 -0.0001481 0.0055295 -1.00379 13.22705 93.0122 754.7189

The table reports descriptive statistics for the time series of the GBP/USD returns for different frequencies: number of

observations, mean, standard deviation, skewness, kurtosis and the Ljung-Box portmanteau test Q-statistics for up to

100-lags and 1000-lags serial correlation. The sample period is from January 4, 2010 to December 30, 2016. ***, ** and

* indicate statistical significance at the 1%, 5% and 10% levels respectively.

As we can see, the mean of the returns is approximately zero for all the
observed time resolutions. The standard deviation of the returns increases
as the frequency of observation becomes lower. It is easy to notice that
the standard deviation does not increase in proportion to the square root
of the sampling frequency,

√
η, indicating the presence of serial correlation

in the returns distribution. For all the observed frequencies, the returns are
skewed and display large kurtosis indicating that the returns distribution
is ”fat tailed” and cannot be considered as normal. However, as the level
of aggregation increases, the returns distribution becomes less skewed and
leptokurtic and looks more and more like a normal distribution. The standard
Ljung-Box portmanteau test indicates the presence of serial correlation in
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the returns for up to 100 lags and for up to 1000 lags for all the frequencies
except 1 day. In general, the described properties of the GBP/USD exchange
rate returns distribution are consistent with the stylized facts of financial
assets returns distribution documented in the literature (see, e.g., Cont, 2001;
Christoffersen, 2012).

In order to explore the intraday periodicity in the GBP/USD returns
series, we consider the mean properties, the autocorrelation and the spectral
density structure of the returns processes. Figure 1.4 shows the plots of the
mean return and the mean absolute return for each of the 48 intraday 30-
min intervals. Clearly, the mean return for each 30-min intraday interval
is concentrated around zero and does not demonstrate any kind of periodic
pattern over the trading day cycle. However, if we observe the mean absolute
return for each 30-min intraday interval, it is possible to notice a kind of ”M-
shape” intraday pattern associated with a cyclical behavior of the absolute
returns during a trading day. Such a form of intraday seasonality can be
explained by the properties of the functioning of the foreign exchange market.
As the market is open 24 hours, the observed periodic cycles of high and low
mean absolute returns are caused by the functioning of various exchanges
around the world, the peak of business activity of which falls at different
hours of Greenwich Mean Time (GMT). For example, the trading session in
London (where the majority of all transactions with the British pound takes
place) opens at 8:00 GMT and closes at 17:00 GMT. The intraday period
from 8:00 GMT to 17:00 GMT corresponds to the period between the 16th
and the 34th 30-min intervals during a day. The graph of the mean absolute
returns between the 16th and the 34th 30-min intervals has a ”U-shape”
pattern indicating relatively high absolute returns during the first and the
last hours of a trading session in London and relatively low absolute returns
in the midday.

Figure 1.5 shows the correlograms of GBP/USD 30-min returns, squared
returns and absolute returns. The maximum number of lags under con-
sideration is 480 that corresponds to 10 trading days. As we can see, the
autocorrelation function of the returns is concentrated around zero and does
not exhibit any kind of periodic behavior. The periodic behavior of the auto-
correlation function of the squared returns is not clearly observable because
the autocorrelations at high lags are relatively small. However, the auto-
correlation function of the absolute returns has a clear cyclical dynamics
demonstrating the ”U-shape” patterns with peaks at every 48 interval that
corresponds to the periodicity in the limits of 1 day. We should note that
the pronounced ”U-shape” pattern in the dynamics of the autocorrelation
function of the absolute intraday returns of financial assets is a well known
phenomena and widely documented in the literature (see, e.g., Andersen and
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Bollerslev, 1997b; McMillan and Speight, 2004; Baillie, Cecen, and Han,
2015).

We supplement the preceding investigation of the intraday periodicity in
the data with the analysis of the returns processes in the frequency domain.
Figure 1.6 shows the periodograms of GBP/USD 30-min returns, squared
returns and absolute returns.3 The goal of the analysis is to identify the im-
portant frequencies (and, consequently, periods) in the observed series. If a
certain frequency is important in explaining the variation of a series, the pe-
riodogram of the series at this frequency will exhibit a clear dominant spike.
So, the periodogram of the returns does not exhibit any dominant spikes
indicating the absence of a cyclical behavior in the series of the returns.
However, both the periodogram of the squared returns and the periodogram
of the absolute returns reveal two dominant spikes. The first dominant spike
occurs at the origin of the function indicating the potential presence of the
long memory dynamics in the series of the absolute and squared returns. The
second dominant spike corresponds to a frequency of 0.02083333. The period
for this frequency value is equal to 1/0.02083333 = 48. This indicates that
the series of the absolute and squared returns contain a periodic component
with a period of 48 30-min intervals, in other words, the series contain daily
periodic component. Notice that the frequency domain analysis allows to
precisely investigate the cyclical behavior of the series even if the periodic-
ity is not directly observable in the time domain (as is the case with the
autocorrelation function of the squared returns).

Although we report here the detailed analysis of the intraday periodicity
of only 30-min returns data, the same seasonal dynamics is present in the
intraday data for all the observed time scales (such as 30 minutes, 1 hour, 2
hours, 3 hours, 4 hours).

As we can see, the periodic component strongly affects the autocorrelation
functions of the intraday absolute and squared returns. This fact significantly
complicates the investigation of the long memory in the series because the
observed periodicity makes it impossible to clearly identify the decay rate
of the autocorrelation function of the processes. Also, the standard long
memory time series models (such as ARFIMA) are not designed to capture
such periodic patterns in the process dynamics. Thus, ignoring the periodic
behavior in the series will result in a distortion in the long memory parameter
estimates.

3We use the Fast Fourier Transform (FFT) approach to obtain the spectral density
function of the processes and construct the periodograms. The FFT algorithm is imple-
mented in most of statistical packages and allows to rapidly compute the Discrete Fourier
Transform (DFT) of a sequence. The detailed description of the algorithm can be found
in Cooley and Tukey (1965).

40



There are several approaches which allow to model and remove the strong
intraday periodicity in the high frequency financial data. After some prelim-
inary analysis, we chose the approach suggested by Andersen and Bollerslev
(1997b) that involves standardizing the series by its mean absolute value for
each particular intraday time interval. The stated approach proved its supe-
riority and simplicity in removing intraday periodicities in comparison with
other methods.4. The periodicity adjusted returns are given by:

rτ,n = Rτ,n/|R|n, (1.43)

where |R|n = T−1
∑

τ |Rτ,n| and Rτ,n is a raw return over the intraday interval
n on a certain day τ , T is the total number of trading days in the sample.

Hence, we use the stated approach to standardize the intraday returns
for all the observed time resolutions in order to remove the strong intraday
periodicity. Figure 1.7 shows the correlogram of the periodicity adjusted
GBP/USD 30-min returns as well as squared and absolute periodicity ad-
justed 30-min returns. As we can see, the autocorrelation function of the
periodicity adjusted returns is concentrated around zero and its shape has
not changed significantly after the standardizing procedure. However, if we
observe the correlograms of the squared and absolute periodicity adjusted
returns, we can notice that they do not exhibit any kind of periodic behav-
ior indicating that the used approach is effective in removing the intraday
periodicity in the data. Moreover, the slow hyperbolic decay rate of the
autocorrelation function is now clearly observable for the absolute adjusted
returns.

Let us now observe the properties of the adjusted returns in the frequency
domain. Figure 1.8 shows the periodograms of the periodicity adjusted
GBP/USD 30-min returns, squared returns and absolute returns. Clearly,
the periodograms of the squared and absolute adjusted returns have the only
dominant peak at the origin that indicates not only the absence of any intra-
day periodic dynamics in the series but also the presence of the long-range
dependence in the series of the squared and absolute periodicity adjusted
returns. This fact provides an additional evidence that the approach of stan-
dardizing the series by its mean absolute value for each particular intraday
time interval is an effective tool in removing the intraday periodicity in the
high frequency financial data. The pronounced approach was also successful
in removing the intraday periodicity in returns for all other time resolutions
under consideration (although here we only present the results of removing

4For a comparative analysis of the various methods of removing the intraday period-
icity in the high frequency financial data, including the Flexible Fourier Form approach
of Andersen and Bollerslev (1997a), see McMillan and Speight (2004)
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the intraday periodicity for 30 min returns series).
Also, to prevent realized volatility of the analyzed intraday returns (such

as 30 minutes, 1 hour, 2 hours, 3 hours, 4 hours returns) from suffering
from intraday periodicity, we use periodicity adjusted 5 minutes returns to
calculate realized volatility for the intraday returns under consideration. As
for an example, the correlogram and periodogram of the realized volatility of
the 30 min returns constructed from raw 5 min returns exhibit clear periodic
pattern (see Figure 1.9). On the contrary, constructing realized volatility
of the 30 min returns from the periodicity adjusted 5 min returns makes it
possible to significantly reduce periodic pattern in the series dynamics and
explore long memory behaviour (see Figure 1.10).

Figure 1.4: GBP/USD Mean return for each 30-min intraday interval
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Figure 1.5: GBP/USD Correlogram of 30-min returns
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Figure 1.6: GBP/USD Periodogram of 30-min returns
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Figure 1.7: GBP/USD Correlogram of 30-min periodicity adjusted returns
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Figure 1.8: GBP/USD Periodogram of 30-min periodicity adjusted returns
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Figure 1.9: GBP/USD Correlogram and periodogram of realized volatility of
30-min returns constructed from raw 5-min returns
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Figure 1.10: GBP/USD Correlogram and periodogram of realized volatility
of 30-min returns constructed from periodicity adjusted 5-min returns
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1.5 Empirical results

In this section, we investigate the long-range dependence in volatility of 30
minutes, 1 hour, 2 hours, 3 hours, 4 hours and 1 day returns. The volatility
is measured by absolute returns, squared returns and realized volatility as
stated in the previous section.5 Firstly, we implement the rescaled range test
of Hurst (1951) and the modified rescaled range test of Lo (1991) to test for
the long-range dependence in the series of absolute returns, squared returns
and realized volatility.6 Then, we also use the semiparametric regression
methodology of Geweke and Porter-Hudak (1983) to model the long memory
dynamics of the stated series of volatility proxies at all the analyzed time
scales and to estimate the fractional differencing parameter d.

Table 1.4: The summary of Hurst (1951) rescaled range test statistic for the
series of absolute returns, squared returns and realized volatility

30 min 1 hour 2 hours 3 hours 4 hours 1 day

Absolute
27.00 18.60 12.40 11.40 9.43 4.88

Squared
4.51 2.62 1.94 2.54 1.92 2.61

Realized Vol
42.30 32.50 24.60 20.80 18.70 8.39

Number of obs.
86395 43197 21598 14399 10799 1799

This table presents the rescaled range test statistic for each observed sampling frequency for the series of

absolute returns, squared returns and realized volatility. The null hypothesis of the test is the process is

not long-range dependent. The critical values are as follows: 90%: [0.861, 1.747], 95%: [0.809, 1.862], 99%:

[0.721, 2.098].

Table 1.4 presents the results of the rescaled range test of Hurst (1951)
applied to the series of absolute returns, squared returns and realized volatil-
ity at different time scales. As we can see, for the series of absolute returns
and realized volatility, the null hypothesis of no long-range dependence is
rejected at the 99% confidence level for all the time scales. For the series of
squared returns, the null hypothesis of no long-range dependence is rejected

5Recall that we use absolute and squared periodicity adjusted returns to measure
the volatility of intraday returns at time scales: 30 minutes, 1 hour, 2 hours, 3 hours, 4
hours. We also use periodicity adjusted 5-min returns to construct realized volatility of
the intraday returns. In order to avoid the frequent mentioning of the same notations,
hereafter in this section the periodicity adjusted intraday returns will be referred to as
simply ”returns”.

6The description of the rescaled range test of Hurst (1951) and the modified rescaled
range test of Lo (1991) is provided in Section 1.7.2 (Appendix).
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Table 1.5: The summary of Lo (1991) modified rescaled range test statistic
for the series of absolute returns, squared returns and realized volatility

330 min 1 hour 2 hours 3 hours 4 hours 1 day

Absolute
15.30 10.90 7.63 7.44 6.17 3.30

Squared
2.83 1.91 1.48 1.90 1.52 1.89

Realized Vol
17.40 13.50 10.70 9.34 8.47 4.00

Number of obs.
86395 43197 21598 14399 10799 1799

This table presents the rescaled range test statistic for each observed sampling frequency for the series of

absolute returns, squared returns and realized volatility. The null hypothesis of the test is the process is

not long-range dependent. The critical values are as follows: 90%: [0.861, 1.747], 95%: [0.809, 1.862], 99%:

[0.721, 2.098].

at the 99% level for the time scales of 30 min, 1 hour, 3 hours and 1 day; for
the time scales of 2 hours and 4 hours, the null hypothesis is rejected at the
95% level.

In the next step, we also implement the modified rescaled range test of Lo
(1991) to test for long memory in the series of returns. The results of the test
are reported in Table 1.5. According to the test results, the null hypothesis
of no long-range dependence is rejected at the 99% confidence level for the
series of absolute returns and realized volatility at all observed time scales.
For the series of squared returns, the null hypothesis is rejected at the 99%
level for the frequency of 30 min and at the 95% level for the frequencies of
1 hour, 3 hours and 1 day. However, for the frequencies of 2 hours and 4
hours, the null hypothesis of no long-range dependence is not rejected.

Table 1.6 presents the results of the long memory parameter d estimates
in the series of absolute returns, squared returns and realized volatility using
the semiparametric GPH approach. The number of frequencies used in the
GPH regression is chosen to be N0.5, where N is a sample size. For the abso-
lute returns, the d parameter estimates vary from the value of 0.237 for the
frequency of 2 hours to 0.355 for the frequency of 30 min. For the squared
returns, the d estimates vary from 0.040 for the frequency of 2 hours to 0.185
for the frequency of 1 day. For realized volatility, the d estimates vary from
0.357 for the frequency of 30 min to 0.444 for the frequency of 4 hours. For
the series of absolute returns and realized volatility, the standard error of the
d estimates tends to increase as the level of aggregation increases. The stan-
dard error of the d estimates for the series of squared returns does not exhibit
a consistent pattern. The GPH estimates of the long memory parameter d

46



Table 1.6: Semiparametric regression analysis of Geweke and Porter-Hudak
(1983) for the series of absolute returns, squared returns and realized volatil-
ity

30 min 1 hour 2 hours 3 hours 4 hours 1 day

Absolute
0.355* 0.320* 0.237* 0.316* 0.296* 0.299*
(0.034) (0.040) (0.041) (0.060) (0.062) (0.103)
Squared

0.078* 0.070* 0.040* 0.102* 0.066* 0.185*
(0.014) (0.011) (0.010) (0.020) (0.015) (0.063)

Realized Vol
0.357* 0.381* 0.389* 0.394* 0.444* 0.364*
(0.037) (0.047) (0.056) (0.062) (0.070) (0.115)

Number of obs.
86395 43197 21598 14399 10799 1799

This table presents the estimated value and the standard error (in parenthesis) of the long memory

parameter d for each observed sampling frequency for the series of absolute returns, squared returns and

realized volatility. * indicate statistical significance at the 5% level.

across all the observed time scales for the series of absolute returns, squared
returns and realized volatility are statistically significant at 5% level. This
clearly indicates that the volatility of the returns at various time scales follow
the long memory dynamics and corresponds with a resounding evidence re-
ported in the literature (see, e.g, Ding, Granger, and Engle, 1993; Andersen
and Bollerslev, 1997a; Bollerslev and Wright, 2000; Mcmillan and Speight,
2008; Rodrigues, Demetrescu, and Rubia, 2018).

As the notion of volatility as a true long memory process implies that
the degree of fractional integration in volatility is invariant with respect to
temporal aggregation, now we observe the consistency of the GPH estimates
of the long memory parameter d across the analyzed time scales for the series
of absolute returns, squared returns and realized volatility. We contribute to
the literature by proposing a Z-test to formally test the null hypothesis of
statistical equivalence of the estimates of the d parameter at the time scale
i and at the time scale j (H0 : di = dj, where i, j denotes the observed
time scales of 30 min, 1 hour, 2 hours, 3 hours, 4 hours, 1 day and i 6= j)
against the alternative hypothesis of a difference between the two estimates
of d (H1 : di 6= dj). The test statistic is calculated as:

Z =
di − dj√

se2
i + se2

j − 2ρijseisej
, (1.44)

where di, dj are the estimates and sei, sej are the standard errors of the esti-
mates of the long memory parameter d at the time scales i and j respectively
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and ρij is the correlation between the estimates di and dj.
The simulation experiment conducted in Section 1.3 provides the intu-

ition about the linear dependence between the estimates of the d parameter
at various time scales. In general, the correlation between the estimates of d
is not constant and depends on the difference in aggregation levels. For ex-
ample, the correlation between the estimates of d at the levels of aggregation
1 and 2 is usually very high, while the corresponding correlation between the
estimates of d at the levels of aggregation 1 and 50 is usually very low. In
general, the correlation coefficient lies in the approximate range from 0.10
to 0.90, being relatively high for close aggregation levels and relatively low
for distant ones. Thus, as the correlation between the estimates of d is not
constant and varies in different conditions, in our framework of the Z-test,
for robustness, we estimate the two values of the test statistics: the lower
bound, assuming zero dependence between the d estimates (ρ = 0), and the
upper bound, assuming a very high linear dependence (ρ = 0.90).

In our framework, there are 15 pairwise comparisons of the d estimates
at various aggregation levels, so the p-values of the test should be adjusted
for multiple comparisons to control the family-wise error rate. To adjust
the p-values, we use the simple approach of Bonferroni (1936) as well as the
methods of Holm (1979), Hochberg (1988) and Hommel (1988) which are
known to be more powerful than Bonferroni correction and more robust in
case of positively associated hypothesis tests.7

For the test of the statistical equivalence of the GPH estimates of the
long memory parameter d at various time scales, Tables 1.7 and 1.8 show
the Z-statistics with the corresponding raw (unadjusted) p-values and the
p-values adjusted for multiple comparisons. Table 1.7 presents the results
based on the lower bound of the Z-statistics, while Table 1.8 presents the
results based on the upper bound of the Z-statistics.

For the lower bound of the test statistics, the results in Table 1.7 indicate
that, after controlling for multiple comparisons, for the series of absolute
returns, squared returns and realized volatility, there is no evidence of a
statistical difference between the d estimates across any of the time scales at
the 5% significance level. The test result indicates that the long memory in
volatility of the returns is characterized by the same fractional differencing
parameter across all the time scales. In the most conservative setting and
the corresponding upper bound of the test statistics, the results in Table
1.8 indicate no evidence of the difference between the d estimates across
the analyzed time scales for the series of realized volatility. However, for

7The description of the different applied p-value adjustment methods is provided in
Section 1.7.3 (Appendix).
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the series of absolute and squared returns, the null hypothesis of statistical
equivalence of the d estimates is rejected in several pairwise tests.

As we can see, for the series of realized volatility, the null hypothesis of
statistical equivalence of the GPH estimates of the d parameter across vari-
ous time scales cannot be rejected in case of both lower and upper bounds of
the test statistics. This observation shows that the evidence in favor of the
hypothesis of equivalence of the long memory parameters is stronger for the
series of realized volatility than for the absolute and squared returns. This
might indicate that relatively less noisy volatility proxies (such as realized
volatility) more fully represent the long memory property of the unobserved
true volatility than relatively more noisy volatility measures (such as abso-
lute or squared returns). This is in line with the empirical evidence in the
literature that different volatility measures can provide different conclusions
about the persistence in volatility (see, e.g., Bollerslev and Wright, 2000; Deo
and Hurvich, 2001; Arteche, 2004; Mcmillan and Speight, 2008; etc).

Overall, as a result of applying various tests for the long-range depen-
dence as well as the semiparametric estimation techniques of the ARFIMA
model to the GBP/USD exchange rates data, we document the presence of
the long memory dynamics in the volatility component of the exchange rates
returns at different time scales. Moreover, using the semiparametric GPH
method applied to the series of realized volatility, we found a strong evidence
that the persistence in the volatility does not change with respect to tem-
poral aggregation. This result lends broad support to the proposition that
volatility of financial returns is a true long memory process and is consis-
tent with the notion of returns as self-similar (or fractal) processes (see, e.g.,
Bollerslev and Wright, 2000; Ohanissian, Russell, and Tsay, 2008; Mcmillan
and Speight, 2008; Baillie, Cecen, and Han, 2015). Our findings indicate
that the properties of financial volatility as a true long memory process are
more clearly reflected if less noisy and more precise proxies (such as realized
volatility) are used for volatility modeling and estimation.

Interestingly, the GPH estimates of the d parameter for the series of abso-
lute returns for the frequencies of 30 min and 4 hours reported in the present
work (0.355 and 0.296 respectively) are strikingly consistent with the GPH d
estimates reported by Mcmillan and Speight (2008) for the series of 30-min
and 4-hours absolute GBP/USD exchange rates returns for the period from
1 January 1996 to 31 December 1996 (0.360 and 0.300 respectively). This
result indicates stability of the long memory in the volatility of the exchange
rate returns across long periods of time and provides another argument in
favor of the proposition of Andersen and Bollerslev (1997a) that long mem-
ory is an intrinsic feature of the returns generating process and is not caused
by occasional structural shifts.
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Table 1.7: Z-test of the statistical equivalence of the GPH estimates of the
d parameter at various time scales for the series of absolute returns, squared
returns and realized volatility (lower bound, ρ = 0)

Test Z-stat
Raw
p-value

Bonferroni Holm Hochberg Hommel

Absolute
30min-1h 0.6667 0.5050 0.9999 0.9999 0.9801 0.9801
30min-2h 2.2154 0.0267 0.4005 0.4005 0.4005 0.4005
30min-3h 0.5655 0.5717 0.9999 0.9999 0.9801 0.9801
30min-4h 0.8344 0.4041 0.9999 0.9999 0.9801 0.9801

30min-1day 0.5163 0.6057 0.9999 0.9999 0.9801 0.9801
1h-2h 1.4490 0.1473 0.9999 0.9999 0.9801 0.9801
1h-3h 0.0555 0.9558 0.9999 0.9999 0.9801 0.9801
1h-4h 0.3253 0.7450 0.9999 0.9999 0.9801 0.9801

1h-1day 0.1901 0.8493 0.9999 0.9999 0.9801 0.9801
2h-3h 1.0871 0.2770 0.9999 0.9999 0.9801 0.9801
2h-4h 0.7938 0.4273 0.9999 0.9999 0.9801 0.9801

2h-1day 0.5593 0.5760 0.9999 0.9999 0.9801 0.9801
3h-4h 0.2318 0.8167 0.9999 0.9999 0.9801 0.9801

3h-1day 0.1426 0.8866 0.9999 0.9999 0.9801 0.9801
4h-1day 0.0250 0.9801 0.9999 0.9999 0.9801 0.9801

Squared
30min-1h 0.4493 0.6532 0.9999 0.9999 0.8297 0.8297
30min-2h 2.2087 0.0272 0.4080 0.3536 0.3536 0.2950
30min-3h 0.9831 0.3256 0.9999 0.9999 0.8297 0.8297
30min-4h 0.5848 0.5587 0.9999 0.9999 0.8297 0.8297

30min-1day 1.6580 0.0973 0.9999 0.8757 0.8297 0.5838
1h-2h 2.0180 0.0436 0.6540 0.5232 0.5232 0.3620
1h-3h 1.4019 0.1609 0.9999 0.9999 0.8297 0.8045
1h-4h 0.2150 0.8297 0.9999 0.9999 0.8297 0.8297

1h-1day 1.7982 0.0721 0.9999 0.7271 0.7210 0.4881
2h-3h 2.7727 0.0056 0.0840 0.0840 0.0840 0.0840
2h-4h 1.4422 0.1492 0.9999 0.9999 0.8297 0.7460

2h-1day 2.2731 0.0230 0.3450 0.3220 0.3220 0.2758
3h-4h 1.4400 0.1499 0.9999 0.9999 0.8297 0.7495

3h-1day 1.2557 0.2092 0.9999 0.9999 0.8297 0.8297
4h-1day 1.8375 0.0661 0.9915 0.7221 0.7210 0.4627

Realized Vol
30min-1h 0.4012 0.6883 0.9999 0.9999 0.9538 0.9538
30min-2h 0.4768 0.6335 0.9999 0.9999 0.9538 0.9538
30min-3h 0.5125 0.6083 0.9999 0.9999 0.9538 0.9538
30min-4h 1.0988 0.2719 0.9999 0.9999 0.9538 0.9538

30min-1day 0.0579 0.9538 0.9999 0.9999 0.9538 0.9538
1h-2h 0.1094 0.9129 0.9999 0.9999 0.9538 0.9538
1h-3h 0.1671 0.8673 0.9999 0.9999 0.9538 0.9538
1h-4h 0.7472 0.4549 0.9999 0.9999 0.9538 0.9538

1h-1day 0.1368 0.8912 0.9999 0.9999 0.9538 0.9538
2h-3h 0.0598 0.9523 0.9999 0.9999 0.9538 0.9538
2h-4h 0.6135 0.5395 0.9999 0.9999 0.9538 0.9538

2h-1day 0.1954 0.8450 0.9999 0.9999 0.9538 0.9538
3h-4h 0.5347 0.5929 0.9999 0.9999 0.9538 0.9538

3h-1day 0.2296 0.8184 0.9999 0.9999 0.9538 0.9538
4h-1day 0.5942 0.5524 0.9999 0.9999 0.9538 0.9538

This table presents the Z-statistics (lower bound, ρ = 0) with the corresponding raw (unadjusted) p-values

and the p-values adjusted for multiple comparisons by the methods of Bonferroni (1936), Holm (1979),

Hochberg (1988) and Hommel (1988) respectively.
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Table 1.8: Z-test of the statistical equivalence of the GPH estimates of the
d parameter at various time scales for the series of absolute returns, squared
returns and realized volatility (upper bound, ρ = 0.90)

Test Z-stat
Raw
p-value

Bonferroni Holm Hochberg Hommel

Absolute
30min-1h 1.9943 0.0461 0.6915 0.5532 0.5532 0.4912
30min-2h 6.5174 0.0000 0.0000 0.0000 0.0000 0.0000
30min-3h 1.1845 0.2362 0.9999 0.9999 0.9560 0.9560
30min-4h 1.6992 0.0893 0.9999 0.8930 0.8930 0.8037

30min-1day 0.7578 0.4486 0.9999 0.9999 0.9560 0.9560
1h-2h 4.5759 0.0000 0.0000 0.0000 0.0000 0.0000
1h-3h 0.1348 0.8927 0.9999 0.9999 0.9560 0.9560
1h-4h 0.7667 0.4433 0.9999 0.9999 0.9560 0.9560

1h-1day 0.3033 0.7616 0.9999 0.9999 0.9560 0.9560
2h-3h 2.7049 0.0068 0.1020 0.0884 0.0884 0.0884
2h-4h 1.9148 0.0555 0.8325 0.6105 0.6105 0.5550

2h-1day 0.9055 0.3652 0.9999 0.9999 0.9560 0.9560
3h-4h 0.7313 0.4646 0.9999 0.9999 0.9560 0.9560

3h-1day 0.3061 0.7596 0.9999 0.9999 0.9560 0.9560
4h-1day 0.0552 0.9560 0.9999 0.9999 0.9560 0.9560

Squared
30min-1h 1.2681 0.2048 0.9999 0.4096 0.4096 0.4096
30min-2h 5.7287 0.0000 0.0000 0.0000 0.0000 0.0000
30min-3h 2.5022 0.0123 0.1845 0.0984 0.0984 0.0819
30min-4h 1.8300 0.0673 0.9999 0.2692 0.2106 0.2019

30min-1day 2.1076 0.0351 0.5265 0.1860 0.1755 0.1404
1h-2h 6.2554 0.0000 0.0000 0.0000 0.0000 0.0000
1h-3h 2.8622 0.0042 0.0630 0.0420 0.0420 0.0378
1h-4h 0.5714 0.5677 0.9999 0.5677 0.5677 0.5677

1h-1day 2.1569 0.0310 0.4650 0.1860 0.1755 0.1240
2h-3h 5.2400 0.0000 0.0000 0.0000 0.0000 0.0000
2h-4h 3.5058 0.0004 0.0060 0.0044 0.0044 0.0044

2h-1day 2.6765 0.0074 0.1110 0.0667 0.0667 0.0592
3h-4h 3.9047 0.0001 0.0014 0.0011 0.0011 0.0011

3h-1day 1.8108 0.0702 0.9999 0.2692 0.2106 0.2106
4h-1day 2.3833 0.0172 0.2580 0.1204 0.1204 0.1032

Realized Vol
30min-1h 1.1341 0.2567 0.9999 0.9999 0.9330 0.9330
30min-2h 1.1492 0.2505 0.9999 0.9999 0.9330 0.9330
30min-3h 1.1239 0.2611 0.9999 0.9999 0.9330 0.9330
30min-4h 2.1703 0.0300 0.4500 0.4500 0.4500 0.4200

30min-1day 0.0841 0.9330 0.9999 0.9999 0.9330 0.9330
1h-2h 0.3246 0.7455 0.9999 0.9999 0.9330 0.9330
1h-3h 0.4574 0.6474 0.9999 0.9999 0.9330 0.9330
1h-4h 1.8286 0.0675 0.9999 0.9450 0.9330 0.7180

1h-1day 0.2251 0.8219 0.9999 0.9999 0.9330 0.9330
2h-3h 0.1850 0.8532 0.9999 0.9999 0.9330 0.9330
2h-4h 1.7569 0.0789 0.9999 0.9999 0.9330 0.7890

2h-1day 0.3620 0.7173 0.9999 0.9999 0.9330 0.9330
3h-4h 1.6378 0.1015 0.9999 0.9999 0.9330 0.9135

3h-1day 0.4610 0.6448 0.9999 0.9999 0.9330 0.9330
4h-1day 1.3269 0.1845 0.9999 0.9999 0.9330 0.9330

This table presents the Z-statistics (upper bound, ρ = 0.90) with the corresponding raw (unadjusted)

p-values and the p-values adjusted for multiple comparisons by the methods of Bonferroni (1936), Holm

(1979), Hochberg (1988) and Hommel (1988) respectively.
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1.6 Conclusion

In this study, we investigated a phenomenon of the long-range dependence in
volatility of the foreign exchange returns in the light of the theory of temporal
aggregation in discrete time long memory processes.

In the first step, we generalized the up-to-date theoretical knowledge
about temporal aggregation in the context of long memory time series. We
provided several definitions of long memory processes and described an ARFIMA
framework of modeling the long-range dependence. We defined the proce-
dure of temporal aggregation and explained its relevance to the construction
of financial time series. Combining both time and frequency analyses, we
observed the autocovariance, the autocorrelation and the spectral density
functions of temporally aggregated ARFIMA processes in order to evalu-
ate the effect of the aggregation on the long memory property of the series.
The theoretical results imply the irrelevance of the long memory parameter
to temporal aggregation. However, the short run components of ARFIMA
processes change as a result of the aggregation.

In the second step, we conducted a Monte Carlo simulation experiment
and provided a regression analysis of the experiment results in order to val-
idate the theoretical implications about the consequences of temporal ag-
gregation in the ARFIMA processes and estimating the true long memory
parameter at various levels of the aggregation. The results of the simulation
experiment are broadly consistent with the implications of the theory and
the results reported in the literature: temporal aggregation does not affect
the long memory property of ARFIMA processes and the semiparametric
GPH approach provides consistent estimates of the fractional differencing
parameter at different levels of temporal aggregation.

Finally, in the empirical part of the work, we provided a recent evidence
of the long memory in volatility of exchange rates returns on various levels
of temporal aggregation. We analyzed the GBP/USD foreign exchange re-
turns series over a period of 7 years sampled at various intraday and daily
frequencies. After controlling for intraday periodicity, we implemented the
rescaled range test of Hurst (1951), the modified rescaled range test of Lo
(1991) and the semiparametric estimation approach of Geweke and Porter-
Hudak (1983) to explore and model the long memory dynamics in volatility
of the temporally aggregated returns measured by absolute returns, squared
returns and realized volatility.

To formally investigate the consistency of the GPH estimates of the long
memory parameter across different time scales, we developed the Z-test with
the size adjustments for multiple hypothesis testing. We found evidence that
volatility of the returns is characterized by the same fractional differenc-
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ing parameter across the observed time scales. The evidence is particularly
strong in case of realized volatility, consistent with the notion of realized
volatility as more advanced and less noisy volatility proxy.

Our findings indicate that volatility of financial returns is a true long
memory process. In other words, long memory is an intrinsic property of
financial volatility and is not caused by occasional structural shifts or regime
breaks. It is possible to propose that the returns volatility series contains
an identical amount of information about the past events at every aggrega-
tion frequency and is predictable up to many periods ahead. Long memory
framework seems to be an appropriate instrument for modeling and forecast-
ing returns volatility and should work equally well irrespective of a time scale
of volatility measuring and modeling.

The study presented in this chapter can be extended in many ways. For
example, an interesting line of further investigations would be to observe
the consequences of temporal aggregation in the long memory FIGARCH
models.
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1.7 Appendix

1.7.1 Temporal aggregation in light of the aliasing ef-
fect

As stated in Souza (2005), the expression for the spectral density function of
the temporally aggregated ARFIMA processes derived in Chambers (1998)
and Hwang (2000) does not account for the aliasing effect over frequencies.
The aliasing effect occurs since temporal aggregation includes at some part
the act of skip-sampling or systematic sampling. The intuitive explanation,
according to Souza (2005), is the following. When the aggregation frequency
is lower than that of the true process by a factor η, a component with fre-
quency λ in the original process will have (nominal) frequency ω = ηλ in the
newly sampled series, possibly falling outside (−π, π]. In other words, the
frequency interval (−π, π] for ω in the spectrum of the aggregated process
is equivalent to the interval (−π/η, π/η] for λ in the original series. Hence,
some frequencies of the original process cannot be directly observed in the
aggregated process and, so, will not appear in its spectral density. The com-
ponents with these unobservable frequencies will have an apparent (lower)
frequency in the aggregated process, different from the ”true” frequency.

Souza (2005) proposed the expression for the spectral density function of
the temporally aggregated ARFIMA processes that accounts for the aliasing
effect. So, assume that the underlying variable yDt has the following Wold
representation:

(
1− L1/η

)d
yDt =

∞∑
h=0

ρhεt−h/η, (1.45)

where ρ0 = 1,
∑∞

h=0 |ρh| <∞, εt is a white noise process with variance σ2, η
is a positive integer and −0.5 < d < 0.5. Then, the formula for the spectral
density function of the aggregated process yDAt that accounts for the aliasing
effect is given by:

fDA (ω) = σ2

η−1∑
j=0

[∣∣1− e−i(ω+j2π)/η
∣∣−2d∣∣ρ(e−i(ω+j2π)/η)

∣∣2Fη((ω + j2π)/η)
]
,

(1.46)
where the function Fη is the Fejer kernel (see Priestley (1981) for details).

However, as Souza (2005) notes, the presence of aliasing effect does not
change the implication of Chambers (1998) that the order of integration
remains constant after temporal aggregation (aggregation of flow-type vari-
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ables). The implication that the order of integration should be the same
when estimated from different temporal aggregation levels is also true.

1.7.2 The Classical and the Modified Rescaled Range
(R/S) test

The semiparametric modified rescaled range (R/S) test were developed by
Lo (1991) on the basis of the original R/S test proposed by Hurst (1951).
The test is the range of the partial sums of deviations of a time series from
its mean, then rescaled by its standard deviation. For example, for a sample
of n values y1, ..., yn, the test statistic is given by:

Qn =
1

Sn

[
max

1≤k≤n

k∑
i=1

(yi − ȳn)− min
1≤k≤n

k∑
i=1

(yi − ȳn)

]
, (1.47)

where Sn is the maximum likelihood estimator of the standard deviation of
y. The term max1≤k≤n

∑k
i=1 (yi − ȳn) is the maximum of the partial sums of

the first k deviations from the mean, which is non-negative. Another term
min1≤k≤n

∑k
i=1 (yi − ȳn) is the minimum of the partial sums of the first k

deviations from the mean, which is non-positive. So, the difference of the
two quantities will be such that Qn > 0. Lo (1991) claims that the original
R/S statistic is excessively sensitive to short-term dependence. In particular,
he shows that an AR(1) process with large sample size can seriously bias the
R/S statistic. To account for the short-term effect, Lo (1991) modified the
test by applying a ”Newey-West” correction to derive a consistent estimate
of the long-range variance of the time series. In the modified version of the
test S is replaced by Ŝ:

Ŝ =

√√√√S2 + 2
r∑
j=1

(
1− j

r + 1

)
γj, (1.48)

where γj is the sample autocovariance at lag j and r is the maximum lag
over which short-term autocorrelation might be important. By default, the
null hypothesis of the test is that the observed variable is not long-range
dependent.

1.7.3 Multiple comparisons p-value adjustment meth-
ods

In case of multiple hypotheses testing problem, to control for the family-wise
error rate, the p-values of the tests should be adjusted. In the present study,
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we use the methods of Bonferroni (1936), Holm (1979), Hochberg (1988) and
Hommel (1988) to adjust the p-values. The description of the methods is
given below.

Suppose, m is the number of null hypotheses to be tested, H01, ..., H0m.
The corresponding raw p-values are p1, ..., pm. Denote the ordered raw p-
values as p(1) ≤ ... ≤ p(m).

The Bonferroni (1936) adjusted p-value, pBonfi , for test i, i = 1, ...,m, is
given by: pBonfi = mpi. If the adjusted p-value exceeds 1, it is set to 1.

The Holm (1979) adjusted p-values, pHolm(i) , are given by:

pHolm(i) =

{
mp(1), for i=1

max(pHolm(i−1) , (m− i+ 1)p(i) for i=2,...,m

The Hochberg (1988) adjusted p-values, pHoch(i) , are given by:

pHoch(i) =

{
p(m), for i=m

min(pHoch(i+1), (m− i+ 1)p(i) for i=m-1,...,1

The Hommel (1988) p-value adjustment method is based on the Simes
(1986) procedure. The Simes (1986) p-value for a joint test of any set of N
hypotheses with p-values p(1) ≤ ... ≤ p(N) is min((N/1)p(1), ..., (N/N)p(N)).
The Hommel (1988) adjusted p-values for test i is the maximum of all such
Simes (1986) p-values, taken over all joint tests that include i as one of their
components.

The adjusted p-values from the Hommel (1988) method are always equal
or smaller to the adjusted p-values from the Hochberg (1988) procedure. The
Hochberg (1988) adjusted p-values are always equal or smaller to the p-values
from the Holm (1979) procedure. And in its turn, the Holm (1979) adjusted
p-values are always equal or smaller to the Bonferroni (1936) adjusted p-
values.
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Chapter 2

Can asymmetric attention
explain volatility asymmetry?
Evidence from international
equity markets

2.1 Introduction

In finance, volatility measures the degree of variation of a trading price of
a certain asset over time. Because of its indisputable importance for risk
management and derivative pricing, the concept of volatility has always at-
tracted significant attention from academic researchers and financial market
professionals. The dynamics of financial volatility are characterized by sev-
eral widely documented empirical phenomena which are also called “stylized
facts”. Some of the most well-known stylized facts about volatility are long-
range dependence, clustering, nonlinear dynamics, etc. Another interesting
empirical feature of financial volatility is “volatility asymmetry”. Volatility
asymmetry commonly refers to a negative relationship between returns and
volatility, with this relation being more pronounced for negative returns. In
other words, volatility asymmetry describes the relationship between price
changes and its volatility and refers to the fact that negative returns have
stronger effect on volatility than positive returns of the same magnitude.
Following Engle and Ng (1993), who identify positive or negative returns
with good or bad market news respectively, volatility asymmetry implies a
stronger reaction of volatility to the arrival of bad news from the market than
to the arrival of good news. The volatility asymmetry effect has been found
in various markets such as currencies (see, e.g., Laopodis, 1998; McKenzie,
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2002; Wang and Yang, 2009), commodities (see, e.g, Baur, 2012; Ji and Fan,
2012; Chkili, Hammoudeh, and Nguyen, 2014), stocks (see, e.g., Ebens et al.,
1999; Bollerslev and Zhou, 2006; Dennis, Mayhew, and Stivers, 2006) and is
especially apparent during market crashes when a large decrease in market
prices is followed by a large increase in price volatility.

Despite longstanding attempts to explain volatility asymmetry, there is
still no clearly recognized explanation of this phenomenon. Black (1976) and
Christie (1982) are the first studies which document asymmetric volatility
and explain it with the so-called “leverage effect”. Under the leverage ef-
fect, a decrease in the stock price of a firm reduces the equity value and
increases financial leverage which increases the riskiness of the stock and
subsequently increases its volatility. However, later studies demonstrate that
the level of financial leverage is not able to completely explain asymmetric
volatility dynamics (Schwert, 1989; Bekaert and Wu, 2000; Figlewski and
Wang, 2000; Aydemir, Gallmeyer, and Hollifield, 2007; Talpsepp and Rieger,
2010). Moreover, Hens and Steude (2009) and Hasanhodzic and Lo (2011)
show that volatility asymmetry cannot be justified by financial leverage as
there is a wide range of stocks with zero leverage still exhibiting asymmetric
volatility.

In the works of Pindyck (1984), Engle, Lilien, and Robins (1987), French,
Schwert, and Stambaugh (1987) and Campbell and Hentschel (1992), the
time-varying risk premium theory is used to explain the phenomenon of
volatility asymmetry. According to the theory, return changes are caused by
shocks in conditional volatility (the effect that is frequently called “volatility
feedback”): an increase in volatility leads to an increase in the required return
on equity that, in its turn, leads to a decline in stock prices. This explanation
finds support in the studies of Bansal and Yaron (2004) and Drechsler and
Yaron (2010). On the other hand, Bekaert and Wu (2000), Li et al. (2005)
and Bae, Kim, and Nelson (2007) claim that the time-varying risk premium
theory is also incapable of fully explaining volatility asymmetry, and that
there are other factors driving the asymmetric effect.

The weakness of the leverage effect and volatility feedback hypotheses is
that they are intended to explain asymmetric volatility only for equity mar-
kets and only on a firm level. However, as stated above, volatility asymme-
try is not only an equity markets phenomenon. Moreover, as demonstrated
by Tauchen, Zhang, and Liu (1996), Andersen et al. (2001) and Dzieliński,
Rieger, and Talpsepp (2018), the asymmetric volatility effect is generally
more prominent for aggregate market indexes than for individual stocks.

The behavioral finance literature also proposes several explanations of the
asymmetric volatility effect. Sentana and Wadhwani (1992) connect volatility
asymmetry with positive feedback trading activities of noisy and uninformed
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traders. In the model of McQueen and Vorkink (2004), investors have differ-
ent sensitivities to positive and negative return shocks, being more sensitive
to negative ones. In the case of a negative shock, investor behaviour leads to
rising volatility which exacerbates price declines and results in asymmetry.
Avramov, Chordia, and Goyal (2006) claim that herding in selling activity
of uninformed investors drives the effect of asymmetric volatility. Shefrin
(2008) and Hens and Steude (2009) explain asymmetric volatility by individ-
ual behavioural preferences and biased expectations of retail investors. The
latter findings are supported by Talpsepp and Rieger (2010), who show that
a higher level of volatility asymmetry is associated with more efficient and
developed markets, the markets where the share of individual investors is
large.

There is also a growing number of works which study the relationship
between volatility dynamics and individual aspects of investor behaviour, in
particular, investor attention. As stated by Huberman and Regev (2001),
prices react to new information only when investors pay attention to it.
Grossman and Stiglitz (1980), Radner and Stiglitz (1984), Merton (1987)
and Sims (2003) provide the basic theoretical insights into the role of in-
vestor attention for security prices, market equilibrium and market efficiency.
However, empirical investigations of the connection between investor atten-
tion and volatility face the problem of measuring and quantifying attention.
Using indirect proxies for attention, such as news announcements, unusual
trading volume and extreme returns, Barber and Odean (2007) demonstrate
that attention-grabbing stocks are often associated with higher price volatil-
ity. DellaVigna and Pollet (2009) show that earnings announcements can
significantly affect stock returns and volatility. Using the number of analysts
following a given firm as a proxy for investor attention, Dzieliński, Rieger,
and Talpsepp (2018) claim that asymmetry in investor attention to good and
bad news can drive volatility asymmetry and that firms with a higher level
of attention also exhibit higher volatility asymmetry.

A number of recent studies introduced a new measure of investor attention
which is based on internet searches. This approach exploits the revolutionary
role of the internet in disseminating information in the financial industry and
a growing intention among investors to use the internet for informational and
trading services (see, e.g., Barber and Odean, 2001; Antweiler and Frank,
2004; Rubin and Rubin, 2010; etc.). Da, Engelberg, and Gao (2011) propose
the number of Google search queries as a measure of investor attention.
In particular, they utilize the Search Volume Index (SVI) provided by the
Google Trends service, which allows tracking of the popularity of different
search terms over time. For a large sample of Russell 3000 stocks, they track
the number of search queries for the keywords which represent stock ticker
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symbols. The authors claim that the Search Volume Index is a direct measure
of investor attention because if a certain investor searches for a stock in
Google, he is undoubtedly paying attention to it. Also, as Da, Engelberg, and
Gao (2011) show, the SVI mostly captures the attention of less-sophisticated
retail investors rather than professional ones. Professional security traders
are less likely to use Google to search for a stock because professional trading
platforms have the necessary news coverage services already implemented in
the system. Da, Engelberg, and Gao (2011) provide evidence that changes in
the Search Volume Index can be useful in explaining temporary stock price
fluctuations.

Dzielinski (2012) uses Google search frequency data to measure economic
uncertainty and investor attention and shows that it has a significant rela-
tionship with aggregate stock returns and volatility. Vlastakis and Markellos
(2012) demonstrate that informational demand (investor attention) measured
by the Google Search Volume Index is significantly positively related to his-
torical and implied measures of volatility and to trading volume. They also
claim that investor attention increases significantly during periods of higher
absolute market returns. Vozlyublennaia (2014) analyzes the relationship
between several security indexes and investor attention as measured by the
SVI. Her findings indicate the existence of significant relationship between
investor attention and index return and volatility. Moreover, according to Vo-
zlyublennaia (2014), increased investor attention improves market efficiency.
Andrei and Hasler (2014) provide a theoretical framework of the role of in-
vestor attention in determining asset prices. In their model, fluctuations
in investor attention are governed by changes in the state of the economy
that can be represented by stock market return. In its turn, investor atten-
tion drives stock volatility: higher attention leads to higher market volatility.
They validate the theoretical predictions using Google search data as a proxy
of investor attention. Baur and Dimpfl (2016) investigate investor attention
on the gold market and find a significant relationship between gold price
changes and Google search queries for gold. They also document that in-
vestor attention is predominantly higher in periods of negative gold returns.
A number of studies show that the Search Volume Index can be used to
significantly improve volatility and returns forecasts in various models (see,
e.g., Joseph, Wintoki, and Zhang, 2011; Hamid and Heiden, 2015; Bijl et al.,
2016; Dimpfl and Jank, 2016; Chronopoulos, Papadimitriou, and Vlastakis,
2018; etc.).

The present study contributes to the growing literature on the relationship
between investor attention and market volatility, in particular, investigating
the connection between the well-known volatility asymmetry phenomenon
and the asymmetry of investor attention to good and bad news. Following
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the argument of Tauchen, Zhang, and Liu (1996), Andersen et al. (2001)
and Dzieliński, Rieger, and Talpsepp (2018) that asymmetric volatility is
more profound for market indexes than for individual stocks, and the propo-
sition of Peng and Xiong (2006) and Vozlyublennaia (2014) that individual
investors are more likely to confine their attention to broad asset categories
(indexes) rather than individual securities, we concentrate our analysis on
the main international stock market indexes: FTSE100, CAC40, DAX, Dow
Jones Industrial Average (DJIA), NIKKEI225, S&P500 and Shanghai Com-
posite (SSE). For each index, we study the relationship between return, re-
alized volatility and investor attention to the index measured by the Google
SVI. Unlike most of the previous studies which predominantly work with
weekly or monthly data (such as Da, Engelberg, and Gao, 2011; Vlastakis
and Markellos, 2012; Vozlyublennaia, 2014; Baur and Dimpfl, 2016; etc.), we
investigate the stated relationship at a daily time scale over the long period
from January 2, 2004 to February 28, 2019. Also, in contrast to previous
works, instead of using a particular term as a search keyword (such as an
index name or ticker symbol), we utilize the SVI for a topic (which includes
all search terms related to a particular stock market index). We propose that
this approach provides a more precise measure of investor attention using the
internet search frequency data.

In the first step, we use a Structural Vector Autoregressive (SVAR) model
and impulse response analysis to explore the short-term and long-term rela-
tionship between the analyzed variables. We demonstrate that the effect of
returns on realized volatility is generally persistent and long lasting while the
effects of returns on investor attention and of investor attention on volatility
are only temporary. Using the Granger Causality framework, we identify
statistical causality from return to both volatility and investor attention and
we identify bidirectional causality between attention and volatility. In the
next step, we study the contemporaneous and dynamic asymmetric effect of
returns on realized volatility and investor attention in the multivariate Au-
toregressive Distributed Lag (ARDL) framework. We provide evidence that
realized volatility and investor attention exhibit the same kind of asymme-
try, having a stronger reaction to negative returns than to positive ones. We
graphically illustrate the asymmetric effect of returns on both volatility and
attention with news impact curves. In line with the studies of Vlastakis and
Markellos (2012), Vozlyublennaia (2014) and Andrei and Hasler (2014), we
provide new evidence of a positive relationship between investor attention
and volatility. Moreover, we show that the impact of investor attention on
volatility is stronger during periods of negative returns. We propose several
reasons of the discovered asymmetry in investor attention to good and bad
news and suggest how, in the established theoretical framework, asymmetric
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attention can lead to volatility asymmetry.
The remainder of the chapter is organized as follows. In Section 2.2, we

describe the data and econometric models utilized in the study. Section 2.3
presents the empirical results. In Section 2.4, we provide a summary and
suggest potential directions of further research.
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2.2 Data and methodology

2.2.1 Data

In this chapter, we investigate the relationship between return, volatility and
investor attention measured by the internet search frequency for international
stock market indexes. Firstly, we describe the characteristics and the sources
of the financial data which we use, then we describe the features of the
investor attention data employed in the study.

The financial data includes daily returns and realized volatility for the
main international stock market indexes, such as the FTSE100, CAC40,
DAX, Dow Jones Industrial Average (DJIA), NIKKEI225, S&P500 and Shang-
hai Composite (SSE). The data is obtained from the Realized Library of the
Oxford-Man Institute of Quantitative Finance and covers the period from
January 2, 2004 to February 28, 2019. The sample size is determined by the
data availability for all our variables of interest. The time series of returns
is constructed as a first difference of the daily close-to-close logarithmic in-
dex prices. We use realized volatility as a proxy for the true index volatility
which is not observable directly. Following Andersen et al. (2001) and Corsi
(2009), the realized volatility over a time interval of one day can be defined
as

RV
(d)
t =

√√√√M−1∑
j=0

r2
t−j∆, (2.1)

where ∆ = 1d
M

(1d indicates one trading day; M indicates the number of
intraday periods) and rt−j∆ = p(t−j∆)−p(t−(j+1)∆) defines continuously
compounded ∆-frequency returns, that is, intraday returns sampled at time
interval ∆ (the subscript t indexes the day, while j indexes the time within
the day t).

In other words, realized volatility over a time interval of one day is the
square root of the sum of squared high frequency intraday returns. Under
certain assumptions, realized volatility is an unbiased estimator of the true
integrated volatility. In our dataset, the realized volatility estimator is based
on the index intraday logarithmic returns sampled at 5 minutes frequency.
Also, in order to avoid complicating the inference by the slower trading ac-
tivity on weekends and holiday periods, we exclude from the data sample all
observations for weekends and some other inactive days.

Following Da, Engelberg, and Gao (2011), Vlastakis and Markellos (2012),
Vozlyublennaia (2014), Andrei and Hasler (2014), etc., investor attention in
the present study is measured by the Google Search Volume Index (SVI)
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obtained from the Google Trends service (http://www.google.com/trends).
Currently, Google is the most popular search engine in the world.1 In the
form of the SVI, Google reports web searches for a certain keyword as a per-
centage of the total number of the searches for all keywords over time. The
SVI time series is represented as an index, so that the observation with the
largest number of searches over a given time span takes the value of 100.

In contrast to the previous works which use a particular term as a search
keyword to obtain the SVI, we use the advanced functionality of Google
Trends and utilize the SVI not for a particular keyword but for a topic. Topic
is a group of terms which are related to the same concept. For example, in
case of the FTSE100 Index, the topic “FTSE100: Market Index” includes
search terms such as “ftse”, “ftse 100”, “ftse price”, “ftse index”, etc. We
claim that using the SVI for a topic allows us to consider more ways for
investors to search for an index in Google, so it allows us to more fully and
precisely measure the actual interest of investors. Moreover, this method
reduces the unrelated noise in the search data. In this manner, the SVI is
obtained for each stock market index under consideration.

The SVI data is at a daily frequency and covers the period from January
2, 2004 to February 28, 2019. By default, Google Trends provides data from
January 2004 onwards at a monthly frequency. The data at a daily frequency
is available for periods up to a quarter. However, the time series at a daily
frequency, constructed from several consecutive downloads of quarterly peri-
ods, would be inconsistent since every quarter has its own specific scale from
0 to 100. Hence, to obtain the consistent time series of daily data for the
full sample period from January 2004 to February 2019, we rescale the raw
inconsistent time series at a daily frequency, constructed from consecutive
downloads of monthly periods, using the corresponding data at a monthly
frequency for the full sample period.2 Analyzing the data at a daily scale
more effectively reveals the relationship between investor attention and fi-
nancial variables, as this relationship is much less pronounced at lower time
frequencies (Vozlyublennaia, 2014). By analogy with the financial data, the
SVI observations for weekends and inactive days are excluded from the sam-

1According to StatCounter GlobalStats, Google’s share of worldwide internet searches
in August 2019 was 92.37% (September 19, 2019; https://gs.statcounter.com/search-
engine-market-share).

2As a robustness check, we also construct a consistent daily SVI time series using
the methodology proposed by Chronopoulos, Papadimitriou, and Vlastakis (2018). Both
methods provide qualitatively similar results and the correlation between the daily time
series obtained by using the two methods is very high (on average, about 0.9 across different
indexes). Applying the SVI time series constructed by the method of Chronopoulos,
Papadimitriou, and Vlastakis (2018) in further econometric analysis also does not alter
the conclusions. These results are available from the author upon request.
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ple.
Tables 2.1, 2.2 and 2.3 report the descriptive statistics for the time series

of returns, realized volatility and the SVI of the analyzed stock market in-
dexes. Each table shows the mean, standard deviation, minimum, maximum,
skewness, kurtosis and the Ljung-Box (Ljung and Box, 1978) portmanteau
test Q-statistics for up to 20-lags serial correlation. As we can see from the
tables, the series of returns, realized volatility and SVI are non-normal and
predominantly autocorrelated. Following Da, Engelberg, and Gao (2011),
Vlastakis and Markellos (2012) and Vozlyublennaia (2014), in further econo-
metric analysis, the series of realized volatility and SVI are converted into
natural logarithms. The stationarity of the variables under consideration is
assessed using the Augmented Dickey-Fuller test (Dickey and Fuller, 1979).
The results of the test, which are available from the author upon request,
suggest that there is no evidence of unit root dynamics in the time series of
returns, realized volatility and SVI (both levels and logarithmic transforma-
tion).

Figure 2.1 shows the graphs of the returns, realized volatility and SVI
for one of the analyzed stock market indexes, in particular, FTSE100 Index.
As we can see, the SVI variable co-moves quite strongly with the realized
volatility. The volatility and investor attention spike abruptly on October
10, 2008 when global stock markets crashed as a result of the financial crisis
and on June 24, 2016 when the final results of the United Kingdom European
Union membership referendum were announced.

Table 2.1: Descriptive statistics for daily returns

FTSE100 CAC40 DAX DJIA NIKKEI225 S&P500 SSE

Obs 3820 3857 3841 3799 3704 3802 3583
Mean 0.0001 0.0001 0.0003 0.0002 0.0002 0.0002 0.0002
Std Dev 0.0108 0.0130 0.0131 0.0107 0.0148 0.0114 0.0165
Min -0.0893 -0.0852 -0.0779 -0.0861 -0.1211 -0.0969 -0.0921
Max 0.0948 0.1044 0.1203 0.1053 0.1323 0.1064 0.0900
Skewness -0.1395 -0.0953 0.0268 -0.1256 -0.5218 -0.3269 -0.5097
Kurtosis 11.5691 9.5256 10.7328 13.6237 11.1066 14.3621 7.2506
Q(20) 50.70* 59.11* 49.85* 117.21* 18.53 125.18* 64.91*

The table reports descriptive statistics for the time series of daily returns for the analyzed stock market

indexes: the mean, standard deviation, minimum, maximum, skewness, kurtosis and the Ljung-Box port-

manteau test Q-statistics for up to 20-lags serial correlation. The sample period is from January 2, 2004

to February 28, 2019. * indicates statistical significance at the 1% level.
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Table 2.2: Descriptive statistics for daily realized volatility

FTSE100 CAC40 DAX DJIA NIKKEI225 S&P500 SSE

Obs 3821 3858 3842 3800 3705 3803 3584
Mean 0.0087 0.0092 0.0095 0.0080 0.0083 0.0079 0.0118
Std Dev 0.0058 0.0054 0.0056 0.0061 0.0049 0.0061 0.0072
Min 0.0012 0.0021 0.0020 0.0014 0.0020 0.0011 0.0025
Max 0.1030 0.0716 0.0767 0.0929 0.0568 0.0880 0.0654
Skewness 4.0877 3.1261 3.4107 4.0215 3.3810 3.6306 2.1785
Kurtosis 37.8622 21.9409 24.9055 31.3855 22.0992 24.9460 10.3118
Q(20) 26261.08* 30393.67* 30237.55* 29418.54* 20622.14* 32994.28* 25792.96*

The table reports descriptive statistics for the time series of daily realized volatility for the analyzed stock

market indexes: the mean, standard deviation, minimum, maximum, skewness, kurtosis and the Ljung-

Box portmanteau test Q-statistics for up to 20-lags serial correlation. The sample period is from January

2, 2004 to February 28, 2019. * indicates statistical significance at the 1% level.

Table 2.3: Descriptive statistics for daily SVI

FTSE100 CAC40 DAX DJIA NIKKEI225 S&P500 SSE

Obs 3821 3858 3842 3800 3705 3803 3584
Mean 19.6811 12.8101 24.5779 14.4255 22.1685 25.4981 16.8282
Std Dev 9.5563 6.8336 11.2325 10.4733 15.9828 10.1847 17.8839
Min 4 0.9 2.16 1.65 1.12 5.89 0.42
Max 100 100 100 100 100 100 100
Skewness 1.6669 2.4059 0.0268 4.0215 1.3248 -0.3269 1.5342
Kurtosis 7.1763 19.7346 10.7328 31.3855 4.2734 14.3621 4.5558
Q(20) 41586.48* 40404.43* 45837.25* 50693.02* 55239.92* 41742.00* 56542.53*

The table reports descriptive statistics for the time series of daily Search Volume Index (SVI) for the

analyzed stock market indexes: the mean, standard deviation, minimum, maximum, skewness, kurtosis

and the Ljung-Box portmanteau test Q-statistics for up to 20-lags serial correlation. The sample period

is from January 2, 2004 to February 28, 2019. * indicates statistical significance at the 1% level.
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Figure 2.1: The time series of daily FTSE100 returns, realized volatility and
SVI
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2.2.2 Methodology

In this section, we establish the econometric framework for our analysis. In
the first step, we employ a Structural Vector Autoregression (SVAR) model
(Sims, 1980) and impulse response analysis to study the short-term and long-
term relationships between return, realized volatility and investor attention
for each of the stock market indexes under consideration. The Granger
Causality test is used to investigate statistical causality between the vari-
ables. In the next step, we employ a set of Autoregressive Distributed Lag
(ARDL) models to analyze the contemporaneous and dynamic asymmetric
effect of index returns on volatility and investor attention.

Initially, the relationship between returns, realized volatility and investor
attention are analyzed in the SVAR model which can be written in the fol-
lowing form:
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A(IK − A1L− A2L
2 − ...− ApLp)Yt = Aεt = Bet, (2.2)

where L is the lag operator, Yt = (y1t, ..., yKt)
′ is a K × 1 random vector,

A, B and A1, ..., Ap are K ×K matrices of parameters, εt is a K × 1 vector
of innovations with εt ∼ N(0,Σ) and E[εtε

′
s] = 0K for all s 6= t, and et is

a K × 1 vector of orthogonalized disturbances, that is, et ∼ N(0, IK) and
E[ete

′
s] = 0K for all s 6= t. In our case, the vector Yt takes the following form:

Yt = (Rt, SV It, RVt)
′, where Rt is the return, SV It is the investor attention

and RVt is the realized volatility.
The stated transformation of the innovations allows to analyze the dy-

namics of the system in terms of a change to an element of et. To identify
the structural shocks, we follow the Cholesky identification scheme and im-
pose restrictions on A and B matrices: matrix A is assumed to be a lower
triangular matrix with ones on the diagonal, while matrix B is assumed to
be a diagonal matrix. Formally, the Cholesky restrictions on the constraint
matrices are given by:

A =

1 0 0
· 1 0
· · 1

 B =

 · 0 0
0 · 0
0 0 ·


The identification scheme employed assumes a recursive contemporaneous

ordering among the variables in the vector Yt. This means that any variable
in the vector Yt does not depend contemporaneously on the variables or-
dered after. With these structural restrictions, index return (Rt) is ordered
first and followed by investor attention (SV It) and realized volatility (RVt).
In other words, we assume that return is not contemporaneously affected
by investor attention or volatility, investor attention is affected contempo-
raneously by index return but not volatility, volatility is contemporaneously
affected by both index return and investor attention. This way of identifying
the structural shocks is based on the theoretical foundations of the mutual
dynamics of market return, volatility and investor attention provided by An-
drei and Hasler (2014) and empirical evidence provided by Dzielinski (2012)
and Vlastakis and Markellos (2012).

The SVAR model is estimated using the maximum likelihood estimation
procedure. The optimal number of lags in the SVAR model of p = 4 is
determined according to the Akaike Information Criterion (AIC) and the
Bayesian Information Criterion (BIC). The impulse response functions are
constructed based on the employed structural shock identification scheme
and the estimated SVAR coefficients. The reduced-form VAR is used for the
Granger Causality tests. According to Granger (1969), a variable x is said
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to Granger-cause a variable y if, given the past values of y, past values of x
are useful for predicting y. Granger causality test is performed by regressing
y on its own lagged values and on lagged values of x and doing the Wald test
of the null hypothesis that the estimated coefficients on the lagged values of
x are jointly zero.

In the next step, we use the Autoregressive Distributed Lag (ARDL)
framework to investigate asymmetric relationships between the variables un-
der consideration. In the ARDL model, the dependent variable is regressed
on its own past values as well as on the current and past values of the indepen-
dent variable. As noted by Pesaran and Shin (1998), the ARDL is a flexible
approach, which is able to resolve possible issues of endogeneity/simultaneity
through the appropriate modification of the lag structure of the model. In
Model 1 (Equations 2.3 and 2.4), we investigate the contemporaneous and
dynamic asymmetric relationships between return and realized volatility as
well as between return and investor attention. In order to explore the asym-
metric effect of return, we introduce an interaction term to allow for different
impacts from both current and past negative and positive returns on volatil-
ity and investor attention. Formally, for realized volatility and return, the
model specification is given by

RVt = γ+
4∑

n=1

αnRVt−n +
4∑

n=0

βnRt−n +
4∑

n=0

δnRt−n× I (Rt−n < 0) + εt, (2.3)

where RVt is the realized volatility, Rt is the return, γ is a constant, εt is
the error term and I is an indicator which takes value one if Rt−n < 0 and
zero otherwise. The coefficient βn measures the impact of current or lagged
returns on current realized volatility if Rt−n ≥ 0, while (βn+δn) measures the
impact of current or lagged return on current realized volatility if Rt−n < 0.

The relationship between investor attention and return is analyzed in the
same regression specification, where realized volatility (RV ) is replaced with
investor attention (SV I). Formally,

SV It = γ+
4∑

n=1

αnSV It−n+
4∑

n=0

βnRt−n+
4∑

n=0

δnRt−n×I (Rt−n < 0)+εt. (2.4)

In the final step, in Model 2 (Equation 2.5), we employ another ARDL
model to investigate the impact of both return and investor attention on
realized volatility. Moreover, in this model, we also explore if the sign of cur-
rent and past return can determine the magnitude of the impact of investor
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attention on volatility at present. Hence, we introduce an interaction term
which allows the impact of current attention on volatility to be dependent on
the sign of current and past return. Formally, the model can be represented
as

RVt =γ +
4∑

n=1

αnRVt−n +
4∑

n=0

βnRt−n+

4∑
n=0

λnSV It−n +
4∑

n=0

δnSV It × I (Rt−n < 0) + εt,

(2.5)

where RVt is the realized volatility, Rt is the return, SV I is the investor
attention, γ is a constant, εt is the error term and I is an indicator which
takes value one if Rt−n < 0 and zero otherwise. Coefficient λ0 measures the
impact of current investor attention on current realized volatility if Rt−n ≥ 0,
while (λ0 + δn) measures the impact of current investor attention on current
realized volatility if Rt−n < 0.

The ARDL model is estimated using the OLS method. The optimal
number of lags in the ARDL models of p = 4 is determined according to the
Akaike Information Criterion (AIC) and the Bayesian Information Criterion
(BIC).
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2.3 Empirical results

In this section, we present the empirical results for the analysis of the rela-
tionships between return, realized volatility and investor attention for inter-
national stock market indexes.

We begin with the analysis of the contemporaneous correlation. For each
of the stock market indexes, Table 2.4 reports the correlation coefficients be-
tween return and realized volatility, realized volatility and investor attention
as well as return and investor attention. As we can see for every index, the
correlation between realized volatility and return is negative and statistically
significant at the 5% level which is consistent with the massive empirical
literature on volatility asymmetry. In line with the studies of Andrei and
Hasler (2014), Dimpfl and Jank (2016), etc., realized volatility is predomi-
nantly significantly positively correlated with investor attention. For return
and investor attention, the correlation is negative but mostly statistically
insignificant.

Table 2.4: Correlation analysis

FTSE100 CAC40 DAX DJIA NIKKEI225 S&P500 SSE

R-RV -0.0897* -0.1648* -0.1736* -0.1033* -0.1634* -0.1169* -0.1016*
RV -SV I 0.1232* 0.3395* 0.0797* 0.2248* 0.0682* -0.0344* 0.5764*
R-SV I -0.0039 -0.0067 -0.0252 -0.0160 -0.0446* -0.0237 -0.0451*

The table reports the correlation coefficients between the analyzed variables for each of the stock market

indexes. RV -SV I indicates the correlation between realized volatility and investor attention, R-SV I

indicates the correlation between return and investor attention, R-RV indicates the correlation between

return and realized volatility. * indicates statistical significance at the 5% level.

In the next step, we investigate statistical causality between the analyzed
variables. Table 2.5 presents the results of the Granger Causality test based
on the estimated three-dimensional SVAR model with return, investor atten-
tion and realized volatility.3 As we can see, the null hypothesis that investor
attention and realized volatility does not Granger-cause index return either
individually or jointly generally cannot be rejected. Hence, in contrast to the
results of Joseph, Wintoki, and Zhang (2011) and Bijl et al. (2016), we do
not find evidence that past investor attention can be used to predict market
return. On the other hand, there is a strong evidence of statistical causality
from return to both investor attention and realized volatility. The revealed
causality from return to investor attention is consistent with the previous

3The results of the estimated SVAR and the reduced-form VAR models are presented
in Section 2.5.1 (Appendix).
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findings in the literature (see, e.g., Vozlyublennaia, 2014). For NIKKEI225,
S&P500 and SSE indexes, there is a strong evidence of bidirectional causality
between realized volatility and investor attention. This result is in line with
the findings of Hamid and Heiden (2015) and Dimpfl and Jank (2016) and
confirms the conjecture of Vozlyublennaia (2014), who, although not finding
evidence of a causal relationship between volatility and investor attention at
a monthly time scale, proposes that such a relationship is more likely to be re-
vealed over a shorter time range, such as daily. There is also strong evidence
for all the indexes that return and realized volatility jointly Granger-cause in-
vestor attention and that return and investor attention jointly Granger-cause
realized volatility.

Table 2.5: The Granger Causality test results

FTSE100 CAC40 DAX DJIA NIKKEI225 S&P500 SSE

SV I 6=⇒R 0.224 0.479 0.203 0.055 0.233 0.475 0.762
RV 6=⇒R 0.634 0.623 0.822 0.084 0.717 0.062 0.326
ALL 6=⇒R 0.387 0.673 0.458 0.021 0.518 0.118 0.599

R 6=⇒SV I 0.000 0.000 0.007 0.000 0.000 0.000 0.006
RV 6=⇒SV I 0.001 0.003 0.198 0.001 0.003 0.002 0.000
ALL 6=⇒SV I 0.000 0.000 0.000 0.000 0.000 0.000 0.000

R 6=⇒RV 0.000 0.000 0.000 0.000 0.000 0.000 0.000
SV I 6=⇒RV 0.228 0.124 0.131 0.419 0.001 0.000 0.000
ALL 6=⇒RV 0.000 0.000 0.000 0.000 0.000 0.000 0.000

The table reports the p-values for Granger Causality test based on the estimated three-dimensional SVAR

model with return (R), investor attention (SV I) and realized volatility (RV ). 6=⇒ refers to the null

hypothesis that the left-hand side variable does not Granger-cause the right-hand side variable; e.g.,

SV I 6=⇒R refers to the null hypothesis: SV I does not Granger-cause R. ALL refers to all two left-hand

side variables in a panel jointly.

Now we move to impulse response analysis to investigate the short-run
and long-run relationship between return, realized volatility and investor
attention. The impulse response functions are determined by the estimated
SVAR model and the structural shocks identification scheme described in
Section 2.2.2. Impulse response functions provide a useful way to explore
the endogenous propagation of structural shocks within an analyzed system.
One can interpret the responses as deviations from the long-run steady-state
value that exists before the system is perturbed by the shock.

In our analysis, we focus on three types of impulse response functions:
the response of realized volatility to a return shock, the response of investor
attention to a return shock and the response of realized volatility to an in-
vestor attention shock. For each of the considered stock market indexes,
Figures 2.2-2.4 display the graphs of the mentioned impulse response func-
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tions respectively. The grey areas on the graphs represent the 95% confidence
interval for responses. As we can see, the positive return shock decreases both
volatility and investor attention. The impact of a return shock on market
volatility is persistent and long lasting; generally it does not completely van-
ish even after 50 days. In contrast, the response of investor attention to a
return shock is less long lasting and often dies out after 20-25 days. As for
the response of realized volatility to an attention shock, an increase in in-
vestor attention causes a short series of increases in volatility that generally
die out in 10-15 days.

In the next step, we explore the asymmetric effect of index return on
realized volatility and investor attention using the ARDL model. In Model
1, we focus on the contemporaneous and dynamic asymmetric relationship
between return and volatility as well as between return and investor atten-
tion. In the model, we use the special interaction term which allows us to
separately measure and compare the impacts from positive and negative re-
turns. The corresponding regression results for return and realized volatility
are presented in Table 2.6. As we can see, the coefficients for current return
are positive and highly statistically significant for all indexes except CAC40.
On the other hand, the interaction term coefficients at lag zero are nega-
tive and significant at the 1% level for all the indexes. The result indicates
that both positive and negative contemporaneous returns generally increase
realized volatility, but negative returns have a stronger impact on volatility
than do positive returns of the same absolute magnitude. In other words,
the impact of positive and negative returns on realized volatility is asymmet-
ric. Thus, we have clear evidence of volatility asymmetry for all of the stock
market indexes under analysis, which is in line with the rich evidence in past
literature (see., e.g., Black, 1976; Ebens et al., 1999; Andersen et al., 2001;
Bollerslev and Zhou, 2006; Baur and Dimpfl, 2018; etc.). Moreover, if we
observe lagged coefficients, the coefficients for lagged return are significant
predominantly at the 1st or 2nd lag and have mixed signs.The coefficients
for lagged interaction terms are mostly negative and statistically significant
at the first two lags. This indicates that volatility asymmetry is not only
contemporaneous but also a dynamic phenomenon which, however, can only
be observed at short lags.

Table 2.7 presents the results of the Model 1 regression estimation for
return and investor attention. Across the analyzed indexes, all the estimated
coefficients for current return and the current interaction term are highly
statistically significant, while the coefficients for lagged return and lagged
interaction terms are predominantly significant. The return coefficients at
lag zero or one are positive, while the corresponding interaction term coef-
ficients are negative and large in their magnitude. On the other hand, the
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return coefficients at lags from two to four are mostly negative, while the cor-
responding interaction term coefficients are positive and large. This result
shows that, at lag zero or one, both positive and negative returns increase
investor attention with negative returns having a stronger impact. However,
at lags from two to four, both positive and negative returns decrease investor
attention with negative returns having a mostly stronger effect. Thus, there
is evidence of both contemporaneous and dynamic asymmetric relationships
between return and investor attention. We also note, for return coefficients,
positive marginal effects at short lags tend to be offset by negative marginal
effects at longer lags. And for interaction term coefficients, negative effects
at short lags tend to be offset by positive effects at longer lags. The results
indicate that index return has only a temporary effect on investor atten-
tion: as a result of return shock, the initial increase in attention at short
lags would be offset by a further decrease in attention at longer lags. This
finding is consistent with the impulse response analysis which shows that the
impact of return on investor attention generally completely vanishes after
20-25 periods.

We use the so-called ”news impact curve” to graphically illustrate the
asymmetric effect of return on realized volatility and investor attention. Orig-
inally introduced by Engle and Ng (1993), news impact curve characterizes
the impact of return shocks on volatility. In the present study, we adapt
this approach to also show the response of investor attention to changes in
index return. Figures 2.5 and 2.6 present the news impact curves for real-
ized volatility and investor attention respectively. Based on the regressions in
Model 1, the curves show how current realized volatility or investor attention
(vertical axis) changes with the percentage change in current index return
(horizontal axis), assuming that the other variables are fixed to zero. The
news impact curves are centered around Rt = 0. As we can see across the
indexes, the shape of the curves is generally very similar for realized volatility
and investor attention. The curves have a V -shape, typical in the literature,
where the part of the curve which corresponds to negative returns is steeper
than the part which corresponds to positive returns. This particular shape
of the curves indicates that both realized volatility and investor attention are
similarly asymmetric in their response to good and bad market news.

As we can see from the Model 1 regression results, negative return has a
stronger impact on investor attention than positive return. In other words,
negative market news attract higher attention from retail investors than pos-
itive news. What are the potential reasons behind this asymmetric rela-
tionship? We believe that the main psychological reason might be the loss
aversion effect described by Kahneman and Tversky (1979). Loss aversion
is an essential concept in prospect theory and, according to Kahneman and
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Tversky (1979), can be formulated as the idea that “losses loom larger than
gains”. In other words, people are more sensitive to losses than to gains; the
pain of losing is psychologically more powerful than the pleasure of gaining.
Loss aversion is closely related to the more general phenomenon of negativity
bias in cognitive psychology. Negativity bias refers to the fact that, when
of equal intensity, things of a more negative nature have a greater effect
on people’s psychological state and cognitive processes than positive things
(see, e.g., Peeters, 1971; Lewicka, Czapinski, and Peeters, 1992; Rozin and
Royzman, 2001; Baumeister et al., 2001; etc.). Thus, asymmetric investor
attention to bad market news can be a consequence of an inherent nature of
human psychology.

Another potential reason, of a non-psychological nature, might be nega-
tive news bias (Dzielinski, Rieger, and Talpsepp, 2011). Negative news bias
refers to the fact that the share of negative news and the number of news
items overall tend to be positively correlated. In such a situation, more
bad market news obviously suggests more market news overall, which has a
greater chance of attracting investor attention.

Finally, we move to the analysis of the impact of both return and investor
attention on realized volatility in Model 2. As mentioned previously, in this
model we allow the impact of current investor attention on volatility to be
dependent on the sign of the current and past returns. The corresponding
regression estimation results are presented in Table 2.8. As we can see, the
coefficients for current return are negative and significant at the 1% level for
all the indexes. The coefficients for lagged return are mostly negative and
predominantly statistically significant for the first three lags. The negative
sign of the coefficients for return is consistent with the results of the correla-
tion analysis and in line with the mass of evidence in the volatility asymmetry
literature (see, e.g., Ebens et al., 1999; Bollerslev and Zhou, 2006; etc.). The
coefficients for current investor attention are positive and highly statistically
significant across all the analyzed stock market indexes. The coefficients for
lagged investor attention are negative with some of them statistically signifi-
cant at different conventional levels. The interaction term coefficients at lag
zero and one are positive and mostly statistically significant for all the in-
dexes. The interaction term coefficients at lags from two to four have mixed
signs and are mostly statistically insignificant. The results indicate that cur-
rent investor attention has a positive effect on realized volatility, consistent
with the previous findings in the literature (see, e.g., Vlastakis and Markel-
los, 2012; Vozlyublennaia, 2014; Andrei and Hasler, 2014; etc.). Moreover,
the sign of the current and past index return can determine the magnitude
of the impact of investor attention on volatility at present. In case of nega-
tive current or past return, the positive impact of current investor attention
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on realized volatility is even stronger. However, the results also show that
investor attention has only a temporary effect on realized volatility: positive
marginal effects at the current period tend to be offset by negative marginal
effects at future periods. This finding is consistent with the analysis of the
corresponding impulse response functions.

Our analysis clearly indicate that both volatility and investor attention
are similarly asymmetric in their response to market news. Bad market
news in the form of negative returns has a stronger impact on both volatility
and investor attention than good news in the form of positive returns. This
striking similarity cannot but suggest that the volatility asymmetry and at-
tention asymmetry phenomena are related - one might cause the other. In
line with the findings of Dzieliński, Rieger, and Talpsepp (2018), we propose
that attention asymmetry is the factor that leads to volatility asymmetry.
In this proposition, we are appealing to a theoretical framework of the re-
lationship between asset prices and investor attention, provided by Andrei
and Hasler (2014). In their theoretical model, market volatility is driven
by investor attention which, in its turn, depends on the state of the econ-
omy represented by market return. As Andrei and Hasler (2014) claim, when
investors pay little attention to news, information about the state of the econ-
omy is only gradually incorporated into prices because learning is slow; on
the other hand, attentive investors immediately incorporate new information
into prices. Hence, low attention results in low volatility and, respectively,
high attention leads to high volatility. Indeed, in our analysis, we provide
evidence of this positive relationship between investor attention and realized
volatility. Consequently, asymmetrically higher attention induced by neg-
ative returns would naturally give rise to asymmetrically higher volatility.
Moreover, according to our results, in the case of negative returns the mag-
nitude of the impact of investor attention on volatility would be higher, thus
even further exaggerating the asymmetry. However, our results also suggest
that the effect of investor attention on volatility does not last long-term as the
initial positive effect of investor attention is followed by subsequent reversal.
Hence, retail investor attention can create temporary asymmetric volatility
fluctuations but is unlikely to be responsible for permanent shifts in market
volatility.
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Table 2.6: The effect of return on realized volatility

FTSE100 CAC40 DAX DJIA NIKKEI225 S&P500 SSE

γ -1.247*** -1.072*** -1.177*** -1.454*** -1.375*** -1.289*** -1.289***
(0.083) (0.074) (0.076) (0.088) (0.081) (0.082) (0.073)

α1 0.270*** 0.323*** 0.321*** 0.279*** 0.334*** 0.335*** 0.343***
(0.016) (0.016) (0.016) (0.016) (0.016) (0.016) (0.017)

α2 0.186*** 0.163*** 0.171*** 0.200*** 0.172*** 0.189*** 0.189***
(0.016) (0.017) (0.017) (0.017) (0.017) (0.017) (0.017)

α3 0.141*** 0.161*** 0.156*** 0.120*** 0.134*** 0.117*** 0.135***
(0.016) (0.017) (0.017) (0.017) (0.017) (0.017) (0.017)

α4 0.168*** 0.149*** 0.126*** 0.135*** 0.103*** 0.123*** 0.088***
(0.016) (0.016) (0.016) (0.016) (0.016) (0.016) (0.015)

β0 10.233*** -0.122 1.656*** 10.820*** 3.806*** 6.194*** 4.942***
(0.769) (0.557) (0.557) (0.841) (0.547) (0.763) (0.476)

β1 -5.122*** -0.974* -1.990*** -6.059*** 0.779 -5.128*** 3.786***
(0.788) (0.558) (0.560) (0.858) (0.550) (0.771) (0.484)

β2 -2.385*** -0.223 -0.204 -3.347*** -0.011 -1.849** 2.978***
(0.785) (0.553) (0.555) (0.858) (0.544) (0.771) (0.489)

β3 -2.887*** -1.693*** -0.802 0.592 -0.882 0.678 1.147**
(0.778) (0.547) (0.550) (0.852) (0.543) (0.761) (0.488)

β4 1.091 1.142** 1.584*** -0.060 -0.803 -0.182 1.167**
(0.776) (0.536) (0.542) (0.847) (0.538) (0.754) (0.490)

δ0 -29.66*** -12.50*** -16.19*** -32.27*** -17.34*** -23.99*** -15.38***
(1.254) (0.912) (0.917) (1.360) (0.865) (1.217) (0.746)

δ1 -1.242 -5.644*** -3.366*** -1.282 -7.193*** -2.677** -11.48***
(1.339) (0.931) (0.952) (1.448) (0.909) (1.270) (0.790)

δ2 0.261 -2.813*** -2.467*** -1.356 -1.483 -2.919** -2.972***
(1.334) (0.932) (0.949) (1.455) (0.915) (1.275) (0.811)

δ3 2.456* 1.208 0.269 -2.416* 1.330 -1.996 0.293
(1.335) (0.932) (0.951) (1.453) (0.918) (1.273) (0.805)

δ4 -1.724 -0.854 -1.562 0.846 1.994** 1.186 -0.281
(1.339) (0.931) (0.948) (1.457) (0.917) (1.276) (0.799)

LM(1) 78.79*** 116.66*** 93.06*** 37.42*** 43.93*** 36.61*** 33.23***
R2 0.731 0.767 0.751 0.750 0.718 0.779 0.787
N of obs. 3816 3853 3837 3795 3700 3798 3579

The table reports the results of the OLS regression between realized volatility and return in Model 1 for

each of the stock market indexes. γ is the constant, α1,...,α4 are the coefficients for lagged realized volatility

(RVt−1,...,RVt−4), β0,...,β4 are the coefficients for current and lagged return (Rt,...,Rt−4), δ0,...,δ4 are the

coefficients for interaction term (Rt−n × I (Rt−n < 0)). LM(1) is the Breusch-Godfrey LM test statistics

for the first order serial correlation in the residuals. The standard errors are in parentheses. ***, ** and

* indicate statistical significance at the 1%, 5% and 10% levels respectively.
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Table 2.7: The effect of return on investor attention

FTSE100 CAC40 DAX DJIA NIKKEI225 S&P500 SSE

γ 0.181*** 0.118*** 0.197*** 0.074*** 0.084*** 0.213*** 0.036***
(0.024) (0.019) (0.027) (0.013) (0.018) (0.027) (0.013)

α1 0.505*** 0.364*** 0.477*** 0.685*** 0.385*** 0.498*** 0.398***
(0.016) (0.016) (0.016) (0.016) (0.016) (0.016) (0.017)

α2 0.203*** 0.228*** 0.169*** 0.131*** 0.310*** 0.171*** 0.241***
(0.018) (0.017) (0.018) (0.020) (0.017) (0.018) (0.018)

α3 0.119*** 0.143*** 0.138*** 0.036* 0.150*** 0.140*** 0.176***
(0.018) (0.017) (0.018) (0.020) (0.017) (0.018) (0.018)

α4 0.103*** 0.203*** 0.147*** 0.112*** 0.121*** 0.123*** 0.142***
(0.016) (0.016) (0.016) (0.016) (0.016) (0.016) (0.016)

β0 4.363*** 5.037*** 2.792*** 4.550*** 4.589*** 3.235*** 4.245***
(0.587) (0.600) (0.467) (0.519) (0.554) (0.480) (0.596)

β1 2.204*** 1.514** 1.637*** 1.378*** 0.621 0.148 1.639***
(0.585) (0.600) (0.466) (0.517) (0.555) (0.476) (0.599)

β2 -1.774*** -2.132*** -1.235*** -3.784*** -0.797 -1.895*** 1.084*
(0.573) (0.589) (0.456) (0.509) (0.542) (0.470) (0.597)

β3 -0.799 -1.574*** -2.074*** -2.909*** -2.076*** -2.077*** -1.110*
(0.564) (0.577) (0.450) (0.500) (0.536) (0.458) (0.594)

β4 -1.458*** -1.601*** -0.876* -0.706 -2.455*** -1.409*** -1.624***
(0.561) (0.574) (0.449) (0.499) (0.530) (0.455) (0.594)

δ0 -10.84*** -11.58*** -9.025*** -14.17*** -14.46*** -9.041*** -11.81***
(0.951) (0.974) (0.765) (0.831) (0.871) (0.758) (0.927)

δ1 -5.917*** -5.398*** -4.150*** -6.036*** -3.313*** -2.983*** -5.418***
(0.954) (0.977) (0.768) (0.845) (0.895) (0.754) (0.945)

δ2 3.971*** 3.035*** 2.055*** 7.696*** 3.222*** 3.365*** -1.097
(0.947) (0.971) (0.756) (0.849) (0.885) (0.758) (0.945)

δ3 3.733*** 3.510*** 4.835*** 5.751*** 6.281*** 4.455*** 3.427***
(0.946) (0.964) (0.755) (0.841) (0.880) (0.746) (0.940)

δ4 3.445*** 3.380*** 2.550*** 2.031** 5.401*** 3.516*** 4.002***
(0.952) (0.019) (0.761) (0.848) (0.884) (0.757) (0.942)

LM(1) 76.58*** 7.55*** 62.89*** 37.57*** 51.13*** 54.90*** 42.26***
R2 0.784 0.800 0.767 0.906 0.8733 0.774 0.911
N of obs. 3816 3853 3837 3795 3700 3798 3579

The table reports the results of the OLS regression between investor attention and return in Model 1

for each of the stock market indexes. γ is the constant, α1,...,α4 are the coefficients for lagged investor

attention (RVt−1,...,RVt−4), β0,...,β4 are the coefficients for current and lagged return (Rt,...,Rt−4),

δ0,...,δ4 are the coefficients for interaction term (Rt−n×I (Rt−n < 0)). LM(1) is the Breusch-Godfrey LM

test statistics for the first order serial correlation in the residuals. The standard errors are in parentheses.

***, ** and * indicate statistical significance at the 1%, 5% and 10% levels respectively.
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Table 2.8: The effect of return and investor attention on realized volatility

FTSE100 CAC40 DAX DJIA NIKKEI225 S&P500 SSE

γ -0.552*** -0.582*** -0.519*** -0.600*** -0.646*** -0.399*** -0.617***
(0.062) (0.057) (0.057) (0.058) (0.056) (0.058) (0.061)

α1 0.283*** 0.354*** 0.353*** 0.295*** 0.400*** 0.346*** 0.427***
(0.016) (0.016) (0.016) (0.016) (0.016) (0.016) (0.017)

α2 0.217*** 0.186*** 0.198*** 0.248*** 0.192*** 0.235*** 0.203***
(0.016) (0.017) (0.017) (0.017) (0.017) (0.017) (0.018)

α3 0.168*** 0.180*** 0.179*** 0.179*** 0.150*** 0.158*** 0.150***
(0.016) (0.017) (0.017) (0.016) (0.017) (0.017) (0.018)

α4 0.215*** 0.168*** 0.158*** 0.161*** 0.124*** 0.156*** 0.100***
(0.016) (0.016) (0.016) (0.016) (0.016) (0.016) (0.016)

β0 -3.126*** -5.436*** -4.773*** -1.652*** -4.093*** -2.292*** -2.350***
(0.573) (0.414) (0.422) (0.608) (0.404) (0.517) (0.375)

β1 -5.260*** -3.049*** -3.522*** -5.077*** -3.006*** -4.828*** -2.028***
(0.578) (0.423) (0.429) (0.616) (0.407) (0.524) (0.376)

β2 -2.734*** -2.061*** -1.759*** -4.462*** -1.091*** -3.506*** 1.203***
(0.579) (0.421) (0.429) (0.618) (0.408) (0.530) (0.376)

β3 -2.651*** -1.829*** -1.088** -0.994 -0.848** -1.196** 0.472
(0.578) (0.419) (0.426) (0.613) (0.403) (0.525) (0.374)

β4 -0.307 0.247 0.057 -1.764*** -0.483 -1.029** 0.211
(0.570) (0.410) (0.416) (0.599) (0.392) (0.516) (0.370)

λ0 0.263*** 0.117*** 0.154*** 0.459*** 0.163*** 0.290*** 0.166***
(0.022) (0.015) (0.019) (0.026) (0.017) (0.025) (0.014)

λ1 -0.149*** -0.007 -0.072*** -0.303*** -0.016 -0.121*** -0.023
(0.024) (0.015) (0.021) (0.032) (0.018) (0.028) (0.015)

λ2 -0.050** -0.046*** -0.020 -0.060* -0.063*** -0.078*** -0.031**
(0.025) (0.016) (0.021) (0.032) (0.018) (0.006) (0.015)

λ3 -0.047* -0.019 -0.017 -0.079** -0.071*** -0.071** -0.036**
(0.024) (0.015) (0.021) (0.032) (0.018) (0.028) (0.015)

λ4 -0.040* -0.039*** -0.060*** -0.031 -0.025 -0.085*** -0.047***
(0.022) (0.015) (0.019) (0.026) (0.016) (0.026) (0.014)

δ0 0.020*** 0.017*** 0.020*** 0.039*** 0.013*** 0.043*** 0.009*
(0.004) (0.004) (0.004) (0.005) (0.004) (0.004) (0.005)

δ1 0.017*** 0.016*** 0.008** 0.023*** 0.002 0.024*** 0.001
(0.004) (0.004) (0.004) (0.005) (0.004) (0.004) (0.005)

δ2 0.006 -0.000 0.001 0.001 0.004 0.002 0.002
(0.004) (0.004) (0.003) (0.005) (0.004) (0.004) (0.005)

δ3 -0.001 -0.002 -0.000 -0.002 0.002 -0.005 -0.005
(0.004) (0.004) (0.003) (0.005) (0.004) (0.004) (0.005)

δ4 -0.001 -0.002 -0.004 -0.016*** -0.004 -0.008** -0.005
(0.004) (0.004) (0.003) (0.005) (0.004) (0.004) (0.005)

LM(1) 105.23*** 122.44*** 132.37*** 43.24*** 50.70*** 50.57*** 35.37***
R2 0.707 0.759 0.737 0.740 0.692 0.774 0.761
N of obs. 3816 3853 3837 3795 3700 3798 3579

The table reports the results of the OLS regression between realized volatility, investor attention and

return in Model 2 for each of the stock market indexes. γ is the constant, α1,...,α4 are the coefficients

for lagged realized volatility (RVt−1,...,RVt−4), β0,...,β4 are the coefficients for current and lagged return

(Rt,...,Rt−4), λ0,...,λ4 are the coefficients for for current and lagged investor attention, δ0,...,δ4 are the

coefficients for interaction term (SV It × I (Rt−n < 0)). LM(1) is the Breusch-Godfrey LM test statistics

for the first order serial correlation in the residuals. The standard errors are in parentheses. ***, ** and

* indicate statistical significance at the 1%, 5% and 10% levels respectively.
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Figure 2.2: Impulse response of realized volatility to return shock
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Figure 2.3: Impulse response of investor attention to return shock
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Figure 2.4: Impulse response of realized volatility to investor attention shock
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Figure 2.5: News impact curve for realized volatility
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Figure 2.6: News impact curve for investor attention
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2.4 Conclusion

In this chapter, we have investigated the relationship between return, investor
attention and volatility for the main international stock market indexes,
such as FTSE100, CAC40, DAX, Dow Jones Industrial Average (DJIA),
NIKKEI225, S&P500 and Shanghai Composite (SSE). In particular, we ex-
plored the connection between the phenomenon of volatility asymmetry and
the asymmetry of investor attention to good and bad news. As a measure of
investor attention, we utilized the Search Volume Index (SVI) provided by
the Google Trends service.

In the first step, we used the Structural Vector Autoregressive (SVAR)
model and impulse response analysis to explore the short-term and long-
term relationship between the analyzed variables. Our findings indicate that
the effect of return on realized volatility is generally persistent and long
lasting while the effects of return on investor attention and of investor atten-
tion on volatility are only temporary. Using the Granger Causality frame-
work, we identified statistical causality from return to both volatility and
investor attention and bidirectional causality between attention and volatil-
ity. In the second step, we utilized a set of Autoregressive Distributed Lag
(ARDL) models to investigate the contemporaneous and dynamic asymme-
try in volatility and investor attention. We demonstrated that both volatility
and investor attention are similarly asymmetric in their response to market
news represented by index return: negative return has a stronger impact
on both volatility and investor attention than does positive return of the
same absolute magnitude. We also illustrated our findings with news im-
pact curves for both volatility and investor attention. We proposed that the
main potential reason behind the asymmetric attention might be well-known
psychological anomalies, such as negativity bias and loss aversion.

We provided new evidence of the existence of a positive relationship be-
tween volatility and investor attention. Moreover, our results also indicate
that the magnitude of the impact of investor attention on volatility is stronger
during periods of negative returns. We demonstrated that, in the theoreti-
cal setting where market volatility is driven by investor attention which, in
its turn, depends on market return, asymmetrically higher attention caused
by negative returns would lead to asymmetrically higher volatility. How-
ever, we found that the effect of retail investor attention on volatility is only
temporary.

The work presented in this chapter can be extended in the following ways.
First, an interesting line of further investigation would be to study in greater
detail the transition mechanism between investor attention and volatility.
What kind of trading behaviour of investors, affected by negative or positive
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returns, leads, respectively, to higher or lower market volatility? Moreover,
as the measure of investor attention in the present work represents only the
attention of retail investors, an important direction for future research would
be to investigate the attention of professional or institutional investors. What
is the appropriate way to measure the attention of professional investors and
does it exhibit the same kind of asymmetry to good and bad market news?
Also, as we can notice from the empirical results, the estimated SVAR and
ARDL models are not free of the residual autocorrelation. This fact can be
explained by the highly persistent nature of realized volatility and investor at-
tention. Hence, exploring the possibility of a cointegrative dynamics between
volatility and investor attention, such as potential fractional cointegration,
is an interesting direction of further research. Finally, we claim that be-
havioural phenomena, such as asymmetric attention, are most certainly not
the only explanation of such a complex phenomenon as volatility asymmetry.
The other factors, which contribute to volatility asymmetry, are also worth
further investigations.
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2.5 Appendix

2.5.1 The SVAR model estimation results

Table 2.9: The estimated SVAR model results

FTSE100 CAC40 DAX DJI NIKKEI225 SP500 SSE

a11 1 1 1 1 1 1 1

a21 1.342*** 1.054*** 1.872*** 2.996*** 3.341*** 1.628*** 2.117***
(0.313) (0.319) (0.255) (0.282) (0.288) (0.253) (0.320)

a31 5.032*** 6.574*** 6.444*** 4.901*** 4.994*** 6.231*** 2.859***
(0.413) (0.289) (0.301) (0.449) (0.289) (0.401) (0.259)

a12 0 0 0 0 0 0 0

a22 1 1 1 1 1 1 1

a32 -0.269*** -0.124*** -0.156*** -0.460*** -0.167*** -0.287*** -0.166***
(0.021) (0.014) (0.019) (0.026) (0.016) (0.025) (0.013)

a13 0 0 0 0 0 0 0

a23 0 0 0 0 0 0 0

a33 1 1 1 1 1 1 1

b11 0.011*** 0.013*** 0.013*** 0.011*** 0.014*** 0.011*** 0.016***
(0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000)

b21 0 0 0 0 0 0 0

b31 0 0 0 0 0 0 0

b12 0 0 0 0 0 0 0

b22 0.208*** 0.258*** 0.207*** 0.184*** 0.259*** 0.177*** 0.315***
(0.002) (0.003) (0.002) (0.002) (0.003) (0.002) (0.004)

b32 0 0 0 0 0 0 0

b13 0 0 0 0 0 0 0

b23 0 0 0 0 0 0 0

b33 0.275*** 0.233*** 0.243*** 0.288*** 0.255*** 0.279*** 0.253***
(0.000) (0.003) (0.003) (0.003) (0.003) (0.003) (0.003)

LM(1) 189.77*** 159.63*** 195.44*** 101.29*** 118.73*** 107.59*** 92.06***

LM(5) 31.82*** 62.01*** 48.83*** 17.86** 9.83 16.10* 10.94

LM(10) 12.86 34.48*** 30.64*** 18.83** 9.21 16.77* 23.59***

N of obs. 3816 3853 3837 3795 3700 3798 3579

The table reports the results of the estimated three-dimensional SVAR model for return, investor attention

and realized volatility for each of the stock market indexes. aij and bij refer to the elements of the matrices

A and B respectively. 1 and 0 mean the restricted elements of the matrices A and B. LM(1), LM(5) and

LM(10) refer to the LM test statistics for the first, fifths and tens order serial correlation in the residuals

respectively. The standard errors are in parentheses. ***, ** and * indicate statistical significance at the

1%, 5% and 10% levels respectively.
87



Table 2.10: The estimated reduced-form VAR model results

Panel A: Equation for returns

FTSE100 CAC40 DAX DJI NIKKEI225 SP500 SSE

R

Rt−1 -0.029* -0.018 0.001 -0.092*** -0.041** -0.100*** 0.026
(0.017) (0.017) (0.017) (0.017) (0.017) (0.017) (0.017)

Rt−2 -0.049*** -0.052*** -0.031* -0.060*** -0.004 -0.069*** -0.013
(0.017) (0.017) (0.017) (0.017) (0.018) (0.018) (0.017)

Rt−3 -0.023 -0.040** -0.026 0.030* -0.022 0.022 0.023
(0.017) (0.017) (0.017) (0.017) (0.018) (0.017) (0.017)

Rt−4 0.028* 0.016 0.011 -0.033** -0.019 -0.025 0.054***
(0.016) (0.016) (0.016) (0.017) (0.017) (0.017) (0.017)

SV It−1 0.000 -0.000 0.000 0.001 -0.001 -0.000 0.000
(0.001) (0.001) (0.001) (0.001) (0.001) (0.001) (0.001)

SV It−2 -0.001 0.001 -0.000 0.001 0.000 -0.000 0.000
(0.001) (0.001) (0.001) (0.001) (0.001) (0.001) (0.001)

SV It−3 0.001 0.000 0.001 -0.002* 0.002* 0.002 -0.001
(0.001) (0.001) (0.001) (0.001) (0.001) (0.001) (0.001)

SV It−4 0.001 -0.001 0.001 0.001 -0.001 -0.000 0.001
(0.001) (0.001) (0.001) (0.001) (0.001) (0.001) (0.001)

RVt−1 -0.000 0.000 -0.000 -0.002*** 0.001 -0.002** 0.002**
(0.001) (0.001) (0.001) (0.001) (0.001) (0.001) (0.001)

RVt−2 0.001 -0.001 0.000 0.001 -0.001 0.002** -0.001
(0.001) (0.001) (0.001) (0.001) (0.001) (0.001) (0.001)

RVt−3 0.000 -0.000 -0.001 -0.000 -0.001 -0.001 -0.000
(0.001) (0.001) (0.001) (0.001) (0.001) (0.001) (0.001)

RVt−4 -0.000 0.001 0.001 0.000 0.001 0.000 -0.000
(0.001) (0.001) (0.001) (0.001) (0.001) (0.001) (0.001)

Cons -0.000 -0.001 -0.002 -0.004* -0.001 -0.003 0.003
(0.002) (0.003) (0.003) (0.002) (0.003) (0.002) (0.004)

R2 0.006 0.006 0.004 0.017 0.005 0.016 0.007
N of obs. 3816 3853 3837 3795 3700 3798 3579

The table reports the results of the reduced-form VAR model for return, investor attention and realized

volatility for each of the stock market indexes. Rt−1, ..., Rt−4 indicate the coefficients on lagged return,

SV It−1, ..., SV It−4 indicate the coefficients on lagged investor attention, RVt−1, ..., RVt−4 indicate the

coefficients on lagged realized volatility. Cons indicates the coefficient on the constant. The standard

errors are in parentheses. ***, ** and * indicate statistical significance at the 1%, 5% and 10% levels

respectively.
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Table 2.10: The estimated reduced-form VAR model results

Panel B: Equation for investor attention

FTSE100 CAC40 DAX DJI NIKKEI225 SP500 SSE

SV I

Rt−1 -1.199*** -1.536*** -0.876*** -2.174*** -1.525*** -1.759*** -1.209***
(0.320) (0.340) (0.273) (0.294) (0.310) (0.264) (0.328)

Rt−2 -0.075 -0.982*** -0.583** -0.526* 0.226 -0.583** 0.280
(0.329) (0.346) (0.278) (0.306) (0.315) (0.275) (0.332)

Rt−3 0.847*** -0.250 -0.083 -0.559* 0.548* -0.275 0.136
(0.327) (0.343) (0.274) (0.305) (0.313) (0.273) (0.332)

Rt−4 0.028 -0.244 0.058 -0.102 0.164 0.035 -0.008
(0.319) (0.325) (0.261) (0.293) (0.299) (0.261) (0.326)

SV It−1 0.511*** 0.373*** 0.494*** 0.701*** 0.408*** 0.505*** 0.409***
(0.016) (0.016) (0.016) (0.017) (0.017) (0.016) (0.017)

SV It−2 0.190*** 0.216*** 0.159*** 0.101*** 0.293*** 0.160*** 0.237***
(0.018) (0.017) (0.018) (0.021) (0.018) (0.018) (0.018)

SV It−3 0.115*** 0.145*** 0.127*** 0.039* 0.127*** 0.131*** 0.178***
(0.018) (0.017) (0.018) (0.021) (0.018) (0.018) (0.018)

SV It−4 0.114*** 0.206*** 0.147*** 0.125*** 0.133*** 0.126*** 0.141***
(0.016) (0.016) (0.016) (0.017) (0.017) (0.016) (0.017)

RVt−1 0.044*** 0.062*** 0.013 0.035*** 0.052*** 0.020* 0.079***
(0.012) (0.018) (0.014) (0.010) (0.017) (0.010) (0.021)

RVt−2 -0.006 0.002 0.009 -0.036*** -0.032* -0.021* 0.008
(0.012) (0.018) (0.014) (0.011) (0.018) (0.011) (0.022)

RVt−3 -0.003 -0.032* -0.027* -0.006 -0.026 -0.014 -0.048**
(0.012) (0.018) (0.014) (0.011) (0.018) (0.011) (0.022)

RVt−4 -0.035*** -0.014 -0.005 0.001 -0.013 -0.002 -0.008
(0.012) (0.017) (0.013) (0.010) (0.017) (0.010) (0.021)

Cons 0.203*** 0.236*** 0.179*** 0.060 0.016 0.158*** 0.222***
(0.047) (0.062) (0.049) (0.037) (0.058) (0.038) (0.076)

R2 0.773 0.791 0.753 0.894 0.858 0.761 0.905
N of obs. 3816 3853 3837 3795 3700 3798 3579

The table reports the results of the reduced-form VAR model for return, investor attention and realized

volatility for each of the stock market indexes. Rt−1, ..., Rt−4 indicate the coefficients on lagged return,

SV It−1, ..., SV It−4 indicate the coefficients on lagged investor attention, RVt−1, ..., RVt−4 indicate the

coefficients on lagged realized volatility. Cons indicates the coefficient on the constant. The standard

errors are in parentheses. ***, ** and * indicate statistical significance at the 1%, 5% and 10% levels

respectively.
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Table 2.10: The estimated reduced-form VAR model results

Panel C: Equation for realized volatility

FTSE100 CAC40 DAX DJI NIKKEI225 SP500 SSE

RV

Rt−1 -7.013*** -4.165*** -4.358*** -7.669*** -3.216*** -6.987*** -2.345***
(0.439) (0.330) (0.341) (0.485) (0.319) (0.435) (0.274)

Rt−2 -3.125*** -1.860*** -1.771*** -4.702*** -1.301*** -3.706*** 1.162***
(0.452) (0.336) (0.347) (0.505) (0.324) (0.454) (0.276)

Rt−3 -2.325*** -1.347*** -0.997*** -1.377*** -0.793** -1.118** 0.714***
(0.449) (0.333) (0.343) (0.504) (0.322) (0.451) (0.277)

Rt−4 -0.381 0.226 0.342 -0.451 -0.068 -0.226 0.345
(0.437) (0.316) (0.326) (0.483) (0.308) (0.431) (0.272)

SV It−1 -0.011 0.039** 0.008 0.014 0.056*** 0.022 0.045***
(0.023) (0.015) (0.020) (0.028) (0.017) (0.027) (0.014)

SV It−2 0.012 -0.024 0.007 -0.006 -0.016 -0.010 0.008
(0.025) (0.016) (0.022) (0.034) (0.018) (0.030) (0.015)

SV It−3 -0.016 -0.001 0.004 -0.041 -0.056*** -0.032 -0.002
(0.025) (0.016) (0.022) (0.034) (0.018) (0.030) (0.015)

SV It−4 -0.011 -0.005 -0.041** 0.020 0.003 -0.043 -0.025*
(0.022) (0.015) (0.020) (0.028) (0.017) (0.027) (0.014)

RVt−1 0.303*** 0.362*** 0.359*** 0.326*** 0.402*** 0.377*** 0.434***
(0.016) (0.017) (0.017) (0.017) (0.017) (0.017) (0.017)

RVt−2 0.211*** 0.191*** 0.195*** 0.224*** 0.193*** 0.211*** 0.208***
(0.017) (0.018) (0.018) (0.018) (0.019) (0.018) (0.019)

RVt−3 0.164*** 0.176*** 0.179*** 0.173*** 0.149*** 0.154*** 0.143***
(0.017) (0.018) (0.018) (0.018) (0.018) (0.018) (0.019)

RVt−4 0.208*** 0.161*** 0.154*** 0.160*** 0.119*** 0.149*** 0.099***
(0.016) (0.017) (0.017) (0.017) (0.017) (0.017) (0.017)

Cons -0.484*** -0.546*** -0.475*** -0.547*** -0.633*** -0.344*** -0.589***
(0.064) (0.061) (0.061) (0.062) (0.059) (0.062) (0.063)

R2 0.678 0.719 0.694 0.697 0.651 0.738 0.741
N of obs. 3816 3853 3837 3795 3700 3798 3579

The table reports the results of the reduced-form VAR model for return, investor attention and realized

volatility for each of the stock market indexes. Rt−1, ..., Rt−4 indicate the coefficients on lagged return,

SV It−1, ..., SV It−4 indicate the coefficients on lagged investor attention, RVt−1, ..., RVt−4 indicate the

coefficients on lagged realized volatility. Cons indicates the coefficient on the constant. The standard

errors are in parentheses. ***, ** and * indicate statistical significance at the 1%, 5% and 10% levels

respectively.
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Chapter 3

Combining econometrics and
machine learning to forecast
realized volatility of exchange
rates

3.1 Introduction

Volatility is a key concept in finance and has important applications in risk
management, portfolio analysis, asset pricing and derivative valuation. The
high predictability of volatility was extensively documented in the literature
(see, e.g., Poon and Granger, 2003) and led to the development of massive
research area devoted to volatility modeling and forecasting. According to
Brandt and Jones (2006), there are two main factors that determine the ef-
ficiency and accuracy of a volatility model. First of all, as true volatility
is not observable directly, its modeling inevitably depends on the adequacy
of the proxy (measure) of the true unobserved volatility that is used in the
model. Traditional and commonly used volatility proxies are based on ab-
solute or squared returns. These measures are known to be unbiased but
relatively noisy estimators of the latent integrated volatility as they include
no information about the intra-period price fluctuations.

Given the growing availability of high frequency financial data in recent
decades, attention of researchers have moved to alternative volatility esti-
mators. Andersen et al. (2001) proposed a new volatility measure based on
intra-period high frequency returns which is called realized volatility. Re-
alized volatility has proven to be much less noisy volatility estimator than
traditional proxies. Moreover, under realized volatility approach, financial
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volatility is treated as observable variable and can be modeled directly.
Another volatility estimator that exploits information about the intra-

period price movements is called range-based volatility. This estimator, pro-
posed in earlier works of Parkinson (1980) and Garman and Klass (1980), is
defined as the scaled difference between the intra-period highest and lowest
prices. As noted by Molnár (2012), range-based volatility is also less noisy
volatility proxy than squared returns.

Precise specification of the process that drives volatility dynamics is the
second factor determining the accuracy and efficiency of a volatility model.
For many years, autoregressive conditional heteroscedasticity (ARCH) and
generalized autoregressive conditional heteroscedasticity (GARCH) models
developed by Engle (1982) and Bollerslev (1986) respectively remained the
most popular financial volatility models. Under ARCH and GARCH ap-
proach, volatility measured by squared returns follows a linear autoregres-
sive dynamics. ARCH and GARCH framework gave rise to dozens of its
advanced modifications developed to capture different stylized facts of finan-
cial returns and volatility, such as clustering, long memory, leptokurtosis and
leverage effects. An alternative approach of volatility modeling is to model
the series of realized volatility directly, rather than applying GARCH-type
models to the series of returns. Autoregressive fractionally integrated moving
average (ARFIMA) of Granger and Joyeux (1980) and Hosking (1981) is a
widely used modeling approach to capture both long memory and clustering
in realized volatility.

Qualitatively similar to ARFIMA but easier to estimate model of realized
volatility is the heterogeneous autoregressive (HAR) model of Corsi (2009).
The model is based on the Heterogeneous Market Hypothesis and the asym-
metric propagation of volatility between long and short horizons. It includes
an additive cascade of different volatility components generated by the ac-
tions of various types of financial market participants. This additive cascade
implies an autoregressive-based model of volatility with the feature of consid-
ering volatilities realized over different time horizons. Similar to ARFIMA,
the HAR model can successfully imitate the long memory volatility dynam-
ics.

Recently, multi-component volatility models have attracted growing at-
tention of researchers and practitioners. One of the most famous component
GARCH models was introduced by Engle and Lee (1999). In the model,
the dynamics of volatility is decomposed into two additive components: a
highly persistent long-run component and a strongly stationary transitory
short-run component. Many empirical studies find that the two-component
GARCH models outperform the one-component specifications in explaining
the dynamics of financial volatility (see, e.g., Engle and Rosenberg, 2000;
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Adrian and Rosenberg, 2008; Christoffersen et al., 2008; Engle, Ghysels,
and Sohn, 2013). In a number of works, two-component models are applied
to range-based volatility measures. For example, Brandt and Jones (2006)
use one-component and two-component EGARCH model for the range-based
volatility of the S&P500 index and show that the two-component model pro-
vides better fit to the data. Harris, Stoja, and Yilmaz (2011) use the two-
component cyclical volatility model in the spirit of Engle and Lee (1999) to
forecast exchange rates range-based volatility. In the first step, they apply
the low-pass filter of Hodrick and Prescott (1997) to decompose the exchange
rates range-based volatility into the long-run trend and the short-run cyclical
components. In the second step, the two components are forecasted sepa-
rately using the simple random walk model for the trend component and
AR(1) model for the cyclical component. The final forecast of the volatility
series is the sum of the individual forecasts of the trend and the cyclical
components. According to Harris, Stoja, and Yilmaz (2011), the cyclical
volatility model using the Hodrick-Prescott filter provides an improvement
in forecast performance over the two-component EGARCH and FIEGARCH
models, in terms of both accuracy and informational content. Engle and
Sokalska (2012) propose multiplicative decomposition of volatility and apply
the multiplicative component GARCH model to forecast intraday volatility in
the US equity market. Hansen, Huang, and Shek (2012) propose an interest-
ing modification of the GARCH approach which is called Realized GARCH.
The Realized GARCH model includes both the latent and the observed (real-
ized) volatility components and assumes both linear and log-linear volatility
dynamics. An empirical application of the Realized GARCH model leads to
improvements in volatility modeling over the standard GARCH model.

Alternative to the traditional econometric models, the development of ar-
tificial intelligence methods has led to the widespread use of machine learning
algorithms in the field of financial modeling and forecasting. For example,
Kimoto et al. (1990) propose artificial neural network (ANN) system for stock
market prediction. Nikolopoulos and Fellrath (1994) use genetic algorithms
and neural networks to develop an expert system for investment advising.
Pai and Lin (2005) apply ARIMA model and support vector machines for
stock price prediction. Fischer and Krauss (2018) compare the performance
of different machine learning algorithms in forecasting returns of the S&P500
index.

A number of studies adapted machine learning methods to volatility fore-
casting. Rosa et al. (2014) suggest an evolving fuzzy neural network mod-
elling approach for forecasting realized volatility of several equity market in-
dices. Barunık and Křehlık (2016) apply artificial neural networks to forecast
energy market realized volatility. They document the superior forecasting
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performance of the machine learning algorithms compared to the traditional
econometric models such as ARFIMA and HAR. Vortelinos (2017) compares
volatility forecasting accuracy of machine learning algorithms (such as princi-
pal components analysis and artificial neural networks) against econometric
models (such as GARCH and HAR). His findings indicate the similar per-
formance of the principal components and HAR models. Fičura et al. (2017)
apply echo state neural networks to forecast realized volatility of major stock
market indices.

Some studies proposed a hybrid approach of volatility forecasting that is
based on combination of GARCH-type models with artificial neural networks.
The idea of the hybrid approach is that the input variables for neural net-
works are initially extracted by applying GARCH-type models to the data.
There is growing empirical evidence that the hybrid GARCH-ANN approach
is more efficient in terms of volatility forecasting accuracy than just basic
GARCH-type models (see, e.g., Roh, 2007; Wang, 2009; Hajizadeh et al.,
2012; Kristjanpoller, Fadic, and Minutolo, 2014; Monfared and Enke, 2014;
Kristjanpoller and Minutolo, 2016; Kim and Won, 2018; etc).

Yao et al. (2017) suggested a neural network modification of the cycli-
cal volatility model of Engle and Lee (1999) and Harris, Stoja, and Yil-
maz (2011). According to the modified approach, the time series of realized
volatility is decomposed by the low-pass Hodrick-Prescott filter into the long-
run and short-run components which are then modelled by the autoregressive
neural network and AR(1) model respectively. Yao et al. (2017) show that
using the autoregressive neural network instead of the random walk model
to forecast the long-run component of volatility made it possible to improve
the forecast accuracy in comparison with the basic model of Harris, Stoja,
and Yilmaz (2011). Cao, Liu, and Zhai (2018) proposed a further improve-
ment of the model by using ARMA model to forecast the short-run volatility
component instead of the simple AR(1) specification.

Inspired by the previous research in the field of multi-component and
hybrid econometrics-machine learning volatility models, we propose a new
two-component volatility model that is based on methodological combination
of long memory econometrics with artificial neural networks. In contrast to
the described above approach of combining machine learning with GARCH-
type models, we work directly with time series of realized volatility as it is
much less noisy and generally more adequate volatility proxy than squared
returns. Our approach is based on the widely known proposition that the
dynamics of financial volatility includes not only linear but also complex
nonlinear dependencies (see, e.g., Diebold and Lopez, 1995; Hsieh, 1995;
Robinson and Zaffaroni, 1998; Christoffersen and Diebold, 2006; Raggi and
Bordignon, 2012; etc). Moreover, volatility dynamics may be nonlinear in
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ways missed by standard volatility models. For example, Dıaz, Grau-Carles,
and Mangas (2002) show that standard ARFIMA model, though effective
in describing long memory, is not able to capture the nonlinearities in the
time series of financial volatility. To model a time series that is generated by
a complex composition of linear and nonlinear underlying processes, Zhang
(2003) suggested a hybrid methodology combining ARIMA framework with
artificial neural networks. Under the approach, the time series under study
is decomposed into the linear and nonlinear components, then ARIMA is
used to model the linear part and neural network is used to model the non-
linear part of the time series. Thus, the method of Zhang (2003) exploits
both the strength of ARIMA in linear modeling and the flexible nonlinear
modeling capability of artificial neural networks. We adapt the approach
of Zhang (2003) to the task of modeling realized volatility. Our proposed
hybrid methodology consists of two steps. In the first step, ARFIMA is
used to model the linear long memory component of realized volatility. In
the second step, the nonlinear autoregressive neural network (NAR) is used
to analyze the nonlinear component of realized volatility in the form of the
residuals from the ARFIMA model. Thus, the suggested hybrid ARFIMA-
ANN model is intended to capture both the phenomena of long memory and
nonlinearity in the dynamics of realized volatility. To the best of our knowl-
edge, our research is the first work where the stated hybrid approach of time
series modeling is applied in the context of financial volatility.

We implement the hybrid ARFIMA-ANN model using the time series
of daily realized volatility of the GBP/USD and the EUR/GBP foreign ex-
change rates over the period from January 4, 2010 to December 30, 2016.
We use the model to generate a series of one-step-ahead out-of-sample fore-
casts of the realized volatility of the exchange rates. As a benchmark, we
compare the forecasting accuracy of the hybrid ARFIMA-ANN model with
those of the standard random walk model, ARFIMA model and the nonlin-
ear autoregressive neural network applied directly to the series of realized
volatility. We also compare the forecasting accuracy of the proposed model
with those of the two-component cyclical volatility model of Harris, Stoja,
and Yilmaz (2011), Yao et al. (2017) and Cao, Liu, and Zhai (2018). More-
over, we propose a modification of the cyclical volatility model where we
use artificial neural networks to forecast both trend and cyclical components
of the realized volatility. We show that the hybrid ARFIMA-ANN model
and the proposed modification of the cyclical volatility model provide an im-
provement in forecast performance over the competing approaches, in terms
of both accuracy and informational content. We make a conclusion about
the benefits and perspectives of using multi-component models and combina-
tion of econometrics and machine learning in predictive modeling of financial
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volatility.
The remainder of the chapter is organized as follows. In Section 3.2, we

present the basic theoretical framework of the models under consideration.
Section 3.3 describes the data used in the empirical analysis and the forecast
evaluation criteria. Section 3.4 presents the empirical results. In Section 3.5,
we provide a summary and suggest potential directions of further research.
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3.2 Theoretical framework

3.2.1 Realized volatility

Here we formally introduce the concept of realized volatility. Assume that
the logarithmic price p(t) of a liquid asset follows the standard continuous
time process

dp(t) = µ(t) dt+ σ(t) dW (t), (3.1)

where W (t) is a standard Brownian motion, µ(t) is an instantaneous condi-
tional mean and σ(t) is an instantaneous conditional volatility of the process.
The integrated volatility associated with day t, for this diffusion process, is
the integral of the instantaneous volatility over the one day interval (t−1d; t),
where a full trading day is represented by the time interval 1d,

σ
(d)
t =

( ∫ t

t−1d

σ2(ω)dω

)1/2

. (3.2)

As firstly proposed by Merton (1980) and then by Andersen et al. (2001),
the sum of intraday squared returns can be used to approximate the inte-
grated volatility σ

(d)
t to an arbitrary precision. The nonparametric estimator

of the integrated (actual) volatility based on the sum of intraday squared re-
turns is called realized volatility. Following Andersen et al. (2001) and Corsi
(2009), the realized volatility over a time interval of one day can be defined
as

RV
(d)
t =

√√√√M−1∑
j=0

r2
t−j∆, (3.3)

where ∆ = 1d
M

(1d indicates one trading day; M indicates the number of
intraday periods) and rt−j∆ = p(t−j∆)−p(t−(j+1)∆) defines continuously
compounded ∆-frequency returns, that is, intraday returns sampled at time
interval ∆ (the subscript t indexes the day, while j indexes the time within
the day t).

In other words, realized volatility over a time interval of one day is the
square root of the sum of squared high frequency intraday returns. Under
certain assumptions, realized volatility is an unbiased estimator of the true
integrated volatility. Moreover, Andersen et al. (2003) show that, in terms
of out-of-sample forecasting accuracy, direct time series modeling of realized
volatility strongly outperforms the models of GARCH family.
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3.2.2 ARFIMA model

Autoregressive fractionally integrated moving average (ARFIMA), proposed
by Granger and Joyeux (1980) and Hosking (1981), is the popular approach
to model long memory in the dynamics of a time series. ARFIMA model is
a generalization of autoregressive integrated moving average (ARIMA) - the
famous linear univariate time series model of Box and Jenkins (1976).

Formally, an ARFIMA(p, d, q) process yt can be defined as

φ (L) (1− L)d yt = θ (L) εt, (3.4)

where L is the backshift (lag) operator, φ (L) = 1 −
∑p

j=1 φjL
j and θ (L) =

1 +
∑q

j=1 θjL
j are autoregressive and moving average polynomials of orders

p and q respectively, εt is a white noise process and −0.5 < d < 0.5.
The fractional differencing operator (1− L)d can be represented in the

following form using the binomial series expansion:

(1− L)d =
∞∑
j=0

Γ (j − d)

Γ (j + 1) Γ (−d)
Lj, (3.5)

where Γ (·) is the gamma function.
ARFIMA model offers a parsimonious way to model a long memory - the

phenomenon of a slowly decaying autocorrelation function of a time series.
The characteristics of an ARFIMA(p, d, q) series depend on the value of the
fractional differencing parameter d. For −0.5 < d < 0.5 the process is sta-
tionary and for 0 < d < 0.5 the process exhibit long memory properties.
In an ARFIMA(p, d, q) model, parameter d describes the long run behav-
ior of the underlying process yt (it describes the autocorrelation structure
of distant observations of the process), whereas autoregressive and moving
average polynomials φ (L) = 1 −

∑p
j=1 φjL

j and θ (L) = 1 +
∑q

j=1 θjL
j de-

scribes the behavior of the series in the short run (and, respectively, capture
the process’s autocorrelation structure for low lags).

3.2.3 Nonlinear autoregressive neural networks for time
series modeling

Modeling complex nonlinear dependencies of a time series is a nontrivial task
that, often, cannot be successfully solved within the framework of traditional
econometric models. The rapid development of statistical and machine learn-
ing methods in recent decades has led to the emergence of artificial neural
networks which are now widely used in time series analysis for modeling
nonlinearities in the data.
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As stated by Zhang (2003), ANNs are flexible computing frameworks for
modeling a broad range of nonlinear problems. Artificial neural networks
are universal approximators which are able to approximate a large class of
functions with a high degree of accuracy. The power of ANNs comes from
the parallel processing of the information from the data. ANNs provide a
substantial advantage over other classes of nonlinear models as they do not
require any prior assumption of the model specification in the process of
model building. Instead, the model specification is directly determined by
the characteristics of the time series data.

Nowadays, the most popular neural network model form for time series
modeling and forecasting is a single hidden layer feedforward neural network.
Feedforward neural network model analyzes the relationship between the
output yt and the inputs (yt−1, yt−2, ..., yt−p) and can be formally written as

yt = α0 +

q∑
j=1

αjg

(
β0j +

p∑
i=1

βijyt−i

)
+ εt, (3.6)

where αj(j = 0, 1, 2, ..., q) and βij(i = 0, 1, 2, ..., p; j = 1, 2, ..., q) are the
parameters of the model to be estimated (which are sometimes called the
connection weights), p is the number of input nodes (lags), q is the num-
ber of hidden nodes (neurons) and g is the hidden layer transfer function
which is usually deterministic and symmetrically nonlinear. In this study,
the hyperbolic tangent sigmoid function is used as the transfer function.1

In fact, the artificial neural network defined above performs as a uni-
variate nonlinear autoregression. In other words, as stated in Zhang (2003),
nonlinear autoregressive neural network performs a nonlinear functional map-
ping from the past observations (yt−1, yt−2, ..., yt−p) to the future value yt of
the time series, i.e.,

yt = f (yt−1, yt−2, ..., yt−p, w) + εt, (3.7)

where f is a nonlinear function determined by network structure and con-
nection weights, w is a vector of all parameters of the model.

The single hidden layer feedforward neural network given in Equation 3.6
is able to arbitrary well approximate any nonlinear function as the number of
hidden nodes q is sufficiently large (Hornik, Stinchcombe, and White, 1989,
Siegelmann, Horne, and Giles, 1997).

One of the most important tasks of ANN modeling is to determine the
appropriate architecture of a network, that is, the number of hidden nodes
q and the number of lagged observations p. The number of hidden nodes

1The hyperbolic tangent sigmoid function is defined as: tanh(x) = 2
1+e−2x + 1.
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determines the capacity of a model, its ability to capture complicated pat-
terns. The number of lagged observations (that is also the dimension of the
input vector) describes the nonlinear autocorrelation structure of the time
series. In practice, however, there is no systematic rule that can be used
to choose the best architecture of the neural network, the choice of the p
and q is always data dependent. Generally, a number of experiments with
different values of the parameters p and q is conducted in order to select the
appropriate architecture.

Practically, relatively simple ANN models with a small number of hidden
nodes often show good performance in terms of out-of-sample forecasting.
Apparently, the simply structured models are less prone to the overfitting
effect. Overfitting is a modeling error which occurs when a model excellently
fits in-sample data but has poor generalization ability for data out of the
sample (Zhang, 2003). Overfitting is a typical problem of machine learning
algorithms.

After selecting the values of p and q, the next step in the process of ANN
modeling is to estimate the set of parameters w. The process of estimating
the unknown set of parameters for a given sample of data is known as training
of the neural network. In the process of training, the set of parameters is
estimated in a way to minimize a certain accuracy criterion, such as the
mean squared error. This is done using one of the complicated algorithms
of nonlinear optimization. In this study, the training process of the neural
networks is performed with the Levenberg-Marquardt algorithm. In order
to prevent overfitting, a special validation sample is used. Unlike training
sample, validation sample is used not to estimate the set of parameters w
but to measure network generalization. In the process of training, when the
error over the training sample decreases but the error over the validation
sample increases or stays the same, the training is stopped. The estimated
neural network model is usually evaluated using a separate hold-out sample
that was not involved in the process of training and validation. In practice,
a neural network is usually retrained several times to ensure that a model of
good accuracy has been found.

3.2.4 The hybrid ARFIMA-ANN model of realized volatil-
ity

Financial volatility is a complicated stochastic process which includes number
of sophisticated patterns. Motivated by the previous findings that the com-
plex nature of volatility can be well described by multi-component structures,
we propose a new model where volatility is a function of linear and nonlinear
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factors. In line with the works of Andersen et al. (2001), Corsi (2009), Yao
et al. (2017), etc., we use realized volatility as an advanced proxy of the true
unobserved volatility.

Following the hybrid time series modeling methodology of Zhang (2003),
we assume that realized volatility σt (as defined in Equation 3.3) follows a
two-component process given by

σt = Lt +Nt, (3.8)

where Lt is the linear component and Nt is the nonlinear component.
In other words, we assume that realized volatility can be decomposed

into the linear and the nonlinear components and that there is an additive
relationship between the two components. The linear and the nonlinear
components of the time series of realized volatility are modeled separately
by different methods. Hence, the proposed hybrid methodology involves
essentially two steps. In the first step, ARFIMA is used to model the linear
component and also to capture the long-range dependence in volatility. The
residuals from the fitted linear ARFIMA model will contain the nonlinear
relationships. The series of residuals at time t from the linear model, denoted
as et, can be generated as

et = σt − L̂t, (3.9)

where L̂t is the predicted value at time t from the estimated linear ARFIMA
model and σt is the actual value of realized volatility at time t.

In the second step, the residual series et is modelled independently using
the nonlinear autoregressive artificial neural network to discover the non-
linear relationships in volatility. The ANN model for the residuals can be
represented as

et = f (et−1, et−2, ..., et−n, w) + εt, (3.10)

where f is a nonlinear function determined by the neural network, w is a
vector of parameters and n is a number of input nodes (lags). Denote N̂t as
the forecast of et, the combined forecast is:

σ̂t = L̂t + N̂t. (3.11)

To sum up briefly, the proposed hybrid ARFIMA-ANN methodology of
realized volatility modeling and forecasting consists of two steps. In the
first step, ARFIMA is used to model the linear long memory component
of realized volatility. In the second step, the nonlinear autoregressive neu-
ral network (NAR) is used to analyze the nonlinear component of realized
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volatility in the form of the residuals from the ARFIMA model. Finally, the
predictions obtained on each step are summed. We propose that it could
be advantageous to model linear and nonlinear patterns separately by us-
ing different models and then combine the forecasts to improve the overall
modeling and forecasting performance. The suggested hybrid method, that
exploits the strength of both ARFIMA and ANN approaches and has both
linear and nonlinear modeling capabilities, can be a powerful strategy for the
practical purposes of realized volatility modeling.

3.2.5 The cyclical model of realized volatility

The cyclical volatility model, developed by Harris, Stoja, and Yilmaz (2011)
and modified by Yao et al. (2017) and Cao, Liu, and Zhai (2018), is based on
the additive decomposition of volatility into the long-run and the short-run
components. Formally, let us assume that realized volatility σt (as defined
in Equation 3.3) follows a two-component process given by

σt = Lt + St, (3.12)

where Lt is the long-run trend component and St is the short-run cyclical
component.

Decomposition of the realized volatility series into the two components is
done nonparametrically using the special filtering method. Firstly, the low-
pass filter of Hodrick and Prescott (1997) is applied to extract the long-run
trend component from the time series. The Hodrick-Prescott filter is well
known for its application in macroeconomics. The objective function for the
Hodrick-Prescott filter filter has the following form:

min
L

T∑
t=1

(σt − Lt)2 + λ

T−1∑
t=2

((Lt+1 − Lt)− (Lt − Lt−1))2 , (3.13)

where σt is a raw time series of realized volatility, Lt is the long-run com-
ponent, λ is a smoothing parameter and t = 1, ..., T . After extracting the
long-term component Lt, the short-term cyclical component St can be ob-
tained simply by St = σt − Lt.

The extracted long-run and short-run components Lt and St are then
modeled and forecasted separately using different approaches. In the basic
version of the cyclical volatility model of Harris, Stoja, and Yilmaz (2011),
the long-run component of the volatility is assumed to be following a random
walk over the forecast horizon, so that L̂t = Lt−1. The short-run component
is assumed to follow an AR(1) process, so that Ŝt = αSt−1 + εt, where the
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parameter α measures the speed of reversion of the cyclical component of
volatility to the long-run trend. In the modified version of the cyclical volatil-
ity model of Yao et al. (2017) and Cao, Liu, and Zhai (2018), the long-run
trend component of the volatility follows the nonlinear autoregressive pro-
cess as given in Equation 3.7 and is modeled by ANN. The short-run cyclical
component is assumed to follow an AR(1) or ARMA processes.

In the present chapter, we also propose a new modification of the cycli-
cal volatility model. We assume that both the long-run and the short-run
components follow the nonlinear autoregressive process and use the neural
network approach to separately model and forecast both components. Here
we are motivated by the question whether the ANN approach is more effec-
tive in forecasting the short-term cyclical component of the realized volatility
than the simple linear ARMA framework.

The forecast of the time series of realized volatility at time t, denoted as σ̂t
is the additive combination of the individual forecasts of the long-run trend
component L̂t and the short-run cyclical component Ŝt at time t. Formally,

σ̂t = L̂t + Ŝt. (3.14)
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3.3 Data and forecast evaluation

3.3.1 Data

We use the two-component volatility models defined in Section 3.2 to fore-
cast the daily realized volatility of the GBP/USD and the EUR/GBP foreign
exchange rates. Our dataset consists of the high frequency tick-by-tick spot
exchange rates quotation data for the GBP/USD and the EUR/GBP cur-
rency pairs over a sample period from January 4, 2010 to December 30,
2016. Logarithmic middle prices are computed as averages of the logarith-
mic bid and ask quotes. In order to avoid complicating the inference by the
slower trading activity on weekends and holiday periods, we exclude from the
data sample all the price quotations from Saturday 00:00:00 GMT to Sunday
23:59:59 GMT and some other inactive days.

The realized volatility estimator is constructed using the foreign exchange
rates intraday logarithmic returns sampled at 5 minutes frequency. There is
a massive empirical literature claiming that, for the purposes of calculating
realized volatility, 5 minutes is an appropriate time scale of returns sampling
as it provides an optimal trade off between the precision of the volatility
estimator and bias induced by the market microstructure noise (see, e.g.,
Barndorff-Nielsen and Shephard, 2002, Andersen et al., 2003, etc). The
obtained time series of daily realized volatility consists of 1800 observations
over the full sample period for each currency pair. The first 1621 observations
are used for the initial in-sample estimation of the models, while the remained
data of 179 observations is used for out-of-sample evaluation (in other words,
approximately 90% of the data is used for in-sample estimation and 10%
of the data is used for out-of-sample testing). For the purposes of ANN
modeling, the in-sample data is again divided into training sample (75% of
the original series) and validation sample (15% of the original series).

Table 3.1 reports descriptive statistics for the time series of realized
volatility of the GBP/USD and the EUR/GBP exchange rates for the full
sample of 1800 observations. The table shows the mean, standard deviation,
minimum, maximum, skewness, kurtosis and the Ljung-Box (Ljung and Box,
1978) portmanteau test Q-statistics for up to 50-lags, 100-lags and 200-lags
serial correlation in the realized volatility. The two series of realized volatility
are clearly non-normal and highly autocorrelated.

Plots (a) and (b) of Figure 3.1 show the time series of the GBP/USD
and the EUR/GBP realized volatility over the full sample period of 1800
observations. Plots (c) and (d) of Figure 3.1 show the correlograms of the
the GBP/USD and the EUR/GBP realized volatility for up to 200 lags while
plots (e) and (f) present the corresponding periodograms. Notably, the au-
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tocorrelation functions decay very slowly and the spectral density functions
have a spike at zero frequency indicating the presence of long memory dynam-
ics in the both time series of realized volatility. Table 3.2 reports the values of
the long memory parameter estimated by the semiparametric methodology
of Geweke and Porter-Hudak (1983). The values of the parameter are be-
tween 0 and 0.5 and highly statistically significant, that is another evidence
of the long-range dependence in the data. As we can see, the behaviour of
the realized volatility of both currency pairs is consistent with the widely
documented styled facts of volatility clustering and long memory.

Table 3.1: Descriptive statistics

GBP/USD EUR/GBP

Observations 1800 1800
Mean 0.0054 0.0053

Std Dev 0.0030 0.0024
Minimum 0.0007 0.0002
Maximum 0.0690 0.0475
Skewness 10.4635 6.4321
Kurtosis 182.3159 93.5568
Q(50) 4840.3164*** 5436.4014***
Q(100) 7491.3163*** 8683.9294***
Q(200) 8520.6530*** 11947.3126***

The table reports descriptive statistics for the time series of realized volatility of the GBP/USD and the

EUR/GBP exchange rates: the mean, standard deviation, minimum, maximum, skewness, kurtosis and

the Ljung-Box portmanteau test Q-statistics for up to 50-lags, 100-lags and 200-lags serial correlation.

The sample period is from January 4, 2010 to December 30, 2016 (1800 observations). ***, ** and *

indicate statistical significance at the 1%, 5% and 10% levels respectively.

Table 3.2: GPH estimate of the long memory parameter

GBP/USD EUR/GBP

0.358*** 0.402***

The table reports the values of the long memory parameter d estimated by the semiparametric methodology

of Geweke and Porter-Hudak (1983) for the time series of realized volatility for both GBP/USD and

EUR/GBP currency pairs. The number of frequencies used in the GPH regression is chosen to be N0.5,

where N is the sample size. The sample is 1800 observations for each time series. ***, ** and * indicate

statistical significance at the 1%, 5% and 10% levels respectively.

3.3.2 Forecast evaluation

We apply the proposed hybrid ARFIMA-ANN model to generate the itera-
tive one-step-ahead forecasts of the realized volatility over the out-of-sample
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Figure 3.1: The time series of realized volatility
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(a) GBP/USD realized volatility
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(e) Periodogram of GBP/USD realized
volatility
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period of 179 observations. As a benchmark, we compare the forecasting
accuracy of the hybrid ARFIMA-ANN model with those of the standard ran-
dom walk model, ARFIMA model and the nonlinear autoregressive neural
network applied directly to the series of realized volatility. We also compare
the forecasting performance of the proposed hybrid ARFIMA-ANN approach
with those of the different versions of the cyclical volatility model which are
described in Section 3.2. In total, we estimate 8 models for each of the two
considered time series of realized volatility. Table 3.3 shows the complete list
of the analyzed volatility models along with the corresponding notations.2

Table 3.3: Volatility models

Notation Description
RW The random walk model applied directly to the time series of realized volatility.
ARFIMA ARFIMA model applied directly to the time series of realized volatility.

ANN
Nonlinear autoregressive artificial neural network ap-
plied directly to the time series of realized volatility.

ARFIMA-ANN
The proposed hybrid model. The linear component of the realized

volatility is modeled using ARFIMA while the nonlinear component
is modeled using the nonlinear autoregressive artificial neural network

CV(RW-AR(1))
The cyclical volatility model, version of Harris, Stoja, and Yilmaz (2011).

The trend component of the realized volatility is modeled using the random
walk model while the cyclical component is modeled using the AR(1) model.

CV(ANN-AR(1))

The cyclical volatility model, version of Yao et al. (2017).
The trend component of the realized volatility is modeled us-
ing the nonlinear autoregressive artificial neural network while

the cyclical component is modeled using the AR(1) model.

CV(ANN-ARMA)

The cyclical volatility model, version of Cao, Liu, and Zhai
(2018). The trend component of the realized volatility is mod-
eled using the nonlinear autoregressive artificial neural network

while the cyclical component is modeled using the ARMA model.

CV(ANN-ANN)
The proposed modification of the cyclical volatility model. Both the

trend and the cyclical components of the realized volatility is modeled
separately using the nonlinear autoregressive artificial neural networks.

The table reports the complete list of the volatility models analyzed in this chapter, along with the

corresponding notations. Each model is used to forecast realized volatility of the GBP/USD and the

EUR/GBP foreign exchange rates. For more detailed description of the considered models, see Section

3.2.

The forecasting accuracy of the analyzed models is evaluated and com-
pared using the following criteria: root mean squared error (RMSE), mean
absolute error (MAE) and the coefficient U of Theil (Theil, 1966). A model
that minimizes these criteria is considered superior. Formally, the criteria
are given by

2In order to avoid comparing volatility models which are based on different volatility
proxies, in this work we do not use as a benchmark the models of GARCH family.

107



RMSE =

√√√√ 1

T

T∑
t=1

(σt − σ̂t)2 (3.15)

MAE =
1

T

T∑
t=1

|σt − σ̂t| (3.16)

U =

(∑T
t=1 (σt − σ̂t)2

) 1
2

(∑T
t=1 σ

2
t

) 1
2

, (3.17)

where σt is the actual value of the realized volatility at time t, σ̂t is the
forecast of the realized volatility at time t and T is the size of the out-of-
sample period.

As stated by Patton (2011), the use of a conditionally unbiased, but
imperfect, volatility proxy can lead to distortion in standard methods for
comparing volatility forecasts. Patton (2011) considers a loss function as
robust if its feasible ranking of two forecasts obtained using an imperfect
volatility proxy is the same as the infeasible ranking that would be obtained
using the unobservable true conditional volatility. In particular, the class of
MSE loss functions is found to be robust for various volatility proxies. In the
present work, we use the robust MSE loss function in the form of RMSE.

Moreover, we also use the Mincer-Zarnowitz regression (Mincer and Zarnowitz,
1969) to measure the efficiency and unbiasedness of a model’s forecast. For-
mally, the Mincer-Zarnowitz regression is given by

σt = β0 + β1σ̂t + ut, (3.18)

where σt is the actual value of the realized volatility at time t, σ̂t is the
forecast of the realized volatility at time t, β0 and β1 are the parameters of
the regression and ut is the error term.

In other words, the Mincer-Zarnowitz regression is the simple OLS re-
gression of the actual value of the realized volatility on the corresponding
forecast. The null hypothesis of the forecast’s unbiasedness and efficiency
can be tested by the joint test that β0 = 0 and β1 = 1. Rejection of the
null hypothesis indicates that the forecast is biased and inefficient. The
Wald test is used to test the null hypothesis. Furthermore, the coefficient of
determination R2 of the Mincer-Zarnowitz regression is a measure of the in-
formation content of a model’s forecast. Thus, the R2-coefficient can be used
to evaluate and compare the explanatory power of the considered volatility
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models. A model that maximizes the R2 of the Mincer-Zarnowitz regression
is considered superior.
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3.4 Empirical results

In this section, we describe the process of practical implementation of the
considered models to forecast the realized volatility of the GBP/USD and
the EUR/GBP exchange rates and analyze the obtained results.

We begin with the proposed hybrid ARFIMA-ANN model. Firstly, we
estimate an ARFIMA(p, d, q) model to forecast the linear component of the
realized volatility. Akaike Information Criterion (AIC) is used to select the
best in-sample ARFIMA specification across various possible specifications
with p = 0, 1, 2, 3 and q = 0, 1, 2, 3.3 The model which gives the lowest value
of the AIC is selected as the best model. Table 3.4 reports the values of the
AIC of the various estimated ARFIMA specifications. For the GBP/USD
and the EUR/GBP realized volatility, the best models are found to be the
ARFIMA(2, d, 3) and the ARFIMA(3, d, 3) respectively.

Table 3.4: AIC values of the estimated ARFIMA(p, d, q) specifications

ARFIMA AIC (GBP/USD) AIC (EUR/GBP)

(0, d, 0) -15491.88 -16616.18
(1, d, 0) -15521.19 -16617.43
(1, d, 1) -15527.43 -16628.88
(2, d, 1) -15530.53 -16628.03
(2, d, 2) -15530.61 -16630.25
(1, d, 2) -15529.02 -16627.68
(0, d, 2) -15524.43 -16624.73
(0, d, 1) -15524.66 -16618.21
(2, d, 0) -15520.44 -16619.48
(3, d, 2) -15538.01 -16635.62
(3, d, 3) -15536.87 -16638.53*
(2, d, 3) -15538.82* -16634.14
(3, d, 1) -15530.85 -16636.65
(1, d, 3) -15530.95 -16633.91
(3, d, 0) -15527.38 -16638.08
(0, d, 3) -15532.85 -16634.43

The table reports the values of the Akaike Information Criterion (AIC) of the various estimated specifica-

tions of an ARFIMA(p, d, q) model with p = 0, 1, 2, 3 and q = 0, 1, 2, 3. The sample is 1621 observations

for the both time series of the GBP/USD and the EUR/GBP realized volatility. * indicates the best

fitting specification.

Table 3.5 shows the results of the in-sample estimation of the ARFIMA(2, d, 3)
and the ARFIMA(3, d, 3) models applied to the time series of the GBP/USD
and the EUR/GBP realized volatility respectively. All the estimated coeffi-
cients are highly significant. Note that the estimated values of the fractional
differencing parameter d lie within a range from 0 to 0.5, indicating the long

3Although not reported here, the best in-sample specification is assessed up to p = 4
and q = 4.
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memory dynamics of the time series. The estimated models are then used to
obtain the series of out-of-sample predictions.

Table 3.5: ARFIMA estimation results

Parameter ARFIMA(2, d, 3) GBP/USD ARFIMA(3, d, 3) EUR/GBP

φ̂1 0.5794*** 0.9127***

(0.0192) (0.1012)

φ̂2 -0.9736*** -1.1611***

(0.0194) (0.0699)

φ̂3 - 0.3417***

(0.0959)

d̂ 0.4070*** 0.4720***

(0.0337) (0.0317)

θ̂1 -0.8347*** -1.0937***

(0.0474) (0.1019)

θ̂2 1.1002*** 1.2351***

(0.0357) (0.0790)

θ̂3 -0.2580*** -0.5178***

(0.0441) (0.0957)
Cons 0.0055*** 0.0054***

(0.0010) (0.0019)

The table reports the values of the estimated coefficients with the corresponding standard errors (in brack-
ets) of the ARFIMA(2, d, 3) and the ARFIMA(3, d, 3) models applied to the time series of the GBP/USD
and the EUR/GBP realized volatility respectively. The sample is 1621 observations. ***, ** and * indicate
statistical significance at the 1%, 5% and 10% levels respectively.

To explore the presence of nonlinear relationships in the realized volatil-
ity, we extract and analyze the residuals from the estimated linear ARFIMA
models. Table 3.6 shows the results of the Brock, Dechert and Scheinkman
(BDS) test for independence (Brock et al., 1996) applied to the series of the
in-sample and out-of-sample residuals. The BDS test is a nonparametric
method for testing for serial dependence and nonlinear structure in a time
series.4 The test can be considered as a nonlinear analog of the Ljung-Box
(Ljung and Box, 1978) portmanteau test. The null hypothesis of the test is
that a time series process is independent and identically distributed. As we
can see from Table 3.6, the null hypothesis of the residuals being indepen-
dent and identically distributed is overwhelmingly rejected. This indicates
the presence of certain nonlinear dependencies in the series of residuals. Ap-
parently, the dynamics of the realized volatility is driven by some nonlinear
patterns which are not captured by the estimated ARFIMA models. Our
finding is consistent with the empirical evidence in the previous literature
that ARFIMA model is not able to capture nonlinear relationships in volatil-
ity dynamics (see., e.g., Dıaz, Grau-Carles, and Mangas, 2002).

4The description of the BDS test is provided in Section 3.6.1 (Appendix).
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Table 3.6: BDS test results on the residuals from the estimated ARFIMA
models

ARFIMA(2, d, 3) GBP/USD ARFIMA(3, d, 3) EUR/GBP
m = 2 10.4684*** 9.9212***
m = 3 11.2007*** 10.8257***
m = 4 11.6436*** 10.8999***
m = 5 12.1008*** 11.3050***

The table reports the test statistics of the Brock, Dechert and Scheinkman (BDS) test for independence on

the series of the in-sample and out-of-sample residuals from the ARFIMA(2, d, 3) and the ARFIMA(3, d, 3)

models applied to the GBP/USD and the EUR/GBP realized volatility respectively. The sample is 1800

observations (1621 of the in-sample residuals and 179 of the out-of-sample residuals). m is the correlation

dimension or the number of lags upon which the dependence is tested. ***, ** and * indicate statistical

significance at the 1%, 5% and 10% levels respectively.

As a next step, to model and forecast the explored nonlinear component
in the dynamics of the realized volatility, we use the nonlinear autoregressive
artificial neural network framework. Following the structure of the ARFIMA-
ANN approach, the residuals from the estimated linear models are analyzed
through the ANN. The in-sample residuals are used to train the neural net-
work while the out-of-sample residuals are used to evaluate the network. In
order to find the best neural network architecture, we experimented with
different networks having p = 1, 2, 3, ..., 10 input nodes (lagged observations)
and q = 5, 10, 15, 20, 25 hidden nodes. Each network was trained 100 times
and used to create the out-of-sample forecasts. The optimal model is con-
sidered to be the model with the best out-of-sample performance. For the
GBP/USD, the best neural network model was found to be the model with
q = 10 hidden nodes and p = 1 input node. For the EUR/GBP, the best
neural network model includes q = 15 hidden nodes and p = 1 input node.

Next we apply the different versions of the cyclical volatility model to fore-
cast the realized volatility of the GBP/USD and the EUR/GBP exchange
rates. The Hodrick–Prescott filter is used to decompose the raw series of the
realized volatility into the long-run trend and the short-run cyclical compo-
nents. Following Baxter and King (1999), Harris, Stoja, and Yilmaz (2011),
Yao et al. (2017), the value of the smoothing parameter is set to the value of
100 multiplied by the squared frequency of the data, which for daily data (as-
suming 255 trading days per year) is 6,502,500.5 Plots (a) and (b) of Figure
3.2 show the estimated long-run trend components of the realized volatility
of the GBP/USD and the EUR/GBP respectively, plots (c) and (d) show the
corresponding short-run cyclical components.

5However, as stated by Harris, Stoja, and Yilmaz (2011), moderate changes in the
smoothing parameter value appear to have relatively little impact on forecast performance.
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Figure 3.2: Realized volatility decomposition using the Hodrick–Prescott
filter
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(b) EUR/GBP Long-run trend compo-
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(c) GBP/USD Short-run cyclical com-
ponent
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Following the idea of the cyclical volatility model, the extracted long-
run and short-run components of the realized volatility are modeled and
forecasted separately. For the both components, 1621 observations are used
for the initial in-sample estimation of the models and 179 observations are
used for out-of-sample evaluation. Selection of the best neural networks
architectures is done following the procedure described above. In ARMA
modeling, the optimal model specification is defined according to the AIC.
For the sake of comparison, we also run the simple random walk model and
the neural network model applied directly to the series of realized volatility.
For the both series of the GBP/USD and the EUR/GBP realized volatility,
Table 3.7 reports a complete list of the used forecasting models and describes
the configuration and specification of each model.
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Table 3.7: Configuration and specification of the applied forecasting models

Model GBP/USD EUR/GBP

RW
The simple random walk
model: R̂V t = RVt−1

The simple random walk
model: R̂V t = RVt−1

ARFIMA ARFIMA(2, d, 3) ARFIMA(3, d, 3)
ANN ANN(q = 10, p = 1) ANN(q = 15, p = 2)

ARFIMA-ANN
ARFIMA(2, d, 3) for the linear

component, ANN(q = 10, p = 1)
for the nonlinear component

ARFIMA(3, d, 3) for the linear
component, ANN(q = 15, p = 1)

for the nonlinear component

CV(RW-AR(1))
The random walk for the long-

run component, AR(1) for
the short-run component

The random walk for the long-
run component, AR(1) for
the short-run component

CV(ANN-AR(1))
ANN(q = 15, p = 4) for the
long-run component, AR(1)
for the short-run component

ANN(q = 5, p = 10) for the
long-run component, AR(1)
for the short-run component

CV(ANN-ARMA)
ANN(q = 15, p = 4) for the

long-run component, ARMA(1, 1)
for the short-run component

ANN(q = 5, p = 10) for the
long-run component, ARMA(2, 1)

for the short-run component

CV(ANN-ANN)
ANN(q = 15, p = 4) for the

long-run component, ANN(q = 15,
p = 1) for the short-run component

ANN(q = 5, p = 10) for the
long-run component, ANN(q = 20,
p = 1) for the short-run component

The table describes the configuration and specification of each model used in this chapter to forecast the

realized volatility of the GBP/USD and the EUR/GBP exchange rates.

For each model, Figures 3.3 and 3.4 show the plots of the actual val-
ues of the realized volatility against the predictions over the out-of-sample
period. Tables 3.8 and 3.9 report the corresponding values of the forecast
accuracy measures for the out-of-sample predictions. As we can see for the
both GBP/USD and EUR/GBP realized volatility, the proposed ARFIMA-
ANN and CV(ANN-ANN) models have similar forecasting accuracy accord-
ing to the RMSE and the U -coefficient and outperform all other competing
models. In terms of the MAE, the ARFIMA-ANN model shows the best
performance. However, the ANN model applied directly to the series of re-
alized volatility also demonstrates the relatively good accuracy, only slightly
inferior to the hybrid ARFIMA-ANN approach. The naive random walk
model has the worst forecasting accuracy in terms of the RMSE, MAE and
the U -coefficient.

Tables 3.10 and 3.11 report the results of the Mincer-Zarnowitz regres-
sion for the out-of-sample forecasts of the realized volatility of the GBP/USD
and the EUR/GBP respectively. The tables report the estimated intercept
β0, slope β1, R2-coefficient and the F -statistic to test the null hypothesis
of unbiasedness and efficiency of the forecasts. As we can see for the both
currency pairs, the null hypothesis is rejected at the 1% level for the random
walk model and at the 5% level for the ANN model. For the GBP/USD
realized volatility, the null hypothesis of unbiasedness and efficiency is also
rejected at the 1% level for the CV(RW-AR(1)) and CV(ANN-AR(1)) mod-
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els. According to the R2 and for both GBP/USD and EUR/GBP realized
volatility predictions, the ARFIMA-ANN and CV(ANN-ANN) models have
the highest explanatory power and are followed by the ANN model. Surpris-
ingly, the ARFIMA model has the lowest explanatory power in terms of the
Mincer-Zarnowitz R2.

As we can see, the realized volatility forecast produced by the hybrid
ARFIMA-ANN approach is more accurate than the individual forecasts by
either ARFIMA or ANN models. This result is consistent for the both
GBP/USD and EUR/GBP realized volatility and for all applied forecasting
accuracy measures, including the R2 from the Mincer-Zarnowitz regression.
As shown in Figures 3.3 and 3.4, although at some data points the hybrid
approach provides worse predictions than either ARFIMA or ANN forecasts,
its overall forecasting performance has improved. On the other hand, the
relatively good accuracy of the ANN model applied directly to the raw series
of the realized volatility is also a notable fact. It indicates that the realized
volatility can be quite well approximated by a nonlinear autoregression with
just a small number of lags.

Interestingly, even the simple two-component model (such as, for exam-
ple, CV(RW-AR(1)) approach) has very similar predictive accuracy with the
ARFIMA, that is much more complicated model in terms of its estimation.
It seems that a naive random walk model is a good approximation for the
trend component of the realized volatility in short forecasting horizons (here
our findings are in line with those of Harris, Stoja, and Yilmaz, 2011). As
we can see, even using the neural network instead of the random walk ap-
proach to model the long-run trend component, almost has not improved the
accuracy of the cyclical volatility model. However, introducing the ANN to
model the short-run component has allowed to improve the performance of
the cyclical volatility model greatly.

Table 3.8: GBP/USD Out-of-sample forecasting accuracy

Model RMSE MAE U
RW 0.0063270 0.0025284 0.6467
ARFIMA 0.0056350 0.0021310 0.5759
ANN 0.0048992 0.0019295 0.5007
ARFIMA-ANN 0.0046889 0.0018338 0.4792
CV(RW-AR(1)) 0.0056180 0.0023167 0.5741
CV(ANN-AR(1)) 0.0056174 0.0023158 0.5741
CV(ANN-ARMA) 0.0055916 0.0021833 0.5715
CV(ANN-ANN) 0.0046760 0.0020109 0.4779

The table reports the root mean squared error (RMSE), mean absolute error (MAE) and the coefficient U

of Theil for the out-of-sample forecasts of the GBP/USD realized volatility for each model. The forecast

is one-step-ahead, the out-of-sample period includes 179 observations.
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Table 3.9: EUR/GBP Out-of-sample forecasting accuracy

Model RMSE MAE U
RW 0.0052822 0.0021772 0.6138
ARFIMA 0.0045189 0.0017959 0.5251
ANN 0.0041494 0.0016899 0.4821
ARFIMA-ANN 0.0039256 0.0016243 0.4562
CV(RW-AR(1)) 0.0044727 0.0019184 0.5197
CV(ANN-AR(1)) 0.0044725 0.0019186 0.5197
CV(ANN-ARMA) 0.0044779 0.0018094 0.5203
CV(ANN-ANN) 0.0039424 0.0017900 0.4581

The table reports the root mean squared error (RMSE), mean absolute error (MAE) and the coefficient U

of Theil for the out-of-sample forecasts of the EUR/GBP realized volatility for each model. The forecast

is one-step-ahead, the out-of-sample period includes 179 observations.

Table 3.10: GBP/USD Mincer-Zarnowitz regression results

Model β0 β1 R2 F -stat
RW 0.0043 0.4437 0.1969 34.1109***

(0.0007) (0.0673)
ARFIMA 0.0012 0.8812 0.1229 0.5484

(0.0014) (0.1769)
ANN 0.0015 0.9144 0.3618 4.0080**

(0.0007) (0.0913)
ARFIMA-ANN 0.0012 0.8881 0.3982 1.3618

(0.0007) (0.0821)
CV(RW-AR(1)) -0.0127 2.7034 0.2050 9.1447***

(0.0031) (0.4002)
CV(ANN-AR(1)) -0.0127 2.7014 0.2051 9.1498***

(0.0030) (0.3997)
CV(ANN-ARMA) -0.0032 1.4378 0.1448 1.4270

(0.0020) (0.2626)
CV(ANN-ANN) 0.0005 0.9277 0.3947 0.3522

(0.0008) (0.0863)

The table reports the estimated intercept β0, slope β1 and R2-coefficient of the Mincer-Zarnowitz regres-

sion for the out-of-sample forecasts of the GBP/USD realized volatility for each model. The standard

errors for the estimated parameters are in parentheses. The table also reports the F -statistic for the null

hypothesis that the intercept is equal to zero and the slope is equal to one. The forecast is one-step-ahead,

the out-of-sample period includes 179 observations. ***, ** and * indicate statistical significance at the

1%, 5% and 10% levels respectively.
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Table 3.11: EUR/GBP Mincer-Zarnowitz regression results

Model β0 β1 R2 F -stat
RW 0.0041 0.4234 0.1794 35.8728***

(0.0006) (0.0681)
ARFIMA 0.0009 0.8923 0.1594 0.3621

(0.0011) (0.1540)
ANN 0.0018 0.7978 0.3175 3.7759**

(0.0007) (0.0879)
ARFIMA-ANN 0.0011 0.8470 0.3753 1.7351

(0.0006) (0.0821)
CV(RW-AR(1)) -0.0019 1.2759 0.1818 0.9398

(0.0015) (0.2034)
CV(ANN-AR(1)) -0.0019 1.2760 0.1819 0.9404

(0.0015) (0.2034)
CV(ANN-ARMA) -0.0007 1.1075 0.1730 0.1846

(0.0013) (0.1820)
CV(ANN-ANN) 0.0009 0.8708 0.3657 1.1381

(0.0007) (0.0862)

The table reports the estimated intercept β0, slope β1 and R2-coefficient of the Mincer-Zarnowitz regres-

sion for the out-of-sample forecasts of the EUR/GBP realized volatility for each model. The standard

errors for the estimated parameters are in parentheses. The table also reports the F -statistic for the null

hypothesis that the intercept is equal to zero and the slope is equal to one. The forecast is one-step-ahead,

the out-of-sample period includes 179 observations. ***, ** and * indicate statistical significance at the

1%, 5% and 10% levels respectively.
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Figure 3.3: GBP/USD Out-of-sample forecast of the realized volatility
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(e) CV(RW-AR(1))
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Figure 3.4: EUR/GBP Out-of-sample forecast of the realized volatility
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(b) ARFIMA
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(d) ARFIMA-ANN
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(e) CV(RW-AR(1))
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(f) CV(ANN-AR(1))
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(g) CV(ANN-ARMA)
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3.5 Conclusion

A process of financial volatility has a complex structure which comprises
various heterogeneous components. In this chapter, we introduced a new
two-component realized volatility model which exploits the power of both
econometrics and machine learning in linear and nonlinear time series mod-
eling respectively. Our proposed hybrid methodology consists of two steps.
In the first step, ARFIMA is used to model the linear long memory compo-
nent of realized volatility. In the second step, the nonlinear autoregressive
neural network (NAR) is used to analyze the nonlinear component of realized
volatility in the form of the residuals from the ARFIMA model. The com-
bined model is intended to capture both the widely documented phenomena
of long memory and nonlinearity in the dynamics of realized volatility. We
also proposed a modification of the cyclical volatility model which is based
on decomposition of volatility into its trend and cycle components using the
low-pass filter. In the suggested modification, nonlinear artificial neural net-
works are used to model and forecast both trend and cyclical components
of realized volatility. The proposed models provide an improvement in out-
of-sample forecast performance over the competing approaches, in terms of
both accuracy and informational content.

Apparently, the structure of many time series processes arising in eco-
nomics or finance might be too complex to be successfully described by just
a single econometric model. On the example of realized volatility in this
chapter, we show that, in terms of forecasting accuracy, it can be benefi-
cial to decompose a time series into separate factors which are then modeled
and predicted individually. The extracted components might contain simpler
patterns than the initial raw time series and can be easier captured by ap-
propriate models. Moreover, the multi-component approach is more flexible
and robust to potential misspecification of one of the component models.

Despite the sort of a dichotomy of econometrics and machine learning
existing in academia, our work emphasizes the advantages of methodological
combination of econometric and machine learning techniques for predictive
modeling of financial time series. The realized volatility forecast produced
by the hybrid ARFIMA-ANN model in our chapter is more accurate than
the individual forecasts by either ARFIMA or ANN models. Introducing
neural networks to the cyclical volatility model also leads to improvements
in predicting accuracy.

The work presented in this chapter can be extended in many ways. For
example, an interesting natural line of further investigations would be to
consider decomposition of realized volatility time series into many compo-
nents, more than just two. Also, an important direction for future research
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would be to develop the multivariate versions of the models proposed in this
chapter.

3.6 Appendix

3.6.1 BDS test for nonlinearity

The BDS test is developed by Brock et al. (1996) and is widely used for
detecting non-random chaotic dynamics or nonlinear dependencies in a time
series. The main concept of the BDS test is the correlation integral, which is
a measure of the frequency with which temporal patterns are repeated in the
data. Consider a time series xt for t = 1, 2, .., T and define its m-history as
xmt = (xt, xt−1, ..., xt−m+1). The correlation integral at embedding dimension
m can be estimated by:

Cm,ε =
2

Tm(Tm − 1)

∑∑
m≤s<t≤T

I(xmt , x
m
s ; ε), (3.19)

where Tm = T − m + 1 and I(xmt , x
m
s ; ε) is an indicator function which is

equal to one if |xt−i − xs−i| < ε for i = 0, 1, ...,m − 1 and zero otherwise.
Intuitively the correlation integral estimates the probability that any two
m-dimensional points are within a distance of ε of each other. If xt are iid,
this probability should be equal to Cm

1,ε = Pr(|xt − xs| < ε)m in the limiting
case. Brock et al. (1996) define the BDS test statistic as follows:

Vm,ε =
√
T
Cm,ε − Cm

1,ε

sm,ε
, (3.20)

where sm,ε is the standard deviation of
√
T (Cm,ε−Cm

1,ε) and can be estimated
consistently. Under moderate regularity conditions, the BDS test statistic
converges in distribution to N(0, 1). The null hypothesis is that a time series
is independent and identically distributed.
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Conclusion

Volatility is an essential concept in economic research and financial risk man-
agement. In this thesis, we have investigated several aspects of volatility in
financial markets. We have focused on the phenomena of long memory and
asymmetry in volatility. We have also considered the striking component
structure of financial volatility and explored how it can be used for volatility
forecasting purposes.

In Chapter 1, we investigated the long-range dependence in volatility of
the foreign exchange rates returns in the context of temporal aggregation.
Firstly, we generalized the up-to-date theoretical knowledge about the ef-
fect of temporal aggregation on the long memory ARFIMA processes in the
time and frequency domains. The theoretical results imply the invariance of
the long memory parameter to temporal aggregation. Secondly, to validate
the theoretical implications about temporal aggregation in long memory pro-
cesses for the particular ARFIMA estimation method, we conducted a Monte
Carlo simulation and provided a regression analysis of the experiment results.
The experiment results are consistent with the implications of the theory and
show that the semiparametric GPH approach provides consistent estimates
of the long memory parameter at different aggregation levels. Finally, we
analyzed empirically the volatility of the GBP/USD exchange rate returns
at various intraday and daily frequencies. After controlling for intraday peri-
odicity, we implemented several semiparametric methods to explore the long
memory in volatility of the temporally aggregated returns measured by ab-
solute returns, squared returns and realized volatility. After implementing
the Z-test with the multiple hypothesis size adjustments, we found a strong
evidence that the realized volatility of the exchange rate returns is character-
ized by the same fractional differencing parameter across the observed time
scales. Our results indicate that long memory is an intrinsic property of
financial volatility.

In Chapter 2, we explored the link between the phenomenon of volatility
asymmetry and the asymmetry of investor attention to good and bad news.
We utilized a novel measure of investor attention - the Search Volume In-
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dex (SVI) provided by the Google Trends service. Firstly, we studied the
relationship between return, investor attention and volatility in the SVAR
framework. We identified statistical causality from return to both volatil-
ity and investor attention and bidirectional causality between attention and
volatility. Using the impulse response analysis, we found that the effect of
return on realized volatility is generally persistent and long lasting while the
effects of return on investor attention and of investor attention on volatility
are only temporary. Secondly, using the ARDL framework, we found that
both volatility and investor attention have stronger reaction to negative re-
turns than to positive ones. We illustrated the asymmetric effect with the
news impact curves. Finally, we provided a new evidence of a positive rela-
tionship between volatility and investor attention. Hence, in the established
theoretical framework, asymmetrically higher attention caused by negative
returns can lead to asymmetrically higher volatility. We also demonstrated
that the magnitude of the impact of investor attention on volatility is stronger
during periods of negative returns. This fact can exaggerate the asymmetry
even further.

In Chapter 3, we introduced a new realized volatility forecasting model
which is based on the component structure of financial volatility. The pro-
posed hybrid ARFIMA-ANN model exploits the power of both economet-
rics and machine learning in linear and nonlinear time series modeling re-
spectively. The hybrid methodology consists of two steps: firstly, ARFIMA
framework is used to model the linear long memory component of realized
volatility; secondly, the nonlinear autoregressive neural network is used to
analyze the nonlinear component of realized volatility in the form of the
residuals from the ARFIMA model. We also proposed a new modification of
the cyclical volatility model, where nonlinear artificial neural networks are
used to model and forecast both trend and cyclical components of realized
volatility. We found that the proposed models provide an improvement in
out-of-sample forecast performance over the competing approaches. Overall,
we found evidence that decomposing a time series into separately modeled
factors can be beneficial for forecasting purposes.

The research presented in this thesis can be extended in different ways.
In general, we think that implementation of artificial intelligence techniques
for modeling financial and economic processes is a very promising research
area. It seems surprising that machine learning methods, which have been
essentially transformative for many other areas of systemic modeling, have
contributed so little in the field of finance or economics. At the same time,
artificial intelligence provides powerful tools for simulation exercises or pre-
dictive modeling which can be extremely effective in solving tasks practically
unsolvable by standard econometric methods.
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Artificial intelligence methods can be useful for behavioral research in
financial markets. The behavioral foundations of the striking features of
financial volatility dynamics, such as long memory and asymmetry, are of
particular interest. This research direction is a difficult challenge for the
rapidly growing area of behavioral finance but, at the same time, it provides
an important step towards a deeper understanding of the functioning of finan-
cial markets. Specifically, the artificial intelligence framework of agent-based
modeling (ABM) can be used to simulate the complex architecture of modern
financial markets to see how business activities of various traders affect asset
prices and volatility dynamics.

We claim that long memory and nonlinearity are important properties
and should always be incorporated in volatility modeling. Aside from this,
the structure of volatility is highly complicated for a number of reasons, par-
ticularly, with respect to asymmetry. The complex volatility structure calls
for advanced state-of-the-art modeling strategies which exploit the rapidly
growing power of machine learning methods. Specifically, it would be in-
teresting to use the promising technology of the Long Short-Term Memory
(LSTM) neural networks to model the long-range nonlinear dependence in
financial volatility. Also, our proposed hybrid econometrics-machine learning
approach can be enhanced by implementing the investor attention variable
as an external regressor to see if it helps to improve the predicting power of
the model.

On these directions we intend to focus our attention in future research.
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