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Abstract 
 

MicroRNAs (miRNA) are small non-coding RNAs, of approximately 

22 nucleotides in length, which play an important role in the post-tran-

scriptional regulation of gene expression. Post-transcriptional regula-

tion by miRNAs is achieved by direct translational inhibition or decay 

of other RNA molecules, or a combination of both of these mecha-

nisms. miRNAs are implicated in a large number of developmental pro-

cesses across the animal kingdom, underscoring their importance to bi-

ological research, and in particular, research relating to diseases states 

as a result of aberrant development. Investigation of the precise role of 

individual miRNAs or groups of miRNAs within cells requires the ac-

curate identification of miRNA targets. Limitations in experimental 

methods for the identification of miRNA targets, necessitates the use of 

computational algorithms for this purpose. However, accurate compu-

tational identification of miRNA targets can be difficult, due to the short 

six or seven nucleotide seed sequence of the miRNA which is used for 

the recognition of targets, leading to a large number of false positive 

predictions being made. In this thesis, I demonstrate how data from 

transcriptome-wide bulk RNA sequencing experiments can be used to 

increase the accuracy of miRNA target prediction workflows. Firstly, I 

show how data of this type can be used to generate 3’UTR annotations 

specific to the biological context in which sequencing occurred, and 

secondly, how it can be used to remove lowly expressed mRNA tran-

scripts from the target prediction process. Implementation of both of 

these steps in miRNA predictions workflows is shown in this thesis to 

increase prediction accuracy. In addition, I explore how data from bulk 

RNA Sequencing can be used in combination with data generated from 
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small RNA sequencing experiments in order to infer the regulatory ac-

tivity of individual miRNAs during given developmental processes. 
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Chapter 1: Introduction 
 

As miRNAs play a key role in the regulation of a wide range of devel-

opmental processes in animal species, it is important to understand how 

miRNAs act within cells in order to enact developmental change. To 

achieve this goal, we first must come to an understanding of how miR-

NAs target mRNA molecules in the cell, and next how miRNAs effect 

developmental change by acting concurrently on an ensemble of tar-

geted, cellular mRNA transcripts. In order to examine miRNA regula-

tory activity, it is helpful to gauge relative mRNA abundance levels 

within a cell for different experimental conditions or developmental 

time points. Bulk RNA sequencing technologies provide a method of 

determining mRNA expression levels across the combined transcrip-

tomes of a large number of cells. This enables researchers to examine 

the effect of miRNA perturbation on a potentially large number of tran-

scripts, making it a particularly useful tool for achieving the aims de-

scribed above. In this thesis, I demonstrate how data from RNA-Seq 

experiments can be used to increase the accuracy of miRNA target pre-

diction, and also how this data can be used in combination with small 

RNA sequencing data in order to determine the key regulators of devel-

opmental processes amongst a list of differentially expressed miRNAs. 

 

In the second chapter, background information is provided which will 

aid understanding of the remaining contents of this thesis. I examine the 

available literature in order to provide a more thorough description of 

the role of miRNAs within the cell, their evolution within diverse eu-

karyotic lineages, their biogenesis, as well as their relationship to other 

cellular small RNAs, allowing a greater understanding of miRNAs 
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within the context of general RNA and cellular biology. Important 

methodological research is also described including experimental and 

computational methods for predicting miRNA targets, as well as an as-

sessment of the accuracy, utility and limitations of these published 

methods. In addition, processes for the evaluation of miRNA and 

mRNA expression levels using RNA sequencing data, as well as meth-

ods used to annotate these classes of RNA molecules, with a focus on 

the annotation of the 3’UTRs of mRNA molecules, are discussed.  

 

In the third chapter, I detail the design, development, implementation 

and performance metrics of two different software applications relating 

to the identification of putative miRNA targets in animal species. With 

FilTar, I have released a dedicated command-line application which 

acts as a configurable animal miRNA target prediction workflow using 

previously released target prediction algorithms, as well as the imple-

mentation of additional pre-processing (i.e. 3’UTR reannotation) and 

post-processing (i.e. expression filtering) steps in order to improve pre-

diction accuracy. To complement FilTar, I also have released a web ap-

plication, FilTarDB, which provides the user with a graphical user in-

terface in order to allow them to interrogate a database of results gen-

erated using the FilTar workflow. 

 

In the fourth chapter, I assess the biological validity of using the Fil-

Tar approach for identifying putative miRNA targets. In particular, I 

evaluate the effects of both expression filtering and 3’UTR reannotation 

on target prediction accuracy by observing the effects of implementing 

these steps on analyses of data deriving from miRNA perturbation ex-

periments. In these experiments, miRNA mimics are transfected into 
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cell cultures which subsequently undergo RNA sequencing. RNA se-

quencing is also performed on mock transfected cell cultures. By per-

forming a differential expression analysis on data deriving from these 

two types of transfected cell cultures, the accuracy of different miRNA 

target prediction methods can be inferred. 

 

In the fifth chapter, using the specific biological context of tran-

scriptomic post-mating responses in Drosophila melanogaster (com-

mon fruit fly), I examine how RNA-Seq data can be used to not only to 

help infer direct miRNA-mRNA interactions, but also to help determine 

the regulatory activity and effectiveness of differentially expressed 

miRNAs for a given developmental process. This is achieved by exam-

ining the degree of repression of all predicted mRNA targets of a dif-

ferentially expressed miRNA in comparison to that of predicted non-

targets of the same miRNA.  

 

In chapter six, I perform a similar, but distinct analysis, though this 

time in the context of the naturally occurring sex transition develop-

mental process known to occur in Lates calcarifer (Asian seabass). In 

doing so, I highlight the utility of using combined mRNA-Seq and 

sRNA-Seq data to help infer key miRNA regulators for a diversity of 

developmental processes. 

 

Finally, in chapter seven, I conclude with a summary of the contents 

and main findings reported in this thesis, and also discuss future work 

which would be hoped to both extend the software applications devel-

oped as part of this thesis, and also advance knowledge and understand-

ing in this general research area. 
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Chapter 2: Background 
 

2.1  Overview 
 

miRNAs are short RNA molecules of approximately 22nt in length 

which guide the repression of other RNA molecules. They predomi-

nantly arise from a primary pol II-transcribed RNA transcript, which 

are processed to produce ~70nt stem-loop precursor miRNA structures. 

The miRNA precursor is then cleaved to produce the canonical ~22nt 

miRNA duplex, one strand of which is loaded into the argonaute effec-

tor protein (Bartel, 2018). 

  

In bilaterian animals, nucleotides 2-7 of the miRNA from the 5’ end 

determines the specificity of the miRNA-argonaute complex, and 

guides this complex to corresponding recognition elements on other 

RNA molecules, leading to the repression of these RNA targets (Bartel, 

2018). 

 

The primary function of miRNAs within the cell is to provide a post-

transcriptional layer of gene expression regulation, including, in partic-

ular the regulation of protein-coding genes, and sometimes within the 

context of intricate interaction networks between coding and non-cod-

ing RNAs. 

 

miRNA pathways can best be understood as one of three parallel arms, 

along with piwi-interacting RNAs (piRNAs) and short-interfering 

RNAs (siRNAs) of a general RNA interference (RNAi) pathway 
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(Almeida, et al., 2019). Therefore, in order to understand the specific 

biology of miRNAs within cells, it is appropriate to compare and con-

trast their biogenesis, structure and function with that of both piRNAs 

and siRNAs. 

 

As piRNAs and endogenous siRNAs can be described as having broad 

roles in genomic defence (Billi, et al., 2012), the specific role of miR-

NAs within the milieu of RNA-mediated control and regulation can be 

described as the post-transcriptional regulation of the expression of ca-

nonical, non-invading (i.e. ‘self’) genes of the genome, which has broad 

roles in development and general cellular homeostasis. This is in con-

trast to the role of piRNAs in regulating transposon expression and the 

generally unclear and heterogeneous role of siRNAs in animals. Figure 

2.1 summarises some of the known commonalities and differences be-

tween these three classes of small RNA (Bartel, 2018; Okamura and 

Lai, 2008; Weick and Miska, 2014): 

 

 

Figure 2.1 - A comparison of structural (blue text), biogenesis (green text) and 

functional (red text) differences and similarities between three different classes 

miRNA
siRNA

piRNA

• Similar length distributions
• sRNA duplexes are 5’ 

phosphorylated with a 2nt 3’ 
overhang on either end

• sRNA duplexes mostly 
generated from dicer molecules

• miRNAs duplexes are 
mostly generated from 
hairpin-like stem loop RNA 
structures ~70nt in length

• Precursor miRNA 
transcripts are themselves 
(mostly) generated from 
pol II transcripts

• Tend to be generated from long 
segments of dsRNA

• Multiple phased siRNA duplexes can be 
produced from the same dsRNA 
precursor 

• Possible species-specific function
• In some species, function can include 

repression of transposons, viral nucleic 
acid, protein-coding genes as well as the 
regulation of transcription

• Germline specific expression and 
functionality in some cases

• Generally ambiguous and 
heterogeneous functionality

• Guides argonaute 
proteins in order to 
repress gene expression

• Seed-based targeting 
mechanism

• Greater length distribution than 
miRNAs or siRNAs – up to ~31 nt

• Biogenesis distinct to that of 
siRNAs and piRNAs

• Is thought to predominantly 
function in silencing of transposon 
expression in the germline

• Evidence of phased 
sRNA production
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of small RNA involved in cellular gene silencing mechanisms: miRNAs, piR-

NAs and siRNAs. All three classes of sRNA can be distinguished in terms of their 

unique biogenesis. There are many structural similarities between these sRNA clas-

ses, and whilst miRNAs and piRNAs are functionally distinct – the function of en-

dogenous siRNAs seem to be heterogeneous and to a degree, unknown. 

 

2.2  Evolution of miRNAs 
 

miRNAs are found in a large and diverse number of basal eukaryotic 

lineages (Moran, et al., 2017). The origin of miRNAs cannot be traced 

to a single monophyletic group within the domain Eukarya, and basal 

lineages within this domain which possess miRNAs, such as the plant 

and animal kingdoms, lack miRNA sequence homology with each other 

(Bartel, 2004; Kozomara and Griffiths-Jones, 2010) suggesting the in-

dependent and thus convergent evolution of miRNAs on multiple occa-

sions through the course of eukaryote evolution (Axtell, et al., 2011; 

Jones-Rhoades, et al., 2006; Tarver, et al., 2012). A relatively rapid gain 

and loss of miRNA gene families and sequences within plants and non-

bilaterian animals (Moran, et al., 2017) could however suggest diver-

gent evolution with subsequent rapid change in miRNA gene function-

ality as an alternative explanation for these findings (figure 2.2). The 

existence of orthologues to the common miRNA protein machinery 

found in species ancestral to plants and animals supports this hypothesis 

(Moran, et al., 2017). Despite opposing views, there is a consensus that 

high quality miRNA annotations for a diverse number of species sam-

pled under diverse conditions are necessary to resolve issues of conten-

tion; either by revealing some previously undiscovered miRNA gene 

homology between species (Moran, et al., 2017), or by identifying false 

positive designations of miRNA gene loss (Tarver, et al., 2018). 
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Figure 2.2 - A model for the evolution of miRNA targeting mechanisms in dif-

ferent eukaryotic lineages as proposed in Moran et al. 2017 (Moran, et al., 

2017). In this model, all extant miRNA pathways divergently evolved from basal 

RNA-interference or ‘miRNA-like’ pathways, with subsequent loss of miRNA 

functionality in some clades. In addition, the seed match miRNA targeting mecha-

nism is proposed to have evolved in bilateria. 

Reprinted by permission from Springer Nature Customer Service Centre GmbH: 

Springer Nature, Nature Ecology & Evolution, The evolutionary origin of plant and 

animal miRNAs, Moran, Y., Agron, M., Praher, D., & Technau, U., Copyright 2017 

(https://www.nature.com/articles/s41559-016-0027). 

 

At the molecular level, there are a number of mechanisms by which new 

miRNAs can evolve. Most simply, paralogous miRNAs can be formed 

from the duplication of existing miRNAs with subsequent nucleotide 
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substitution (Nozawa, et al., 2010). New miRNA genes can also be 

formed from the inverted duplication of existing genetic elements, such 

as protein-coding genes and transposable elements (Smalheiser and 

Torvik, 2005). Other known mechanism of miRNA formation are from 

introns of protein-coding genes, or from the formation of miRNAs from 

random sequences with a substantial degree of self-complementarity 

(De Felippes, et al., 2008). As regulatory elements, miRNAs only exist 

in relation to their targets, and perhaps unsurprisingly, a large degree of 

coevolution between miRNAs and their targets have been observed: Not 

only do predicted target sites generally exhibit greater conservation than 

surrounding regions (Lewis, et al., 2005), but the predicted targets of 

conserved miRNA seed families exhibit greater conservation than those 

of species-specific miRNA seed families (Penso-Dolfin, et al., 2018). 

In addition, another study found that in general, once evolved, that 

miRNA target site loss is generally disfavoured, and even mutations that 

alter the strength of existing target sites are also disfavoured, indicating 

the functional importance of not only the existence of miRNA target 

sites but the precise magnitude of their effect on the transcriptome 

(Simkin, et al., 2019).  

 

2.3  Biogenesis and crosstalk with RNAi pathways 
 

The biogenesis of miRNAs exists as one entry point, amongst others, 

of the broader regulatory pathway termed RNA interference (RNAi) 

(Fire, et al., 1998; Hannon, 2002; Sharp, 2001). RNAi involves the 

loading of double-stranded RNA (dsRNA) into the RNA-induced si-

lencing complex (RISC), followed by a selective degradation of one of 

the dsRNA strands (termed the passenger strand) and retention of the 
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remaining strand (i.e. the guide strand), which is subsequently used to 

guide RISC to RNA molecules with complementarity to the guide RNA 

(gRNA) for subsequent repression (Hannon, 2002). 

 

Before the initial discovery in 1998 by the labs of Andrew Fire and 

Craig Mello of the specific potency of dsRNA in directing RNA inter-

ference as opposed to the relatively weak effects of single-stranded 

RNA (ssRNA) (Fire, et al., 1998), it had long been known that both 

sense (Guo and Kemphues, 1995) and antisense (Fire, et al., 1991; Guo 

and Kemphues, 1995; Izant and Weintraub, 1984) ssRNA could lead to 

the repression of cognate RNA molecules. The mechanism by which 

the dsRNA led to the repression of ssRNA molecules, after these initial 

discoveries was unclear. In parallel to work completed in animal model 

organisms such as Drosophila melanogaster (common fruit fly) and 

Caenorhabditis elegans (a species of nematode worm), was work relat-

ing to the silencing of viral genes and transgenes in plants species: Cru-

cially, in the lab of David Baulcombe, it was discovered that ~25 nu-

cleotide antisense RNA molecules accumulated in samples in which 

there had been post-transcriptional gene silencing of a transgene and 

viral RNA (Hamilton and Baulcombe, 1999). In the study, it was hy-

pothesised that ‘...the 25-nucleotide antisense RNA is likely synthe-

sized from an RNA template...’ which was later experimentally con-

firmed for some cases when it was discovered that a plant RNA-de-

pendent RNA polymerase (RdRP) was necessary for transgene silenc-

ing but not for the silencing of RNA belonging to a virus (which en-

codes its own RNA polymerase) (Dalmay, et al., 2000). Transgene si-

lencing was also known to occur in cases of inverted repeated 

transgenes (Stam, et al., 1997), and in the case of sense and antisense 
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transgene co-expression (Waterhouse, et al., 1998), which was hypoth-

esised to lead to dsRNA formation by an RdRP-independent mecha-

nism (Dalmay, et al., 2000). These discoveries together linked the pro-

cesses of transcription, dsRNA formation, post-transcriptional gene si-

lencing, and the accumulation of small RNA antisense to targeted tran-

scripts. 

 

Further work was conducted in order to elucidate a mechanism for 

RNAi. Gregory Hannon and colleagues discovered RISC when they 

had taken extracts from Drosophila cells transfected with dsRNA in 

vivo, and co-fractionated a nuclease associated with a ~25nt RNA 

which degraded antisense transcripts (Hammond, et al., 2000). Addi-

tional work in the Hannon lab led to the discovery that an RNase III 

enzyme named dicer, possessing both helicase and endoribonuclease 

domains, could produce short, approximately ~22nt guide RNA from 

dsRNA, which is subsequently associated with RISC (Bernstein, et al., 

2001). In addition, it was discovered that it is an ATP-dependent un-

winding of the dsRNA into ssRNA which is necessary for the formation 

of the active RISC complex (Nykänen, et al., 2001). Further work re-

vealed that the argonaute-2 protein (AGO2) is an essential component 

of functional RISC complexes assembled as a response to dsRNA trans-

fection in D. melanogaster (Hammond, et al., 2001), which was later 

discovered to derive from AGO2’s role in the endonucleolytic cleavage 

of the target molecule (Liu, et al., 2004; Meister, et al., 2004). 

As mentioned previously, miRNA biogenesis serves as a one entry 

point into the more general RNA interference pathway. Experiments 

described so far elucidating the RNAi pathway mostly involved the 

transfection of exogenous RNA, or otherwise the viral infection or 
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transformation of plants by foreign genetic material. The discovery of 

miRNAs revealed one particular pathway by which RNA interference 

is activated by endogenous RNA. 

 

The discovery of miRNAs occurred in parallel to that of RNA interfer-

ence, although the relationship between miRNA processing and func-

tion and RNA interference was initially unclear or not known. In the 

labs of Victor Ambros and Gary Ruvkun it was discovered that in c. 

elegans, the lin-4 small RNA represses the LIN-14 protein, which was 

hypothesised to result from the antisense complementarity between lin-

4 and the 3’UTR of the lin-14 mRNA (Lee, et al., 1993; Wightman, et 

al., 1993). The generality of this proposed targeting mechanism for 

multiple c. elegans genes, and also across many species however was 

not initially realised. Many years later it was discovered that a second 

small RNA, let-7, with complementarity to the lin-14 3’UTR and many 

other c. elegans genes, regulated LIN-14 expression levels (Reinhart, et 

al., 2000). Crucially, unlike lin-4, let-7 was found to be conserved in a 

large number of bilaterian species (Pasquinelli, et al., 2000), suggesting 

the evolution of a highly conserved mechanism for the post-transcrip-

tional regulation of gene expression by endogenously produced small 

RNA molecules. The term ‘heterochronic’ was initially used to describe 

these RNA species, and later ‘small temporal RNAs’ (Ambros, 2001) 

to reflect observations that these RNA molecules are expressed at dif-

ferent stages of development, and regulate the transition between de-

velopmental states. The term ‘microRNA’ (Lagos-Quintana, et al., 

2001) came to be coined and extensively used for what was now a large 

number of discovered ~21-24nt RNA molecules which were predicted 

to derive from larger RNA molecules with hairpin like structures 

(Lagos-Quintana, et al., 2001; Lau, et al., 2001; Lee and Ambros, 
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2001), most of which were transcribed from genomic clusters of 3-6 

miRNA genes (Lagos-Quintana, et al., 2001).  

 

Studies provided evidence that miRNAs were utilising components of 

the RNA interference protein machinery in order to regulate develop-

mental timing: Inactivation of dicer and argonaute orthologues in C. 

elegans led to similar phenotypes as observed in lin-4 and let-7 mutants 

(Grishok, et al., 2001), whereas in D. melanogaster it was discovered a 

precursor RNA was cleaved in a dicer-like mechanism to produce let-

7, and that inactivation of dicer mRNA led to accumulation of the let-7 

precursor in humans (Hutvágner, et al., 2001).  

 

Although the previously described short-hairpin miRNA structures 

were known to be produced endogenously, at the beginning of the cen-

tury, their exact biogenesis was still unclear. By 2004, it was discovered 

that miRNA genes are transcribed by RNA polymerase II (Pol II), pro-

ducing transcripts which are both 5’ capped and polyadenylated at the 

3’ terminus (Cai, et al., 2004; Lee, et al., 2004), which came to be re-

ferred to as the primary miRNA (pri-miRNA). Within the pri-miRNA 

are one or several miRNA hairpin-like structures corresponding to the 

number of miRNA sequences controlled by a single promoter at the 

miRNA gene or miRNA gene cluster locus. In animals, the hairpin 

miRNA structures, termed precursor miRNAs (pre-miRNAs) are ex-

cised from the primary transcript through the action of the micropro-

cessor complex, composed of a dsRNA binding protein called DGCR8, 

and a RNase III enzyme, drosha (Denli, et al., 2004; Gregory, et al., 

2004), which cleaves the stem-loop structures within the pri-miRNA, 

generating isolated precursor RNA molecules with a 2nt overhang at 
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the 3’ end. Alternatively, pre-miRNAs can be generated independently 

of the microprocessor complex if the miRNA hairpin structures are 

found in intronic regions of a precursor messenger RNA, and lack the 

basal region of a long stem, which is used for recognition by the micro-

processor complex. Termed ‘mirtrons’, these miRNA sequences are re-

moved during splicing of the mRNA, forming a lariat-like structure 

which is subsequently debranched, generating a pre-miRNA molecule 

(Berezikov, et al., 2007; Okamura, et al., 2007; Ruby, et al., 2007). An 

exportin protein (XPO5) mediates the export of the pre-miRNA from 

the nucleus to the cytosol (Bohnsack, et al., 2004; Yi, et al., 2003), 

where it associates with dicer, and hence at this point the miRNA pro-

cessing pathway merges with the canonical RNA interference pathway. 

A visual summary of these described processes is given in figure 2.3. 
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Figure 2.3 - summary of miRNA biogenesis in animals. A) The biogenesis of a 

typical miRNA: Metazoan miRNA genes are transcribed from RNA polymerase II, 

generating a primary miRNA transcript (pri-miRNA). The microprocessor com-

plex, which includes drosha and DGCR8, endonucleolytically cleaves both strands 

of the pri-miRNA, generating an RNA hairpin with an approximately two-nucleo-

tide overhang at the 3’ end referred to as the precursor miRNA (pre-miRNA). Ex-

portin 5, in complex with the Ran cofactor is used to facilitate export of the pre-

miRNA into the cytoplasm where the ‘loop’ structure of the RNA hairpin is excised 

by dicer, generating a miRNA duplex with an ~2nt 3’ overhang at either end. Each 

5’ end of the RNA duplex is phosphorylated. The passenger strand is degraded, 

whilst the guide strand is loaded into an AGO protein. B) Different transcriptomic 

sources of pri-miRNAs: pri-miRNAs can derive from either non-coding transcripts, 

or the introns of precursor mRNA (pre-mRNA) molecules.1 

                                                
1 Reprinted from Cell, 173(1), Bartel DP., Metazoan miRNAs, 20-51., Copyright (2018), with per-
mission from Elsevier. 
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2.4  The relationship between miRNAs and other 

classes of metazoan sRNAs 
 

Knowledge of the miRNA biogenesis pathway, and its relationship to 

other sRNA pathways in the cell is important for distinguishing miR-

NAs from other classes of sRNA. Some of these other classes of sRNA 

at some point interact with one or more components of miRNA and 

RNAi pathways. Small interfering RNA (siRNA) is the name given to 

sRNAs derived from long segments of perfectly complementary dou-

ble-stranded RNA (Bernstein, et al., 2001). This structure contrasts with 

that of the pre-miRNA, which contains a much shorter dsRNA region, 

and usually contain several symmetric or asymmetric bulges. Common, 

ancestral roles of siRNAs was as a defence for cells against nucleic ac-

ids external to (e.g. viral RNA), and within (e.g. transposable elements) 

the cell. In most bilaterian species, these functions have mostly been 

superseded by the interferon (Okamura and Lai, 2008) and piRNA path-

ways respectively. Although endogenous siRNA genes are still found 

in bilaterian species, their roles are generally unclear (Okamura and Lai, 

2008). In contrast, piRNAs, found in animals, are between 21-30nt in 

length, are enriched in germline tissue, and have a clearly identified 

function in the defence of germline genomes (Weick and Miska, 2014). 

The name ‘piRNA’ which is an abbreviation of the term ‘piwi-interact-

ing RNA’, refers to the piwi proteins which bind piRNAs, and are a 

subfamily of the argonaute protein family. The piRNA-piwi ribonucle-

oprotein is involved in the repression of the activity of transposable el-

ements (Höck and Meister, 2008). Small RNAs can also be derived 

from a class of larger RNA molecules called Y RNAs, which are be-

lieved to have roles in the initiation of DNA replication (Christov, et 
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al., 2006), and the inhibition of Ro60, a protein believed to be involved 

in processes relating to the quality control of some RNA molecules 

(Hall, et al., 2013). Small RNAs are derived from Y RNAs during apop-

tosis, and some of these small RNAs have been shown via CLIP exper-

iments to be in the miRNA size range (Rutjes, et al., 1999) and associ-

ated with argonaute proteins (Thomson, et al., 2014). However, some 

of these sRNAs have been shown to be produced in a dicer-independent 

manner, and are not associated with AGO2 (Nicolas, et al., 2012), the 

member of the argonaute protein sub-family which exhibits cleavage 

activity. These Y RNA derived sRNA also failed to exhibit repression 

of candidate targets during dual luciferase reporter assays (Meiri, et al., 

2010; Thomson, et al., 2014), suggesting together that these sRNAs do 

not operate in miRNA or RNA interference type pathways. Similarly, 

small RNAs derived from vault RNAs and small nuclear RNAs whilst 

shown to be AGO-bound, have not so far exhibited repressive activity 

(Thomson, et al., 2014). Conversely, there is abundant evidence to sug-

gest that tRNA-derived small RNA fragments (tRF) operate at least par-

tially in miRNA/RNA interference-like pathways: PAR-CLIP data 

demonstrates complexing of tRFs and human argonaute proteins 

(Hafner, et al., 2010; Kumar, et al., 2014), and further evidence from 

CLASH (cross-linking and sequencing of hybrid) data demonstrates a 

proximity between AGO proteins, tRFs and messenger RNA (Helwak, 

et al.). Crucially, these small RNAs also repress mRNA targets with 

complementary sequences in their 3’UTRs, in an argonaute-dependent 

and dicer-independent manner, potentially in association with GW182 

(Kuscu, et al., 2018), a protein of the miRNA-RISC complex necessary 

for the translation repression and decay of mRNA (Eulalio, et al., 2008). 

Similarly, there is evidence to suggest that sRNAs derived from small 

nucleolar RNAs (snoRNAs) and ribosomal RNAs (rRNAs) can act in a 
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miRNA-like manner at high abundances (Ender, et al., 2008; Thomson, 

et al., 2014). 

 

2.5  miRNA annotation and database resources 
 

The number of existing sRNA classes, as well as the existence of sRNA 

molecules with no identifiable functional role in the cell can make it 

difficult to discern genuine miRNAs from other sRNA molecules in se-

quencing datasets. This can be a particular problem considering the 

common use of high-throughput sequencing of small RNAs popula-

tions as a method of profiling miRNA expression levels in a given sam-

ple, and for annotating novel miRNAs. To resolve this problem, criteria 

for annotating miRNA have been established (Ambros, et al., 2003), 

including criteria relating to the expression of the mature miRNA, and 

relating to the identity of the predicted miRNA precursor molecule from 

which the mature miRNA molecule derives. Using such criteria or sim-

ilar criteria, algorithms have been developed to identify miRNAs from 

deep sequencing datasets (Friedländer, et al., 2008; Friedländer, et al., 

2011; Moxon, et al., 2008). As the knowledge of miRNA and their bi-

ogenesis has increased with continued research, methods of annotating, 

and systems of naming miRNAs continue to be proposed (Fromm, et 

al., 2015), and methods for detecting miRNAs continue to be developed 

(Mapleson, et al., 2013; Paicu, et al., 2017; Vitsios, et al., 2017), indi-

cating the continued active research in this area. 

 

Data associated with miRNA research is typically deposited in dedi-

cated databases, which are publicly available and accessible by the re-
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search community. For example, miRBase (Kozomara, et al., 2018) re-

ports information relating to both mature and precursor miRNA se-

quences, their genomic co-ordinates, relevant gene or sequence identi-

fiers, experimental evidence supporting miRNA annotations, as well as 

hyperlinks to online resources relating to published research supporting 

annotations, and crucially allows user to submit their own sequence 

data and annotations for possible entry in the database. The initial re-

lease of a precursor version of miRBase was as a database and web 

interface termed the ‘miRNA registry’ (Griffiths-Jones, 2004) hosted 

by the Wellcome Sanger institute, which predominantly acted as a sys-

tem to assign names to putatively annotated miRNA sequences prior to 

publication, but later was developed to include more sequence infor-

mation, as well as information relating to predicted miRNA targets 

(Griffiths-Jones, et al., 2006; Griffiths-Jones, et al., 2007). In later iter-

ations of the database, there was an increased emphasis in incorporating 

miRNAs annotations and data relating to sRNA high-throughput se-

quencing experiments (Kozomara and Griffiths-Jones, 2010; Kozomara 

and Griffiths-Jones, 2014), as well as a greater emphasis on trying to 

report the function of miRNA entries in the database (Kozomara, et al., 

2018). In addition, because of the problem of low quality submissions 

to miRBase, a set of ‘high-confidence’ miRNA annotations within miR-

Base have been defined (Kozomara and Griffiths-Jones, 2014), which 

relates to defined criteria based on the number of sequencing reads 

aligning to precursor hairpins, the thermodynamic stability of predicted 

hairpin structures, as well as the consistency of aligned reads to known 

product signatures of drosha/dicer processing. 
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As miRBase is a database which does not generally manually curate 

miRNA annotations deriving from next-generation sequencing da-

tasets, the contamination of the database with erroneously annotated 

miRNAs is a known issue (Fromm, et al., 2015; Ludwig, et al., 2017). 

Sources of noise in miRBase are RNA degradation products misanno-

tated as miRNAs (Ludwig, et al., 2017), poor discrimination between 

miRNAs and other sRNA classes (e.g. endogenous siRNAs), a failure 

to provide evidence of pre-miRNA processing by dicer, a failure to em-

ploy phylogenetic approaches when assessing the validity of candidate 

miRNA loci – as well as the incorrect and inconsistent naming of 

miRNA loci (Taylor, et al., 2017). 

 

In an attempt to mitigate against this problem, miRBase have intro-

duced a set of ‘high-confidence’ miRNA annotations within miRBase 

(Griffiths-Jones, et al., 2006), which relates to defined criteria based on 

the number of sequencing reads aligning to precursor hairpins and the 

pattern of alignment of reads to the hairpin. For example, the expecta-

tion would be, that a proportionately larger number of reads would align 

to the locus corresponding to the canonical miRNA, rather than the 

miRNA* (i.e. the miRNA found on the passenger strand of the miRNA 

precursor). The thermodynamic stability of predicted hairpin structures 

is also a factor, as well as the consistency of aligned reads to known 

product signatures of drosha/dicer processing, such as a 2nt 3’ overhang 

on the precursor miRNA as a result of processing by the microprocessor 

complex, as well as a 2nt 3’ overhang on either end of the mature 

miRNA duplex after dicer processing. An additional strategy to validate 

miRNA annotations found in miRBase, is to, where possible, download 

the original high-throughput sRNA sequencing data, and to run on this 

data high-quality miRNA prediction annotation algorithms (e.g. 
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(Friedländer, et al., 2011; Paicu, et al., 2017)), in order to determine 

whether reported miRNAs can be recapitulated using these algorithms, 

especially if executed using stringent parameters. Manual curation of 

the output of miRNA prediction algorithms using rule-based ap-

proaches is also one strategy to increase the stringency of miRNA an-

notations and to reduce noise (e.g. (Penso-Dolfin, et al., 2016)). 

 

Complementing miRBase, is the mirGeneDB database, which empha-

sises strict evolutionarily informed miRNA naming and nomenclature 

systems, and also strict manual curation of putative miRNA sequences 

even if they have been designated as miRNAs in peer-reviewed publi-

cations (Fromm, et al., 2015; Fromm, et al., 2019). As well as dedicated 

miRNA databases, miRNA information can also be found in more gen-

eral online data stores, such as RNA-specific databases and web inter-

faces such as rfam (Kalvari, et al., 2017; Kalvari, et al., 2018) and 

RNAcentral (2018), allowing miRNA data to be accessed, viewed and 

understood within the broader context of RNA biology. 
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2.6  Roles of miRNAs in the cell 
 

An understanding of the existence and function of different classes of 

non-coding small RNA within the cell is helpful for coming to an un-

derstanding of the particular role of miRNAs. Perhaps with the excep-

tion of tRFs, evidence suggests that none or only a relatively small num-

ber of small RNAs derived from other classes of ncRNA operate within 

miRNA or RNA interference pathways, which suggests marginally or 

non-overlapping molecular functions between these small ncRNA clas-

ses and miRNAs. Conversely, as discussed, there is pronounced overlap 

between the miRNA and RNA interference pathways. The ancestral, 

and in some eukaryotic lineages, extant function of siRNAs, is to pro-

tect the cell against foreign genetic material deriving from viruses or 

transposable elements. The suggestion within the literature is that miR-

NAs evolved as an exaptation of the pre-existing siRNA gene regula-

tory mechanism, in order to selectively regulate non-transposable ele-

ment host genes, in effect creating a post-transcriptional layer of gene 

regulation (Moran, et al., 2017). In addition, miRNAs have been found 

to affect protein levels not only by mRNA destabilisation and decay, 

but also by a process of directly inhibiting translational initiation (Pillai, 

et al., 2005). 

 

This raises the question of the function and necessity of post-transcrip-

tional and translational regulation of gene expression levels given pre-

existing transcriptional and post-translational gene regulatory mecha-

nisms. Presumably, the most efficient method of regulation is at the 

level of transcription, to minimise the energetic cost of producing un-

wanted mRNA and proteins. However, regulating gene expression at 
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this level cannot alter pre-existing mRNA and protein. By clearing pre-

existing mRNAs, the miRNA can influence or ‘reprogramme’ cell fate 

and identity (Guan, et al., 2013; Pauli, et al., 2011). There is abundant 

evidence for this role of miRNAs for many processes during embryo-

genesis and general organism development: miR-430 is instrumental in 

first arresting the translation of maternal transcripts (Bazzini, et al., 

2012), before a process of mRNA degradation (Giraldez, et al., 2006) 

during the maternal-to-zygotic transition. In the transition of human 

embryonic stem cells to a state of pluripotency, miR-145 has been 

shown to target several pluripotency associated transcription factors, 

and to be sufficient in inhibiting the self-renewal of these stem cells 

(Xu, et al., 2009). miR-430 as well as performing functions in the zy-

gote, also targets components of the nodal signalling pathway in order 

to promote the formation of endoderm and mesoderm during germ layer 

specification in early embryogenesis (Choi, et al., 2007). In addition, 

there is evidence that miR-21 represses tumour repressor genes such as 

PTEN and PDCD4 in order to promote a mesenchymal cell fate with its 

associated motile and invasive cell properties (Asangani, et al., 2008; 

Frankel, et al., 2008; Pauli, et al., 2011).  

 

Not only do miRNAs have an essential role in the transition between 

cell identities, but they also have an essential role in the maintenance of 

a particular cellular state. Once a set of mRNAs associated with a par-

ticular cell state has been cleared from the cytosol, it is necessary to 

maintain low abundances of these messengers, in order to maintain the 

existing cell state. This may be necessary because of the inherently 

noisy nature of eukaryotic gene expression (Blake, et al., 2003; Thattai 

and Van Oudenaarden, 2001). This perspective corroborates the work 

of Oudenaarden and colleagues demonstrating that miRNA can highly 
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repress genes which are not transcribed at rates above a threshold 

(Mukherji, et al., 2011), and reduce the variability in protein expression 

of lowly expressed genes (Schmiedel, et al., 2015). Conversely, once 

transcription rates exceed a given threshold, the function of the miRNA 

is proposed to convert from that of a ‘switch’ of gene expression to a 

‘fine-tuner’ in which the miRNAs buffers the gradual increase of par-

tially complementary mRNA target levels in the cytosol (Mukherji, et 

al., 2011). As a result of this type of activity, miRNAs have been theo-

rised as being heavily involved in the canalisation of animal develop-

mental processes i.e. ‘genetic buffering that has evolved under natural 

selection in order to stabilise the phenotype and decreases its variabil-

ity’ (Hornstein and Shomron, 2006). Indeed, miRNAs not only act in 

relation to developmentally pre-programmed events, but also in relation 

to external stressors (Ambros, 2003), implicating miRNAs in more gen-

eral homeostatic mechanisms for the regulation of gene expression.  

 

Together this evidence supports the perspective that the role of miRNAs 

is to provide the post-transcriptional and translational components of 

regulatory networks which drive the transition between, and maintain 

different cell states (Chakraborty, et al., 2019). In favour of this view, 

many authors have identified a corresponding relationship between 

miRNA evolution, multicellularity and general organismal complexity 

(Bartel, 2004; Grimson, et al., 2008; Peterson, et al., 2009; Tarver, et 

al., 2015). Arguments against this view, are that miRNAs are found in 

some unicellular species, whilst some multicellular organisms do not 

possess miRNAs. However, this could rather demonstrate the necessity 

but not the sufficiency of miRNAs for the listed features, and secondly, 

multicellular organisms not containing miRNAs may substitute the 
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functionality of these molecules for miRNA-like classes of RNA such 

as endogenous siRNAs (Calcino, et al., 2018; Lee, et al., 2010). 

 

2.7  Molecular mechanisms of miRNA-mediated tar-

get repression 
 

The principles of miRNA targeting in bilaterian species is distinct from 

that of miRNA targeting in plants and more basal (i.e. earlier branching) 

eukaryotic lineages, and also the targeting principles observed during 

RNA interference. In the latter cases, targeting of the sRNA bound 

RISC complex to single stranded RNA molecules, and subsequent 

cleavage of the target molecule requires perfect or near perfect comple-

mentarity between the guide and target RNA molecules (Allen, et al., 

2005; Martinez, et al., 2002; Schwab, et al., 2005). In contrast, in ani-

mals, hybridisation between the  5’ seed region, typically at nucleotides 

2-7 of the miRNA, can be sufficient to induce degradation or direct 

translational inhibition of the miRNA target (Lewis, et al., 2003). 

 

There is however overlap between siRNA and miRNA targeting prin-

ciples in animals: RISC complexes bound with siRNA can repress par-

tially complementary target mRNA molecules, accounting for some of 

the widely observed ‘off-target’ effects in RNA interference (Doench, 

et al., 2003; Jackson, et al., 2006). In addition, miRNAs can cause 

cleavage of targets when there is extended complementarity between 

the miRNA and its target, and the miRNA is loaded specifically into 

paralogues of argonaute with endoribonuclease functionality, such as 

AGO2 in humans (Meister, et al., 2004; Yekta, et al., 2004). This evi-

dence suggests that once the miRNA or siRNA duplex is loaded into 
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argonaute, and the passenger strand degraded, then the miRNA-RISC 

complex is agnostic to the origins of the sRNA molecule which it is 

using as its guide. 

 

Despite the endonuclease activity of some AGO2-bound miRNAs, the 

predominant method by which bilaterian miRNAs destabilise RNA tar-

gets, is through partial complementary targeting, leading to deadenyla-

tion, 5’ decapping and exonucleolytic digestion of the target 

(Huntzinger and Izaurralde, 2011). These post-hybridisation events are 

mediated by the protein GW182, which interacts directly with argo-

naute (Eulalio, et al., 2008), and recruits downstream effector proteins 

(Braun, et al., 2011). Whilst the N-terminal domain of GW182 interacts 

with AGO, the C-terminal domain interacts with PABPC, a poly-A 

binding protein (Huntzinger, et al., 2010), and the PAN2-PAN3 and 

CCR4-NOT deadenylation complexes (Braun, et al., 2011). Deadenyl-

ation is coupled to 5’ decapping through a DDX6 mediator (Chen, et 

al., 2014; Mathys, et al., 2014) triggering the DCP2 decapping protein 

(Rehwinkel, et al., 2005). The uncapped transcript is subsequently de-

graded in the 5’-3’ direction by the XRN1 exoribonuclease (Huntzinger 

and Izaurralde, 2011). Many of the molecular components identified in 

this form of miRNA-mediated repression have been found to be local-

ised in subcellular structures, phase-separated from the remaining cyto-

sol, called p-bodies (Kulkarni, et al., 2010). However, miRNA-medi-

ated gene silencing has been observed to occur in cells lacking detecta-

ble p-bodies, suggesting that these structures are not necessary for gen-

eral miRNA activity, and may instead exist as a result of miRNA si-

lencing activity (Eulalio, et al., 2007). 
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Figure 2.4 - A summary of miRNA-mediated destabilisation and translation 

repression of mRNA molecules. The mRNA-bound miRISC complex associates 

with the GW182 protein via the AGO-binding domain (ABD) of GW182. The si-

lencing domain (SD) of GW182 contains a PAM2 (poly-A binding protein inter-

acting motif 2) motif and a tandem of tryptophan motifs which binds with PABPC 

(cytoplasmic poly-A binding protein), the PAN2 and PAN3 deadenylase com-

plexes, and also the CCR4-NOT complex which also catalyses the deadenylation 

of the mRNA target. The PAN2-PAN3 complex is thought to catalyse the first stage 

of deadenylation, which is then continued by the action of the CCR4-NOT complex. 

5’ decapping is facilitated by DCP2 (decapping protein 2), a process stimulated by 

multiple DCP and EDC (enhancer of decapping) proteins as well as DEAD box 

protein (DDX6). After decapping, 5’ to 3’ degradation of that target is catalysed by 

an exonuclease (XRN1) (not shown). miRNA-mediated translation repression is 

thought to involve the eIF4F eukaryotic translation initiation protein complex. This 

complex contains proteins related to cap-binding (eIF4E), protein scaffolding 

(eIF4G) and RNA helicase (eIF4A) activity.  

 

Reprinted by permission from Springer Nature Customer Service Centre GmbH: 

Springer Nature, Nature Reviews Genetics, Towards a molecular understanding of 
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miRNA-mediated gene silencing, Jonas, S. Izaurralde, E., Copyright 2015 

(https://www.nature.com/articles/nrg3965). 

 

As well as destabilisation of the RNA molecule, miRNAs can mediate 

gene expression by direct translational repression of a transcript inde-

pendent of RNA decay mechanisms resulting in a decrease in protein 

production, but stable mRNA abundance levels (Huntzinger and 

Izaurralde, 2011). Although the precise mechanism is still somewhat 

unclear, repression is thought to most likely occur at the initiation stage 

of translation, partially due to evidence that miRNAs do not repress 

mRNAs translated through use of internal ribosome entry sites (IRES) 

which bypasses the 5’ cap altogether (Humphreys, et al., 2005; Pillai, 

et al., 2005), as well as evidence that miRNAs are unable to repress 

transcripts with artificial cap structures which are unable to recruit 

translation initiation factors (Mathonnet, et al., 2007). However, despite 

miRNAs role in the repression of translation, mRNA destabilisation is 

still thought to be the major contributor to the regulation of protein-

coding transcripts by miRNA, and has been estimated to contribute ‘≥ 

84%’ of  miRNA-related decreased protein production (Guo, et al., 

2010). A summary of the mechanisms by which miRNAs repress tar-

geted mRNA transcripts is given in figure 2.4. 

 

2.8  Non-coding RNA targets of microRNAs 
 

miRNAs are also known to target other non-coding RNA molecules, 

including long non-coding RNAs and (lncRNAs) and circular RNAs 

(circRNAs). The potential role of these molecules in this context, in 

concert potentially with other classes of RNA molecule in the cell, is to 
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act as molecular ‘sponges’ for the miRNA (Ebert, et al., 2007; Ebert 

and Sharp, 2010). It is proposed that this sponging effect would provide 

a form of competitive inhibition for miRNA activity, and thereby dere-

press the protein-coding targets of miRNA molecules, in what is known 

as the ‘competitive endogenous RNA’ or ‘ceRNA’ model of general 

miRNA-RNA interactions (Salmena, et al., 2011). Research has been 

conducted arguing against the validity of this model, with arguments 

made that the total target site abundance for a single miRNA is at such 

a high level, that unphysiological levels of ceRNA would be needed in 

order to mediate derepression of, for example, mRNA targets of the 

miRNA (Denzler, et al., 2014; Denzler, et al., 2016). In the Denzler et 

al. 2016 study, thresholds of additional sites required to mediate dere-

pression of targets are stated as ‘∼10%–40%’ of a single miRNA’s total 

3’UTR target site abundance. In this study, it is argued because each 

transcript type (i.e. individual transcript identifier) typically possesses 

‘< 5%’ of total 3’UTR target site abundance, then a single transcript 

type is very unlikely to mediate derepression of other miRNA targets 

via a ceRNA type sponging mechanism. However, it is not unlikely that 

multiple RNA molecules could act co-operatively to mediate a dere-

pressive ceRNA effect on miRNA-targeted mRNA molecules. Such 

competitive endogenous RNA effects have been experimentally ob-

served, for example, in a mouse brain ncRNA network involving a 

lncRNA, a circRNA and two miRNAs (Kleaveland, et al., 2018), in 

which binding of miR-7 by the Cyrano lncRNA, prevents repression of 

Cdr1as circRNA. This sponging effect can be attenuated, as in this par-

ticular case, by the process of target-directed miRNA degradation 

(TDMD) (Ameres, et al., 2010; Baccarini, et al., 2011), which can occur 

in cases where there is extensive complementarity between the miRNA 
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and its target. In addition, multiple closely spaced miRNA target sites 

can mediate a stronger ceRNA depressive effect (Denzler, et al., 2016). 

 

2.9  Experimental validation of miRNA targets 
 

2.9.1  3’UTR reporter assays 

 

There exist many experimental methods that can be used to identify 

miRNA targets. 3’UTR reporter assays are commonly used to perform 

low-throughput assays of potential miRNA targeting activity, in which 

a candidate 3’UTR of interest is typically cloned into an expression 

plasmid replacing the 3’UTR of a reporter gene. Once the cell or organ-

ism is transformed with the expression vector, the efficacy of the 

3’UTR for transcript repression can be assayed using the reporter gene. 

Such a reporter system was used in the identification of the first bona 

fide miRNA-mRNA interaction in which for a lacZ reporter system, X-

Gal staining was used to confirm the interaction between the lin-14 

mRNA and the lin-4 miRNA, at a particular stage in C. elegans devel-

opment (Wightman, et al., 1993). The luciferase reporter system has 

also been used for this purpose (Kertesz, et al., 2007), in which light 

emitted by the luminescent luciferase protein has been used as an indi-

cator of target site effectiveness. A dual luciferase reporter system is 

commonly used, using both firefly and Renilla luciferase within the 

same reporter construct, one of which will contain a cloned 3’UTR of 

interest, and the other luciferase gene serving as a negative control for 

miRNA activity. GFP, YFP and mCherry reporter systems have also 

been successfully used to assay miRNA activity (McJunkin and 

Ambros, 2017; Mukherji, et al., 2011). In more recent years, massively 
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parallel reporter assays have been designed and implemented in order 

to assay miRNA activity using higher throughput methods. In these as-

says, large numbers of candidate 3’UTR sequences are cloned into ex-

pression vectors in parallel, and their activity assayed (Litterman, et al., 

2019; Slutskin, et al., 2018). 

 

Noise considerations must also be evaluated when considering 3’UTR 

reporter assays for the detection of miRNA targets. As in the case of 

miRNA mimic transfection experiments, unwanted variance is re-

moved via normalisation against a negative control condition. In the 

negative control condition, a different reporter is co-transfected of a 

similar but distinct reporter construct (e.g. Renilla luciferase) in which 

the fused 3’UTR reporter does not contain a predicted miRNA target 

site. Alternatively, both reporter systems can be contained within the 

same cloned construct. In a massively parallel reporter assay, utilising 

a dual reporter system for each construct, it was shown when examining 

protein fold repression values between constructs containing and not 

containing a predicted miRNA response element, that the median rela-

tive standard deviation between constructs differing only by their bar-

codes was 10.5%, indicating a small amount of technical noise in this 

system (Slutskin, et al., 2018).  

 

2.9.2  miRNA perturbation and sequencing 

 

The activity of miRNAs can be investigated more indirectly by deter-

mining bulk cellular expression profiles upon perturbation of intracel-

lular concentration of a single, or multiple miRNAs. Perturbation is 
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usually achieved by transfection of miRNA mimics into cells using lip-

osome vectors (Agarwal, et al., 2015). Negative control transfections 

are also performed using plasmids or scrambled oligonucleotides. The 

abundance levels of RNA can be assayed using microarray and RNA-

Seq technologies in order to compare treatment and negative control 

conditions, in order to gauge the effect of the perturbed miRNA on de-

stabilising a given RNA, or set of RNAs. As this method does not test 

for a direct chemical interaction between the perturbed miRNA, and 

potential targets, it may detect RNA molecules only indirectly repressed 

or perturbed as a result of miRNA activity. As this method involves the 

assaying of RNA expression levels, rather than that of protein, as seen 

in the use of 3’UTR reporter systems, it is not sensitive to genes which 

are directly translationally repressed by the miRNA without associated 

changes in RNA stability levels, however, as previously discussed, di-

rect translational inhibition is not thought to be a major contribution to 

miRNA activity in animals (Guo, et al., 2010). There are reports, as 

evidenced by northern blotting, that miRNA transfection leads to su-

praphysiological, ~100-fold increases in intracellular miRNA levels of 

the perturbed miRNA, and therefore should be used with caution (Jin, 

et al., 2015). However, it has also been noted that methods for assaying 

increases in miRNA abundance levels such as northern blotting and 

qPCR do not distinguish active AGO-bound miRNA, from inactive 

miRNA sequestered in vesicles, and hence the effect of miRNA trans-

fection may not be as potent as once thought (Thomson, et al., 2013). 

Quantitative proteomics approaches have also been used to assay the 

effect of miRNA perturbation on intracellular protein levels (Baek, et 

al., 2008). 
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There are both biological and technical sources of noise in miRNA 

mimic transfection assays. Biological noise can arise from differences 

in gene expression upon the transfection of a nucleic acid which is un-

related to the investigated effect (i.e. miRNA targeting). For example, 

Agarwal et al. (Agarwal, et al., 2015) discovered a considerable asso-

ciation between transfection of a nucleic acid, and the dysregulation of 

transcripts according to their 3’UTR length, and also the AU content of 

their 3’UTRs. Technical sources of variation and noise for this assay 

include ‘stochastic biochemistry during library preparation’, the ran-

dom sampling of cDNA fragments during sequencing, and non-deter-

ministic processes during the computational analysis of reads. 

 

A common method for accounting for noise in miRNA mimic transfec-

tion assays is to make a direct comparison between the log fold change 

cumulative distribution function (CDF) of predicted miRNA targets 

with the corresponding CDF of the predicted non-targets, and perform-

ing null-hypothesis significance testing using the Kolmogorov-

Smirnov (KS) test. As the non-target distribution is expected to contain 

both biological and technical sources of noise, and the target distribu-

tion is expected to contain both this noise and the biological signal of 

interest (i.e. repression due to miRNA targeting), then comparing the 

target and non-target distributions using the KS tests acts as a form of 

normalisation in which biological signal is distinguished from noise. 

 

It is helpful to quantify the proportion of the signal arising from this 

assay which is constituted by noise. One method of doing this is to con-

ceptualise an idealised log fold change distribution for the condition of 

the mock transfection in which no noise at all is present within the sys-

tem. For such an idealised distribution, all log fold change values are 0. 
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The deviation from the idealised ‘no-noise’ distribution can then be 

computed by taking the root of the average square fold change value for 

each distribution. The signal-noise ratio in the system can then be cal-

culated as a ratio between the average deviation in the ‘signal’ target 

and ‘noise’ non-target log fold change distributions. The reciprocal of 

the signal-noise metric provides a measure of the proportion of the 

measured signal which is noise. This process can be formalised with the 

following equation: 
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Where ) and 0 are arrays of target and non-target log fold change values 

respectively, and ./ and .3 give the number of elements (i.e. number 

of transcripts/genes) in . and 0 respectively. )* and )1 give the 5th and 

6th elements of ) and 0 respectively, where 7)*, 019 	 ∈ 	ℝ. SNR is the 

estimated signal-noise ratio. 

 

2.9.3  Cross-linking and immunoprecipitation 

 

A more recent set of approaches to identify miRNA targets is to use 

cross-linking of protein and bound RNA followed by immunoprecipi-

tation chemistry in order to identify protein-RNA interactions 

(Niranjanakumari, et al., 2002), which in the context of miRNA biology 

is used specifically to identify AGO-RNA interactions. A commonly 
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used variant of this methodology is the cross-linking and immunopre-

cipitation (CLIP) approach (Ule, et al., 2003). In this methodology, ul-

traviolet light (UV) is typically used (although formaldehyde has been 

used in previous cross-linking protocols (Niranjanakumari, et al., 2002) 

) to create cross-links between RNA and proteins bound in ribonucleo-

protein (RNP) complexes. Cell lysis then follows cross-linking. An 

RNase removes any overhanging unprotected RNA from the RNP. An-

tibodies are used to select for and pulldown a protein of interest, which 

due to crosslinking, will be pulled down as an RNP. RNP RNA is radi-

olabelled via phosphorylation, which is followed by gel electrophoresis 

and subsequent autoradiography. Relevant bands are excised. The pro-

tein is digested, leaving the previously crosslinked RNA free for 

adapter ligation, reverse transcription to cDNA, PCR amplification and 

subsequent high-throughput sequencing. Such protocols have been 

used to investigate chemical interactions between AGO and RNA in 

vivo (Chi, et al., 2009). A number of modifications and enhancements 

of CLIP approach have since been developed (Hafner, et al., 2010; 

Huppertz, et al., 2014; Van Nostrand, et al., 2016). Use of CLIP proto-

cols per se, will identify segments of the guide or the target RNA bound 

to AGO, but will not identify both the guide RNA and target RNAs 

simultaneously, as a result, there is no direct inference of guide-target 

interactions from CLIP. To resolve this issue, protocols have been de-

veloped, labelled as CLIPL protocols (i.e. CLIP and ligation) (Wang, 

2016), in which CLIP protocols are developed with an extra ligation 

step for the purposes of ligating the AGO-bound guide RNA and the 

target RNA, generating chimeric guide-target RNAs which can be se-

quenced (Grosswendt, et al., 2014; Helwak and Tollervey, 2014; Kudla, 

et al., 2011). In this way, the guide-target interaction can be unambigu-
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ously identified. However, the functionality of many miRNA-target in-

teractions identified using CLIP approaches has been contested 

(Agarwal, et al., 2015).  

 

Like 3’UTR reporter assays and miRNA transfection experiments, 

CLIP assays contain many sources of noise (Darnell, 2010). Sources of 

noise include insufficient specificity of protein purification, an over-

abundance of competing low complexity RNA sequence, transient 

RNA-protein interactions, and PCR amplification artefacts. Such issues 

can be partially mitigated by ensuring stringent reagents and conditions 

for protein purification, filtering of unique reads, analysis of read clus-

ters as opposed to individual reads, and filtering of reads for those 

matching a given RNA-protein binding motif. In addition, the use of 

negative control RNA binding proteins can be used to identify, and nor-

malise against non-specific RNA-protein interactions (Darnell, 2010). 

 

Algorithms have been developed for downstream analysis of read data 

from CLIP experiments in order to mitigate against this noise. In Om-

niclip (Drewe-Boss, et al., 2018), the strength of the protein-RNA in-

teraction as well as the relative abundance of the mRNA is taken into 

account when calling CLIP peaks. Firstly, a series of generalised linear 

models (for peak and non-peak states) are created taking background 

gene expression from RNA-Seq data into account, in order to model the 

probability of peak and non-peak states given the coverage profile from 

RNA-seq and CLIP for different positions along the genome. Secondly, 

a multinomial Dirichlet mixture model is used to model nucleotide tran-

sitions which are artefacts of CLIP experiments (Kishore, et al., 2011). 

The coverage profile models and the diagnostic event models are used 
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together in order to parameterise a hidden Markov model from which 

the nucleotide-nucleotide ‘peak-state’ of the genome can be inferred.  

 

2.9.4  Databases of validated miRNA interactions 

 

Databases of validated miRNA interactions can help miRNA research-

ers easily identify high-confidence miRNA interactions, as well as the 

experiment type, and the specific publication from which the reported 

interaction derives. Both DIANA-TarBase (Karagkouni, et al., 2017) 

and miRTarBase (Chou, et al., 2017) are publicly available databases 

which are released for this purpose. 

 

2.10  Principles of miRNA targeting 
 

Despite these experimental advances, there is still no high-throughput 

method for identifying direct, functional targets of miRNAs, underlying 

the continued necessity of computational approaches for identifying pu-

tative targets. In addition, implementation of library preparation and se-

quencing protocols for these purposes is not always simple or cost-ef-

fective in terms of material resources, and skilled personnel required. 

 

Primarily, target prediction is mostly performed using criteria relating 

to antisense complementarity between the miRNA and its target, phys-

ical and thermodynamics factors relating to the possibility of duplex 

formation, and the conservation of miRNA target sites between closely 

related species (Ritchie and Rasko, 2014). 
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2.10.1  Canonical models of miRNA targeting 

 

If we examine criteria for the complementarity between miRNAs and 

putative targets further, we can broadly distinguish between two classes 

of miRNA target prediction algorithm; namely, canonical target pre-

diction requiring full complementarity between the miRNA seed region 

(Lewis, et al., 2003), and conversely, non-canonical prediction meth-

odologies which do not use this requirement. As described previously, 

the seed region constitutes nucleotides 2-8 of the miRNA, or less strin-

gently nucleotides 2-7 of the miRNA. Unlike plant miRNAs, an enrich-

ment of fully complementary targets of mature miRNAs for bilaterian 

species in their respective transcriptomes was not detected (Rhoades, et 

al., 2002). In addition, when developing one of the first seed-based al-

gorithm, named TargetScan (Lewis, et al., 2003), it was noted that ob-

servations had been made that the conservation of the miRNA was 

greater at the 5’ end (Lim, et al., 2003). Additionally, the validity of the 

identified seed region was tested by permuting the position of the des-

ignated seed region on the miRNA across its entire length, and subse-

quently examining the number of conserved miRNA targets detected. 

It was shown that the 2-8nt heptamer performed most successfully on 

this test, in addition, this particular heptamer location was shown to be 

the most conserved for all heptamer location permutations (e.g. 3-9nt, 

4-10nt etc.) along the length of the miRNA (Lewis, et al., 2003). The 

seed-based approach to target prediction has been used for all further 

iterations of the TargetScan algorithm released from the Bartel lab 

(Agarwal, et al., 2015; Friedman, et al., 2009; Garcia, et al., 2011; 

Grimson, et al., 2007; Lewis, et al., 2005). 
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The original seed model was extended by dividing and categorising a 

set of different seed target sites types that could be used to aid target 

recognition (Lewis, et al., 2005). This divergence from the strict use of 

the original 2-8 nucleotide heptamer seed match, was the discovery that 

a conserved adenine base commonly occupied the ‘t1’ position of the 

target immediately opposite the first nucleotide of the miRNA. This 

was irrespective of whether the first nitrogenous base of the miRNA 

was the Watson-Crick (WC) base complement of t1. It was also discov-

ered that hexamer sequences position at nucleotide 2-7 were conserved 

above background across five mammalian genomes. This additional ev-

idence led to defining seed types by using a combination of previously 

discovered features which were thought to be conducive to miRNA tar-

geting, and also an evaluation of their relative strengths: The hexamer 

2-7nt seed target (later commonly referred to in the literature as the 

6mer) exhibited the weakest sequence homology above background 

levels. A hexamer sequence with an A in the t1 position (7mer-A1), 

corresponding to the first nucleotide of the miRNA, considerably in-

creased the signal-noise ratio from this core seed sequence. Indeed, the 

signal-noise ratio for 7mer-A1 target sites almost equalled that of target 

sites with 7 contiguous base pairs at nucleotides 2-8 of the miRNA, but 

without an adenine at t1 (7mer-m8). Perhaps unsurprisingly, the most 

conserved target site was the one that combined the features of the 

7mer-A1 site and the 7mer-m8 site i.e. the 8mer site. Though it should 

be noted that 7mer-A1 and 8mer target sites only contain 6 and 7 Wat-

son-Crick base pairs between the guide RNA and the target respectively 

(Lewis, et al., 2005). The specificity of this model has been validated 

in numerous experiments in which intracellular miRNA abundance lev-

els have been perturbed in vitro via the transfection of miRNA mimics, 

or antagomiR oligonucleotides complementary to the miRNA for a 
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miRNA knock-down effect. These experiments also demonstrated the 

7mer-m8 site tends to confer stronger repression than the 7mer-A1 site 

(Agarwal, et al., 2015; Friedman, et al., 2009; Garcia, et al., 2011; 

Grimson, et al., 2007). 

 

Additional support for the seed model is provided from structural work 

relating to the argonaute effector, and more generally argonaute com-

plexes containing the bound guide RNA. In 2012, Schirle and MacRae 

released a 2.3 angstrom (Å) resolution crystal structure of the human 

AGO2 protein (figure 2.5) (Schirle and MacRae, 2012). They discov-

ered electron density in their structure attributable to an 8nt single-

stranded RNA spanning the Mid and Piwi domains of AGO2. From this 

it was determined within the protein, that nucleotides 1-7 of the guide 

RNA are bound to the AGO2 molecule in a likely sequence independent 

manner, by a series of weak, non-specific and non-covalent interactions 

such as hydrogen bonds and van der Waals forces presumably to allow 

flexible association and dissociation between argonaute and the guide 

RNA. Crucially however, nucleotides 2-6 were found to be positioned, 

in an A-form conformation, so as to be exposed to the cytosol, aiding 

recognition by the seed region of different RNA elements. In subse-

quent work, the same authors crystallised the guide-RNA bound AGO2 

structure, with only four nucleotides in the middle of the guide RNA 

unresolved (Schirle, et al., 2014). The first 5’ nucleotide of the guide 

RNA was found to be anchored to the Mid domain of AGO2, poten-

tially explaining the lack of use of the first gRNA nucleotide for Wat-

son-Crick base-pairing to the target. Nucleotides positioned at the 3’ 

end of the guide RNA were found to be locked in to the N-Paz channel 

of the protein, and facing away from the cytosol. Further crystal struc-

tures with bound target RNA to the 5’ end of the guide RNA determined 
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that base-pairing between the guide and its target within this region 

causes a conformational change of helix-7 of the AGO-structure away 

from the RNA duplex. This is thought to enable base-pairing of guide 

RNA bases 6 and 7, which could cause disruption to the AGO-RNA 

complex, and potential dissociation of the bound target if there are mis-

matches or mispairing in this region, allowing the miRNA-AGO com-

plex to rapidly accept or dismiss putative targets depending on their 

complementarity to the guide in this region (Klum, et al., 2018). This 

method of dynamically searching for targets by staged probing of target 

complementarity is thought to enable, coupled with lateral diffusion of 

the AGO-RNA complex along the target molecules, a rapid traversal of 

the cytosolic RNA search space (Chandradoss, et al., 2015). This con-

formational change of argonaute helix 7 is extended to nucleotides 11-

16 of the guide RNA, enabling previously documented (Bartel, 2009) 

supplementary and compensatory binding of target nucleotides to this 

region of the guide RNA. Crucially, this additional pairing does not 

preclude the validity of the seed model, as pairing in the seed region is 

necessary to trigger the conformational changes in the argonaute pro-

tein which are required for 3’ base pairing. In addition, further work 

from this lab demonstrated that the t1 adenine nucleotide is anchored to 

a pocket on the surface of the argonaute molecule, through a network 

of hydrogen-bonding water molecules, the effect of which is to increase 

the dwell time of argonaute on the target molecule and increase the 

probability that target repression occurs (Schirle, et al., 2015). 
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Figure 2.5 – The domains and crystal structure of human argonaute-2. The 5’ 

nucleotides of bound RNA are anchored by interactions with the Mid and Piwi do-

mains of this protein. The Paz domain weakly binds the 3’ end of the miRNA.2 

 

As well as structural evidence, there is also functional and computa-

tional evidence for miRNA 3’ base pairing to its target. Work in the 

Bartel lab showed that 7mer sites with contiguous base pairing of 4bp 

or more in the 3’ region, preferably starting at nucleotide 13 of the 

miRNA, enhanced targeting efficiency for this particular seed-target 

pairing. In fact, the 7mer-m8 match with good supplementary 3’ pairing 

was found to be almost effective as 8mer target matches (Grimson, et 

al., 2007). Presumably the purpose of the supplementary pairing is to 

favour increased occupancy time of the AGO-RNA complex on the tar-

get molecule and disfavour dissociation. Increased occupancy of the ar-

gonaute on the target, will likely increase the probability of recruiting 

the scaffold protein GW182, and additional deadenylases and decap-

ping complexes. Chandradoss and colleagues (Chandradoss, et al., 

                                                
2 From Schirle, N. T., & MacRae, I. J. (2012). The crystal structure of human Argonaute2. Sci-
ence, 336(6084), 1037-1040 (https://science.sciencemag.org/content/336/6084/1037.full). Re-
printed with permission from AAAS. 
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2015), using FRET experiments, show a positive relationship between 

AGO dwell time and the number of base-pairing guide RNA nucleo-

tides when they test this for a limited range of nucleotides (i.e. N=5 and 

N=6). A similar relationship would presumably exist for greater values 

of N. A summary of the core seed-based model for miRNA target pre-

diction, including supplementary and compensatory base pairing is 

given in a recent review from the Bartel lab (figure 2.6). 
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Figure 2.6 – A summary of miRNA target site types. The most frequent site types 

are typical canonical sites (A) which contain contiguous Watson-Crick base pairing 

between nucleotides 2-7 of the miRNA. The canonical seed types can be classified 

into subtypes on the basis of whether canonical site contains an additional WC base 

pair on nucleotide 8 of the miRNA (7mer-m8), an adenine nucleotide on the first 

base pair of the target opposite the miRNA (7mer-A1), neither of these features 

(6mer) or both (8mer). The 6mer target site type can also be offset by a single nu-

cleotide forming the ‘offset 6mer’ site type. Different site types can be ranked in 

terms of target repression efficacy as followed, from strongest site type to weakest: 

8mer, 7mer-m8, 7mer-A1, 6mer, offset 6mer. Canonical base pairing in the 5’ re-

gion of the miRNA can be supplemented by base pairing in the 3’ region of the 
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miRNA, typically between nucleotides 13-16, which increases the efficacy of target 

repression. Noncanonical target sites are target sites which contain a mismatch or 

non-standard base pairing in the seed region of the miRNA. Base pairing in the 3’ 

region as described previously can be used to compensate for these mismatches.3 

 

There have been other canonical target prediction models produced out-

side of the Bartel lab. The ElMMo model for example requires strict 

seed pairing for example, but additionally uses a Bayesian phylogenetic 

method to infer the functionality of putative targets site, by analysing 

the pattern of conservation of a given site in relation to the conservation 

and selection patterns of other putative target sites of the same miRNA 

(Gaidatzis, et al., 2007).  

 

A number of additional features contextual to the existence of the seed 

match, have been identified, which are believed to aid recognition and 

repression of predicted miRNA targets, and which may explain why the 

existence of a seed match is not always sufficient for the repression of 

a target (Grimson, et al., 2007). One discovery is that adjacent or prox-

imal seed targets sites (within 50nt of each other) act co-operatively and 

synergistically, and are not linear sums of the predicted effects of the 

constituent sites (Grimson, et al., 2007; Sætrom, et al., 2007). Chan-

dradoss and colleagues proposed a model, which can be interpreted as 

a mechanism for this observed co-operative effect, in which the argon-

aute RNP complex laterally diffuses and shuttles between adjacent tar-

get sites to increase the overall dwell time of argonaute on a narrow 

                                                
3 Reprinted from Cell, 173(1), Bartel DP., Metazoan miRNAs, 20-51., Copyright (2018), with per-
mission from Elsevier. 
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section of the RNA molecule (presumably to enable recruitment of scaf-

fold and effector proteins), increasing the probability of a repressive 

effect occurring (Chandradoss, et al., 2015). Another factor identified 

as contributing to repression were AU-rich content flanking putative 

miRNA target sites (Agarwal, et al., 2015; Grimson, et al., 2007). Alt-

hough the precise mechanism by which flanking AU-content influences 

miRNA targeting is unknown, local 3’UTR structural accessibility is 

thought to be a factor, although secondary-structure prediction was 

shown to be less informative than consideration of AU content suggest-

ing the structure-independent mechanisms could contribute to the reg-

ulatory effects or AU rich regions, with evidence that AU-rich elements 

can act as general determinants of RNA stability independent of 

miRNA action (Chen and Shyu, 1995). A strong restriction imple-

mented in all iterations of the TargetScan tool is that any putative target 

sites must reside within the 3’UTR of the mRNA molecule. Justifica-

tion for this approach is that 5’UTR predicted targets were not found to 

be conserved above background levels, and whilst some open reading 

frame (ORF) miRNA targets were conserved above backgrounds levels 

(i.e. over and above the general conservation of codons in ORFs), the 

majority of conserved sites were still found in the 3’UTR (Lewis, et al., 

2005). In addition, ORF and 5’UTR targets were collectively only mar-

ginally repressed or not repressed at all in analyses derived from 

miRNA mimic transfection experiments (Grimson, et al., 2007), alt-

hough to reflect this, the number of ORF 8mer targets is used a feature 

in the latest version of the TargetScan algorithm (Agarwal, et al., 2015). 

Different locations within the 3’UTR have also been assayed for re-

sponsiveness to miRNAs. An extended ORF luciferase reporter assay 

and conservation analyses were used to show that target sites < 25nt 
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away from stop codons are selected against, and if present are non-func-

tional, presumably due to occlusive and steric hinderance from the ri-

bosomal translational machinery. Somewhat counterintuitively, beyond 

this strict requirement, functional and conservation analyses indicated 

that for humans, sites positioned away from the centre of the 3’UTR 

and towards the stop codon and the poly-A start site were preferred 

(Agarwal, et al., 2015; Gaidatzis, et al., 2007; Grimson, et al., 2007; 

Majoros and Ohler, 2007). The offset 6mer in which the location of the 

miRNA seed region is offset by one nucleotide (to nucleotides 3-8 of 

the miRNA) was also found to confer a marginal repressive effect 

(Friedman, et al., 2009), and the number of offset 6mer sites in the 

3’UTR is used as a feature in the latest version of the TargetScan algo-

rithm (Agarwal, et al., 2015). Interestingly, in a relatively early publi-

cation associated with a release of a version of the TargetScan algo-

rithm, high target site abundance in 3’UTRs is identified as a feature 

which minimises the repressive effect of a particular miRNA (Garcia, 

et al., 2011), and is also used as a major feature in the latest version of 

the TargetScan algorithm, indicating the contribution of a ceRNA effect 

for analyses using the TargetScan algorithm. The thermodynamic sta-

bility of the seed-target interaction has also been shown to contribute to 

the repressive effect of the miRNA, presumably by increasing the dwell 

time of argonaute on the RNA, and that this effect can be distinguished 

from the potentially confounding effect of target site abundance 

(Garcia, et al., 2011). In addition, in corroborating previously reported 

research (Hausser, et al., 2009), ORF and 3’UTR length seems to be 

inversely correlated with target site efficacy (Agarwal, et al., 2015), po-

tentially indicating the formation of occlusive secondary structures in 

regions of the transcript distal to the stop codon and the poly-A tail. An 

alternative explanation is that there is increased difficulty in recruiting 
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deadenylase and decapping complexes in relatively distal and remote 

regions of the transcript. A summary of the different sequence-based 

and contextual features used in miRNA target prediction algorithms is 

given in figure 2.7. 

 

 

Figure 2.7 – A summary of some of the duplex, local contextual and global 

contextual sequence features used by miRSVR to score putative targets, which 

are representative of features used by other target prediction algorithms. As 

discussed previously, at the level of the RNA duplex, WC and non-standard base 

pairing features are used to score targets. Flanking AU content and the structural 

accessibility of secondary structures on the target are frequent local context features 

which are considered. Global contextual features considered include the length of 
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the 3’UTR, the conservation of the target site, and the relative position of the target 

site within the 3’UTR.4 

 

2.10.2  Noncanonical models of miRNA target prediction 

 

In parallel with the development of seed-based methods for predicting 

animal miRNA targets, algorithms have been developed which do not 

require perfect, contiguous Watson-Crick base pairing between every 

nucleotide of the miRNA seed region and the corresponding target i.e. 

non-canonical approaches to miRNA target prediction have been devel-

oped. 

 

Experiments have been conducted in order to functionally validate 

some non-canonical miRNA target sites. The first type of non-canoni-

cal site to be discovered contains a GU-wobble base pair, which appears 

in both let-7 target sites of lin-41 (Reinhart, et al., 2000), and a hid target 

of the bantam miRNA in D. melanogaster (Brennecke, et al., 2003), all 

of which contain at least 6 nucleotides of base-pairing downstream of 

the seed, which likely compensate for the observed wobbles in the seed 

region. Additionally, some years later, centred sites in which there is at 

least 11 nucleotides of contiguous base pairing from nucleotides 4 or 5 

of the miRNA onwards, without additional 3’ or 5’ base pairing has 

been shown to induce mRNA repression upon transfection of the 

miRNA (Shin, et al., 2010), however, because there is some requisite 

                                                
4 Reproduced with permission, from Betel, D., Koppal, A., Agius, P., Sander, C., & Leslie, C. 
(2010). Comprehensive modeling of microRNA targets predicts functional non-conserved and non-
canonical sites. Genome biology, 11(8), R90. doi:10.1186/gb-2010-11-8-r90 
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base-pairing in the seed region, this site type may be more simply clas-

sified as a form of compensatory target site 

 

Stark et al. (Stark, et al., 2003) and later Enright et al. (Enright, et al., 

2003), and Rajewsky and Socci (Rajewsky and Socci, 2004) predicted 

noncanonical miRNA target sites in the common fruit fly and later hu-

man (John, et al., 2004). Commonalities between all of these ap-

proaches, is that they all preferentially weight complementarity at the 

5’ end of the miRNA (with a toleration of GU wobbles), try to deter-

mine the thermodynamic stability of putative RNA-RNA duplexes, and 

also include an assessment of the evolutionary conservation of target 

sites between closely related species, when evaluating putative targets. 

Despite requiring strict seed pairing, the previously described method 

reported by Lewis and colleagues (Lewis, et al., 2003) does not differ 

considerably from these approaches. Indeed, the miRanda algorithm re-

leased by Enright and colleagues allows users to pass a ‘strict’ flag 

when using the tool, allowing the tool to be optionally used as a canon-

ical miRNA target prediction algorithm. 

 

Both confirmatory and novel findings were reported in a study released 

from the Hatzigeorgiou lab not long afterwards (Kiriakidou, et al., 

2004). In this study, a mutagenesis approach was used to identify fea-

tures of the miRNA-target interaction using a dual luciferase reporter 

assay performed on human and mouse cell lines. As in previous studies, 

the importance of the pairing of the 5’ seed region was identified, as 

was the supplementary effects of 3’ base pairing. However, Kiriakidou 

et al. also discovered through their mutagenesis screen that disruption 

of a symmetrical bulge or asymmetrical bulge (i.e. on either the miRNA 
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or the target) at the centre of the RNA duplex, caused derepression of 

the target for multiple miRNAs. As a result, in a particularly conserva-

tive approach, the DIANA-microT algorithm was released which re-

quired 5’ seed pairing (GU wobbles and bulges are tolerated to an ex-

tent), 3’ supplementary pairing, and the existence of a central bulge re-

gion of a specified number of nucleotides, yielding on average a rela-

tively small 9.4 predicted targets per miRNA (Kiriakidou, et al., 2004). 

 

Other non-canonical miRNA target prediction algorithms employ a dif-

ferent approach for identifying miRNA targets: RNA 22 is unique in 

that it searches for enriched patterns or motifs in previously annotated 

miRNAs from a number of species, searches for regions of the tran-

scriptome containing reverse complements to enriched patterns, and 

identifies microRNAs which could associate with these ‘target islands’ 

(Miranda, et al., 2006). The scoring binding matrix (SBM), in a rela-

tively unbiased approach, does not use a pattern matching or dynamic 

programming approach, but rather constructs a sequence matrix of the 

reverse complemented miRNA and all validated targets of that miRNA, 

and scores putative targets on the basis of their similarity to existing 

targets. Dinucleotides are used to incorporate information about RNA 

stacking energies (Moxon, et al., 2008). PITA focusses on the structural 

accessibility of putative target sites with perfect or near-perfect pairing 

in the seed region, and makes an explicit comparison when scoring tar-

gets between the free energy required to unpair existing secondary 

structures, and ‘the free energy gained from the formation of the mi-

croRNA-target duplex’ (Kertesz, et al., 2007). An improvement to the 

initial PicTar algorithm allowed dynamic calculation of the probability 

that an identified target site is functional, by an assessment of the con-

servation patterns of all putative targets of that miRNA sequence (Lall, 
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et al., 2006). TargetRank scores putative targets on a number of previ-

ously identified criteria such as seed type, flanking AU content – with 

a particular focus in this algorithm of being inclusive of species-specific 

miRNA targets, and potential siRNA off-targets (Nielsen, et al., 2007). 

In SVMicrO (Liu, et al., 2010) a seed filter for putative interactions is 

followed by two successive support-vector machine (SVM) classifiers, 

one for the seed pairing, and the second for the general 3’UTR context, 

trained on data stored on the miRecords database of experimentally val-

idated targets (Xiao, et al., 2008), in order to classify putative miRNA 

targets.  

 

The miRSVR model (Betel, et al., 2010) is somewhat similar to the lat-

est TargetScan algorithm in the sense that it classes site conservation as 

a feature rather than a filter for target prediction, is trained on transfec-

tion data, and implements a regression model. However, a support vec-

tor regression model is used in this case, including features such as 

3’UTR length, flanking AU content, and features relating to structural 

accessibility. A key difference however, is that miRSVR uses the seed-

target duplex deriving from the miRanda algorithm as a set of binary 

features, and thus whilst perfect complementarity is preferred, it is not 

a requirement of this algorithm. 

 

The advent of CLIP and CLIP ligation methods has led to the develop-

ment of what has been termed a ‘next-generation of animal miRNA tar-

get prediction algorithm’ (Bradley and Moxon, 2017), which are trained 

on this data type. 
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The Hatzigeorgiou lab use PAR-CLIP data (Hafner, et al., 2010) to 

build a new target prediction model which includes putative target sites 

in the CDS region of mRNA transcripts (Reczko, et al., 2012). PAR-

CLIP data is used to classify alignments of highly expressed miRNAs 

to 3’UTRs and CDS regions as true or false positives. Logistic regres-

sion is then used to identify potential target site features of interest, a 

subset of which is selected using the Akaike information criterion 

(AIC). A general linear model is then trained using this set of features, 

with separate models built for 3’UTR and CDS target sites. To assess 

the effect of multiple target sites, on a single transcript, a second general 

linear model is built using microarray transfection data. The model is 

subsequently tested using proteomics datasets (Selbach, et al., 2008). 

 

In the chimiRic model trained using AGO CLIP and CLASH data, a 

dual SVM approach is used in which an SVM classifier first predicts 

miRNA-mRNA duplexes, whilst a second SVM implements an AGO 

binding model using contextual features relating to the 3’UTR se-

quence, in order to predict AGO binding (Lu and Leslie, 2016). 

 

Another set of target prediction algorithms trained on CLIP or CLIPL 

data are the MIRZA and MIRZA-G algorithms. In MIRZA (Khorshid, 

et al., 2013), a probabilistic model is trained from AGO-CLIP data in 

order to score a set of parameters relating to specific miRNA nucleotide 

base pairing, as well as parameters relating to the formation of bulges, 

loops, and specific base-pairing patterns (e.g. GU wobbles). Reassur-

ingly, the model recapitulates a large number of previous findings in-

cluding the importance of the seed sequence, a lack of base-pairing at 

the first nucleotide of the miRNA, and preferential base pairing at the 
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3’ end of the miRNA. Interestingly, Khorshid et al. recapitulate the 

finding by Kiriakidou et al. (Kiriakidou, et al., 2004) that a single loop 

is favoured at the centre of the miRNA-mRNA duplex, which is likely 

a result of a highly disfavoured hybridisation to nucleotide 9 of the 

miRNA discovered by Khorshid et al. The interpretation provided is 

that this is a biophysically unfavourable interaction – however, an al-

ternative explanation is that there is a specific selection pressure against 

full complementarity in the animal miRNA-mRNA duplex in order to 

prevent cleavage. miRNA-mediated cleavage can and does occur in an-

imal species, which requires pairing in the central region, and so any 

potential energetic unfavourability of hybridisation in the central region 

cannot be sufficiently unfavourable as to prevent this type of interaction 

occurring altogether. In MIRZA-G, the MIRZA target quality score was 

used as a feature, along with contextual sequence information of the 

target transcript in order to train a suite of general linear models which 

differ on the basis of whether they predict miRNA targets canonically, 

and whether or not they consider target site conservation information 

(Gumienny and Zavolan, 2015). 

 

The most recent version of the miRDB database (Wong and Wang, 

2014) contains predictions from a recent method trained exclusively on 

data derived from CLIP-ligation protocols in which chimeric reads can 

be used to unambiguously link miRNAs and targets (Wang, 2016). The 

CLIP-ligation data was used to generate target and non-target sets in 

order to identify relevant features such as patterns of nucleotide and 

dinucleotide usage in the target site, the structural accessibility of the 

target site, seed site conservation, and the location of the target site 

within the 3’UTR, which were used to train an SVM model. 
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A list of the names of different miRNA target prediction algorithms is 

given in table 2.1, as well as how they relate to common features of 

miRNA target prediction algorithms (e.g. sequence conservation met-

rics): 
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Algorithm 

Name 

Training  

method 

Testing 

data/method 

Predomi-

nant 

Method 

Seed-

based 

Con-

serva-

tion? 

Contex-

tual 

Fea-

tures? 

Context++ 

(targetscan) 

Transfection data Transfection data Multi-linear 

regression 

strict True True 

Context+ 

(targetscan) 

Transfection ex-

periments 

Transfection ex-

periments 

Multi-linear 

regression 

strict True True 

Context 

(targetscan) 

Transfection ex-

periments 

Transfection ex-

periments 

Multi-linear 

regression 

strict True True 

Tar-

getScanS 

Conservation anal-

yses 

SNR analyses us-

ing random se-

quences 

Rule-based 

approach 

strict True False 

TargetScan Validated 

interactions 

SNR analyses us-

ing random se-

quences 

Rule-based 

approach 

strict True False 

miRanda Validated 

interactions 

Validated Interac-

tions 

Dynamic 

Program-

ming 

5’ 

bias 

False False 

miRSVR Transfection data Transfection data Support-

vector re-

gression 

5’ 

bias 

True True 

MIRZA CLIP data Transfection data Maximum 

likelihood 

estimation 

5’ 

bias 

False False 

MIRZA-

GC 

Transfection data Transfection data Generalised 

linear model 

5’ 

bias 

True True 

chimiric CLIP+CLASH CLIP+CLASH Support 

vector ma-

chine 

5’ 

bias 

False True 

miRTarget miRNA transfec-

tion + CLIP data 

NA Support 

vector ma-

chine 

5’ 

bias 

True True 

RNA22 miRNA database Validated interac-

tions 

Reverse 

complement 

pattern 

matching 

5’ 

bias 

False False 

PicTar Validated 

interactions 

Experimental vali-

dation + compari-

son against random 

miRNA predic-

tions 

HMM maxi-

mum likeli-

hood esti-

mation 

5’ 

bias 

True False 
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PITA Luciferase 

experiments 

Validated interac-

tions 

Thermody-

namic 

model 

5’ 

bias 

False True 

elMMO Conserved miRNA 

target sites 

Validated interac-

tions 

Bayesian 

phyloge-

netic model 

5’ 

bias 

True False 

Table 2.1 - A summary of the most common computational methods used for 

miRNA target prediction. Different methods are annotated in this table on the 

basis of the data used to train/design the algorithm, the data used to test the algo-

rithm, the computational method underscoring the algorithm, whether the algorithm 

accounts for sequence homology and also whether the algorithm accounts for con-

textual features of the putative miRNA binding site. 
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2.11  The accuracy of miRNA target prediction mod-

els 
 

Published articles describing newly released methods for miRNA target 

prediction normally include some form of assessment of the prediction 

accuracy of that method in comparison to previously released, and in 

particular, commonly used methods. As a large number of methods 

have been published, and these typically report contradictory findings 

between each other, it can be helpful to consult review articles for an 

evaluation and a comparison of currently released methods, with the 

caveat that any review quickly becomes outdated with the rapid publi-

cation of new research. 

 

In a relatively early report in 2006 (Rajewsky, 2006), a reported prob-

lem of published target prediction algorithms was that some algorithms 

produce radically different sets of target predictions from each other, 

suggesting a lack of convergence at this early stage of miRNA targeting 

research about relevant criteria for target prediction. However, despite 

the poor overlap of predictions between some algorithms, taking the 

union of results between algorithms has been shown to increase sensi-

tivity beyond the best individual performing algorithm, by approxi-

mately 25% using a benchmarking dataset containing 84 miRNA-target 

interactions from TarBase (Sethupathy, et al., 2006) for which a ‘direct 

miRNA effect’ had been detected. However in a review paper by Niko-

laus Rajewsky (Rajewsky, 2006), it was also noted that the approach of 

identifying miRNA targets using a reporter assay in combination with 

miRNA expression may not yield genuine targets which are regulated 

by miRNAs under endogenous conditions. The same problem exists for 



 82 

experiments in which the intracellular miRNA expression is perturbed, 

with follow-up sequencing of transfected cells. In principal, it is likely 

that these approaches are useful for identifying the sequence-based fea-

tures of miRNA targets. However, the utility of these approaches for 

identifying miRNA targets regulated under endogenous conditions is 

uncertain. It is possible that whilst the general important features iden-

tified by these approaches are valid, specific parametrisations may not 

be relevant for endogenous conditions due to the nature of in vitro meth-

ods used for data collection and subsequent model generation. 

 

As discussed previously, the advent of high-throughput CLIP and 

CLIP-ligation protocols has provided an in vivo method for assaying 

argonaute binding activity. However, the problem being that argonaute 

binding per se, is not necessarily evidence of a repressive relationship 

between argonaute and the bound molecule. For the RISC complex to 

function, the argonaute protein has to search at least a 3’UTR search 

space, and to some extent, transcript coding sequence. Some form of 

close, physical interaction is presumably required between argonaute 

and putative targets for this search to occur. As discussed earlier, a 

model has been proposed in which the bound argonaute laterally dif-

fuses across RNA molecules in search of seed targets (Chandradoss, et 

al., 2015). Although the dwell time of argonaute at specific point on the 

RNA molecule will increase with increased base pairing, from a prob-

abilistic perspective, it may be possible for argonaute to be cross-linked 

to RNA molecules even when repression of that RNA molecule does 

not occur, by the possibility of crosslinking occurring while the argo-

naute complex is still searching for a suitable target. In addition, the 

number of CLIP-derived reads will likely be biased to highly expressed 

transcripts, which may in fact possess low occupancy by the argonaute 



 83 

protein (Agarwal, et al., 2015; Friedersdorf and Keene, 2014). Indeed, 

a large number of non-canonical targets of miRNAs, derived from data 

from CLIP and CLIPL experiments have been declared as being non-

functional due to a lack of observed repression of these transcripts after 

miRNA perturbation (Agarwal, et al., 2015). This problem can easily 

mitigated by filtering individual CLIP hits, for those containing a seed 

sequence to a known miRNA, however, this would not overcome the 

poor sensitivity of CLIP-based analyses for identified valid miRNA tar-

gets, which has been attributed to variable cross-linking efficiencies of 

different RNA-protein interactions, and similarly variable ligation effi-

ciencies for CLIPL approaches (Agarwal, et al., 2015). 

 

As identified in a previous review, when benchmarking is conducted 

there is the possibility of bias in the selection of benchmarking datasets, 

which favour a particular subset of prediction methods being tested 

(Rajewsky, 2006). One approach recently employed in order to counter 

these concerns was to compare and aggregate the ranking of prediction 

methods from multiple different benchmarking analyses (Bradley and 

Moxon, 2017). The hope being that individual biases present in differ-

ent studies would be mitigated or ‘cancelled out’ upon aggregation, 

leaving a somewhat unbiased estimator of target prediction perfor-

mance. From this analysis, it was cautiously and tentatively concluded 

that the latest version of the TargetScan algorithm (Agarwal, et al., 

2015) was the best performing of the current set of animal miRNA tar-

get prediction algorithms. However, this model, as it is trained on 

miRNA perturbation data, is associated with previously discussed con-

cerns relating to this method of experimentation. In addition, Agarwal 

et al. found that their own regression model, for 7mer and 8mer seed 

matches,  explained at most 15% of fold change variability of mRNA 
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expression changes upon miRNA transfection (Agarwal, et al., 2015). 

This relatively low number could potentially be explained by peculiar-

ities introduced by the miRNA transfection protocol or the experi-

mental and computational methods contributing to the gauging of 

mRNA fold change values. Nevertheless, it would seem that that there 

is a large degree of miRNA targeting activity which remains to be ex-

plained. 

 

2.12  RNA-Seq and differential expression analysis 
 

2.12.1  RNA Sequencing and transcript quantification 

 

In order to gauge the effects of miRNAs on the transcriptome, methods 

must be used to quantify transcript abundance levels during different 

conditions – for example, a condition in which a cell culture has been 

transfected with miRNA mimics, in comparison to a control condition. 

For many decades assaying of RNA abundance levels has been 

achieved through a process of Northern blotting (Alwine, et al., 1977) 

and quantitative PCR (qPCR) (Heid, et al., 1996) which are low-

throughput methods for assaying transcript abundance from biological 

samples. For Northern blotting, a radioactively or chemically labelled 

RNA probe sequence is used to indirectly report transcript abundance 

through a process of hybridisation of the probe to a target sequence, 

from an RNA extract size-separated by electrophoresis. The signal aris-

ing from the probe is then detected through a process of autoradiog-

raphy. The relative abundance of a particular transcript is then typically 

gauged by the normalisation of the signal arising from that transcript in 

comparison to constitutively expressed transcripts such as ribosomal 
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RNAs. In qPCR however, a fluorescent reporter of some kind is added 

to the PCR solution, and is used to quantitatively report nucleic acid 

abundance during a PCR reaction. The number of PCR cycles needed 

for the PCR fluorescence signal to reach a given threshold is related to 

the starting RNA material, and can be used indirectly to assay transcript 

abundance. 

 

More high-throughput methods for assaying transcript expression lev-

els include the use of cDNA microarrays (Schena, et al., 1995). This 

technology shares similarities with Northern blotting in the sense that 

transcript abundance is assayed by the hybridisation of sequence-spe-

cific probes to a target sequence. In the particular case of DNA micro-

arrays however, the probe sequences are fixed on a solid surface in a 

location-specific manner, and it is the sample/target sequences (arising 

from fragmented cDNA sequence) which are chemically labelled or ra-

diolabelled rather than the probe sequence. The expression of each tar-

get sequence in the original sample can therefore be inferred by quan-

tifying the strength of the signal originating from each ‘spot’ on the 

microarray. However, the number of target sequences assayed using 

this approach is limited by the number of distinct probe sequences on 

the microarray. 

 

Use of microarrays however can be limiting in the sense that, because 

DNA probes must be designed before experimentation, a certain 

amount of a priori knowledge of the sequences of transcripts to be as-

sayed is required. In addition, use of hybridisation to assay expression 

levels leads to inherent difficulties such as background hybridisation 
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obscuring the expression of low expression transcripts, sequence-bi-

ased hybridisation properties and a failure to distinguish between splice 

isoforms, and genetic variants of the same gene (Zhao, et al., 2014). 

 

The use of sequencing technologies to quantify gene expression miti-

gates the inherent difficulties in using hybridisation-based approaches. 

The basic principle behind such approaches is that the number of se-

quences of a given type returned from a sequencing experiment can be 

counted in order to ascertain the expression of a transcript in a given 

sample. A commonly used method for this purpose is bulk RNA-seq 

(Mortazavi, et al., 2008) in which a cDNA library is generated from 

sampled RNA, and subsequently sequenced (figure 2.8). There are a 

number of factors present in this method which can potentially compli-

cate downstream analyses (Conesa, et al., 2016). Firstly, sequenced 

reads are typically short (~50-150nt) requiring fragmentation of the 

full-length RNA molecule, so that fragments can be sequenced sepa-

rately, generating sequence coverage across the entire length of the 

transcript. For most protocols, sequencing is performed on DNA mole-

cules, which requires the reverse transcription of RNA molecules into 

cDNA. In order to generate enough nucleic acid for sequencing, cDNA 

typically is PCR amplified from adapters ligated to the 3’ and 5’ ends 

of the cDNA molecules. Sequenced reads are typically then mapped to 

a reference genome or transcriptome in order to infer the transcript from 

which the sequenced read likely originated from. In addition, in order 

to study protein-coding transcripts specifically, researchers can enrich 

the RNA sequenced for mRNA. This can be achieved either by a pro-

cess of rRNA depletion of the sampled RNA, or the addition of a ‘poly-

A selection’ step in the library preparation protocol in which mRNA is 
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isolated through hybridisation of their poly-A tails to beads coated with 

poly-T oligomers. 

 

Library preparation and sequencing protocols for RNA sequencing in-

forms methods for downstream analysis of data of this type (Conesa, et 

al., 2016). Typically, once reads are aligned to a reference, count-based 

metrics are used to infer the relative abundance of the transcript for 

which reads have been aligned. Transcript counts are normalised for 

transcript length and also sequencing depth supporting within-sample 

and between-sample comparison of transcript counts respectively. Se-

quence bias correction methods (Bray, et al., 2015; Patro, et al., 2017) 

can also be implemented in order to correct for biases associated with 

fragmentation, reverse transcription, ligation and PCR amplification 

steps included in library preparation protocols. 

 

As discussed at a later point in this thesis, data from RNA sequencing 

experiments can be combined with data from sRNA sequencing exper-

iments in order to help infer the efficacy of given miRNAs for regulat-

ing transcriptional activity. Small RNA sequencing is a form of RNA 

sequencing, in which the RNA from which cDNA libraries are gener-

ated are enriched in small RNAs. This is usually achieved by fraction-

ating and excising a band of the relevant size after gel electrophoresis 

of total RNA input (Pfeffer, et al., 2005). From this point, cDNA librar-

ies are generally prepared as previously described for total RNA or 

mRNA sequencing, with individual steps for 5’ and 3’ adapter ligation, 

reverse transcription and PCR amplification. One particular problem 

with this method of RNA sequencing, is that when using adapters, se-

quence-specific biases can exist in the step of the ligation of sRNAs to 
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5’ or 3’ adapters, which will bias downstream analyses. To mitigate 

against this problem, library preparation protocols in which adapters 

have been designed with multiple degenerate nucleotides at each ligat-

ing end, referred to as high definition adapters in some protocols, have 

been developed (Billmeier and Xu, 2017; Sorefan, et al., 2012; Xu, et 

al., 2015). In addition, this method has recently been improved through 

the use of ‘blocking oligonucleotides’, which are used to deplete the 

sequenced sRNA pool of abundant transcripts which are not of biolog-

ical interest, such as rRNA and rRNA fragments (Fowler, et al., 2018). 

During analysis of the resultant sequencing data, adapter trimming of 

reads is important, as adapter sequences are more likely to appear in 

reads due to the small size of the inserts generated during cDNA library 

construction (Nobuta, et al., 2010). Suites of tools exist for the special-

ised purpose of downstream processing of data of this type, including 

quality control, miRNA normalisation and quantification and differen-

tial expression analysis steps (Beckers, et al., 2017; Mohorianu, et al., 

2017; Moxon, et al., 2008; Stocks, et al., 2018; Stocks, et al., 2012). 
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Figure 2.8  – A standard RNA-Seq library preparation and data analysis work-

flow. Isolated RNA is enriched for mRNA. This step is followed by reverse tran-

scription and fragmentation of the nucleic acid, although the order of these two 

steps can be reversed. These cDNA fragments are PCR amplified, with subsequent 

ligation of adapters on either end of the cDNA molecule. Sequencing is performed, 

and sequenced reads are then mapped to a genomic reference, in order to infer RNA 

expression levels. 

Reprinted by permission from Springer Nature Customer Service Centre GmbH: 

Springer Nature, Nature Reviews Genetics, RNA-Seq: A revolutionary tool for 

transcriptomics, Wang, Z., Gerstein, M., & Snyder, M., Copyright 2009 

(https://www.nature.com/articles/nrg2484). 
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2.12.2  Transcript quantification tools 

 

For the FilTar tool which I present later in this thesis, both the Kallisto 

(Bray, et al., 2016) and Salmon (Patro, et al., 2017) tools are provided 

as options for use for transcript quantification from RNA-Seq data for 

users. 

 

Salmon and Kallisto were developed with the intention of overcoming 

large computational bottlenecks in canonical RNA-Seq pipelines pre-

dominantly arising from the alignment of sequenced reads to a refer-

ence genome. The necessity of this approach came from, at the time, 

the increasing depth at which cDNA libraries from RNA-Seq experi-

ments were being sequenced, and also the increasing number of sam-

ples and libraries being processed for studies utilising RNA-Seq. 

 

To resolve this issue, the concept of lightweight algorithms for RNA-

Seq data processing was proposed, in which, typically, strict alignment 

of reads to the transcriptome or the genome, is altogether avoided as a 

strategy for transcript quantification. Sailfish (Patro, et al., 2014), one 

of the first tools to use a lightweight approach for this problem, uses a 

k-mer based approach in which the transcriptome and the entire read set 

is indexed into a series of k-mers. The abundance of each transcript is 

then estimated by taking the average number of read k-mers mapping 

to each indexed k-mer within a given transcript. Relative transcript 

abundance estimates are then refined using an expectation maximisa-

tion approach. 
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Kallisto (Bray, et al., 2016) also adopts a k-mer based approach to 

RNA-Seq quantification, however, in this approach, k-mers are not in-

dividually mapped to a given set of matching transcripts. With Kallisto, 

k-mers within reads are collectively mapped to nodes on a transcrip-

tome-De Bruijin Graph, in which each node represents a k-mer in the 

reference transcriptome. Each transcript in the reference transcriptome 

is represented as a path within the transcriptome-De Bruijin Graph (T-

DBG). The mapping of reads to a subset of transcripts can then be de-

duced by taking the intersection of compatible transcripts for each con-

stituent node for that read on the T-DBG. This process may return mul-

tiple compatible transcripts for a given read. An expectation-maximisa-

tion approach is again employed in order to infer transcript quantities, 

this time using sets of ‘equivalent’ transcripts for a read as inputs. By 

using expectation maximisation in this way, information from the entire 

pool of sequenced reads from a given library, and their respective 

mapped transcripts, can be used to predict relative transcript abundance 

values. 

 

Salmon (Patro, et al., 2017) adopts an approach similar to Kallisto in 

the sense that a mapping between reads and transcripts are produced 

without generating complete base-to-base alignments, however, each 

mapping contains information regarding the sense-antisense orientation 

of the read, and the approximate location of the sourced read from the 

transcript. Salmon also differs from Kallisto in the sense that a suffix-

array rather than a De Bruijin graph is used as the data structure in 

which the reference transcriptome is indexed. Such information can be 

extracted from Kallisto pseudo-alignments but requires additional com-

putational steps after pseudo-alignment has been performed, and is 

therefore less easily accessible to the user. 
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In order to estimate relative transcript abundance values, both Kallisto 

and Salmon estimate the fragment length distributions from each li-

brary. For each transcript, estimated fragment length distributions are 

used to estimate what is termed the ‘effective length’ of the transcript 

i.e. which refers to ‘the number of start sites in a transcript which could 

have generated a fragment of a particular length’. The effective length 

of the transcript is then used when normalising read counts in order to 

give an estimate of relative transcript abundance. As the effective 

length metric is used to normalise pseudo-aligned read counts, esti-

mated fragment length distribution means and standard deviations are 

parameters which are ultimately used in the calculation of TPM values 

within a given library. 

 

The fragment length distribution can easily be inferred from paired-end 

sequencing data in which the insert size for relevant fragments can be 

deduced from taking the distance between matching paired-end reads. 

It is impossible to infer this information from the alignment of single-

end read sequencing data however. When using single-end libraries, 

both Salmon and Kallisto contains default values for these parameters 

but expects users to input correct values for these for each of their li-

braries. These parameters can be deduced from the use of a BioAna-

lyzer on cDNA libraries generated for use in RNA-Sequencing experi-

ments. 

 

The inference of read library type is also an important consideration for 

both the Kallisto and Salmon tools during transcript quantification. ‘li-

brary type’ in this context predominantly refers to the strandedness of 

the reads deriving from cDNA fragments. Sequenced reads can match 

either exclusively the forward strand or the reverse strand of the cDNA 
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duplex (stranded protocol), or both (unstranded) depending on the 

cDNA library preparation and sequencing strategies. For paired-end 

read libraries, the reads may derive from both strands of the cDNA frag-

ment, however, the order in which reads are derived from either respec-

tive strand can be used to designate the strandedness of the library. In 

addition, the relative orientation of pair-end reads with respect to each 

other (i.e. inward facing, outward facing, or matching) is another pa-

rameter which can be used to specify the library type. 

 

2.12.3  Differential expression analysis 

 

In order to compare gene expression values between a miRNA pertur-

bation and a control condition, some form of differential expression 

analysis is needed. In qualitative or semi-quantitative methods of as-

saying gene expression such as Northern blotting, a rudimentary form 

of differential expression analysis can be performed by simply compar-

ing the strength of signal emanating from corresponding bands in dif-

ferent Northern blot runs. More quantitative methods of differential ex-

pression analysis, for data deriving from microarray or RNA-Seq ex-

periments requires more in-depth analyses. 

 

When considering the difference between microarrays and next-gener-

ation sequencing (NGS) data, it is first important to consider the differ-

ence in the type of data generated by the two different technologies. The 

output of a microarray experiment is the fluorescence of sample mole-

cules hybridised to their respective probes for each gene/feature of in-

terest, which are continuous values. In contrast, NGS sequencing ex-
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periment returns sequenced reads, which are aligned to tran-

scripts/genes, providing discrete count data which can be used for 

downstream analyses. 

 

Whilst there are a large number of differences between the two data 

types, differential expression analysis for both cases can be modelled 

using generalised linear models (GLMs) (Nelder and Wedderburn, 

1972). However, because of the two different data types, the type of 

error probability distribution which can appropriately be used for 

GLMs for microarray and high-throughput sequencing experiments 

vary: Raw microarray fluorescence values can be modelled using a log-

normal distribution (Hoyle, et al., 2002), whilst NGS sequencing data, 

can be fairly well approximated using the negative binomial distribu-

tion (Anders and Huber, 2010; Lu, et al., 2005; Robinson and Smyth, 

2007): 

 

Because RNA-sequencing involves the random sampling (with low 

probability) of reads for a given gene from a large set of reads for the 

total experiment, per gene read counts could potentially be modelled 

using a Poisson distribution – in which the expected value of the read 

counts and the variance of the read counts for that specific gene/tran-

script would be equal. And this is generally what is observed when ex-

amining the distribution of read count data for technical replicates 

(Marioni, et al., 2008). However, read count data from the biological 

replicates of next-generation sequencing datasets are generally overdis-

persed (Robinson and Smyth, 2007), meaning that the variance of the 

read counts exceeds the arithmetic mean read counts for the same 

gene/transcript. As a result, the observed mean-variance relationship 
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can be modelled using a distribution closely related to the Poisson, 

namely the negative binomial distribution. The negative binomial can 

also be interpreted as a Poisson-gamma mixture model in which the 

lambda rate parameter of the Poisson is a continuous random variable 

which is gamma distributed – producing a larger variance than what 

would be expected with a standard Poisson (Lipp, 2016). It has been 

claimed that the reason for the additional variance observed above that 

which would be expected with a single, non-compounded model is that 

different biological replicates being variable with respect to each other, 

cause slight changes in the parameterisation of the fundamentally sto-

chastic Poisson sampling process (Lipp, 2016). 

 

A commonly used method for differential expression analysis, and one 

that will be used for analyses discussed later in the thesis is the DESeq2 

method (Love, et al., 2014). DESeq2 models read counts (i.e. the num-

ber of reads aligning to a given gene) using a generalised linear model, 

in which the distribution of reads counts for a given gene in a given 

sample is modelled by the negative binomial distribution, parameter-

ised by the strength of expression of that gene and the variability of the 

expression of that gene. Gene expression strength in a given sample is 

estimated both using a normalisation constant relating to the size of a 

library in a given sample, and also a linear model of covariates thought 

to influence gene expression values (e.g. treatment conditions, batch 

effects etc.). From this model, using a matrix of raw gene feature counts 

(e.g. genes, transcripts, exons) as input, fold change parameters for des-

ignated covariates is estimated for each gene feature (e.g. the fold 

change of a gene between control and treatment conditions). In addi-

tion, null hypothesis significance testing is performed using the Wald 

test, to test for differential expression for a given covariate, by testing 
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whether the coefficient for the covariate (i.e. the logarithmic fold 

change parameter) differs significantly from zero – this in effect, is a 

test of whether a particular gene feature is differentially expressed or 

not. 

 

DESeq2 uses empirical Bayes shrinkage methods in order to estimate 

dispersion and log-fold change parameters (i.e. b covariates) when fit-

ting GLMs to each gene individually. The dispersion parameter is used 

to model read count variance for each gene of each sample, and is cal-

culated by pooling information across samples and across genes (Love, 

et al., 2014): 

 

<=>(@*1) = 	 B*1 +	D*B*1+  

 

For @ read counts calculated for 5th genes in 6th samples. <=>(@*1)	rep-

resents gene and sample-specific read-count variance, B*1 represents the 

gene and the sample-specific mean read count and D* is the gene spe-

cific (but crucially not sample-specific) dispersion parameter. 

 

For estimation of the dispersion parameter, an initial dispersion esti-

mate is generated for each gene using replicate information from just 

that gene in order to generate maximum likelihood estimates (MLE). 

For all of these MLEs, a curve is fitted between gene dispersion and 

mean gene abundance, capturing the dependence of dispersion on mean 

gene expression. The fit is used as a prior for subsequent maximum a 

posterori (MAP) estimates of gene-specific dispersion for each gene. In 

this way, genes of a similar mean abundance across replicates are as-

sumed to possess similar levels of variability; information is shared 
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across genes, potentially overcoming the problem of uncertain disper-

sion estimates associated with estimating gene dispersion when exper-

iment samples sizes are low. A similar approach is used to shrink log 

fold change estimates in cases in which there is a large degree of uncer-

tainty when generating estimates (e.g. high gene dispersion or low sam-

ple number), reducing the probability of making spurious estimates of 

large log fold changes in gene expression. Such careful and methodical 

estimates of gene dispersion and log fold changes estimates are essen-

tial for the accurate investigation of the effects of miRNA perturbation 

on the regulation of gene expression.  

 

Shrinkage of log fold change estimates helps overcome the inherent 

heteroskedasticity of log fold change data (i.e. the dependence of the 

variability of log fold change data on mean expression). This heteroske-

dasticity is a consequence of taking the ratios of count data (which oc-

curs when calculating fold change), which produces largely variable 

and noisy results when counts are low (Love, et al., 2014). 

 

2.13  Alternative cleavage and polyadenylation 
 

A previously discussed benefit of using RNA-sequencing over other 

methods of RNA quantification is that it enables the reliable detection 

of transcript splice isoforms. Splice variants can impact the miRNA tar-

get predictions process, as differences in the primary sequence of tran-

scripts can potentially lead to the gain and loss of predicted miRNA 

target sites. Another source of variation of the primary sequence of tran-

scripts arising from a single gene derives from the phenomenon of al-

ternative polyadenylation and cleavage (APA). The terminal point of 
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any 3’UTR sequence is determined by a co-transcriptional process in 

which the distal end of the 3’UTR of a nascent pre-mRNA is cleaved 

and subsequently polyadenylated. Variation in sites located on the nas-

cent transcript for cleavage by APA machinery leads to the formation 

of transcript sequence isoforms. 

 

Some elements of polyadenylation and cleavage, like splicing, occur 

co-transcriptionally. Transcription passes through the polyadenylation 

signal (typically ‘AAUAAA’) located on the 3’UTR, through to the 

transcription termination signal located on the DNA (Neugebauer, 

2002; Proudfoot, et al., 2002). The polyadenylation signal is bound by 

CPSF (cleavage and polyadenylation factor), whilst a G/U rich region 

downstream of the eventual cleavage site is bound by CStF (cleavage 

stimulatory factor) (Neugebauer, 2002). The cleavage site is approxi-

mately 21 nt downstream of the polyadenylation signal and immedi-

ately upstream of the GU-rich region (Gruber and Zavolan, 2019).  

 

Many different patterns of APA can take place (figure 2.9) (Gruber, et 

al., 2014). The simplest form of APA arises in cases in which different 

polyadenylation signal exist on the same terminal exon, leading to the 

formation of transcripts with the same patterns of exon usage, though 

with different 3’UTR lengths. Alternatively, alternative splicing events 

can lead to the selection of alternative terminal exons for the transcripts, 

leading to cleavage at an alternative polyadenylation signal. In addition, 

APA can also occur in introns in cases in which the activity of the APA 

machinery supersedes that of the splicing machinery, and also for pol-

yadenylation signals located within constitutively expressed exons. 
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Figure 2.9 – The different forms of alternative polyadenylation and cleavage. 

The most prevalent form of APA is in which alternative polyadenylation sites are 

used on the same terminal exons (i.e. tandem polyadenylation sites). In other cases, 

APA can occur at alternative terminal exons, some of which may contain coding 

sequence. In other cases, APA will occur at intronic sites – changing the primary 

sequence of the polypeptide produced from this mRNA transcript.5 

 

APA also has implications for the targeting of mRNA transcripts by 

miRNA. Differential usage of polyadenylation sites in different biolog-

ical contexts, can result in distinct 3′UTR isoform abundance profiles 

existing between different cell types (Nam, et al., 2014). As a result, 

some portion of the 3’UTR, and as a result some miRNA binding sites 

                                                
5 Reproduced with permissions from Gruber, A. R., Martin, G., Keller, W., & Zavolan, M. (2014). 
Means to an end: mechanisms of alternative polyadenylation of messenger RNA precursors. Wiley 
Interdisciplinary Reviews: RNA, 5(2), 183-196. 
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may exist in some cellular contexts but not in others. Therefore, assum-

ing identical 3’UTR profiles across biological context will likely lead 

to an inflation of both false negative and false positive miRNA target 

prediction results.  

 

2.14  Combined target prediction and expression 

data tools and analyses 
 

Throughout the course of this thesis, we will discuss analyses involving 

the combined use of both in silico miRNA target prediction and target 

expression data, however, there has been previous research conducted 

in this area with approaches proposed or tools deployed addressing the 

problem of how data of these two types can be combined in order to 

better understand miRNA activity for specific biological contexts. 

 

There are a family of tools which address this problem using enrich-

ment analyses. This approach can be useful in instances in which the 

user has prior knowledge of the miRNA or sRNA which is differentially 

expressed between two conditions. Sylamer is one example of this ap-

proach (Van Dongen, et al., 2008). Sylamer takes a list of genes ranked 

according to the magnitude of differential expression of those genes as 

a result of some form of miRNA perturbation (e.g. miRNA transfection 

or gene knockout), and then generates an enrichment (or depletion) pro-

file for the k-mer complementary to the miRNA seed sequence across 

all genes, whilst correcting for 3’UTR length and compositional biases. 

For Sylamer, compositional biases are corrected using higher order 

Markov models in which the expectation of observing a given k-mer 

for a given bin is conditional on the identity of smaller sized k-mers 
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contained within that string (e.g. ‘AAAGT’ within ‘AAAAGTC’), and 

is parameterised as the background occurrence of the sub-word within 

that bin. This Markov model chain ensures that the enrichment of sub-

words (which are not of biological interest) are not confounded with 

that of k-mers of specific length (e.g. miRNA seed sequences of a given 

length) which are of interest. It was shown that, using this approach, a 

transcriptomic signal for the knockout of a miRNA could be detected 

as a derepression (i.e. upregulation) of transcripts containing k-mers 

complementary to the seed of that miRNA in their 3’UTRs (Van 

Dongen, et al., 2008). This is further evidence that the regulatory effects 

of single miRNAs are not confined to a small number of targets, but can 

produce signals strong enough to be detected in transcriptome-wide 

analyses such as this. Other tools which also use enrichment analyses 

in order to link target predictions with expression data include miR-

vestigator (Plaisier, et al., 2011) which utilises hidden Markov models 

for this purpose; miRonTop (Le Brigand, et al., 2010) which addition-

ally allows the user to use multiple target prediction methods for the 

enrichment analysis and also interrogate the precise location of target 

sites on 3’UTRs, and also miRTrail which utilises a chi-squared test for 

overrepresentation analyses with subsequent pathway and network 

analysis (Laczny, et al., 2012). 

 

Expression data cannot only be used to infer the regulatory potency of 

a given miRNA, but can also be used to infer individual sRNA-mRNA 

interactions. An example method of this type is FiRePat (Mohorianu, et 

al., 2012). FiRePat calculates the Pearson correlation coefficient be-

tween expression values of genes and sRNAs for a number of different 

sequencing runs, and then uses an unsupervised clustering method on 
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highly correlated gene-sRNA pairs in order to identify ‘putative net-

works of sRNA–gene interactions’ (Mohorianu, et al., 2012). In sum-

mary, for this approach, patterns of expression covariation are used to 

infer interactions between sRNA and mRNA gene pairs. However, for 

tools based on correlation analyses like FiRePat, whilst useful, such 

tools are only applicable when the users have data from multiple sam-

ples from different biological contexts. In addition, this approach as-

sumes that regulatory relationship between sRNA-mRNA gene pairs 

are the same for different biological contexts, which may not always be 

true. Other tools perform a similar function to FiRePat, including MA-

GIA2 (Bisognin, et al., 2012) which provides a choice of parametric and 

non-parametric measures to associate miRNA and mRNA expression 

datasets, as well as multiple algorithms for downstream miRNA target 

prediction, with subsequent inference of gene regulatory networks 

(GRN). In addition, MMIA (Nam, et al., 2009) also uses a covariation 

analysis to associate miRNA and gene expression data, but also in-

cludes information relating to disease states which have been associated 

with specific dysregulated miRNA levels. Other researchers have used 

expression data when defining one feature amongst many in a machine 

learning algorithm to predict miRNA targets, such as in TargetExpress 

(Ovando-Vázquez, et al., 2016), which predicts that expression of a 

gene in a given biological context is partially predictive of the ability 

of a miRNA to target that gene. With this approach, gene expression 

information is used to inform a larger, more extensive prediction model, 

but is not used as a filter for target prediction.   

 

As well as applications to allow users to predict their own miRNA tar-

gets with the help of expression information, databases have been de-

veloped and released which provides users with pre-computed targets 
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of this type. CSmiRTar (condition-specific miRNA targets) (Wu, et al., 

2017) is a database and web application which allows users to select 

miRNA targets (from a choice of four core miRNA target algorithms) 

which are expressed in specific tissues, and for specific disease states. 

In addition, the latest version of miRDB (Chen and Wang, 2019), al-

lows users to implement a context specific expression filter for miRNA 

targets. Both of these databases provide a useful service to the miRNA 

research community. Limitations however, include, that CSmiRTar 

treats gene expression in different biological context as being binary, 

and therefore does not allow the user to implement a specific user-de-

fined expression filter for targets. Conversely, miRDB, whilst allowing 

users to implement their own expression filter, only provides target pre-

dictions for the miRDB target prediction algorithm, and does not pro-

vide target predictions for other commonly used target prediction algo-

rithms. In addition, both of these database report miRNA-gene pre-

dicted interactions exclusively, though miRNAs can more accurately be 

stated to act on mRNA transcripts rather than genes. 

Despite these advances in the field, there is still the necessity for tools 

which enable the use of expression data to inform flexible use of target 

prediction workflows for a number of different prediction algorithms. 

In addition, there is also a need to allow the user to filter predicted re-

sults based on expression information, and in doing so, address the 

problem of the large number of false positive predictions made by ex-

isting target prediction algorithms. 
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Chapter 3: FilTar and FilTarDB de-

sign and development 
 

3.1  Contributions 
 

Simon Moxon: Initial idea of implementing an expression filter for 

miRNA target prediction, as well as the initial prototypical design of 

the web user-interface. Project supervision. 

Leighton Folkes: Help with beta testing the completed FilTar tool 

Thomas Bradley: Software design, development and programming of 

the FilTar tool. Design and development of the FilTarDB database. De-

sign and development of the FilTarDB web application. System devel-

opment and administration of FilTarDB system environment. FilTar 

and FilTarDB performance testing. Administration of FilTar and Fil-

TarDB version control, user documentation, and online repositories. 

Origination and development of the idea of implementing 3’UTR rean-

notation for miRNA target prediction. Data analyses. 

 

3.2  Introduction 
 

FilTar is a combination of software utilities, existing in the form of a 

command line tool and a web application, in which RNA-Seq data is 

utilised in order to tailor miRNA target predictions for a specific bio-

logical context, such as a given cell type or tissue, and thereby increase 

prediction accuracy. 
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In this chapter, we will discuss the motivation for starting the FilTar 

project, aims specified before and during development, the design and 

final implementation of FilTar as a command-line application, and a 

database and web application (i.e. FilTarDB), both of which depend on 

the same core FilTar backend pipeline. In the following chapter we will 

discuss the analysis and interpretation of results generated using FilTar, 

including an examination of FilTar’s prediction accuracy and the im-

plications of those results for computational miRNA target prediction. 

 

3.3  Motivation 
 

As discussed in the introduction to this thesis, the aim of the PhD pro-

ject more generally was to utilise bulk RNA-Seq high-throughput se-

quencing data in order to improve the accuracy of miRNA target pre-

diction in animals. 

 

FilTar represents the component of the broader PhD project in which 

we realise this approach in the form of an application or a collection of 

applications which is freely accessible and usable by members of the 

research community. My motivation for developing FilTar was to pro-

vide a means by which the general biological researcher could interro-

gate a database of animal microRNA target predictions which had been 

annotated, augmented or improved in some way using expression in-

formation. This would provide them with a more physiologically rele-

vant and thereby accurate set of target predictions for their biological 

system of interest, in particular, reducing the larger number of false 

positive predictions commonly found in miRNA target prediction 

workflows. As miRNAs are believed to regulate a large number of key 
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developmental and physiological processes in most animal lineages 

(Bartel, 2018), providing researchers with a more accurate set of target 

predictions would be reasonably expected to aid investigation of these 

processes. 

 

More specifically, expression information is used to remove lowly ex-

pressed mRNA transcripts from miRNA target prediction process. As 

both the miRNA and the target need to be expressed within the same 

biological context to interact, I predict that removal of non- or lowly 

expressed transcripts will likely lead to an increase in the specificity of 

the miRNA target prediction process. In addition, expression data is 

also used to generate context specific 3’UTR annotations. Alternative 

polyadenylation and cleavage events on the nascent precursors mRNA 

transcript lead to the establishment of 3’UTR isoforms within and be-

tween different cell types. Creating cell-type specific 3’UTR annota-

tions is therefore expected to increase the accuracy of target predictions.  

 

In addition, another aim of this project was to develop a tool which 

would allow more technically advanced users to apply the FilTar pipe-

line to their own RNA-Seq datasets, in order to generate target predic-

tions of particular relevance to their own biological samples. 

 

3.4  Aims statement 
 

The aims statement for the FilTar project can then be stated as the fol-

lowing: 

 



 107 

To provide some interface to biologist end-users, which would allow 

them to filter a database of computationally predicted canonical 

3’UTR microRNA targets based on the expression of those microRNA 

targets within a given biological context of interest. Target predictions 

stored in the FilTar database are to be derived from 3’UTR models 

generated from a combination of the user’s own sequencing dataset 

as well as reference 3’UTR models.  

 

Secondly, to provide a command-line application for GNU/Linux op-

erating systems which allows users to run the FilTar pipeline with 

locally stored RNA-Seq datasets. 

 

3.4.1  Target user base 

 

“...biologist...” is to be interpreted here as any user with standard 

knowledge and understanding of the basic principles of molecular biol-

ogy, such as the relationship between DNA, RNA and protein, and how 

non-coding RNAs can be used by the cell to modulate these relation-

ships. All graduates of standard biology bachelor’s courses, and some 

existing undergraduate students would likely meet this requirement. Po-

tential users motivated to use this tool but potentially lacking the pre-

requisite biological knowledge needed to navigate the user interface 

and understand returned results would likely benefit from consulting 

standard molecular biology textbooks, or published reviews in order to 

aid their understanding.  
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Bioinformatics knowledge is helpful but not required. In particular, as 

a major aim of the tool is the measurement of gene or transcript expres-

sion, it would be helpful if the user understood the methods and metrics 

used by FilTar when computing and reporting expression information. 

Briefly, it would be helpful to understand that the broad term ‘expres-

sion’ in this context refers specifically to a measurement of the relative 

abundance of a transcript within the context of which the RNA is sam-

pled, and that this is measured in units of transcripts per million (TPM) 

(Li, et al., 2009). A brief explanation of the TPM unit would be pro-

vided as part of the GUI (graphical user interface). Nonetheless, even 

without an in-depth knowledge of the TPM unit, the user should still to 

be able to find the results generated from the tool to be broadly inter-

pretable (in a manner which is biologically accurate) if they understand 

TPM as a scalar unit corresponding to the abundance of a transcript 

within a sample, with the caveat that the interpretation of TPM values 

compared between different samples can be more difficult (Pimentel, 

2014).  

 

By specifying a relatively low threshold of technical competence 

needed to use the tool, I hoped to increase the potential user base of the 

tool, and thereby increase the utility of the tool to biologists interested 

in animal miRNA biology. 

 

3.4.2 MicroRNA Target Type 

 

Computational microRNA targets (paraphrasing) refers to the precise 
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specification that this project be concerned with computationally pre-

dicted miRNA targets, and not miRNA targets which have been veri-

fied, predicted or inferred directly from experiments. 

  

The reasoning for choosing to focus on computational miRNA targets 

for this project, is that because of the limited number of experiments 

performed to directly identify microRNA targets, computationally pre-

dicted microRNA targets would considerably increase the scope of ap-

plicable animal species and biological contexts for which FilTar could 

be applied and thereby increase the utility of the tool to miRNA biolo-

gists. 

 

Canonically predicted microRNA targets (paraphrasing) refers to the 

fact that I only consider microRNA targets with a predicted target site 

containing full Watson-Crick base-pair complementarity to the seed re-

gion of the miRNA (Bartel, 2018), i.e. canonical miRNA target sites 

(Bartel, 2018).  

 

There are a number of methods which have been developed which are 

able to identify non-canonical microRNA target interactions (Enright, 

et al., 2003; Gumienny and Zavolan, 2015; John, et al., 2004; 

Kiriakidou, et al., 2004). However, doubts have been raised concerning 

the functionality of non-canonical targets, even if they represent genu-

ine binding events between the miRNA-AGO complex and the target 

molecule (Agarwal, et al., 2015). As the initial main aim of this project 

was to focus on post-processing steps (i.e. the filtering of predicted tar-

gets) after the identification of computational microRNA targets using 
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a core target prediction algorithm, it was decided to focus on high-con-

fidence microRNA target predictions, and as a result, non-canonical tar-

get predictions were not considered. 

 

Protein-coding (paraphrasing) refers to an exclusive focus on mRNA 

targets of miRNAs, and not the targeting by miRNAs of other non-cod-

ing RNA molecules, such as long non-coding RNA (lncRNA) or circu-

lar RNAs (circRNA). The competitive endogenous RNA theory 

(Denzler, et al., 2014) asserts that most ncRNA miRNA targets act as 

‘molecular sponges’, modulating the number of unbound miRNA-AGO 

complexes in the cytoplasm which can bind and repress mRNA tran-

scripts. However, the core targeting rules governing the targeting of 

ncRNA by miRNAs may be different than that governing mRNA-

miRNA interactions, requiring different core prediction algorithms to 

predict ncRNA-miRNA targets, and as a result, examination of non-

coding RNA targets of miRNAs was considered to be beyond the scope 

of this project. 

 

The second component of this condition is that miRNA targets are to 

be restricted to the 3’UTR only, and not any other features of the 

mRNA such as open reading frames (ORFs) and 5’ untranslated regions 

(5’UTR) despite it being known that miRNAs can target these regions 

of the mRNA (Reczko, et al., 2012). However, 3’UTR miRNA targets 

are the most effective and most abundant form of targeting (Bartel, 

2009), and so 3’UTR targets are the focus of this project.  

 

The last remaining ambiguous term in the stated aim is the term expres-

sion. As mentioned previously, the term expression used in this context 
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refers to the relative abundance of transcripts within a given cell type 

or tissue measured in units of TPM. 

 

3.5  Community needs addressed 
 

The FilTar tools fulfils a number of key community needs. The major 

community need that it fulfils is to provide a software application that 

allows users to, within the same application: i) reannotate the 3’UTRs 

from protein coding transcripts using RNA-Seq data ii) perform 

miRNA target prediction on the sample specific 3’UTR annotations and 

iii) enables expression filtering of predicted miRNA targets. 

 

In this way it addresses the need to perform context-specific miRNA 

target prediction. Within the general fields of developmental and mo-

lecular biology, at the time of writing, there is a current aim or need to 

increase the resolution at which different biological systems are exam-

ined e.g. the increasing emphasis on performing sequencing at single 

cell resolution. Although the FilTar tool does not enable miRNA target 

prediction analyses at the level of single cells, it does increase the spec-

ificity of analyses relative to the baseline or currently standard approach 

of conducting prediction analyses without specifying a cellular context. 

 

By increasing the resolution at which target prediction is conducted, the 

accuracy of the analysis will likely increase, as context-specific miRNA 

targets are identified, providing the biological researcher with improved 

knowledge of their particular system of interest. 
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3.5.1  Current issues with existing software 

 

The description of how FilTar will meet community needs exposes 

some limitations in existing tools which are used for the purpose of 

miRNA target prediction analyses. Some of these issues are described 

in more detail in the previous chapter, but just to briefly summarise: 

Existing tools do not allow users to perform miRNA target prediction 

on a set of reannotated 3’UTR transcripts specific to the particular bio-

logical context that they are investigating. As discussed previously, 

whilst some existing miRNA target prediction tools do incorporate ex-

pression information into the miRNA target prediction process, the ac-

curacy of these tools has not been shown to equal that of current state-

of-the-art methods for miRNA target prediction. FilTar crucially allows 

users to reannotate 3’UTRs and integrate expression information along 

with the use of the current existing best methods in miRNA target pre-

diction. 

 

3.6  General Design & Implementation 
 

3.6.1  Workflow Management 

 

Workflow management is performed using the dedicated snakemake 

(Köster and Rahmann, 2012) workflow management tool. Snakemake 

possesses many useful properties and features which are exploited by 

FilTar for the purposes of relatively simple and efficient workflow man-

agement, minimising cognitive overhead for both FilTar developers and 

end-users, for tool development and use respectively: 
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In brief, snakemake is a ‘target-based’ workflow management system, 

in which searches are performed for the absence or presence of target 

(i.e. destination file) in pre-defined paths to determine whether to com-

plete a particular, discretely defined process or rule. This target-based 

workflow management approach leads to the implicit definition of di-

rected acyclic graphs (DAGs) for target generation by the user when-

ever they define a set of inter-related snakemake rules. An implication 

of the target-based DAG approach is that each target file can be defined 

as the set of rules used to generate that target specifically, and recur-

sively all rules used to generate the input files, which are needed to 

generate target files. The utility of this approach for FilTar developers 

and end-users is that the logic for generating specified destination files 

can automatically be scheduled and executed in the appropriate order, 

minimising any required manual work from users, and minimising the 

risk of human error. Secondly, in most cases, existing target files and 

intermediate files are not needlessly regenerated, minimising the inef-

ficient use of available resources upon workflow execution. Addition-

ally, the specification of wildcards substrings within the names of target 

files, means that there is a large degree of flexibility, generalisability 

and parallelisation in workflow execution. For example, FilTar com-

monly uses wildcards to generalise workflows and sub-workflows to 

different species, different biological contexts and different chromo-

somes.  

 

Many other useful properties of using a workflow management system 

will become apparent as different aspects of FilTar design are discussed 

throughout this chapter. 
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3.6.2   General Schema 

 

The basic, simplified schema for the FilTar backend pipeline is pre-

sented in figure 3.1. 

 

 

Figure 3.1  – A high-level overview of the FilTar workflow 

 

These various steps and processes are managed using the Snakemake 

workflow manager. Figure 3.2 illustrates how Snakemake co-ordinates 

information relating to data, source code, configuration information and 

results. This schema relates the general structure of the FilTar reposi-

tory, including files and subdirectories, and how those different reposi-

tory components relate to each other in order to achieve a general func-

tion. 
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Figure 3.2 – Basic FilTar schema. The root snakefile acts as a central workflow 

management script and co-ordinates the activity of all subsidiary snakemake mod-

ules, represented by the ‘Modules’ box in the above schema. The data directory acts 

as a store of primary biological data sources, such as RNA-Seq reads and genome 

sequence files. The ‘Configuration’ directory contains specifications for the modu-

lation of the behaviour of the FilTar pipeline according to user choice. The ‘Scripts’ 

directory contains a collection of scripts which are used by one or multiple modules. 

Black arrows represent an exchange of information between different FilTar com-

ponents. All relationships are mediated and managed by the snakemake binary file. 

  

As can be seen from figure 3.2, the repository is organised around a 

central snakemake workflow management script, called a snakefile, 

which is located at the root of the directory, and co-ordinates all other 

repository components. This includes raw data and script subdirectories 

which are required for the completion of some snakemake rules. This 

is mediated by the use of the snakemake binary which is able to read 

from user-defined subdirectories when performing workflow execu-

Results
• Trimmed RNA-Seq reads
• Transcript quantifications
• Read alignments
• 3’UTR and CDS sequences
• miRNA target predictions

Data
• Genomic sequences
• Transcript Annotations
• Genome Indexes
• Genome-wide alignments
• Alignment indexes
• Untrimmed RNA-Seq reads ScriptsModules

Configuration
• Command-line configurations
• RNA-Seq ontologies
• Ensembl release version
• Species data configuration

Snakefile

FilTar
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tion. The ‘modules’ and ‘configuration’ subdirectories, as shown in fig-

ure 3.2, are used to support and regulate workflow behaviour respec-

tively, and require further explanation: 

 

The data that the user has to supply to the pipeline is very simple. If the 

user wishes to analyse publicly available data, the user only has to sup-

ply the relevant ENA/SRA (i.e. European Nucleotide Archive/Se-

quence Read Archive) database run and sample accessions for their 

RNA-Seq datasets of interest. This data should be entered into a YAML 

configuration file contained within the FilTar repository. The user can 

choose to download data from either the SRA or ENA repositories. 

 

For user-derived data, RNA-Seq data must be manually placed within 

the relevant ‘data’ directory within the FilTar repository. Users must 

assign their own identifiers to the RNA-Seq runs, and the samples from 

which the RNA-Seq runs derive, within the FilTar YAML configura-

tion file. The filenames of the associated fastq data files must corre-

spond with the assigned identifiers for that sequencing run. 

 

There are some limitations to the FilTar tool in its current state. At the 

moment, FilTar only supports full analyses for human and mouse, in-

cluding use of sequence orthology information when generating 

miRNA target predictions. FilTar is also supported for analyses of 20 

other vertebrate species for which both Ensembl gene annotations and 

miRBase miRNA annotations are available. However, because orthol-

ogy information in MAF format (multiple alignment format) is not 
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available for these 20 species, orthology information is not considered 

when generating miRNA target predictions for these species. 

 

Compatibility with use of data deriving from non-vertebrate bilaterian 

species (e.g. D. melanogaster or C. elegans) would require substantial 

reformatting of non-Ensembl transcript annotation files to the format 

which is required by FilTar. This process is only advised for advanced 

users. 

 

FilTar is not intended to be used as a general-purpose RNA-Seq quality 

control and analysis tool. There are many other tools which perform 

this function well (e.g. (Davis, et al., 2013; Grüning, et al., 2017)). As 

a result, quality control procedures for RNA-Seq datasets are not im-

plemented as part of the FilTar workflow. It is strongly advised that 

users perform quality control on RNA-Seq datasets before using their 

data with FilTar. 

 

3.6.3  Modular Design 

 

The modules directory contains a number of subdirectories, each of 

which contains a snakefile at its root, and hence can be said to operate 

as a discrete snakemake module. The rules and internal logic of each 

module can be aggregated with that of other modules in order to gener-

ate larger workflows. The relationship between snakefile and snake-

make module is recursive as some snakemake modules themselves con-

tain subsidiary snakemake modules. This recursive relationship be-

tween snakemake modules and submodules is represented in figure 3.3: 
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This hierarchical arrangement achieves two core functions: 

 

1) A clear, conceptual segregation of modules performing distinct, and 

clearly defined functions within the larger FilTar workflow, as well as 

a clear conceptual designation between modules performing top-level 

and subsidiary functions. 

 

2) The top-level management of all subsidiary snakefiles by a single 

master snakefile, allows the operations of the entire workflow to be in-

voked by a single call to the snakemake binary at the root of the FilTar 

directory. 

 

These two stated functions enable simple conceptualisation, develop-

ment and maintenance of the FilTar pipeline, as well as ease of work-

flow execution for both developers and end-users. 
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Figure 3.3 – The recursive relationship of snakemake modules and subsidiary 

modules exploited by FilTar for the purposes of efficient workflow manage-

ment. In this schema, each module invokes the rules (contained within respective 

top-level snakefiles), data, results and scripts from subsidiary modules. Different 

FilTar modules possess a variety of recursion depths. An example of this type of 
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modular design is the read mapping module, which is contained within the 3’UTR 

reannotation module, as the mapping of RNA-Seq reads to a genome is only ever 

used within the context of 3’UTR reannotation when using FilTar. 

  

Another implication of this schema, is that the FilTar pipeline possesses 

the properties of being easily extensible and scalable. The modular and 

recursive structure ensures for any new features integrated into the main 

project, additional modules can be added without disturbing the opera-

tion of other modules. 

 

3.6.4  Module Configuration 

 

Another important feature of the FilTar schema is the use of configura-

ble options which can be used to select between different snakemake 

modules, in order to alter the behaviour of the pipeline. Examples of 

this would be switching between different modules on the basis of 

whether the user wishes to reannotate 3’UTR sequences or not, or based 

on the use of a particular miRNA target prediction algorithm. The gen-

eral principle of utilising configuration information in order to switch 

between relevant modules is represented in figure 3.4 
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The utility of using configurable pipeline architecture such as this, is 

that it resolves any potential issues arising from conflicting snakemake 

modules by ensuring that conditionally irrelevant code is never pro-

cessed when the pipeline is executed. 

 

3.6.5  Modules Schema 

 

Figure 3.5 is a schematic of the organisation and relationship between 

different FilTar modules: 

Snakefile
• Data
• Results
• Scripts

FilTar

c

Module A (conditional)

cConfiguration

If 
option X 
is True:

Else:

Snakefile
• Data
• Results
• Scripts

c

Module B (conditional)
Snakefile
• Data
• Results
• Scripts

c

Module C (unconditional)
Snakefile
• Data
• Results
• Scripts

include

include

Figure 3.4 – The configurability of the FilTar pipeline architecture. End-users 

can configure pipeline behaviour using dedicated YAML configuration files and 

also directly when invoking the snakemake binary. This will cause the workflow 

manager to conditionally include some snakemake modules and hence determine 

pipeline behaviour. A specific example of this type of modular design are the sub-

modules contained within the miRNA target prediction module, relating to each 

individual miRNA target prediction algorithm (see figure 3.5). 
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3.6.6  FilTar Modules and configuration 

 

In the following section, a brief description of the functionality of each 

FilTar module will be provided: 

 

3.6.6.1  Data Download 

 

It is convenient to have a single module for the download of files needed 

for FilTar, for example, raw FASTQ files, cDNA files for transcript 

quantification, DNA files for read mapping etc. Within these modules, 

Modules Subdirectory

Data Download
• ENA
• SRA

3’UTR and ORF extraction
• With conservation
• Without conservation

miRNA

Transcript
Quantification
• Kallisto
• Salmon

Trim Reads
• trim galore

No 3’UTR Reannotation

3’UTR Reannotation
• Map reads

• HISAT2

Target Prediction
• TargetScan7
• miRanda

Create RDBMS tables
• MySQL
• SQLite

Upload to RDBMS 
tables
• MySQL
• SQLite

Data Analysis

Figure 3.5 – Schema of FilTar modules. Black arrows represent the flow of in-

formation between different FilTar modules. Bullet points represent submodules 

contained within each module. Text or modules boxes highlighted in light blue rep-

resent an end-choice between two or more modules performing a similar function. 

Modules outlined in orange represent modules only contained within the ‘database’ 

branch of the FilTar relating to the FilTarDB database and web application. Mod-

ules outlined in gold are contained exclusively in the ‘validation’ branch of the 

FilTar repository in which extensive data analysis is performed in order to validate 

the FilTar’s methodology and approach to the problem of microRNA target predic-

tion (see next chapter). 
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rules relating to file download, file decompression and file pre-pro-

cessing are connected via linked rule constructions. Data file pre-pro-

cessing is used to remove any records from raw data files, which were 

not relevant for the larger FilTar workflow, for example the removal of 

records detailing mitochondrial transcripts within GTF annotation files. 

The aggregated effect of all the rules within the modules is to generate 

input files for core FilTar processing modules. 

 

Utilities used for file download are wget and rsync, which respectively 

use FTP (File Transfer Protocol) and rsync transfer protocols. The gzip 

and gunzip utilities are used for file compression and decompression 

respectively. The specialised tool fasterq-dump, as part of the SRA 

toolkit (v2.9.6) is used for file download and decompression for RNA-

Seq data stored at the Sequence Read Archive (SRA) (Leinonen, et al., 

2010). 

 

Concerning the download of raw sequencing data more specifically, it 

should be noted that it is optional for the user to either to choose to 

download data from the SRA or the European nucleotide archive (ENA) 

(Leinonen, et al., 2010), by making use of configuration options directly 

addressing this issue. The use of providing a choice to the user for data 

download, is that they can choose between download services which 

are faster or alternatively more robust.  

 

Alternatively, if the user chooses to provide their own locally stored 

data files for processing, then this module is not used by FilTar as no 

data needs to be downloaded. 
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3.6.6.2  miRNA processing 

 

The miRNA module enables filtering of the miRNA FASTA records, 

downloaded from miRBase (release 22) (Griffiths-Jones, et al., 2006; 

Kozomara, et al., 2018), in order to select miRNAs of the correct spe-

cies, and also the user-selected miRNAs of interest. As miRBase is 

known to contain some incorrectly annotated miRNAs (Ludwig, et al., 

2017), FilTar gives the user the option (set as default) to use miRBase’s 

own high confidence set of miRNA annotations (Kozomara and 

Griffiths-Jones, 2014) when performing target predictions. Otherwise, 

users can opt to use the entire miRBase set of annotations for a given 

species for a more comprehensive, although, potentially less accurate, 

analysis. 

 

This module is relatively simple as most miRNA rules are not contained 

within this module and are assorted into modules and sub-modules re-

lating to specific miRNA target prediction algorithms, as different al-

gorithms require different file formats for miRNA data. 

 

3.6.6.3  Trimming of RNA-Seq Reads 

 

Raw RNA-Seq reads undergo quality control and trimming using the 

trim galore tool (v0.5.0) (Krueger, 2015), a wrapper around cutadapt 

(v1.16) (Martin, 2011) which is run with default parameters, with the 

exception of the ‘length’ and ‘stringency’ parameters which were set to 

35 and 4 respectively. Separate rules are defined for the processing of 

single-end and paired-end sequencing data using trim galore. 
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3.6.6.4  3’UTR reannotation 

 

As may be expected, integrating this additional feature into the pre-ex-

isting FilTar pipeline required adjustment and re-organisation of exist-

ing code, and pipeline structure. In particular, there is an explicit bifur-

cation in workflow execution depending on whether the user chooses 

to reannotate 3’UTRs or not before the event of microRNA target pre-

diction – which are respectively represented by the ‘with reannotation’ 

and ‘without reannotation’ snakemake modules. In the former module, 

RNA-Seq reads are mapped to the genome (GRCh38.p12 for human 

and GRCm38.p6 for mouse) using the splice-aware read-aligner 

HISAT2 (Kim, et al., 2015) (v2.1.0). Using HISAT2, the location of 

exons and junction sites is determined by running the appropriate 

HISAT2 scripts on the relevant species-specific GTF annotation file 

also obtained from Ensembl (release 94). The ‘hisat2-build’ binary is 

executed using the ‘--ss’ and ‘--exon’ flags indicating splice site and 

exon co-ordinates built from the previous step. 

 

The indexed genome is used for FASTQ read alignment using the 

‘hisat2’ command. The ‘rna-strandness’ option was used for strand-

aware alignment. The strandedness of RNA-seq datasets is predicted 

using the ‘quant’ command of the salmon (v0.11.3) (Patro, et al., 2017) 

RNA-seq transcript quantification tool, by setting the ‘lib-type’ option 

to ‘A’ for automatic inference of library type. The samtools (v1.8) (Li, 

et al., 2009) ‘view’ and ‘sort’ commands were used to sort data from 

sam to bam format, and to sort the resultant bam files respectively. 
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Sorted bam files were converted to bedgraph format using the ‘genome-

CoverageBed’ command of bedtools (v2.27.1) (Quinlan, 2014; Quinlan 

and Hall, 2010) using the ‘bg’, ‘ibam’ and ‘split’ options. Bedgraph 

files representing biological replicates of the same condition were 

merged using bedtool’s ‘unionbedg’ command. FilTar then calculated 

the mean average coverage value for each record in the merged bed-

graph file. Existing gene models were produced by converting Ensembl 

GTF annotations files into genePred format using the UCSC ‘gtfTo-

GenePred’ binary, and then from genePred format to bed12 format us-

ing the UCSC ‘genePredToBed’ binary (Kent, et al., 2002).  

 

Alignment files from this mapping are then utilised by APAtrap (Ye, et 

al., 2018), the 3’UTR reannotation tool, using the ‘identi-

fyDistal3UTR.pl’ perl script with default parameters, along with pre-

existing reference transcript annotation files, in order to reannotate 

3’UTR sequences. In brief, APAtrap implements 3’UTR reannotation 

using a ‘sliding window’ model. In this model, the annotated 3’UTR of 

transcripts with single-exon 3’UTRs is first considered; this initial 

space at the end of the pre-existing 3’UTR annotation is by default ex-

tended by 10kbp unless this extension hits upon a downstream gene. A 

sliding window (default size: 100bp) is then slid across this newly cre-

ated space in 1bp increments in the 5’->3’ directions starting from the 

end of the existing 3’UTR annotation. A prerequisite for 3’UTR rean-

notation is that the first 100bp of this extended 3’UTR exceeds a mean 

coverage threshold of 10 reads – in order to ensure the transcript has 

been sampled at sufficient depth for 3’UTR reannotation. The sliding 

window traverses the extended 3’UTR space using while logic; the slid-

ing window stops once less than 80% (default value) of bases in the 

sliding windows fails to exceed a coverage of 5% (default value) of the 
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mean coverage of the first 100bp window. For example, if the mean 

coverage for the first 100bp window was 30, then the sliding window 

would cease ‘sliding’ once the coverage of at least 21bp (using default 

parameter values) in the sliding window had a coverage of 0. At this 

point, comparisons are made between the existing window and the fol-

lowing window in order to prevent the calling of erroneous 3’UTR an-

notations from regions of locally poor coverage on the 3’UTR: It is re-

quired that two consecutive windows fail the criterion described above. 

The exact 3’UTR end is given as the first nucleotide in the sliding win-

dows which fails the coverage criteria. 

 

Custom scripts are then used in order to integrate novel 3’UTR annota-

tions with pre-existing 3’UTR annotations (for transcripts in which the 

3’UTR was not reannotated) in order to generate new annotation files. 

In the case in which the user chooses not to reannotate 3’UTR se-

quences, pre-existing GTF annotation files are used. Only truncations 

or elongations of single exon 3’UTR annotations were integrated into 

final 3’UTR annotations; novel 3’UTR predictions (i.e. prediction of 

3’UTRs for transcripts without a previous 3’UTR annotation) were dis-

carded and alterations of the 3’UTR start site were also not permitted, 

due to the reannotation of 3’UTR start sites by the APAtrap dependency 

as beginning at the start position of the final exon in standard Ensembl 

transcript models.  No alterations to existing 3’UTR annotations span-

ning multiple exons were permitted, as this is not intended functionality 

of the APAtrap tool. 

 

3.6.6.5  3’UTR and ORF extraction 
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The following module is responsible for deriving ORF and 3’UTR tran-

script sequences from genomic data, given transcript models contained 

within GTF annotation files. This sequence data is required for miRNA 

target prediction to occur.  

 

At the base of this module there is a bifurcation in data processing on 

the basis of a user-configurable option, namely whether the user wants 

to obtain homology/conservation information for 3’UTRs or not in the 

form of multiple sequence alignments or whether to use single sequence 

3’UTR models. Use of multiple sequence alignments will produce more 

accurate predictions using the core TargetScan7 algorithm, but with 

performance costs relating to data storage, memory usage and run time. 

 

Multiple sequence alignments (MSA) are derived from 100-way (hu-

man reference) and 60-way (mouse reference) whole-genome align-

ments hosted at the UCSC genome browser (Kent, et al., 2002) gener-

ated using the threaded blockset-aligner (Blanchette, et al., 2004) 

stored in MAF (multiple alignment format) format. MAF files are in-

dexed, and the relevant alignment regions corresponding to 3’UTR co-

ordinates extracted using ‘MafIO’ functions contained within the bi-

opython (v1.72) library (Cock, et al., 2009). For human MSAs, distantly 

related species, which are all fish species, are removed, due to the poor 

quality of their 3’UTR alignments with the reference genome resulting 

in 84-way multiple sequence alignments (Agarwal, et al., 2015). 

 

If multiple sequence alignments are not used, single sequences are ex-

tracted from DNA files using relevant 3’UTR co-ordinates in bed for-

mat using the ‘getfasta’ command of bedtools (Quinlan, 2014; Quinlan 
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and Hall, 2010) with the ‘s’ option enabled. Custom scripts are used to 

process the output of this command in order to merge exon sequences, 

into a single contiguous 3’UTR sequence. Further scripting is required 

to convert miRNA and 3’UTR sequence and identifier information into 

a format which can be parsed by TargetScan algorithms. 

 

Care is taken to ensure that strandedness information is accounted for, 

as well as the existence of multi-exonic 3’UTRs to ensure faithful rep-

resentation of 3’UTR models. All sequence information is converted 

for compatibility with downstream target prediction algorithms. 

 

3.6.6.6  RNA-Seq Data Ontology 

 

There should be special consideration and thought about how FilTar 

processes and manages disparate RNA-Seq datasets for both use in the 

command-line tool and the FilTarDB database. In particular, the pro-

cessing of RNA-Seq data has implications for how FilTar performs 

transcript quantification as well as 3’UTR reannotation. 

 

In particular, when developing FilTar, there was a need to address the 

relationship between different RNA-Seq datasets, and how information 

from different RNA-Seq datasets could be integrated and labelled as to 

be of use to end-users and downstream applications, and the implica-

tions of this labelling for transcript quantification and 3’UTR reannota-

tion. 

 

The labelling of RNA-Seq datasets in FilTar corresponds somewhat 

with the hierarchical labelling of RNA-Seq data by the SRA and the 
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ENA. Namely, the BioSample designation (Barrett, et al., 2011) is used 

to group replicates of the same sample type under the same accession, 

and in addition, the run accession designation is used to label sequenc-

ing data relating to the same sequencing experiment. 

 

FilTar integrates metrics derived from primary sequencing data by first 

grouping different sequencing runs which fall under the same Bi-

oSample, and secondly by combining BioSamples which are grouped 

under the same top-level label for a given species e.g. All human liver 

BioSamples would be grouped under the same label. 

 

The precise ontology used dictates the manner in which data is merged 

and integrated. An arithmetic mean average method is used to deter-

mine average TPM values and base coverage values for individual se-

quencing runs falling under the same BioSample for the purposes of 

transcript quantification and 3’UTR reannotation respectively. The 

sample function is then applied recursively to determine appropriate av-

erage values for multiple BioSamples falling under the same top-level 

label. 

 

3.6.6.7  Transcript Quantification 

 

Transcript quantification is performed using an alignment-free ‘pseudo-

alignment’ approach used by kallisto (v0.44.0) (Bray, et al., 2016). Hu-

man and mouse cDNA files were downloaded from Ensembl. cDNA 

files are indexed using the ‘kallisto index’ command with default pa-

rameters. Reads were pseudoaligned and relative transcript abundance 

values quantified using the ‘kallisto quant’ executable, using the ‘bias’ 
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option to correct for sequence-based biases. When kallisto was used 

with data derived from single-end RNA-sequencing experiments, 180nt 

and 20nt were used as required estimates of the mean average fragment 

length and standard deviation respectively. 

 

Arithmetic mean average TPM values for each transcript are calculated 

using user-defined RNA-Seq data ontologies (see above section). 

 

It is important to distinguish between two classes of aligners/pseudo-

aligners which are used in FilTar. As discussed previously, kallisto and 

Salmon are used for the purposes of transcript quantification from 

RNA-Seq experiments. Because both of these tools, as discussed previ-

ously, do not conduct read alignment to the genome, or perform genuine 

alignments, they cannot be used for 3’UTR reannotation. 

 

As a result, HISAT2, a splice-aware aligner is used for this purpose of 

3’UTR reannotation whilst either Kallisto or Salmon is used for tran-

script quantification. A detailed discussion of the difference between 

these two tools follows: 

 

As discussed previously, both Salmon and kallisto estimate fragment 

length distributions in order to process libraries containing cDNA frag-

ments with a potentially great range of insert sizes. It is also important 

to note that both of these tools are able to process stranded and un-

stranded RNA-Seq libraries, as well as being able to distinguish be-

tween paired-end stranded libraries in which either the forward read or 

the reverse read is sequenced first.  
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When comparing the Salmon and kallisto tools, it is important to note 

that Salmon contains more information in its pseudo-alignments, in-

cluding the orientation of pseudo-aligned reads – which allows Salmon 

to distinguish between paired-end RNA-Seq libraries in which reads 

have matching or differing orientations. As a result, it is possible for 

Salmon to automatically infer the read library type from an analysis of 

a relatively small number of pseudo-aligned reads, reducing the admin-

istrative burden on the end user. However, with Kallisto, the user must 

manually assign the library type when running the tool. It is possible to 

first use Salmon to infer the library type, and then use estimated library 

type when configuring Kallisto for use with a particular library or group 

of libraries. 

 

It is also important to note that unlike kallisto, Salmon computes the 

conditional probability that each fragment derives from a transcript to 

which it maps, which allows it to estimate sample-specific parameters 

such as ‘positional biases in coverage, sequence-specific biases at the 

5′ and 3′ ends of sequenced fragments, fragment-level GC bias, strand-

specific protocols, and the fragment length distribution’. 

 

Both Salmon and Kallisto perform similarly against state-of-the-art 

RNA-Seq genome alignment and quantification methods with substan-

tially larger run-times to their computationally expensive methods of 

alignment and quantification. FilTar allows users to use either Salmon 

or Kallisto given their similar functions, and the broadly similar ‘quasi’ 

or ‘pseudo’ alignments methods they used in order to quantify relative 

transcript abundance from RNA-Seq data. The option is provided not 
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only due to the slightly different run-times, accuracies and bias correc-

tion models of the two tools, but also because of the varying APIs they 

provide to the user and the slightly different functionality of the two 

tools, as well as slightly different methods for reporting results, and 

logging metadata. 

 

3.6.6.8  miRNA Target Prediction 

 

The two core algorithms used for miRNA target prediction that the user 

can select from is the TargetScan7 (v.7.0.1) (Agarwal, et al., 2015) and 

the miRanda (v3.3a) (Enright, et al., 2003; John, et al., 2004) algo-

rithms. The 3’UTR sequence data required for target prediction can ei-

ther be provided as multiple sequence alignments or single sequences, 

with the former option enabling the computation of 3’UTR branch 

lengths and the probability of conserved targeting (Pct) for putative 

miRNA target sites. 

 

Each of these two options involves the pre-processing of upstream input 

files for use with either algorithm, as well as the post-processing of out-

put files to remove records which did not exceed a given TPM thresh-

old. 

 

Generalised linear models are similarly used in TargetScan (with the 

special case of multivariate linear regression), in order to score the rel-

ative efficacy of predicted miRNA target sites using a metric referred 

to as the context++ score. However, whilst GLMs are used in both con-

texts to generally model gene expression outcomes, there is a particular 

difference in the sense that with DESeq2, log fold change is used as a 
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predictor variable coefficient – whilst in the case of TargetScan, log 

fold change is instead used as the (normally distributed) response vari-

able. 

 

More specifically, four different linear models are generated with Tar-

getScan – one for each of the main canonical target site types (i.e. 8mer, 

7mer-m8, 7mer-1a, 6mer). Each model is built from a linear combina-

tion of sequence-based, and contextual features – selected from using a 

hybrid strategy of identifying a superset of candidate features of interest 

from relevant literature, and then restricting this initial set to a set of 14 

features – selecting the most informative features using the Akaike in-

formation criterion (AIC). 

 

As the TargetScan model is comprised of four different linear models – 

one for each canonical target site type, then there are four distinct dis-

tributions of context++ score values for each target site type. As can be 

seen in figure 3.6, each site type (7mer data has been pooled together 

due to their similarity) exhibits slightly different distributions, with 

slightly different means. Each distribution exhibits a strong floor effect 

indicating target sites which whilst possessing a canonical miRNA tar-

get site, is not predicted to be repressed by miRNA upregulation. The 

expected values of the 8mer, 7mer and 6mer context++ score distribu-

tions are -0.27, -0.18 and -0.13 respectively. More negative values in-

dicate greater repression using a logarithmic fold change scale. 

 

Use of the TargetScan7 algorithm involves reformatting of miRNA 

data, as well as the explicit automated chaining of TargetScan7 compu-
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tations relating to target site scanning, 3’UTR branch length calcula-

tion, probability of conserved miRNA targeting, ORF lengths, ORF 

8mer counts, affected isoform ratios (AIRs), as well as final context++ 

scores.  

 

 

Figure 3.6 – The estimated distribution of the context++ scores of the Tar-

getScan algorithm. Scores are taken from the official TargetScan web domain (i.e. 

targetscan.org). These scores are derived from an entire ‘all miRNA x all gene’ 

analysis for all human genes, and from conserved miRNA families from 84 verte-

brate species. Expected values of -0.27, -0.18 and -0.13 for 8mers, 7mers and 6mers 

respectively. 

 

Recalculation of AIRs by FilTar is of particular importance. As 3’UTRs 

isoforms exist within tissues, AIRs can be used to define 3’UTR iso-

form profiles for each annotated mRNA transcript (Nam, et al., 2014). 

However, the current set of 3’UTR profiles used with TargetScan7 are 

based on AIR scores derived from a small number of 3P-Seq (Poly-A 

position profiling) (Jan, et al., 2011) experiments conducted using only 
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four cell lines (Agarwal, et al., 2015). Using FilTar, we are able to post-

process APAtrap output to generate AIR scores, and hence distinct 

3’UTR profiles for each biological context of interest, or indeed any 

potential biological context of interest to users. 

 

A certain amount of caution is needed when interpreting the analyses 

of the cumulative distribution functions presented in this chapter. There 

are a number of potentially confounding variables to consider. Agarwal 

et al. (Agarwal, et al., 2015) identify three principal confounding vari-

ables when conducting these types of analyses: They demonstrated that 

in multiple transfection experiments, some of the mRNA which were 

perturbed upon miRNA transfection were unrelated to the transfected 

miRNA. Further investigation revealed that mRNA fold change was 

correlated to both the 3’UTR length and the AU content in the 3’UTR. 

In addition – Agarwal et al. in their analyses also identified a derepres-

sive effect for the mRNA targets of miRNAs different to the miRNA 

perturbed in given experiments, potentially owing to an increase in 

competition for gene silencing protein machinery. Agarwal et al. also 

discovered the existence of batch effects potentially confounding ob-

served mRNA fold changes, relating to different studies conducted by 

different laboratories and also relating to different transfection proto-

cols. 

 

FilTar provides users with the options of using either TargetScan7 or 

miRanda for miRNA target prediction. Target prediction is immedi-

ately downstream from the processing step in which 3’UTRs are rean-

notated. 
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The target score from the use of the miRanda algorithm represents the 

output of a dynamic programming alignment algorithm, in which align-

ment scores have a stronger weighting at the 5’ end of the miRNA mol-

ecule reflecting the importance of the miRNA seed in targeting mecha-

nisms. The expected value of the distribution of miRanda alignment 

scores (figure 3.7) is 147.1. 

 

An expression filter is implemented on the results of miRNA target pre-

diction in order to remove targets in which the predicted expression of 

the target does not exceed a given expression threshold. The target pre-

dictions, in the format corresponding to the respective tools with which 

the target predictions were generated, is then available to the user (in 

TSV format) with an additional column relating the relative transcript 

abundance of each transcript. 

  

It is possible for users of the FilTar tool to take the union of results from 

TargetScan and miRanda in order to make more informed decisions 

about putative miRNA target interactions. One challenge with this ap-

proach is the difficulty in comparing results from two different predic-

tions algorithms which score targets using different metrics. A naïve 

approach to standardising the two data types would be to take the Z-

score of a given target prediction score for each prediction algorithm. 

However, this is only appropriate for cases in which both prediction 

score types are normally distributed. A more suitable approach for users 

would be to fit a model to each set of target predictions for each algo-

rithm, and then the probability of observing a giving score can then be 

estimated from this model.  
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Figure 3.7 – The predicted probability mass function of miRanda alignment 

scores. Scores are taken from an ‘all miRNA x all gene’ target prediction analysis 

including all annotated mouse miRNAs and protein-coding genes. Expected value: 

147.1 

  

The probabilities would provide a common scale on which to compare 

scores outputted from both the TargetScan and miRanda algorithms. It 

would also be possible for users to take the intersection of target pre-

dictions using this approach for a more stringent, but potentially less 

sensitive analysis. 
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In summary, users can interpret the output of these target prediction 

algorithms together or individually. For TargetScan, there is a direct 

correspondence between the context++ score and the predicted loga-

rithmic fold change of predicted targets as a result of miRNA upregu-

lation. For miRanda, there is no direct interpretation of reported align-

ment scores, however, users can use score ranks or predicted score dis-

tributions in order to interpret the potential biological significance or 

reported alignment scores. This approach can also be used to interpret 

the relationship between TargetScan and miRanda prediction scores 

when taking the union or intersection of prediction scores from these 

two algorithms. 

 

3.6.7  Dependency Management 

 

The dependencies used by the FilTar application can be summarised in 

table 3.1: 
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Dependency Version used 

in  

FilTar 

Software Type Function in FilTar 

pigz 2.4 Command-line 

application 

For parallel compression/decompression of 

FASTQ data files 

SRAtoolkit 2.9.1 Command-line 

application 

For the download of FASTQ data from the se-

quence read archive (SRA) 

bedtools 2.27.1 Command-line 

application 

Extraction of ORF and 3’UTR sequences from 

transcripts models 

biopython 1.72 Python library Extract multiple sequence alignments from 

MAF files given a set of ORF and 3’UTR ge-

nomic co-ordinates 

kallisto 0.45.1 Command-line 

application 

Quantification of transcript read counts and rel-

ative abundance from bulk RNA-Seq data 

salmon 0.13.1 Command-line 

application 

 

Quantification of transcript read counts and rel-

ative abundance from bulk RNA-Seq data 

 

miRanda 3.3a Command-line 

application 

miRNA target prediction by generating scores 

relating to miRNA-3'UTR alignment and ther-

modynamic stability 

TargetScan 7.0.1 Multiple perl 

scripts 

miRNA target prediction using a strict seed-

pairing strategy. General linear models are im-

plement to score canonical seed targets of each 

type (i.e. 8mer,7mer-m8,7mer-1a,6mer) 

viennaRNA 2.4.9 Command-line 

application 

A dependency for TargetScan. The RNAplfold 

utility as part of the viennaRNA suite of tools 

is used for scoring the structural accessibility 

feature of each putative target site 

Trim Galore 0.5.0 Command-line 

application 

A wrapper around CutAdapt. Used by FilTar 

for trimming RNA-Seq reads 

HISAT2 2.1.0 Command-line 

application 

Used by FilTar for splice-aware RNA-Seq read 

mapping. Alignments are used for 3’UTR rean-

notation 

samtools 1.8 Command-line 

application 

Used for converting SAM files (outputted by 

default by HISAT2) to BAM format, and then 

for sorting these BAM files. 

UCSC-gtfto-

genepred 

366 Command-line 

application 

Convert GTF files to genePred format – a nec-

essary step in the 3’UTR reannotation pipeline 

UCSC-

genepredtobed 

366 Command-line 

application 

Convert files in genePred format to bed format 

– a necessary step in the 3’UTR reannotation 

pipeline 
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APAtrap Not specified Multiple perl 

scripts 

Used by FilTar for 3’UTR reannotation of pre-

viously annotated single exon 3’UTRs 

Conda 4.6.14 Package and 

Environment 

Manager 

Responsible for dependency management for 

the vast majority of dependencies used by Fil-

Tar 

Snakemake 5.4.0 Workflow man-

ager 

Manages the entire FilTar workflow through 

linked rule constructions. 

devtools 2.1.0 R package Need to install the filtar_R dependency 

filtar_R 0.1.0 R package A library of core helper and general data ma-

nipulation functions for FilTar 

CPANM 1.7044 Perl package 

managment 

For the installation and management of perl 

modules used by FilTar 

Perl Modules: 

Bio::Perl, 

Statistics::Lite, 

Getopt::Long, 

Smart::Com-

ments, 

experimental, 

List::Util, 

List::MoreUtils, 

Math::Num-

berCruncher, 

Exporter:Tiny 

 Perl Modules A series of dependencies for perl scripts associ-

ated with the TargetScan and APAtrap utilities 

Table 3.1 - A list of all dependencies needed to use the FilTar command line 

application 

 

These dependencies will be discussed in greater detail in the remainder 

of this section. 

 

3.6.7.1  Conda 

 

Conda is the predominant method of dependency management within 

FilTar. Conda is a package and environment manager in which software 

packages can be accessed through conda channels which are distinct 

locations in which software are hosted, which are managed by conda 
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developers, individual conda users, or a community of conda users. A 

large suite of bioinformatics packages are hosted through a number of 

dedicated and specialist conda channels such as bioconda and conda-

forge. 

 

Conda can also be used to generate environments in which networks of 

dependent and co-dependent software can be bundled together and seg-

regated from potentially conflicting software contained within the de-

fault user environment. 

 

These features are utilised by FilTar to interactively download and in-

stall dependencies within rule-specific environments during FilTar 

workflow execution. The utility of this approach is that the installation 

process is fully automated, reducing the workload of end-users. In ad-

dition, the assignment of dependencies to individual rules prevents de-

pendency conflicts between rules within FilTar.  

 

3.6.7.2  The ‘filtar’ R Package 

 

A dependency which is of fundamental importance to the main FilTar 

repository is the subsidiary ‘filtar’ R package which was also developed 

during the course of this project. This package contains a library of 

functions used by FilTar for the purposes of general data handling and 

manipulation. This dependency relationship is beneficial for FilTar as 

it results in a modularisation and abstraction of specific, data processing 

logic which occurs within scripts segregated away from the higher-level 

workflow logic which manages the relationship between scripts. This 
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is useful as it eases the development and maintenance of both data pro-

cessing and workflow logic, and allows the relatively straight-forward 

invocation of discrete data processing functions at various locations 

within the FilTar source code. Storing user-generated R code within a 

separate R package also leads to benefits in terms of automated code 

testing and code documentation (see below), and also enables auto-

mated management of R package dependencies. This package is re-

leased as an open-source library, and is hosted on GitHub 

(https://github.com/TBradley27/filtar_R). 

 

Not all core data processing logic is contained within this package. In 

some instances, custom python or shell code is used to perform data 

processing roles within FilTar. In these instances, such scripts are con-

tained within the ‘scripts’ subdirectory at the root of the repository, or 

otherwise at the root of appropriate module subdirectories. 

 

3.6.7.3  Miscellaneous 

 

Perl modules are managed independent of conda using the CPANM 

(v1.7044) perl package manager. APAtrap and TargetScan scripts are 

sourced from SourceForge online source code repository (source-

forge.net) and the TargetScan web domain (targetscan.org) respec-

tively. 

 

3.6.8  Automated Testing, Automated Building & Continuous Inte-

gration 
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Automated testing is a process by which the correctness of code is 

tested using other, external pieces of written code. This approach min-

imises the required manual supervision by developers or maintainers of 

software scripts and packages when testing the correctness of code, and 

is generally used to help minimise coding errors in software tools and 

packages.   

 

Automated testing of the FilTar tool is performed using a combination 

of unit tests and integration tests. Unit testing is performed on functions 

of the filtar R package using the testthat (v2.2.0) automated testing 

package. Integration testing is performed at the point in the FilTar 

workflow in which TargetScan7 microRNA target predictions are made 

by testing the correctness of FilTar-computed output against a reference 

value accessible via the official TargetScan website (targetscan.org - 

(Agarwal, et al., 2015)). As target prediction occurs at the end of the 

FIlTar workflow, correctness of target prediction values entails correct-

ness of all preceding processing steps. 

 

Automated building is the process in which the workflow for building 

a software package is automated ‘from scratch’ so to speak in a clean 

environment, in order to ensure that a software package can be down-

loaded and installed in remote environments (with respect to the devel-

opers’ local environments) according to specified instructions and with-

out additional unspecified dependencies. The process of automated 

building can be linked to that of automated testing by requiring an au-

tomated testing process at the end of the build, in order to ensure the 

correctness of the installation.  
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Continuous integration is the process by which changes made on devel-

opment branches of a project, are, relatively speaking, frequently 

merged into production. The process of automated building and testing 

enables the process of frequent or continuous integration, by allowing 

developers to easily and rapidly test the stability of development 

branches, before those branches are merged into production – rapidly 

increasing the rate at which integration can occur. 

 

Automated building and frequent, if not continuous, integration are en-

abled by use of the Travis CI (travis-ci.org) plug-in for GitHub. With 

this plug-in enabled, the stability of specified branches can be tested 

after every commit to GitHub-hosted remote repositories. 

 

These processes help ensure the validity and correctness of FilTar with 

respect to specified aims, and enable the rapid development and inte-

gration of any future enhancements or additional features, greatly in-

creasing the extensibility and utility of the FilTar tool for microRNA 

researchers. 

 

3.7  Command-Line Application 
 

3.7.1  User Interface 

 

Although as mentioned previously, the FilTar command-line tool is 

built around the snakemake workflow management tool, the snakemake 

command-line syntax has been utilised in order to mimic, where possi-

ble the functionality of a stand-alone command-line utility. Using the 

command line snakemake ‘–config’ option users can specify a miRNA 
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of interest, or a gene of interest or also a species of interest. Users can 

also specify their preferred target prediction algorithm, and a particular 

biological context that they are interested in.  

 

Additionally, users can specify generic options to the snakemake utility 

such as whether to execute a dry-run or to specify the number of cores 

that the user wishes to use. During a dry-run, a plan of workflow exe-

cution is reported to the user, but no data processing actually takes 

place. 

 

3.7.2  Project Deployment, licensing & maintenance 

 

The FilTar command line tool is deployed using the GitHub online re-

pository (github.com) using GNU General Public License v3.0. This is 

a strong copyleft license which gives users the right to run, modify and 

share FilTar code under the condition that all derivative works are dis-

tributed using the same license. From GitHub, potential users of the 

FilTar tool can download any given release of the tool, as well as the 

latest development version. Users can also choose to create their own 

forks of the FilTar repository, in which they can make their own 

changes to the tool, and may choose to request that their changes are 

merged into the main FilTar repository via GitHub’s ‘pull request’ fea-

ture. 

 

These activities, enabled by the open source licensing of the FilTar pro-

ject could potentially aid in the maintenance of the FilTar tool, as users 

could potentially identify any problems or issues with the repository. 

For example, if a server which FilTar relies on to source a dependency 
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is no longer functional, and this change is not detected during auto-

mated building which only occurs when new commits to the remote 

repository are made, then the hope would be that a user of the tool could 

detect this problem quickly and suggest a solution. Alternatively, if any 

problems do arise, users can alert the owner of the repository via the 

‘issues’ feature of GitHub without suggesting a fix to that problem. 

Having a direct mechanism by which repository owners can receive 

feedback from users is also beneficial in the sense that users can be 

helped and guided by repository owners or contributors in how to use 

the tool – which is a method by which a potential community of users 

can be helped and supported. 

 

Version control, using git, is another feature which can be used to aid 

project management and maintenance. It allows project developers to 

easily track changes made to project code, through the course of the 

project history, and quickly switch and revert to different time points in 

developmental history. 

 

Branching in the context of version control, refers to the creation of 

independent lines of development within the same repository. Branch-

ing is an important version control feature for the management of over-

lapping but different aspects of FilTar development. Separate branches 

used are branches for the FilTar command line tool, branches for the 

backend pipeline supplying data to the FilTar database and web appli-

cation and also a branch for the analysis of data for the validation of the 

FilTar approach (see next chapter). 
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3.7.3  Documentation 

 

Documentation of FilTar predominantly occurs at three different levels: 

 

Inline documentation (i.e. ‘comments’): This form of documentation 

is used when a command is used, when the command is not expected to 

be intuitive to the casual observer. 

 

Function documentation: Each function used either within the main 

FilTar repository of the subsidiary ‘filtar’ R repository is documented. 

This involves a statement of all required inputs of the function, expected 

output, usage instructions and usage examples, as well as a brief de-

scription of the purpose of the function. 

 

Top-level documentation: This is a form of documentation which end-

users can use as an instruction and a guide on how to download, install 

and use FilTar software. The documentation can be found at the follow-

ing URL: https://tbradley27.github.io/FilTar/ 

 

3.7.4  Performance 

 

3.7.4.1  Installation Time 

 

FilTar can be installed in a relatively clean GNU/Linux operating sys-

tem with python 3.6 pre-installed in approximately under 48 minutes 

(figure 3.8). The stated time includes the time necessary to install de-

pendencies such as gzip, miniconda, snakemake, the R statistical and 

computing environment, and all other aforementioned dependencies, 
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and to perform a relatively simple run of the FilTar pipeline on a rela-

tively small dataset without 3’UTR reannotation. However, this time 

does not include time necessary to download and install dependencies 

related to 3’UTR reannotation such as HISAT2. 

 

 

Figure 3.8 - Core installation duration for the FilTar command line tool. In-

stallation time is determined by installing the application into a clean virtual envi-

ronment with Travis CI. Automated tests are executed in order to test the correct-

ness of the build. The application is built within an Ubuntu operating system with 

python 3.6 installed. Approximate installation time is 47 minutes. 

 

3.7.4.2  Storage 

 

The storage space requirements for the FilTar tool can be deconstructed 

into many components, such as space needed for source code, space 

needed for dependencies, and space for primary data required for FilTar 

to run. Some of these storage components may not be attributable ex-

clusively to FilTar, for example, some users may already be running 

some dependencies on their operating systems. As a result, real storage 

costs are variable according to pre-existing user environments and also 

how the user intends to use the tool. 



 150 

3.7.4.3  Performance Statistics 

 

Source code: 4.1 Mb 

Dependencies: ~1.2 GB 

Data (excluding RNA-Seq): 

  Input Files: 

- Without MSAs (default): 11 GB (mouse) 

- With MSAs: 269 GB (mouse) 

- Without MSAs (default): 14 GB (human) 

- With MSAs: 790 GB (human) 

Temporary/Intermediate Files: 

- 240 GB  

Output: 

- Mouse: ~2 GB (all miRNA x all mRNA) 

- Human:  2.4 GB (all miRNA x all mRNA) 

Memory Usage: 

- 40GB (default usage) 

- 200GB (non-default usage) 

 

It is important to note that for the memory usage for this tool, the non-

default value of 200GB referenced above refers to the cases in which 

users decide to build their own splice-aware HISAT2 genome indices. 

Alternatively, for a limited set of species, users are able to download 

prebuilt genome indices (University). Otherwise, users can opt to build 

non-splice aware indices which requires significantly less memory (~40 

GB). 
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An analysis of the run-time of FilTar has also performed (figure 3.9): 

 

 

Figure 3.9 – The effect of library number and total library size on FilTar run 

time. Analyses are based on FilTar runs of a single miRNA (hsa-miR-188-5p or 

mmu-miR-188-5p) against all protein-coding genes of the corresponding species 

transcriptome using TargetScan. The time needed to index the genome, download 

the data and trim reads are not included in this analysis. This is because the user 

only has to index the genome once, and data download and read trimming are op-

tional features of FilTar. 

 

As can be seen from figure 3.9, the run time for FilTar for use with a 

single miRNA (excluding genome indexing, data download and read 

trimming), seems to increase linearly with the number of RNA-Seq li-

braries used in the analysis (left), with the caveat of this analysis poten-

tially being confounded by the total amount of read information pro-

cessed across all libraries (right). Human RNA-Seq libraries take longer 

to process than mouse libraries, which can probably be attributed to the 

fact of the larger size of the human genome, as well as the higher quality 

annotation of the human genome. 

 



 152 

3.8  Web Application and Database 
 

3.8.1  System Architecture 

 

The web version of the FilTar tool, from here onwards, referred to as 

FilTarDB, was designed to be implemented as a basic modification of 

the standard LAMP (Linux-Apache-MySQL-PHP) web service stack, 

swapping the PHP component for the Django web framework. 

 

GNU/Linux is the operating system used which allocates hardware re-

sources to different software components, and generally mediates the 

relationship between hardware and software, and between different 

software components. It also provides a platform for which other stack 

components can be accessed and downloaded using networking proto-

cols and package management systems, and also accessed via a file sys-

tem. 

 

The Apache HTTP server performs the role of the web server within 

the LAMP architecture. A web server is a piece of dedicated software 

for using established information transfer protocols (e.g. HTTP) for ex-

changing information between itself and clients on the World Wide 

Web. 

 

The biologically relevant information that Apache serves to clients 

within this architecture ultimately derives from information stored 

within the MySQL (v14.14) relational database management system 

(RDBMS). The fundamental features of the relational database model 

are that data is organised into distinct data structures called tables, with 
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each record within each table being unique. Different attributes of the 

model are represented as table columns. Records of a data tables are 

uniquely identified using a primary key column. The relationship be-

tween different tables is established using a system of inter-relating col-

umns, more specifically referred to as foreign keys. The RDBMS model 

when implemented carefully minimises data redundancy, and can be 

used to ensure data integrity within a database. 

 

The Django (v1.11.7) web application development framework is used 

to build an application whose role it is to modulate, regulate and control 

the content sent to the client following a client request. Django achieves 

this using a model-template-view web framework. Within this frame-

work, Django builds python data models derived from MySQL tables, 

modulates this data in dynamic response to user queries using the py-

thon scripting language, renders this information into HTML and sends 

this information to Apache, for Apache to then send this information to 

the client. These relationships are represented in figure 3.10. Although, 

the Apache web server performs the essential, but nonetheless technical 

tasks of receiving information from and sending content to the client, 

and the database acts as a store of biological information, the web ap-

plication essentially performs the role of interpreting all client requests, 

and from this interpretation selecting an appropriate response to send to 

the client, via the web server. Within this architecture, Django uses the 

mod_wsgi (v4.6.7) python module in order to interface with the Apache 

web server, and the mysqlclient (v1.4.2.post1) module for interfacing 

with the FilTarDB database.  
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Figure 3.10  – The systems architecture of the FilTar web tool. The FilTar pipe-

line is used to generate data, which is deposited in FilTarDB, a database stored as 

a part of MySQL relational database management server. End-users can make re-

quests upon the filtardb.earlham.ac.uk domain using web browser software and the 

HTTP protocol. HTTP requests are processed by an Apache web server associated 

with this domain. The Apache web server transmits the request to the FilTarDB 

web application, written using the Django web development framework. Logic 

within this application determines the correct response to a given HTTP request. 

The HTTP response is returned to the web server, which then, through web browser 

software, is able to serve the response to the end-user. In some instances, the Fil-

TarDB web application will query the FilTarDB database in order to satisfy a given 

HTTP request. 

 

3.8.2  Additional Backend Modules 

 

In addition to all of the FilTar pipeline modules previously described 

and used for the command-line tool, the FilTarDB branch of the pipe-

line includes two additional modules which are specific to this branch: 

 

3.8.2.1  Create MySQL Tables 

 

This is a module for the creation of data tables within the FilTarDB 

MySQL database. Individual rules are devised for the creation of each 

table within the database, by sourcing relevant SQL files from the com-

Web Server (Apache) FilTarDB (MySQL)FilTarDB Web Application
(Django/python)

FilTar Backend
(Data Generation)

Web Browser

Request Response
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mand line using the mysql command. Snakemake, figuratively speak-

ing, cannot ‘look’ inside the database to test for table creation. As a 

workaround, empty text files with suitable file names are generated 

upon table creation, acting as a proxy for the completed table, and ena-

bling the construction of an uninterrupted DAG workflow as part of the 

snakemake job scheduling system. 

 

3.8.2.2  Upload to MySQL Tables 

 

This is a module for the uploading of tabular formatted data in text files 

to relevant database tables in MySQL. Data is loaded using the mysql 

Unix command. 

 

3.8.3  The FilTar Database 

 

The database is designed in order to ensure a faithful representation of 

biological information, a minimisation of data redundancy, and low la-

tency queries for FilTarDB end-users. Integer primary keys are used in 

order to ensure efficient computational search through tables with a 

large number of records. Unique keys are used in addition to primary 

keys for some columns, such as the name of a gene in a gene table, in 

order to ensure data integrity and to minimise redundancy. Compound 

unique keys are used for example in the target prediction table in in-

stances in which the required level of uniqueness of records can only 

be encoded by multiple columns. A system of foreign keys (one-to-

many column relationships) are implemented and enabled in order to 

ensure data integrity. The data types of each column are specified, and 

allocated space for each column value is selected order to minimise use 
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of storage space. A Many-to-Many relationship is formed between the 

gene and species tables, through an intermediary table, as an additional 

form of data normalisation. All relevant fields are indexed using the B-

tree index type, to ensure low latency database queries. The FilTarDB 

database schema is represented in figure 3.11.  
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mirna

PK id INT(11)
FK species.tax_id INT(11)
U name CHAR(20)

mrna

PK id INT(11)
U name CHAR(30)
FK gene.name CHAR(30)

species

PK id INT(11)
U tax_id INTEGER(6)

species_name CHAR(30)
common_name CHAR(30)
genome_build CHAR(15)

prediction_score

PK id INT(11)
FK,U mirna.name CHAR(20)
FK,U mrna.name INTEGER(6)
FK,U species.tax_id INTEGER(6)
U utr_start INTEGER(6)
U utr_end INTEGER(6)

site_type CHAR(5)
score NUMERIC
algorithm CHAR(15)

tissue

PK id INTEGER(11)
U name CHAR(20)

sample

PK id INTEGER(11)
U name CHAR(30)
FK tissue.name CHAR(20)
FK species.tax_id INT(6)

expression_profile

PK id INT(11)
FK tissue.name CHAR(20)
FK mrna.name CHAR(30)

tpm DECIMAL(4)

gene

PK id INTEGER(11)
U name CHAR(30)

gene_species

PK,FK gene.name CHAR(50)
PK,FK species.tax_id INT(11)

run

PK id INTEGER(11)
U name CHAR(30)
FK sample.name CHAR(20)

utr

PK id INT(11)
FK mrna.name CHAR(30)
FK tissue.name CHAR(20)

length INT(11)

Figure 3.11  – FilTarDB database design. Each table in this diagram represents a 

table in the FilTarDB database. Each table record represents a column in the re-

spective FilTarDB table. The first column of the tables in the diagram represents 

the key stage of the represented column (PK = primary key, FK = foreign key, U = 

unique key). The second table column denotes the name of the represented field. 

The third column denotes the represented field type. All primary key columns are 

auto-incremented. The five columns in the ‘prediction_score’ labelled with ‘U’ 

form a compound unique key over all of the labelled columns. 
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3.8.4  The FilTarDB web application 

 

The FilTarDB web application exists as the scripting layer between the 

web server and the FilTarDB database. It is easiest to conceptualise the 

role of the web application by imagining a scenario in which the end 

user attempts to use the FilTar web tool: 

 

From the FilTarDB domain name (filtardb.earlham.ac.uk), the user nav-

igates the FilTarDB website using a network of URLs. The relationship 

between the URLs entered by the user and content rendered by the web 

server is mediated by the web application. The urls document relates 

URL patterns and specific processing functions contained within the 

views document, which is the application document which mediates the 

processing of HTTP requests. Information from the forms and models 

documents are supplied to the views document. The models document 

contains representations of database data structures, encoded in the py-

thon language. The forms document utilises these models to create 

forms which are rendered through HTML templates, which allows end-

users to construct their queries. 

 

At the domain root, user requests are directed through the ‘home’ view 

function. Conditional logic is used to distinguish between HTTP re-

quests of the type GET and of the type POST. Initial user requests are 

of the type GET. In this instance, information is imported from the 

forms.py document, and appropriate forms are rendered through a 

HTML template. Once the user has completed the forms, and submitted 

their query, the same home view function is invoked though this type 

using a POST request method. User form selections are subsequently 
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tested for their validity. After passing the validation test, form infor-

mation is saved as session data, and the HTTP response, along with the 

user is redirected as a HTTP request to another URL. The urls document 

passes the request information to the corresponding view, which is the 

‘results’ view in this instance. 

 

Previously saved form session data is then invoked from within the re-

sults view. This function interrogates forms data in order to construct a 

string, which is used to directly query the MySQL database directly 

from python using the Django.db module. In all cases, the query re-

quires a join of a target prediction table, the expression profiles table 

and the mRNA data table. The resultant data is stored in a named tuple 

structure, and is rendered through the appropriate HTML template, and 

served to the end-user. Importantly, this approach bypasses Django’s 

own models layer completely when querying database data, as the com-

plexity of queries which could be constructed for Django data models 

was deemed to be insufficient.  

 

The relationship between different components of the FilTarDB web 

application and the FilTarDB database and the Apache web server is 

represented in figure 3.12 
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Figure 3.12  – The basic design of the FilTarDB web application. The FilTarDB 

web application is the scripting module used to determine how FilTarDB responds 

to requests from the web server. Requests are first interpreted by the urls module, 

which determines the appropriate response on the basis of the URL patterns of the 

incoming requests. For trivial requests, requiring static content exclusively, an ap-

propriate HTML template is invoked directly, and the appropriate response is made 

to the web server. More complex requests are handled by the views module using 

python code. The views module makes use of forms from the forms module, ena-

bling the entry of data by users on HTML web pages. Some forms are constructed 

from pythonic models of FilTarDB database data from the models module. The 

views model also queries the FilTarDB database directly, for more complex query 

types. An appropriate HTML template is selected after processing within the views 

module, and a response is sent to the web server.  

 

3.8.4.1  Project Deployment, licensing & maintenance 

 

The FilTarDB web application is hosted within a virtual machine on the 

CyVerse UK (cyverseuk.org) network, a service provided by the Earl-

ham Institute (EI) National Capability in e-Infrastructure. The Fil-

TarDB database itself is hosted within iRODS mounted storage space 

also managed by CyVerse UK. Content from the FilTarDB application 

is served via an Apache web server (v2.4.29) for the following domain 

name: filtardb.earlham.ac.uk. 

Web Server (Apache) urls views

forms models

FilTarDB (MySQL)

HTML templates

FilTarDB Web Application

Request
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FilTarDB is currently released as a beta (v0.1-beta), and contains data 

relating to two biological species (Human and mouse), with five tissues 

or cell lines per species. Current target predictions and transcript quan-

tifications stored within the FilTarDB database are for the gene and 

miRNA annotations associated with the 97th release of Ensembl. 

Maintenance of the FilTarDB project would involve recalculation of 

miRNA target predictions and transcript quantifications for updated 

gene and transcript models with each new Ensembl release. Maintainers 

of the FilTarDB project would also likely be interested in increasing the 

number of species and tissues/samples contained within the FilTarDB 

database, by running the FilTar pipeline on relevant datasets. Maintain-

ers may also consider increasing the number of target predictions algo-

rithms with which FilTarDB is associated, however, this may require 

considerable extension and development on the core FilTar application. 

 

The source code for the FilTarDB application is released on GitHub 

(https://github.com/TBradley27/FilTarDB), licensed with version 3 of 

the GNU public license (GPL3). Documentation relating to the use of 

the FilTarDB application is available via the following URL: fil-

tardb.earlham.ac.uk/information. 

 

3.8.4.2  User Interface 

 

In contrast to the command-line tool, end-users of the FilTarDB web 

application interact with a GUI in order to retrieve information from a 

database of pre-computed miRNA target predictions (figure 3.13). 
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Figure 3.13 – The home page of the FilTarDB website. The user specifies their 

query by completing a series of forms. First, they must select a species, then a bio-

logical context of interest within the second form. The user can choose to complete 

both or either of the miRNA and gene forms. The user then selects a TPM expres-

sion threshold for their query. Before submitting, users then have to select one or 

multiple miRNA target prediction algorithms. Instructions on how to use FilTarDB 

are available for the user to read at http://filtardb.earlham.ac.uk/information. 

 

The user query can be configured using a series of drop-down menus 

relating to species, miRNAs, genes and biological contexts which may 

be of interest to the user. The tissue, miRNA and gene fields (i.e. drop-

down menus) chains from the top-level species field which means that 

available options for these respective fields are limited to those relating 

to the chosen species (e.g. you could not select a mouse miRNA for 

your query if you selected ‘human’ as your species of interest). This 

prevents the user from entering nonsensical queries, for example, re-

questing RNA-Seq data which does not exist in the FilTarDB database. 

Form chaining functionality is conferred via use of the Django Smart 

Selects plug-in (v1.5.4). Generic form functionality (e.g. form appear-

ance, form scrolling) is conferred via use of the Django select 2 module 

(v7.1.0). 



 163 

 

The tissue, miRNA and gene fields are also auto-complete fields, mean-

ing that available field choices displayed to the user are superstrings of 

strings already entered into the field by the user (figure 3.14). As the 

user lengthens the entry field string by each character, the array of avail-

able choices to the user iteratively decreases, reducing the search space 

for the user, and easing recognition of intended target words. The utility 

of this type of field to users is that it allows them to quickly identify 

options of interest in fields which would otherwise contain thousands 

of possible options which the user would have to scroll through. FilTar 

autocomplete functionality is conferred via use of the Django autocom-

plete light plug-in (v3.2.10). 

 

 

Figure 3.14 – Forms to be completed by the user exhibit field chaining and 

auto-complete functionality. Form auto-complete functionality restricts available 

form options to only those database entries which contain the user-entered charac-

ters as a substring. The tissue, miRNA, and gene forms all chain from the top-level 

species form – this ensures that only database entries specific to the relevant species 

is presented to the user. This minimises the possibility of the user generating spuri-

ous or ill-formed queries. 
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The TPM field is a numerical field, in which the user can choose to type 

in a given numerical value less than one million, or choose to positively 

increment the field value from a base of zero using an accompanying 

widget. An adjacent ‘help’ box can be clicked to give a brief description 

of the TPM unit. 

 

Users select one or multiple prediction algorithms of interest from an 

unordered list of radio selection icons. Once this field and all aforemen-

tioned fields are completed then the user is ready to submit the query 

by interacting with the ‘submit’ widget. 

 

Exception handling mechanisms are utilised to prevent the submission 

of illegal queries to the FilTarDB database (figure 3.15). Examples in-

clude the submission of queries without a selected species of interest, 

without a prediction algorithm of interest, or queries in which both the 

miRNA and gene fields have both been left empty. The blocking of the 

submission of ill-formed queries, helps to preserve resources with re-

spect to the server and the client (i.e. end-users and end-user devices). 
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Figure 3.15  – Exception handling mechanisms prevents the user from submit-

ting invalid queries. Exception handling procedures exist to ensure that the spe-

cies, tissue and miRNA algorithm fields are completed. There is also a mechanism 

to ensure that the user completes either miRNA form or the gene form before sub-

mitting a query. 

 

The HTML template returned to the user is variable according to the 

type of query they entered into their web browser, however a relatively 

large number of template features are featured irrespective to the type 

of user query entered (figure 3.16). 

 

 

Figure 3.16 – An example of a results page from the FilTar website. Relevant 

metadata is displayed above the results table. The user can toggle the number of 
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records they wish to view per web page. Widgets to iterate through result records 

are available below the table as well as widgets to download the data in a user se-

lected format. Hyperlinks to external, relevant web domains are available for the 

user to select. 

 

The template is divided in two segments. The upper segments act as a 

header with metadata relating to the data table displayed in the lower 

segment. Different metadata attributes can mostly be related to the ini-

tial query entered by the user – including the miRNA, gene, tissue and 

prediction algorithm(s) selected by the user. The values of some header 

attributes are hyperlinked to relevant web pages (e.g. names of miRNAs 

are hyperlinked to the relevant web page on miRBase). 

 

As shown in figure 3.16, A series of buttons exist below the results table 

allowing the user to download the data in various formats. Once this 

data is downloaded, the user can use the main FilTar command line 

application in order to execute a function which joins genomic co-ordi-

nate data to the results table, and calculates the precise genomic location 

of predicted miRNA target sites. Further information on how to execute 

the relevant functions to perform this operation is given in the official 

documentation for the FilTar tool. 

 

In addition, a header entry not directly related to the user query is the 

‘BioSample’ header attribute. This relates the number of BioSamples 

used from which expression information is aggregated, and relative 

transcript abundance values are computed. Specific BioSample acces-

sions for used BioSamples are also provided, which hyperlink to rele-

vant ENA web page entries. 
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Figure 3.17 – The FilTar results data table can be searched using a search bar. 

When the search bar is used, only results records containing the search bar query as 

a substring of any of the available fields are displayed. 

 

The second component of the results template is the data table. Each 

record denotes a particular target prediction record of interest given the 

user query. Each data column represents a discrete record attribute of 

potential interest to the user. Relevant attribute values are hyperlinked 

to relevant public database web pages. Data tables can be ordered by 

given fields by interacting with relevant column header names. All data 

tables returned exceeding a default value of 25 are paginated, with an 

accompanying widget at the right-hand side and below the data table, 

which can be used to select a relevant page of interest. The number of 

records displayed per page can be altered using a widget to the left of, 

and just above the data table. Information is displayed at the left-hand 

side of, and below the data table recording the total number of records 

returned in the data table, and the number of records currently displayed 

by the data table. A search field is used at the right-of and above the 

data table, which users can use to exclude records not containing any 

column values matching a given query string (figure 3.17). All returned 

data tables can be exported in plain text, excel, PDF and CSV formats 
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using appropriately labelled widgets at the left-hand side of and imme-

diately below displayed data tables. 

 

As mentioned previously, precise output template structure is variable 

depending on the nature of the user query. In particular, a gene name 

column will not exist in the data table if the user specifies a gene of 

interest, and similarly for when the user selects a miRNA of interest. 

There is a greater difference in template structure however, when the 

user selects multiple, instead of a single target prediction algorithm. Se-

lection of multiple algorithms leads to the addition of an ‘algorithm 

name’ column in the data table denoting the appropriate prediction al-

gorithm for each target prediction record. In addition, tables can be or-

dered by a particular column’s values ordered in ascending or descend-

ing order (figure 3.18) 

 

 

Figure 3.18 – The ordering of columns of the results table. The results tab can 

be ordered by column for example to easily view the most abundant predicted 

miRNA targets, or those predicted miRNA targets with the greatest magnitude tar-

get prediction score. 
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 3.8.5 Performance 

 

FilTarDB performance can be assessed using a number of relevant met-

rics: 

 

Number of species: 2 

Number of biological contexts per species: 5 

Number of miRNA target prediction algorithms: 2 

Size of FilTarDB database: 23GB 

Size of FilTarDB application & dependencies: 91 MB 

Required Operating System: GNU/Linux family of operating systems 

 

Query Speed:  The query latency seems to follow a linear relationship 

with respect to the number of records from the database returned to the 

user (figure 3.19). In short, there seems to be a query latency of approx-

imately 2.2 seconds per thousand records returned with the addition of 

a basal query latency of two seconds. 
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Figure 3.19 - Test of FlTarDB query latency. Tests were conducted on mouse 

miRNAs and transcripts within the ESC (embryonic stem cell) biological context. 

The expression threshold was set at 0 TPM. Target predictions were conducted us-

ing the TargetScan7 miRNA target prediction algorithm. Queries were performed 

using a specified miRNA, but without a specified gene. This relationship is assumed 

to be robust with respect to parameter choice. 

 

3.9  Conclusion 
 

In this chapter, I have described two distinct and complementary im-

plementations, in the form of the FilTar and FilTarDB applications, of 

using the approach of utilising RNA-Seq data to hopefully improve the 

accuracy of miRNA target prediction in animals. Firstly, I have pre-

sented the FilTar command-line application, intended for detailed, thor-

ough and investigative target prediction work by bioinformaticians. In 

contrast, the FilTarDB database and web application provides a means 

for users to utilise the FilTar approach by interacting with a graphical 
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user-interface allowing them to query and interrogate a database of pre-

computed predicted miRNA targets, generated using the FilTar pipe-

line. 

 

In the next chapter, we will explore the effect of FilTar on the accuracy 

of miRNA target prediction, and hence explore the potential utility of 

FilTar for users.  
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Chapter 4: Validation of the FilTar ap-

proach 
 

4.1  Contributions 
 

Simon Moxon: Initial idea of implementing an expression filter for miRNA target 

prediction. Project supervision. 

Dagne Daskeviciute: Helped with a literature review to identify relevant miRNA 

mimic transfection studies and datasets which could be used for analysis 

Thomas Bradley: Data selection, curation and quality control. Differential expres-

sion analysis. miRNA target prediction analysis. Additional analyses and data vis-

ualisation. Interpretation and discussion of results.  

 

4.2  Introduction 
 

In the previous chapter, I discussed the computational methods and pro-

cesses involved in the design, development and implementation of the 

FilTar and FilTarDB applications. In this chapter, data analysis is per-

formed in order to test the effect of using FilTar on miRNA target pre-

diction accuracy. In order to benchmark the performance of the FilTar 

tool in a specific biological context versus general miRNA target pre-

diction I used RNA-Seq data from miRNA mimic transfection experi-

ments in mouse and human cell lines. Fold change values represent 

changes in relative mRNA abundance in samples transfected with a 

miRNA mimic compared to negative control samples transfected with 

non-miRNA nucleic acid molecules (e.g. plasmids). 
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As previously discussed, FilTar hopes to increase miRNA target pre-

diction performance by implementing both pre-processing (3’UTR 

reannotation) and post-processing (expression filtering) steps with re-

spect to the activity of a core miRNA target prediction algorithm; and 

as such, makes use of previously published prediction algorithms. 

 

4.3  Methods 
 

4.3.1  Data selection 

 

For analysis of miRNA transfection experiments, FASTQ sequencing 

data generated from RNA-Seq experiments in human or mouse cell 

lines with at least two biological replicates were selected for further 

processing. 

  

It was hoped that the selection of relevant datasets would allow the in-

terrogation of the following questions: 

 

1) Does expression filtering improve the accuracy of the miRNA target 

prediction process? 

2) Does 3’UTR reannotation increase the accuracy of the miRNA target 

prediction process? 

3) What is the effect of both expression filtering and 3’UTR reannota-

tion on the total number of miRNA targets predicted? 
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Relevant datasets were selected using an unbiased procedure in which 

a literature search was conducted for publicly available RNA-Seq da-

tasets in either mouse or human which derived from miRNA transfec-

tion datasets. No other selection criteria were applied other than this. 

 

It is expected that samples transfected with a specific miRNA would 

lead to a reduction in expression of its target relative to the control sam-

ple. After differential expression analysis, if by inspection of cumula-

tive plots the predicted miRNA targets could not be observed to be 

downregulated relative to non-target transcripts, then the transfection 

experiment was considered to have failed, and relevant datasets were 

not used for downstream analysis (Nam, et al., 2014; Polioudakis, et al., 

2015; Zhang, et al., 2016) (figure A.2, table A.3). 

 

A summary of datasets used with relevant database accessions is pro-

vided (table A.2) (Cao, et al., 2015; Diepenbruck, et al., 2017; Guo, et 

al., 2014; Liu, et al., 2017; Liu and Wang, 2019; Pua, et al., 2016; 

Stolzenburg, et al., 2016; Tamim, et al., 2014). 

 

For subsampling experiments shown in figures 6 and 12 total reads 

were sampled using the seqtk tool (https://github.com/lh3/seqtk). 

 

Specific assays are used for display in this chapter (e.g. figure 4.1) on 

the basis of the aim to select a sample set which included both human 

and mouse samples, in a diversity of different cellular contexts includ-

ing both naturally occurring immortalised cell lines as would occur in 

stem cell populations – and immortalised cell lines deriving from tu-

morigenic or otherwise ‘cancer-like’ mutations.  
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4.3.2  Quality control and statistics 

 

FASTQ data quality scores, GC-content, read lengths and similar sta-

tistics were generated using FASTQC (v0.11.5). Output from FASTQC 

was collated with data from the log files of other processes in order to 

produce a summary statistics report for each used BioProject using 

MultiQC (v1.6) (Ewels, et al., 2016) (table A.1). Information relating 

to the total number of reads for each library, as well as the number of 

mapped and pseudoaligned reads have been plotted (figure A.1). For 

each transfection assay experiment used in this project, the signal-noise 

ratio (see background chapter) was calculated along with the associated 

SNR reciprocal values (table A.4). 

 

Considering all experiments together, arithmetic mean and standard de-

viation values for the SNR are 1.310 and 0.078 respectively. Evidence 

for the validity of this approach comes from considering experiments 

relating to U20S cell lines – in which the magnitude of the signal (in-

cluding noise) and noise elements are shown to be approximately equal.  

This is concordant with a visualisation of the empirical cumulative dis-

tributions for the experiments (figure A.2) in which there is no observ-

able difference in the cumulative proportion of downregulated tran-

scripts (i.e. LFC < 0) between the two distributions. 
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4.3.3  Differential expression analysis 

 

Differential expression analysis for miRNA transfection experiments 

was completed within the R (v.3.5.0) statistical computing environment 

(Team, 2013). Transcript-level read count data derived from RNA se-

quencing of miRNA mimic or negative control transfected cell lines 

were imported using the tximport package (v1.10.1) (Soneson, et al., 

2015). Differential expression analysis on length and library size nor-

malised read counts was performed using DESeq2 (v1.22.2) (Love, et 

al., 2014) comparing expression between negative control and miRNA 

mimic transfection conditions. Log2 fold change values were subse-

quently shrunken using the default DESeq2 ‘normal’ shrinkage estima-

tor (Love, et al., 2014) to account for the large uncertainty in predicted 

fold change values at low transcript expression values. For plotting, rec-

ords corresponding to non-coding RNA transcripts were discarded. 

Transcript records were discarded when there was zero expression for 

all control and transfection replicates and fold change values could not 

be calculated. Target prediction data was used to label the remaining 

records as either predicted targets or non-targets of the transfected 

miRNA. 

 

TargetScan is executed using both Ensembl 3’UTR annotations, and 

updated annotations produced using FilTar for the purposes of the dif-

ferential expression analyses reported in this study. 

 

For some differential expression analyses, null hypothesis significance 

testing was performed using two-sample, one-sided Kolmogorov-
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Smirnov tests to test whether different fold change distributions were 

sampled from the same underlying distribution. 

 

The effect size of the changes in gene expression between the mock 

transfection condition and the miRNA mimic transfection condition is 

assessed using DESeq2’s (Love, et al., 2014) log fold change metric. It 

is important to point out here that ‘fold change’ in this context does not 

denote a literal fold change as traditionally understood (i.e. the ratio 

between two point estimates of gene expression between two condi-

tions). Rather, ‘fold change’ in this context refers to a beta parameter in 

the generalised linear regression model relating expression levels be-

tween different conditions. 

 

An additional complexity when considering DESeq2’s ‘log fold 

change’ metric is that an empirical Bayes procedure is used to modify 

the maximum likelihood estimate of the fold change beta parameter (de-

riving from an initial round of GLM fits). A zero-centred distribution 

of the MLEs for all genes/transcripts is used as the prior distribution for 

this Bayesian procedure. In a further round of GLM fits, maximum a 

posteriori estimates are used to obtain a point estimate of the log fold 

change – which is taken as the mode of the posterior distribution of this 

Bayesian process. In the case of genes which are not differentially ex-

pressed, the expected value of the log fold change parameter would be 

zero. 

 

The motivation for implementing a Bayesian approach in this instance 

is to ‘shrink’ log fold change estimators in cases in which there is too 

little information to make confident estimates – which could occur in 
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cases in which read counts are low (and is therefore associated with a 

large amount of uncertainty), there is a relatively large amount of vari-

ance in gene expression between biological replicates, or the sample 

size is too small. In these cases, the log fold change estimates will be 

shrunken towards the prior distribution (i.e. shrunken towards zero). 

 

Volcano plots for each differential expression analysis conducted as 

part of this chapter can be found within figure A.3 

 

4.3.4  Data Visualisation 

 

All visualisations are produced using R’s ggplot2 package (v3.1.0) 

(Wickham, 2016). 

 

For figure 4.1, the filtered miRNA predicted targets curves represents 

protein-coding transcripts with a miRNA seed target site to the trans-

fected miRNA mimic, which have been filtered at an expression thresh-

old of 0.1 transcripts per million (TPM) (Li, et al., 2009). 

 

For figure 4.5, the ‘added seed sites’ are identified as those transcripts 

which had not previously been labelled as predicted miRNA targets us-

ing target prediction results derived from existing Ensembl 3’UTR an-

notations, but had been identified as predicted miRNA targets using tar-

get prediction results derived from 3’UTR sequences reannotated using 

the FilTar workflow due to 3’UTR extension.  

 

For figure 4.9, the ‘removed seed sites’ are identified as those tran-

scripts which had previously been labelled as predicted miRNA targets 
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using target prediction results derived from existing Ensembl 3’UTR 

annotations, but had not been identified as predicted miRNA targets 

using target prediction results derived from 3’UTR sequences reanno-

tated using the FilTar workflow due to 3’UTR truncation. Filtering for 

all groups occurred at an expression threshold of greater than or equal 

to 5 TPM. This was to reduce the number of false positive 3’UTR trun-

cations (see discussion). 

 

Additional plots for remaining datasets analysed are contained within 

figures A.2, A.3 and A.4 with the exception of cases were there was an 

insufficient number of added or removed target transcripts predicted (n 

< 15). 

 

4.3.5  FilTar Implementation 

 

All following steps were carried out using the FilTar tool. The work-

flow and parameters are described in detail below: 

 

FilTar is a command line tool for GNU/Linux operating systems written 

predominantly in the python (v3.6.8) and R (v3.5.0) programming lan-

guages. Users can configure the tool to process available RNA-Seq da-

tasets from public repositories such as the ENA (Harrison, et al., 2018; 

Leinonen, et al., 2010) and the SRA (Leinonen, et al., 2010), and also 

the user’s own private sequencing data. All reported parameters are 

fully configurable within the FilTar tool. FilTar utilises Snakemake 

(v5.4.0) (Köster and Rahmann, 2012) for workflow management. Most 

FilTar dependencies are managed using conda (v4.6.6). 
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4.4  Results 
 

4.4.1  Expression filtering 

 

The first hypothesis to be tested was the hypothesis that implementing 

an expression filter for candidate miRNA targets would, as a whole, 

improve the accuracy of miRNA target prediction. Predicted miRNA 

targets filtered at TPM ≥ 0.1 as a whole, exhibited stronger repression 

after miRNA transfection than the full miRNA target set without ex-

pression filtering. This is evident by the shift in the cumulative distri-

bution for the filtered miRNA seed target set to proportionately more 

negative fold changes when comparing against the corresponding un-

filtered set of transcripts (figure 4.1 and figure A.4).  

 

Predicted miRNA targets removed by FilTar generally exhibited low 

absolute fold change values suggesting that these are false positive pre-

dictions in these specific cellular contexts (figure 4.2). 
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Figure 4.1 - Implementing an expression threshold on predicted miRNA tar-

gets improves miRNA target prediction accuracy. Curves show the cumulative 

log2 fold change distributions of i) protein-coding non-target transcripts (black) ii) 

protein-coding seed target transcripts (orange) and iii) expression filtered (TPM > 

0.1) protein-coding seed target transcripts (green). Numbers in round brackets rep-

resent the number of mRNA transcripts contained in each distribution. Approxi-

mate p-values were computed using one-sided, two-sample, Kolmogorov-Smirnov 

tests between unfiltered and filtered target fold change distributions. Data presented 

for miRNA mimic transfection into A) A549 and B) HeLa cell lines, C) normal 

murine mammary gland (NMuMG) cells and D) mouse embryonic stem cells 

(ESCs). 
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Figure 4.2 – Differential expression of lowly expressed predicted miRNA tar-

gets upon miRNA mimic transfection. For the analysis presented in figure 4.1, 

the cumulative log2 fold change distributions of lowly expressed transcripts (<0.1 

TPM) with canonical seeds sites (dark red), in their 3’UTRs compared against the 

distribution of transcripts without a canonical seed site in their 3’UTRs (black). 

  

Implementing expression filters for a range of different TPM values re-

veals that increasing this threshold results in retained transcripts which 

exhibit greater repression upon miRNA transfection (figure 4.3). 
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Figure 4.3 - The effect of expression filtering on retained protein-coding tran-

scripts using multiple expression thresholds. Expression thresholds are imple-

mented at TPM values of 10 (purple), 5 (pink), 1 (light blue), 0.5 (gold), 0.1 (green) 

and 0.0 (orange). Otherwise as in figure 4.1. 
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However, increasing the expression threshold beyond a particular point 

(between 1 – 10 TPM for experiments analysed) leads to the removal 

of a considerable number of mRNA transcripts which are repressed by 

the transfection of a miRNA mimic (figure 4.4). 

 

 

Figure 4.4 - The effect of expression filtering on removed protein-coding tran-

scripts using multiple expression thresholds. Expression thresholds are imple-

mented at TPM values of 10 (purple), 5 (pink), 1 (light blue), 0.5 (golden), and 0.1 

(green). Otherwise as in figure 4.2 
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4.4.2  3’ UTR extension 

 

The next hypothesis to be tested was that 3’UTRs which had been elon-

gated as a result of the 3’UTR reannotation process, and had acquired 

new predicted miRNA targets as a result, would behave similarly to 

previously annotated miRNA targets upon miRNA transfection. Newly 

gained miRNA target predictions deriving from FilTar’s refined 3’UTR 

annotations of protein-coding transcripts (i.e. miRNA targets deriving 

from the elongation of existing 3’UTR annotations), generally exhib-

ited similar levels of repression to miRNA target predictions deriving 

from Ensembl 3’UTR annotations. This can be discerned by observing 

the similarly shaped cumulative distributions between previously anno-

tated miRNA seed targets, and newly annotated miRNA seed targets 

(figure 4.5 and figure A.5).  
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Anomalies were results deriving from the transfection of miR-107 and 

miR-10a-5p miRNA mimics into HeLa cells in which newly identified 

miRNA target predictions did not exhibit a log fold change distribution 

commensurate with that exhibited by already existing miRNA target 

predictions (figure A.5). 

Figure 4.5 - 3’UTR elongation by FilTar leads to the identification of addi-

tional valid miRNA targets. mRNA transcripts contained in each distribution. 

Approximate p-values were computed using one-sided, two-sample, Kolmogorov-

Smirnov tests between unfiltered and filtered target fold change distributions. Data 

presented for miRNA mimic transfection into A) A549 and B) HeLa cell lines, C) 

normal murine mammary gland (NMuMG) cells and D) mouse embryonic stem 

cells (ESCs). 
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Next, it was important to determine the relationship between sequenc-

ing depth and the extent of 3’UTR reannotation occurring – and the 

implication of this for 3’UTR reannotation analyses. Completed 

analyses demonstrated a positive relationship, to a point of saturation 

between the number of RNA-Seq reads used for 3’UTR reannotation 

within a sample, and the number of 3’UTR bases gained (i.e. through 

3’UTR elongation) during 3’UTR reannotation (figure 4.6). 

 

 

 

Figure 4.6 - Greater sequencing depth leads to greater 3’UTR elongation up to 

a point of saturation. The relationship between the number of reads sequenced and 
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the extent of 3’UTR elongation observed when using FilTar for human kidney (pur-

ple) and lung (green) datasets. Variable read counts generated by randomly sam-

pling reads from the total. 

 

Next, a similar analysis was performed, though this time testing for a 

potential between-samples effect for sequencing depth and 3’UTR 

elongation. This analysis would test the hypothesis that the extent of 

3’UTR elongation in a transcriptome could be predicted from the se-

quencing depth, irrespective of sample-specific details such as cell type. 

When this analysis was performed, it was discovered that there was a 

weak positive relationship between the extent of 3’UTR elongation and 

the number of mapped RNA-Seq reads (figure 4.7). 
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Figure 4.7 - The relationship between the number of mapped reads and the 

extent of 3'UTR elongation observed when using FilTar. Each point represents 

a different dataset analysed using FilTar. Refer to table A.2 for metadata relating to 

datasets analysed. Outlier values have been removed. 

  

Additionally, it was also important to examine whether an increase in 

3’UTR length due to 3’UTR reannotation led to a linear increase in the 

number of predicted target sites – as expected. A further analysis 

showed that the proportionate gain in miRNA target sites predicted as 

a result of 3’UTR reannotation corresponds linearly to the extent of 

3’UTR elongation (figure 4.8). 
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Figure 4.8 - A scatter plot of the percentage gain in total miRNA target site 

predictions vs. percentage gain in 3’UTR bases for a number of cell lines and 

tissue datasets analysed (black dots). A linear regression model was fitted using 

the ‘lm’ function of the R stats package (red) with a 95% confidence interval (grey). 

R-squared is derived from the Pearson correlation coefficient. 
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4.4.3  3’ UTR truncation 

 

Conversely, miRNA target transcripts that were removed as a result of 

FilTar truncating 3’UTR annotations relative to standard Ensembl an-

notations, exhibited repression similar to that of annotated non-target 

transcripts (figure 4.9 and figure A.6). The very similar CDFs of the 

‘Removed seed site’ and ‘No seed site’ distributions in these figures 

indicate that predicted miRNA targets discarded as a result of 3’UTR 

reannotation behave very similarly to mRNA transcripts which were 

never predicted to be miRNA targets – indicating the efficacy of the 

3’UTR reannotation and miRNA target predictions processes. 
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Figure 4.9 - 3’UTR truncation by FilTar leads to the removal of false positive 

miRNA target predictions. Curves are plotted of the cumulative log fold change 

distributions of expression filtered i) protein-coding non-target transcripts (black). 

ii) protein-coding seed target transcripts (orange) and iii) predicted target transcripts 

deriving from Ensembl 3’UTR annotations but not FilTar 3’UTR annotations (red). 

Approximate P-values were computed using one-sided, two-sample, Kolmogorov-

Smirnov tests between non-target and discarded miRNA target fold change distri-

butions. Otherwise as in figure 4.1. 

  

An expression filter of > 5 TPM was implemented for transcripts to 

undergo 3’UTR truncation, as a preliminary analysis revealed that 



 193 

3’UTR truncation without an expression filter, led to poor target pre-

diction performance, indicating that some 3’UTRs had been truncated 

erroneously (figure 4.10). As can be seen in figure 4.10, without the low 

expression filter – discarded predicted miRNA targets tend to respond 

similarly to genuine miRNA targets, indicating erroneous 3’UTR 

truncation at these low expression levels. 

 

 

Figure 4.10 - As in figure 4.9, with the exception that no expression threshold 

has been implemented to filter data points contained with the removed seed 

site distribution. 
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This erroneous truncation was also observable from the alignment of 

RNA-seq reads to the genome, in which, for some lowly expressed 

genes, there was substantial read coverage downstream of the point at 

which 3’UTR truncations was called by the APAtrap dependency (fig-

ure 4.11). 

 

 

Figure 4.11 – An example of erroneous 3’UTR model predictions for lowly ex-

pressed genes. The alignment of RNA-Seq reads to the NKAP gene, from sequenc-

ing of A549 cell cultures treated with mock (i.e. negative control) transfections. The 

red rectangle represents the point of the 3’UTR in which the APAtrap dependency 

called 3’UTR truncation for this gene and this example dataset. The maximum read 

coverage for the 3’UTR is less than 20 reads for all replicates, indicating that this 

is a lowly expressed gene. As can be observed, there is substantial read coverage 

downstream of the assigned truncation point. Four replicates were used for this 

analysis with the following run accessions: SRR2968576, SRR2968577, 

SRR2968578, SRR2968579. Alignments are visualised using the integrative ge-

nomics viewer (IGV) (v2.4.4) (Thorvaldsdóttir, et al., 2013). 
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In a minority of datasets analysed, removed target transcripts exhibited 

significantly less repression than target transcripts, but nonetheless ex-

hibited greater repression than annotated non-target transcripts. In these 

datasets, the removed target log fold change distribution tended to align 

with the non-target distribution at the negative extremity, but not at 

small negative fold change value ranges - indicating that for a minority 

of datasets, labelled ‘removed targets’ may be mildly repressed by tar-

geting miRNAs. It was important to test or not whether these removed 

targets constituted a weaker form of miRNA target interaction or not.  

Additional analysis demonstrated that for these datasets, such targets 

exhibited significantly weaker repression in response to miRNA trans-

fection than 6mer targets, which are the weakest canonical miRNA tar-

get site type (Bartel, 2018) (figure 4.12) – suggesting that these re-

moved targets were not just composed of weak miRNA target site types. 
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Figure 4.12 - Predicted targets removed by FilTar exhibit weaker repression 

in response to miRNAs than 6mer targets.  In experiments in which removed 

predicted target transcripts exhibit evidence of low-level repression, repression is 

less than that observed by transcripts targeted by marginally effective 6mer seed 

sequences. As in figure 4.9, with predicted target transcripts divided by miRNA 

target site type into sixmer (green), sevenmer (blue) and eightmer (purple) subsets. 

Approximate P-values were computed using one-sided, two-sample, Kolmogorov-

Smirnov tests between discarded miRNA target and sixmer target fold change dis-

tributions. 
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The relationship between sequencing depth and the extent of 3’UTR 

truncation is similar to that between sequencing depth and 3’UTR elon-

gation. Results of the within-sample analysis in this case can be found 

within figure 4.13. 

 

 

Figure 4.13 - Greater sequencing depth leads to greater 3’UTR truncation up 

to a point of saturation. The relationship between the number of reads sequenced 

and the extent of 3’UTR truncation observed when using FilTar within a given sam-

ple. Otherwise as in figure 4.6. 
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And the results of the between sample analysis can be found within fig-

ure 4.14. 

 

 

Figure 4.14 - The relationship between the number of mapped reads and the 

extent of 3'UTR truncation observed when using FilTar. Otherwise as in figure 

4.7. 
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In addition, as with 3’UTR elongation, the extent of 3’UTR truncation 

was shown to correspond linearly with the proportionate decrease in the 

number of miRNA targets predicted after 3’UTR truncation (figure 

4.15). 

 

 

Figure 4.15 - A scatter plot of the percentage loss in total miRNA target pre-

dictions vs. percentage loss in total 3’UTR bases. Otherwise as in figure 4.8. 
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4.4.4  Cumulative effect of filtering and reannotation  

 

Next, it was important to examine the extent to which 3’UTR reanno-

tation would affect miRNA target predictions on a transcriptome-wide 

basis for a large number of cellular contexts. When the FilTar reanno-

tation and miRNA target prediction workflow was applied transcrip-

tome-wide, to multiple organs and cell lines, using all annotated miR-

Base human miRNAs, there was a mean average gain and loss of 

miRNA target sites corresponding to 0.18% and 1.5% of the total orig-

inal miRNA target sites predicted deriving from Ensembl 3’UTR anno-

tations (figure 4.16). 

 

As confirmed in the previous analyses of this chapter (figure 4.7 and 

figure 4.14), there does seem to be a relationship between sequencing 

depth and the extent of 3’UTR reannotation occurring and therefore the 

extent of changes in miRNA target predictions between original and 

reannotated 3’UTR models (figure 4.8 and 4.15). As a result, an im-

portant point to consider when interpreting the results presented in fig-

ure 4.16 is that to some extent the variability in results between samples 

may reflect the influence of technical rather than biological factors.  
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Figure 4.16 - Total miRNA target site gain and loss when applying FilTar to 

multiple sample types. FilTar is applied to the protein-coding transcriptome for all 

annotated human miRNAs for multiple tissues, organs and cell lines. Gained (blue) 

and lost (red) miRNA target sites is expressed as a percentage of the total number 

of target sites identified when deriving miRNA from Ensembl 3’UTR annotations. 

 

A summary statistics table can be found within table 4.1 detailing the 

extent of 3’UTR truncation and elongation for each cellular context: 
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Table 4.1 - FilTar 3’UTR reannotation summary statistics for cell line and tis-

sue data used in this study. Statistics are the total number or proportion of bases 

or transcripts gained or lost through 3’UTR reannotation respectively. All compar-

isons are made against a reference of Ensembl annotated 3’UTR sequences associ-

ated exclusively with protein-coding mRNA transcripts. 

  

Species Samples 

Bases 

gained 

(Mb) 

Bases 

gained 

(%) 

Ba-

ses 

lost 

(Mb) 

Ba-

ses 

lost 

(%) 

3‘UTRs 

elon-

gated 

3‘UTRs 

elon-

gated 

(%) 

3’UTRs 

trun-

cated 

3‘UTRs 

trun-

cated 

(%) 

Human 

U251 0.08 0.1 1.30 2.1 352 0.7 5730 10.6 

U343 0.07 0.1 1.32 2.2 296 0.5 7395 13.7 

Du145 0.06 0.1 1.40 2.3 453 0.8 5342 9.9 

A549 0.13 0.2 1.04 1.7 281 0.5 6774 12.5 

16HBE14o- 0.07 0.1 1.21 2.0 213 0.4 6600 12.2 

HeLa 0.05 0.1 1.14 1.9 289 0.5 4087 7.6 

U20S 0.01 0.0 1.23 2.0 120 0.2 3614 6.7 

Kidney 0.20 0.3 0.91 1.5 708 1.3 5738 10.6 

Lung 0.13 0.2 0.89 1.4 538 1.0 5686 10.5 

Skeletal 

muscle 
0.05 0.1 0.39 0.6 136 0.3 3018 5.6 

Thyroid 0.31 0.5 1.20 2.0 460 0.9 7356 13.6 

Bone mar-

row 
0.13 0.2 0.85 1.4 292 0.5 5444 10.1 

Mouse 

NMuMG 0.13 0.3 1.18 2.5 454 1.1 6440 15.8 

CD4+ 0.05 0.1 1.27 2.7 345 0.8 2447 6.0 

ESCs 0.41 0.9 1.46 3.1 493 1.2 7502 18.4 
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This corresponds to a gain and loss of total miRNA seed sides in the 

tens and hundreds of thousands respectively, as can be seen in table 4.2: 
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Table 4.2 - The total number of miRNA seed sites lost through expression fil-

tering or 3’UTR reannotation of transcripts. Expression filtering occurs at TPM 

> 0.1. Total miRNA seed sites for human: 52084138 and mouse: 28216437 

 

  

Species Samples 
Seed sites gained  

( 3’UTR reannotation) 

Seed sites lost 

(3’UTR reannotation) 

Seed sites lost 

(expression filtering) 

Human 

U251 49345 800764 12942294 

U343 46701 816545 13657488 

Du145 39571 872804 12508511 

A549 87549 624503 15578814 

16HBE14o- 47031 735041 13193677 

HeLa 38712 704948 9792951 

U20S 6146 746686 12879630 

Kidney 129715 554534 11476758 

Lung 83821 542432 12057289 

Skeletal 

muscle 
37028 237223 16615464 

Thyroid 202504 730038 11682705 

Bone mar-

row 
88212 506415 14632213 

Mouse 

NmuMG 62367 615046 9858668 

CD4+ 203359 744867 7358255 

ESCs 24318 659420 8947356 
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However, a much larger proportion of miRNA seed sites (mean average 

of 26.3%) are lost through expression filtering (figure 4.17), with ex-

pression filtering representing a loss of millions of miRNA seed sites 

(table 4.2). 

 

 

Figure 4.17 – The effect of expression filtering on multiple cell lines. The per-

centage of total miRNA targets removed through expression filtering at a threshold 

of 0.1 TPM in a set of different cell lines and tissue types for human and mouse 

species. 
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Table 4.3 - Summary statistics of the effects of filtering protein-coding tran-

scripts at an expression threshold of 0.1 TPM. Statistics are for the total number 

and proportion of bases and transcripts removed as a result of expression filtering.   

Species Samples 
Bases lost 

(Mb) 

Bases lost 

(%) 

3’UTRs  

removed 

3’UTRs removed 

(%) 

Human 

U251 19.56 32.0 22653 42.0 

U343 21.07 34.4 21929 40.6 

Du145 24.06 39.3 25494 47.2 

A549 19.50 31.9 20783 38.5 

16HBE14o- 20.73 33.9 21221 39.3 

HeLa 15.09 24.6 18907 35.0 

U20S 19.96 32.6 22548 41.8 

Kidney 17.78 29.0 22476 41.6 

Lung 18.68 30.5 22647 42.0 

Skeletal muscle 25.86 42.2 28148 52.1 

Thyroid 17.84 29.1 21529 39.9 

Bone marrow 22.78 37.2 23040 42.7 

Mouses 

NMuMG 20.66 43.2 19592 47.7 

CD4+ 18.61 38.9 19862 48.5 

ESCs 15.61 32.6 15505 37.9 
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This is commensurate with the mean average of 34.0% of 3’UTR bases  

lost when removing lowly expressed transcripts (< 0.1 TPM) from tar-

get predictions (table 4.3).  

 

When considering the combined effect of expression filtering and 

3’UTR reannotation, a mean average 36.1% of 3’UTR bases are lost, 

affecting a mean average of 53.4% of protein-coding 3’UTRs (table 

4.4). 
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Table 4.4 – Combined statistics relating to 3’UTR reannotation and expression 

filtering. The sum of statistics from table 1 and table 3 relating to total combined 

3’UTR bases and 3’UTRs affected by expression filtering and 3’UTR truncation. 

 

 

 

  

Species Samples 

Bases lost 

(Mb) 

Bases lost 

(%) 

3’UTRs af-

fected 

3‘ UTRs  

affected (%) 

Humans 

U251 20.86 34.1 28383 52.6 

U343 22.39 36.6 29324 54.3 

Du145 25.45 41.6 30836 57.1 

A549 20.54 33.5 27557 51.1 

16HBE14o- 21.94 35.8 27821 51.5 

HeLa 16.23 26.5 22994 42.6 

U20S 21.19 34.6 26162 48.5 

Kidney 18.69 30.5 28214 52.3 

Lung 19.57 32.0 28333 52.5 

Skeletal muscle 26.26 42.9 31166 57.7 

Thyroid 19.04 31.1 28885 53.5 

Bone marrow 23.63 38.6 28484 52.8 

Mouse 

NMuMG 21.84 45.7 25969 63.5 

CD4+ 19.87 41.6 22309 54.5 

ESCs 17.07 35.7 23007 56.3 
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4.5  Discussion 
 

Results show that FilTar is successfully able to utilise RNA-Seq data to 

reannotate protein-coding 3’UTR sequences and filter based on expres-

sion data leading to a gain in specificity and sensitivity of target predic-

tion evidenced through tests using experimental data. 

 

That expression filtering target transcripts at even a modest expression 

threshold of 0.1 TPM leads to a loss of millions of seed sites in most 

datasets analysed (table 4.2) represents a radical reduction in the num-

ber of false positive predictions associated with miRNA target predic-

tion and is indicative of the importance of considering the biological 

plausibility of candidate miRNA interactions. The positive relationship 

between the expression threshold chosen and the extent of repression 

of retained mRNA transcripts is evidence for the robustness of this ef-

fect (figure 4.3). The increase in specificity conferred by expression fil-

tering does however seem to be accompanied by a corresponding loss 

of sensitivity of miRNA target prediction when large expression thresh-

old values are chosen (figure 4.4), indicating that sufficient caution 

ought to be exercised by the user when choosing expression threshold 

values. However, even for larger expression thresholds, the reduction 

in sensitivity is less than the increase in specificity conferred by expres-

sion filtering (figure 4.3). 

 

The number of newly predicted miRNA target sites deriving from Fil-

Tar elongated 3’UTR sequences is generally relatively low. For cell line 

datasets analysed, the maximum of number of newly predicted miRNA 
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targets made for any single miRNA was 67, with the majority of da-

tasets analysed yielding less than 15 newly predicted targets (figure 4.5 

and figure A.3). The number of newly identified target transcripts is 

commensurate with the universally low proportion of 3’UTRs ex-

tended, and the small proportion of bases added to the total of the 

3’UTR annotation (table 4.1), even though this still represents a sub-

stantial increase in the number of miRNA seed target sites identified. 

This is in contrast to 3’UTR truncation in which the proportion of 

3’UTRs truncated and bases removed from the 3’UTR annotation total 

are much greater. Analysis shows that there is a strong positive corre-

lation between the number of 3’UTR bases reannotated, and the number 

of predicted miRNA target sites gained or lost through reannotation 

(figure 4.8 and figure 4.15). The bias in 3’UTR truncation as opposed 

to elongation can possibly be explained by either a pre-existing bias in 

standard Ensembl 3’UTR annotations to generate long 3’UTR models, 

or rather a bias in the FilTar reannotation workflow for 3’UTR trunca-

tion rather than elongation. A potential bias in the standard Ensembl 

annotation workflow could potentially be explained by the method of 

transcript annotation, in which, although transcript models are built on 

a tissue-specific basis, transcript models incorporated into the final En-

sembl gene set typically only derive from the merging of RNA-se-

quencing reads from multiple different tissue samples (Aken, et al., 

2016), therefore creating a bias towards the annotation of longer 

3’UTRs. This effect may be exacerbated or supplemented by the exist-

ence of 3’UTR isoforms within a given sample and transcript - creating 

relatively low abundance isoforms towards the distal end of the 3’UTR, 

making annotation difficult, and likely generating a large amount of un-

certainty, biases and variability in different methods used to model 

3’UTRs. 
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Another possibility, is that the shortening and extension of existing 

3’UTR annotations are qualitatively different problems requiring dif-

ferent respective sequencing depths. Within a given sample, a read sam-

pling analysis demonstrates that there is a positive relationship, up to a 

point of saturation between sequencing depth and the number of bases 

used to elongate existing 3’UTRs (figure 4.6). In addition, the satura-

tion point for the addition of bases to 3’UTRs is still substantially less 

than the proportion of bases removed at 3’UTRs even at relatively low 

sequencing depths indicating that the discrepancy between proportion 

of 3’UTR bases added or subtracted from the 3’UTRs cannot be ex-

plained by insufficient sequencing depth. A similar positive relation-

ship is observed between sequencing depth and the number of based 

truncated from existing 3’UTRs (figure 4.13), although far fewer reads 

seem to be required for saturation to occur, indicating a weaker reliance 

on sequencing depth for 3’UTR truncation compared to 3’UTR elonga-

tion. 

 

In addition, the sequencing depth does seem to influence the extent of 

3’UTR reannotation for a similar between sample analysis (figure 4.7 

and figure 4.14). The weak positive correlation between sequencing 

depth and the proportion of 3’UTR bases gained is likely best explained 

by greater sequencing depth uncovering less abundant 3’UTR isoforms 

leading to an elongation of some 3’UTRs during the 3’UTR reannota-

tion process. Conversely, greater sequencing depth seems to be some-

what negatively correlated with the extent of 3’UTR truncation – which 

can perhaps be explained by 3’UTR truncations occurring in error at 

low sequencing depths. 



 212 

 

As mentioned previously, FilTar permits 3’UTR truncations only oc-

curring on moderately-to-highly expressed transcripts, after discovery 

that the reannotation of the 3’UTRs of lowly expressed transcripts gen-

erated a relatively large number of what seemed to be false positive 

predictions (figure 4.10). The likely cause being that low transcript ex-

pression leads to sporadic and inconsistent coverage across the 3’UTR, 

in which there is insufficient information to correctly call 3’UTR trun-

cation. The default behavior of the FilTar tool therefore is to only trun-

cate the 3’UTRs of transcripts which are not poorly expressed (i.e. TPM 

≥ 5).  

 

When examining 3’UTR truncations further, for a minority of datasets 

analysed, some removed predicted miRNA targets seem to be margin-

ally effective, with some transcripts exhibiting low levels of repression 

upon transfection of the miRNA mimic. Further analysis indicates that 

these marginally repressed transcripts exhibit even weaker repression 

than 6-mer targeted transcripts (figure 4.12), one of the least effective 

canonical miRNA target types (Bartel, 2018), indicating that the effi-

cacy of these site types is marginal. A possible explanation for the ex-

istence of these site types is that, for some transcript annotations for 

which the 3’UTR was truncated, there may exist a small proportion of 

isoforms with longer 3’UTRs, which are too low in abundance to be 

detected by APAtrap, but nonetheless still confer a marginal level of 

repression to the transcript, and hence are detectable when analysing 

experimental data. 
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Investigations into the effect of utilising expression data when making 

transcriptome-wide miRNA target predictions can be extended by 

closer examination of not only the refinement of 3’UTR annotations 

across different biological contexts, and its effects on miRNA target 

prediction, but more precisely the definition of specific 3’UTR profiles, 

incorporating information about 3’UTR isoforms within a given cellu-

lar context (Agarwal, et al., 2015), an existing feature in the current 

version of the FilTar tool. This enables the weighting of miRNA target 

prediction scores on the basis of sequencing data applied by the user 

themselves, enabling even further and extended tailoring of miRNA tar-

get prediction to the specific biological context being researched. Pre-

vious analyses indicate that the most effective target predictions occur 

when those predictions are weighted on the basis of 3’UTR isoform ra-

tios (Nam, et al., 2014). In addition, the scope of FilTar’s functionality 

can be increased by enabling the annotation of novel 3’UTR sequences 

for transcripts without a current annotated 3’UTR, and also for those 

3’UTRs which themselves span multiple exons. In addition, both the 

configurability and precision of FilTar can be improved in the future by 

respectively, enabling use of additional tools for 3’UTR reannotation 

(Gruber, et al., 2018; Gruber, et al., 2018) and exploring the greater 

transcriptomic resolutions enabled by nascent single cell sequencing 

technologies. 

 

4.6  Conclusion 
 

FilTar utilises RNA-Seq data to increase the accuracy of miRNA target 

predictions in animals by filtering for expressed mRNA transcripts and 

reannotating 3’UTRs for greater specificity to a given cellular context 
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of interest to the researcher. In addition, the use of RNA-Seq data for 

the implementation of this approach as opposed to more specialist se-

quencing data, increases the accessibility and usability of FilTar for bi-

ological researchers. FilTar’s compatibility with user-generated RNA-

Seq data, confers functionality across a wide-range of potential biolog-

ical contexts. 
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Chapter 5: The regulation of the post-

mating response in Drosophila melano-

gaster by miRNAs 
 

5.1  Contributions 
 

Tracey Chapman: Experimental design. Overall project supervision. 

Emily Fowler: Conducted Experiments. Used domain-specific 

knowledge to write the introduction and discussion section of the pub-

lication associated with the study described in this chapter, which has 

been used for the formation of the introduction and discussion of fruit 

fly biology in this chapter. GO term enrichment analyses for the asso-

ciated publication. 

Simon Moxon: Experimental design, miRNA and mRNA quantifica-

tion, differential expression analysis of miRNA and mRNA expression 

data (i.e. use of PaTMan, kallisto, sleuth and DESeq2). Overall project 

supervision. 

Thomas Bradley: miRNA target prediction analysis, integrated analy-

sis of mRNA and miRNA expression and differential expression data, 

miRNA-mRNA network analysis, exploratory data analysis (figures 5.2-

5.7), discussion of the results of the integrated miRNA target prediction 

analysis. QC of differential expression analysis conducted by Dr. 

Moxon. Interpretation of the differential expression analysis, given the 

results of QC analysis. 

  



 216 

5.2  Introduction 
 

As has been discussed in previous chapters, RNA-Seq data has been 

previously been used as part of this PhD project in order to investigate 

miRNA-mediated gene regulation by attempting to infer the biological 

relevance of putative miRNA-mRNA interactions, and thereby increase 

the accuracy of miRNA target prediction in animals. 

 

In this chapter, and the subsequent chapter, integrated analyses are un-

dertaken using both RNA-Seq and sRNA sequencing datasets in order 

to better understand the extent of regulation exerted by individual mi-

croRNAs in specific biological processes. In this type of analysis, and 

the analyses presented in previous chapters, RNA-Seq data is funda-

mental in investigating the miRNA-meditation regulation of gene ex-

pression in any given biological context. 

 

For this chapter in particular, the biological process being studied is the 

transcriptomic response of both male and female D. melanogaster flies 

to mating. 

 

5.3  Background 
 

The purpose of this study was to examine the post-mating response 

(PMR) in both male and female Drosophila melanogaster. Due to the 

differing reproductive and mating strategies of the two sexes, the post-

mating response in male and females is expected to differ. Typically, 

mated females which mate multiply, exhibit a refractory response to 
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mating in order to support and sustain the production of fertile eggs. In 

contrast, the likely behavioural strategy of male fruit flies after mating 

is to minimise the length of any potential mating induced refractory pe-

riods, in order to re-commence mating (Fowler, et al., 2019). 

 

Comparatively speaking, more research has been conducted on the 

post-mating response in female than male D. melanogaster (Ravi Ram 

and Wolfner, 2007; Sirot, et al., 2015). Female fruit flies are known to 

have behavioural and physiological responses to mating which is in-

duced by seminal fluid proteins from the mating male (Sirot, et al., 

2011; Wigby, et al., 2009), including increased oogenesis, ovulation 

and feeding (Carvalho, et al., 2006). 

 

In males, once mating has occurred, both sperm and seminal fluid pro-

teins must be replenished, which is a process which can take over 24 

hours. There is also evidence to suggest that a more systemic post-mat-

ing response may occur in the male including changes in relation to the 

immune system (Winterhalter and Fedorka, 2009). 

 

Due to the high similarity between male and female genomes for the 

fruit fly, PMRs are thought to be co-ordinated by changes in gene ex-

pression (Williams and Carroll, 2009), as well as other non-genomic 

responses, including differing patterns or neurotransmitter release 

(Heifetz, et al., 2014). miRNAs are known regulators of gene expres-

sion, and are known to regulate sex-related processes in Drosophila 

such as SFP production (Mohorianu, et al., 2018) and ovary morphol-

ogy (Chen, et al., 2014). A comparative analysis of transcriptomic 
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changes in male and females in response to mating is lacking, including 

the particular role of miRNAs in regulating the post-mating response. 

 

In this study, we hoped to test the hypotheses that there are significant 

changes in gene expression between virgin and mated flies for both 

sexes, as well as the hypothesis that the mode and nature of changes in 

gene expression related to PMR are different in the two sexes. 

 

Similar studies have been conducted examining the expression profiles 

of the whole body of the female fruit fly in response to mating (Delbare, 

et al., 2017; Innocenti and Morrow, 2009; Lawniczak and Begun, 2004; 

McGraw, et al., 2008; McGraw, et al., 2004; Zhou, et al., 2014), whilst 

other studies have examined specific body parts (Dalton, et al., 2010; 

Kapelnikov, et al., 2008; Mack, et al., 2006; Prokupek, et al., 2009). 

Whilst similar studies have been performed on female insects of closely 

related species (Alfonso-Parra, et al., 2016; Gomulski, et al., 2012; 

Immonen, et al., 2017; Kocher, et al., 2008; Rogers, et al., 2008). A 

general outcome of these studies is that ‘PMRs can induce pervasive, 

genome-wide gene expression changes in reproductive, sensory and im-

mune system genes’ with some gene expression changes being signa-

tures of processes related to mating (Fowler, et al., 2019). 

 .   

Comparatively fewer studies of this type have been completed in males. 

There are studies of whole body gene expression profiles of males of 

related species after mating (Gomulski, et al., 2012; Immonen, et al., 

2017), and also an expression profile of the head of the male fruit fly 

after mating (Ellis and Carney, 2010). 
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Mating between fruit flies induces a post-mating response (PMR) in 

both males and females of this species. The behavioural PMR is differ-

ent for both sexes, which is predictive of transcriptional differences in 

the PMR. As miRNAs are known regulators of developmental and 

physiological change, they are candidate regulators of the post-mating 

response in both male and female fruit fly. As miRNAs predominantly 

act on protein-coding transcripts, mRNAs are also likely to be included 

in PMR-associated gene regulatory networks, and are therefore inves-

tigated in this study. The transcriptional post-mating response is also 

likely to differ according to body part, due to the location of sex-related 

organs in different regions of the body, and so both the head-thorax and 

the abdomen of the fruit fly are sampled and sequenced during this 

study. 
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5.4  Methodology 
 

5.4.1  Experimental Design 

 

The treatment condition of interest in this study was the state of mated-

ness (i.e. the virgin state or the mated state) of the fruit flies being ex-

amined. Other variables of interest were the sex and body part of the fly 

examined. The fly body parts examined as part of this study were the 

head/thorax (pooled), and the abdomen. 

 

Combination of these three variables lead to the generation of eight ex-

perimental conditions of interest (table 5.1): 
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Table 5.1 - The experimental conditions examined in this study. Conditions are 

based on a combination of the following variables of interest: sex, matedness, and 

body part(s). Abbreviations: MM (male-mated), MV (male virgin), FM (female-

mated), FV (female virgin), HT (head/thorax), Ab (abdomen). 

 

 

 

   

  

Condition Sex Matedness Body part(s) 

MMHT male mated head/thorax 

MMAb male mated abdomen 

MVHT male virgin head/thorax 

MVAb male virgin abdomen 

FMHT female mated head/thorax 

FMAb female mated abdomen 

FVHT female virgin head/thorax 

FVAb female virgin head/thorax 
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The relationship between all of the conditions listed above were ex-

plored using mRNA and sRNA transcriptomics through a process of 

RNA extraction, cDNA library preparation and subsequent sequencing.  

Two biological replicates were used for each condition. Each biological 

replicate represents RNA pooled (in order to generate sufficient RNA 

for sequencing) from 50 individual D. melanogaster organisms. There-

fore, in total, 16 samples were sent for sequencing (8 conditions x 2 

biological replicates per condition). 

 

5.4.2  Sample preparation 

 

Wildtype D. melanogaster flies were collected from a large laboratory 

population originally in the 1970s in Dahomey (Benin). Flies were 

reared on standard sugar yeast (SY) medium (100 g brewer's yeast pow-

der, 50 g sugar, 15 g agar, 30 ml Nipagin (10% w/v solution), and 3 ml 

propionic acid, per litre of medium) in a controlled environment (25°C, 

50% humidity, 12:12 hour light:dark cycle). Larvae were raised at a 

standard density of 100 per vial (glass, 75x25mm, each containing 7ml 

SY medium). Male and female adults were separated within 6 hours of 

eclosion using ice anaesthesia and stored in single sex vials at a density 

of 10/vial for 6 days. For the mated treatment, a single male was placed 

with a female and the time of mating was recorded. Immediately after 

mating the male was removed to a separate vial to prevent further mat-

ing. All mated flies were then flash frozen at 3 hours after start of mat-

ing in liquid N2. For the virgin treatment, males and females were 

housed individually in vials for ~3-4 hours before flash freezing. Frozen 

flies were stored at -80°C until use. 
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5.4.3  RNA Extraction 

 

To prepare tissue for RNA extraction, 50 flies from each sex, treatment 

and biological replicate were separated into HT and Ab tissues on dry 

ice, and the body parts were then pooled for RNA extraction (note that 

both body parts were intact, and thus the Ab contained the germline). 

Tissues were disrupted by grinding under liquid nitrogen, then total 

RNA was extracted using the miRvana miRNA isolation kit (Ambion, 

AM1561), according to the kit protocol. RNA was eluted in RNA stor-

age solution (1 mM sodium citrate, pH 6.4 +⁄- 0.2, Ambion). Samples 

were DNase treated to remove residual genomic DNA (Ambion Turbo 

DNA-free kit, AM1907). RNA was assessed for quantity and quality 

using a NanoDrop 8000 spectrophotometer. 

 

5.4.4  Library construction and sequencing 

 

The 16 samples were sent to the Earlham Institute provider (Norwich 

Research Park, UK) for mRNA and sRNA library construction, and se-

quencing. Libraries were constructed using the Illumina TruSeq kit. For 

the sRNA libraries, a modified ‘blocking oligo’ was also used to pre-

clude adapter ligation to the highly abundant 30nt 2S rRNA (Fowler, et 

al., 2018). Non-directional, single end RNA-seq was conducted using 

the Illumina HiSeq2500 platform with 50nt read length. 

 

5.4.5  Sequence analysis and differential expression analysis 
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Kallisto version 0.46.0 (Bray, et al., 2016) was used to pseudoalign 

reads to the Berkeley Drosophila Genome Project 6 (BDGP6) cDNA 

sequences downloaded from Ensembl (release 89, (Zerbino, et al., 

2018)). A kallisto index was created using the “kallisto index” com-

mand (k-mer size 31). Kallisto quant was used to obtain transcript count 

estimates and parameters were set to include 100 bootstrap samples and 

to perform sequence bias correction. Transcript to gene mappings were 

obtained using biomaRt (Durinck, et al., 2009) and transcript counts 

were aggregated in Sleuth (version 0.28.1) (Pimentel, et al., 2017) be-

fore calling pairwise differential expression between mated and virgin 

samples of the same body part and sex. Small RNA reads were con-

verted from FASTQ to FASTA format and then processed to trim se-

quencing adaptors using a custom Perl script recognising the first 8 ba-

ses of the adapter sequence (‘TGGAATTC’). Trimmed reads were then 

aligned to miRBase (v22.0) D. melanogaster mature miRNA sequences 

using PatMaN (Prufer, et al., 2008) (parameters -e 0 -g 0). A custom 

Perl script was used to parse the alignment files and generate an aligned 

read count table across all samples. DESeq2 (version 1.14.1) (Love, et 

al., 2014) was used for normalisation of counts between samples and 

calling differentially expressed miRNAs. 

 

5.4.6  miRNA target prediction 

 

This analysis is conducted predominantly using the R statistical com-

puting environment (Team, 2013) (v3.5.1), with the additional use of 

custom shell scripts within a UNIX operating system environment. 
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All relevant miRNA data is downloaded from release 22 of miRBase. 

Shell commands were used to translate records from fasta format to tab-

separated values (TSV) format. The three columns of the miRNA TSV 

file are the miRNA identifier, the miRNA seed (nucleotides 2-7) and 

the NCBI taxonomic ID of D. melanogaster (i.e. 7227). 

 

As discussed previously, when using any of the TargetScan algorithms, 

target prediction is performed exclusively on the 3’UTRs of mRNA 

transcripts. Full-length cDNA sequences of mRNA molecules were ob-

tained for the upstream process of transcript quantification using RNA-

Seq data, however, these sequences are not delineated according to tran-

script feature (e.g. the 3’UTR), and so another source of sequence in-

formation is required. 

 

A connection is made to the Ensembl (Zerbino, et al., 2018) biomaRt 

resource (Durinck, et al., 2009) (v2.38.0) from R in order to obtain tran-

script identifiers, and corresponding 3’UTR sequences from release 89 

of Ensembl. In Ensembl, for D. melanogaster, transcript and gene an-

notations derive from release 6.02 of FlyBase (dos Santos, et al., 2014), 

which uses the 6th release of D. melanogaster genome from the Berke-

ley Drosophila Genome Project (GCA_000001215.4) (Hoskins, et al., 

2015). 

 

An issue with this data representation however, is that although up-

stream transcript quantification and differential expression analyses 

were conducted at the gene level, 3’UTR sequences as represented here, 

exist at the level of transcripts, and as such are not directly comparable 
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with gene-level analyses. Therefore, in order to enforce coherence be-

tween miRNA target prediction and upstream analyses, target predic-

tion has to be conducted at the level of individual genes. However, the 

problem being, that the 3’UTR is not a gene-level sequence feature. As 

a result, some method had to be developed to assign gene-level models 

of the 3’UTR. There are different layers of complexity that can be con-

sidered when trying to develop a gene-level model of the 3’UTR. Each 

mRNA transcript (i.e. defined set of contiguously-joined exons) pos-

sesses its own abundance relative to other transcripts of that same gene. 

The transcript model, for each gene, with the longest 3’UTR was taken 

as being representative of that gene. This approach maximises the sen-

sitivity of the target analysis, as the longest 3’UTR will contain all pu-

tative target sites, though potentially at the expense of prediction spec-

ificity, as the mRNA transcript with the longest 3’UTR, may not be the 

most abundant coding transcript for a gene within a given context. 

Genes which do not contain any transcripts containing 3’UTRs are not 

used for subsequent analysis. In cases in which multiple transcripts of 

the same gene all contain the maximum 3’UTR sequence of that gene, 

one of these transcripts is selected at random as being representative. 

Approximately 40% of fruit fly 3’UTRs contained multiple splice 

isoforms of that 3’UTR.  

 

The next stage of the analysis was to perform miRNA target prediction, 

which involved the selection of a suitable target prediction algorithm. 

In particular, the decision had to be made whether to use an algorithm 

solely for the classification of mRNA transcripts as potential target or 

non-targets of a given miRNA, or alternatively, whether to use an algo-

rithm which would use some form of regression model to score the pre-

dicted effectiveness of putative target sites. Preliminary analyses had 
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revealed that there was very poor or non-existent correlation between 

scores deriving from the context++ model (Agarwal, et al., 2015) (fig 

5.1), and fold changes observed for predicted targets of miRNAs dif-

ferentially expressed between two conditions. The primary assumption 

in this analysis being, that for a miRNA differentially expressed be-

tween two conditions, the expression of the direct targets of that 

miRNA would be expected to be perturbed as a result of the differential 

expression of the targeting miRNA. 

 



 228 

 

Figure 5.1 – The relationship between context++ scores and fold change be-

tween two conditions for the predicted targets of a differentially expressed 

miRNA. On the x-axis is plotted the cumulative context++ scores, which is the 

summed context++ score for multiple potential targets for each predicted target 

transcripts. All context++ scores are negative, but have been plotted with their ab-

solute values (i.e. modulus values) for the sake of clarity. Plotted on the y-axis are 

log2 fold changes relating to the post-mating response in a given comparison (given 

in subplot subtitles). The miRNA used in this analysis is are, for each respective 

subplot: A) dme-miR-997-5p for the female abdomen (LFC=6.83, p.adj=0.033); B) 

dme-miR-927-5p for the female abdomen (LFC=-3.77, p.adj=0.062); C) dme-miR-
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927-3p for the male abdomen (LFC=-3.42, p.adj=0.0075) and D) dme-miR-986-5p 

for the male abdomen (LFC=6.26, p.adj=0.076). Outliers have been omitted. 

 

As a result of this preliminary analysis, it was decided to proceed with 

a classification algorithm, without additional scoring of putative tar-

gets. As there is consistent evidence for the effectiveness of seed-based 

targeting rules (Agarwal, et al., 2015; Bradley and Moxon, 2017), and 

evidence that non-canonical target predictions can lead to an inflated 

number of false positive results (Agarwal, et al., 2015), the ‘Tar-

getScanS’ algorithm (Lewis, et al., 2005) was chosen for this analysis, 

which identifies 7mer-1a, 7mer-m8 and 8mer target sites. 

 

5.4.7  Data Pre-processing and Normalisation 

 

Before null-hypothesis significance testing, a process of data pre-pro-

cessing and cleaning was undertaken. The arithmetic mean average of 

TPM values between biological replicates was computed. Genes with 

average TPM values of 0 in either the virgin or the mated conditions 

were removed from further analysis for a particular comparison, as pre-

vious analysis has indicated that removal of lowly expressed mRNA 

increases the accuracy of miRNA target prediction (Bradley and 

Moxon, 2019). A pseudo-count of 1 was then added to each average 

TPM value in order to mitigate against the large stochasticity in tran-

script abundance typically observed at low expressions values.   

 

As discussed earlier, during exploratory data analysis, it was discovered 

that 3’UTR length produced a strong confounding effect when evaluat-

ing fold change expression values between any two conditions. In order 
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to mitigate against this confounding effect, a procedure was imple-

mented before statistical testing in order to normalise fold change val-

ues for 3’UTR length. The normalisation procedure is described as fol-

lows: 

 

A histogram of 3’UTR sequence lengths was constructed separately for 

predicted target and nontarget datasets, starting from 0, in increments 

of 200nt, and to a maximum representing the maximum sequence 

length from both target and non-target datasets. Each break of the two 

histograms are iterated through, and for each iteration, log fold change 

values for predicted target and nontarget datasets are restricted to fall 

within the 3’UTR sequence length range given by the individual histo-

gram breaks. Within this range, of the target and nontarget log fold 

change vectors, if vector sizes are unequal, the vector with the largest 

number of records is sampled to match the number of observations con-

tained within the smaller vector. Log fold change values for both pre-

dicted target and nontarget datasets are concatenated for each iteration, 

in order to create log fold change distributions which are normalised for 

3’UTR length. In the case of the Fisher exact test, an identical sampling 

procedure is implemented with the exception that transcript identifiers 

are sampled instead of log fold change values. 

 

5.4.8  Integrated Analysis 

 

A process of null hypothesis significance testing was undertaken in or-

der to test whether the predicted targets of differentially expressed miR-

NAs differed significantly from predicted non-targets. The one-sided 

Kolmogorov-Smirnov (KS) and Fisher exact tests were used for this 
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purpose. The KS test is used to test for the equality between two con-

tinuous distributions, and in this instance, is used to test for the equality 

of predicted miRNA target and non-target distributions – resulting in 

use of the ‘two-sample’ form of the KS test. The Fisher Exact test is a 

test for enrichment, and was used test for the enrichment or depletion 

of miRNA target sites on downregulated and upregulated transcripts re-

spectively. In addition, Fisher Exact and KS tests were also similarly 

conducted to test for potential combinatorial effects of different pair-

wise combinations of miRNAs which were differentially expressed in 

the same direction with predicted target sets designated as those 

mRNAs with predicted targets for both differentially expressed miR-

NAs. 

 

Correction for multiple comparisons was conducted using the Benja-

mini & Hochberg correction (Benjamini and Hochberg, 1995), with an 

FDR value set at <0.05. In order to counteract the stochasticity intro-

duced into the analysis by the 3’UTR normalisation process described 

above, for each test, p-values were calculated 100 times, and the mean 

average p-value was taken as being representative. 
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5.5  Results 
 

5.5.1 QC 

 

Data relating to the numbers of reads generated from each library, and 

the proportion of the reads mapping or pseudoaligning to the reference 

genome or transcriptome is given in appendix B (figure B.1, B.2 and 

tables B.1, B.2) 

 

In summary, for mRNA-seq, sequencing depth is generally consistent 

across duplicates, although inconsistent for samples of a different type 

(e.g. mated female abdomen). However, sequencing depth is consistent 

across duplicates and sample types for sRNA sequencing libraries. 

 

Principal components analysis (figure 5.2) reveals that broadly speak-

ing, the mRNA and the miRNA sequencing data cluster according to 

sex and body type, and also to some extent the mated status of the flies 

sequenced. 

 

There are some exceptions to these broad trends however. Firstly, when 

examining the principal components analysis for the mRNA sequenc-

ing data, we can see that the body type (i.e. the head-thorax or the ab-

domen) are broadly separated along the first principal component, with 

the sex less clearly distinguished along the second principal component. 

However, mated female head-thorax cluster more closely to the corre-

sponding male samples of this type – indicating potential issues with 

these samples. 
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With the miRNA PCA analysis we see again the body part samples are 

separated along the first principal component. Although abdomen sam-

ples are clearly separable by sex along the first principal component, all 

abdomen samples are closely clustered together irrespective of sex. 

This would indicate that there is sexual asymmetry in the transcriptional 

profile in the abdomen for miRNAs, but not in the head-thorax. 

 

 

 

Figure 5.2 – Principle components analysis of expression data for both A) 

mRNA and b) miRNA in this study. Points are coloured by a combination of 

properties relating to the fly’s sex, body part sequenced, and matedness status. Plots 

are manually annotated with groupings according to points with common sex and 

body part sequenced (black). 

 

5.5.2  Differential Expression Analysis 

 

Variable numbers of both protein coding genes and miRNAs were 

found to be differentially expressed between different comparisons (ta-
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ble 5.2). In addition, patterns of protein-coding and miRNA gene up-

regulation and downregulation were different between different com-

parisons. 
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Comparison Gene Type Num. upregulated Num. downregulated 
Total 

num. DE 

female abdomen Protein-coding 106 19 125 

female head-thorax Protein-coding 628 1412 2040 

male abdomen Protein-coding 1507 561 2068 

male head-thorax Protein-coding 0 0 0 

female abdomen miRNA 3 1 4 

female head-thorax miRNA 0 0 0 

male abdomen miRNA 0 2 2 

male head-thorax miRNA 0 0 0 

Table 5.2 - The results of the differential expression analysis of miRNA and 

protein coding genes for comparisons relating to both sex and body part. In 

each comparison the respective mating and virgin conditions are compared (e.g. 

mated female abdomen vs. virgin female abdomen). Data is derived from mRNA 

and sRNA sequencing experiments with two biological replicates per condition. 
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It is important to examine potential reasons for the patterns of differen-

tial expression observed in table 5.2. Firstly, for protein-coding genes, 

volcano plots (figures B.3) reveal that although no genes are called as 

being differentially expressed for the male head-thorax, there are a large 

number of genes for this comparison which exhibit large changes in ex-

pression. It is unlikely that this can be explained by a large degree of 

technical variance from these samples as the technical variance distri-

bution for these samples dies not differ remarkably than from other 

comparisons (figure B.5). Whilst this comparison does contain genes 

with seemingly large expression changes, most of these genes are either 

poorly expressed (figure B.6), and have large standard errors for the 

beta effect size parameter (suggesting high uncertainty in the log-fold 

change estimates – figure B.7). This evidence together helps give a 

proximal understanding for the lack of differentially expressed genes 

for the male head/thorax. The same reasoning can be applied to explain 

the relatively low number of protein coding genes found to be differen-

tially expressed in the female abdomen. However, it does not provide a 

biological reason for the lack of differentially expressed genes in these 

conditions. 

 

A similar problem is found when trying to explain the very small num-

ber of miRNAs which are differentially expressed across all compari-

sons. Again, volcano plots reveal that the problem isn’t a lack of miR-

NAs with large differences in expression levels between samples (figure 

B.4). Again, we can see that those genes tend to have low or moderate 

expression levels (figure B.8) and high log fold change standard errors 

(figure B.9). The high standard error values could be attributable to low 

expression values of these miRNAs (in which fold changes are increas-

ingly variable) or high inter-replicate variability, or due to the small 
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sample size in this study. The performed principal components analysis 

(figure 5.2) suggest that perhaps high inter-replicate variability is not 

the dominant issue in the case. Rather, it is likely that there is insuffi-

cient statistical power to call differential expression in most cases with 

DESeq2 when the sample size is small (e.g. n=2), as unlike the case 

with the protein-coding genes, there is no or only a small number of 

miRNAs called as differentially expressed across all comparisons. 

 

5.5.3  miRNA target prediction 

 

5.5.3.1  miRNA-Gene Interaction Network & GO Term Enrichment Analysis 

 

An initial result from the miRNA target analysis was the discovery of a 

number of genes which were differentially expressed in the opposite 

direction of a differentially expressed miRNA for a given comparison, 

and was also a predicted target of that same miRNA (table B.1). The 

majority of such interactions are found in the male abdomen, and net-

work visualisations of these interactions highlights some important fea-

tures of miRNA targeting found in this particular system (figure 5.3). 
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Figure 5.3 - Network visualisation of predicted miRNA interactions in the male 

abdomen: Nodes with thick borders denote miRNAs, whilst nodes without 

thick borders represent coding genes. Nodes coloured pale red denote coding 

genes upregulated in the mated male abdomen (FDR ≤  0.05), whilst nodes coloured 

pale blue denote genes downregulated in the mated male abdomen. Network edges 

denote a predicted targeting interaction between connected nodes. Network visual-

isations are not shown for other comparisons which either do not possess any dif-

ferentially expressed miRNAs, or the number of differentially targets of differen-

tially expressed miRNAs are too low to be informative. 

 

The visualisation reveals the large number of predicted target genes dif-

ferentially expressed in the opposite direction to the mRNA in this com-

parison. GO term enrichment analyses using the GOrilla web tool 

(Eden, et al., 2009), was used to test for the enrichment of GO terms 

processes in the upregulated predicted targets of dme-miR-927-3p and 

dme-miR-927-5p using a background reference set of all genes which 

were found to be expressed in the male abdomen. No GO terms were 

found to be enriched in these target sets (FDR < 0.05). 
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The identity of the genes which are co-targeted by dme-miR-927-3p 

and dme-miR-927-5p is given in table 5.3. 
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Gene name FlyBase Gene ID Num.  

predicted  

dme-miR-927-5p 

targets 

Num.  

predicted  

dme-miR-927-3p 

targets 

3’UTR  

sequence  

complexity 

RpL37a FBgn0030616 1 1 0.72 

CG5707 FBgn0026593 1 1 0.80 

CG17715 FBgn0041004 1 1 0.63 

Myo95E FBgn0039157 1 1 0.71 

Nckx30C FBgn0028704 1 6 0.68 

CG13197 FBgn0062449  1 1 0.74 

Cyp6a18 FBgn0039519 1 1 0.73 

Sxl FBgn0264270 1 2 0.60 

Pdp1 FBgn0016694  1 2 0.59 

CG42394 FBgn0259740 1 1 0.75 

chrb FBgn0036165 1 2 0.56 

CG12567 FBgn0039958 1 1 0.74 

Myc FBgn0262656 2 1 0.64 

Slh FBgn0264978 1 1 0.74 

twi FBgn0003900 1 1 0.82 

su(w[a]) FBgn0003638 1 2 0.67 

CG31960 FBgn0051960 1 1 0.84 

Pur-alpha FBgn0022361 1 1 0.65 

Nop60B FBgn0259937 1 1 0.64 

Table 5.3 - A table providing information relating to differentially expressed 

genes co-targeted by miR-927-3p and miR-927-5p. Complexity is calculated 

with word lengths of size 6 (cf miRNA seed length), using an adaptation (Orlov and 

Potapov, 2004; Troyanskaya, et al., 2002) of the linguistic complexity approach 

(Trifonov, 1990) 
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As can be seen from this table, a small subset of these 19 genes possess 

multiple predicted target sites to either of these miRNAs. There isn’t 

any one gene with a particularly low 3’UTR sequence complexity, and 

there does not seems to be any clear relationship between the sequence 

complexity and the number of predicted target sites in the 3’UTR for 

these miRNAs. A GO term enrichment analysis using the GOrilla web 

application did not uncover any enriched gene functionality in this gene 

set. 

 

5.5.3.2  Exploratory Data Analysis 

 

Exploratory data analysis was performed with the intention of discov-

ering patterns in miRNA target prediction data before proceeding onto 

more formal analyses. Firstly, the proportion of total predicted target 

sites which were attributable to each target site type was ascertained 

(figure 5.4): 
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Figure 5.4 -  The number of predicted miRNA seed target sites categorised by 

site type, after running the TargetScanS (Lewis, et al., 2005) algorithm with D. 

melanogaster miRNAs and 3’UTRs. The three types of miRNA target site type 

observed is the 7mer-1a, the 7mer-m8 and 8mer site types (Bartel, 2018). 

 

As discussed earlier, miRNA target site types differ in their typical ef-

ficacy, with the 8mer sites being the strongest site type, followed by the 

7mer-m8 site, and the 7mer-1a site (Bartel, 2018). This evidence would 

predict a somewhat heterogeneous response of predicted miRNA tar-

gets as a whole, according to how the different target site types are dis-

tributed across those targets. In addition, because some transcripts may 

be predicted to contain multiple different target sites to the same 

miRNA, not all of which may be of the same site type, which can act 

additively (Brennecke, et al., 2005; Doench and Sharp, 2004; Lai, et al., 

2005) or synergistically when closely spaced (Grimson, et al., 2007), in 
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order to confer target repression, a heterogeneous response of predicted 

targets to miRNA differential expression may be expected. 

 

In addition, not only will mRNA transcripts contain a variable number 

of predicted targets, to a single miRNA, but when the total ensemble of 

annotated miRNAs for D. melanogaster are taken as a whole, it can be 

observed that there is a large range in the number of predicted target 

sites for each mRNA (figure 5.5). 

 

 

Figure 5.5 - The number of predicted seed miRNA target sites with respect to 

the gene in which those sites are found. Target predictions are made on the rep-

resentative 3’UTRs of genes, which are designated as the longest 3’UTR splice 

isoform for a given gene. 

  

As can be observed from figure 5.4, target site frequency on genes 

seems to follow a power law distribution, with a relatively small num-

ber of genes possessing a large number of predicted target sites, and a 
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relatively larger number of genes containing a small number of pre-

dicted target sites. The non-uniform distribution of total miRNA target 

sites on 3’UTRs, could perhaps help predict the response of sets of pre-

dicted miRNA targets to the combined differential expression of multi-

ple miRNAs i.e. the combined differential expression of multiple miR-

NAs could cause uneven or variable responses of mRNA predicted to 

be targeted by those miRNAs. 

 

In addition, there is no uniform distribution of the number of predicted 

target sites possessed by each annotated miRNA as can be observed in 

figure 5.6: 

 

 

Figure 5.6 - The frequency of predicted seed miRNA target sites with respect 

to the targeting miRNA. miRNA sequences used encompass all fruit fly miRNAs 

stored in miRBase. 
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Given this evidence, it is likely that the extent of the transcriptomic re-

sponse to miRNA differential expression could largely be dependent on 

the identity of the miRNA which is differentially expressed, as from 

figure 5.4, this could lead to a greater than 10-fold difference in the 

number of mRNA either repressed or derepressed as a result of miRNA 

differential expression. The caveat of this analysis being that some pre-

dicted sites may be non-functional, and that some miRNAs with a large 

number of predicted targets may possess a low complexity seed se-

quence which may align to a large number of pre-existing repetitive 

sequences in 3’UTRs. Inspection of the data reveals that this is likely to 

be case, with the miRNA with the largest number of target sites (i.e. 

dme-miR-4943-5p) containing very low seed sequence complexity: 

‘UUUAUUU’. However, previous research has shown that seed re-

gions rich in AU-content lead to relatively unstable binding with tar-

gets, and as a result the ability of these miRNAs to repress targets is 

weaker (Garcia, et al., 2011). 

 

The distribution observed in figure 5.3 may be partially explained by 

the observed distribution of 3’UTR sequence lengths, which appears to 

be log-normally distributed (figure 5.7): 
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Figure 5.7 – The distribution of log10 3’UTR sequence lengths for D. melano-

gaster mRNA transcripts obtained from release 89 of Ensembl (Zerbino, et al., 

2018). Representative 3’UTRs are designated as being the longest 3’UTR splice 

isoform for any given gene. 

 

The mode of this distribution is at approximately at a value of 2.2, 

which corresponds to a 3’UTR sequence length of approximately 160nt. 

The distribution also appears to be negatively skewed. The substantial 

number of transcripts with 3’UTRs found with lengths between 1000-

10,0000nt, potentially explains the non-uniform distribution of the 

number of predicted miRNA targets on 3’UTRs if it is assumed that 

there is a positive correlation between observed predicted miRNA tar-

get site frequency and 3’UTR length. This correlation is to be expected 

if either a significant proportion of miRNA target sites are distributed 

in an unbiased manner, or alternatively if longer 3’UTRs are more ex-

tensively regulated. There is an observable peak corresponding to a 
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3’UTR sequence length of 3nt which is likely attributable to a ceiling 

effect owing to a minimum assigned 3’UTR sequence length of 3nt. 

 

As observed in a previous study, miRNA target sites tend not to be uni-

formly distributed across the length of the 3’UTR, with a clear depletion 

of predicted target sites near the end of the stop codon and the start of 

the 3’UTR, and conversely an enrichment of miRNA target sites at the 

distal end of the 3’UTR (Grimson, et al., 2007) (figure 5.8). This en-

richment of miRNA target sites towards the end of the 3’UTR can be 

explained by the reduction in sequence complexity at the distal end of 

the 3’UTR (figure 5.9). 

 

There is also a very slight, but noticeable trough precisely at the half-

way point at the 3’UTR, again corroborating observations made in a 

previous study (Grimson, et al., 2007).  
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Figure 5.8 – A histogram of length normalised positions of predicted miRNA 

target sites along D. melanogaster 3’UTRs. 

 

Although this observation did not directly impact the analysis, it is fur-

ther evidence that general miRNA targeting rules and principles ob-

served in this analysis, do not differ considerably from those which 

have been previously reported. 
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Figure 5.9 – The mean percentage GC content of D. melanogaster 3’UTRs 

along the normalised length of the 3’UTR. 

 

 It was also important to examine any potential differences in 3’UTR 

sequence length between the abdomen and head/thorax as 3’UTR 

length is known to be a confounder of miRNA mimic transfection anal-

yses (Agarwal, et al., 2015). Analyses of both male and female se-

quence lengths reveals only a very small difference in 3’UTR lengths 

(figure 5.10). 
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Figure 5.10 – An examination of the cumulative distributions of 3’UTR se-

quence length for both male and female fruit fly, grouped according to body 

type. Low abundance transcripts have been filtered from this analysis (less than 5 

read counts for more than 47% of samples (Pimentel, et al., 2017)). P-values derive 

from two-tailed Kolmogorov-Smirnov tests. 

 

Although the determined p-values are low, the effect size is small (D = 

0.018 for females and D=0.030 for males) suggesting that this small 

difference in 3’UTR lengths is unlikely to be biologically significant. 
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From the initial exploratory data analysis, additional analysis was un-

dertaken to investigate potential relationships between 3’UTR target 

site abundance, 3’UTR length, and the differential expression of genes 

between two different conditions. Analyses were conducted for the two 

comparisons with a sufficient number of differentially expressed cod-

ing genes for the analysis to be informative, namely, the comparison 

between the virgin male abdomen and the mated male abdomen (2068 

differentially expressed coding genes; table 5.1) and also the compari-

son between the virgin female head/thorax and the mated female 

head/thorax (2040 differentially expressed coding genes; table 5.1). 

 

In the first analysis of this type, the cumulative distributions of coding 

genes which are either upregulated, downregulated or not differentially 

expressed for the male abdomen are plotted with respect to target site 

frequency of the 3’UTRs of the representative transcripts of these genes 

(figure 5.11). 
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Figure 5.11 - Empirical cumulative distributions of coding genes which are ei-

ther upregulated, downregulated or not differentially expressed, with respect 

to predicted miRNA target site frequency. Comparison: Mated male abdo-

men vs. virgin male abdomen 

 

As can be observed from figure 5.11, upregulated, downregulated genes 

and genes which are not differentially expressed are not identically dis-

tributed with respected to target site frequency on their respective 

3’UTRs. In the comparison, there appears to be an enrichment of pre-

dicted miRNA target sites in downregulated genes, and a depletion of 

predicted miRNA target sites in upregulated genes. 

 

Conversely, in the female head/thorax, to some degree, the opposite 

trend is observed (figure 5.12): 
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Figure 5.12 - Comparison: Mated female head/thorax vs. virgin female 

head/thorax – otherwise, as in figure 5.11. 

 

In this comparison, there seems to be a depletion of predicted miRNA 

targets in the 3’UTRs of downregulated genes, and neither an enrich-

ment nor depletion of predicted miRNA targets in the 3’UTRs of up-

regulated genes in comparison to coding genes which are not differen-

tially expressed. The reasons for the differences in these observed pat-

terns are not altogether clear, and seem to be confounded by another 

variable, namely, 3’UTR length. 

 

When examining similar cumulative plots, though, on this occasion 

with respect to 3’UTR sequence length, rather than predicted miRNA 

target site frequency, observed cumulative distribution patterns are sim-

ilar as to those found in figures 5.11 and 5.12. For example, for the male 

abdomen, downregulated genes are generally enriched for long 3’UTR 
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sequences, whilst upregulated genes are generally enriched for shorter 

3’UTR sequences (figure 5.13). 

 

 

Figure 5.13 - Empirical cumulative distributions of coding genes which are ei-

ther upregulated, downregulated or not differentially expressed, with respect 

to 3’UTR length. Comparison: Mated male abdomen vs. virgin male abdomen 

 
In addition, for the female head/thorax, downregulated genes are en-

riched for shorter 3’UTR sequences (figure 5.14). 
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Figure 5.14 - Comparison: Mated female head/thorax vs. virgin female 

head/thorax. Otherwise, as in figure 5.13. 

 

A relationship between 3’UTR length and predicted target site efficacy 

has been previously reported, with discoveries that effective miRNA 

target sites are enriched in shorter 3’UTRs (Agarwal, et al., 2015; 

Hausser, et al., 2009). This would perhaps explain why in the female 

head/thorax comparison, downregulated genes are enriched for shorter 

3’UTRs. 

 

To determine whether or not the distribution of total predicted miRNA 

target sites on 3’UTRs was potentially causative of patterns of gene 

dysregulation observed, a similar analysis to that presented in figures 

5.8 and 5.9 was conducted with randomly generated miRNA seed se-

quences. Simulated seed sequences were generated by sampling (with 

replacement) seven bases from the list of RNA bases (i.e. U,C,A,G) and 
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concatenating the bases in the order in which they were sampled in or-

der to form a seven letter string. This process was repeated for each 

seed sequence simulated. For the male abdomen, the cumulative distri-

butions of coding genes which are either upregulated, downregulated or 

not differentially expressed with respect to the frequency of target sites 

for simulated seed sequences appears very similar to that for genuine 

miRNA seed sequences (figure 5.15). 

 

 

Figure 5.15 - Empirical cumulative distributions of coding genes which are ei-

ther upregulated, downregulated or not differentially expressed, with respect 

to predicted target site frequency of randomly generated miRNA seed se-

quences. Comparison: Mated male abdomen vs. virgin male abdomen. Predicted 

target sites were generated by executing the TargetScan algorithm with the D. mel-

anogaster 3’UTR set and randomly generated miRNA seed sequences. 
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Similar observations are also made for the female head/thorax compar-

ison (figure 5.16). 

 

 
Figure 5.16 - Comparison: Mated female head/thorax vs. virgin female 

head/thorax. Otherwise, as in figure 5.15. 

 
This evidence suggests that the observed patterns of enrichment of tar-

get sites on either upregulated or downregulated genes for the male ab-

domen and female head/thorax comparisons is unlikely to be adaptive, 

and that the observed patterns of dysregulation of coding genes is un-

likely to be caused by the distribution of miRNA target sites on 

3’UTRs. It is more likely in this case, that observed patterns of dysreg-

ulation are attributable to differences in 3’UTR lengths in different 

genes, though in a miRNA-independent manner. It cannot however be 

concluded that the differential expression of miRNAs in these compar-

isons has no influence on the observed expression values for the coding 
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transcriptome, but rather that any potentially existing effect is masked 

or confounded by the effect of 3’UTR length. As a result, a normaliza-

tion procedure (see methods) is implemented to control for the effects 

of 3’UTR length during null hypothesis significance testing. 

 

However, this account does not necessarily explain the large discrep-

ancy in results observed between the male abdomen and the female 

head/thorax. As can be observed from figure 5.11-5.16, the observed 

patterns of results are almost inverted between these two conditions. 

This is particularly mysterious as Agarwal et al.. (Agarwal, et al., 2015) 

had noted that whilst the 3’UTR length confounding effect tends to 

change sign between different studies (i.e. is sometimes correlated with 

mRNA upregulation and also downregulation), it tends to be stable 

within the same study. One potential explanation is that transcript 

dysregulation in this study is not only confounded by 3’UTR sequence 

length, but also by the 3’UTR AU content (a prominent confounding 

variable in these types of experiments (Agarwal, et al., 2015). If there 

are discrepancies in the 3’UTR AU content of expressed genes in the 

female head/thorax compared to the male abdomen, that could poten-

tially explain the results that are observed.  

 

A similar analysis examining 3’UTR lengths was also attempted on data 

from the female abdomen (figure B.10) – however, because the small 

number of both upregulated and downregulated genes, it is difficult to 

derive meaningful conclusions from this analysis. 
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5.5.4  Integrated Analysis 

For all tests conducted, all p- and adjusted p-values returned were above 

the chosen significance threshold of 0.05 (see table 5.4).  
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Table 5.4 - A statistics table for the integrated analysis of D. melanogaster se-

quencing data for single mature miRNAs. A table of p values and adjusted p 

values deriving from use of the Kolmogorov-Smirnov test and the Fisher Exact test 

on the targets of differentially expressed miRNAs in any given comparison. The 

‘miRNA’ column denotes the name of the miRNA. The ‘comparison’ column de-

notes the context in which the comparison between mated and virgin flies was 

made. The ‘Direction’ column denotes the direction of differential expression of 

the miRNA along the virgin-mated conditions trajectory. The ‘test’ column denotes 

the type of test applicable for each record of the table. 

 

miRNA Comparison Direction Test p Adjusted p 

dme-miR-184-5p Male Abdomen Up KS 0.375 0.981 

dme-miR-286-3p Female Abodmen Down KS 0.526 0.981 

dme-miR-184-5p Female Abdomen Down Fisher 0.607 0.981 

dme-miR-997-5p Female Abdomen Down Fisher 0.715 0.981 

dme-miR-997-5p Female Abdomen Up KS 0.730 0.981 

dme-miR-927-3p Male Abdomen Down KS 0.769 0.981 

dme-miR-14-3p Female Abdomen Up KS 0.771 0.981 

dme-miR-927-5p Male Abdomen Down KS 0.793 0.981 

dme-miR-14-3p Female Abdomen Down Fisher 0.854 0.981 

dme-miR-997-5p Female Abdomen Up Fisher 0.940 0.981 

dme-miR-14-3p Female Abdomen Up Fisher 0.947 0.981 

dme-miR-184-5p Female Abdomen Up Fisher 0.981 0.981 
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This indicates that for differentially expressed miRNAs for any given 

comparison, the set of all predicted targets of those miRNAs did not 

differ significantly from the set of all predicted non-targets for that 

same miRNA. 

 

When similar testing was conducted on gene sets which were predicted 

to be the target of multiple miRNAs, similar results were found (table 

5.5): 
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Table 5.5 - A table of p and adjusted p values testing for the combinatorial 

effect of multiple miRNAs differentially expressed in the same direction tar-

geting the same set of targets. The first and second columns of the table denote 

the identifiers for the first and second miRNAs used for testing, respectively. Oth-

erwise, as in table 3. 

 

 

 

  

1st miRNA 2nd miRNA Comparison Direction Test p Adjusted p 

dme-miR-14-3p dme-miR-997-5p 
Female  

Abdomen 
Up KS 0.366 1.000 

dme-miR-14-3p dme-miR-184-5p 
Female  

Abdomen 
Up KS 0.455 1.000 

dme-miR-997-5p dme-miR-184-5p 
Female  

Abdomen 
Up KS 0.732 1.000 

dme-miR-927-3p dme-miR-927-5p 
Male  

Abdomen 
Down Fisher 0.791 1.000 

dme-miR-927-3p dme-miR-927-5p 
Male  

Abdomen 
Down KS 0.825 1.000 

dme-miR-14-3p dme-miR-997-5p 
Female  

Abdomen 
Up Fisher 1.000 1.000 

dme-miR-14-3p dme-miR-184-5p 
Female  

Abdomen 
Up Fisher 1.000 1.000 

dme-miR-997-5p dme-miR-184-5p 
Female  

Abdomen 
up Fisher 1.000 1.000 
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The plot of cumulative log fold changes values presented for predicted 

miRNA targets and non-targets of dme-miR-14-3p, for the female ab-

domen is typical for all differentially expressed miRNAs across all 

comparisons (figure 5.17) 

 

 

Figure 5.17 - Empirical cumulative distributions of the predicted target and 

non-targets of dme-miR-14-3p with respect to the log2 mRNA fold change. 

dme-miR-14-3p was chosen as a miRNA exhibiting typical behaviour of a dif-

ferentially expressed miRNA in this comparison. The reported approximate p 

value refers to a one-sided, two-sample Kolmogorov-Smirnov testing for the equal-

ity between dme-miR-14-3p predicted target and non-target distributions. The num-

ber of observations for the predicted target and non-target distributions are identi-

cal, as a result of a sampling procedure implemented on both distributions to nor-

malise for 3’UTR length, a potential confounding factor in this type of analysis. 

Further details of the sampling method can be found in the reported methods section 

of this study. Comparison: Mated female abdomen vs. virgin female abdomen. 
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5.6  Discussion 

The network visualisation in figure 5.1 is indicative of the regulatory 

effects of miRNAs in this biological context. It can be observed that a 

large number of predicted targets of dme-miR-927-3p and dme-miR-

927-5p are downregulated indicating that miRNAs could mediate phys-

iological change by modifying expression changes for a relatively large 

proportion of the coding transcriptome. In addition, it can be observed 

that almost equal proportions of predicted targets of the differentially 

expressed targets are differentially expressed in the same direction as 

the miRNA. This pattern of differential expression may be explained 

by the existence of incoherent feedforward loop gene regulatory net-

work architectures (Hornstein and Shomron, 2006), in which a tran-

scription factor exerts positive regulation on a target, and also a miRNA 

repressing that target. The hypothesised purpose of such an architecture 

would be for the miRNA to fine-tune the expression of a gene activated 

by a given transcription factor. In this particular case, downregulation 

of a transcription factor may have caused downregulation of a miRNA, 

and a co-targeted mRNA. It is also possible that the observed patterns 

of differential expression are caused by more complex network archi-

tectures. Finally, the visualisation reveals a number of shared interac-

tions between the two differentially expressed miRNAs, dme-miR-927-

3p and dme-miR-927-5p. Six of the predicted co-targeted genes are up-

regulated whilst 13 are downregulated. Both of the differentially ex-

pressed miRNAs in this comparison derive from the same precursor 

miRNA, dme-mir-927, indicating that miRNAs from both strands of 

this miRNA precursor are used to co-operatively regulate some of the 

same targets in this system. 
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As mentioned previously, there is a potential for multiple 3’UTR splice 

isoforms to confound the analysis in this study. The miRNA targeting 

analysis was conducted at the level of genes and so only a single 3’UTR 

was selected for each gene. As discussed at multiple points in this these 

alternative polyadenylation and cleavage is another source of 3’UTR 

isoforms along with splice isoforms. The implication of these 3’UTRs 

for this analysis is that gene 3’UTR models may not be fully accurate, 

leading to increased uncertainty in downstream analyses including 

miRNA target prediction. 

 

A potential explanation for the findings in this study is that miRNA 

differential expression could influence physiological change in this sys-

tem by mediating the repression of a restricted set of miRNA targets, 

which may be able to be distinguished from other targets due to their 

particularly high affinity to the miRNA, or due to some form of subcel-

lular localization of these targets. Also worthy of examination as a po-

tential explanation for observed results is the choice of the miRNA tar-

get prediction model used in this analysis – a more complex, regression-

based model may have been able to account for some of the known var-

iables acknowledged to be predictive of miRNA target site efficacy 

(discussed in chapter 2), which may have aided discrimination between 

predicted target and non-target mRNA transcripts through the imple-

mentation of a prediction score filter, which would presumably de-

crease the number of false target sites predicted. As it is possible that 

current target prediction methods which provide this functionality may 

be overfitted to microarray data, benchmarking of miRNA target pre-

diction algorithms on data deriving from a diversity of experimental 

sources, including RNA-Seq would be beneficial. It is also possible that 

the 3’UTR models implemented at the gene level in this analysis lacked 
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sufficient specificity in order to properly distinguish between predicted 

targets and non-targets; as discussed earlier, selection of the longest 

3’UTR isoform as being representative will lead to an inflation of the 

number of false positive miRNA target predictions in the analysis. Se-

lection of the most abundant mRNA transcript splice isoform may have 

been a more appropriate choice, as to maximise miRNA target predic-

tion accuracy. It should also be noted that typical effects of miRNA-

mediated repression of coding transcripts, on average, is typically fairly 

modest (Baek, et al., 2008), especially if changes in cytosolic miRNA 

concentrations are relatively small. As a result, it may be expected that 

the discrimination between predicted target and non-target mRNA in 

fold change analyses such as this would be especially difficult. Anal-

yses such as this investigating miRNA activity through assaying gene 

expression also cannot account for that component of miRNA-mediated 

gene regulation, which does not lead to mRNA destabilization (Pillai, 

et al., 2005), although this is not thought to be the predominant mode 

of action of miRNAs (Baek, et al., 2008). In addition, as alluded to ear-

lier, a multi-omics approach examining the co-operative action of both 

transcription factors and miRNAs on targets may be necessary for a 

more complete understanding of regulatory relationships in this system. 

Finally, the confounding problem of 3’UTR length which was encoun-

tered during this analysis highlights the importance of implementing 

rigorous data cleaning and normalisation procedures before proceeding 

with more formal analyses for this type of analysis. 

 

Another problem to consider in more detail is the small number of dif-

ferentially expressed genes for the male head/thorax and the female ab-

domen. These results are somewhat counter-intuitive. It may be ex-

pected that there is a small amount or almost no transcriptomic change 
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in the male head/thorax as mating would not be expected to drastically 

alter male behaviour. However, a small degree of differential expres-

sion in the female abdomen is unexpected. QC analyses (appendix B) 

do not reveal any obvious technical issues with these samples (e.g. high 

inter-replicate variability or low read depth) which could potentially ex-

plain the low number of differentially expressed genes. The proximal 

explanation for the lack of differentially expressed genes is that most 

genes with large differential expression effect sizes in these two condi-

tions occur for lowly expressed genes (figure B.6) or high standard er-

rors of beta (figure B.7) and hence are not called as being differentially 

expressed (due to the logic of the sleuth differential expression algo-

rithm).  

 

It is difficult to discern the precise reason though why there are few 

large effects for moderately or highly expressed genes in the female 

abdomen in particular. The male specific expression of Y-chromosome 

male fertility factor genes such as kl-2 and kl-5 in the male abdomen 

libraries of this study would suggest that this is not an issue with sample 

mislabelling.  

 

The results could in fact suggest that the female post-mating response 

predominantly occurs in the head/thorax. It has been noted (Fowler, et 

al., 2019) that these results corroborate previous studies which demon-

strated that mating induces changes to ‘feeding behaviour, sleep pat-

terns, sexual receptivity and aggression levels’ in female fruit fly (Bath, 

et al., 2017; Carvalho, et al., 2006; Fowler, et al., 2019; Isaac, et al., 

2010) An alternative explanation is that the abdomen-specific PMR is 

potent but only requires differential expression of a small number of 

key genes, in contrast to the potentially large number of differentially 
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expressed genes needed in order to invoke behavioural changes. It has 

also been suggested (Fowler, 2019) that there may be insufficient spa-

tial resolution in these types of bulk RNA-Seq studies to discern cell-

type specific responses to mating in the fruit fly (Fowler, et al., 2019). 

For example, there is a ten-fold change in expression of some mating-

responsive genes in different components of the female fruit fly repro-

ductive system and organs (Prokupek, et al., 2009). Alternatively, these 

results could indicate that the abdominal female PMR requires a sub-

stantial amount of time to be properly invoked after mating (i.e. longer 

than a few hours after mating). Finally, is has also been noted (Fowler, 

et al., 2019) that the large number of differentially expressed genes in 

the male abdomen could simply reflect transcriptional changes needed 

to replenish seminal fluid proteins only a few hours after mating, which 

is a process which would occur in the abdomen (Sirot, et al., 2009). 

 

Taking a closer look at specific genes and miRNAs which have been 

found to be differentially expressed in this study for particular condi-

tions, reveals information about important transcriptional changes and 

biological processes underlying the post-mating response in male and 

female fruit flies. It has been noted (Fowler, et al., 2019) that certain 

sex-related genes such as Send2, which has functions in spermathecal 

secretory cells was found to be upregulated in the female after mating, 

as well as fit which is associated with feeding behaviour. 

 

Examining more specifically the identities of differentially expressed 

miRNAs in this study, it has been shown previously that miR-927 has 

roles relating to adult fertility in the fruit fly (Chen, et al., 2014), that 
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miR-184 is essential for oogenesis (Iovino, et al., 2009) together indi-

cating the validity of this study in being able to identify genuine mark-

ers of the post-mating response in the fruit fly. 
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Chapter 6: The regulation of sex tran-

sition in Lates calcarifer (Asian sea-

bass) by miRNAs 
 

6.1  Contributions 
 

Simon Moxon: miRNA annotation and quantification. 

Darrell Green: sRNA-Seq library preparation 

Shubha Vij/Jolly Saju/Kathiresan Purushothaman: Fish husbandry, 

sample preparation, RNA extraction, mRNA-Seq library preparation, 

mRNA-Seq differential expression analysis, some aspect of mRNA-Seq 

QC (figure 6.1) 

Laszlo Orban: Experimental design, Project supervision 

Thomas Bradley: mRNA-Seq and sRNA-Seq QC, miRNA differential 

expression analysis, data visualisation (except figure 6.1), miRNA tar-

get prediction analysis, integrated analysis of expression and target 

prediction data, GO term enrichment analyses, discussion and inter-

pretation of results 

 

6.2  Introduction 
 

In the previous chapter, I discussed how combined data from sRNA and 

RNA sequencing experiments had been used to infer the role of miR-

NAs in regulating the expression of protein-coding transcripts during a 

given developmental process. In particular, the fold change values of 
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the predicted targets of a given differentially expressed miRNA be-

tween two developmental points were compared to that of predicted 

non-targets of that miRNA in order to gauge the regulatory activity of 

that miRNA. 

 

In this chapter, a similar, but slightly different strategy is used in order 

to assess miRNA activity within a different biological context. More 

specifically, combined sRNA and RNA sequencing experiments are 

performed on samples derived from Asian seabass (Lates calcarifer), 

as they undergo a naturally occurring sex transition developmental pro-

cess in which the testis of adult males transform into ovaries (Guiguen, 

et al., 1994), in a process referred to as sequential hermaphroditism, or 

more specifically, protandry. It was determined in this analysis, and in 

the analysis performed in the previous chapter, that a substantial pro-

portion of the differentially expressed predicted targets of differentially 

expressed miRNA are differentially expressed in the same direction as 

the miRNA. As a result, the adjusted p-values deriving from differential 

expression analyses, which is an unsigned indicator of differential ex-

pression, were used for comparison between predicted targets and non-

targets instead of log fold change values. As discussed in more detail in 

the previous chapter, targets regulated in the same direction as the 

miRNA, could form part of an ‘incoherent feedforward loop’ network 

architecture (Hornstein and Shomron, 2006) along with a transcription 

factor targeting both the mRNA and miRNA genes, which would ex-

plain how the mRNA could be a genuine target of the miRNA despite 

the observed expression patterns. 
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By applying a modified version of the approach described in the last 

chapter in a novel biological context, I test the applicability of this ap-

proach across biological contexts, and also its robustness with respect 

to subtle alterations in analysis methodology. Interpretation of the re-

sults of this analysis, and that in the preceding chapter, can be used to 

assess the utility of using RNA-Seq data to infer miRNA regulatory 

activity for studied biological processes and contexts.  

 

As this analysis was completed earlier than some of the other research 

reported in this thesis, not all of the tools and knowledge reported in 

previous chapters were implemented for this analysis. In particular, the 

FilTar tool had not been developed, and so 3’UTRs were not reanno-

tated as part of this analysis. 

 

6.3  Background 
 

As briefly discussed previously, the biological context to this analysis 

is a developmental process which occurs in juvenile Asian seabass in 

which some males will transform into females. The transformation pro-

cess can be divided into a series of intermediates stages between the 

fully developed male and the fully developed female. The most promi-

nent morphological and histological markers for this process are present 

at or within the gonads of the Asian seabass. 

 

The transforming gonads in particular can be divided into four different 

stages along this developmental trajectory, which are successively 

named as T1, T2, T3 and T4. The T1 gonad develops from the testis, 

whilst the T4 gonad develops into an ovary. 
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The different transforming gonad stages are temporally demarcated on 

the basis of histological and morphological criteria: For T1, the degen-

eration of male macular tissue is observable. In T2, ovarian and testic-

ular tissue appear simultaneously within the gonad. In T3, a histological 

cross-section would reveal no testicular tissue, but would reveal ovarian 

tissues which comprises less than 50% of the gonad. In T4, the ovarian 

tissue would comprise more than 50% of the gonad. Oocytes are ob-

servable in early-mid stage ovaries, which distinguishes them from T4 

transforming gonads.  

 

There is evidence to suggest that miRNA are implicated in this devel-

opmental process. Sex-biased expression of miRNAs in gonadal tissue 

is exhibited in a number of closely related species. For example: The 

upregulation of miR-135b-5p in the Nile Tilapia (Xiao, et al., 2014), 

the upregulation of miR-19a and 19b in the ovary relative to the testis 

in Zebrafish (Vaz, et al., 2015), and the upregulation of miR-184-3p 

orthologue in the Chinese Mitten Crab ovary (He, et al., 2015). 

  

Of more particular relevance to this study, is previous research exam-

ining miRNA expression profiles in developing gonads more specifi-

cally: Identified miRNAs of interest in this regard are again miR-135b-

5p, miR-19a-3p, miR-19b-3p and miR-184-3p:  miR-135b-5p miRNA 

in rainbow trout was shown to be upregulated in juvenile testis in com-

parison to mature testis (Farlora, et al., 2015), and demonstrated higher 

expression in prepubertal and pubertal compared to immature testis in 

Atlantic Salmon (Skaftnesmo, et al., 2017). Taken together, this infor-

mation would suggest a correspondence between miR-135b-5p and the 
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male gonadal state. In particular, there may be a role for miR-135b-5p 

in signalling gonad masculinisation which would explain its upregula-

tion during gonad masculinisation (Farlora, et al., 2015) and downreg-

ulation during gonad feminisation. Members of the miR-19-3p family, 

in particular, miR-19a-3p and miR-19b-3p, seem to have a more femi-

nising influence on gonadal development. Consistent with our analysis, 

qRT-PCR evidence from another study (Liu, et al., 2015) demonstrated 

that miR-19a-3p and miR-19b-3p were upregulated in transitioning 

gonads, compared to testis in zebrafish. Additionally, it was shown 

through use of a luciferase assay conducted in the same study that 

Dmrt1 is a direct target of both miR-19a-3p and miR-19b-3p. Upregu-

lation of miR-19a-3p has been observed in female relative to male pri-

mordial germ cells in mouse (Mus musculus) (Fernández-Pérez, et al., 

2018). miR-184-3p has also been shown to have a feminising influence 

in previous research, with reported upregulation in developing ovaries 

in the Chinese Mitten crab (He, et al., 2015), whilst deletion of miR-

184-3p led to a loss of oogenesis in the fruit fly (Iovino, et al., 2009).  

 

6.4  Experimental Design 
 

Samples were taken from mature testis and mature ovary organs, as well 

as four intermediate stages along this developmental trajectory (T1, T2, 

T3 and T4) (Guiguen, et al., 1994). Samples underwent RNA extrac-

tion, cDNA library preparation and sequencing according to sRNA se-

quencing (testis n=5, T1 n=7, T2 n=1, T3 n=2, T4 n=2, ovary n=5) and 

RNA-Seq protocols (testis n=5, T1 n=4, T2 n=0, T3 n=1, T4 n=2, ovary 

n=5). More details of experimental procedures used can be found in the 

methods section of this chapter. 
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6.5  Methodology 
 

6.5.1  Sample preparation 

 

Asian seabass individuals were collected from the Marine Aquaculture 

Centre (Singapore). Asian seabass were reared in seawater conditions 

at a temperature range of 28-31 ºC. All experiments and procedures 

were approved by Agri-food and Veterinary Authority (AVA) Institu-

tional Animal Care and Use Committee (IACUC) (approval ID: AVA-

MAC-2012-02) and performed according to guidelines set by the Na-

tional Advisory Committee on Laboratory Animal Research 

(NACLAR) for the care and use of animals for scientific research in 

Singapore. Gonads at various stages of maturity were collected and 

staged as part of a previous study (Vij, et al., 2016), using previously 

defined morphological and histological criteria (Guiguen, et al., 1994). 

 

6.5.2  RNA extraction 

 

Total RNA was extracted using the RNeasy mini kit (Qiagen) and 

sRNA was purified using the mirVana miRNA isolation kit (Life Tech-

nologies). RNA concentrations and integrity were measured on the 

NanoDrop 8000 Spectrophotometer (Thermo Fisher Scientific) and vis-

ually assessed by agarose gel electrophoresis with ethidium bromide 

staining. RNA was stored at -80 oC. 
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6.5.3  Library construction and sequencing  

 

cDNA libraries were generated using the TruSeq stranded total RNA 

prep kit (Illumina). The NextSeq 500 (Illumina) was used for 150bp 

paired end sequencing. For sRNA, libraries were constructed by ligat-

ing RNA to 3’ and 5’ HD adapters (Sorefan, et al., 2012). Ligated RNA 

products were reverse transcribed to cDNA and amplified by PCR. The 

cDNA products expected to contain 19-33 base pair inserts were puri-

fied by 8% polyacrylamide gel electrophoresis and ethanol precipitation 

(Xu, et al., 2015). 50bp single-end sequencing was performed on the 

HiSeq 2500 (Illumina). 

 

6.5.4  miRNA sequence analysis, annotation and quantification 

 

For sRNA the 3’ adapter was trimmed using perfect sequence match to 

the first 8 nucleotides of the 3’ HiSeq 2500 adapter (TGGAATTC). The 

HD signatures (four assigned nucleotides at the ligating ends) of the 

reads were also trimmed. Reads longer than 17nt were kept for further 

analysis. Reads with low sequence complexity, i.e. those comprised of 

two or fewer distinct bases were removed from further analysis. 

 

miRNA annotations derived from the sequencing data of testis, trans-

forming gonads and ovary were combined. Annotations for miRNA that 

existed in the transforming gonads or ovary but not in the testis were 

generated using the same method as described in a previous study (Vij, 

et al., 2016). sRNA reads were mapped to annotated miRNA sequences 
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using PatMaN (Prüfer, et al., 2008). PatMaN output files were pro-

cessed using a custom perl script to determine miRNA read counts.  

 

A number of novel miRNAs were discovered during this process which 

are given temporary names for the purposes of this study, which were 

of the form (in regular expressions): ‘miR-nov[0-9*]-[3|5]p’. Each 

miRNA was assigned a number and a name according to this pattern. 

miRNAs deriving from the same miRNA precursor were assigned the 

same number; miRNAs not deriving from the same miRNA precursor 

were assigned different numbers. Name suffixes correspond to the arm 

of the miRNA precursor from which the mature miRNA derives. A full 

list of novel miRNA names and corresponding sequences are provided 

(table C.1). 

 

6.5.5  Differential expression analysis 

 

A testis and a T1 RNA seq sample was discarded for low read counts 

(28,991,835 reads) and a low mapping rate (33.28%), respectively. To 

ensure biological replicates existed for each group for both sRNA seq 

and RNA seq datasets, T1 and T2 datasets were pooled together creat-

ing the T1/T2 group (n=4 for RNA seq and n=8 for sRNA seq). Simi-

larly, with T3 and T4 creating the T3/T4 group (n=3 for RNA seq and 

n=4 for sRNA seq). Sequenced reads were aligned to the Asian seabass 

scaffold genome assembly (GenBank accession: LLXD00000000) (Vij, 

et al., 2016) using TopHat (v2.0.13) (Trapnell, et al., 2009). Transcript 

abundance values (units: FPKM) were computed for annotated protein 

coding genes of the scaffold assembly and tested for differential expres-

sion using Cuffdiff 2 (v2.2.0) (FDR ≤ 0.05) (Trapnell, et al., 2013).   
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DESeq2 (v 1.20.0) (Love, et al., 2014), a bioconductor (Huber, et al., 

2015) package for the R statistical programming language and environ-

ment (Team, 2013) was used for the differential expression analysis of 

raw miRNA read count data. Default parameters were used, except for 

the ‘alpha’ parameter, which was set at 0.05 when calling the DESeq2 

‘results’ function. Note that for all differential expression analyses, for 

mRNA and miRNA, all comparisons made are unidirectional along the 

testis to ovary developmental trajectory. 

 

6.5.6  miRNA target analysis 

 

TargetScan (v7.0) (Agarwal, et al., 2015) was used to predict targets on 

3’UTR sequences. 3’UTR sequences were predicted by extracting 1 kb 

of sequence downstream of annotated open reading frame for the scaf-

fold genome assembly of Asian seabass (Vij, et al., 2016). The seed 

region, i.e. nucleotides 2-7 of the miRNA (Bartel, 2018; Lewis, et al., 

2003), were extracted from annotated mature miRNA sequences of the 

same assembly and used as input for TargetScan to identify predicted 

targets. Only 8mer targets, which are predicted seed matches with the 

highest predicted efficacy, were used for downstream analysis due to 

the large number of false positive results associated with miRNA target 

prediction (Pinzón, et al., 2017). On the basis of target predictions, for 

each differentially expressed miRNA of each comparison, records from 

the differential expression analysis was divided into designated “target” 

and “non-target” sets. Cumulative distribution functions of adjusted p-

values from the differential expression analysis of target and non-target 

sets were then constructed. The Kolmogorov-Smirnov test was used to 
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test the null hypothesis that target and non-target adjusted p-values de-

rived from the same underlying distribution (FDR ≤ 0.05). 

 

6.5.7  Clustering and data visualisation 

 

The cummeRbund (Goff, et al., 2013) R package for the manipulation 

of Cufflinks output was used for post-processing of mapped sequenced 

reads including hierarchical clustering of gonadal tissue types using the 

Jensen-Shannon distance (figure 6.1). The principle components anal-

ysis for clustering individual sRNA sequencing datasets (figure 6.2) 

was completed using the ‘plotPCA’ function defined within DESeq2 

package. Extensive use of ‘tidyverse’ packages were used for general 

data manipulation and plotting (Wickham). 

 

6.5.8  GO Term enrichment analysis 

 

The BiNGO plug-in (Maere, et al., 2005) for the Cytoscape tool 

(Shannon, et al., 2003) was used to perform GO term enrichment anal-

ysis using the hypergeometric test (FDR ≤ 0.05). All functional anno-

tations of protein coding loci for Asian seabass were used as the refer-

ence set (Vij, et al., 2016). The ontology used was the GO biological 

process set. The analysis was performed on both positively and nega-

tively differentially expressed genes for each comparison determined 

from the RNA-seq analysis and the predicted targets of miRNAs deter-

mined to be of interest from the miRNA target analysis. 

 



 280 

6.6  Results 
 

6.6.1  Differential expression analysis 

 

Normalised gene abundances showed distinct clustering between tissue 

groups. Testis exhibited clustering with T1/T2. Ovaries exhibited clus-

tering with T3/T4. All replicates of each tissue group consistently clus-

tered together (Figure 6.1).  

 

 

Figure 6.1 - Dendrogram shows hierarchical clustering of RNA-seq derived 

gene abundance data using the Jensen-Shannon distance. Clustering is per-

formed on (A) gonadal tissue type (B) gonadal tissue type with additional labelling 

by biological replicate. 

 

Clustering of sRNA sequencing datasets revealed a strong degree of 

clustering by gonadal tissue type. In particular, there is a visible sepa-

ration of all gonadal tissue groups along the first principal component 
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(30% variance) and an additional separation between transforming 

(T1/T2 and T3/T4) and mature (testis and ovary) gonadal tissue along 

the second principal component (29% variance) (Figure 6.2). Similar 

patterns of clustering are observed for the principal components analy-

sis of protein-coding genes. 

 

 

 

Figure 6.2 - Principal components analysis of the normalised miRNA read 

counts derived from sRNA sequencing of L. calcarifer gonadal tissue. The first 

principal component is plotted along the x-axis. The second principal component is 

plotted along the y-axis. Each datum point represents a single sRNA sequencing 

experiment. Colour labelling corresponds to gonadal tissue group associated with 

each experiment. 

 

A large number of miRNAs and protein coding genes exhibit sexually 

dimorphic expression including differential expression between the 

gonads and transforming gonads. Global analysis of miRNA expression 

reveals a large degree of both positive and negative differential expres-

sion across all stages of gonadal transition (table 6.1 and figure 6.3). 
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Volcano plots helps visualise the large degree of differential expression 

observed for all comparisons (figure C.1) 

  



 283 

Table 6.1 - A summary of the results of the miRNA differential expression anal-

ysis with demarcations between the number of downregulated, upregulated 

and differentially expressed miRNA in each comparison. Numbers in parenthe-

sis represent the proportion of miRNAs in a given instance relative to the total num-

ber of miRNAs found in L. calcarifer. Grey horizontal lines demarcate comparisons 

that span different relative developmental time spans. False discovery rate (FDR) ≤ 

0.05 

 

 

  

Comparison Upregulated Downregulated Total 

Testis -> T1/T2 67 (0.15) 89 (0.20) 156 (0.35) 

T1/T2 -> T3/T4 41 (0.09) 30 (0.07) 71 (0.16) 

T3/T4 -> Ovary 55 (0.12) 67 (0.15) 122 (0.28) 

Testis -> T3/T4 68 (0.15) 83 (0.19) 151 (0.34) 

T1/2 -> Ovary 85 (0.19) 86 (0.19) 171 (0.39) 

Testis -> Ovary 59 (0.13) 96 (0.22) 155 (0.35) 
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There is a similarly large number of both positive and negative differ-

ential expression observed in protein coding transcripts with a relatively 

even distribution of total differentially expressed transcripts across all 

comparisons (Table 6.2 and figure 6.4). Again, the large degree of dif-

ferential expression for all comparisons can be visualised with volcano 

plots (figure C.2). 
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Table 6.2 - A summary of the results of the RNA seq differential expression 

analysis. Otherwise as in Table 6.1. 

 

 

 

 

 

 

Comparison Upregulated Downregulated Total 

Testis -> T1/T2 2315 (0.10) 863 (0.04) 3178 (0.14) 

T1/T2 -> T3/T4 2411 (0.11) 1131 (0.05) 3542 (0.16) 

T3/T4 -> Ovary 717 (0.03) 1940 (0.09) 2657 (0.12) 

Testis -> T3/T4 2711 (0.12) 2074 (0.09) 4785 (0.22) 

T1/T2 -> Ovary 3009 (0.14) 2504 (0.11) 5513 (0.25) 

Testis -> Ovary 3546 (0.16) 1964 (0.09) 5510 (0.25) 
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Figure 6.3 - miRNA transcript abundances recorded for (A) testis to T1/T2 

comparison (B) T1/T2 to T3/T4 comparison (C) T3/T4 to ovary comparison 

(D) testis to T3/T4 (E) T1/T2 to ovary (F) testis to ovary comparison. The x-

axis and y-axis denote normalised read counts for the gonadal stages indicated be-

fore and after the arrows in the subtitles. Red dots represent miRNAs that are posi-

tively differentially expressed. Black dots represent miRNAs with no observed dif-

ferential expression. Blue dots represent miRNAs observed to be negatively differ-

entially expressed. FDR ≤ 0.05. 
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Figure 6.4 - mRNA transcript abundances recorded for (A) testis to T1/T2 

comparison (B) T1/T2 to T3/T4 comparison (C) T3/T4 to ovary comparison 

(D) testis to T3/T4 (E) T1/T2 to ovary (F) testis to ovary comparison. The x-

axis and y-axis denote fragments per kilobase of transcript per million mapped 

reads (FPKM) for gonadal stages indicated before and after the arrows in the sub-

titles, respectively. Red dots represent miRNAs that are positively differentially ex-

pressed. Black dots represent miRNAs with no observed differential expression. 

Blue dots represent miRNAs observed to be negatively differentially expressed. 

FDR ≤ 0.05 and |log2 fold change| > 2. 
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6.6.2  miRNA targeting analysis 

 

Our analysis revealed a number of miRNAs whose entire global pre-

dicted target set was shown to differ significantly from non-targets 

when comparing levels of differential expression. This finding impli-

cates these miRNAs in the observed sequential hermaphroditism of 

Asian seabass. Cumulative distributions of the adjusted p-values inher-

ited from the differential expression analysis were compared using the 

Kolmogorov-Smirnov test. More specifically, in this analysis, the ad-

justed p-values of a differentially expressed miRNAs predicted targets 

is compared with the adjusted p-values of the predicted non-targets of 

that same miRNA. A plot of a representative differentially expressed 

miRNA with clearly distinguishable target and non-target p-value dis-

tributions is shown (figure 6.5).  

 

The test was applied to all differentially expressed miRNAs for each 

comparison (e.g. testis to T1/T2, T1/T2 to T3/T4 etc.). Table 6.3 shows 

a summary of significant miRNAs identified in this analysis. 
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Figure 6.5 - A cumulative plot of the differential expression of predicted targets 

and predicted non- targets of miR-19a-3p when considering the testis to T1/T2 

comparison. The x-axis on a log10 scale represents adjusted p-values returned from 

the differential expression analysis. Observed floor and ceiling effects derive from 

the effects of cumulative minimum and cumulative maximum functions used within 

the Benjamini & Hochberg adjustment, respectively (Benjamini and Hochberg, 

1995). Difference between distributions is tested using the Kolmogorov-Smirnov 

test, returning approximate p-values (FDR ≤ 0.05). Non-targets in this instance refer 

to all protein coding transcripts not predicted to be targeted by any differentially 

expressed miRNA in this comparison. 
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miRNA Comparison Adjusted p-value Direction 

miR-nov29-5p Testis->Ovary 0.030 upregulated 

miR-135b-5p Testis->T1/T2 0.030 downregulated 

miR-135c-5p Testis->T1/T2 0.030 upregulated 

miR-nov14-5p Testis->T1/T2 0.030 downregulated 

miR-19a-3p Testis->T1/T2 0.030 upregulated 

miR-19b-3p Testis->T1/T2 0.030 upregulated 

miR-19d-3p Testis->T1/T2 0.030 upregulated 

miR-138-5p T1/T2->Ovary 0.033 downregulated 

miR-217-3p Testis->T1/T2 0.039 downregulated 

miR-24-3p Testis->T1/T2 0.039 downregulated 

miR-730-5p Testis->T1/T2 0.039 downregulated 

miR-184-3p Testis->T1/T2 0.039 downregulated 

miR-7132b-3p T1/T2->Ovary 0.039 downregulated 

miR-737-5p Testis->T1/T2 0.039 downregulated 

Table 6.3 - A summary of the results of the analysis of the predicted targets of 

differentially expressed miRNAs. miRNAs listed were found to exhibit a signifi-

cant global effect on predicted targets. Also recorded is the associated comparison, 

adjusted p-value and the direction of differential expression. 

  



 291 

6.6.3  GO term enrichment Analysis 

 

A number of GO terms (Ashburner, et al., 2000; Consortium, 2016) 

linked to spermatogenesis are enriched in downregulated gene sets 

across multiple comparisons across the ‘testis to ovary’ sex transition 

including cilium morphogenesis, cilium assembly, and cell projection 

assembly. Identical GO terms are mostly enriched in downregulated 

genes from testis to T1/T2 and testis to T3/T4, whilst more specific 

chemotaxis and locomotion GO terms are downregulated from T1/T2 

to ovary and from T3/T4 to ovary.  

 

GO term enrichment analysis revealed that miR-184-3p targets, which 

is the only miRNA implicated in the transition from testis to T3/T4 in 

the previous analysis, is potentially enriched (adjusted p-value = 0.089) 

for GO terms in animal organ development (GO term ID: 48513). Tar-

gets for miR-184-3p that have been assigned this GO term include 

lca5235, which has also been attributed the GO term for ovarian follicle 

development (GO term ID: 0001541). The targets for miR-nov14-5p 

are potentially enriched for spermatogenesis related terms such as male 

gamete generation (GO ID: 48232) and spermatogenesis (GO ID: 7283) 

both of which have an associated adjusted p-value of 0.077. 

 

A summary of some of these findings, with associated statistics is giv-

ing in table 6.4: 
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Table 6.4 - GO term enrichment analysis. A summary of sex related GO terms 

found to be enriched for differentially expressed genes between different compari-

sons for a given direction of differential expression (FDR < 0.05). 

 

  

GO ID GO term description Condition Direction p-value 
Adjusted  

p-values 

60271 Cilium morpohgenesis testis->ovary  down 
4.3508E-8 

 

2.1696E-5 

 

60271 Cilium morpohgenesis testis->T1/T2  down 
4.3508E-8 

 

2.1696E-5 

 

60271 Cilium morpohgenesis testis->T3/T4  down 
1.0312E-6 

 

2.2343E-4 

 

42384 Cilium assembly testis->ovary down 
1.0248E-8 

 

7.6654E-6 

 

42384 Cilium assembly testis->T1/T2 down 
1.0248E-8 

 

7.6654E-6 

 

42384 Cilium assembly testis->T3/T4 down 
7.9815E-7 

 

7.9815E-7 

 

30031 Cell projection asembly testis->ovary down 
1.0248E-8 

 

7.6654E-6 

 

30031 Cell projection asembly testis->T1/T2 down 
1.0248E-8 

 

7.6654E-6 

 

30031 Cell projection asembly testis->T3/T4 down 
7.9815E-7 

 

2.0752E-4 
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6.7  Discussion 
 

Predicted miRNA target analysis reveals that only a small proportion of 

differentially expressed miRNAs exhibit global effects on their pre-

dicted targets. When examining the distribution of implicated miRNAs 

across all six comparisons, a bias for the ‘testis to T1/T2’ comparison is 

apparent (10 out of 14 implicated miRNAs occur in this comparison), 

which reinforces findings that in a given developmental transition, miR-

NAs generally exert greater regulatory activity at a given stage of that 

transition, rather than act uniformly over the entire developmental 

timespan (Grishok, et al., 2001; Lee, et al., 1993; Wightman, et al., 

1993).  A caveat of this type of analysis however is that it is possible 

that differentially expressed miRNAs are not acting globally on all pre-

dicted targets. Firstly, because computational predictions lack direct ex-

perimental support, and therefore may include false positive predicted 

targets which will not interact with the differentially expressed miRNA 

in vivo. For this analysis, 1 kilobase windows downstream of open read-

ing frames was used as a predictor of 3’UTR identity due to absence of 

more precise 3’UTR annotations. This is a course predictive model for 

3’UTRs and will necessarily limit the accuracy of miRNA target pre-

dictions. It is also possible that miRNAs only act on a subset of known 

targets for any given process due to cellular and molecular constraints. 

For example, sub-cellular localisation of miRNA (Leung and Sharp, 

2006) and targets (Holt and Bullock, 2009) can prevent the two types of 

RNA from interacting, and can lead to an overestimation of effective 

RNA relative abundance levels, which is not accounted for in differen-

tial expression analyses. In addition, the reported ‘sponging effect’ of 

competitive endogenous RNAs on miRNA (Salmena, et al., 2011), 
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would lead to a reduction in effective cytosolic miRNA expression lev-

els, violating the assumptions of this analysis.  

 

Key regulatory miRNAs identified during the course of this analysis, 

have elsewhere been implicated in sex development processes, provid-

ing evidence for the validity of this analysis approach: For example, 

miRNAs which have previously been reported to have sex biased ex-

pression in gonadal tissue of closely related species, include upregula-

tion of miR-135b-5p in testis in Nile tilapia (Oreochromis niloticus) 

(Xiao, et al., 2014), the upregulation of miR-19a and miR-19b in ovary 

relative to testis in zebrafish (Danio Rerio) (Vaz, et al., 2015) and the 

upregulation of a miR-184-3p orthologue in the Chinese Mitten Crab 

(Eriocheir Sinensis) ovary (He, et al., 2015). Of more particular rele-

vance to this study is previous research examining miRNA expression 

profiles in developing gonads more specifically. Identified miRNAs of 

interest in this regard are again miR-135b-5p, miR-19a-3p, miR-19b-

3p and miR-184-3p: miR-135b-5p was shown to be downregulated 

from testis to T1/T2 in the current study, the same miRNA in rainbow 

trout (Oncorhyncus mykiss) was shown to be upregulated in juvenile 

testis in comparison to mature testis (Farlora, et al., 2015) and demon-

strated higher expression in prepubertal and pubertal compared to im-

mature testis in Atlantic Salmon (Salmo salamar) (Skaftnesmo, et al., 

2017). Evidence for the involvement of the highly similar miR-135c-

5p, which has also been implicated in this study is more sparing alt-

hough this miRNA was found to be generally enriched in developing 

somatic zebrafish tissue compared to mature tissue (Soares, et al., 

2009). In contrast, members of the miR-19-3p family, in particular, 

miR-19a-3p and miR-19b-3p identified in this study, seem to have a 

more feminising influence on gonadal development. Consistent with 
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our analysis, qPCR evidence from another study demonstrated that 

miR-19a-3p and miR-19b-3p were upregulated in transitioning gonads, 

compared to testis in zebrafish (Liu, et al., 2015). Additionally, it was 

shown through use of a luciferase assay conducted in the same study 

that the male biased dmrt1 is a direct target of both miR-19a-3p and 

miR-19b-3p. The hypermethylation of dmrt1 in ovary compared to tes-

tis is associated with downregulation of this gene suggesting that miR-

19a-3p and miR-19b-3p may act in combination with epigenetic factors 

in order to regulate dmrt1 activity (Domingos, et al., 2018). Upregula-

tion of miR-19a-3p has been observed in female relative to male pri-

mordial germ cells in mouse (Mus musculus) (Fernández-Pérez, et al., 

2018). miR-184-3p has also been shown to have a feminising influence 

in previous research with reported upregulation in developing ovaries 

in the Chinese Mitten crab (He, et al., 2015) whilst deletion of miR-

184-3p led to a loss of oogenesis in the fruit fly (Drosophila melano-

gaster) (Iovino, et al., 2009). Conversely, in our study, miR-184-3p was 

shown to be highly expressed in testis and downregulated in the testis 

to T3/T4 comparison. The reasons for this discrepancy are unclear, alt-

hough a species specific, or a protandry specific role for miR-184-3p in 

Asian seabass cannot be ruled out. Additionally, the results of the GO 

term enrichment analysis, revealing potential associations between 

miR-184-3p and miR-nov14-5p targets and organ development and 

spermatogenesis processes respectively is further evidence for the va-

lidity of the approach used in this analysis. 
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6.8  Conclusion  
 

The use of the analysis approach discussed in this chapter to identify 

likely key regulators of developmental processes highlights the utility 

of using RNA-Seq data for investigating miRNA-mediated regulation 

of protein coding transcripts. In addition, the combined use of small 

RNA sequencing data as part of this analysis demonstrates how infor-

mation from multiple sequencing experiments, including RNA se-

quencing can be integrated in order to further understand miRNA reg-

ulated developmental processes. 
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Chapter 7: Future Work and Conclu-

sion 
 

7.1  Future Work 
 

FilTar and FilTarDB can be scaled and extended in many different ways 

in order to provide additional benefit to users. In its current versions, 

both applications allow the user to either generate or view results from 

two different core miRNA target prediction algorithms. It would be of 

benefit to researchers using these tools if more target prediction algo-

rithms were included, with a particular emphasis on including algo-

rithms which represent a wide diversity of valid methods for modelling 

the process of miRNA target recognition, as well as a diversity of data 

types for training and testing developed predictions algorithms. FilTar 

has been designed to be modular and scalable to facilitate further de-

velopment, minimising the work needed to implemented these types of 

proposed extensions. As well as a broader range of core target predic-

tion algorithms, the FilTarDB application in particular would benefit 

from a broader range of available biological contexts available for the 

user to interrogate, and for a greater number of vertebrate species for 

which target predictions are available. In the current instance of the 

software, expression data is provided for only a small number of 

healthy, adult tissues for each available species. To increase the range 

of research areas in which this application can be used, it would be use-

ful to include biological contexts relating to different developmental 

stages, as well as samples from diseased cells or tissues. Also, of po-

tential use, would be attempts to generate new methods for combining 



 298 

expression data from multiple different samples, sometimes deriving 

from different laboratories, or whose cDNA libraries are generated us-

ing slightly different protocols. Difference in reported gene expression 

values for such samples could possibly result from the existence of 

batch effects (Leek, et al., 2010). Correction for batch effects would 

therefore more likely lead to unbiased estimates of gene expression 

across multiple samples. 

 

As discussed in this thesis, miRNA perturbation experiments have been 

used extensively in order to test the effectiveness of FilTar for improv-

ing miRNA target prediction accuracy. There are concerns associated 

with the use of such experiments for this purpose: Firstly, it is an indi-

rect method for determining possible miRNA target interactions, as it 

gauges changes in mRNA expression levels as a result of miRNA per-

turbation, which in some cases may be the result of secondary effects 

of miRNA action – which could potentially explain the repression of 

some transcripts not containing a predicted target site to a transfected 

miRNA (chapter 4). A potential solution to this problem could have 

been to use CLIP and CLIP-ligation data in order to create a more reli-

able ‘non-target’ transcript sets, however, due to the reported high false 

negative rates associated with these studies (Agarwal, et al., 2015), this 

approach is unlikely to be beneficial. Alternatively, data from 3’UTR 

reporter assays could substitute or supplement that from miRNA per-

turbation experiments in order to more directly gauge the effects of ex-

pression filtering and 3’UTR reannotation on putative targets. There are 

additional potential confounds for this form of experimentation: In a 

previous study (Agarwal, et al., 2015), a comprehensive analysis of 

miRNA transfection microarray datasets, it was discovered that data 
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from transfection experiments was confounded by lab and protocol spe-

cific batch effects, 3’UTR AU content, 3’UTR length (as discussed in 

chapter 5 of this thesis), as well as a derepressive effect on the targets 

of naturally abundant miRNAs within the cell (which is speculated due 

to be increased competition between miRNAs for different components 

of the miRNA pathway). It is likely that implementing post-processing 

steps to clean experimental data in order to control for these effects, for 

example, the use of partial least squares regression by Agarwal and col-

leagues (Agarwal, et al., 2015), would reduce the signal-to-noise ratio 

in this type of analysis. An additional concern is that use of miRNA 

perturbation experiments only tests for the effects of miRNA on mRNA 

stability, but not on the known ability of miRNAs to directly inhibit the 

translation of mRNAs. This problem can be overcome via the use of 

ribosomal profiling in order to measure the occupancy of ribosomes on 

mRNA, or alternatively through the usage of quantitative proteomics in 

order to measure the effect of miRNAs on protein abundance levels di-

rectly. Both methods types have previously been used in miRNA re-

search for this purpose (Baek, et al., 2008; Guo, et al., 2010).  

 

More generally, future research could be used to develop a greater sys-

tems level understanding of how miRNAs operate within the cell; to 

develop an understanding of miRNA action somewhere between the 

level of direct RNA-RNA interactions, and the level of the organism at 

the opposite extremity. Due to the ‘many-to-many’ nature of miRNA 

interactions, this will likely require the modelling of molecular interac-

tion and regulatory networks, as well as an understanding how the ex-

istence of these regulatory networks within the cell is used both to exert 

physiological change during processes of development and to otherwise 
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maintain homeostasis of transcript expression levels. As well as pro-

tein-coding transcripts, there is also evidence that miRNAs interact with 

some classes of non-coding RNA such as circular RNAs and long non-

coding RNAs forming larger gene regulatory networks (Kleaveland, et 

al., 2018). Whilst, as has been discussed in this thesis, there has been a 

lot of research conducted detailing the principles of the recognition of 

mRNA targets by miRNAs, it may not be beneficial to assume that sim-

ilar targeting principles apply for non-coding RNA transcripts, which 

may as a whole possess different secondary structures and structural 

constraints compared to protein-coding transcripts. Even if such target-

ing rules are identical for all types of RNA transcripts, existing target 

predictions do not model this type of miRNA interaction. Transcription 

factors and enhancers are additional components of GRNs involving 

miRNAs which function to determine or maintain cell states 

(Chakraborty, et al., 2019). As a result, combined multi-omics and sys-

tems approaches will likely be needed to develop an understanding of 

miRNA activity at the level of regulatory networks. 

 

A consistent theme running through this thesis, is the use of differential 

expression analyses in order to gauge the effect of miRNA perturbation 

on protein coding transcripts. Within the context of miRNA activity, 

differential expression analyses can be performed either at the level of 

the gene, or the level of individual transcripts. Although generally gene-

level estimation of differential expression is considerably more accurate 

than analyses conducted at the transcript-level (Soneson, et al., 2015), 

it does not always make sense to conduct analyses at this level given 

that the miRNA acts at the level of the transcript. As such, not all splice 

transcript isoforms of a given gene may contain the necessary target site 

to be targeted by a given miRNA. However, as mentioned, the relatively 



 301 

poor accuracy of transcript-level differential expression analyses can 

hamper analyses made at this level. Such problems most likely arise 

from intrinsic issues with count-based transcript quantification methods 

from the alignment or pseudo-alignment of short RNA-seq cDNA reads 

to genomes and transcriptomes respectively: The use of short cDNA 

reads can lead to a large degree of uncertainty during read alignment, 

which is exacerbated during the quantification of transcript expression 

levels due to the typically high sequence identity shared between tran-

script splice isoforms. This uncertainty is compounded during tran-

script-level differential expression analyses when transcript abundance 

estimates are compared between two different conditions. This problem 

could possibly be mitigated by the use of long-read sequencing tech-

nologies. In particular, methods have been implemented using the na-

nopore sequencing approach for direct sequencing of full-length RNA 

molecules - bypassing fragmentation, reverse transcription and PCR 

amplification biases associated with short-read cDNA sequencing 

(Garalde, et al., 2018). In addition, use of longer reads when sequencing 

is likely to increase the accuracy of 3’UTR reannotation, resolving is-

sues discussed earlier in this thesis in which local reductions in cover-

age across the 3’UTR which often led to spurious 3’UTR truncations 

during the reannotation procedure. However, the use of nanopore se-

quencing for differential expression analysis may not be currently fea-

sible or advisable given the relatively low base-calling accuracy of ap-

proximately 85% associated with this sequencing approach (Jain, et al., 

2017; Rang, et al., 2018). In addition, long-read cDNA sequencing 

methods have been developed, which allow researchers to sequence 

full-length mRNA transcripts, including their poly-A tails (Legnini, et 

al., 2019), which are known to affect mRNA expression levels 

(Jalkanen, et al., 2014; Nicholson and Pasquinelli, 2018), and may be 
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of particular use to researchers interested in the regulation of gene ex-

pression. Whatever the precise library preparation and sequencing strat-

egy used, it would be hoped that long-read sequencing technologies 

could offer a less noisy approach to differential transcript expression 

analysis, making it easier to discern the regulatory effects of miRNAs 

on the transcriptome. 

 

7.2  Conclusion 
 

Through the course of this thesis, I have demonstrated the utility of us-

ing RNA-Seq data to investigate the activity of miRNAs in animals. In 

chapters 2 and 3, I presented two different, but related software appli-

cations which can be used to generate or view miRNA target predic-

tions for putative targets which have had their 3’UTRs reannotated spe-

cifically for given biological contexts, and also have been filtered ac-

cording to the expression of those targets within a given biological con-

text. In chapters 4 and 5, I have also shown how RNA-seq data can be 

used to infer the effect of a given differentially expressed miRNA on 

the entire set of that miRNA’s predicted targets, and as a result try to 

infer the role of that miRNA for a given developmental process. In this 

chapter, I have explored and discussed different ways in which the tools 

developed as part of this thesis could be extended, as well as more gen-

erally considering how future work could advance this research area. 

 

In summary, I have determined that RNA-Seq data can improve inves-

tigations of miRNA activity in bilaterian animal species, firstly, by im-

proving miRNA target prediction accuracy by a process of using this 
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data to (i) remove lowly expressed mRNA transcripts from miRNA tar-

get prediction workflows and to (ii) reannotate the 3’UTRs of mRNAs 

as a preprocessing step for miRNA target prediction. In addition, I have 

shown that RNA-Seq data can be used to help infer the regulatory 

strength of miRNAs acting across biological conditions by (iii) inte-

grating data of this type with sRNA-seq data, in order to identify differ-

entially expressed miRNAs whose entire set of predicted targets is de-

tectably perturbed in comparison to predicted non-targets of this 

miRNA. 
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Definitions 
 

Biological context – A particular biological state which may be distin-

guished from other states by a given attribute or set of attributes (e.g. 

cell type, sex, treatment etc.) 

Comparison – In the context of this thesis, an evaluation of the differ-

ences in transcriptomic states of two different biological contexts (e.g 

treated and control cell cultures) 

FilTar – A command line application developed during the course of 

the examined studies, which enables users to use RNA-Seq in order to 

generate miRNA target predictions specific to a given biological con-

text. 

FilTarDB – A database and web application allowing users to access 

pre-computed results generated using FilTar 

Module: In the context of discussion of developing snakemake work-

flows, ‘modules’ refers to a discrete self-contained directory, contain-

ing its own snakefile with associated scripts and data 

T1/T2 – Pooled sample data from the T1 and T2 stages of the Asian 

seabass transforming gonads 

T3/T4 – Pooled sample data from the T3 and T4 stages of the Asian 

seabass transforming gonads   
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Glossary 
 

3‘UTR reporter assay: A method of detecting miRNA targets in which 

the 3’UTR of a gene of interest is fused with that of a reporter gene 

6mer: Predicted or validated miRNA target sites with complementarity 

to nucleotides 2-7 of the miRNA 

7mer-1A: A 6mer target match, with an adenine base on the target in 

the ‘t1’ position which corresponding to the first nucleotide of the 

miRNA 

7mer-m8: Predicted or validated miRNA target sites with complemen-

tarity to nucleotides 2-8 of the miRNA 

8mer: A 7mer-m8 target match, with an adenine base on the target in 

the ‘t1’ position which corresponding to the first nucleotide of the 

miRNA 

Affected isoform ratios (AIRs): The ratio of a particular 3’UTR seg-

ment in relation to the start of the 3’UTR. AIRs can be used to generate 

3’UTR profiles 

Akaike Information Criterion (AIC): A method of selecting between 

different statistical models, in particular, a method for optimising 

‘goodness of fit’ whilst penalising the number of parameters used in a 

model 

Alternative polyadenylation (APA): The choosing of the cellular ma-

chinery of different polyadenylation sites on mRNA, generating 3’UTR 

isoforms 

Argonaute protein (AGO): The effector protein of the RISC protein 

in which the guide RNA is bound. Upon target recognition, argonaute 
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will catalyse cleavage of the target (in some homologues), or recruit 

proteins for translational inhibition or target degradation 

Bilateria: The clade of animals, including all those with bilateral sym-

metry. The miRNA seed targeting mechanism is thought to have 

evolved within this clade or a recent ancestor 

Bulk RNA-Seq: RNA-Seq protocols in which RNA is extracted from 

a large number of different cells and pooled together for sequencing 

Canonical miRNA targets: Predicted or validated miRNA targets with 

perfect, contiguous complementarity between the miRNA seed and the 

target 

cDNA microarray protocols: The quantification of RNA expression 

levels by RNA reverse transcription, fragmentation, radiolabelling, and 

subsequent hybridisation to an ordered array of oligonucleotide probes 

indexed by sequence and array location 

Chimeric RNA: A single RNA molecule composed of RNAs of two 

different types or from different origins, e.g. the chimeric RNA result-

ing from the ligation of miRNA and its targets 

Compensatory miRNA targeting: miRNA base pairing, in which base 

pairing at the 3’ end of the miRNA compensates for mismatches or non-

Watson-Crick base pairing at the miRNA seed region 

Competitive endogenous RNA (ceRNA): Non-coding RNA targets of 

miRNAs which are theorised to ‘sponge’ cytosolic miRNAs, and 

thereby exert a derepressive effect on other miRNA targets  

Configuration: In the context of software use, the changing of options 

of an application from defaults values, in order to support more special-

ised and particular use cases 

Context++: The name of the multilinear regression model which is 

used in version 7 of the TargetScan project. 
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Co-operative miRNA targeting: A discovered an effect in which 

closely spaced miRNA target sites act synergistically to increase the 

total repressive effect on the target 

Cross-linking and sequencing of hybrids (CLASH): A protocol de-

veloped in the lab of David Tollervey in which an extra ligation step 

was added to a standard CLIP protocol, generating chimeric RNA se-

quences for subsequent protein pulldown, and RNA sequencing 

Cross-linking and immunoprecipitation (CLIP): A next-generation 

sequencing protocol for detecting RNA-protein interactions, involving 

RNA-protein crosslinking, protein immunoprecipitation, protein diges-

tion, and RNA sequencing 

DGCR8: A subunit of the microprocessor complex. It binds the pri-

miRNA in preparation for cleavage by drosha. Orthologues of this pro-

tein in D. melanogaster and C. elegans are known as ‘pasha’ 

Dicer: An RNase III enzyme which facilitates the cleavage of pre-miR-

NAs and the formation of mature miRNA 

Differential expression analysis: An analysis to be used to compare 

the expression levels of RNA transcripts, or a set of RNA transcripts 

between multiple conditions. Commonly used in the context of down-

stream analysis of data deriving from RNA-Seq experiments 

Drosha: An RNase III enzyme which complexes with DGCR8 as part 

of the microprocessor complex in order to facilitate the cleavage of pri-

miRNAs, and forming pre-miRNAs as a result 

Extensibility: In the content of software development, the propensity 

of an existing piece of software to have new features added to it, or for 

existing features to be improved 

Gene regulatory network (GRN): A network of interactions between 

different genetic components affecting the expression levels of all or 
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some nodes in this network. Commonly involves known classes of reg-

ulatory genes such as miRNAs and transcription factors 

General linear model: A model in which one or multiple response/de-

pendent variable is modelled by a linear combination of independent 

variables 

Guide RNA (gRNA): An RNA molecule within a ribonucleoprotein 

complex which is used as a specificity determinant for potential targets 

of that RNP 

High definition (HD) adapters: Adapters which are specialised for use 

for sRNA sequencing in which there are four degenerate base pairs on 

the ligating end of each adapter 

Mature microRNA (miRNA): An approximately 22 nucleotide non-

coding RNA molecule, produced from specific biogenesis pathways, 

involved in post-transcriptional regulation of gene expression 

Microprocessor complex: A protein complex, containing DGCR8 and 

drosha which facilitates the conversion of pri-miRNA to pre-miRNA 

miRNA mimic: Synthetic double-stranded mature miRNA molecules 

designed to mimic endogenous double-stranded mature miRNA mole-

cules. Often used in miRNA transfection experiments 

mirtron: miRNA molecules generated in a drosha-independent path-

way during mRNA splicing 

Non-canonical miRNA targeting: Validated or predicted miRNA tar-

gets which are not canonical (see above definition) 

Nanopore sequencing: A novel sequencing approach in which DNA 

or RNA molecules are sequenced by analysis of characteristic base-spe-

cific current density signatures as a nucleic acid is transmitted through 

a nanopore through a process of electrophoresis. 
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Northern blotting: A method of assaying RNA expression levels by a 

process of RNA extraction, gel electrophoresis, transfer of RNA to a 

membrane, hybridisation to radioactive probes, and subsequent autora-

diography 

Offset 6mer: Predicted or validated miRNA target sites with comple-

mentarity to nucleotides 3-8 of the miRNA 

Ontology: A system of concept, entity and attribute definitions, and the 

definitions of relationships between different concepts, entities and at-

tributes within a particular field or domain of knowledge 

Passenger strand: The strand of a precursor miRNA which is gener-

ally not incorporated into RISC 

Photoactivatable ribonucleoside-enhanced CLIP (PAR-CLIP): A 

modification of the standard CLIP protocol, in which crosslinking is 

induced by UV irradiation of RNAs containing photoreactive ribonu-

cleosides 

Post-mating response (PMR): Behavioural, physiological, and molec-

ular changes which occur in an organism after mating 

Precursor microRNA (pre-miRNA): The hairpin-like RNA structure 

from which mature RNAs are generated in a process facilitated by the 

dicer enzyme 

Primary microRNA (pri-miRNA): The RNA molecules from which 

precursor miRNA molecules are derived, in a process facilitated by the 

drosha enzyme 

Protandry: The changing of a sex of an organism from male to female 

Quantitative PCR (qPCR): The use of PCR (polymerase chain reac-

tion) technology to quantify RNA expression levels 
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Transcript reannotation: The generation of transcript models differ-

ing from standard models existing in public scientific databases such as 

Ensembl 

Transgene: A gene transferred from one organism to another. 

Transgenes can be engineered using genetic cloning procedures 

Ribonucleoprotein (RNP): A complex of RNA and RNA-binding pro-

teins, e.g. AGO-miRNA 

RNA-induced silencing complex (RISC): A multiprotein complex in 

which guide RNAs are loaded, which destabilise and translationally re-

press RNA targets 

RNA interference (RNAi): The molecular pathway by which guide 

RNA molecules, bound by RISC, destabilise and translationally repress 

RNA targets 

RNA-Seq: A generic name for a family of protocols in which RNA is 

extracted, fragmented and reverse transcribed generating cDNA. cDNA 

molecules are adapter ligated for the purposes of PCR amplification and 

subsequent next-generation sequencing 

Scalability: In the context of software development, the propensity of 

an existing piece of software to operate with increasing demands on 

resources 

Seed region: In the context of mIRNA biology, the seed region refers 

to the 5’ end of the miRNA, typically from nucleotides 2-8, which is 

used as a specificity factor by argonaute for miRNA targeting 

Small/short interfering RNA (siRNA): 20-25 base pair, double-

stranded RNA molecules, derived from the cleavage of long double-

stranded molecules, which is incorporated into RISC, and acts in the 

RNAi pathway 
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Snakefile: The component of a snakemake directory which is inter-

preted by the snakemake binary, and controls all associated scripts and 

data in that directory cf. makefiles 

sRNA sequencing: RNA sequencing protocols specialised for the ex-

clusive sequencing of small RNAs 

Supplementary miRNA targeting: miRNA base pairing in which 

base pairing in the 3’ region of the miRNA supplements canonical 5’ 

base pairing 

Support-vector machine (SVM): A supervised machine learning clas-

sification model. SVMs are binary, linear classifiers 

Target-directed miRNA degradation (TDMD): Instances in which 

extensive complementarity between a miRNA and its targets can induce 

degradation of the miRNA, and generally increase the rate of turnover 

for that miRNA 

Transfection: An experimental process by which purified nucleic acids 

are introduced into eukaryotic cells. Liposome vectors are often used 

for this purpose when transfecting cells with miRNA mimics 

Workflow Management: In the context of software development, the 

use of applications, libraries and protocols in order to ease development 

and maintenance of computational workflows potentially containing 

many disparate components  
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Appendix A 
 

  

Figure A.1 – The total number of reads, as well as the number of aligned and 

pseudoaligned reads for all datasets analysed as part of chapter 4 of this thesis. 

Left: Human samples. Right: Mouse samples. 
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Figure A.2 – Preliminary analyses conducted on datasets, which were judged 

unsuitable for further analysis, due to extensive similarity between predicted 

target and non-target distributions, indicating a potential failure in transfec-

tion experiments used to generate the data. As in figure 4.1, with the exception 

that ‘filtered seed site’ distributions (light green) are not shown. 
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M Seqs 

ERR030888 NA 83.20 96.60 4.1 44.4 47 73 74.6 

ERR030893 NA 82.20 95.60 4.5 24.4 45 73 77.6 

ERR030896 NA 87.90 97.00 4.4 47.3 46 74 78.7 

SRR1047622 NA 50.70 93.40 0.9 51.5 46 36 49.6 

SRR1047623 NA 57.00 92.00 1 48.4 45 36 48.6 

SRR1047624 NA 39.50 92.80 0.8 45 46 36 40.3 

SRR1047625 NA 35.90 94.20 0.9 53.6 48 36 45 

SRR1047630 NA 74.00 72.30 0.6 59 51 36 67.6 

SRR1047631 NA 72.30 71.90 0.4 59.6 51 36 58.2 

SRR1047632 NA 72.00 72.70 0.6 60.9 52 36 63.4 

SRR1047633 NA 72.20 72.30 0.7 59.1 51 36 67.1 

SRR1598955 NA 54.30 89.20 10 44.4 48 36 19.5 

SRR1598970 NA 37.90 87.90 17.9 77.8 49 36 26.4 

SRR1598972 NA 53.70 89.70 10.9 47.9 48 36 20.7 

SRR1598973 NA 35.30 38.90 23.2 79.2 50 49 74.8 

SRR1598976 NA 52.20 91.00 9.9 59.2 48 36 19.9 

SRR1598977 NA 34.60 87.60 16.9 79.7 49 36 26.1 

SRR8382192 NA 41.50 94.00 0.6 36 47 50 25.5 

SRR8382193 NA 42.40 94.90 0.6 40.8 46 50 31.8 

SRR8382194 NA 41.50 93.70 0.8 33.9 47 50 23.9 

SRR8382195 NA 43.30 94.00 1.4 40.5 47 50 25.1 

SRR8382196 NA 44.00 94.00 0.5 34.4 46 50 22.9 

SRR8382197 NA 44.20 94.20 5 55.5 47 50 22.9 

SRR8382198 NA 41.00 93.90 0.6 33.1 46 50 25.6 

SRR8382199 NA 42.60 94.30 0.8 36.6 47 50 26.7 

SRR8382200 NA 38.40 93.10 1.8 41.3 46 50 27.7 

SRR8382201 NA 39.40 93.50 1 43 46 50 30.8 

SRR8382202 NA 40.50 93.50 0.5 35 46 50 25.5 

SRR8382203 NA 38.50 93.80 0.9 39.4 46 50 27.9 

SRR8382204 NA 42.40 94.00 0.4 33.8 46 50 23.4 

SRR8382205 NA 41.40 92.90 1 49.6 48 50 24.4 

SRR8382206 NA 41.90 93.90 0.4 34.4 46 50 24.4 

SRR8382207 NA 42.30 94.30 0.7 39 46 50 25 

SRR8382208 NA 45.00 94.20 0.4 35 47 50 22.6 

SRR8382209 NA 44.60 94.20 0.7 38 48 50 24.1 
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SRR8382210 NA 39.20 93.60 0.6 34.1 45 50 26.1 

SRR8382211 NA 39.00 93.60 1.2 40.9 46 50 28.6 

SRR8382212 NA 38.70 93.70 0.5 34 46 50 27.5 

SRR8382213 NA 43.30 94.90 0.4 37.2 46 50 27.4 

SRR8382214 NA 31.70 92.40 0.6 32.8 46 50 35 

SRR8382215 NA 41.80 94.40 1.2 37.3 46 50 25.9 

SRR8382216 NA 33.90 93.30 1.2 32.2 45 50 30.7 

SRR8382217 NA 40.10 94.60 0.7 36.2 45 50 29.1 

SRR8382218 NA 34.40 93.20 0.5 31.7 45 50 30.6 

SRR8382219 NA 45.70 94.60 0.8 37.8 47 50 23.9 

SRR8382220 NA 31.00 92.70 0.7 36.3 45 50 36.2 

SRR8382221 NA 35.30 93.70 0.5 37.6 45 50 33 

SRR8382222 NA 39.60 93.70 0.4 34.2 46 50 25 

SRR8382223 NA 39.80 93.50 2.5 41 47 50 27.4 

SRR8382224 NA 41.40 94.00 0.5 33.8 46 50 26.1 

SRR8382225 NA 44.70 95.00 1 37.8 46 50 25.1 

SRR8382226 NA 43.80 94.50 0.8 36.4 47 50 23 

SRR8382227 NA 42.10 94.50 0.4 34.4 46 50 26.1 

SRR8382228 NA 38.70 94.00 0.5 32.3 46 50 29.1 

SRR8382229 NA 43.40 94.10 1.6 48.7 46 50 28.3 

SRR8382230 NA 35.70 93.50 0.6 31.2 46 50 28.8 

SRR8382231 NA 42.70 94.90 0.9 36 46 50 25.8 

SRR8382232 NA 36.30 92.80 1.6 34 46 50 29.6 

SRR8382233 NA 39.40 94.10 1.1 40.6 45 50 27.7 

SRR8382234 NA 38.10 93.10 1.6 34.7 46 50 27.4 

SRR8382235 NA 38.00 93.50 1 41 45 50 29.9 

SRR8382236 NA 40.30 93.90 0.6 33.3 46 50 25.3 

SRR8382237 NA 42.00 94.80 0.6 37.5 45 50 26.5 

SRR8382238 NA 39.40 94.00 0.5 35.6 45 50 25.4 

SRR8382239 NA 41.60 93.70 1.2 44 46 50 26.1 

SRR8382240 NA 40.20 93.60 0.5 37 46 50 26.4 

SRR8382241 NA 39.40 93.70 1.1 41.3 47 50 27 

SRR8382242 NA 40.80 93.80 0.5 35 46 50 25 

SRR8382243 NA 39.00 93.30 1.4 43.7 47 50 28.2 

SRR3112237 NA 33.90 67.30 1.7 39.1 45 51 36.1 

SRR3112238 NA 29.70 83.40 1.1 25.5 41 51 17 

SRR3112239 NA 32.30 90.70 1.1 35.3 43 51 36.5 

SRR3112240 NA 36.40 90.40 1 22.9 42 51 37.4 

SRR3112241 NA 29.40 74.80 1.3 36.4 39 51 26.6 
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SRR3112242 NA 28.50 88.40 1.1 40.3 40 51 46.8 

SRR3112243 NA 32.30 79.70 1.4 37.7 45 51 37.4 

SRR3112244 NA 32.60 77.50 1.3 30.5 44 51 31.9 

SRR3112245 NA 35.20 80.30 1.2 17.2 43 51 8.9 

SRR3112246 NA 40.80 90.50 1 17.4 42 51 5.6 

SRR3112247 NA 36.80 89.30 1.1 53.1 43 51 37.7 

SRR3112248 NA 32.50 85.80 1.2 29 40 51 22.3 

SRR3112250 NA 32.00 91.60 1 44.3 40 51 37.4 

SRR3112251 NA 33.70 84.60 1.1 55.7 40 51 40.3 

SRR3112252 NA 29.00 87.50 1.1 39.6 39 51 34.6 

SRR4054984 NA 86.20 94.20 0.7 57.7 48 51 37.4 

SRR4054985 NA 87.90 96.20 0.4 48.6 49 51 13.8 

SRR4054992 NA 88.70 95.50 0.4 53 49 51 16.5 

SRR4054995 NA 88.90 94.70 0.9 61.7 49 51 42.6 

SRR4054996 NA 86.90 95.20 0.8 47.4 48 51 13.7 

SRR4054999 NA 87.60 95.80 0.4 47.7 49 51 13.5 

SRR4055002 NA 87.60 95.80 0.4 47.9 49 51 13.6 

SRR4055005 NA 87.80 95.80 0.4 46.5 49 51 11.1 

ERR030879 173.1 89.00 97.20 4.75 54.9 46 49.5 73 

ERR030880 255.2 82.80 96.70 3.55 56.2 47 49.5 71.9 

ERR030885 212.2 81.70 95.90 4.05 54.4 45 49.5 74 

ERR315358 322.8 86.30 96.30 3.55 38.35 45 99 15.2 

ERR315404 204.7 80.80 98.20 4 39.9 48 97.5 16.8 

ERR315406 205.2 80.80 98.20 4.05 40.4 48 97.5 17 

ERR315422 323.3 86.30 96.30 3.4 38.65 45 99 15.1 

ERR579142 120.8 90.90 96.70 47.75 53.5 50 89.5 16 

ERR579143 125.6 91.00 95.70 40.95 45 49 89.5 8.1 

SRR2146408 179.6 35.60 51.40 3.05 66.5 44.5 75 33.2 

SRR2146409 176.8 41.40 57.90 2.7 63.6 45 75 36.9 

SRR2146410 171.7 41.20 60.00 2.6 63.9 44.5 75 36.9 

SRR2146411 171.6 47.80 70.30 2.8 59.85 45 75 34.7 

SRR2968576 179.8 87.60 98.30 1.55 46.4 49 48 24 

SRR2968577 173.4 88.10 98.30 1.85 44.7 49 48 20 

SRR2968578 170.8 88.20 98.30 1.7 42.65 49 48 17.1 

SRR2968579 182.4 77.90 98.30 1.65 50.2 50 48 22.2 

SRR2968580 180.8 86.00 98.40 1.3 50.65 49 48 31 

SRR2968581 178.9 88.30 98.30 1.4 49 49 48 32.7 

SRR2968582 184.8 88.70 98.30 1.4 44.05 49 48 21.4 

SRR2968583 184.9 87.90 98.20 2.3 40.4 48 48 17.1 
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Table A.1 - A table of summary and quality control statistics for all sequencing 

runs used in this analysis. Statistics are given for the percentage of sequenced 

pseudo-aligned to the transcript aligned to the transcriptome using either kallisto. 

The estimated mean average fragment length is given for sequencing runs in which 

cDNA libraries are sequences using paired-end sequencing protocols. For single-

end sequencing protocols, fragment length statistics cannot be inferred. The per-

centage of reads aligned to the relevant genome using HISAT2 (for the purposes of 

3’UTR reannotation) is also given. QC statistics such as the percentage of reads 

trimmed, the percentage of reads which are duplicates, and the mean percentage 

GC content of reads is also reported. In the final two columns, the length of reads, 

and the number of reads sequenced for each sequencing run is given. 

  

SRR2968584 225.0 85.70 90.00 8.55 29.25 49 47.5 12.7 

SRR2968586 213.3 86.10 90.10 8.95 29.15 49 47.5 11.9 

SRR2968588 206.5 86.30 90.30 7.75 27.15 49 47.5 9.9 

SRR2968590 195.7 85.20 90.00 8.6 30.85 49 47.5 13.7 

SRR2968592 202.5 82.80 90.10 8.75 29.25 50 47.5 11.7 

SRR2968594 200.9 85.30 90.00 8.55 30.55 49 47.5 15.2 

SRR2968596 209.6 85.30 89.80 9 29.15 49 47.5 14.1 

SRR2968598 191.9 84.20 89.90 9.3 30.35 49 47.5 13.7 

SRR1734389 182.4 88.10 98.40 3.1 46.3 49.5 98.5 17.5 

SRR1734391 184.1 87.30 98.20 2.95 45.45 48 98.5 17.3 

SRR1734393 188.6 88.90 98.00 2.85 48.1 49.5 98.5 15.7 

SRR1734395 182.8 88.60 98.00 3.1 50.5 49 98.5 18.1 
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Figure A.3 – Volcano plots for all RNA-Seq transfection datasets analysed as 

part of chapter 4 of this thesis. Along the x-axis is log2 fold change (with shrink-

age) as computed by the DESeq2 package. Along the y-axis are p-values associated 

with the log fold change parameters within a generalised linear model as computed 

using a Wald test within DESeq2. Differentially expressed transcripts are denoted 

in red (|FGH| >2; adjusted p-value < 0.05), whilst non-differentially expressed tran-

script are denoted in black. 
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Figure A.4 - As in figure 4.1, though with a greater number of datasets ana-

lysed 

  



 343 

 

Figure A.5 – As in figure 4.5, though with a greater number of datasets ana-

lysed. 
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Figure A.6 – As in figure 4.9, though with more datasets analysed. 
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Species 

 

 

 

 

BioProject  

Accession 

 

 

 

 

Source/Study 

 

 

 

 

Sample 

 

 

 

 

Run Accessions 

Humans 

PRJNA231155 

 

Tamim et al. 

2014 

U251 
SRR1047622,SRR1047623, 

SRR1047624,SRR1047625 

U343 
SRR1047630,SRR1047631, 

SRR1047632,SRR1047633 

PRJNA292016 Liu et al. 2017 Du145 
SRR2146408,SRR2146409, 

SRR2146410,SRR2146411 

PRJNA304643 
Stolzenburg et 

al. 2016 

A549 

SRR2968576,SRR2968577, 

SRR2968578,SRR2968579, 

SRR2968580,SRR2968581, 

SRR2968582,SRR2968583 

16HBE14o- 

SRR2968584,SRR2968586, 

SRR2968588,SRR2968590, 

SRR2968592,SRR2968594, 

SRR2968596,SRR2968598 

PRJNA512378 Liu et al. 2019 HeLa 

SRR8382192,SRR8382193, 

SRR8382194,SRR8382195, 

SRR8382196,SRR8382197, 

SRR8382198,SRR8382199, 

SRR8382200,SRR8382201, 

SRR8382202,SRR8382203 

SRR8382204,SRR8382205, 

SRR8382206,SRR8382207, 

SRR8382208,SRR8382209, 

SRR8382210,SRR8382211, 

SRR8382212,SRR8382213, 

SRR8382214,SRR8382215 

SRR8382216,SRR8382217, 

SRR8382218,SRR8382219, 

SRR8382220,SRR8382221, 

SRR8382222,SRR8382223, 

SRR8382224,SRR8382225, 

SRR8382226,SRR8382227, 

SRR8382228,SRR8382229, 



 348 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table A.2 - A summary of RNA-sequencing datasets analysed for chapter 4 of 

this thesis. The project accession, run accession, data source, as well as the biolog-

ical context of each experiment is given for each dataset analysed 

  

SRR8382230,SRR8382231, 

SRR8382232,SRR8382233, 

SRR8382234,SRR8382235, 

SRR8382236,SRR8382237, 

SRR8382238,SRR8382239 

SRR8382240,SRR8382241, 

SRR8382242,SRR8382243 

PRJNA223608 Guo et al. 2014 U20S 

SRR1598955,SRR1598970, 

SRR1598976,SRR1598977, 

SRR1598972,SRR1598973 

PRJEB2445 

Illumina Bo-

dyMap2 

transcriptome 

Kidney ERR030885,ERR030893 

Lung 
ERR030879,ERR030896 

PRJEB6971 

 

Science for Life 

Laboratory, 

Stockholm 

Skeletal 

Muscle 

ERR579142,ERR579143 

Thyroid ERR315358,ERR315422 

Bone 

Marrow 

ERR315404,ERR315406 

Mouse 

PRJNA340017 
Diepenbruck et 

al. 2017 
NMuMG 

SRR4054984,SRR4054985, 

SRR4054992,SRR4054995, 

SRR4054996,SRR4054999, 

SRR4055002,SRR4055005 

PRJNA309441 Pua et al. 2016 CD4+ 

SRR3112249,SRR3112250, 

SRR3112251,SRR3112252, 

SRR3112245,SRR3112246, 

SRR3112247,SRR3112248, 

SRR3112237,SRR3112238, 

SRR3112239,SRR3112240 

SRR3112241,SRR3112242, 

SRR3112243,SRR3112244 

PRJNA270999 Cao et al. 2015 ESCs 
SRR1734389,SRR1734391, 

SRR1734393,SRR1734395 
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Table A.3 - A summary of data considered during preliminary analysis, but 

were not used for further analysis. See figure A.1 for analyses of these datasets. 

 

 

 

  

Species	
BioProject	Ac-

cession	
Source/Study	 Sample	 Run	Accessions	

Human	

PRJNA229375	
	

Nam	et	al.	2014	
	

HeLa1	
SRR1032873,	SRR1032874,	
SRR1032875,	SRR1032876,	
SRR1032877,	SRR1032878,	

HEK293	
SRR1032879,	SRR1032880,	
SRR1032881,	SRR1032882	
SRR1032883,	SRR1032884	

Huh7	

SRR1032885,	SRR1032886,	
SRR1032887,	SRR1032888	
SRR1032890,	SRR1032891,	

SRR1032892	

IMR90	
	

SRR1032893,	SRR1032894,	
SRR1032895,	SRR1032896	

PRJNA284262	 Zhang	et	al.	2016	 HeLa2	
SRR2031925,	SRR2031926,	
SRR2031927,	SRR2031928	

PRJNA271411	 Iyer	et	al.	2015	 HeLa3	

SRR1737410,	SRR1737413,	
SRR1737415,	SRR1737416,	
SRR1737420,	SRR1737421,	
SRR1737429,	SRR1737430	
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Sample miRNA Average LFC  

deviation  

(targets) 

Average LFC 

deviation  

(non-targets) 

SNR 1/SNR 

U251 miR-137-3p 0.940 0.739 1.272 0.786 

U343 miR-137-3p 0.609 0.455 1.338 0.747 

Du145 miR-141-3p 0.264 0.185 1.428 0.700 

A549 miR-1343-3p 0.320 0.251 1.276 0.784 

16HBE14o- miR-1343-3p 0.179 0.141 1.269 0.788 

HeLa let-7c-5p 0.278 0.235 1.184 0.845 

HeLa miR-107 0.307 0.240 1.281 0.781 

HeLa miR-10a-5p 0.322 0.266 1.210 0.827 

HeLa miR-124-3p 0.331 0.248 1.338 0.747 

HeLa miR-126-3p 0.398 0.298 1.336 0.748 

HeLa miR-126-5p 0.274 0.212 1.292 0.774 

HeLa miR-133b 0.432 0.310 1.394 0.717 

HeLa miR-142-3p 0.366 0.263 1.388 0.720 

HeLa miR-145-5p 0.325 0.258 1.257 0.796 

HeLa miR-146a-5p 0.286 0.222 1.285 0.778 

HeLa miR-155-5p 0.372 0.254 1.466 0.682 

HeLa miR-15a-5p 0.479 0.381 1.259 0.795 

HeLa miR-16-5p 0.372 0.279 1.336 0.749 

HeLa miR-17-5p 0.355 0.283 1.254 0.797 

HeLa miR-193b-3p 0.458 0.324 1.416 0.706 

HeLa miR-200a-3p 0.288 0.226 1.275 0.784 

HeLa miR-200b-3p 0.348 0.268 1.296 0.771 

HeLa miR-200c-3p 0.357 0.274 1.300 0.769 

HeLa miR-206 0.406 0.310 1.308 0.764 

HeLa miR-210-3p 0.366 0.268 1.364 0.733 

HeLa miR-21-5p 0.320 0.258 1.238 0.808 

HeLa miR-31-5p 0.352 0.280 1.258 0.795 

HeLa miR-34a-5p 0.362 0.278 1.302 0.768 

HeLa miR-9-3p 0.384 0.271 1.419 0.705 

HeLa miR-9-5p 0.337 0.254 1.328 0.753 

U20S miR-1-3p 0.972 0.984 0.988 1.012 

U20S miR-155-5p 1.089 1.076 1.012 0.988 

NMuMG miR-1199-5p 0.727 0.529 1.374 0.728 

CD4+ miR-23a-3p 0.330 0.280 1.178 0.849 

CD4+ miR-24-3p 0.349 0.292 1.194 0.838 
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CD4+ miR-27a-3p 0.368 0.296 1.242 0.805 

ESCs miR-294-3p 0.518 0.345 1.504 0.665 

Table A.4 - An assessment of the signal-noise ratio in each miRNA mimic trans-

fection experiment. ‘Average LFC deviation’ represents the mean average dis-

tance of log fold change values from 0. The signal-noise ratio (SNR) is calculated 

using the formula given in the background chapter of this thesis. 
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Appendix B 
 

 

Figure B.1 – mRNA sequencing depth: Total (top) and pseudoaligned (bottom) 

read counts for mRNA sequencing libraries are given. Bars are colour coded ac-

cording sample type. 
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Figure B.2 – sRNA sequencing depth: Total (top) and mapped (bottom) reads 

counts for sRNA sequencing libraries are given. Bars are colour coded according 

to sample type. 
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Table B.1 - mRNA sequencing depth metrics and values, along with library 

metadata 

 

 

 

  

Sample Total 
reads 

Mapped 
reads 

Fraction 
mapped 

Treatment Sex Body Part 
Replicate 

LIB21920 7936298 5129559 0.6463 mated female head/thorax 1 
LIB21921 20841021 17656661 0.8472 mated female abdomen 1 
LIB21922 17034527 13080104 0.7679 virgin female head/thorax 1 
LIB21923 22483948 19088525 0.849 virgin female abdomen 1 
LIB21924 30566395 23114969 0.7562 mated male head/thorax 1 
LIB21925 17731066 14466364 0.8159 mated male abdomen 1 
LIB21926 20795634 14905963 0.7168 virgin male head/thorax 1 
LIB21927 8493430 6597732 0.7768 virgin male abdomen 1 
LIB21928 8547418 6077181 0.711 mated female head/thorax 2 
LIB21929 21781925 18536186 0.851 mated female abdomen 2 
LIB21930 19403600 15091640 0.7778 virgin female head/thorax 2 
LIB21931 16185107 13493870 0.8337 virgin female abdomen 2 
LIB21932 29955574 21711602 0.7248 mated male head/thorax 2 
LIB21933 21923237 17634202 0.8044 mated male abdomen 2 
LIB21934 32456773 24419658 0.7524 virgin male head/thorax 2 
LIB21935 40234601 31631526 0.7862 virgin male abdomen 2 
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Table B.2 - sRNA sequencing depth metrics and values, along with library 

metadata 

Sample Total 
reads  
after 
trimming 

Genome 
mapping 
reads 
(perfect 
match) 

% trimmed 
reads  
mapping 

Treat-
ment 

Sex Body Part Repli-
cate 

LIB28804 21379806 17932126 83.8741287 mated female head/thorax 2 

LIB28805 16763295 13950560 83.22087036 mated female abdomen 2 

LIB28806 20535585 17213198 83.82131797 virgin female head/thorax 2 

LIB28807 18334102 15158174 82.67748265 virgin female abdomen 2 

LIB28808 18264596 15100638 82.67709836 mated male head/thorax 2 

LIB28809 19516527 16494441 84.515247 mated male abdomen 2 

LIB28810 16479791 13594843 82.49402556 virgin male head/thorax 2 

LIB28811 17385491 14760849 84.90326215 virgin male abdomen 2 

LIB28812 18743335 15811711 84.35911219 mated female head/thorax 1 

LIB28813 16262939 14258152 87.67266482 mated female abdomen 1 

LIB28814 18062535 15149644 83.87329907 virgin female head/thorax 1 

LIB28815 15088226 13121058 86.96223135 virgin female abdomen 1 

LIB28816 17779587 15521647 87.30037992 mated male head/thorax 1 

LIB28817 14499606 12850728 88.62811858 mated male abdomen 1 

LIB28818 16594161 14016780 84.46814515 virgin male head/thorax 1 

LIB28819 15178474 13358604 88.01019127 virgin male abdomen 1 
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Figure B.3 – A volcano plot for protein-coding genes for the differential ex-

pression analysis presented in chapter 5 of this thesis. Colour legend: Red – 

differentially expressed genes; black – non-differentially expressed genes. 
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Figure B.4 – A volcano plot for miRNA for the differential expression analysis 

presented in chapter 5 of this thesis. Colour legend: Red – differentially ex-

pressed miRNAs; black – non-differentially expressed miRNAs. 
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Figure B.5 – A decomposition of the variance observed between biological rep-

licates for protein-coding genes for the analysis presented in chapter 5 of this 

thesis. The technical or inferential variance (far left) arises from ‘random sequenc-

ing and computational analysis of reads’ (Pimentel, et al., 2017). The biological 

variance (middle left) refers to the variance attributable to the difference in RNA 

content between samples as well as stochastic library preparation processes. The 

smoothed biological variance (middle right) is the biological variance after shrink-

age in order to stabilise the variance. The final biological variance (far right) how-

ever is the maximum of the initial biological variance estimate and smoothed bio-

logical variance estimate. 
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Figure B.6 – An MA plot for the D. melanogaster protein-coding genes. On the 

x-axis – the mean relative gene abundance across all replicates. On the y-axis – 

the effect size measured in the value of the beta parameter used within the general-

ised linear model constructed for the purpose of differential expression analysis. 

Colour legend: Red – differentially expressed genes; black – non-differentially ex-

pressed genes. 
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Figure B.7 – A comparison of the differential expression effect size with the 

uncertainty of the effect size estimate. On the y-axis: Effect size measured by the 

generalised linear model beta parameter for differential expression. On the x-axis: 

The standard error of beta. Colour legend: Red – differentially expressed genes; 

black – non-differentially expressed genes. 
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Figure B.8 – An MA plot for miRNA differential expression for the study pre-

sented in chapter 5. On the x-axis: mean relative abundance across all replicates 

for this comparison and for this miRNA. On the y-axis: log2 fold change. Colour 

legend: Red – differentially expressed miRNAs; black – non-differentially ex-

pressed miRNAs. 
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Figure B.9 – The relationship between the log2 fold change and its standard er-

ror for the differential expression analysis study presented in chapter 5 of this 

thesis. On the x-axis – the standard error of the log2 fold change. On the y-axis – 

log2 fold change. Colour legend: Red – differentially expressed miRNAs; black – 

non-differentially expressed miRNAs. 
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Figure B.10 – A comparison of the cumulative target site frequency distribu-

tion of downregulated, non-differentially expressed, and upregulated genes in 

the female abdomen when comparing mated and virgin fruit flies. Reported p-

value derives from a two-sided Kolmogorov-Smirnov test between downregulated 

and upregulated transcripts. 
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Comparison miRNA ID 
miRNA 

direction 
Gene ID 

Gene  

direction 

female abdomen  dme-miR-184-5p up FBgn0261989 down 

female abdomen  dme-miR-14-3p down FBgn0033926 up 

female abdomen  dme-miR-14-3p down FBgn0036778 up 

male abdomen  dme-miR-927-3p down FBgn0000377 up 

male abdomen  dme-miR-927-3p down FBgn0000592 up 

male abdomen  dme-miR-927-3p down FBgn0001308 up 

male abdomen  dme-miR-927-3p down FBgn0001308 up 

male abdomen  dme-miR-927-3p down FBgn0003638 up 

male abdomen  dme-miR-927-3p down FBgn0003900 up 

male abdomen  dme-miR-927-3p down FBgn0003977 up 

male abdomen  dme-miR-927-3p down FBgn0004414 up 

male abdomen  dme-miR-927-3p down FBgn0004875 up 

male abdomen  dme-miR-927-3p down FBgn0010504 up 

male abdomen  dme-miR-927-3p down FBgn0015622 up 

male abdomen  dme-miR-927-3p down FBgn0015808 up 

male abdomen  dme-miR-927-3p down FBgn0020279 up 

male abdomen  dme-miR-927-3p down FBgn0026415 up 

male abdomen  dme-miR-927-3p down FBgn0026593 up 

male abdomen  dme-miR-927-3p down FBgn0027358 up 

male abdomen  dme-miR-927-3p down FBgn0027571 up 

male abdomen  dme-miR-927-3p down FBgn0028978 up 

male abdomen  dme-miR-927-3p down FBgn0030061 up 

male abdomen  dme-miR-927-3p down FBgn0030616 up 

male abdomen  dme-miR-927-3p down FBgn0031041 up 

male abdomen  dme-miR-927-3p down FBgn0031174 up 

male abdomen - dme-miR-927-3p down FBgn0031536 up 

male abdomen  dme-miR-927-3p down FBgn0031646 up 

male abdomen  dme-miR-927-3p down FBgn0031646 up 

male abdomen  dme-miR-927-3p down FBgn0031652 up 

male abdomen  dme-miR-927-3p down FBgn0031723 up 

male abdomen  dme-miR-927-3p down FBgn0032431 up 

male abdomen  dme-miR-927-3p down FBgn0032685 up 

male abdomen  dme-miR-927-3p down FBgn0032772 up 

male abdomen  dme-miR-927-3p down FBgn0033268 up 

male abdomen  dme-miR-927-3p down FBgn0033401 up 

male abdomen  dme-miR-927-3p down FBgn0036285 up 

male abdomen  dme-miR-927-3p down FBgn0036934 up 
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male abdomen  dme-miR-927-3p down FBgn0037512 up 

male abdomen  dme-miR-927-3p down FBgn0038535 up 

male abdomen  dme-miR-927-3p down FBgn0038535 up 

male abdomen  dme-miR-927-3p down FBgn0038876 up 

male abdomen  dme-miR-927-3p down FBgn0038876 up 

male abdomen  dme-miR-927-3p down FBgn0039110 up 

male abdomen  dme-miR-927-3p down FBgn0039464 up 

male abdomen  dme-miR-927-3p down FBgn0039713 up 

male abdomen  dme-miR-927-3p down FBgn0040236 up 

male abdomen  dme-miR-927-3p down FBgn0040391 up 

male abdomen  dme-miR-927-3p down FBgn0259937 up 

male abdomen  dme-miR-927-3p down FBgn0260462 up 

male abdomen  dme-miR-927-3p down FBgn0261563 up 

male abdomen  dme-miR-927-3p down FBgn0261931 up 

male abdomen  dme-miR-927-3p down FBgn0261931 up 

male abdomen  dme-miR-927-3p down FBgn0262527 up 

male abdomen  dme-miR-927-3p down FBgn0264978 up 

male abdomen  dme-miR-927-5p down FBgn0000150 up 

male abdomen  dme-miR-927-5p down FBgn0000181 up 

male abdomen  dme-miR-927-5p down FBgn0000636 up 

male abdomen  dme-miR-927-5p down FBgn0002284 up 

male abdomen  dme-miR-927-5p down FBgn0002719 up 

male abdomen  dme-miR-927-5p down FBgn0003053 up 

male abdomen  dme-miR-927-5p down FBgn0003462 up 

male abdomen  dme-miR-927-5p down FBgn0003638 up 

male abdomen  dme-miR-927-5p down FBgn0003638 up 

male abdomen  dme-miR-927-5p down FBgn0003900 up 

male abdomen  dme-miR-927-5p down FBgn0004391 up 

male abdomen  dme-miR-927-5p down FBgn0004396 up 

male abdomen  dme-miR-927-5p down FBgn0010412 up 

male abdomen  dme-miR-927-5p down FBgn0011016 up 

male abdomen  dme-miR-927-5p down FBgn0011205 up 

male abdomen  dme-miR-927-5p down FBgn0011205 up 

male abdomen  dme-miR-927-5p down FBgn0011227 up 

male abdomen  dme-miR-927-5p down FBgn0014455 up 

male abdomen  dme-miR-927-5p down FBgn0014859 up 

male abdomen  dme-miR-927-5p down FBgn0015010 up 

male abdomen  dme-miR-927-5p down FBgn0015245 up 

male abdomen  dme-miR-927-5p down FBgn0015600 up 
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male abdomen  dme-miR-927-5p down FBgn0015600 up 

male abdomen  dme-miR-927-5p down FBgn0020386 up 

male abdomen  dme-miR-927-5p down FBgn0020626 up 

male abdomen  dme-miR-927-5p down FBgn0022708 up 

male abdomen  dme-miR-927-5p down FBgn0023388 up 

male abdomen  dme-miR-927-5p down FBgn0023512 up 

male abdomen  dme-miR-927-5p down FBgn0023526 up 

male abdomen  dme-miR-927-5p down FBgn0023526 up 

male abdomen  dme-miR-927-5p down FBgn0023526 up 

male abdomen  dme-miR-927-5p down FBgn0024314 up 

male abdomen  dme-miR-927-5p down FBgn0024314 up 

male abdomen  dme-miR-927-5p down FBgn0024509 up 

male abdomen  dme-miR-927-5p down FBgn0025681 up 

male abdomen  dme-miR-927-5p down FBgn0026593 up 

male abdomen  dme-miR-927-5p down FBgn0026616 up 

male abdomen  dme-miR-927-5p down FBgn0027329 up 

male abdomen  dme-miR-927-5p down FBgn0027585 up 

male abdomen  dme-miR-927-5p down FBgn0027605 up 

male abdomen  dme-miR-927-5p down FBgn0027835 up 

male abdomen  dme-miR-927-5p down FBgn0027835 up 

male abdomen  dme-miR-927-5p down FBgn0027868 up 

male abdomen  dme-miR-927-5p down FBgn0028292 up 

male abdomen  dme-miR-927-5p down FBgn0028327 up 

male abdomen  dme-miR-927-5p down FBgn0028474 up 

male abdomen  dme-miR-927-5p down FBgn0028474 up 

male abdomen  dme-miR-927-5p down FBgn0030050 up 

male abdomen  dme-miR-927-5p down FBgn0030067 up 

male abdomen  dme-miR-927-5p down FBgn0030096 up 

male abdomen  dme-miR-927-5p down FBgn0030177 up 

male abdomen  dme-miR-927-5p down FBgn0030242 up 

male abdomen  dme-miR-927-5p down FBgn0030309 up 

male abdomen  dme-miR-927-5p down FBgn0030316 up 

male abdomen  dme-miR-927-5p down FBgn0030319 up 

male abdomen  dme-miR-927-5p down FBgn0030331 up 

male abdomen  dme-miR-927-5p down FBgn0030331 up 

male abdomen  dme-miR-927-5p down FBgn0030465 up 

male abdomen  dme-miR-927-5p down FBgn0030592 up 

male abdomen  dme-miR-927-5p down FBgn0030616 up 

male abdomen  dme-miR-927-5p down FBgn0030631 up 
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male abdomen  dme-miR-927-5p down FBgn0030631 up 

male abdomen  dme-miR-927-5p down FBgn0030661 up 

male abdomen  dme-miR-927-5p down FBgn0030761 up 

male abdomen  dme-miR-927-5p down FBgn0030990 up 

male abdomen  dme-miR-927-5p down FBgn0031078 up 

male abdomen  dme-miR-927-5p down FBgn0031183 up 

male abdomen  dme-miR-927-5p down FBgn0031260 up 

male abdomen  dme-miR-927-5p down FBgn0031304 up 

male abdomen  dme-miR-927-5p down FBgn0031364 up 

male abdomen  dme-miR-927-5p down FBgn0031397 up 

male abdomen  dme-miR-927-5p down FBgn0031420 up 

male abdomen  dme-miR-927-5p down FBgn0031653 up 

male abdomen  dme-miR-927-5p down FBgn0031869 up 

male abdomen  dme-miR-927-5p down FBgn0032025 up 

male abdomen  dme-miR-927-5p down FBgn0032536 up 

male abdomen  dme-miR-927-5p down FBgn0032748 up 

male abdomen  dme-miR-927-5p down FBgn0032897 up 

male abdomen  dme-miR-927-5p down FBgn0033130 up 

male abdomen  dme-miR-927-5p down FBgn0033692 up 

male abdomen  dme-miR-927-5p down FBgn0033814 up 

male abdomen  dme-miR-927-5p down FBgn0033844 up 

male abdomen  dme-miR-927-5p down FBgn0034521 up 

male abdomen  dme-miR-927-5p down FBgn0035490 up 

male abdomen  dme-miR-927-5p down FBgn0035519 up 

male abdomen  dme-miR-927-5p down FBgn0035947 up 

male abdomen  dme-miR-927-5p down FBgn0035988 up 

male abdomen  dme-miR-927-5p down FBgn0036024 up 

male abdomen  dme-miR-927-5p down FBgn0036298 up 

male abdomen  dme-miR-927-5p down FBgn0036467 up 

male abdomen  dme-miR-927-5p down FBgn0036516 up 

male abdomen  dme-miR-927-5p down FBgn0037137 up 

male abdomen  dme-miR-927-5p down FBgn0037170 up 

male abdomen  dme-miR-927-5p down FBgn0037249 up 

male abdomen  dme-miR-927-5p down FBgn0037249 up 

male abdomen  dme-miR-927-5p down FBgn0038321 up 

male abdomen  dme-miR-927-5p down FBgn0038424 up 

male abdomen  dme-miR-927-5p down FBgn0038598 up 

male abdomen  dme-miR-927-5p down FBgn0039141 up 

male abdomen  dme-miR-927-5p down FBgn0039419 up 
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male abdomen  dme-miR-927-5p down FBgn0039419 up 

male abdomen  dme-miR-927-5p down FBgn0039562 up 

male abdomen  dme-miR-927-5p down FBgn0039857 up 

male abdomen  dme-miR-927-5p down FBgn0069354 up 

male abdomen  dme-miR-927-5p down FBgn0086674 up 

male abdomen  dme-miR-927-5p down FBgn0250789 up 

male abdomen  dme-miR-927-5p down FBgn0259203 up 

male abdomen  dme-miR-927-5p down FBgn0259209 up 

male abdomen  dme-miR-927-5p down FBgn0259937 up 

male abdomen  dme-miR-927-5p down FBgn0261068 up 

male abdomen  dme-miR-927-5p down FBgn0261593 up 

male abdomen  dme-miR-927-5p down FBgn0262146 up 

male abdomen  dme-miR-927-5p down FBgn0262582 up 

male abdomen  dme-miR-927-5p down FBgn0264296 up 

male abdomen  dme-miR-927-5p down FBgn0264978 up 

male abdomen  dme-miR-927-5p down FBgn0266464 up 

male abdomen  dme-miR-927-5p down FBgn0266599 up 

 

Table B.3 - A table of oppositely differentially expressed targets of differentially 

expression miRNAs. Columns denote, in order from left to right, the relevant com-

parison, miRNA identifier, direction of miRNA differential expression, the relevant 

gene identifier, and the direction of gene differential expression. 
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Appendix C 
 

miRNA Name miRNA sequence  

miR-nov1-3p TTCCCCTGTGCTGGTGGGGTTG 

miR-nov1-5p ACTCAACCCGCACAGAGGAGG 

miR-nov2-3p ATGGCGGCACGTTGAGTTTGC 

miR-nov2-5p AGGAACTCAACGTGCCGCCATG 

miR-nov3-3p TTACTCTTGGACTGAAATCTTTC 

miR-nov3-5p TGTGAAGGGTTTCAGTCCAGACTGA 

miR-nov4-3p CCCAGAACTACCATCAGAGAAT 

miR-nov4-5p TTACTCTGGTGGTTGTTGTGT 

miR-nov5-3p ACTGAACATGCTCTCCAGACGA 

miR-nov5-5p TGTGGGGACTGTGTGTTTTGTGT 

miR-nov6-3p AGGCCAATGCCAAGGAAAGGAG 

miR-nov6-5p TAACTTTCCTTGTGTATTCCCA 

miR-nov7-3p TGGGACTGAGCAAACTTCATC 

miR-nov7-5p TAGAGTTTGCTCATTTGTCATG 

miR-nov8-3p TGGTCTGATCTGGTCTGATC 

miR-nov8-5p ACCAGACCAGACCAGACCTGAT 

miR-nov9-5p TTTCCATAGTTCGGAGCTCTGA 

miR-nov10-3p GTGCCCAAGAAACTGCCTCAGT 

miR-nov10-5p CACTAGGCAGTTTTTTGGGTAA 

miR-nov11-3p TCAACACTGGAGTGGTCTCTGTCCT 

miR-nov11-5p AGGACAGGAAAACTGGACAGTATGGAC 

miR-nov12-3p TCTGAATGTTTGGTCCTGTTG 

miR-nov12-5p ACAGGACGCAGACGCTCAGAGG 
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miR-nov13-3p TAATAGCAGTAGCAGCAGCAGT 

miR-nov13-5p TACTGCTACTACTTCTATCACT 

miR-nov14-3p TCCATATAAATCAGCTGACAGG 

miR-nov14-5p TGTCAGCTGATTTATGTGGTAAC 

miR-nov15-3p CAGGCTTTCTTTGTGATGCACC 

miR-nov15-5p TGCATCACTAAGAAAGCCTGA 

miR-nov16-3p CTCTGATTGGCTGAGATGTGA 

miR-nov16-5p CCCACGTTTCCTCCAATCAGAGC 

miR-nov17-3p TGAAACTCTTCCCTCAGACCGA 

miR-nov17-5p AGCTTGAGGGAAGAGTTTCA 

miR-nov18-3p AGTTGCACACAAGCTGTCGGG 

miR-nov18-5p GACAGCTTGTGCACAACTGGTT 

miR-nov19-3p TTTCCACAGTCCAGCACACAGT 

miR-nov19-5p TGCTCTGCTGTCTGTGGAAATA 

miR-nov20-3p CCGCTGTCGCTCTGCCCACACT 

miR-nov20-5p TGTGGGCAGAGAGTCAGACTGA 

miR-nov21-3p TAACGTTAGCCTCAGCTGCTGC 

miR-nov21-5p CTCAGCTGCCGCTAACGTTAGC 

miR-nov22-3p AGTCTGTGATCATGTGATTGAC 

miR-nov22-5p ACTTCACATGGTTACTGATCTTG 

miR-nov23-3p TGCACCTGCACCTCATGAGTCT 

miR-nov23-5p TCTCATGAGCTGCAGGTGGCGTT 

miR-nov24-3p ATTGGATAACTGATCACTGATC 

miR-nov24-5p TCAGTGTCCGTCCATCCTGTCA 

miR-nov25-3p TCTCATGGGAATTGTAGTTGCT 

miR-nov25-5p ACAGCTGCAACTCCCACGAGG 

miR-nov26-3p TACACGTTGCCGTCTTGCCAGGG 



 371 

miR-nov26-5p GCGGCGCTACGGTATCGTTACG 

miR-nov27-3p CCAGTATGATATGTGCTGCTCCT 

miR-nov27-5p TAGCAGCACATCATTACTGGTA 

miR-nov28-3p AACAAAGGTGGGCTTAGTCGA 

miR-nov28-5p ACACTAAAAGCATCTTTGTTCT 

miR-nov29-3p TCCACATAAATCAGCTGACTGG 

miR-nov29-5p TCCAGTCAGCTGATTTATGTGG 

miR-nov30-3p GGTGATGTTATTCAGAAGGACTTGG 

miR-nov30-5p GATACTTCAACATGAGTCATGAACA 

miR-nov31-3p TTATAAGGTGCCCCGGAATGCTGGTT 

miR-nov31-5p TTGAGACCAACGAGCAAGAGGGGGG 

miR-nov32-3p GCAGCCTGTCATCAGTAGAGC 

miR-nov32-5p TCTATTGCTGACAAAGAGAAGC 

miR-nov33-3p TTGTTTCCAAATGGTGCCATGCACA 

miR-nov33-5p TGAGTTACTGGAGAGCCGTCTGCTCT 

miR-nov34-3p TTCCTGTTGATGTTTGGAGCAGAGAC 

miR-nov34-5p TTCTCACTTCTGAGGCAGCAGGGA 

miR-nov35-3p TCCACATAAATCAGCCGACAGG 

miR-nov36-5p AGCTTGAGGGAAGAGTTTCAAA 

miR-nov37-3p TATCATGAGCAGTTGAATGTT 

miR-nov37-5p TCATTTAACTGCTTGTGGTACA 

miR-nov38-3p AGAGTGTGTGACAGAAACATC 

miR-nov38-5p TGTGTTTCTGGAACTACCACTCT 

miR-nov39-3p TCTGTTGTAGGTCTGTTGTGT 

miR-nov39-5p AACAACAGGCCAACAACAACTGA 

miR-nov40-3p TTGAGCTGTCACATCCTGCTGC 

miR-nov40-5p TAGCGGATGAGTCAGACTCGC 
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miR-nov41-3p TGCGGTAGCGTTAGCAACATGG 

miR-nov41-5p ATGTTGCTAACGCTGCCGCTAGCG 

miR-nov42-3p TATGTGATTGTTCAGTAGACA 

miR-nov42-5p TGTGTACTGAAAAGTCATATAT 

miR-nov43-3p GCTTCTTCACAACACCAGGGT 

miR-nov44-3p CATTTAGCCTTTGCCCTGTAG 

miR-nov44-5p ACAGAGCAAAGGACCAAATGCC 

miR-nov45-3p TTCCTCTGTGCTGGTGGATT 

miR-nov45-5p ACCCTACCTGCACAGAGGAG 

miR-nov46-3p AGTCTGGCACTGTCAGCTCAGA 

miR-nov46-5p TTTGAACTTGACACTGCCATGCG 

miR-nov47-3p TGCGCACGGGGCCACGCCCTGC 

miR-nov47-5p TAGGCGTGTCACTGCGTGTCACA 

Table C.1 - Identifiers of novel Asian seabass (Lates calcarifer) miRNAs discov-

ered during the course of the research described in chapter 6. Novel miRNAs 

are successively named according to the following regular expression: miR-nov[0-

9]+-(3|5)p. 
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Figure C.1 – Volcano plot for miRNA for the differential expression analysis 

presented in chapter 6 of this thesis. Colour legend: Red – differentially ex-

pressed miRNAs; black – non-differentially expressed miRNAs. 
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Figure C.2 – volcano plot for protein-coding genes for the differential expres-

sion analysis presented in chapter 6 of this thesis. Colour legend: Red – differ-

entially expressed genes; black – non-differentially expressed genes. 
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Abstract

Motivation: MicroRNA (miRNA) target prediction algorithms do not generally consider biological context and there-
fore generic target prediction based on seed binding can lead to a high level of false-positive predictions. Here, we
present FilTar, a method that incorporates RNA-Seq data to make miRNA target prediction specific to a given cell
type or tissue of interest.
Results: We demonstrate that FilTar can be used to: (i) provide sample specific 30-UTR reannotation; extending or
truncating default annotations based on RNA-Seq read evidence and (ii) filter putative miRNA target predictions by
transcript expression level, thus removing putative interactions where the target transcript is not expressed in the
tissue or cell line of interest. We test the method on a variety of miRNA transfection datasets and demonstrate
increased accuracy versus generic miRNA target prediction methods.
Availability and implementation: FilTar is freely available and can be downloaded from https://github.com/
TBradley27/FilTar. The tool is implemented using the Python and R programming languages, and is supported on
GNU/Linux operating systems.
Contact: s.moxon@uea.ac.uk
Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

MicroRNAs (miRNAs) exert widespread post-transcriptional con-
trol over mRNA expression in most animal lineages (Bartel, 2018),
creating a need for the accurate identification of miRNA targets in
order to better understand gene regulation. Traditional methods for
providing experimental support for putative interactions include the
use of reporter assays to test for a direct interaction between the
miRNA and mRNA, or perturbation experiments to test for the ef-
fect of increased or decreased miRNA levels on target mRNA, or the
corresponding proteins translated from these molecules (Kuhn et al.,
2008). More recent methods allow researchers to test for direct
interactions between miRNA and putative targets using
transcriptome-wide crosslinking and immunoprecipitation experi-
ments. These methods usually test for binding between the putative
miRNA target and argonaute (AGO) (Chi et al., 2009; König et al.,
2010; Van Nostrand et al., 2016), a key component of the miRNA-
guided RISC (RNA-induced silencing complex), and in addition,
some methods can be used to determine the identity of the miRNA
which is guiding AGO to the target transcript (Helwak and
Tollervey, 2014; Kudla et al., 2011).

Currently available data for these types of experiments are gener-
ally limited in number and diversity of cell types and species.

Inspection of the TarBase resource (v8.0) (Karagkouni et al., 2018),
a database of published, experimentally supported miRNA interac-
tions, reveals that, at the time of writing, even for a widely utilized
model organism such as mouse, AGO immunoprecipitation datasets
are available for only three cell lines and five tissues. The problem is
exacerbated when examining records for other model organisms
such as rat and zebrafish, in which no data from immunoprecipita-
tion experiments are reported. This is likely because generating
data of this type is usually prohibitively expensive in terms of skills,
time and material resources needed to complete sophisticated
transcriptome-wide, next-generation library preparation and
sequencing protocols. The limited applicability of experimental
approaches, therefore, underlies the continuing necessity of compu-
tational approaches for predicting miRNA targets.

There are a number of existing computational tools for predict-
ing miRNA targets in animals. Algorithms such as TargetScan use
complementarity between the seed sequence of the miRNA (Bartel,
2018; Lewis et al., 2003) and a corresponding region of the 30-UTR
of its target as the basis of target prediction (Agarwal et al., 2015;
Friedman et al., 2008; Garcia et al., 2011; Grimson et al., 2007;
Lewis et al., 2003, 2005). Alternatively, some miRNA target predic-
tion algorithms do not require full complementarity in the miRNA
seed region (Enright et al., 2003; Gumienny and Zavolan, 2015;
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John et al., 2004; Khorshid et al., 2013; Wang, 2016), or predict
miRNA targeting to occur in the coding region of the transcript as
well as the 30-UTR (Reczko et al., 2012). Most algorithms, in add-
ition to considerations of seed complementarity, and the location of
the target site within the transcript, also consider features such as
the conservation of the miRNA target site in closely related species,
the thermodynamic stability of the miRNA–mRNA duplex, and the
structural accessibility of putative target sites to the miRNA–RISC
complex, as variables which are also thought to influence miRNA
targeting and subsequent transcript repression (Ritchie and Rasko,
2014).

Although intramolecular features are often considered, current
miRNA target predictions currently do not account for the broader
cellular context in which miRNA targeting occurs. The clearest indi-
cation of this is that current target prediction tools do not account
for whether predicted targets are expressed within a given cell type
or tissue. If the predicted target is not expressed, it cannot physically
interact and be translationally inhibited or repressed by miRNA
molecules. As expression profiles vary across different cell types and
tissues, failing to consider whether a predicted target is expressed in
a given cellular context may lead to false-positive results when mak-
ing miRNA target predictions.

For the prediction of miRNA targets in the 30-UTR, an addition-
al complication is that the identity of an individual 30-UTR may not
be constant across different cell types or different biological condi-
tions due to alternative cleavage and polyadenylation (APA) (Elkon
et al., 2013; Tian and Manley, 2017). APA is the process by which
cellular polyadenylation machinery utilizes alternative polyadenlya-
tion sites located on precursor mRNA molecules to produce tran-
scripts with alternative 30-UTR sequences. Differential usage of
polyadenylation sites in diverse tissues or biological conditions, can
result in distinct 30-UTR isoform abundance profiles existing be-
tween different cell types (Nam et al., 2014). One consequence of
the existence of 30-UTR isoforms is that a miRNA target site may
exist for some 30-UTR isoforms of the same annotated mRNA but
not others.

As a result, APA allows the differential usage of miRNA target
sites by the cell, diversifying and modifying the effect of miRNAs in
different cellular contexts. For example, in cancer cells, shortening
of 30-UTRs can activate oncogenes by increasing mRNA stability,
partially through the reduction in the number of miRNA target sites
in their 30-UTRs, decreasing the extent to which they are repressed
(Mayr and Bartel, 2009). In contrast, an extensive enrichment of
longer 30-UTRs and hence additional miRNA target sites have been
discovered in mammalian brain tissue (Miura et al., 2013), which
has been hypothesized to serve as an extended platform for the regu-
lation of gene expression (Wang and Yi, 2014). This evidence of
context-specific miRNA action underlies the utility of methods
which accounts for this information in order to increase the preci-
sion and sensitivity of miRNA target predictions.

Most databases of miRNA target predictions do not incorporate
information relating to APA, and instead rely on default 30-UTR
annotations provided by public sequence databases such as Ensembl
(Birney, 2004; Cunningham et al., 2019) and RefSeq (Pruitt et al.,
2007, 2014), when identifying potential miRNA targets. Similarly,
most prediction algorithms do not easily allow the user to generate
predictions for multiple 30-UTR isoforms of the same mRNA. An ex-
ception is TargetScan (v7) (Agarwal et al., 2015). In this version,
each mRNA transcript is associated with a distinct profile of relative
30-UTR isoform abundances. From this profile, each scored target
site is weighted by the abundance of the 30-UTR segment containing
the predicted target site relative to all 30-UTRs of that transcript.
The caveat of this analysis being that 30-UTR profiles are generated
from sequencing data obtained from only four human cell lines
(Nam et al., 2014), which is subsequently treated as being represen-
tative for all cell types. Although it was shown that this approach
was superior to not incorporating 30-UTR profile data at all, it was
sub-optimal in comparison to using 30-UTR profiles specific to each
cellular context examined (Nam et al., 2014). Crucially, a miRNA
target prediction tool which enables the user to predict miRNA tar-
gets specific to a given tissue or cell line is currently lacking.

Presented in this article is FilTar, a tool which takes RNA-Seq
data as input and generates miRNA target predictions tailored to
specific cellular contexts. Specificity of target prediction is increased
by utilising information from sequencing data both to filter out
poorly or non-expressed targets and to refine 30-UTR annotations.
Analysis demonstrates that predicted miRNA targets gained and lost
due to 30-UTR reannotation behave like pre-existing predicted
miRNA target and non-targets, respectively, in response to miRNA
transfection. The cumulative effect of integrating these additional
processing steps into conventional miRNA target prediction work-
flows is to increase prediction accuracy and to drastically alter the
number of miRNA target predictions made between different cell
types.

2 Materials and methods

All following steps were carried out using the FilTar tool. The work-
flow and parameters are described in detail below.

2.1 Implementation
FilTar is a command line tool for GNU/Linux operating systems
written predominantly in the Python (v3.6.8) and R (v3.5.0) pro-
gramming languages. Users can configure the tool to process avail-
able RNA-Seq datasets from public repositories such as the
European Nucleotide Archive (ENA; https://www.ebi.ac.uk/ena)
(Harrison et al., 2019; Leinonen et al., 2011) and the Sequence
Read Archive (SRA; https://ncbi.nlm.nih.gov/sra) (Leinonen et al.,
2010), and also the user’s own private sequencing data. All reported
parameters are fully configurable within the FilTar tool. FilTar uti-
lizes Snakemake (v5.4.0) (Köster and Rahmann, 2012) for workflow
management. Most FilTar dependencies are managed using Conda
(v4.6.6; https://docs.conda.io/en/latest/).

2.2 Data preprocessing
Reads were trimmed using Trim Galore (v0.5.0) (Krueger, 2015), a
wrapper around Cutadapt (v1.16) (Martin, 2011), using default
parameters with the exception of the ‘length’ and ‘stringency’
parameters which were set to 35 and 4, respectively.

2.3 30-UTR reannotation
In order to build an index for the alignment of FASTQ reads to the
genome, unmasked chromosomal reference genome assembly fasta
files for human (GRCh38.p12) and mouse (GRCm38.p6) (Schneider
et al., 2017) were downloaded from release 94 of Ensembl (www.
ensembl.org/index.html) (Cunningham et al., 2019). All subsequent
files obtained from the Ensembl resource were for this same release
version. Splice-aware mapping of reads to the genome was achieved
using HISAT2 (v2.1.0) (Kim et al., 2015): The locations of exons
and junction sites were determined by running the appropriate
HISAT2 scripts on the relevant species-specific GTF (gene transfer
format) annotation file also obtained from Ensembl. The ‘hisat2-
build’ binary was executed using the ‘ss’ and ‘exon’ flags indicating
splice site and exon co-ordinates built from the previous step.

The indexed genome was used for FASTQ read alignment using
the ‘hisat2’ command. The ‘rna-strandness’ option was used for
strand-aware alignment. The strandedness of RNA-seq datasets was
determined using the ‘quant’ command of the Salmon (v0.11.3)
(Patro et al., 2017) RNA-seq quantification tool, by setting the ‘lib-
type’ option to ‘A’ for automatic inference of library type. The
SAMtools (v1.8) (Li et al., 2010) ‘view’ and ‘sort’ commands were
used to sort data from sam to bam format, and to sort the resultant
bam files, respectively.

Sorted bam files were converted to bedgraph format using the
‘genomeCoverageBed’ command of bedtools (v2.27.1) (Quinlan,
2014; Quinlan and Hall, 2010) using the ‘bg’, ‘ibam’ and ‘split’
options. Bedgraph files representing biological replicates of the same
condition were merged using bedtool’s ‘unionbedg’ command.
FilTar then calculated the mean average coverage value for each re-
cord in the merged bedgraph file.
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Existing transcript models were produced by converting
Ensembl GTF annotations files (containing one or zero 30-UTR
annotations per protein-coding transcript) into genePred format
using the UCSC ‘gtfToGenePred’ binary, and then from genePred
format to bed12 format using the UCSC ‘genePredToBed’ binary
(Kent et al., 2002). APAtrap (Ye et al., 2018), the 30-UTR reannota-
tion tool, was used to refine 30-UTR annotations on a transcript-by-
transcript basis by integrating information from the bed12 file and
bedgraph files using the ‘identifyDistal3UTR.pl’ perl script with de-
fault parameters. FilTar then integrated existing transcript 30-UTR
models with the new models predicted by APAtrap—replacing exist-
ing 30-UTR models for those transcripts in which APAtrap has made
a reannotation. Only truncations or elongations of single exon 30-
UTR annotations were integrated into final 30-UTR annotations;
novel 30-UTR predictions (i.e. prediction of 30-UTRs for transcripts
without a previous 30-UTR annotation) were discarded and altera-
tions of the 30-UTR start site were also not permitted, due to the
reannotation of 30-UTR start sites by the APAtrap dependency as be-
ginning at the start position of the final exon in standard Ensembl
transcript models. No alterations to existing 30-UTR annotations
spanning multiple exons were permitted, as this is not intended func-
tionality of the APAtrap tool.

2.4 miRNA target prediction
Target prediction for the analyses presented in this study was con-
ducted using the TargetScan algorithm (v.7.01) (Agarwal et al.,
2015). Mature miRNA sequences were obtained from release 22 of
miRBase (www.mirbase.org) (Griffiths-Jones, 2004; Kozomara
et al., 2019). The 30-UTR sequence data required for target predic-
tion can either be provided as multiple sequence alignments (MSAs)
or single sequences, with the former option enabling the computa-
tion of 30-UTR branch lengths and the probability of conserved tar-
geting (Pct) for putative miRNA target sites.

Multiple sequence alignments are derived from 100-way (human
reference) and 60-way (mouse reference) whole-genome alignments
hosted at the UCSC genome browser (https://genome.ucsc.edu)
(Kent et al., 2002) generated using the threaded blockset-aligner
(Blanchette, 2004) stored in MAF (multiple alignment format) for-
mat. MAF files are indexed, and the relevant alignment regions cor-
responding to 30-UTR co-ordinates extracted using ‘MafIO’
functions contained within the Biopython (v1.72) library (Cock
et al., 2009). For human MSAs, during post-processing, distantly
related species were removed, resulting in 84-way MSAs (Agarwal
et al., 2015).

If MSAs are not used, single sequences are extracted from DNA
files using relevant 30-UTR co-ordinates in bed format using the ‘get-
fasta’ command of bedtools with the ‘s’ option enabled. Individual
exon sequences are then merged, creating a single contiguous 30-
UTR sequence. FilTar then converts miRNA and 30-UTR sequence
and identifier information to a format which can be parsed by
TargetScan algorithms.

TargetScan is executed using both Ensembl 30-UTR annotations,
and updated annotations produced using FilTar for the purposes of
the differential expression analyses reported in this study.

The FilTar tool is also fully compatible with the miRanda
(v3.3a) (Enright et al., 2003; John et al., 2004) miRNA target pre-
diction algorithm allowing users to identify non-canonical miRNA
targets, that is predicted targets without a perfectly complementary
seed match to the miRNA.

2.5 Transcript quantification
Human and mouse cDNA files were downloaded from Ensembl.
Kallisto (v0.44.0) (Bray et al., 2016) was used to index the cDNA
data using the ‘kallisto index’ command with default parameters.
Reads were pseudoaligned and relative transcript abundance quanti-
fied using the ‘kallisto quant’ executable, using the ‘bias’ option to
correct for sequence-based biases. When kallisto was used with data
derived from single-end RNA-sequencing experiments, 180 and
20 nt were used as required estimates of the mean average fragment
length and SD, respectively.

2.6 Availability of data and materials
See Supplementary Methods for information regarding the selection
and analysis of data used in this article. All data analysed in this
study are publicly available and a table of relevant project accessions
is given (Supplementary Table S1), along with relevant QC statistics
(Supplementary Table S2). The FilTar tool is publicly and freely ac-
cessible for download (https://github.com/TBradley27/FilTar) with
full supporting documentation (https://tbradley27.github.io/FilTar/).

3 Results

In order to benchmark the performance of the FilTar tool in a specif-
ic cellular context versus general miRNA target prediction we used
RNA-Seq data from miRNA mimic transfection experiments in
mouse and human cell lines. Fold change values represent changes in
relative mRNA abundance in samples transfected with a miRNA
mimic compared to samples transfected with a negative control.

3.1 Expression filtering
Predicted miRNA targets which were filtered according to their ex-
pression level, at a TPM (transcripts per million) (Li et al., 2009)
threshold of 0.1, as a whole, exhibited stronger repression after
miRNA transfection than the full miRNA target set without expres-
sion filtering (Fig. 1 and Supplementary Fig. S1). Predicted miRNA
targets removed by FilTar generally exhibited low absolute fold
change values suggesting that these are false-positive predictions in
these specific cellular contexts (Supplementary Fig. S2).
Implementing expression filters for a range of different TPM values
reveals that increasing this threshold results in a stronger filtering ef-
fect on retained mRNAs (Supplementary Fig. S3a). However,
increasing the expression threshold beyond a particular point (be-
tween 1 and 10 TPM for experiments analysed) leads to the removal
of a considerable number of mRNA transcripts which are repressed
by the transfection of a miRNA mimic (Supplementary Fig. S3b).
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Fig. 1. Implementing an expression threshold on predicted miRNA targets improves
miRNA target prediction accuracy. Results are derived from miRNA mimic and
control transfection experiments. Curves show the cumulative log2 fold change dis-
tributions of: (i) protein-coding non-target transcripts (black), (ii) protein-coding
seed target transcripts (orange) and (iii) expression filtered (TPM ! 0.1) protein-
coding seed target transcripts (green). Numbers in round brackets represent the
number of mRNA transcripts contained in each distribution. Approximate P-values
were computed using one-sided, two-sample, Kolmogorov–Smirnov tests between
unfiltered and filtered target fold change distributions. Data presented for miRNA
mimic transfection into (A) A549 and (B) HeLa cell lines, (C) normal murine mam-
mary gland (NMuMG) cells and (D) mouse embryonic stem cells (ESCs)
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The number and percentage of annotated protein-coding tran-
scripts which are used in FilTar’s 30-UTR reannotation workflow,
for each sample after expression filtering, are given in
Supplementary Table S3. Only those transcripts possessing a pre-
existing 30-UTR annotation spanning only a single exon are selected
(see Materials and methods).

3.2 30-UTR extension
Newly gained miRNA target predictions deriving from FilTar’s
refined 30-UTR annotations of protein-coding transcripts (i.e.
miRNA targets deriving from the elongation of existing 30-UTR
annotations), generally exhibited similar levels of repression to
miRNA target predictions deriving from Ensembl 30-UTR annota-
tions (Fig. 2 and Supplementary Fig. S4). Anomalies were results
deriving from the transfection of miR-107 and miR-10a-5p miRNA
mimics into HeLa cells in which newly identified miRNA target pre-
dictions did not exhibit a log fold change distribution commensurate
with that exhibited by already existing miRNA target predictions
(Supplementary Fig. S4).

3.3 30-UTR truncation
Conversely, miRNA target transcripts that were removed as a result
of FilTar truncating 30-UTR annotations relative to standard
Ensembl annotations, exhibited repression similar to that of anno-
tated non-target transcripts (Fig. 3 and Supplementary Fig. S5). In a
minority of datasets analysed, removed target transcripts exhibited
significantly less repression than target transcripts, but nonetheless
exhibited greater repression than annotated non-target transcripts.
In these datasets, the removed target log fold change distribution
tended to align with the non-target distribution at the negative ex-
tremity, but not at small negative fold change value ranges—indicat-
ing that for a minority of datasets, labelled ‘removed targets’ may be
mildly repressed by targeting miRNAs. Additional analysis demon-
strated that for these datasets, such targets exhibited significantly
weaker repression in response to miRNA transfection than 6-mer

targets, which are the weakest canonical miRNA target site type
(Bartel, 2018) (Supplementary Fig. S6).

3.4 Cumulative effect of filtering and reannotation
When the FilTar reannotation and miRNA target prediction work-
flow was applied transcriptome-wide, to multiple organs and cell
lines, using all annotated miRBase human miRNAs, there was a
mean average gain and loss of miRNA target sites corresponding to
0.18% and 1.5% of the total original miRNA target sites predicted
deriving from Ensembl 30-UTR annotations (Fig. 4). This corre-
sponds to a gain and loss of total miRNA seed sides in the tens and
hundreds of thousands, respectively (Supplementary Table S4).
Although a much larger proportion of miRNA seed sites (mean aver-
age of 26.3%) are lost through expression filtering (Supplementary
Fig. S7), representing a loss of millions of miRNA seed sites
(Supplementary Table S4). This is commensurate with the mean
average of 34.0% of 30-UTR bases lost when removing lowly
expressed transcripts (<0.1 TPM) from target predictions
(Supplementary Table S5), which is greater than the mean average
of 2.0% of bases lost through 30-UTR reannotation (Supplementary
Table S6). When considering the combined effect of expression fil-
tering and 30-UTR reannotation, a mean average 36.1% of 30-UTR
bases are lost, affecting a mean average of 53.4% of protein-coding
30-UTRs (Supplementary Table S7).

4 Discussion

Results show that FilTar is successfully able to utilize RNA-Seq data
to reannotate protein-coding 30-UTR sequences and filter based on
expression data leading to a gain in specificity and sensitivity of tar-
get prediction evidenced through tests using experimental data.

Expression filtering target transcripts at even a modest expres-
sion threshold of 0.1 TPM leads to a loss of millions of seed sites in
most datasets analysed (Supplementary Table S4), representing a
radical reduction in the number of false-positive predictions associ-
ated with miRNA target prediction. This is indicative of the
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Fig. 2. 30-UTR elongation by FilTar leads to the identification of additional valid
miRNA targets. Curves show the cumulative log2 fold change distributions of: (i)
protein-coding non-target transcripts (black), (ii) protein-coding seed target tran-
scripts (orange) and (iii) predicted target transcripts deriving from FilTar 30-UTR
annotations but not Ensembl 30-UTR annotations (blue). Approximate P-values
were computed using one-sided, two-sample, Kolmogorov–Smirnov tests between
pre-existing target and newly identified target fold change distributions. Otherwise
as in Figure 1
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Fig. 3. 30-UTR truncation by FilTar leads to the removal of false-positive miRNA
target predictions. Curves are plotted of the cumulative log2 fold change distribu-
tions of expression filtered: (i) protein-coding non-target transcripts (black), (ii) pro-
tein-coding seed target transcripts (orange) and (iii) predicted target transcripts
deriving from Ensembl 30-UTR annotations but not FilTar 30-UTR annotations
(red). Approximate P-values were computed using one-sided, two-sample,
Kolmogorov–Smirnov tests between non-target and discarded miRNA target fold
change distributions. Otherwise as in Figure 1
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importance of considering the biological plausibility of candidate
miRNA interactions. The positive relationship between the expres-
sion threshold chosen and the extent of repression of retained
mRNA transcripts is evidence for the robustness of this effect
(Supplementary Fig. S3a). The increase in specificity conferred by
expression filtering does, however, seem to be accompanied by a
corresponding loss of sensitivity of miRNA target prediction when
large expression threshold values are chosen (Supplementary Fig.
S3b), indicating that sufficient caution ought to be exercised by the
user when choosing expression threshold values. However, even for
larger expression thresholds, the reduction in sensitivity is less than
the increase in specificity conferred by expression filtering
(Supplementary Fig. S3a).

The number of newly predicted miRNA target sites deriving
from FilTar elongated 30-UTR sequences is generally relatively low.
For cell line datasets analysed, the maximum of number of newly
predicted miRNA targets made for any single miRNA was 63, with
the majority of datasets analysed yielding less than 15 newly pre-
dicted targets (Fig. 2 and Supplementary Fig. S4). The number of
newly identified target transcripts is commensurate with the univer-
sally low proportion of 30-UTRs extended, and the small proportion
of bases added to the total of the 30-UTR annotation
(Supplementary Table S6), even though this still represents a sub-
stantial increase in the number of miRNA seed target sites identified.
This is in contrast to 30-UTR truncation in which the proportion of
30-UTRs truncated and bases removed from the 30-UTR annotation
total are much greater. Analysis shows that there is a strong positive
correlation between the number of 30-UTR bases reannotated, and
the number of predicted miRNA target sites gained or lost through
reannotation (Supplementary Fig. S8a and b). The bias in 30-UTR
truncation as opposed to elongation can possibly be explained by ei-
ther a pre-existing bias in standard Ensembl 30-UTR annotations to
generate long 30-UTR models, or rather a bias in the FilTar reanno-
tation workflow for 30-UTR truncation rather than elongation.
A potential bias in the standard Ensembl annotation workflow
could potentially be explained by the method of transcript annota-
tion, in which, although transcript models are built on a tissue-

specific basis, transcript models incorporated into the final Ensembl
gene set typically only derive from the merging of RNA-sequencing
reads from multiple different tissue samples (Aken et al., 2016),
therefore, creating a bias towards the annotation of longer 30-UTRs.
This effect may be exacerbated or supplemented by the existence of
30-UTR isoforms within a given sample and transcript—creating
relatively low abundance isoforms towards the distal end of the 30-
UTR, making annotation difficult and likely generating a large
amount of uncertainty, biases and variability in different methods
used to model 30-UTRs.

Another possibility is that the shortening and extension of exist-
ing 30-UTR annotations are qualitatively different problems requir-
ing different respective sequencing depths. Within a given sample, a
read sampling analysis demonstrates that there is a positive relation-
ship, up to a point of saturation between sequencing depth and the
number of bases used to elongate existing 30-UTRs (Supplementary
Fig. S9a). In addition, the saturation point for the addition of bases
to 30-UTRs is still substantially less than the proportion of bases
removed at 30-UTRs even at relatively low sequencing depths indi-
cating that the discrepancy between proportion of 30-UTR bases
added or subtracted from the 30-UTRs cannot be explained by insuf-
ficient sequencing depth. A similar positive relationship is observed
between sequencing depth and the number of based truncated from
existing 30-UTRs (Supplementary Fig. S9b), although far fewer reads
seem to be required for saturation to occur, indicating a weaker reli-
ance on sequencing depth for 30-UTR truncation compared to
30-UTR elongation.

Although as mentioned previously, the sequencing depth does
seem to influence the extent of 30-UTR reannotation, for a set of dif-
ferent biological samples, sequencing depth alone seems to have lim-
ited predictive value for this variable (Supplementary Fig. S10a and
b). The likely explanation being that as well as sequencing depth,
the extent of 30-UTR reannotation is also determined by other key
variables such as the cell type being analysed, read length used for
sequencing, library preparation protocol, the use of single-end or
paired-end sequencing, as well as additional researcher or lab-
specific batch effects (Leek et al., 2010). For example, as some cell
types are biased towards shorter 30-UTRs (Mayr and Bartel, 2009),
while others towards longer 30-UTRs (Miura et al., 2013), generat-
ing radically different reannotation statistics irrespective of sequenc-
ing depth used.

As mentioned previously, there was generally a much larger
number of miRNA target sites predicted to be removed than added
during 30-UTR reannotation. This is despite FilTar permitting 30-
UTR truncations only occurring on moderately-to-highly expressed
transcripts, after discovery that the reannotation of the 30-UTRs of
lowly expressed transcripts generated a relatively large number of
what seemed to be false-positive predictions (Supplementary Fig.
S11). The likely cause being that low transcript expression leads to
sporadic and inconsistent coverage across the 30-UTR, in which
there is insufficient information to correctly call 30-UTR truncation.
The default behaviour of the FilTar tool therefore is to only truncate
the 30-UTRs of transcripts which are not poorly expressed (i.e. TPM
! 5).

When examining 30-UTR truncations further, for a minority of
datasets analysed, some removed predicted miRNA targets seem to
be marginally effective, with some transcripts exhibiting low levels
of repression upon transfection of the miRNA mimic. Further ana-
lysis indicates that these marginally repressed transcripts exhibit
even weaker repression than 6-mer targeted transcripts
(Supplementary Fig. S6), one of the least effective canonical miRNA
target types (Bartel, 2018), indicating that the efficacy of these site
types is marginal. A possible explanation for the existence of these
site types is that, for some transcript annotations for which the 30-
UTR was truncated, there may exist a small proportion of isoforms
with longer 30-UTRs, which are too low in abundance to be detected
by APAtrap, but nonetheless still confer a marginal level of repres-
sion to the transcript, and hence is detectable when analysing experi-
mental data.

Investigations into the effect of utilising expression data when
making transcriptome-wide miRNA target predictions can be
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extended by closer examination of not only the refinement of 30-
UTR annotations across different biological contexts, and its effects
on miRNA target prediction, but more precisely the definition of
specific 30-UTR profiles, incorporating information about 30-UTR
isoforms within a given cellular context (Agarwal et al., 2015). This
enables the weighting of miRNA target prediction scores on the
basis of sequencing data applied by the user themselves, enabling
even further and extended tailoring of miRNA target prediction to
the specific biological context being researched. Previous analyses
indicate that the most effective target predictions occur when those
predictions are weighted on the basis of 30-UTR isoform ratios
(Nam et al., 2014). In addition, the scope of FilTar’s functionality
can be increased by enabling the annotation of novel 30-UTR
sequences for transcripts without a current annotated 30-UTR, and
also for those 30-UTRs which themselves span multiple exons. In
addition, both the configurability and precision of FilTar can be
improved in the future by, respectively, enabling use of additional
tools for 30-UTR reannotation (Gruber et al., 2018a, b) and explor-
ing the greater transcriptomic resolutions enabled by nascent single
cell sequencing technologies.

5 Conclusion

FilTar utilizes RNA-Seq data to increase the accuracy of miRNA
target predictions in animals by filtering for expressed mRNA tran-
scripts and reannotating 30-UTRs for greater specificity to a given
cellular context of interest to the researcher. FilTar’s compatibility
with user-generated RNA-Seq data confers functionality across a
wide range of potential biological contexts.
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Divergence in Transcriptional and 
Regulatory Responses to Mating  
in Male and Female Fruitflies
Emily K. Fowler  1*, Thomas Bradley  1,2, Simon Moxon  1 & Tracey Chapman  1

Mating induces extensive physiological, biochemical and behavioural changes in female animals of 
many taxa. In contrast, the overall phenotypic and transcriptomic consequences of mating for males, 
hence how they might differ from those of females, are poorly described. Post mating responses 
in each sex are rapidly initiated, predicting the existence of regulatory mechanisms in addition to 
transcriptional responses involving de novo gene expression. That post mating responses appear 
different for each sex also predicts that the genome-wide signatures of mating should show evidence 
of sex-specific specialisation. In this study, we used high resolution RNA sequencing to provide the first 
direct comparisons of the transcriptomic responses of male and female Drosophila to mating, and the 
first comparison of mating-responsive miRNAs in both sexes in any species. As predicted, the results 
revealed the existence of sex- and body part-specific mRNA and miRNA expression profiles. More 
genes were differentially expressed in the female head-thorax than the abdomen following mating, 
whereas the opposite was true in males. Indeed, the transcriptional profile of male head-thorax tissue 
was largely unaffected by mating, and no differentially expressed genes were detected at the most 
stringent significance threshold. A subset of ribosomal genes in females were differentially expressed in 
both body parts, but in opposite directions, consistent with the existence of body part-specific resource 
allocation switching. Novel, mating-responsive miRNAs in each sex were also identified, and a miRNA-
mRNA interactions analysis revealed putative targets among mating-responsive genes. We show that 
the structure of genome-wide responses by each sex to mating is strongly divergent, and provide new 
insights into how shared genomes can achieve characteristic distinctiveness.

Mating is well-known to induce extensive behavioural and physiological changes in animals of many taxa. These 
include changes to fecundity, longevity, immunity, chemical signalling and sexual receptivity1–4. Post mating 
responses (PMRs) can be initiated within seconds or minutes or may build up over several hours or days5,6. They 
also vary in duration and may be sustained either temporarily, or permanently throughout life7. PMRs may act to 
optimise physiological and behavioural processes in mated individuals to facilitate subsequent reproductive effort 
or behaviour. However, the form of PMRs is expected to diverge significantly between the sexes. For example, in 
species in which both sexes mate multiply, mated females often show refractory responses associated with low-
ered willingness to mate and their removal from the mating arena in order to support and sustain the production 
of fertile eggs, at least until sperm supplies become depleted and sexual receptivity returns. In contrast, mated 
males are likely to be subject to selection pressures to minimise any refractory period, replenish ejaculates and 
rapidly re-enter reproductive competition in the mating arena.

PMRs are particularly well-studied in females of Drosophila melanogaster (reviewed in8,9). During copula-
tion, a male D. melanogaster transfers a suite of well over 150 seminal fluid proteins (Sfps) along with thousands 
of sperm to the female10,11. Many of the changes which occur in females following mating are induced by Sfps, 
and the magnitude of female PMRs appears to be dependent upon the quantity and relative composition of 
Sfps received in the ejaculate12,13. Sfp receipt increases oogenesis, ovulation and feeding14, reduces siesta sleep15, 
increases female aggression towards other females16 and reduces sexual receptivity toward males17. Other phys-
iological effects of Sfps include facilitation of sperm storage and retention18,19, changes to immune gene expres-
sion20,21 and to nutrient and water balance22,23. The adaptive modulation of PMRs appears to be facilitated by the 
highly precise24 and socially-flexible25,26 expression of Sfp-encoding genes.
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In contrast, in males surprisingly little is known about the physiological or behavioural changes associated 
with mating. Some type of refractory period is generally noted, as following mating, both sperm and Sfps must 
be replenished. Data are scarce, but it is suggested that in general seminal fluids are in more limited supply than 
are sperm themselves27–30. The refuelling of a full complement of Sfps in particular is known in some cases to take 
time, e.g. over 24 h in D. melanogaster males29–31. Potentially associated with this, physiological changes to the 
ejaculatory duct have also been noted in mated D. melanogaster males32,33. Aside from these responses, there is 
some evidence from targeted gene expression studies that males invest in immune response molecules following 
mating, similarly to females34. In contrast, while females increase and adapt their nutritional intake following 
mating, the same is not true for males35.

Since males and females share the vast majority of their genome, sexually dimorphic traits such as PMRs are 
predicted to arise from the sex-specific regulation of gene expression36. Hence measurements of genome-wide, 
mating-responsive gene expression profiles can provide insight into the underlying mechanisms involved in 
PMRs in both sexes. Transcriptomic profiles of PMRs have been generated for females of multiple insect species, 
e.g. the Mediterranean fruitfly Ceratitis capitata37; the honey bee Apis mellifera38; mosquitoes Anopheles gambiae39 
and Aedes aegypti40 and the seed beetle Callosobruchus maculatus41. In transcriptomic studies of PMRs in female 
D. melanogaster, several have focussed on profiling responses in the whole female fly42–47. Others have profiled 
individual body parts, such as the female reproductive tract48–50, or heads51 which has helped to reveal additional 
complexity which can sometimes be obscured by whole body arrays and profiles52. Several other studies have also 
profiled the responses of females to the receipt of sperm or Sfps44,45,53,54. Collectively, this work has revealed that 
PMRs can induce pervasive, genome-wide gene expression changes in reproductive, sensory and immune system 
genes with some similarities between signatures of mating and aging processes46.

In contrast to females, transcriptomic studies of PMRs in males are scarce. Gene expression profiles of male 
and female C. capitata and C. maculatus revealed the presence of distinct, sex-specific transcriptional responses to 
mating37,41. However, for D. melanogaster, no direct comparison of the transcriptomic mating response by males 
and females has previously been undertaken, and data on male responses are restricted to a single study using 
head tissue55.

The timing of the different facets of PMRs in both sexes is also highly variable and distinct. This suggests that 
mechanisms in addition to expression changes in coding genes are likely to be important contributors to PMRs 
and should themselves show sex-specificity. Some PMRs are extremely rapid and may rely upon the release of 
neurotransmitters56 or the actions of regulatory molecules. We have scant data so far of these aspects of PMRs, 
particularly in how changes in gene regulation versus gene expression are linked. Hence a significant part of our 
mechanistic understanding of the responses of both sexes to mating is still missing. Consistent with the idea that 
PMRs are achieved by a range of qualitatively different responses, recent data in female D. melanogaster show that 
regulatory molecules, such as miRNAs, can also change in response to mating46,57. miRNAs are a group of small 
non-coding RNA molecules which play a key role in post-transcriptional gene regulation by binding complemen-
tary mRNA transcripts, inhibiting their translation into peptides. Well-known for their role in gene regulation 
during development, miRNAs are increasingly implicated in the expression of adult phenotypes, including the 
regulation of Sfps24, male and female fertility and ovary morphology58. These recent findings predict significant 
changes to the expression of coding and regulatory non-coding genes following mating in both sexes, but as yet 
there has been no genome-wide analysis of non-coding RNA responses to mating in males. Study of the expres-
sion profiles of miRNAs in tandem with mRNAs also offer the potential for new insights into the regulatory 
processes underlying the changes in transcript abundance.

In this study, we addressed the omissions noted above by testing two predictions: (i) that there are significant 
changes to the expression of both coding and regulatory non-coding genes between virgin and mated flies in both 
sexes, and (ii) that the mode and nature of PMR gene expression profiles of each sex are markedly different. The 
data supported both predictions. For the female head-thorax (HT) and male abdomen (Ab) tissues, >2000 genes 
were differentially expressed (DE) between virgin and mated status. Interestingly, for the female HT the majority 
of DE genes were downregulated following mating, while many of the same genes were upregulated in the mated 
male Ab. In contrast, only 125 genes were DE after mating in the female Ab, while mating did not significantly 
impact gene expression in the male HT. The magnitude of genome-wide change showed sex specificity and was 
much greater in females, with ~50% vs 15% of DE genes showing greater than two-fold change in females vs 
males, respectively. We identified novel mating-induced miRNAs in the abdomens of both sexes, with changes 
occurring in fewer miRNAs in males than in females.

Results
Sequencing QC. To determine the transcriptomic profiles of mated and virgin flies, we conducted 
high-throughput RNA sequencing (RNA-seq). We extracted the mRNA and small RNA (sRNA) fractions from 
a total of 16 samples, consisting of two treatments (virgin vs. three hours post-mated), two sexes, two body-
parts (HT and Ab) and two biological replicates. FASTQ files generated from the sequencing reads were checked 
using FastQC (Babraham Bioinformatics) and no significant quality issues were discovered. RNA-seq reads had 
an average pseudo-alignment rate of 77.61% to the transcriptome (min 64.63%, max 85.1%, Supplementary 
Table S1a), and sRNA reads had an average of 84.97% alignment rate to the genome (min 82.49%, max 88.63%, 
Supplementary Table S1b). PCA plots showed clustering by sample for both mRNA-seq and sRNA-seq datasets 
(Fig. 1). Variation between replicates was generally very low. During differential expression analysis using the 
DESeq2 package59, coding genes or miRNA exhibiting high variability in expression values between replicates are 
penalised, so genes are only called DE if the variation between treatments is over and above that attributable to 
the replicates. Size distribution profiles of sRNA read length showed peaks at 22 and 23 nt, corresponding to the 
expected length for miRNAs (Supplementary Table S1c). In previous Drosophila sequencing studies, we and oth-
ers46,60 have noted a read length peak at 30 nt, accounting for >90% of the total reads. This fraction may contain 
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some longer sRNA species such as piRNAs, but is dominated by reads corresponding to the highly abundant 30 
nt 2S rRNA fraction found in insect species. To remove this fraction, we incorporated a complimentary “blocking 
oligo” into the library construction60, which successfully prevented adaptor ligation of 2S rRNA, thus increasing 
the proportion of reads derived from miRNAs.

Mating-Responsive mRNAs. The total numbers of genes showing DE in response to mating varied widely 
across sex and tissue type (Table 1; Supplementary Table S2a–d), as did the magnitude of the fold change in 
expression. The female HT and male Ab tissues had the greatest number of mating-responsive genes, with over 
2000 in each case. In contrast, the number of genes affected by mating was much lower in the female Ab, in which 
only 125 genes were DE between the virgin and mated treatments. Strikingly, no genes were DE between the HT 
of virgin versus mated males with a q-value of < 0.05. Replicate to replicate variability of virgin and mated male 
head-thorax samples was comparable with other samples (Supplementary Fig. S1). Therefore, the absence of sta-
tistically significantly differentially expressed genes cannot be explained by replicate variability and appears to be 
a biologically relevant effect. The magnitude of change in gene expression was greater in females than males, with 
~50% of DE genes showing greater than two-fold change regardless of body-part. Gene expression changes in the 
male abdomen, though involving numerous genes, were more subtle, with only 15% of DE genes showing over 
two-fold change. To detect signatures of enriched function amongst the DE genes we performed gene ontology 

Figure 1. Principle component analyses of mRNA-sequencing (A) and miRNA sequencing data (B). Points are 
coloured by sample type: mated (m), virgin (v), male (♂), female (♀), abdomen tissue (Ab) or head-thorax tissue 
(HT).

Significance threshold Total DE genes Upregulated in mated flies (>2 fold) Downregulated in mated flies (>2 fold)
mRNA

♀ abdomen
p < 0.05 628 475 (110) 153 (32)
FDR q < 0.05 125 106 (50) 19 (12)

♀ head-thorax
p < 0.05 3372 1206 (224) 2166 (1036)
FDR q < 0.05 2040 628 (144) 1412 (804)

♂ abdomen
p < 0.05 3607 2273 (355) 1334 (38)
FDR q < 0.05 2068 1507 (296) 561 (19)

♂ head-thorax
p < 0.05 329 265 (19) 64 (2)
FDR q < 0.05 0 0 0

miRNA

♀ abdomen
p < 0.05 16 12 4
FDR q < 0.05 4 3 1

♀ head-thorax
p < 0.05 10 4 6
FDR q < 0.05 0 0 0

♂ abdomen
p < 0.05 9 2 7
FDR q < 0.05 2 0 2

♂ head-thorax
p < 0.05 2 2 0
FDR q < 0.05 0 0 0

Table 1. Total numbers of mating-responsive mRNAs and miRNAs in male (♂) and female (♀) head-thorax 
and abdomen tissues. Numbers of significant DE genes with a fold-change difference of >2 are shown in 
parentheses.
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(GO) enrichment analyses on all sets of mating responsive genes (Table 2, Supplementary Table S3a–h). We also 
carried out GO analyses on the subset of genes in each sex/tissue type which exceeded a fold-change threshold of 
two (Supplementary Table S4a–f).

DE in the female abdomen. 125 protein coding genes were responsive to mating in female abdomens. Most of 
these (106) were upregulated in mated females. A GO enrichment analysis of all upregulated genes revealed a 
significant over-representation (FDR q-value < 0.05) of 30 biological process terms (Supplementary Table S3a). 
Many of the terms were related to translation and peptide synthesis due to the presence of 17 ribosomal protein 
encoding genes. More generally, “protein metabolism” was enriched which, aside from ribosomal protein genes, 
involved 16 peptidase-encoding genes, including the spermathecal endopeptidases Send1 and Send2. At least 
six terms were related to “multi-organism process” and two terms involving response to heat were also enriched, 
generated by the presence of 13 genes encoding immune system, or stress response proteins. Additionally, the 
term “electron transport chain” was enriched, associated with six genes – blw, CG3835, CG3731, CG4169, ND75 
and RFeSP. Of the 106 significantly upregulated genes, 50 exceeded the two fold-change threshold. A GO analysis 
of these revealed four significant biological process terms, three of which were related to “response to bacterium”, 
and involved eight different genes. The other enriched term, “proteolysis”, consisted of 12 genes (Supplementary 
Table S4a). Of the 19 genes which were downregulated in mated female abdomens, there were no terms with an 
FDR q-value < 0.05. However, five genes related to “carbohydrate metabolic process” were present in this subset: 
CG32444, Mal-A1, Mal-A7 and Mal-A8, and tobi (Supplementary Table S3b).

DE in the female head-thorax. 2040 genes showed DE between virgin and mated females in the HT. Of these, 
628 had higher expression in mated females. An enrichment analysis of the upregulated genes did not return any 
terms with an FDR q-value < 0.05, although terms associated with ncRNA processing fell just below the signifi-
cance threshold (Supplementary Table S3c). Excluding low fold-change (<2 FC) DE genes from the GO analysis 
highlighted enrichment in two terms related to rRNA processing (Supplementary Table S4b). Of the 1412 down-
regulated genes, 141 biological process terms were significantly over-represented (Supplementary Table S3d). 
Almost all were linked to metabolic processes involving the generation of precursor metabolites and energy and 
the oxidation-reduction process, nucleoside phosphate metabolic process, and organonitrogen compound meta-
bolic process. There were also terms associated with carbohydrate metabolism and oxoacid metabolism. Specific 
terms which were significantly enriched included “translation”, “ATP biosynthetic process”, “glycolytic process”, 
“muscle contraction” and “drug metabolic process”. More than half of the downregulated HT genes exceeded the 
two fold-change threshold. A GO analysis on this subset returned 106 enriched biological process terms, again 
mostly related to organonitrogen compound biosynthesis and energy metabolism, as well as carbohydrate metab-
olism and many other metabolic processes (Supplementary Table S4c).

DE in the male abdomen. 2068 protein-coding genes were DE between virgin and mated male abdomens, and 
1507 of these were upregulated in the mated flies. A GO enrichment analysis of the upregulated genes returned 
97 biological process terms with an FDR q-value < 0.05 (Supplementary Table S3e). At least 35 of the terms 
were related to the transport and localization of organic substances and proteins, and protein folding. Another 
two terms were related to proteolysis. The remaining terms were connected to metabolic processes. Similarly 
to the downregulated genes in the female HT, these included terms related to translation and energy genera-
tion. Additionally, the term “translational initiation” was enriched, driven by the presence of genes encoding 
eukaryotic translation initiation factor. Only 20% of the upregulated male abdomen genes had a fold change of 
over two, but this subset was enriched for 32 terms, mostly generated by the presence of ~50 ribosomal protein 
genes (Supplementary Table S4d). These terms included “translation” and “organonitrogen compound biosyn-
thesis”. Terms involving energy generation also remained overrepresented. Among the higher fold-change subset, 
“defence response to Gram-positive bacterium” was enriched, whereas the terms connected to protein transport 
and folding were absent. The 561 downregulated genes were not significantly enriched for any biological process 
terms, although the term “response to nutrient levels” fell just below the significance threshold (Supplementary 
Table S3f). Only 19 genes were over two-fold DE in the downregulated set. A GO analysis of this subset also did 
not return any significantly enriched terms. However, six terms had a p-value of > 0.05 and were all connected 
to glutamate receptor signalling, involving four genes – Rdl, Syt1, CG32447 and mtt (Supplementary Table S4e).

DE in the male head-thorax. Strikingly, no mating-responsive genes met the stringent q-value < 0.05 threshold 
in the comparison of virgin and mated male head-thorax tissue. However, a GO enrichment analysis on 329 DE 
genes with a p-value < 0.05 showed that, similarly to the male abdomen, terms involving ribosomal protein genes, 
such as “translation” were over-represented in the 264 upregulated genes (Supplementary Table S3g). When we 
analysed the 19 upregulated genes with greater than two-fold DE, 11 terms associated with defence response were 
enriched, represented by five genes – AttB, CecA2, LysX, CecC and Drsl2 (Supplementary Table S4f). GO analysis 
of the 64 downregulated genes returned terms involving molybdopterin cofactor processing, caused by three 
genes – cin, Mocs2 and CG42503 (Supplementary Table S3h). All but two of the downregulated genes had a fold 
change of over two, so no further GO analyses were carried out on these genes.

Comparison of sex- and tissue-specific profiles of mRNAs. We compared the mating responsive genes in each sex 
and tissue type to one another, to examine differences in the transcriptomic profiles between males and females 
and between different body parts (Fig. 2). For comparisons of female HT and abdomen tissues, and female and 
male abdomens, we were able to use the set of DE genes with an FDR q-value of < 0.05 (Table 1). However, since 
there were no such genes falling below that cut-off in the male HT, we produced extended DE gene lists with a 
p-value of < 0.05 for the male HT, Ab and the female HT. This less stringent threshold for DE calling allowed us 

https://doi.org/10.1038/s41598-019-51141-9


5SCIENTIFIC REPORTS |         (2019) 9:16100  | https://doi.org/10.1038/s41598-019-51141-9

www.nature.com/scientificreportswww.nature.com/scientificreports/

Biological process term ♀ Ab (up) gene count ♀ HT (down) gene count ♂ Ab (up) gene count
electron transport chain 6 44 35
translation 17 79 91
organic substance biosynthetic process 25 227 231
organonitrogen compound metabolic process 45 395 436
primary metabolic process 56 543 589
organic substance metabolic process 60 599 643
metabolic process 67 694 720
mitochondrial protein processing 5 5
cell redox homeostasis 16 19
generation of precursor metabolites and energy 70 44
cofactor metabolic process 58 48
organophosphate metabolic process 73 63
oxidation-reduction process 136 93
cellular amide metabolic process 94 120
macromolecule biosynthetic process 117 125
organonitrogen compound biosynthetic process 153 148
small molecule metabolic process 168 149
cellular nitrogen compound biosynthetic process 154 160
cellular biosynthetic process 222 223
biosynthetic process 230 234
cellular nitrogen compound metabolic process 260 293
cellular macromolecule metabolic process 281 316
nitrogen compound metabolic process 481 535
cellular metabolic process 572 613
cellular process 843 899
cellular response to unfolded protein 8
translational initiation 15
cellular component biogenesis 16
Golgi organization 28
rRNA metabolic process 30
Golgi vesicle transport 31
protein folding 48
protein-containing complex subunit organization 90
macromolecule localization 109
organic substance transport 123
establishment of localization in cell 124
proteolysis 129
cellular localization 132
catabolic process 136
cellular protein metabolic process 226
protein metabolic process 329
macromolecule metabolic process 453
regulation of autophagy of mitochondrion 5
muscle system process 9
reactive oxygen species metabolic process 11
cellular aldehyde metabolic process 12
mitochondrial transport 22
antibiotic metabolic process 25
monovalent inorganic cation transport 29
cellular homeostasis 43
carbohydrate metabolic process 56
carbohydrate derivative metabolic process 80
drug metabolic process 81
rRNA 3′-end processing 3
response to heat 7
multi-organism process 13

Table 2. Representative GO biological process terms significantly enriched among the mating-responsive genes 
in the female abdomen (♀ Ab), male head-thorax (♂ HT) and male abdomen (♂ Ab). Term enrichment analysis 
was performed using GOrilla.
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to explore the most significant changes in gene expression in the mated male HT, and make fair comparisons with 
the male Ab and female HT. GO analyses were conducted on the overlapping genes (Supplementary Table S5) to 
detect shared signatures of functional enrichment.

We first compared the DE genes in the female HT and female Ab, and found a total overlap of 70 genes (Fig. 2a). 
Of these, 13 genes were upregulated in response to mating in both the Ab and HT tissues, including the turan-
dot protein genes TotA, TotC and TotX, and the gene encoding juvenile hormone esterase (Jhe) (Supplementary 
Table S5a). There were also 11 genes downregulated in both tissues in females, including the five genes predicted 
to be involved in carbohydrate metabolism, mentioned earlier (Supplementary Table S5b). Another 46 genes 
were differentially expressed in both body-parts, but in opposing directions. All but one of the opposing genes 
were downregulated in response to mating in the HT, and upregulated in the Ab. Over-represented among these 
were 14 ribosomal protein genes, and six genes encoding proteins involved in oxidative phosphorylation (ND-75, 
RFeSP, UQCR-C1, UQCR-C2, COX8, blw) (Supplementary Table S5c).

We next considered whether the mating responsive genes of the female Ab were also DE in the male Ab 
(Fig. 2b). In this case almost all overlapping genes were expressed in the same direction, i.e. 51 genes were upreg-
ulated in both the female and male Ab in response to mating. Again, a GO analysis on the 51 genes revealed an 
enrichment in the terms “translation”, and “electron transport chain” (Supplementary Table S5d). Using the less 
stringent DE calling, we next compared all DE genes with a p-value < 0.05 in the male HT, to those from the 
male Ab (Fig. 2c). In contrast to the female, overlapping DE genes in the male tissues were always DE in the same 
direction (with the exception of one gene), i.e. 223 genes were upregulated in both HT and Ab, and 29 genes were 
downregulated in both tissues. Once again, GO terms associated with translation were enriched amongst the 223 
overlapping upregulated genes, while there were no significantly enriched terms for the downregulated genes 
(Supplementary Table S5e,f).

Finally, we compared the male and female HT body parts (Fig. 2d). Unlike in the Ab samples, where over-
lapping DE genes tended to be expressed in the same direction in both sexes, in the HT they were more likely to 

Figure 2. Overlap of the identities of up- and downregulated genes in response to mating in the different 
transcriptomes. (a) Numbers of DE genes upregulated (↑ ), or downregulated (↓ ) in response to mating in female 
abdomen (Ab) or head-thorax (HT). (b) Numbers of DE genes up- or downregulated in female or male Ab 
tissues. (c) Numbers of DE genes upregulated, or downregulated in response to mating in male Ab or HT (d) 
Numbers of DE genes upregulated, or downregulated in response to mating in female (♀) or male (♂) HT tissue. 
*DE calling based on a significance threshold of p < 0.05.
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be expressed in opposite directions. For example, we found 197 genes that were upregulated in the male HT, but 
downregulated in the female HT. GO analysis of the overlapping genes again revealed an enrichment of terms 
related to translation, and organonitrogen compound metabolism (Supplementary Table S5g).

Comparison of mRNA profiles with existing studies. Several previous studies have investigated transcriptomic 
changes in response to mating in D. melanogaster females, with variation in the tissue type analysed, and the 
time-point captured following mating (Supplementary Table S6a). To compare the mating-responsive genes 
found in previous studies with our data here, we selected the studies most closely matching our experimental 
protocol. For example, we compared our female Ab samples to those studies that used either whole females, or 
reproductive tracts, and our female HT samples to those using heads or whole females. A summary of the studies 
and the numbers of mating-responsive genes identified in each one can be found in Supplementary Tables S6a,b.

First we examined the number of mating-responsive genes in our dataset which were also DE in other studies, 
regardless of the direction in expression change (Supplementary Table S6b–f). For our female abdomen samples, 
65% of DE genes were also found to be mating-responsive in at least one other study. For the HT samples there 
was less, but still considerable, agreement with 29% of our DE genes also responding to mating in at least one 
other study. When we also considered the direction of DE, for the female Ab samples, 34.9% of our upregulated 
genes were also upregulated in at least one other study, and 63.2% of downregulated genes were downregulated 
in other studies. For the HT, 19.4% of genes increasing expression following mating in our study also did so in 
at least one previous study. For the downregulated genes in the head-thorax, agreement with other studies fell 
to 8.9% when direction of expression was taken into account. Interestingly, the female HT genes which showed 
opposing direction of DE in our study compared to previous studies were enriched for genes involved in transla-
tion, which we have shown to exhibit opposing expression in the head-thorax in comparison to abdomen sam-
ples. Studies measuring transcriptomic responses in whole flies would not have captured these body-part specific 
patterns.

To identify individual genes consistently found to be mating-responsive throughout the literature, we exam-
ined in more detail the DE genes found in our study and at least three previous studies. For upregulated genes in 
the abdomen, four genes were found to increase expression following mating in three other studies (Uro, jhamt, 
CG17234, CG3290), two were found in four other studies (su(r) and CG17239) and another two in five other 
studies (CG31324 and Send2). For upregulated genes in the head-thorax, CG6910, CG3036 and Uro were found 
in three other studies, CG31324 was found in four other studies and fit was found in five other studies.

Sex- and tissue-specific miRNA profiles. Reads from the sRNA-Seq output aligned to 401 mature miR-
NAs. The principle component analysis revealed that the miRNA profiles of HT and Ab tissues were distinct 
(Fig. 1). Furthermore, the miRNA profile of male and female Ab body parts differed significantly. This was in 
contrast to the HT, in which both sexes had similar profiles (Fig. 1). To investigate the sex- or tissue-bias in 
miRNA expression, we conducted a differential expression analysis between sexes and tissues (Supplementary 
Table S7a–d). A comparison of HT and Ab body-parts revealed that 83 miRNAs and 71 miRNAs were HT or Ab 
biased, respectively, in both sexes (Table 3). For the Ab-biased miRNAs, 45 were biased in males only, and 29 in 
females. There were fewer HT-biased miRNAs which were specific to one sex - 21 miRNAs were HT-biased in 
males only, and 14 miRNAs were HT-biased in females only. When males were compared to females, as expected 
from the PCA, most sex-biased miRNAs were specific to the Ab (97 male-biased, 42 female biased), with fewer 
miRNAs specific to the head-thorax (9 male-biased, 12 female-biased). There were also some miRNAs that were 
male- or female-biased in both body parts (8 male-biased, 12 female-biased) (Table 4). We examined the identi-
ties of the sex- and tissue-biased miRNAs and found strong concordance with a meta-analysis on sex-bias using 
publicly available sRNA-Seq data61. Of the 37 female-biased miRNAs identified in the meta-analysis, 31 were also 
female-biased in this study. Similarly, 26 of the 28 male-biased miRNAs identified were also male-biased here. 
The fact that the majority of sex-biased miRNAs were also abdomen-biased in this study is consistent with the fact 
that male- or female-biased miRNAs tend to be expressed in the testes or ovaries, respectively61.

Mating-Responsive miRNAs. Significantly (padj <0.05) differentially expressed miRNAs in response to 
mating were found in the Ab tissue of both males and females (Table 1, Supplementary Table S8a–d). In the 
female Ab, three miRNAs were significantly upregulated in response to mating (miR-14-3p, miR-997-5p, and 
miR-184-5p), and one miRNA was downregulated (miR-286-3p). In the male Ab, both strands of miR-927 were 
significantly downregulated in response to mating. No miRNAs were significantly DE in the HT of either sex.

mRNA-miRNA interactions. A number of mating-responsive mRNA targets of the differentially expressed 
miRNAs were identified, including genes which were dysregulated in the opposite direction of the targeting 
miRNA (i.e. an upregulated target of a downregulated miRNA, or a downregulated target of an upregulated 
miRNA) (Supplementary Table S9). Of the upregulated miRNAs, only miR-184-5p in the female abdomen was 
linked to any significantly downregulated targets, with one gene identified. For downregulated miRNAs, miR-
286-3p of the female abdomen contains four significantly upregulated targets. For the male abdomen, there 
were 50 and 114 significantly upregulated targets for the downregulated miRNAs miR-927-3p and miR-927-5p, 
respectively. Six of these significantly upregulated genes are predicted to be targeted by both miR-927-3p and 
miR-927-5p, namely Rpl37a, CG5707, Slh, twi, Su(w[a]) and Nop60B. Network visualisations of miR-927-3p and 
miR-927-5p interactions with all putative, mating-responsive mRNA targets (regardless of direction of differen-
tial expression) revealed the extensive targeting of both upregulated and downregulated mRNAs, including an 
additional 13 downregulated mRNAs targeted by both strands of miR-927 (Supplementary Fig. S3,a,b). To test 
whether the predicted targets of miR-927 were functionally linked, we conducted a GO enrichment analysis on 
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the upregulated predicted targets of each strand of miR-927. However, the analysis did not yield any enriched 
terms with an FDR q-value > 0.05.

When comparing predicted target and non-target transcripts of each differentially expressed miRNA for each 
comparison (e.g. mated versus virgin female Ab), the Kolmogorov-Smirnov analyses did not show differences 
between the fold change distributions of predicted targets and non-targets (Supplementary Fig. S6). Similarly we 
found no evidence for the overrepresentation of miR-184-5p, miR-286-3p or miR-927 targets amongst the corre-
sponding set of mating-responsive mRNAs, when compared to all mRNAs (Fisher’s Exact Test).

Discussion
We tested two major predictions (i) that there are significant changes to the expression of coding and regula-
tory non-coding genes following mating in both sexes, and (ii) that the mode and nature of PMR gene expres-
sion profiles of each sex are markedly different. The results supported both predictions and revealed significant 
insights into sex-specific functional variation in post-mating responses. Our data showed strong signatures of 
mating-responsive gene expression profiles that were unique, and spatially distinct, in each sex. In females, differ-
ential expression was generally of larger magnitude than in males. Gene expression in the female head-thorax was 
radically altered by mating, with 2040 genes showing differential expression of substantial magnitude, while 125 

Head-thorax biased miRNAs Abdomen biased miRNAs
Both sexes (83) Both sexes (71)
bantam-3p, 5p miR-193-3p, 5p miR-4952-5p miR-1007-5p miR-306-5p miR-960-3p, 5p
let-7-5p miR-210-3p, 5p miR-4960-3p miR-1012-3p miR-308-3p, 5p miR-961-3p, 5p
miR-1000-3p, 5p miR-219-5p miR-4968-5p miR-1015-3p miR-310-3p miR-962-3p, 5p
miR-1001-3p, 5p miR-2489-3p miR-7-5p miR-10-3p, 5p miR-311-3p, 5p miR-963-3p, 5p
miR-1004-3p, 5p miR-252-3p, 5p miR-87-3p, 5p miR-12-3p, 5p miR-312-3p, 5p miR-964-3p, 5p
miR-1005-3p miR-263b-5p miR-927-5p miR-184-5p miR-313-3p, 5p miR-982-5p
miR-1006-3p miR-276a-3p, 5p miR-929-3p miR-2494-3p, 5p miR-314-3p, 5p miR-983-3p, 5p
miR-1009-3p miR-276b-3p, 5p miR-932-3p, 5p miR-263a-3p, 5p miR-316-3p, 5p miR-984-3p, 5p
miR-1017-3p miR-277-3p, 5p miR-9383-3p miR-275-3p miR-31a-5p miR-991-3p
miR-11-3p miR-278-3p miR-957-3p, 5p miR-279-3p, 5p miR-31b-5p miR-997-5p
miR-124-3p, 5p miR-284-3p, 5p miR-969-3p miR-281-1-5p miR-33-5p miR-9b-3p, 5p
miR-125-5p miR-285-3p, 5p miR-970-3p, 5p miR-281-2-5p miR-4919-3p, 5p miR-9c-5p
miR-133-3p, 5p miR-2c-3p, 5p miR-971-3p, 5p miR-281-3p miR-92a-3p miR-iab-4-3p
miR-137-5p miR-307a-3p miR-981-3p, 5p miR-282-5p miR-956-3p, 5p miR-iab-8-5p
miR-13a-3p, 5p miR-315-3p, 5p miR-987-5p miR-283-3p, 5p miR-958-3p, 5p
miR-13b-1-5p miR-317-5p miR-990-5p miR-304-3p, 5p miR-959-3p, 5p
miR-1-3p, 5p miR-34-3p, 5p miR-993-3p, 5p Females only (29)
miR-14-3p miR-4945-5p miR-998-5p miR-1008-5p miR-2a-3p miR-92b-3p
miR-190-5p miR-4951-5p miR-999-3p miR-1014-5p miR-2b-2-5p miR-9372-5p
Females only (14) miR-11-5p miR-2b-3p miR-989-3p, 5p
miR-100-3p miR-307a-5p miR-4956-5p miR-13b-2-3p miR-306-3p miR-994-3p, 5p
miR-1007-3p miR-317-3p miR-4976-5p miR-13b-3p miR-318-3p, 5p miR-995-3p
miR-1011-3p miR-3-3p miR-929-5p miR-275-5p miR-4917-3p miR-996-3p, 5p
miR-274-5p miR-375-3p, 5p miR-9a-3p, 5p miR-282-3p miR-79-3p, 5p miR-998-3p
Males only (21) miR-2a-1-5p miR-92a-5p miR-9c-3p
miR-1003-3p miR-263b-3p miR-7-3p Males only (45)
miR-1010-3p miR-2a-2-5p miR-954-3p, 5p miR-1014-3p miR-4977-3p miR-978-3p, 5p
miR-137-3p miR-2a-3p miR-969-5p miR-125-3p miR-4985-5p miR-979-3p, 5p
miR-13b-3p miR-2b-2-5p miR-988-3p miR-2498-3p, 5p miR-8-3p, 5p miR-980-5p
miR-14-5p miR-2b-3p miR-995-3p miR-2499-3p, 5p miR-929-5p miR-982-3p
miR-219-3p miR-307b-5p miR-998-3p miR-274-5p miR-9369-3p, 5p miR-985-3p
miR-2535b-3p miR-4952-3p miR-303-5p miR-9370-5p miR-986-3p

miR-307b-3p miR-972-3p miR-992-3p
miR-31a-3p miR-973-3p, 5p miR-997-3p
miR-33-3p miR-974-3p, 5p miR-iab-4-5p
miR-375-3p, 5p miR-975-5p miR-iab-8-3p
miR-4966-3p, 5p miR-976-3p
miR-4976-5p miR-977-3p, 5p

Table 3. miRNAs with tissue-biased expression in both sexes, or in males or females only. Numbers in 
paratheses are the total miRNAs in each category, inclusive of 3p and 5p strands where both are differentially 
expressed.
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genes responded to mating in female abdomens. In contrast, in males there were no mating-responsive expression 
changes in the head-thorax at all under the same significance criteria, whereas male abdomens showed differen-
tial expression in 2068 genes.

The large number of DE genes in the female head-thorax and male abdomen is consistent with known PMR 
activity and phenotypes in those different body-parts. For example, the receipt of the ‘sex peptide’ seminal fluid 
protein from males during mating causes neurological changes in the female brain that affect feeding behaviour, 
sleep patterns, sexual receptivity and aggression levels14–16. Hence even if the primary site of Sfp receipt is within 
the female reproductive tract in the abdomen, Sfps can cause many changes in other parts of the body by binding 
to receptors located in the nervous system including the brain62. Our knowledge of PMR phenotypes in males 
is limited, but biological processes known to be affected by mating are located within the abdomen, namely the 
replenishment of ejaculate components and morphological changes to the ejaculatory duct31,33. The low numbers 
of DE genes seen in the female abdomen and male head-thorax suggests there is lower activity of biological pro-
cesses in those body-parts following mating, or a low requirement for active de novo gene transcription. However, 
it is also possible that gene expression changes in different tissues and cell types within the major body parts tested 
are occurring, but counteracting one another. The gene expression patterns we describe are supported by specific 
validated genes reported from other studies. Previous transcriptomic studies on females varied considerably in 
the numbers of DE genes detected in response to mating, from just 3843 to over 200044 in whole females assayed a 
few hours after mating. One study49 also found a ten-fold difference in the numbers of mating-responsive genes 
in the spermatheca compared to the seminal receptacle, indicating that tissues with related functions can also 
show distinctive responses.

Female biased miRNAs Male biased miRNAs
Whole fly (12) Whole fly (8)
miR-286-3p miR-956-5p miR-1006-3p miR-252-5p miR-2c-3p
miR-2b-2-5p miR-989-3p miR-10-5p miR-263a-5p miR-993-3p
miR-308-3p, 5p miR-994-5p miR-133-3p miR-263b-3p
miR-318-3p miR-9b-3p Abdomen only (97)
miR-92a-3p miR-9c-5p let-7-5p miR-314-3p miR-970-3p, 5p
miR-92b-3p miR-1000-5p miR-315-5p miR-972-3p
Abdomen only (42) miR-100-3p miR-316-5p miR-973-3p, 5p
bantam-3p miR-311-3p, 5p miR-1004-3p miR-317-3p miR-974-5p
miR-1003-3p miR-312-3p, 5p miR-1013-3p miR-31a-3p, 5p miR-975-5p
miR-1010-3p miR-313-3p, 5p miR-1015-3p miR-31b-5p miR-976-3p
miR-11-5p miR-318-5p miR-10-3p miR-3-3p miR-977-3p, 5p
miR-13b-2-5p miR-7-5p miR-12-3p miR-34-3p, 5p miR-978-3p, 5p
miR-13b-3p miR-79-3p miR-125-3p, 5p miR-375-3p, 5p miR-979-3p, 5p
miR-184-3p miR-92a-5p miR-12-5p miR-4919-3p miR-980-5p
miR-2489-3p miR-9372-5p miR-1-3p miR-4966-3p, 5p miR-981-3p
miR-275-3p miR-988-3p miR-2498-3p, 5p miR-4976-5p miR-982-3p, 5p
miR-279-3p miR-989-5p miR-2499-3p miR-6-3p miR-983-3p, 5p
miR-282-3p, 5p miR-994-3p miR-263a-3p miR-8-3p, 5p miR-984-3p, 5p
miR-284-3p, 5p miR-995-3p miR-274-5p miR-87-3p miR-985-3p
miR-2a-1-5p miR-996-3p, 5p miR-276b-3p miR-929-5p miR-986-3p
miR-2a-3p miR-998-3p, 5p miR-277-3p, 5p miR-9369-3p, 5p miR-987-5p
miR-2b-3p miR-999-3p miR-278-3p miR-9370-5p miR-991-3p
miR-306-3p, 5p miR-9b-5p miR-281-1-5p miR-959-3p, 5p miR-992-3p
miR-310-3p miR-9c-3p miR-281-2-5p miR-960-3p, 5p miR-997-5p
Head-thorax only (12) miR-281-3p miR-961-3p, 5p miR-9a-3p, 5p
miR-281-1-5p miR-375-3p miR-303-5p miR-962-3p, 5p miR-iab-4-3p
miR-283-5p miR-8-3p miR-304-3p, 5p miR-963-5p miR-iab-8-5p
miR-314-3p, 5p miR-956-3p miR-307a-5p miR-964-3p, 5p
miR-316-5p miR-958-3p, 5p miR-307b-3p miR-969-3p
miR-33-5p miR-980-3p Head-thorax only (9)

miR-1017-3p miR-210-5p miR-990-5p
miR-124-3p, 5p miR-932-3p miR-998-3p
miR-190-3p miR-957-3p

Table 4. miRNAs with sex-biased expression in both body-parts (whole fly), or in the head-thorax or abdomen 
only. Numbers in paratheses are the total miRNAs in each category, inclusive of 3p and 5p strands where both 
are differentially expressed.
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We also observed sex-specific functional enrichment amongst mating-responsive genes. For example, in male 
abdomens, the predominant response was an upregulation in genes associated with protein folding, localization 
and processing through the Golgi apparatus and endoplasmic reticulum. Genes encoding signal recognition par-
ticles (SRP), SRP receptors, translocation channel proteins and p24 family proteins63 were upregulated, as well as 
genes encoding coatomer-proteins that form COPI and COPII vesicles64,65. This sex-specific response implies an 
increase in the production of secreted or transmembrane proteins, and is consistent with male replenishment of 
Sfps that become depleted following mating31. Most of the secretory pathway transcripts were upregulated less 
than two-fold in mated versus virgin males, which suggests a complex coordinated and on-demand regulation 
machinery for the production of Sfp proteins. In female abdomens, the transcription of genes encoding immune 
effectors was elevated following mating, consistent with previous observations43,46,47,50. The significance of this 
robust response is not yet clear but may stem from either the transfer of pathogens through mating, damage to the 
female genital tract, or induction by ejaculate proteins20,66.

As well as sex-specific responses, a core set of shared genes were differentially expressed in both male and 
female abdomens. Among these was an over-representation of ribosomal protein (RP) genes and genes involved 
in the electron transport chain. This implies that both sexes have an increased requirement for translation and 
energy generation following mating. In males, increased translation in the abdomen is consistent with the replen-
ishment of Sfps. Indeed, a previous study reported a burst of ribosome synthesis in the accessory glands (the main 
site of Sfp production) of males between 30 minutes and 6 hours following mating67. Increased translation in 
mated female abdomens may be required for egg activation and the progression of vitellogenic oocytes, requiring 
the translation of maternal mRNAs and enhanced yolk protein synthesis, respectively68,69.

Interestingly, some mating-responsive processes that were upregulated in the abdomen of both sexes were 
downregulated in the female head-thorax. Indeed, downregulated genes constituted the majority of DE genes in 
the female head-thorax, in direct contrast to all other comparisons, in which DE was generally due to the upreg-
ulation of genes in response to mating. Reduced expression of RP genes and genes associated with energy gen-
eration in the head-thorax, and elevation of those same genes in the abdomen, is suggestive of a mating-induced 
‘switch’ in tissue-specific resource allocation. This could reflect a compensatory mechanism to counterbalance the 
increased demand for energy and translation in the abdomen, an idea that would be interesting to test.

It can be somewhat difficult to directly compare transcriptomic studies across different laboratories, given 
the variance in experimental design, diet, fly strain, tissue, transcriptomic methods and analysis. Nevertheless, 
there are some interesting contrasts to explore with existing studies of the transcriptomic responses of female D. 
melanogaster to mating42–49,51. To minimise confounding variation, we compared our data with studies that had 
used similar time points and tissues and in general, there was good overlap. Specific genes were robustly differ-
entially expressed in response to mating across multiple studies. These included fit, CG31324 and Send2 which 
were upregulated in response to mating in this and in five other studies. Send2 encodes the serine protease sper-
mathecal endopeptidase 2 which, along with Send1, is exclusively expressed in secretory cells of the female sper-
matheca70. Although the exact function of Send2 itself is unknown, products of the spermathecal secretory cells 
are required for the recruitment of sperm for storage, and sustained egg laying70. The gene product of CG31324, 
which was also consistently upregulated in the mated female abdomen, is currently unknown. The product of fit is 
associated with feeding behaviour. In females, it is downregulated in starvation conditions71 and acts as a negative 
feedback regulator to suppress the intake of protein-rich food72. Mated females have an increased appetite14, and 
a preference for protein-rich food when compared to virgins73. Therefore the upregulation of fit following mating 
may be triggered by the protein-component of an increased food intake.

Our data revealed that post-mating changes in both sexes have the potential to be regulated by small RNA 
molecules, as has been reported previously for females46,57. The pluripotentiality of miRNA targeting allows mul-
tiple genes to be regulated simultaneously under the influence of miRNA ‘hubs’24. This facilitates the coordinated 
expression of genes with related functions in response to an appropriate single stimulus, such as mating. At the 
most stringent significance threshold, we identified four miRNAs that differed in expression between virgin and 
mated female abdomens, and two in male abdomens. Both the 3p and 5p strands of miR-927 were downregulated 
in males following mating. In support of a role for this miRNA in regulating reproductive processes, deletion of 
miR-927 in male D. melanogaster is reported to reduce adult fertility58. Interestingly, both strands of miR-927 
were also among the most significantly downregulated miRNAs in the female abdomen (albeit below the padj 
threshold of 0.05), suggesting that this miRNA may play a role in the regulation of post-mating responses com-
mon to both sexes.

Of the four miRNAs that were significantly differently expressed in mated females, the two with the greatest 
fold change were miR-184-5p and miR-997-5p. Increased expression of miR-184 is consistent with the essential 
role of this miRNA in the regulation of oogenesis. Females lacking miR-184 show an age-progressive failure to 
produce eggs74 and their fecundity is unaffected by the presence of sex peptide57. Interestingly, overexpression 
of miR-184 in both sexes causes a severe reduction in lifespan75 and this may offer clues to the mechanisms 
underlying reduced lifespan in mated females. miR-997 was completely absent in virgin females and in female 
head-thorax tissue, but was detectable in female abdomens following mating. Notably, in males, miR-997 expres-
sion was also restricted to the abdomen, but is stably expressed regardless of mating status. One possibility is 
that miR-997 is expressed solely by males and transferred to females during mating. Extracellular miRNAs can 
be transported stably within microvesicles, which are released into the ejaculate by secondary cells of the male 
accessory gland76,77. Once in the female, miRNAs contained within the microvesicles have the potential to target 
female mRNA molecules, and thus alter female post-mating responses76.

The miRNA-mRNA interaction analysis identified a number of genes that were differentially expressed in the 
opposite direction to significantly upregulated or downregulated miRNAs, indicating a potential response of the 
coding transcriptome to miRNA differential expression after mating. However, global differences in expression 
between all predicted targets and non-targets of differentially expressed miRNAs were not observed. A potential 
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explanation is that miRNA differential expression influences physiological change by mediating the repression of 
a restricted set of predicted targets. The signal for this type of repression would be obscured in a global analysis of 
all predicted targets and nontargets. The global correlation analysis of mating-responsive miRNAs and mRNAs 
also revealed that a number of differentially expressed mRNAs in the male abdomen had the potential to be 
targeted by miR-927-3p or 5p strands. Of the mRNA targets that were expressed in the opposite direction to miR-
927, at least 38 are described as having a role in developmental processes, although there was no overall significant 
enrichment of functional terms, suggesting that putative targets of miR-927 have diverse functions. Interestingly, 
a number of DE mRNAs were predicted to be targets of both strands of miR-927, opening up the possibility that 
the two mature miRNAs are acting cooperatively to mediate repression.

Conclusion
Our results provide the first direct comparison of the transcriptomic responses of male and female Drosophila 
to mating, and the first comparison of mating-responsive miRNAs in both sexes in any species. Our data reveal 
that there were marked sex- and body part-specific responses to mating, in profiles of mRNAs and miRNAs in D. 
melanogaster. However, some transcriptional responses were also shared by males and females. There were also 
sex-specific differences in the magnitude of gene expression changes, with females generally showing a greater 
magnitude of DE. In addition, while many of the same genes were differentially expressed between body-parts 
and sexes, the direction of DE of these genes was sex- or tissue-specific. Taken together, our results show that 
while both males and females invest in enhanced protein and energy production in the abdomen, males have 
a much broader response than females, and additionally invest in the production of secretory protein pathway 
components. In contrast, in the head-thorax, females showed the greatest transcriptional response through the 
downregulation of both small- and macro-molecule metabolism and energy production, while the transcriptional 
profile of males remained largely unchanged. Our results reveal the extent of quantitative and qualitative variation 
in sex-specific responses to mating and highlight novel potential roles for regulatory molecules in shaping the 
expression of sex differences.

Materials and Methods
Sample preparation. Wildtype D. melanogaster flies were from a large laboratory population originally 
collected in the 1970s in Dahomey (Benin). Flies were reared on standard sugar yeast (SY) medium (100 g brew-
er’s yeast powder, 50 g sugar, 15 g agar, 30 ml Nipagin (10% w/v solution), and 3 ml propionic acid, per litre of 
medium) in a controlled environment (25 °C, 50% humidity, 12:12 hour light:dark cycle). Larvae were raised at 
a standard density of 100 per vial (glass, 75 × 25 mm, each containing 7 ml SY medium). Male and female adults 
were separated within 6 hours of eclosion using ice anaesthesia and stored in single sex vials at a density of 10/vial 
for 6 days. For the mated treatment, a single male was placed with a female and the time of mating was recorded. 
Immediately after mating the male was removed to a separate vial to prevent further matings. All mated flies were 
then flash frozen at 3 hours after start of mating in liquid N2. For the virgin treatment, males and females were 
housed individually in vials for ~3–4 hours before flash freezing. Frozen flies were stored at −80 °C until use. The 
sample size for each treatment was 50 males and 50 females. The entire experiment was repeated exactly, using 
fresh egg collections to generate two biological replicates. Therefore, in total 16 samples were generated: 2 sexes × 
2 treatments (mated/virgin) × 2 body parts (HT and Ab) × 2 replicates.

RNA extraction. To prepare tissue for RNA extraction, 50 flies from each sex, treatment and biological 
replicate were separated into HT and Ab tissues on dry ice, and the body parts were then pooled for RNA extrac-
tion (note that both body parts were intact, and thus the Ab contained the germline). Tissues were disrupted by 
grinding under liquid nitrogen, then total RNA was extracted using the miRvana miRNA isolation kit (Ambion, 
AM1561), according to the kit protocol. RNA was eluted in RNA storage solution (1 mM sodium citrate, pH 6.4 
+⁄− 0.2, Ambion). Samples were DNase treated to remove residual genomic DNA (Ambion Turbo DNA-free kit, 
AM1907). RNA was assessed for quantity and quality using a NanoDrop 8000 spectrophotometer.

Library construction and sequencing. The 16 samples were sent to the Earlham Institute provider 
(Norwich Research Park, UK) for mRNA and sRNA library construction, and sequencing. Libraries were con-
structed using the Illumina TruSeq kit. For the sRNA libraries, a modified ‘blocking oligo’ was also used to 
preclude adapter ligation to the highly abundant 30 nt 2S rRNA60. Non-directional, single end RNA-seq was 
conducted using the Illumina HiSeq. 2500 platform with 50nt read length.

Sequencing analysis. Kallisto version 0.46.078 was used to pseudoalign reads to the Berkeley Drosophila 
Genome Project 6 (BDGP6) cDNA sequences downloaded from Ensembl (release 8979). A kallisto index was 
created using the “kallisto index” command (k-mer size 31). Kallisto quant was used to obtain transcript count 
estimates and parameters were set to include 100 bootstrap samples and to perform sequence bias correction. 
Transcript to gene mappings were obtained using biomaRt80 and transcript counts were aggregated in Sleuth 
(version 0.28.1)81 before calling pairwise differential expression between mated and virgin samples of the same 
body part and sex. Small RNA reads were converted from FASTQ to FASTA format and then processed to 
trim sequencing adaptors using a custom Perl script (avalible in the Supplementary Material) recognising the 
first 8 bases of the adapter sequence (‘TGGAATTC’). Trimmed reads were then aligned to miRBase (v22.0) 
D. melanogaster mature miRNA sequences using PatMaN82 (parameters -e 0 -g 0). A custom Perl script (see 
Supplementary Material) was used to parse the alignment files and generate an aligned read count table across all 
samples. DESeq2 (version 1.14.1)59 was used for normalisation of counts between samples and calling differen-
tially expressed miRNAs.
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miRNA target prediction. Prediction of miRNA target sites were conducted using the TargetScan algo-
rithm (version 4.1 – ‘TargetScanS’)83, which predicted targets on the basis of complementarity of the 3′ untrans-
lated region (3′UTR) to the mature miRNA seed sequence83,84. In order to run TargetScan, using custom shell 
scripts, mature miRNA sequences were downloaded from miRBase, filtered for D. melanogaster miRNAs, and 
processed to produce a tab-delimited three column file, with columns sequentially referring to miRNA name, 
miRNA seed sequence (i.e. nucleotides 2–8 of the miRNA from the 5′ end), and NCBI taxonomic ID (i.e. ‘7227’ 
for D. melanogaster). The R (v3.5.1)85 biomaRt package (v2.38.0)80,86 was used for the download of D. melano-
gaster 3′UTR sequences necessary for the running of TargetScan, along with transcript-gene mappings: The use-
Mart function was used to select the Ensembl mart. For the selected mart, the useDataset function was used to 
select D. melanogaster ensembl gene models for release 89 of Ensembl. Afterwards the getBM function was used to 
extract stable gene and transcript ids, external gene names and 3′UTR sequences for all D. melanogaster transcript 
models. Otherwise default parameter values were used when calling biomaRt functions. For each gene model, 
the transcript splice-isoform (denoted by the ensembl transcript ID) with the longest annotated 3′UTR was des-
ignated as being representative for that gene. In cases where a gene model possessed multiple transcript isoforms 
corresponding to the maximum 3′UTR length for that gene, one transcript isoform was selected at random. Gene 
models in which none of the corresponding transcript models possessed an annotated 3′UTR sequence was not 
used for miRNA target prediction with TargetScan. For use with TargetScan, 3′UTR data were deposited in a 
three-column tab-delimited text file sequentially containing an identifier column containing the ensembl gene ID, 
ensembl transcript ID, and the external gene name; a column containing the D. melanogaster NCBI taxonomic ID 
(i.e. ‘7227’), and a final column containing the 3′UTR sequence. TargetScan was then subsequently executed with 
the 3′UTR data file and the previously described miRNA data file.

Comparison of miRNA predicted targets and nontargets. Transcript expression data was 
pre-processed before statistical testing: The mean average relative abundance for each mRNA, in units of nor-
malised transcripts per million (TPM)87, was computed from both replicates for each sample type (e.g. female 
abdomen). mRNA with average normalised TPM values equal to zero were discarded for each sample type and 
not used for further analysis. A pseudocount (AKA offset) of 1 was added to all remaining average normal-
ised TPM values. Log2 fold change values were computed from offset average normalised TPM values for each 
individual differential expression analysis (e.g. virgin male abdomen vs. mated male abdomen). The log2 fold 
change was subsequently used as a metric of the magnitude of mRNA differential expression between condi-
tions. Exploratory Data Analysis, in which cumulative plots of upregulated, downregulated and not differentially 
expressed genes were constructed with respect to 3′UTR length and 3′UTR predicted target site frequency, indi-
cated that 3′UTR length was a potential confounding variable when examining mRNA dysregulation between the 
virgin and mated conditions (Supplementary Figs S2ab and S4ab). A simulation, in which TargetScan was ran as 
described previously, but using 401 randomly generated miRNA seed sequences instead of 401 D. melanogaster 
miRNA seed sequences, and with subsequent cumulative plot construction with respect to 3′UTR target site fre-
quency, provided further evidence that 3′UTR length was a confounding variable (Supplementary Fig. S5a,b). In 
subsequent analyses, a sampling method was used to normalise 3′UTR length for mRNA expression data when 
comparing predicted target 3′UTRs to predicted nontarget 3′UTRs for any given comparison: A histogram of 
3′UTR sequence lengths was constructed separately for predicted target and nontarget datasets, starting from 
0, in increments of 200nt, and to a maximum representing the maximum sequence length from both target and 
non-target datasets. Each break of the two histograms are iterated through, and for each iteration, log fold change 
values for predicted target and nontarget datasets are subsetted to fall within the 3′UTR sequence length range 
given by the individual histogram breaks. Within this range, of the target and nontarget log fold change vectors, 
if vector sizes are unequal, the vector with the largest number of records is sampled to match the number of 
observations contained within the smaller vector. Log fold change values for both predicted target and nontarget 
datasets are concatenated for each iteration, in order to create log fold change distributions which are normal-
ised for 3′UTR length. In the case of the Fisher Exact test, an identical sampling procedure is implemented with 
the exception that transcript identifiers are sampled instead of log fold change values. We investigated whether 
changes in mRNA expression could be influenced by the changes in expression of differentially expressed miR-
NAs, by a process of miRNA targeting. Two-sample, one-sided Kolmogorov-Smirnov (KS) tests (using the ks.test 
function of the R stats package) were implemented to test for the inequality between miRNA target and miRNA 
nontarget fold change distributions for a given miRNA, and the one-sided Fisher Exact Test (using the fisher.test 
function of the R stats package) to test for an enrichment of the target sites of differentially expressed miRNAs in 
mRNAs differentially expressed in the opposite direction. For the KS test, the value of the ‘alternative’ parameters 
was set to ‘greater’ when testing the effect of upregulated miRNAs, and set to value of ‘less’ when testing the effect 
of downregulated miRNAs. For the Fisher test, the value of the ‘alternative’ parameter was always set to a value of 
‘greater’. Otherwise, default parameters were used for both statistical test functions. Fisher Exact and KS tests were 
also similarly conducted to test for potential combinatorial effects of different pairwise combinations of miRNAs 
which were differentially expressed in the same direction with predicted target sets designated as those mRNAs 
with predicted targets for both differentially expressed miRNAs. The false discovery rate (FDR) was set at 0.05, 
with the Benjamini-Hochberg method used to correct for multiple comparisons88. To counteract the stochasticity 
introduced by the sampling described previously, for each test, p-values were calculated 100 times, and the mean 
average p-value was taken as being representative.

Network visualisations. Network visualisations of predicted interactions between differentially expressed 
coding genes and differentially expressed miRNA for the mated male abdomen were completed using Cytoscape 
(v3.4.0)89. Network visualisations were not completed for other comparisons, which either did not possess any 
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differentially expressed miRNAs, or the number of differentially expressed coding genes predicted to be targeted 
by differentially expressed miRNAs was judged to be too low for network visualisations to be informative.

Gene ontology enrichment analysis. GO analyses were conducted using the GOrilla enrichment analysis 
and visualisation tool using the default parameter settings90,91. Unranked target lists of genes were compared to a 
background of genes for which reads were obtained in our sequencing analysis. Background reference lists were 
tailored to each sex and body part, to minimise sampling bias92. The cut-off for statistical significance was an FDR 
q-value < 0.05.

Data archiving. Raw sequencing data for this study is stored at the Sequence Read Archive (SRA) using the 
BioProject accession: PRJNA521155.
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