Cuspidal Representations of Dyadic

Classical Groups

MICHAEL PETER ARNOLD

September, 2020

A THESIS SUBMITTED TO THE SCHOOL OF MATHEMATICS OF THE
UNIVERSITY OF EAST ANGLIA IN PARTIAL FULFILMENT OF THE
REQUIREMENTS FOR THE DEGREE OF DOCTOR OF PHILOSOPHY (PHD)

© THIS COPY OF THE THESIS HAS BEEN SUPPLIED ON CONDITION THAT ANYONE WHO
CONSULTS IT IS UNDERSTOOD TO RECOGNISE THAT ITS COPYRIGHT RESTS WITH THE
AUTHOR AND THAT USE OF ANY INFORMATION DERIVED THERE FROM MUST BE IN
ACCORDANCE WITH CURRENT UK COPYRIGHT LAW. IN ADDITION, ANY QUOTATION OR

EXTRACT MUST INCLUDE FULL ATTRIBUTION.






Abstract

Let G be a Symplectic group or a Split Special Orthogonal group defined over
a dyadic field. We begin by classifying the reductive quotients of most maximal
parahoric subgroups of GG so that we can explicitly describe its irreducible cuspi-
dal depth-zero representations in terms of their local data. By a result of Blondel
we compute the reducibility points of a parabolically induced representation from
a cuspidal representation of a maximal Levi subgroup. These reducibility points
are described by certain parameters of a spherical Hecke algebra occuring in the
construction of a Bushnell-Kutzko cover. Using classical Deligne-Lusztig theory for
finite reductive groups, we verify an equality due to Moeglin which (conjecturally)
allows one to identify the Langlands parameter associated to an irreducible cuspidal

depth-zero representation of G through the local Langlands correspondence.

We then begin an exhaustive investigation into positive-depth cuspidal repre-
sentations of Sp,(F') over a dyadic field. By using both the languages of Bushnell-
Kutzko and Moy—Prasad we show that any irreducible representation of Sp,(F)
contains a G-fundamental stratum. We then take the first steps towards the com-
putation of intertwining of G-fundamental strata by explicitly describing the distin-

guished double-coset representatives of the maximal parahoric subgroups.
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Chapter 1

Introduction

1.1 Overview

Let F' be a non-archimedean local field of residual characteristic p. Let G be a connected
reductive algebraic group with G = G(F) the F-points of G, which we call a p-adic group.
The local Langlands correspondence (LLC), which is now known to hold in many cases,
predicts a relationship between two different mathematical objects. Denote by R(G) the
category of smooth complex representations of G, with Irr(G) the set of equivalence classes
of irreducible representations in R(G). On the p-adic side of the LLC we have Irr(G). On
the other, we have certain analogues of Galois representations which we call Langlands
parameters (these are certain homomorphisms from the Weil-Deligne group W’ into the
Langlands dual group “G of G). The LLC then says that there is a surjective map from
Irr(@G) to the set of Langlands parameters of G' (which preserves certain arithmetical prop-
erties). The fibre of a given Langlands parameter is finite and is called an L-packet. The
beauty of the LLC is that it allows one to transfer questions from one side to the other,
where they may be easier to answer. There are certain cases where explicit constructions

of Irr(G) is known. It is then hoped that knowing explicitly the LLC in these cases means

11



12 MICHAEL ARNOLD

that one may transfer across arithmetical information about p-adic groups to previously

unknown information about the associated Galois representation.

When G = GL,(F), the LLC was proved independently by Harris-Taylor | | and
Henniart | ], in which they show that this map is a bijection (and so the L-packets
are singletons). While they prove the existence of the LLC, they do not give an ex-
plicit description of the correspondence. Bushnell-Henniart, in a series of papers [ ,

, , | prove many results which works towards making this description
explicit using the construction of Irr(G) due to Bushnell-Kutzko | ]. The LLC is
also proven to exist in other cases: for SL,(F) | , ], quasi-split Orthogonal and

Symplectic groups | |, quasi-split Unitary groups [ | and both GSp,(F') and
Spa(F) | , |. In these cases the LLC is proven to not be a bijection.

The representation theory of p-adic groups relies on understanding Irr(G). In particu-
lar, one would like to know precisely how one can obtain all irreducible representations
in Irr(G). For G connected reductive there is a general procedure to do this. Take P
a parabolic subgroup of G with Levi factor M. Since M is of smaller semisimple rank
compared to G, its representation theory is moderately simpler. One takes an irreducible
representation of M, and through a process called parabolic induction obtains a finite
length representation of G, which one can decompose into irreducibles. This does not
capture all irreducible representations of GG; the irreducibles which do not appear as sub-
quotients of parabolically induced representations are called supercuspidal representations.
One obtains all irreducible representations of G in the following way. First one takes an
irreducible cuspidal representation of a Levi subgroup (including G itself), and then de-
compose the parabolically induced representation into irreducibles. Therefore the problem
of understanding Irr(G) begins with understanding the construction of supercuspidal rep-

resentations of a Levi subgroup M.

We can interpret this in the LLC as follows. For GL,,(F'), we have that irreducible cuspidal

representations of GL,,(F") are in bijection with érreducible n-dimensional representations



13

of the Weil group Wpg. This simple description becomes more complicated for classical
groups, by which we mean Symplectic, Special Orthogonal or Unitary groups. Here L-
packets are no longer singletons, and they can contain both cuspidal and non-cuspidal
representations. However, in | ], Moeglin gives a description of those Langlands pa-
rameters whose packets contain cuspidal representations, including the expected number
in the packet. Let Cusp(G) denote the set of equivalence classes of irreducible cuspi-
dal representations of G. Given o € Cusp(G) and 7 € Cusp(GL,(F)), we can view
M ~ GL,(F) x G as a maximal Levi subgroup of a classical group G’ of the same type
as G. Moeglin’s work, which uses the language of Jordan sets, then gives a description of
the Langlands parameter associated to o through the LLC in terms of reducibility points

of the parabolically induced representation
Indf,/m) 7| det|" ® o, reR

for | - | the normalized absolute value on F' and P any parabolic subgroup containing M.
One looks at the self-dual 7 which gives reducibility at some r > 1/2, as these are precisely
the ones which contribute to the Jordan set/Langlands parameter. In order to compute

these points of reducibility we need to understand the construction of o.

Originating with the work of Howe, the structure of an irreducible cuspidal representation
of G is long conjectured to be of the following form. Given o € Cusp(G), there should
exist an open compact-modulo-centre subgroup J of G and an irreducible representation

A of J such that
o~ indS—;A

where ind denotes the functor of compact induction. While this problem remains open for

arbitrary connected reductive algebraic groups G, it is known to be true in many cases:
- G = GL,(F),SL,(F) due to Bushnell-Kutzko | , : l;

— G arbitrary, but o of “depth-zero”, due to Moy—Prasad and Morris | , ,

I;
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— @ arbitrary, but o “tamely ramified”, due to Yu and Kim | , l;
— G an inner form of GL due to Sécherre and Stevens | , ];

— @ a classical group (i.e. Symplectic, Special Orthogonal or Unitary) provided p # 2,

due to Stevens | l;

— (G a connected reductive algebraic group which splits over a tamely ramified exten-

sion of F' and p does not divide the order of the Weyl group of G, due to Fintzen

[Fin19].

Here we see the first stratification of cuspidal representations, that is the notion of depth.
A representation o € Irr(G) is said to be of depth-zero if o has fixed vectors under the
pro-unipotent radical of a parahoric subgroup of G. The classification of depth-zero cus-
pidal representations of an arbitrary connected reductive algebraic group, as given by
Moy—Prasad and Morris, is characteristic free. Using this concrete description of Irr(G),
DeBacker and Reeder | | constructed an explicit map from a large class of irreducible
cuspidal depth-zero representations of GG to a certain subset of Langlands parameters satis-
fying the conditions of the LLC. Namely, they considered tame regular discrete Langlands
parameters. These are parameters which are trivial upon restriction to the wild inertia

subgroup of Wg.

Lust and Stevens | ] build upon this work by considering tame Langlands parameters
and all irreducible cuspidal depth-zero representations of G, whilst imposing that G be
a classical group defined over a non-archimedean local field of odd residual characteristic
instead of an arbitrary connected reductive group. Their method involves computing the
reducibility points of the parabolically induced representation via a result of Blondel by
looking at the Hecke algebra of a cover (in the sense of Bushnell-Kutzko). This relies on
knowing the local data which describes the representations m and o. In this thesis, we
do the same for dyadic fields (finite extensions of Q9) for the Symplectic group and most
irreducible cuspidal depth-zero representations of a Split Special Orthogonal group. This

amounts to showing that, if for all self-dual irreducible cuspidal depth-zero representations
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of GL,,, (F) we write r = r, for the unique non-negative real number r such that the

parabolically induced representation
Ind%’p m|det|" @ o
is reducible, that the sum

Z my - max{2r, — 1,0}
7 self-dual cuspidal
is equal to Ni, the dimension of the natural representation of the Langlands dual group
L@ of G. While this sum does not require that 7 is of depth-zero, we show that this
equality holds for depth-zero representations 7 already, so that no other representations

contribute to the sum.

For positive-depth cuspidal representations of a classical group G, we have seen that the
construction of Stevens is exhaustive and complete in the sense that given o € Cusp(G),
one can describe the local datum associated to . The only requirement is that the residual
characteristic p is odd. Unlike the depth-zero case, trying to emulate these results here
for dyadic fields is much more difficult because at almost every stage the construction due
to Stevens fundamentally requires that p # 2. Here we restrict ourselves to the group
G = Sp,(F) and take the first steps towards an exhaustive construction of positive-depth

cuspidal representations.

1.2 Summary of Chapters

In Chapter 2 we start by recalling the necessary material needed to define our classical
groups G, by which we mean G is either a Symplectic group or a Split Special Orthogonal
group. We then move on to prove new results about the reductive quotients of maximal
parahoric subgroups of GG. For the Symplectic group, we show that the description of the

maximal parahorics and their reductive quotients is uniform for all p:
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Proposition. (2.9.2) Let K be a maximal parahoric subgroup of G stabilizing an almost

self-dual lattice L with dimy, (L/L*) = 2m. Then the reductive quotient K/K" is

K/Kl = Sp2m<kF) X SpQ(n—m)(kF)'

For the Split Special Orthogonal group we restrict ourselves to dyadic fields. Even in this
case, we are not able to consider all maximal parahoric subgroups, only those that arise
from certain almost self-dual lattices L, (Proposition 2.10.5 and Proposition 2.10.6). We

then obtain the following description of their reductive quotients.

Corollary. (2.10.7) Let G; be a Split Special Orthogonal group with i = dim V,,. Let K;
denote the stabilizer of the lattice L,, define above and K; denote the maximal parahoric
associated to K;. Suppose m #1,2n—2n—1fori=0andm#*n—2,n—1 fori=1.
Then

KS/K(I) ~ SO;m(k?F> X SO;(n—m)(kF)
and

KT/K% ~ SOQm+1(kF) X SO;_(n,m)(kF)

~ Spy (kr) X SO,y (kr).

In addition we give a classification of the isometry classes of anisotropic quadratic forms
over Q2. We do this because in order to try and give a full classification of the reductive
quotients for an arbitrary Special Orthogonal group, we need to have a complete under-
standing of the Witt group of F'. For p # 2, Morris uses the structure of the Witt group
to classify the possible symmetric bilinear forms which arise | , Section 1.8], which in
turn classifies the reductive quotients for the Special Orthogonal group. We note how the
Witt group of F' a dyadic fields depends on the degree of the field extension F/Qy, and

so one would need to understand this fully to classify the reductive quotients in general.

In Chapter 3 we recall the representation theory of p-adic groups needed to state and prove
our results. In Chapter 4 we consider G a Symplectic or Split Special Orthogonal group.

For most irreducible cuspidal depth-zero representations o of G we describe the Langlands
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parameter associated to o through the local Langlands correspondence by appealing to

work of Moeglin. We do this by proving the following Theorem.

Theorem. (4.6.1) If G is a Symplectic group, let w be an arbitrary irreducible cuspidal
depth-zero representation. If G is a Split Special Orthogonal group, let ™ be an irreducible
cuspidal depth-zero representation arising from a maximal parahoric subgroup as consid-

ered in Corollary 2.10.7. Then

Z |80()?] My = Nig.

(m,m)eJord(o)
w€Cusp(F) of depth zero

This requires us to prove a statement of Blondel (Proposition 4.4.1), which readily extends
to dyadic fields, that allows us to interpret the reducibility points of a parabolically in-
duced representation of a maximal Levi subgroup in terms of quadratic parameters arising
in certain spherical Hecke algebras of a cover. We also need the relevant Deligne-Lusztig
theory of (unipotent) cuspidal representations of finite classical (Symplectic, Special Or-
thogonal and Unitary) groups and general linear groups in characteristic 2 in order to

calculate these quadratic parameters.

In Chapter 5 we begin an exhaustive investigation into the description of irreducible cus-
pidal representations of dyadic G = Sp,(F). We note that Asmuth-Keys | ] also
started this investigation for GSp,(F') but they do not use the language of types, nor
did they claim to construct all cuspidals. Our intentions were to give a construction of
cuspidal representations of G in terms of the theory of types, as used by Bushnell-Kutzko
and Stevens, but we do not get that far. We do manage to reprove a result of Moy—Prasad
which says that any irreducible representation of GG contains a G-fundamental stratum
(Theorem 5.5.6). Note that the correct definition of G-fundamental requires the language
of Moy-Prasad which uses filtrations on the dual of the Lie algebra g of G.

We show that interpreting the definition in terms of the Moy—Prasad filtration is necessary
by way of Example 5.4.5; this is because we obtain our characters 13 of our G-fundamental

strata of Sp,(F') by restriction of characters of strata on GL4(F"). We then move onto deriv-
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ing a complete description of the distinguished (i.e. shortest) double-coset representatives
for the three conjugacy classes of maximal parahoric subgroups of G (Theorem 5.6.3). This
could be used in further work to compute the intertwining of the characters corresponding

to G-fundamental strata (which are the building blocks for cuspidal representations).



Chapter 2

Classical Groups

2.1 Bilinear Forms

For a full treatise on bilinear forms and quadratic forms over arbitrary fields, we rec-
ommend | ] and | |. In particular, the book of Elman—Karpenko—Merkurjev

adopts a characteristic free approach.

Let V be a finite-dimensional vector space over a field F' of arbitrary characteristic. A
bilinear form h is a map h: V x V — F such that for all u,v,w € V and A € F,
h(u+v,w) = h(u,w) + h(v,w);
h(u, v+ w) = h(u,v) + h(u, w);
h(Au,v) = h(u, \v) = Ah(u,v).
The bilinear form h is said to be symmetric if h(u,v) = h(v,u) for all u,v € V, skew-

symmetric if h(u,v) = —h(v,u) and alternating if h(u,u) = 0 for all u € V. Alternating

forms are skew-symmetric, since
0=h(u+v,u+wv)

19
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= h(u,u) + h(u,v) + h(v,u) + h(v,v)
= h(u,v) + h(v,u).

If the characteristic of F' is not 2 then the converse is also true: every skew-symmetric

bilinear form is alternating since h(u,u) = —h(u,u).

If the characteristic of F'is 2, we need only consider symmetric and alternating bilinear
forms since the notions of symmetric and skew-symmetric coincide. Moreover, by the
calculation above, every alternating bilinear form is symmetric. However, the converse is

not true: there exist symmetric bilinear forms which are not alternating.

Example 2.1.1. Let V = F3 with basis e, es. Let h(er,e1) = h(ey, ea) = h(eg,e1) = 1

and h(ez, e2) = 0. Then h is a symmetric bilinear form which is not alternating.

The Gram matriz of h, with respect to the basis {e;} of V, is the matrix A;, whose ij
entry is h(e;, ej). The Gram matrix encodes all the properties of h which we wish to know.
A form h is alternating if (Ap); = 0 for all 7. Similarly, a bilinear form A is symmetric if

Ay is a symmetric matrix. In the example above, the Gram matrix of h is

If h, 1 are bilinear forms on F-vector spaces V, V' respectively, an isometry is an invert-
ible linear map f : V — V' which preserves the bilinear form i.e. h(u,v) = h'(f(u), f(v))
for all u,v € V'. Equivalently, h and kA’ are isometric if there exist bases with respect
to which their Gram matrices coincide. A vector v which satisfies h(v,v) = 0 is called
isotropic. Note that for h an alternating form every vector is isotropic. Denote by dim h

the dimension of h which is equal to dim V.

Let V* = Hom(V, F') denote the dual vector space of V. Consider the map f, : V — V*

which sends v to f,(v) := h(u,v), for non-zero u € V. If u — f, is an isomorphism
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between V and V™ then h is called non-degenerate, otherwise h is said to be degenerate.
A symplectic form h is a non-degenerate alternating bilinear form. In practice, we will be

able to test degeneracy of bilinear forms in the following way.

Two vectors u and v are orthogonal if h(u,v) = 0. For W a subspace of V, define the

orthogonal complement W= of W by
W+ ={veV|hlv,W)=0}.

For U, W subspaces of V, if W C U™ then we say that W is orthogonal to U. The subspace
rad h := V* of V is called the radical of h. The bilinear form h is non-degenerate if and
only if rad h = 0.

Suppose V = U @ W with W C U*. We write h = h |y L h |y and say h is the orthogonal
sum of the forms h |y and h |w. If v = u+w,v" = v +w', with u, v’ € U and w,w’ € W,

then
h(v,v) = h |y (u,u’) + h |w (w,w).

Proposition 2.1.2. Let h be a bilinear form on V. Let W be a subspace of V' such that
V =radh®W. Then

h =0 |raanl h|w

with h |y non-degenerate.

Proof. Note that we need only show that the restriction of h to W is non-degenerate.
Suppose w € rad (h |w). Then w € W; since w € W C (rad h)* also, we have w €
(W +rad h)* = V* so w € rad h. Therefore w € W Nrad h = {0}. O

2.2 Quadratic Forms

Let V' be a finite-dimensional vector space over a field F' of arbitrary characteristic. A

quadratic form ¢ on V is a map @) : V — F satisfying:
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1) QW) = \Q(v) for allv € V,\ € F;
2) h:V xV — F given by h(u,v) := Q(u+v) — Q(u) — Q(v) is a bilinear form.

The bilinear form h associated to any quadratic form is automatically symmetric since

h(u,v) = Q(u+v) = Qu) — Q(v) = h(v,u).

Furthermore, it is alternating if char F' = 2 because

hu,w) = Q(u+u) — Q(u) — Q(u) = 4Q() — 2Q(u) = 2Q(u) = 0.

Let A, denote the Gram matrix of the bilinear form A associated to (). The upper

triangular matrix Ag satisfying
T

is called the Gram matriz of Q.

An isometry between two quadratic forms @) and @', defined over V and V' respectively,
is an invertible linear map f : V — V' such that Q(v) = Q'(f(v)) for all v € V. If there
exists an isometry between @ and @’ then the two forms are isometric. Note that if f
is an isometry for @), then it is also an isometry for the corresponding form h, but the
converse is false in general. If V = V' then the two forms @ and Q' above are said to be
equivalent if there exists an invertible matrix C' such that Q(v) = Q'(Cv) for all v € V.
We see from the definitions that the equivalence classes of quadratic forms correspond to

the isometry classes of quadratic spaces.

Let @ be a quadratic form over V and a € F. We say @) represents a if there exists some
v € V such that Q(v) = a. We call Q(v) the norm of v. If Q) represents every a € F*
then @ is said to be universal. We denote by Im(Q) the image of @, which is the set of

all possible norms of @, i.e.

m(Q) = {Q) : v e V}.
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Proposition 2.2.1. [ , Partie 1.I11] Suppose char F' # 2. Two quadratic forms are

equivalent if and only if they have the same image.

The dimension of (), denoted dim @), is the dimension of V. A non-zero vector v € V is
singular if v has norm 0, otherwise it is anisotropic. A subspace W of V' is anisotropic if

W contains no singular vectors. A quadratic form @) is anisotropic if V' is anisotropic.

Remark 2.2.2. If a vector v is singular then it is isotropic for A. The converse is true
when char I’ # 2 since h(v,v) = 2Q(v). When char I’ = 2 the converse is false, see
Example 2.2.4.

The radical of ), denoted rad @), is the subset of vectors of rad h of norm 0 i.e.
rad @ = {v €radh | Q(v) = 0}.

Recall that h is non-degenerate if rad h = 0. The quadratic form @ is regular if rad Q) = 0.
We say @ is non-degenerate if () is regular and dimrad h < 1. Thus we see that if h is

non-degenerate then () is non-degenerate, but the converse is not always true.

Remark 2.2.3. Some sources say that () is non-degenerate if its associated bilinear form is
non-degenerate. While this definition coincides with the definition above when char F' # 2
(as rad h = rad Q), it is too restrictive in our case in the sense that it will omit many

quadratic forms from consideration. Consider the following example.

Example 2.2.4. Let @ be the 3-dimensional quadratic form defined by Q(z,y,2) =
2+ +yz+ 22 over V= IF;’ with basis eq, eg, e3. Q has associated bilinear form A with

Gram matrix

000
A,=10 0 1],
010

which is degenerate with radical ((1,0,0))r,. The only singular vector v € radh is v =
0, and so @ is regular. Since its associated bilinear form h is degenerate with a one-

dimensional radical, () is in fact non-degenerate.
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Lemma 2.2.5. Let QQ be a reqular quadratic form over a finite field F' of characteristic 2.

Then @ is non-degenerate.

Proof. Suppose radh # {0} and let v € radh be non-zero. Since x + z? is an auto-
morphism of F', we may scale v so that Q(v) = 1. For non-zero u € rad h, we have
Q(u) # 0 by regularity of Q). For some § € F* we have Q(u) = §* = Q(6v). By definition,
Q(u+ ov) = Q(u) + h(u,dv) + Q(dv) = h(u, év) = 0, with the last equality holding since
u,v € rad h. By regularity Q(u + év) = 0 implies u = dv. Hence dimrad h = 1. O

Suppose that char ' # 2, then there exists a basis {ej,...,e,} of V such that @ is

diagonal, i.e. we write @ = (\q,...,\,) for the form

Q <Z aiei> = )\10/% —+ .. Anai
=1

Unless otherwise stated, if the characteristic of F' is not 2, then we assume that our

quadratic form is diagonal.

The hyperbolic form H(V) = Qg on V & V™ is defined as

for all v € V and f € V*. If Q is a quadratic form isometric to H(V") for some vector
space V', we say Q is a hyperbolic form. We call H(F) the hyperbolic plane and denote
it by H. If @ is isometric to H, then two vectors u, v satisfying Q(u) = Q(v) = 0 and

h(u,v) = 1 are called a hyperbolic pair.

We now turn to the question of classifying quadratic forms (up to isometry). In order to

this, we make use of the following Theorem.

Theorem 2.2.6 (Witt’s Decomposition Theorem). Let @ be a quadratic form on V.
There ezist subspaces Vi and Va of V' such that Q = Q |raagL @ |lnL Q| with Q |y
anisotropic and Q|y, hyperbolic. Moreover, Qly, and Qlv, are uniquely determined up to

isometry by (V, Q).
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Remark 2.2.7. In Example 2.2.4 above, we have V = rad Q & V; where rad Q = (e1)r,

and V; = (eq, e3)y, anisotropic.

In reality, the quadratic forms we consider will be non-degenerate. In particular, we will
be interested in the group of isometries of such forms. If the dimension of the radical is

zero, then Witt’s Decomposition Theorem simplifies to the following.

Theorem 2.2.8. Let V' be a finite dimensional F-vector space. Then there exists an n

such that
V =V,, & nH,

where nH denotes n copies of the hyperbolic plane and V,,, denotes the anisotropic subspace

uniquely determined by V' (up to isometry).

We see that in order to understand the group of isometries of a quadratic form we now
need to understand the isometry classes of anisotropic quadratic forms. The study of such
spaces is dependent on the choice of underlying field; for our purposes we only consider

finite fields of characteristic 2 and dyadic fields.

A quadratic space X = (Vx,Qx) is a vector space Vx endowed with a quadratic form Qx.
Let X be an anisotropic quadratic space. Denote by [X] the class of quadratic spaces
(V,Qy) such that the anisotropic subspace V,,, of V' is isometric to Vx. We call [X] the
Witt class of X. The set of Witt classes has a natural group structure which is defined as

follows.

The identity is the zero class [0], which corresponds to the zero form Qo = 0 defined over
the zero space Vi = {0}. This is trivially anisotropic. Given two Witt classes [X] and [Y],
their sum [X + Y] is the class of quadratic forms which contains Vx L V4, equipped with
the quadratic form Qx L Q)y; this is independent of the choice of representatives X, Y.
Given [X], its inverse [—X] is the Witt class whose anisotropic subspace is isometric to

Vx with quadratic form —Q)x.
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2.3 Anisotropic Quadratic Forms over Dyadic Fields

Let F' be a dyadic field. The following Theorem sheds light on a bound for the dimension

of anisotropic forms.

Theorem 2.3.1. [ , Chapter 6] Any five-dimensional quadratic form Q over F is

150tropic.

Whilst the Theorem above tells us that any anisotropic space is at most 4-dimensional, it
does not shed any light on any of their other properties. It is natural to ask how many
isometry classes of anisotropic forms there are for a given field F. It turns out that the

number of isometry classes is closely related to the degree of the field extension F'/Qs.

Proposition 2.3.2. [ , Chapter 6] If F is a finite extension of Qg of degree n, then

F has 2" anisotropic forms (up to isometry).

We now have an explicit formula for the number of anisotropic forms, but in order to
understand their nature, we must understand the Witt group W (F) of F'. While we will
not be working explicitly with W (F), we will need to make use of its structure, which is

described in the following Theorem.
Theorem 2.3.3. / , Chapter 6] Let F' be a dyadic field of degree n over Qs.
(i) If =1 € (F*)? then W(F) ~ (Z/2Z)"**;

(i) If =1 ¢ (F*)?, but —1 is the sum of two squares in F, then W(F) ~ (Z/AZ)* &
(Z/22)";

(iii) If —1 is not the sum of two squares in F, then W (F) ~ (Z/8Z) ® (Z/27Z)" .

2.3.1 Classification of Anisotropic Forms over

We explicitly study the case that F' = Qy, so n = [F' : Qo] = 1. By the Theorems above,

we know that there are 2!

= 32 anisotropic forms up to isometry, including the 0-form.
Moreover, since —1 is not a sum of two squares in Qy, we know that Witt group of Qs is

of the form W(Qs) ~ (Z/8Z) ® (Z/27) ® (Z/27). We now classify the anisotropic forms
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by their dimension, starting with the one-dimensional forms.

Suppose we have two one-dimensional quadratic forms Q1 and ()5 defined over V; = V5, =
F', spanned by some fixed vector v. They are isometric precisely when there exists an
isometry f : Q1 — Q2 such that Qq(v) = Q2(f(v)). Writing f(v) = Av for some A € Q5
we have that @, and @ are isometric when Q;(v) = A?Q2(v) i.e. when Q; and Q, differ
by a square in Q. This shows that the one-dimensional anisotropic forms are in bijection

with Q5 /(Q5)? Thus the inequivalent one-dimensional forms are

(1), (3),(5), (7). (2), (6), (10), (14).

From | , Chapter 5] in Qq there is a unique four-dimensional anisotropic quadratic
form, namely @ = (1,1,1,1). Moreover, this form is universal. Using this fact, alongside

Theorem 2.3.1, we are able to find the three-dimensional forms immediately.

Since every five-dimensional form is isotropic, we can find a hyperbolic space, and, using
Witt’s Decomposition Theorem, we find a three-dimensional anisotropic subform. In this
way, the anisotropic subform of the five-dimensional isotropic form (1,1,1,1) L (—1) is
(1,1,1). Since (1,1,1,1) is universal it is isometric to (A, A, A, A) for any A € Q5. By this
procedure above, for all isometry classes of one-dimensional forms we get the following

list of three-dimensional anisotropic forms:
(1,1,1),(3,3,3),(5,5,5),(7,7,7),(2,2,2), (6,6, 6), (10,10, 10), (14, 14, 14).

Since we only have the two-dimensional forms to find, we know that there are 32 — 1 —

1 — 8 — 8 = 14 such forms.

For any a,b € QF when is the quadratic form @ = (a,b) anisotropic? Recall that @ is
anisotropic if the only vector with norm 0 is the zero vector. Therefore () is anisotropic
if and only if the only solution to ax® + by? = 0 is # = y = 0. If (both) x,y are non-zero,
we rearrange to get —a/b = y*/x*, so non-zero vectors can have zero norm if and only

if —a and b differ by a square in Q. Using this criterion, we find that every anisotropic
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quadratic form is isometric to one of the following:
), ( 1,6), (1,10),(1,14),
1 (2,7),(2,2),(2,6), (2,10),
K
{

w
=2

We now need only classify the isometry classes of these forms. Two forms are isomet-
ric if and only if they represent the same numbers. One way to identify the isometry
classes could be to calculate the square classes which each form represents, but this is
a cumbersome method. Instead, we make use of work of | , Chapter 5]. Here the
author gives a list of the square classes represented by quadratic forms of the form (1,a),
where a € Q*/(Q5)? . Using properties of the tensor product of quadratic forms, and the
necessary condition that two forms are isometric if they have the same determinant, we
are able to identify the square classes represented by all the two-dimension forms above

immediately.

Example 2.3.4. We ask if the forms (5,6) and (1, 14) are isometric. With multiplication
defined over Q5 /(QJ)?, since the representatives for the square classes satisfy 5-6 = 14 =
1-14, we have that the forms have the same determinant. We now check if they represent
the same square classes in Q;, with the understanding that the multiplication above is
of square classes in Q,/(Q5)?. We write (5,6) as (5) ® (1,14). Since (1, 14) represents
1,2,7,14, the form (5,6) ~ (5) ® (1, 14) represents 5-1 =5,5-2=10,5-7=3,5-14 = 6.
Since {1,2,7,14} # {3,5,6, 10} we have that (5,6) is not isometric to (1, 14).

A routine calculation in this fashion gives the following isometry classes of two-dimensional
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forms over Qq:

(1,1),(3,3), (1,2),(1,3), (1,5), (1,6), (2,3), (1, 10),
(1,14), (2,5), (2,6), (2,10), (3, 10), (5, 10).

Table 2.1 summarises the results above to give a classification of all anisotropic quadratic

forms over Qs.

0-dimensional (0)

1-dimensional (L), (3), (5), (7).
(2), (6), (10), (14)
(1,1),(3,3),(1,2),(1,3),

2-dimensional (1,5),(L,6),(2,3), (L, 10),
(1,14), (2,5), (2, 6), (2, 10),
(3,10), (5,10)
(1,1,1),(3,3,3),(5,5,5),

3-dimensional (7,7,7),(2,2,2), (6,6, 6),
(10,10, 10), (14, 14, 14)

4-dimensional (1,1,1,1)

Table 2.1: Isometry classes of anisotropic forms over QQs.

2.4 Symplectic Groups over Finite Fields of

Characteristic 2

Let V be a finite-dimensional vector space over F' a finite field of characteristic 2 and let
h be a symplectic form on V. Recall that since char F' = 2 the form h is symmetric. The

Symplectic group Sp(V') is the group of isometries of h, i.e.
Sp(V) ={g € GL(V) | h(gu, gv) = h(u,v) for all u,v € V }.

A symplectic basis of V' is a basis {e_;,e; : 1 <1i,j < n} of V satistying h(e_;, e;) = ;.

Given any symplectic form h, we find a symplectic basis of V inductively as follows.
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Pick two vectors u and v such that h(u,v) = A # 0. Set e_; := u, e; := A\ v and
U = (e_1,e1)p. With respect to the basis {e_j,e;} the symplectic form h |y satis-
fies h(e_1,e_1) = h(ei,e;) = 0 and h(e_1,e;) = 1. Since h is non-degenerate we have
V=UL1U" and h |+ is non-degenerate. We restrict h to U+ and repeat. In this way

we obtain a symplectic basis {e_,,...,e_1,€1,...,e,} for V.

Given non-zero v € V, the symplectic transvection associated to v is the linear map
ty : V. — V given by t,(u) = u+ h(u,v)v for all w € V. Since we are in characteristic 2,

the symplectic transvections are in fact involutions:

to(to(u)) = ty(u+ h(u,v)v)
=u+ h(u,v)v + h(u + h(u,v)v,v)v
=u+ h(u,v)v + h(u,v)v + h(u,v)h(v,v)v

= U.

By | , Chapter 2], the Symplectic group is generated by symplectic transvections,
i.e.

Sp(V) = (t, | v e V).

2.5 Special Orthogonal Groups over Finite Fields of
Characteristic 2

Let V be a finite-dimensional vector space over F' a finite field of characteristic 2. Let
@ be a quadratic form defined over V with associated bilinear form h. The Orthogonal

group O(Q) is the group of isometries of @ i.e.

O(Q) ={g9 € GL(V) | Q(gv) = Q(v) for all v € V'}.

Let v € V be a non-singular vector. The reflection in v is the map r, : V' — V given by

h(u, "U)U
Qv)

U — U — forueV.
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The map r, truly is an involution:

To(ry(u)) =1y (u _ M, v)v>

Q(v)
b (e e)
Q(v) Q(v)
oy h(u, U)v _ h(u, U)U N h(u,v) h(v, v)v

Q(v) Q(v) Q(v)?

as h is alternating and char F' = 2. Moreover, we have that r,(u) = ry,(u) for all A € F*

h(u, \v)
Ta(u) =u 00w Av
B Nh(u,v)
NQ(v)
Y h(u, v)v
Q(v)
= ry(u)

Remark 2.5.1. Note that the reflection defined above is not a Euclidean reflection o, (u),

which is of the form

Proposition 2.5.2. Suppose Q) is a reqular quadratic form on a vector space V' of dimen-

sion 2n+ 1. Then O(Q) = Spy, (F).

Proof. We know by Proposition 2.2.5 that the radical of h is at most one-dimensional.
Since V' is of odd dimension, the bilinear form associated to () is alternating and degen-
erate which means that Vj = rad h is precisely 1-dimensional. By scaling if necessary, we

may assume that vy € V spans V and has norm 1.

Let G be the group of isometries of @), and G be the group of isometries of the form
induced by h on V/Vy. This form is non-degenerate so V/V; is a symplectic space of
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dimension 2n, and so G =~ Sp,,,(F). If v € V then the other elements of v + V{ are of the

form v + Avg, where A € F'; then

Qv+ Mvg) = Q(v) + A?Q(vg) — h(v, Avg)
= Q(v) + N

since vy € Vp and vy has norm 1. As squaring is a bijection on F, every coset in V/Vj
contains a vector of every possible norm. Moreover, there is a unique vector of each norm,

since if Q(v + A\vg) = Q(v + Agvp) the calculation above shows that A\; = As.

Let K denote the kernel of the homomorphism G — G and let £ € K. Not only must k
fix each coset of V/V;, but it must map an element in the coset to another element of the

same norm. Since there is precisely one vector of each norm in every coset, we must have

that k is the identity. Thus K = {Id} and G — G.

Lastly, we must show that we can lift every isometry of G to an isometry of G. The
Symplectic group is generated by symplectic transvections t;, so we need only prove that
any t; can be lifted. Since we have an element of every possible norm in each coset, we
may choose a lift v € V' of v with norm Q(v) = 1. Then the reflection r, € G is a lift of

3, as required. O]

Thus, if V' is odd-dimensional we can view the orthogonal group of a regular quadratic
form on V' as a Symplectic group of smaller dimension. We therefore restrict ourselves to
the case that V' is even-dimensional and regular, so h is non-degenerate. We now find an
orthogonal basis for V', which will depend on ). We find a basis for V' inductively in the
same way as we do for the Symplectic group, except that we choose our basis vectors to

be singular whenever possible.

If dimV > 2, the vector space V is isotropic and so we can remove a hyperbolic space
(by application of Witt’s Decomposition Theorem), reducing ourselves to the case that

dimV =2 | , Lemma 2.5.2].
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Up to equivalence, there are two quadratic forms of dimension 2. The first is of plus type,
which means there exists a basis of V' such that Q(z,y) = xy. In characteristic 2, this
form is equivalent to a hyperbolic space. The second is of minus type, which means that
there exists a basis of V such that Q(x,y) = 2* + zy + A\y?, where A\ € F* is such that
X%+ X + ) € F[X] is irreducible.

For any vector space associated to (), we can find a basis of the following kind:

L. By ={e_n,...,e_1,€1,...,e,} where Q |(c_, c,)» is hyperbolic and the spaces (e_;, €;)

are pairwise orthogonal,

2. Bo={e_(n-1),---1€-1,€_0,€640,€1, .., en_1} Where Q |(c_, oy, is hyperbolic, Q |(c_g.c. o)r

is of minus type and the spaces (e_;, e;)r are pairwise orthogonal.

We define the sign of @) as

+, if V has basis B,
—, if V has basis B_.

sgn @) =

If sgn @ = + the orthogonal space (V, Q) is hyperbolic or of Witt defect 0. If sgn @ = —,
we refer to (V, Q) as anisotropic or of Witt defect 1. We therefore have two classes of

Orthogonal groups, namely OF (F) if Q is hyperbolic and O, (F) if Q is anisotropic.

Proposition 2.5.3. [ , Proposition 2.5.6] Let F' be a finite field of characteristic
2. Provided (n,F) # (2,F,), the Orthogonal group O, (F) is generated by the set of

reflections {r, : Q(v) # 0}.

While we would like to define the Special Orthogonal group SO (k) as the index two
subgroup of O3, (k), we see below that this is not always well-defined. Provided (n, F) #
(2a IFQ),

g can be written as a product of an
SO5,() = {4 € O5.(F)

even number of reflections
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Suppose now we are in the case (n, F') = (2,Fs). Let @) be a 4-dimensional non-degenerate

quadratic form which has no singular vectors, which has Gram matrix

1
Ag =

0

with respect to the fixed basis B, above. Let U denote the set of all maximal singular
subspaces of V. Define an equivalence relation on I/ by saying that two subspaces W, W'
are related, written W ~ W' if dim(WNW') is even. There are precisely two equivalence
classes under this relation, which we denote U; for i = 1,2. The Orthogonal group O ()
preserves this equivalence relation, which gives a homomorphism ¢ from the orthogonal
group to the symmetric group on {U;,Us}. The Special Orthogonal group SO} (F,) is
then defined as the kernel of .

Proposition 2.5.4. [ , Proposition 2.5.9] Let Q) be the quadratic form defined above.
There are three distinct subgroups of index 2 of O(Q) = OF (Fy):

(i) the subgroup of O(Q) generated by reflections;
(i) the subgroup of O(Q) consisting of elements which induce an even permutation of U;
(#ii) the subgroup ker ¢.

Remark 2.5.5. If we are not in the case (n, F') = (2,F5), then the three subgroups defined

above coincide.

Remark 2.5.6. Similar to the symplectic case, it can be shown that for arbitrary fields
F with char F' # 2 that the Orthogonal group of dimension n is generated by reflections
[ , Theorem 6.6]

2.6 Parabolic Subgroups

We refer the reader to Chapter 1 III - Paraboliques of | ] for more information

on the following section. Let F' be a field of characteristic different from 2 and V' be an n-
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dimensional F-vector space endowed with either a symplectic form A or a non-degenerate

quadratic form Q). A self-dual flag in V is a flag of isotropic subspaces
{0} =V, CViaC--CVicW.
We then define
Vi={veV:h(v,w)=0foralweV;} =Vi.

The stabilizers of the self-dual flags are parabolic subgroups of GG. Parabolic subgroups P
admit a Levi decomposition P = M x N, where M ~ P/N is a Levi subgroup which
is reductive and N its unipotent radical. While there is no canonical Levi subgroup M,
any two Levi subgroups of P are conjugate within P. In order to explicitly describe M,

we first must choose a decomposition
Vo=WeoW, @ oW,

such that V; = @ .., W;. The stabilizer of this decomposition is then a Levi subgroup and

7>t

we get an isomorphism
M ~ Gy x [ GL(W7),
i=1

where Gy is the classical group of (W, h |w,) (resp. (Wo, @ |w,))- The unipotent radical N

is the set of elements of P which act trivially on all quotient spaces V;/V; 1 for —r <i < r.

The parabolic subgroup B associated to a maximal self-dual flag is called a Borel subgroup.
It has a Levi decomposition B = T x Ny where T is the centralizer of a maximal F-split
torus. If we fix such a group B, then we say that any parabolic subgroup P containing B

is standard. Moreover, if we fix 7 then any Levi subgroup containing 7 is called standard.

2.7 Parahoric Subgroups

Let F' be a dyadic field with o its ring of integers of F' and pp its unique maximal ideal

so that the residue field kr = op/pp is finite of cardinality ¢ = p" for some r € N. Fix
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wr a uniformizer of F. When there is no ambiguity we will drop the subscript F' from

the notation above.

Let V' be a finite-dimensional vector space defined over F. Let G be a classical group,
by which we mean either V' has Symplectic form h and G = G}, = Sp(V') is a Symplectic
group or V has a non-degenerate quadratic form @ and G = Gg = SO(V) is a Special

Orthogonal group. In the latter case, we let h denote the associated bilinear form to Q:

h(u,v) = Q(u+v) = Qu) = Q(v).

An op-lattice in V' is a compact open opg-submodule of V. Let £ denote the set of lattices

in V. For L € L, the lattice
L#¥ ={veV:hvL)Cpp}

is called the dual lattice of L. The notion of dual lattice defined here is a duality, i.e.
(L#)# = L and (LNM)* = L* + M# for all lattices L, M € L. A lattice L is said to be

almost self-dual if
LD L* DyppL.
An op-lattice sequence is a function A : Z — L satisfying:
(i) A(n) D A(n+1) for all n € N;
(ii) there exists an e(A) € N such that, for all n € N, we have @wA(n) = A(n + e(A)).

The integer e = e(A) is called the op-period of A. An op-lattice chain is an injective
lattice sequence. The notion of duality carries over to lattice sequences. The dual lattice

sequence A of A is the lattice sequence A7 satisfying

for all n € N. We say that A is self-dual if there exists k € Z such that A(n) = A% (n + k)

for all n € N.
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For a self-dual lattice sequence A and [ € Z, let A; denote the lattice sequence which is a
translate of A defined by Aj(n) = A(n + () for all n € Z. By considering an appropriate

translate, we may assume that £ = 0 or 1 for any self-dual lattice sequence.

For A a lattice sequence and m € Z let
Ay, = A (A) = {z € Endp(V) : xA(n) C A(n +m) for all n € Z}.

The additive subgroup 20 = 20y(A) is a hereditary order.

An op-order is a unital subring of Endz (V') which is itself an og-lattice. After fixing a
suitable basis for V' the hereditary order 2 is identified as a block matrix which has entries
on and above the diagonal in 0, and matrices below the diagonal with entries in pp. The
Jacobson radical P = rad A is the maximal two-sided invertible fractional ideal of 2. It
consists of block matrices which has entries in 0z above the diagonal, and entries in pg

along and below the diagonal. The Jacobson radical satisfies ‘Be(A) = A =An).

We momentarily restrict ourselves to the case G = GLy(F). The unit group
UAN=UA) =A"

is a parahoric subgroup of GLy (F'). If we let 2 be a minimal hereditary order (i.e. e = n)
then the unit group J = U(2l) is called an [wahori subgroup. For arbitrary A the unit

group comes with a natural filtration by normal compact open subgroups
UMA) =14+,

for n > 1. Since 2 has blocks along the diagonal with entries in oy of size n; such that
>¢n; = N, the quotient U(A)/U'(A) is isomorphic to the group [ GLy,,(kr) defined

over the residue field kf.

The normalizer K(A) = {g € GLy(F) : gA = A} of A is an open, compact-mod-centre

subgroup of GLy(F). It normalizes U(A) and contains U(A) as its maximal compact
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subgroup. The normalizer of U(A) is EU(A) for some field extension F of F with
e(E/F) = e(A) where e(E/F) is the ramification degree of E/F. Therefore, the nor-

malizer modulo U(A) is isomorphic to Z, generated by a uniformizer wg of E.

We now return to the case of A being a self-dual lattice sequence. The subgroup

of G is compact open, with a filtration by normal subgroups
K'AN)=U"A)NG

for n > 1. When the meaning is clear, we omit A from the notation and write K = K(A)
and K" = K"(A). The pro-p-radical K' of K is the maximal normal pro-p subgroup.
The reductive quotient G = K/K !is a reductive group defined over kp which need not
be connected. We write G° for the connected component of K/K ! and denote by K° the

inverse image of G° in K. We call K° a parahoric subgroup of G.

In order to explicitly describe the parahoric subgroups of G we must return to the study
of almost self-dual lattices. Let K be a compact subgroup of G. Since K is compact, it
must stabilize some lattice: if we take a basis 8 of V' the og-linear span of the image of
the action of K on B defines such a lattice. We now work towards showing that every

compact subgroup is the stabilizer of some almost self-dual lattice.

Proposition 2.7.1. Let K be a compact subgroup of G and X be the set of all op-lattices
stabilized by K.

(1) If L € X then L# € ¥;
(2) [le,LQ € X then L1 ﬂLQ € E,‘
(3) [le,LQEE then L1+L2€E

Proof. (1) If z € L# then h(x, L) C pp. Fork € K, h(k-z,L) = h(k-x,k-L) = h(z, L) C
pr, with the last equality holding since k € G preserves h. Thus k -z € L*.
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(2) Take y € L1 N Ly and k € K. Then y € Ly and y € Ly. As each L; € 3 we have
k-yelLiand k-ye€ Ly forall ke K. Thus k-y € L1 N L.

(3) By definition Ly + Ly = {v € V : Ja € Ly,3b € Lo such that v = a + b}. Take
z € L1+ Ly, so 2z =a+ b for some a € Ly and b € Ly. As each Li,Ly, € X we
have that k-a = o and k-b = V' for some @’ € L,/ € Ly and k € K. Then
k-z=k-(a+b)=k-a+k-b=d+V. Thus k- z € L, + L.

Theorem 2.7.2. Every compact subgroup K stabilizes an almost self-dual lattice.

Proof. Since K is compact it must stabilize some lattice, which we denote by L. If
L 7 L*# then we replace L by M = L + L¥ which contains its dual M# because
M#* = (L+ L*)* = L* n (L*)* = L# N L. Since the set of lattices ¥ stabilized by

K is closed under taking duals, intersections and sums, K stabilizes M.

Thus K stabilizes some lattice L with the property L O L¥ and, amongst all such, we
choose L such that dimy, (L/L¥) is minimal. Take n € N minimal such that L# D w"L.
We claim that n = 1. If not, form the lattice M = L N @' "L¥ which has dual M¥ =
L# + @w"'L. We have M D M% since L D L¥ by assumption and w'"L# D w" 'L
because, rearranging, this is equivalent to L* D @ VL which is true as n > 1. This

gives the following chain of inclusions
L2 MDM* 2D L#

which shows that dimg, (M/M#*) < dimy,(L/L*), contradicting our choice of lattice L.

Therefore L# D wl and so we have found an almost self-dual lattice stabilized by K. O

2.8 Classification of Reductive Quotients

In the classification of depth-zero cuspidal representations of both GLy(F') and classical

groups G over non-archimedean local fields of odd residue characteristic, the starting point
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is to take a cuspidal representation of the reductive quotient of a maximal parahoric sub-
group. For positive-depth representations, one similarly needs a cuspidal representation
of the reductive quotient of a maximal parahoric subgroup of G. It is therefore important

to know precisely what the reductive quotients are in these cases.

If G = GLy(F') the reductive quotient of a maximal parahoric subgroup is GLy(kr), a
finite reductive group defined over the residue field kr. If G is a classical group defined
over a p-adic field of odd residue characteristic, then even though the classification is more

complicated, it is known and described in | , Section 1].

2.9 Reductive Quotients of the Symplectic Group

In this subsection we let F' be a dyadic field. Let h be a symplectic form defined on an
F-vector space V of dimension 2n. Let G = Sp(V') be the Symplectic group. We now

describe the maximal parahoric subgroups of G and their reductive quotients.

Proposition 2.9.1. Let L be an almost self-dual lattice. Then there exist a Witt basis

{e_n,...,e_1,€1,...,e,} and a non-negative integer m with 0 < m < n such that
L=ope_,® - -Dope_1Dope; B Dopey, DPremi1 - D pre,,
and
L# =ope_ @ @ 0pe_p 1 DPpe_m @ Dppe_y pre; @ - D Pre,.

Proof. We proceed by induction on the Witt index n. Suppose first L # L¥ and take
e € L\ L*. On V, := L/L¥ we have the induced form

hi(u+ L#* v+ L#) := h(u,v) + pp.

The form h; is non-degenerate, so there exists a e_; € L\ L* such that h(e_i,e;) =

1. Since h(e_1,e;) € 0f, we may replace e_; with h(e_j,e;) 'e_; and assume that
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h<6_1,€1) =1. Set X = <€_1,61>F and Y = XL.
For any z € L, since e_j,e; € L C pr'L*, we have both h(e_y, 2), h(e1, 2) € op. We put
x = h(ey,z)e_1 + h(e_1,2)e; € LN X and y = z — z. Then

h(y,e1) = h(z —x,e1) = h(z,e1) — h(z,€1)
= h(z,e1) — h(e_1,2)h(e1,e_1) — h(e_1,z)h(e_1,e_1)

=0,

since h(e;,e_1) = —1 and h(u,u) = 0. Similarly, we find that h(y,e_;) = 0 and so
y € LNY. Therefore we have

L=(LnX)&(LNY).

Similarly, if z € L# then we write z = 2 +y with z € X, y € Y. For any w € L we write
W = Ty + Yo With x, € LN X and y,, € L NY. This gives

Wz, w) = h(z,z,) = h(z,24) € Pr,
and so x € L¥ N X. It follows that y € L¥ NY and
L* =(L*nX)® (L¥NY).
Applying the inductive hypothesis to L NY in Y, and adjoining the basis elements e_;
and ey, we achieve a Witt basis as required.
Now suppose L = L¥. We apply the same argument to L* \ ppL. Take ¢, € L* \ ppL.
On Vy = L#/pFL we have the induced form
ho(u+prL,v+prl) == h(u,v) + pr.

The form hy is non-degenerate, so there exist €, € L* \ ppL such that ho(e’ ,,eh) = 1.

1

Since w 'h(e’ ,,€5) € 0, we may replace €', by wh(e ,,e5) 'e’, and assume h(e’ ,, ey) =

w. Put ey =w teh, e p=¢ 4 X =(e_g,e)p = (o eh)pand Y = X .
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For any z € L* we have both h(e_s, 2), h(es, 2) € pp. Put = h(ey, 2)e_s + h(e_q, z)es €
L#¥N X and y = z — x. Then the same calculation as above gives h(y, e_s) = h(y,ez) = 0
which shows y € L¥ NY. Therefore

L* = (L¥nX) e (L¥NY).
As in the first case we deduce that
L=(LnX)®(LNY).

Applying the inductive hypothesis to LNY in Y, and adjoining the basis elements e_s, e,

we achieve a Witt basis as required. O]

It follows directly from the Proposition above that for K a maximal parahoric subgroup

of G with pro-unipotent radical K, the reductive quotient
I(/[(1 — Sp2m(kF) X Sp2(nfm)(kF)‘
Here 2m = dimg, (L/L*), where L is the almost self-dual lattice stabilized by K.

Proposition 2.9.2. Let K be a maximal parahoric subgroup of G stabilizing an almost

self-dual lattice L with dimy, (L/L#) = 2m. Then the reductive quotient K/K" is
[(/I(1 = Sp2m<kF) X Sp2(n—m)<kF)

Proof. We know that in arbitrary characteristic the Symplectic group is generated by
symplectic transvections, which are maps of the form t,(v) = u + h(u,v)v for u,v € V.
Therefore it is enough to show that we can lift symplectic transvections through the quo-

tient.

Using Proposition 2.9.1 we obtain a Witt basis for V' so that L decomposes nicely with
respect to this basis. We write U = Span{e,; : L N Fe; # L* N Fe;} and W = Span{e; :
L#¥ N Fej#ppLNFe;}sothat V=UdW,

Let fz be a transvection in Sp,,, (kr), acting on L/L*. We lift @ € L/L* to an element

u € L NU and denote by t, the transvection associated to uw defined on U. Therefore
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t, is a lift of #z. Similarly, for #; a transvection in Spy,_,,)(kr) acting on L* JppL, let
w € L¥ N W denote a lift of @ so that the transvection t,, defined on W is a lift of 7.
Let g = t, + t,, be the automorphism of V' defined by

g(u' +w') = tu(u) + tw(w’)

for v' € U,w’ € W. Then g is the required lift of the pair of transvections (fg, tg). O

It remains to show that the stabilizers of the almost self-dual lattices above are maximal

compact.

Proposition 2.9.3. Let L be the standard almost-self dual lattice defined above with K =

Stab(L). Then K is mazximal compact.

Proof. Suppose K C K’ is compact. Then K’ stabilizes some almost self-dual lattice
L' # L. Since K C K', K also stabilizes L’.

We put
M=LN(L*+L)=L*+(LNL)
SO
M#* = (LN (L* 4+ L)# =L* + (LN L%) C M.
Then we have the containments
LOMDM#*DL*

so M is another almost self-dual lattice stabilized by K.

We put

N=L+@(p'L*nL)=p' L¥N(L+L)
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SO
N#* =ppL + (L*NL#) = L# N (ppL + L'*) C N.
Moreover, ppN = L¥* N (ppL + ppL’) € N¥ and so we have
NDLDMDM#*DL#*DN# DppN.

Suppose L =M = N. Then L = M = L¥ +(LNL) and L¥ = N* = pp L+ (L¥NL'*) C
prL+ (LNL)so L =ppL+ (LNL). Wededuce L = LNL and so L C L'. Since
L' Dpa'L* Dp'L# weget N=L+ (pz'L¥NL)= L+ L, and since L = N, we see
that L = L' which is absurd.

Therefore at least one of M, N is not L and so we have found an almost self-dual lattice
L" stabilized by K such that either

LOL'>L"*#2>L* or L' D>LDL¥DL'?*
Then (the image of) K stabilizes the non-trivial subspaces

0#£L#/L*CL/L*  or  0#ppL"/prL C L* [ppL.

But K surjects onto the connected component of the group of isometries of L/ L# and of

L¥ /ppL and this group of isometries acts irreducibly, giving a contradiction. O]

Remark 2.9.4. The classification of the reductive quotient for the Symplectic group as
given in Proposition 2.9.2 coincides with the description when p is odd. Therefore, the

description is uniform for all primes p.

2.10 Reductive Quotients of the Special Orthogonal
Group

In | , 1.8] Morris gives a classification of all possible anisotropic symmetric bilinear

forms h in odd residual characteristic. Moreover, in each case, he gives a description of the
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unique almost self-dual lattice which it stabilizes. This information is all that is needed
to extrapolate the classification of the reductive quotients in the case 2 € oy. This is
expected since the description of the Witt ring is uniform for all such fields (it depends
on whether —1 is a square or not). However, we have seen that the Witt group for dyadic
fields depends on the degree of the field extension (as well as whether —1 is a square or
a sum of two squares), and we only know the full classification of the isometry classes of
the anisotropic quadratic forms for the case F' = Qq. It is for this reason that we restrict

ourselves so that F' = Qy, and even in this the simplest case, there are issues which arise.

Let @ be a non-degenerate quadratic form defined over F'. Using Witt’s Decomposition

Theorem we can write

Q = QlraagL QlviL Qlv,

with @y, anisotropic and @ |y, hyperbolic. Since @ is non-degenerate we have rad @ =
{0}. Therefore, in order to understand the possible reductive quotients for the maximal
parahorics of G, we need to understand what reductive quotients arise for ) anisotropic

and ) hyperbolic.

2.10.1 Anisotropic Orthogonal Groups

In this section we restrict ourselves so that F' = Q,. Let ) be an anisotropic quadratic
form over Q, on a vector space V', let h be the associated bilinear form and denote by K
the group of isometries of (V, Q). Suppose L is an almost self-dual lattice in V' stabilized
by K. On one hand, we have

QL) ={Q(v):velL} h(v UGL}

N~ DN =

h(v,v") :v €V and o' GL#} since L D L*

e
i
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On the other,

{%h(v,v):v EL}
_ {}lh(v,zv) v e L}
i

pr since 2v € ppL C L*

Thus any almost self-dual lattice L in V must satisfy
or C Q(L) C pp'.

We write N = {v € V: Q(v) € pp'} and M = {v € V : Q(v) € or}. It follows from the
definition that every g € K stabilizes both N and M:

gN ={gv:veV,Qv) € pp'}
= {gv:veV,Q(gv) € pz'}
={u:ueV,Qu) €pp'}
= N,

and similarly ¢M = M. An analogous argument shows that ¢ stabilizes both N# and
M# . Therefore any g € K must stabilize all of N, M, N* and M.

We now consider quadratic forms, characterized by their dimension, starting with the
I-dimensional anisotropic form @ = (a) for a € Q) /(QJ)?. It is sufficient to consider the
form @ = (1) since any other 1-dimensional quadratic form is just a scalar multiple of @

and so their groups of isometries coincide.
Case1: Q= (1)

Write V' = (e1)r so that Q(Me;) = A]. Since @Q is 1-dimensional, we immediately see

that N = M = ope; which is self-dual. Therefore, on M/prpN we get an induced form Q
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given by

Qv +prM) = Q(v) +pr

which is non-degenerate anisotropic. Therefore, we have
K/K' < O(Fy).

Since O1(Fy) is trivial, we see that K is itself a pro-2 group.

For the 2-dimensional forms, recall that we can write Q = (Aa, \b) = (\) ® (a, b) and so
the group of isometries of @ is the same as the group of isometries of Q" = (a,b). Thus

we need only consider forms (1,b), for b in a set of representatives for Qy /(Qy ).

Suppose @ = (1, b) with valg(b) = 0. Then for v = (A, \y) € V, since we wish to describe
the lattices N and M, we are interested in the quantity valg(A] 4+ bA3). By scaling if
necessary, we may assume )\; € o, and so \? = 0,1 mod 4 for i = 1,2. Therefore
A +0b)3=0,1,b,b+1 mod 4. We deduce that the isometry groups of the forms (1, b) and
(1,b+4) stabilize the “same” lattices and will have the same reductive quotient. Similarly,
if valp(b) = 1 then the lattices M and N are “independent” of the choice of b. Therefore,

we need only consider the forms

Q€ {(1,1),(1,2),(1,3)}.

Case 2: Q =(1,1)

We write V = (e1, ea)r 50 Q(A1eq + Maea) = AT + A3 Recall N = {v = Aje; + Mges €V
Q(v) = AT+ A3 € pr'}. Take v = Aje; + M\gep € N arbitrary. If valp(\;) = —n < 0 then
valp(A? + A3) > —1 implies that valp(\y) = —n < 0. Writing j; := @p); gives p; € 0F

such that u + p3 € pp'.

Suppose n > 1. Reducing mod p? we get pf = u5 = 0 mod 4. However, squares in Zy are

congruent to 1 mod 8, which in turn are congruent to 1 mod 4, and so p? + 5 = 2 mod 4
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a contradiction. Therefore n = 1 and y; € o such that puf + u3 € pp. This last condition
is equivalent to ju; + o € pp since the i + 5 = (11 + p2)* mod 2 and the valuation of a

square is even. Scaling back gives

N = {\ieg + Xaea €V : A, Ay € pi' such that A\ + Xy € 0p}

= <%(el + 62),62>0F.
Writing v = pieq + poes € V and u = /\1(%(61 + e3)) + Aaey € N7 we have
v = ey + pges € N¥ = h(v,N) C pp

h(v,u) C pp for all \; € op
Qv+u) — Q) —Qu) C pr for all \; € op
AL + 2090 + g1 € Pr for all \; € o
A (i + p2) + 20 € pr for all \; € op

fo € op and py + po € Pr

111117

M1, o € O such that U1+ Ho € Pr.
Hence
N* = {p1€e1 + poes € V1 py, po € op such that puy + pus € prp} = ppN.

We now consider M = {v € V : Q(v) € or}. Note that if either \;, Ay € px' \ 0 then
Q(v) € pp' € o and so \; € 0 with no other restrictions. Thus M = ope; @ 0pes and a
direct calculation shows that M# = M. Therefore K stabilizes N D M = M#* > N# =
pr N, and both M, N are almost self-dual.

The group K/K I acts on the the 1-dimensional kg space V; := N /M, which is spanned
by the image of v; = £(e; + €2) in the quotient N/M. We have the induced form

Q1(v+ M) = wQ(v) + pr,

0. (0 (b)) =20 (o (e +20)) 0

given by
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2 TIDY

:>\1+pF7

which is non-degenerate anisotropic. Similarly we get a 1-dimensional non-degenerate
anisotropic form on the quotient V4, := M /pr N, which is spanned by the image of v, = es,

given by
Qa(v + N7) := Q(v) + pp.
Therefore
K/K" < 01(Fy) x Oy(Fs).
As in Case 1 above, this is the trivial group so K is in fact a pro-2 group.
Case 3: Q =(1,2)
We write V = (e1, €2)r 50 Q(Are1 + Apes) = AT +2X35. Writing N = {v € V : Q(v) € pp'}
we have

v =Ae1+ Ay €N <— )\%—FQ)\%GPEI

1

<= both A\},2)\; € p;' since valp()\}) is even and

valp(2)3) is odd

< A Eorp and M\ € p}l.
Thus
N =ope; @ p}leg.
Similarly, we have M = {v € V : Q(v) € op} which gives

v=Me|+ Ney € M <— )\%+2)\§€0F

<— )\1,)\2 € op,
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and so
M = ope; @ opes.

A direct calculation shows that M = N7 and so N is the unique almost self-dual lattice
stabilized by K with N D N¥ D ppN. Writing Vi = N/M and V5 = M/ppN, spanned
by the image of the vectors v; = %eQ and vy = e; respectively, we have induced non-trivial

non-degenerate kp-quadratic forms

Ql(’l) + M) = 2@(1}) +pr

for all v € N, and

Q2(w + ppN) == Q(w) + pr
for all w € M. Therefore
K/K' < O1(Fy) x O4(F,)

is again trivial and so K is a pro-2 group.
Case 4: Q= (1,3)

Write V = (e1, e2)r so that Q(Aje; + Agez) = A] + 3X3. Suppose A; € pi" \ pp ™. Then

writing A\; = ;oo " with p; € 0 we have
Q(A\er + Asea) = piw 2" + 3pjw 2" € pp 2\ pptt

since 7 = 1 mod 8 == p? + 3u3 = 4 mod 4. If both \; have the same valuation, then
()(v) has an even valuation, which shows N = M. Carrying through the same analysis as

in Case 2 gives

N=M-= {)\161 + Xoes €V )\z c p}l such that A\ + X5 € OF}

= <%(el + 62),€2>

o
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Put v = pie; + poes € Vand u = )\1(%(61 + e3)) + Aoea € M. Therefore

V= pi1eq + fioes € M7 h(v, M) C pp

h(v,u) C pp for all \; € op

Qv +u) —Qv) — Qu) C pr for all \; € o
A1 + Gus e + 3us A € pp for all \; € o

A (1 + 3u2) + 6Aaps € pr for all \; € op

fo € 0p and py + po € pr

[ A A A A

1, o € o such that py + po € pp.

Therefore M# = ppM and so the space M /prN, spanned by the image of the vectors

v = %(61 + €3), V3 = ey in the quotient, is 2-dimensional with induced form @ given by

Q(v+prN) = Q) + pr.

The space M/prpN contains the image of the vectors v; = %(el + e3), va = ey in the

quotient. The form Qs is

Q2(Av1 + /\2712) = Q(Mv1 + Av2) + pr

22 A 2
:Zl+3(?1+)\2) +Pr

= )\% + Mo+ )\% +pr,
which is non-degenerate anisotropic. Therefore
K/K' < 05 (Fs).

As abstract groups, we have O; (Fy) = GLy(Fy) = Ss.

For the 3-dimensional anisotropic forms, we have seen that every form is isometric to
MAA) = () @ (1,1,1) for A € Qy/(Q5)? Therefore they all have the same group of

isometries, so we need only analyze @ = (1,1, 1).
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Case 5: @ =(1,1,1)

Write V' = (e1,eq,e3)r 50 Q(A1e1 + Aaea + Azez) = A} + A3 + A5. Recall N = {v =
Arer + Aoeg + Azes € Vi Qv) € p;l}. Let v = Ae; + Ages + A\3e3 € N and sup-
pose —n = valp(A;) < valp(Ag) < valp(A3). By the same analysis as in Case 3 we get

f1, o € 05, i3 € op such that uf + 5 + 3 € p7'~ " when —n < 0. Assuming n > 1 we

have pf + us + p3 € ph. However, u; = p3 = 1 mod 8 and p3 = 0,1,4 mod 8, which
implies 2 + p5 + p3 # 0 mod 8, contradicting n > 1. Therefore

N = {U = Aeg + Aaeg + Azez € Ve Q('U) S p}l}

= {)\161 + Ageg + A3e3 € V! )\1, )\2, A3 € p}l such that A\; + Xy + A3 € UF}

1 1
= <§(€1 + 62), 5(61 + 63>,€3>

or
Writing v = pi€e1 + pises + praes € V and w = Ay (3 (e1 + €2)) + Xa(5 (e1 + €3)) + Azez € N

gives

v = jie1 + poes + pues € N = h(v,N) C pp

h(v,u) C pp for all \; € op

Qv +u) — Q(v) — Qu) C pr for all A; € op

A(pn + pi2) + Aoz + ps) + 233 € pr for all A; € op

M3 € 0p, 1 + U2 € Pp, o + i3 € Pr

11117

i; € op such that uy + ps = g + p3 = po + 3 = 0 mod pp.
Therefore

N# = {\e1 + Aaeg + Aze3 € Vi Ai, Ao, A3 € op such that A\; 4+ Ao, Ay + Az, Ay + A3 € pr}

= <261, 262, €]+ e+ €3>0F 7£ pFN
Similarly, we find that
M = {)\161 + Aoeg + A3e3 € V Q(U) € OF} =0pe; D opes D opes

and M = M? by a direct calculation. Unlike the previous cases, we do not have a chain

of inclusions. However, we do have the following diagram of containments:
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N
E

M = M*
N# prN
S T
prM

First consider the 2-dimensional space V; = N/M. It contains the image of the vectors

v = %(61 + ey) and vy = %(el + e3), so the induced form Q; is given by

Qi(v+ M), = wQ(v) + pr,

where v = A\jv; + Agvy. Calculating the induced form gives

Q1(>\1U1 + )\2@2) = 2@()\1@1 + )\2’02) + pF

AL+ A A A
= 2@ (%61 + ?162 + 5263) +pF

= AT+ Mdo + A3+ pr

which is a 2-dimensional non-degenerate anisotropic form.

Now consider the 1-dimensional space Vo = M/ppN spanned by the image of the vector

v3 = e; in the quotient. We have the induced form @ given by

Q2(v+prN) = Qv) + pr

is 1-dimensional non-degenerate anisotropic. Therefore

K/K' < O3 (Fy) x O1(Fy).

Case 6 : Q= (1,1,1,1)

Write V' = (e, e, e3,e4)p 50 Q(A1er + Agey + Ages + Mgeq) = A2 4+ A2+ A2 + )2, By

the same analysis as in previous cases, we find

N = {\ie1 + Xaeg + Azez + Ageq € Vi A, Ao, Az, Ay € pit such that A\j 4+ Ay 4+ A3+ My € 0p}
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1 1 1
= <§(€1 + ey +es+ey), 5(61 + €2), 5(61 + e3), 64>

oF
One would expect to find that M is the obvious lattice ope; @ opesPopesPopey. However,
in this particular case, we find that M also contains vectors of the form A\je; + Agses +

Ases + Ageq with \; € p}l \ 0p. Therefore

M = {)\161 4+ A€o + Azes + Ageq € Vi either \; € p;l \ op forallior )\ € UF}

1
= <§(€1 + €9 + €3+ €4), €9, €3, €4> .
op

Writing u = A\je; + Aaeg + Agez + M\eq € N gives

v = pye; + faey + pses + pgeqy € N¥ = h(v,N) € pp

<= h(v,u) € pp forall \; € op

— Q+u)— Q) —Qu) C pr for all \; € op

= A+ A+ A3+ foAy + fode + s+
(33 + g + 24Ny € PR forall \; € op

= Al + g2+ pa 4 pa) + Xa(pn + p2) + Ag(pa + ps)+
204 (pq) € pr for all \; € op

= it ple g e € PRy 2 € PRy + U3 € Pr,
Ha € OF

< U1, [2, i3, [tg € 0p such that gy + po + pus + pg € pr,

M1+ f2 € PRy p + i3 € PR
By symmetry

N# = {,11,161 + to€g + Uzes + g€y € V. L € O such that M +Mj € pr for 7 7é j}

In the same way one could calculate M# explicitly to show M# = ppN, but one could

also use properties of duality:

N = (N#)# = (ppM)* = p'M#* — M¥* =ppN.
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First consider the 2-dimensional space V; = N/M. It contains the image of the vectors

v = %(61 +ey), v = %(el + e3) and so the reduced form Q) is given by

Q1(v+ M) = wQ(v) + pr.

By writing v = A\jv1 + A0, we find that Q; is

Q1(A1v1 + Aavg) = 2Q(Mv1 + Aove) + pr
=2 (Q (%(61 + ea) + %(61 + 63))) +pr

A1+ A A A
=2 (Q (%614—?1624‘ ?263)> +pF

=X+ M+ A2+ g,

which is non-degenerate anisotropic. Similarly, the 2-dimensional space Vo = M/prN has

induced form @, given by

Q2(v +prN) = Q(v) + pp.

By writing v = %(el + €5+ e3 + e4) and vy = e4 we find that Q, is

Q2(v+prN) = Q(v) + pr

= Q (A\3v3 + A\qvq) + pr

A A A A3+ 2A
= Q (?361 + 73624— ?363—1- %64) +pr

=X+ Ash + AP+ by
which is non-degenerate anisotropic. Therefore
K/K' < O3 (F3) x O3 (Fy).

In all cases above we have shown that given K the group of isometries of (V@) that
K/K"' injects into the groups U(Q;) x U(Qs). However, we do not know if we have an

isomorphism. It turns out that in most cases this is true.

Proposition 2.10.1. Let Q.. be an anisotropic non-degenerate quadratic over Qo with

K the stabilizer of . Then K/K" is of the following form:



56 MICHAEL ARNOLD

Case Qan K/K!
1 1-dimensional trivial
2 (1,1),(1,5), (3,3), (2, 10) trivial
o | (1:2).(1,6),(1,10), (1, 14), _—
(2,3), (2,5), (3,10), (5, 10)

4 (1,3),(2,6) 05 (Fy)
3-dimensional 05 (Fy)

6 4-dimensional O3 (Fy) x O5 (Fq)

Proof. Since there is no occurrence of O} (Fy) we know that the Orthogonal groups are
generated by reflections | , Theorem 6.6] and | , Proposition 2.5.6]. In the same

way as Proposition 2.9.2, we show that we can lift reflections through the quotient.

Let N, M, v;,Q; be as in Cases 1 — 6 above. Let U = Span{v; : N N Fv; # M N Fv;}
and W = Span{v; : M N Fuv; # ppN N Fv;} so that V = U L W. With respect to these

vectors we have that the lattices N and M decompose nicely i.e.

N=(NnU)® (NnW),
M=MnU)®&(MnW).

Let

h(z,u)
Q1()
be a reflection in O(Q;) acting on N/M with @ non-singular and z € N/M. We choose

U

7’@::2'—

any liftt w € N N U of u so that the reflection
h(u, x)
Q(u)

is a lift of 73, which is possible by the non-degeneracy of Q. Similarly, for r4 a reflection

u, xreN

ro(z) =2 —

in O(Q3) acting on M/ppN, we choose a lift w € M NW of w so that the reflection r,, is

a lift of rgz. Define g = r, + r,, by
g’ + ') =71, (') + 7y (W)

for all v’ € U,w’ € W, which is an element of K. O
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2.10.2 Split Special Orthogonal Groups

Let F be a dyadic field and G be a Split Special Orthogonal group, Then, given a non-
degenerate quadratic form (Q defined over V', we can write Q = nQu L Q.. where nQy
is the orthogonal sum of n-copies of the hyperbolic form Qg and ., is is either zero or

1-dimensional anisotropic.

Ideally one would like to be able to have an analogous version of Proposition 2.9.1 for the
case of Orthogonal groups. In the proof of the Proposition, the key point is that given
v € L\ L* we can find a u € L'\ L* with h(u,v) = 1. However, in our case if we take
v € L\ L¥ with Q(v) = 0, we are not guaranteed that we can find a u € L\ L¥ with
Q(u) = 0 and h(u,v) = 1. Therefore, given a maximal compact subgroup K of G, even
though it stabilizes some almost self-dual lattice L, we can not find a Witt basis with

respect to which L nicely decomposes. This is already visible with the following example

of K = O(Qn).

Suppose () = Qg and ey, e5 is a Witt basis with respect to the symmetric bilinear form h

associated to (). A direct matrix calculation shows that

T
O(Q) ~ F* x Cy ~ : cx e P

0 1
The cyclic group C, is generated by which acts on F* by z — 2!, and the
10

Special Orthogonal group SO(Q) is just F*.

Consider the lattice L = op(e; + e3) + 0peq stabilized by K. One can check that it is

self-dual, and so on L/ppL we have an induced form

Qv +prl) = Qv) +pr

which is degenerate with a 1-dimensional radical. The stabilizer of L also stabilizes the

pre-image of rad(Q) in L, which is the dual of the almost self-dual lattice L' spanned by
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e; and ey. Therefore we chose the ‘wrong’ almost self-dual lattice: the compact subgroup

which is the stabilizer of L stabilizes more that one almost self-dual lattice.

We return to the general setting. Put V = Vi L V,, with Vg hyperbolic of dimension
2n and V,, anisotropic of dimension at most 1. Let h be the non-degenerate symmetric

bilinear form associated to ). We write Q = nQu L Q.. and h = nhy L ha,.

We choose a Witt basis for Vg so that Vg = (e_,,,...,e_1,€1,...,e,)p With h(e_;,e;) =

d;5. We now consider two cases.

Firstly, suppose V' = Vg so Vo, = {0} and Q = Qg is hyperbolic. Then G is an even
Split Special Orthogonal group. For some 0 < m < n with m # 1,2, n —2,n—1, let L,,
be the almost self-dual lattice

@ ope; ® EB ope; @ EB prek

i=—n k=m+1
with dual
—(m+1)
LY = @ ope; ® @ ppej@@lﬂpek
1=—n j_fm

Let Vi := L,/ sz and V, = Lfl/p #Ly,. The space V; is 2m-dimensional with induced

induced form

Qi(v+ L) := Q(v) + pr

which has basis the image of the vectors e_,,,...,e_1,€e1,...,€e, in the quotient. This
form is non-degenerate and hyperbolic, so @Q; is the orthogonal sum of m-copies of the

hyperbolic form Qg over the residue field kp.

Similarly, the space V5 is 2(n — m)-dimensional with induced form

Q2(v 4 ppLy) =@ 'Q(v) + pr
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which has basis the image of the vectors e_, ..., e_(my1), @em41, - .., @e, in the quotient.
This form is non-degenerate hyperbolic, so @, is the orthogonal sum of (n —m) copies of

the hyperbolic form Qg over the residue field kp.

Let K be the stabilizer of L,,, which is compact open. Then K/K !is a subgroup of
O(Q1) x O(Q2) = O3,,(kr) x Oy, (kr). (1)

Remark 2.10.2. The reason why we require m # 2,n — 2 is that in this instance there
would be a factor of Of (kr), which we have seen is not generated by reflections if F' = Q.
This then begs the question as to what the reductive quotient would be in this case. Since
we can lift reflections through the quotient, we expect that the reductive quotient would
have as a factor the index 2 subgroup of O} (F;) generated by an even number of reflections,

which is not SOJ (Fy).

Secondly, suppose V,, = (eg)r so G is an odd Split Special Orthogonal group. Then the
form Q,, is isometric to () for some A € Q5 /(Q5)?. Moreover, by choosing instead our
basis for Vg so that h |y, (e_;,e;) = Ad;j, and then rescaling our form h, we may assume

that A\ = 1 since forms which differ by an element of F* have isomorphic isometry groups.

For some 0 < m <n with m # 1, let L,, be the almost self-dual lattice

@ 0r€; @Lan@@opej &® @ Prex

i=—n k=m-+1
with dual
—(m+1)
@ ope; D @pFej@Lan@@pFelm
i=—n j=—m

where L,, = opeq is the unique self-dual lattice stabilized by Q.

Put N,, = {v € L¥ : Q(v) € pr}, which is a lattice stabilized by K = Stab(L,,): if k € K
and v € N,, then kv € L# as v € L¥ and Q(kv) = Q(v) € pr so kv € N,,. Now compute
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QYT Avi) = Do Adi + A so we get

—(m+1)
@ ope; D @ pre; ©® pFLan 5% @ preg
i=—n j=—m

Then K stabilizes
L 2 L* 5 N, D ppLy,.

Let V) == L,,/N,, and V5 := N,,/prL,. The space V; is (2m + 1)-dimensional with

induced form

Ql(v + Np) = Q) +pr

which has basis the image of the vectors e_,,,...,e_1,€e9,€1,...,¢€, in the quotient. This
form is non-degenerate isotropic, so @; is the orthogonal sum of m copies of the hyperbolic

form Qp and the one-dimensional anisotropic form Q,, over the residue field k.

The space V3 is 2(n — m)-dimensional with induced form

Q2(v +prLy) =@ 'Q(v) +pr

which has basis the image of the vectors e_y, ..., e_(ny1), @em41, ..., @e, in the quotient.
This form is non-degenerate and hyperbolic, so Q3 is the orthogonal sum of (n —m)-copies

of the hyperbolic form Qy over the residue field kp.

Proposition 2.10.3. Let G be a Split Special Orthogonal group and let L, be the almost
self-dual lattice defined above with stabilizer K with m # 1,2,n — 2,n — 1. Suppose
that we cannot lift the identity of the reductive quotient K/K" to an element of O(Q) of

determinant —1. Then

ither both g; € SO(Q; both
K/Kl’i{(91;92)60(@1)><O(Q2): cither both g; € SO(Q:) or bot }

gi € 0(Q:) \ SO(Qs)

Proof. We have seen in Proposition 2.10.1 that we can lift orthogonal reflections over the
residue field to a reflections over the p-adic field. Moreover, an orthogonal reflection over

the p-adic field has determinant —1. Let V; be the spaces above with induced forms Q;.
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Suppose g; € O(Q;) lifts to g = g1 + g2 € O(Q) such that g |y,= g;. Then g € SO(Q) if
and only if det(g) = det(g;)det(gz) = 1 which immediately shows that K/K' D H. The

assumption forces equality. O

Remark 2.10.4. The hypothesis that we cannot lift the identity to an element of deter-
minant —1 is not always necessary. For unramified extensions F' of QQy the proof of this is
as follows. Suppose ¢ is such a lift with determinant —1. We can write g = 1 + 2X with
det(g) = —1 and X € Maty,(0r). On one hand, we have det(g) = —1 € 1+ 2tr(X) + pF.
which holds if and only if tr(X) = 1 mod pr. On the other, if g € SO(Q) then, by writing
A, = antidiag(1,...,1) for the Gram matrix of the bilinear form h associated to @), we

have g7 Apg = Ay, implies tr(X) = 0 mod py a contradiction.

It now remains to show that the stabilizers of the lattices L,, above are maximal compact.

We first consider the even Split Special Orthogonal groups.

Proposition 2.10.5. Let G be an Even Split Special Orthogonal group so ) is a non-
degenerate hyperbolic quadratic form on V with associated bilinear form h. With respect
toh, let{e_n,...,e_1,e1,...,e,} be a Witt basis for V.. Write Ly, for the almost self-dual

lattice
@0F61@®0F6]@ @ preg.
1=—n k=m+1

with stabilizer K. Suppose m # 1,n — 1. Then K is maximal compact.
Proof. This is identical to the proof of Proposition 2.9.3 by taking L = L,,. m

Proposition 2.10.6. Let G' be an Odd Split Special Orthogonal group so Q) = Qv,,;, L Qan
1 a non-degenerate anisotropic quadratic form onV = V,u L Vo with associated bilinear
form h = h |y, L h|v,. With respect to h, let {e_p,...,e_1,e1,...,e,} be a Witt basis
for Vom and eq be a basis for V,,. Write L,, for the almost self-dual lattice

EB 0p€; ® Lan ® @ ope; @ @ preg.

i=—n k=m+1
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with stabilizer K, where L., = opeq is self-dual. Write Ny, for lattice
—1 m n
N = €P ore: @ prLan® Pore; & P vres.
=—n 7=1 k=m+1

Suppose m #n — 1. Then K is maximal compact.

Proof. Write L = L,,. The same argument as in Proposition 2.9.3 shows the existence
of another self-dual lattice L” stabilized by K. We write N,, = L¥ N Q*(pr) and
N = L"* N Q (pr). We then have either

L2L'DN" 2 N
or
L" 2LDN,, DN" DppLl" DprL.

In the former case the stabilizer of L"”/N,, in L/N,, is a proper parabolic subgroup of G.
Similarly, in the latter case the stabilizer of prL”/prL in N,,/prL is a proper parabolic
subgroup of G. In either case, K surjects onto the connected component of L/N,, and
Ny /prL, and this group of isometries acts irreducibly, giving the required contradiction.

]

Recall that a maximal parahoric subgroup of G is the inverse image in K/K"' of the
connected component of K/K' for K a maximal compact open subgroup of G. This

immediately gives the following.

Corollary 2.10.7. Let G; be a Split Special Orthogonal group with ¢+ = dim V,,. Let K;
denote the stabilizer of the lattice L,, define above and K; denote the maximal parahoric
associated to K;. Suppose m #1,2n—2n—1fori=0andm#*n—2,n—1 fori=1.
Then

Kg/Ké ~ SO;m(k’F) X SO;(n_m)(kF)
and
K({/K% ~ SOQm+1(kF) X SO;r(n_m)(kF)
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Remark 2.10.8. In our situation, we have given a description of the reductive quotients
for the maximal parahoric subgroups corresponding to the stabilizers of certain almost
self-dual lattices. This coincides with the description of the reductive quotient for G a
Split Special Orthogonal group when p is odd (albeit “swapped around” in the sense that
the same groups appear in the direct product but in a reverse order as m ranges over its

possible values). We recall this description below.

Suppose p is odd and wp is a fixed uniformizer of F'. We define G = SO(h) as the group of
isometries of a symmetric bilinear form h. Note that we need not consider quadratic forms
since h(u,v) = 2 (Q(u+v) — Q(u) — Q(v)) in this case. Let L,, be an almost self-dual
lattice for some m subject to 0 < m < n. Write L = L,,, with dual L7 = Ljs. On L/L#

we have the induced form
h(v+ L*, w4 L%) .= h(v,w) + pp, for v,w € L.
Similarly, on L¥ /ppL the induced form is
h(v' + prL,w' +ppL) = wp h(v, ') + pr, for o/, w’ € L¥.

Write K for the maximal parahoric corresponding to the lattice L, with pro-unipotent

radical K*:

— If G = SOy, then

for 0 <m <n withm # 1,n— 1.
— If G = S0Og9,41 then
K/K"' ~ S03%,,(kr) x SOs(—my+1(kr)
for 0 < m <n with m # 1.

The only difference here is that in odd characteristic we no longer have the isomorphism
between odd-dimensional Special Orthogonal groups and Symplectic groups of codimen-

sion 1 over finite fields. Moreover, in our work we have the added caveat that we do not
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consider maximal parahorics which have a factor of SO} (IFy) appearing in their reductive

quotient.



Chapter 3

Representation Theory

Let F' be a non-archimedean local field and G be a locally profinite group, by which we
mean G is a topological group in which every open neighbourhood of the identity contains
a compact open subgroup. Our aim is to study the representation theory of G, in partic-

ular, we will be interested in complex representations.

A representation of G is a pair (7, V) where 7 : G — GL(V) is a homomorphism of groups
and V is a C-vector space. We omit the use of complex and simply talk of representations

of G. A representation (m,)) of G is smooth if, for every vector v € V, the stabilizer of v
stabg(v) = {9 € G : 1(g)v = v}

is open. For (71, V), (72, V) smooth representations of G, we write Homg (7, m2) for the
space of G-homomorphisms between (71, V) and (w2, V). We denote by R(G) the cate-

gory of smooth representations of G.

A representation (m,V) is irreducible if there are no proper submodules of V which are

stable under G. Let Irr(G) denote the set of equivalence classes of irreducible smooth

65
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representations of G. For ease of notation we often simply write 7 for the representation

(m, V).

Let (m,V) € R(G). We call (7,V) admissible if the space V¥ = {v € V : 7(h)v = v} is
finite-dimensional for all open subgroups H of G. Admissible representations admit nice
properties which are useful in the study of the representation theory of G. One would
hope that admissible representations encompass a large class of objects in R(G). This

turns out to be the case.
Theorem 3.0.1. | | Let (m,V) € Irr(G). Then (7,V) is admissible.
A classical result in representation theory which will be of use to us is Schur’s Lemma.

Theorem 3.0.2. [ , Chapter 1] Let my,m € Irr(G). Then Homg(my,m) # 0 if and

only if my ~ my. Moreover Endg(m) = C.

Suppose (7, V) is an irreducible smooth representation of G. Let Z(G) denote the centre
of G. It follows from Schur’s Lemma that Z acts on V via a character w, : Z(G) — C*.

We call w, the central character of G.

3.1 Hecke Algebras

If G is a finite group, then the study of representations of G is equivalent to studying
modules over the group algebra CG. This is no longer true in our setting. Instead, we
get an analogous result if we replace the group algebra CG with what is called the Hecke

algebra of G.

Let C2°(G) denote the space of functions ¢ : G — C which are locally constant and have

compact support. The group G acts on C°(G) by left and right translation:

Ty :h— d(g~"h),
me® :h — ¢(hg),
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for all g,h € G and all ¢ € C(G). A function ¢ € C°(G) is said to be positive if
f(g) > 0 for all g € G, in which case we write ¢ > 0. A left Haar integral I on G is
a non-zero linear functional I : C7° — C which is invariant under left translation and is
positive on positive functions ¢ € C°(G); it is unique up to multiplication by a positive
real scalar. One defines a right Haar integral in the same way. A group G is said to be
unimodular if left Haar integrals and right Haar integrals coincide. Any reductive p-adic

group is unimodular | , Proposition V.5.4].

Let X be a Hausdorff topological space. A Borel set S is a set which can be formed by
countable unions, countable intersections or complementations of open subsets of X. A

o-algebra 3 on X is a subset of the power set P(X) such that
i) X e
ii) ¥ is closed under taking complements;

iii) ¥ is closed under taking countable unions.

A Radon measure p on G is a measure p on the o-algebra of Borel sets of G which is finite

on compact sets, outer-regular on Borel sets i.e.
pu(S) = inf{u(U) : S C U, U open},
and inner-regular on open sets i.e.
w(U) =sup{p(K): K CU,K compact}.

A (left)-Haar measure p is a non-zero Radon measure which is invariant under left-
translation i.e. p(gS) = p(S) for all Borel sets S € G and g € G | , Chapter
1.3]. Moreover it is unique up to multiplication by positive scalars. An immediate conse-
quence of this is that there exists a function § : G — (0, 00) called the modulus character
of G satisfying pu(Sx) = §(z)u(S) for all Borel sets S. This character is unique and has
the property that G is unimodular if and only if 6(G) = 1.
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Haar measures enable us to define a convolution product on C°(G) as follows. Let u be a
left Haar measure on G. For any f1, fo € C2°(G) we define the convolution product f * fo

as

fi* falg) = /Gfl(h)ﬁ(hlg)du(h)-

With respect to the convolution product we can view C°°(G) as an associative algebra. We
call the algebra H(G) = (C°(G), x) the Hecke algebra of G. While H(G) is non-unital, it

contains many idempotents. For any compact open subgroup K of G the function

ﬁ itge K,

ex(g) =4 "
0 otherwise,

is an idempotent in H(G). Once can easily form a unital subalgebra of H(G), namely the
algebra ex * H(G) * e with unit ex. This is the space of functions ¢ € C°(G) which
satisfy ¢(kigks) = ¢(g) for all k1, ko € K. These subalgebras have the property that

H(G) = UeK *« H(G) * ek,

K

where K runs over all compact open subgroups of G. An H(G)-module M is smooth if
for all m € M, there exists a compact open subgroup K of G such that ex - m = m. Let
M, M be smooth H(G)-modules. We write Homy ey (M, Ms) for the space of all H(G)-
homomorphisms from M; to M,. If we take objects to be smooth H(G)-modules and
morphisms to be H(G)-homomorphisms then we can construct the category H(G)-Mod
of smooth H(G)-modules.

Theorem 3.1.1. There is an equivalence of categories between R(G), the category of

smooth representations of G, and H(G)-Mod, the category of smooth H(G)-modules.
The action of ¢ € H(G) on a representation V € R(G) is given by

. / o(g)n(g)v dg,

which gives V the structure of a left H(G)-module. This is a finite sum since both ¢ and v
are smooth. On the other side, for a smooth H(G)-module M, g € G acts in the following
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way:

1
p(K)

7(g) -m = Ly -m

for m € M satisfying ex - m = m. Here 1,k denotes the characteristic function of gK.

3.2 Induction and Restriction

Let H be a closed subgroup of G and R(H) denote the category of smooth representa-
tions of H. Let (p, W) € R(H). Then one can construct from (p, W) a representation
(Ind% p,Ind% W) € R(G) as follows. Let Ind% W denote the vector space of functions
f G — W satistying

i) f(hg) = p(h)f(g) for all h € H,g € G;
ii) there exists a compact open subgroup K of G such that f(gk) = f(g) for all k € K.

The group G acts on Indi by right translation. The induction functor Indg is right

adjoint to the restriction functor
Res% : R(G) — R(H)

which restricts representations and morphisms from G to H in the natural way. We can

interpret this property in the following classical result.

Theorem 3.2.1 (Frobenius Reciprocity). Suppose H is a closed subgroup of G. Let
(p, W) € R(H) and (7,V) € R(G). Then

Homg (7, Ind%, p) ~ Homp (Res$ 7, p).

If H is also open, Resg has a left adjoint which is compact induction, denoted indg. In
terms of functions, ind$ W is the subspace of Ind$, W consisting of functions which are
compactly supported modulo H. In this case, there is an analogous version of Frobenius

Reciprocity.
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Theorem 3.2.2 (Frobenius Reciprocity). Suppose H is an open subgroup of G. Let
(p, W) € R(H) and (m,V) € R(G). Then

Homg (ind$m, p) ~ Homy (7, Res$ p).

This says that compact induction indg is left-adjoint to the restriction functor.

3.3 Parabolic Induction and Cuspidal
Representations

Let G be a reductive p-adic group. We have seen above that we can obtain representations
of G by the process of induction. When we start with a representation of a Levi subgroup

and induce, this is known as parabolic induction. It is this method which we now describe.

Let P be a parabolic subgroup with Levi decomposition P = M x N. Let (p, W) be a
representation of M. Since M ~ P/N we can inflate p to a representation of P, which
we denote Inflyp. We abuse notation and also refer to this inflated representation as p.

This gives a functor Infl}y, : R(M) — R(P).

We can then induce from P to G to obtain a representation of G. The composition of
these two functors gives a functor Indf,m; which we call parabolic induction. The space

Indf\;/m; p consists of all locally constant functions f : G — W such that

f(pg) = pp)f(9)

for all p € P,g € G. There is also a variant of parabolic induction called normalized
parabolic induction. This is again a functor (5, p : R(M) — R(G). However, 1§ pW is

now the space of locally constant functions f : G — W such that

f(pg) = 62(0)p(p) f(9)

for all p € P and g € GG. Here dp is the modulus character of P. By definition, we have

1
t5p(p) = Ind5 (63 @ p).
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Whilst the definitions of the two functors are similar, normalized parabolic induction has
the added benefit that it preserves unitary representations i.e. if p is a unitary represen-

tation then 1§ »(p) is a unitary representation.

One can ask if by ranging over all proper parabolic subgroups of G whether all irreducible
representations of G appear as an irreducible subquotient of a (normalized) parabolically
induced representation. This turns out to be false, and leads to the definition of a cuspidal

representation.

Let 7 be an irreducible representation of G. We say that 7 is cuspidal if it is not a quo-
tient of LJG\47pp, for any proper parabolic subgroup P of G with Levi factor M and o an
irreducible representation of M. We call 7 supercuspidal if is not a subquotient of L'S\;/(’pp,
for any parabolic subgroup P of G with Levi factor M and ¢ an irreducible representation

of M.

In order to understand the representation theory of GG, we therefore need to understand
all cuspidal representations of GG. This is a difficult problem which, although it has not
yet been answered in full generality, has been resolved in many cases. The known results
all suggest that the following long-standing conjecture is true, although not everyone in

the mathematical community believes that this is the case.

Conjecture 3.3.1. Let m be an irreducible cuspidal representation of G. There exist an
open, compact mod-centre subgroup J of G and an irreducible representation A of J such

that

T~ ind?A.

3.4 Intertwining

We have seen above that in order to understand R(G) for a reductive p-adic group G,

we need to understand the irreducible cuspidal representations of G. A powerful concept
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which is used when giving an explicit construction of such representations is that of in-

tertwining.

Let J, J' be compact open subgroups of G, and let p, p’ be representations of J, J' respec-
tively. Let g € G. We say that g intertwines A with X if

HOHlngJ/ ()\, g)\/) # 0.

Here 97 = gJ'g" " and 9\ : j +— (g 'jg) for j € 9J'. We denote the set of g € G which
intertwine A with A" by Zg(A, \'). Furthermore, if A = X we say that g intertwines \
and write Zg(\) for the set of g which intertwine A\. While intertwining is both reflexive
and symmetric, it falls short of being an equivalence relation because transitivity is not

guaranteed.

The following Theorem due to Carayol lies at the heart of all proofs concerning classifi-
cation Theorems of cuspidal representations. It highlights the importance of intertwining

in these instances.

Theorem 3.4.1. | , Proposition 1.5] Let J be an open, compact mod-centre subgroup
of G. Let \ be an irreducible representation of J. If Zg(\) = J, then ind?)\ is irreducible

and cuspidal.

3.5 Bernstein Decomposition

We note that while we have an equivalence of categories in Theorem 3.1.1, the categories
are too large to work with. One would hope that it is possible to decompose both cate-
gories into pieces and that there is an analogous result for each piece. This decomposition
is known as the Bernstein Decomposition. For a more comprehensive treatise of the fol-
lowing material, see | ].

S

An unramified character of G is a character of the form g —| ¢(g) | * where ¢ is an F-

rational character of G and s € C. Let X(G) denote the group of unramified characters
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of G. Unramified characters have the property that they are trivial on every compact

subgroup of G and are determined by their valuation on a uniformizer of F.

Let m be an irreducible representation of G. Let M be a Levi subgroup of a parabolic
subgroup P of G and ¢ be an irreducible cuspidal representation of G. We call the pair
(M, o) a cuspidal pair. If the representation 7 is equivalent to a subquotient of the (nor-
malized) parabolically induced representation L%l’pa, we refer to the cuspidal pair (M, o)

as the cuspidal support of 7, which is unique up to conjugacy.

Two cuspidal pairs (M, o) and (M’', o) are inertially equivalent if there exist a g € G
and x € Xo(M') satisfying M’ = 9IM and ¢’ = 90 ® x. The inertial support of 7 is the
inertial equivalence class of its cuspidal support. We denote the inertial equivalence class
of (M, o) by [M,0]s and the set of inertial equivalence classes of G by B(G). We call
B(G) the Bernstein spectrum of G.

We can now state the Bernstein Decomposition which describes a decomposition of the

category R(G) of smooth representations of G.

Theorem 3.5.1 (Bernstein). [ | For each s € B(G), let R°(G) be the full subcategory
of R(G) consisting of representations whose irreducible subquotients have inertial support

contained in s € B(G). Then
R(G) = ] R(G).
seB(G)

That is, if (7,V),(p, W) are representations in R(G) then V = @, V* where V° is the
space associated to the block R*(G) and Home(V, W) = [[, Homg(V*, W*).

Given such a decomposition, the task is now to find a nice description of each R*(G),

which we call a block.

Bernstein affords one way of splitting up R(G), but we shall now consider another which

uses idempotents.
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Let (p, W) be a smooth irreducible representation of K, a compact open subgroup of G,
and (m,V) be a smooth representation of G. We write V* for the sum of all irreducible
K-subspaces of V' which are equivalent to p and call it the p-isotypic component of V.
Since K is compact, the restriction of 7 to K is semisimple, so we can write

v= P v

p€Elrr(G)

We say V contains p if V* # 0. Let R,(G) denote the full subcategory of R(G) consisting

of representations which are generated (as representations of GG) by their p-isotypic vectors.

Now fix a Haar measure p on G. Define e, € H(G) by

2i(r%trw(p(x*1)) ifr e K,

0 otherwise.

This provides the projection of V onto each piece V*. Given two representations p and

» = e, if and only if p ~ p, otherwise e, * ey = 0. Moreover

/
p one then has e, *x e o

p

e, -V = V’. This construction is important because we obtain the scalar Hecke algebra
H,(G) = e, x H(G) * e, which is a subalgebra of H(G) with unit e,. The p-isotypic
component V7 is then a left H,(G)—module.

Whilst the scalar Hecke algebra gives a nice splitting of the category H(G), the subalgebra
H,(G) is still too large to work with. Instead, we turn to another type of Hecke algebra
which is Morita equivalent to H,(G), the spherical Hecke algebra H(G, p), defined as

H(G, p) = Endg(ind%p).

The following result of Bushnell-Kutzko gives a pair of functors which describe an equiv-
alence of categories between R,(G) and the categories of smooth modules over the two

Hecke algebras described above, under certain conditions.

Theorem 3.5.2. [ . Proposition 3.3, Theorem 4.3] Let R,(G), H(G, p) and H,(G)

be as above. The following are equivalent:



75

i) R,(G) is closed under subquotients;

i) The functor M : R(G) — H,(G)-Mod which maps a smooth representation to its

p-isotypic component induces an equivalence of categories R,(G) ~ H,(G)-Mod;

i) The functorm, : R(G) = H(G, p)-Mod which maps the representation m to Homg (p, )
induces an equivalence of categories R,(G) ~ H(G, p)-Mod;

iv) Fvery irreducible subquotient of indgp contains p;

v) There exists a finite subset & C B(G) such that

R,(G) =[] R(G).
5€6
We say that (K, p) is an G-type if satisfies the properties of Theorem 3.5.2. If & is a
singleton then we simple refer to (K, p) as a type. Types are important because if we
have an explicit description of a type (K, p) and of its spherical Hecke algebra H(G, p)
for each block R*(G), then using the Bernstein Decomposition above we have an explicit

description of the category R(G).
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3.6 Representation Theory of GLy(F)

3.6.1 Notation

In this section we recall the classification of irreducible cuspidal representations as given
by Bushnell-Kutzko in | ]. The treatment given here is by no means complete, we
shall only give the most basic details of the construction. We refer the reader to the
original source above, or to the notes of Conley | | which give a more comprehensive

exposition.

Let F' be a p-adic field, with no restriction on the residue characteristic. We write op for
its ring of integers, pp for the unique maximal ideal, and kr = 0p/pp for the residue field
which is finite of characteristic gr = p" for some r € N. Fix wp a uniformizer of F'. Let
V' be an N-dimensional F-vector space. Write A = Endp(V) and G = Auty(V) which,

after fixing a basis for V, is isomorphic to GLy (F).

Let 2 be a hereditary opg-order in A with Jacobson radical 8. The unit group
URA) =A™

is a parahoric subgroup of GLy(F), and every parahoric subgroup is the unit group of
some hereditary order. The group U (2l) comes with a natural filtration by normal compact

open subgroups
Ur(A) =1+,

for n > 1, where 3 is the Jacobson radical of 2. With respect to a suitable choice
of basis 2 consists of block matrices which are upper triangular mod p, with block sizes
Ny, ..., N, satisfying >¢_| N; = N. The quotient U(2l)/U" () is isomorphic to the group
[I; GLn, (kr).

The normalizer K(A) = {g € GLy(F) : g~ 'Ag = A} of 2 is an open, compact-mod-centre

subgroup of GLy(F). It normalizes U™ () for each n and contains U(2l) as its maximal
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compact subgroup.

We fix ¥ an additive character of F' with conductor pp ie. g is trivial on pp but
nontrivial on op. We write tr for the trace map tr : A — F so that ¢4 = Ypotrisa

character of A. For integers 1 < m < n < 2m we have the canonical isomorphism

PP~ U™ (A) /U (A)

induced by x — 1 + z. For S a subset of A we write S* = {a € A : 14(aS) = 1}. Then

(P")* =P and we get an isomorphism

;B—n/m—m ~ (;Bm—&-l/mn—‘rl) A

between cosets B~" /P~ and characters of L™ trivial on P, If we impose 0 < m <

n < 2m + 1 then we have an isomorphism
gp—n/m—m ~ (Um—H (Ql)/Un+1 (m))/\
6 + m—m — wﬁa

where 15 is the character given by 13(1 + x) = 14(B(x)) for 1 + 2 € U™ (A), which is
trivial on U™ (). If we let vy : A — Z be the map vy(z) = sup{k € Z : 2 € p*} then

g is nontrivial on U™ () provided vy(f) = —n.

We call the four-tuple [2(,n, m, 5] a stratum if
1. %A is a hereditary order;
2. m < n are nonnegative integers;
3. pePp .
We say that any two strata [y, ny, my, £1] and [y, no, me, Bo] are equivalent if
P+ B™ =0 +B,",

where ; is the Jacobson radical of ;. We write [, n1,mq,81] ~ [™a,ng, ma, 5a] to

denote this equivalence. One can show that if the two strata above are equivalent, then
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2, =y, my = my and ny = no.

We say that g € G intertwines the strata [0, n1,mq, 1] and [z, ng, ma, o] if

g (B + BT ™)g N (B + Py ™) £ @.

If0<m; <n; <2m; —1, for i = 1,2, then this is equivalent to saying that the two strata

intertwine if and only if, on the level of the characters g,

Y1hg, [aumi q@uynums @)= Vg, |sum @y)noms (1) -

We denote the set of g € G which intertwine the two strata by

Ze ([, o, ma, B, [22, na, me, Ba]),

which we abbreviate to Zg([2(, n, m, §]) when both strata are equivalent to [, n,m, 3].

3.6.2 Fundamental Strata

Before we move on and give the necessary definitions in order to review the construction
of cuspidal representations of G, we first detour and look at a certain class of strata.
Let [, n,n — 1, 5] be a stratum with no condition on n. We say that [, n,n — 1, 5] is
fundamental if the coset 5+ B~ does not contain a nilpotent element of A. A stratum

which is not fundamental is called non-fundamental.

Remark 3.6.1. In practice, to identify if a stratum is fundamental or not, we use the
following equivalent condition. Let [2,n,n — 1, 5] be a stratum in A and write yg =
w939 € A with e = e(A) and g = ged(n, e). Let ®(X) be the characteristic polynomial
of yg and write ¢3(X) € kp[X] for the reduction mod pr of ®(X). We call pg(X) the
characteristic polynomial of the stratum. A stratum [2A,n,n — 1,5] is then said to be

fundamental if @g(X) # X".
The following Proposition gives one a way to identify non-fundamental strata.

Proposition 3.6.2. Let [A,n,n — 1, ] be a stratum in A. The following are equivalent:
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(i) the coset B+ P~ contains a nilpotent element;
(ii) there exists m > 1 such that B™ € =",

We use the second condition to identify non-fundamental stratum, which says that the
stratum is non-fundamental if § is nilpotent modpr. This is because € P~ and so
while we expect ™ € P, [ actually lies one step further in the filtration. The reason

why fundamental strata are important is seen in the following key result.

Theorem 3.6.3. Let [, n,n—1,[] be a stratum in A. Write B for the Jacobson radical
of A and e for the period of A. The following are equivalent:

(i) the stratum [A,n,n — 1, 3] is non-fundamental;

(ii) there exists a stratum [A',n’,n' — 1, 5] such that

~

5 + s:pl—n g (/B/—n' and

o | 3
A
o3

where B’ is the Jacobson radical of A, which has period €.
The implications of this result for the representation theory of G are as follows.

Theorem 3.6.4. Let w be an irreducible smooth representation of G. Then precisely one

of the following occurs:

(1) there ezists a hereditary order 2 in A such that w contains the trivial character of

Ul (91) ;

(ii) there exists a fundamental stratum [2A,n,n — 1, ] with n > 1 such that © contains

the character g of U™ ().

Moreover, if we are in the latter case, then for any other stratum [, n',n’ — 1, 8] with

n' > 1 such that © contains the character g of U (), we have

/

<

)

oS
®\|3

where e (resp. €' ) is the period of A (resp. 2A').
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This Theorem implies that the fundamental strata in 7 can be categorised as the strata
for which n/e is minimal amongst all strata in 7. We call the invariant n/e the depth or

normalized level of 7.

We note that in the setting of Theorem 3.6.4, if we are in case (i) then we say 7 is of depth-
zero; this means that 7 has fixed vectors under the pro-unipotent radical of the maximal

parahoric subgroup GLy(0r) of G. If we are in the latter case then 7 is of positive-depth.

We note that the classification of depth-zero cuspidal representations of G is easier than

that for positive-depth cuspidals, and so we split out attention into the two cases below.

3.6.3 Construction of Depth-Zero Cuspidal Representations

Here we give the outline of the construction of an irreducible cuspidal representation of
G of depth-zero. Let 2 be a principal hereditary order over A with period e = e(2). Set
N, = N/e. Then there exists a basis for V' such that

OF OF o o OF
Pr Op
A =
OfF
pr -+ Pr OF

where each entry is a block of size N, x N,. Moreover, the Jacobson radical *J3 has the

form
Pr Op -+ OF
pPr Pr
B = o
. op

The groups U(2l) and U*(A) have the property that

U@)/U" @) = [ GLu. (kr).

=1
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A representation og of GLy, (kr) is cuspidal if, for any proper parabolic subgroup P of
GLy, (kr) with unipotent radical NV, the restriction of oy to N does not contain the trivial

character of N'. We take oy an irreducible cuspidal representation of GLy, (kr) and form

the tensor representation o = 03°, a representation of U()/U'(2). We inflate o to a

representation of U(2() which we also denote by 0. We then extend o to a representation

A of the compact mod-center subgroup J = &(2) of G. The representation
7 = ind§\
is irreducible and cuspidal if and only if e = 1 i.e. if and only if 2 is a maximal order and

AAR) = FXUR).

3.6.4 Construction of Positive-Depth Cuspidal Representations

Let [2(,n, m, 5] be an arbitrary stratum in A. We say that [, n, m, f] is pure if

(i) the algebra E = F[f] is a field;

If [, n,m, (] is pure, then we can consider V as an FE-vector space. It is then natural
to consider Bg = Endg(V') the centralizer of 5 in A. We write Bg = A N Bz and
Qp = rad(Bgz) = P N Bz. Note that By is a hereditary og-order with Jacobson radical
Qp. For fixed 3, we define the map ag: A — A by

ag(z) = px —xf, for v € A,
which is a (Bg, Bg)-bimodule homomorphism with kernel Bg. For k € Z, define
Mu(B,2A) = {x € A : ag(x) € PFY.

Then 9%, (3, 2A) is a lattice in A since 2 D My(3,2) 2 P, Moreover, My (3,2) N Bs =
Bs. For sufficiently large k& we have DM (5,A) € Bz + P. On the other hand, if k is
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sufficiently small, we have 9%(3,2() = 2. This leads to the following important definition:

max{k € Z: M,(8,A) € Bs+P} U E#F,
kO(ﬁ79’[) =
—00 it BE=F.
The reason why we set ko(3,2) = —oo in the latter case is because A = Bz + P =

MN(B,A), for all k& € Z. Suppose that the stratum [, n,m, 3] is pure. If it satisfies
—m > ko(5,2d) then we call [, n, m, ] simple. While we have a concrete definition for
a simple stratum, calculating ko(S3,2l) is difficult to do. Instead, we use the following

alternate characterization of a simple stratum which does not rely on the value kq(3,2)

[ L (24.1)(1).

A pure stratum [2(, n, m, (] is called simple if, amongst all pure strata [, n, m, 8] equiva-
lent to [2A, n,m, 8], the field extension F[3]/F has minimal degree i.e. [F[f] : F] < [F[f] :
F] for all equivalent pure strata [, n,m, 5'].

The first class of examples of simple strata is given by strata in which 3 is minimal over
F. Let vg be the normalized additive valuation on E = F[] and write v = vg(f). Let
e(E | F) denote the ramification index of the field extension E/F. We say [ is minimal

over F'if

(i) ged(v,e(E | F)) = 1;

I//Be(E‘F)

(ii) the element wp. + pr € kg generates the residue class field extension kg/kp.

Moreover, the second condition is independent of the choice of uniformizer wp. If E = F,
then f3 is always minimal over F. If 3 is minimal over F' with E = F[f] then it is possible
to choose a hereditary order 2 with the property E* C £(2(). One then simply sets
n = —uy(B) to obtain a simple stratum [, n,m, 5]. We call this class of simple strata

minimal strata. Note that the authors of | | call these strata alfalfa.

For brevity we now always consider  minimal over F' (unless otherwise stated). This

affords us the luxury of not having to define important (but superfluous to our needs)
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notions like defining sequences and the op-orders H(3,2) C J(8,2A) C 2A. Let [, n,0, ]

be a minimal stratum with vy () = —n. We define the groups

H = U(B,)U LB (),

n+1

J=Usul ),
which have filtration subgroups

H* = HnU*Q),
JE=JnU"Q).
We have seen that for any stratum [, n,m, ] with 2m +1 > n > m > 0 we obtain a

character 13 of U™ (2A) trivial on U™ (21). We now wish to define characters 6 of the

group H™ () which contain .

Let [, 7,0, 3] be a minimal stratum with vy(3) = —n. Let detp, : Bg — E* denote
the determinant map. For 0 < m < n, let C(2(, m, 3) denote the set of characters 6 of
H™(3) such that

(1) 0 |Hm+1(ﬁ)ﬂUL%J+1(ﬁ): wBJ
(ii) 6 \Hm+1(5)035 factors through detp,.

Note that the restriction of 95 to U L%JH(QL) N Bj factors through detp, and that the

G-normalizer 8(B3) normalizes 3. We call such 0 € C(A, m, 5) simple characters.

Remark 3.6.5. In the case that § is not minimal over F', the authors of | | give an
inductive definition of simple characters and an algorithm to compute them. This relies
on the notion of defining sequence which we have not covered here. For our purposes we

need only know that these characters exist and have the properties (i) and (ii) above.

We started with characters 15 of U (2() which we could then extend to simple characters
6 € C(A,0, ) of the group H'(S). By definition we see that we have inclusions

HY(B) C JY(B) € J(B) = J(B).
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Thus it follows that we wish to extend further our simple characters of H'(3) to the

groups J'(B) and J(B3). The first of these steps is the simpler of the two.

Proposition 3.6.6. [ , (5.1.1)] Let [A,n,0, 5] be a simple stratum in A and 0 €
C(2A,0, ). There erists a unique irreducible representation n(0) of J*(B) with the property
that n(0) | g1 (5= 0Dt where t = [JY(B) : HY(B)]. Moreover, the G-intertwining of n(6) is
THB)B; T (B).

We call 7(#) a Heisenberg extension of 6. Now given a representation n(6) of J'(5), we
no longer have such a nice choice of extension as we did in the previous step. There are

many possible extensions of 7(f) to a representation of J(3), not all having the desired

properties. This leads us to the notion of a S-extension of 7(#).

Let [2(,n,0, ] be a simple stratum in A, # € C(2,0,5) a simple character and n the
Heisenberg extension of 6. A S-extension of n is a representation x of J(f) satisfying
(i) & ’Jl(ﬁ): ;3

(ii) B C Za(x).

If we take x any character of oy trivial on 1+pp then x odetp, defines a character of the
quotient U(Bs)/U' (Bg). Using the canonical isomorphism between U(B5)/U" (B5) and
J(B)/J*(B), which follows from the definitions and theorems, we can view x o detp, as a

character of J(3)/J* (). This leads to the following Theorem.

Theorem 3.6.7. / , (5.2.2)] Let [, n,0, 5] be a simple stratum in A, 6 € C(2,0, )

a simple character with Heisenberg extension 7.
(i) There exists a [5-extension k of 1.

(ii) If K is a B-extension of n, then all other B-extensions are of the form k® (x odetp,)
for some character (x o detp,) of U(Bg)/U" (Bjs).

(iii) Distinct characters x give rise to non-isomorphic representations k @ (x o detp,)

which do not intertwine.
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We are now able to define simple types, which will result in us being able to state the main
theorems of | |, namely the classification of cuspidal representations of GLy (F'). Let
J be a compact open subgroups of G and A and irreducible representation of J. We call

the pair (J, ) a simple type if it is one of the following | , (5.5.10)]:
(1) (1) = (J(B), 5 ® o) where

(i) the stratum [2A,n,0, 5] is simple with 2 a principal hereditary og-order in A;

(ii) for some simple character € C(2,0,[), k is a f-extension of the Heisenberg

representation 7(f);

(iii) let £ = F[8] and e = e(B) so that o is the inflation to J°(3) of ¢¥¢ where o

is an irreducible cuspidal representation of GLy/(g: F](kE).

(2) (J,A) = (U(),0) where e = ¢(Bg), £ = F, A is a principal hereditary op-order and

o is the inflation of 0§ for oy an irreducible cuspidal representation of GL Nye@) (kr).

In fact, the distinction here is not necessary. We can view case (2) as a special case of

case (1) by setting £ = F, B =2, J"(8,20) = U"(2) and taking 0,7, x all trivial.

Furthermore, a mazimal simple type is a simple type (J, A) for which e(E | F') = e(2(). We

are now ready to state the follow Theorem which summarises the main results of | ].

Theorem 3.6.8. (1) Let m be an irreducible cuspidal representation of G. Then T con-

tains some simple type (J, ).

(2) If 7 is an irreducible cuspidal representation of G then m contains a mazximal simple
type (J,\) with multiplicity 1. Moreover, if m contains two mazimal simple types

(J1, A1) and (J2, Na), then (Ji, A1) and (Ja, Ag) are conjugate in G.

(3) Let (J,\) be a mazimal simple type. If w is an irreducible representation of G which
contains X\, then 7 is cuspidal. Moreover, if ™ is another irreducible representation
of G which contains \, then " ~ 7 ® (x o detg) for x an unramified character of F*

and detg : G — F* the determinant map i.e. ™ and 7' are inertially equivalent.
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(4) Let (J,\) be a mazimal simple type and © an irreducible cuspidal representation of G
containing \. Then there exists a unique representation A of E*J extending \ such

that

) o G
7~ indj« A



Chapter 4

Depth-Zero L-parameters of

Classical Groups

4.1 Depth Zero Cuspidal Representations

In this section we concern ourselves with recalling the classification of depth zero irre-
ducible cuspidal representations of GLy(F') and a classical group G, by which we mean a

Symplectic group or Split Special Orthogonal group.

We write Cuspy(F') for the set of equivalence classes of irreducible cuspidal represen-
tations of GLy(F). We set Cusp(F) = Uy, Cuspy(F) with the understanding that

7 € Cusp(F) is an irreducible cuspidal representation of some GLy (F).

A representation 7 is said to be self-dual if 7 is isomorphic to its dual representation; we
write Cuspy (F') for the set of self-dual irreducible cuspidal representations of GLy(F'),

and Cusp™(F) = Uy, Cuspy(F).

87
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We recall that a representation m € Cusp(F’) is of depth zero if there exist non-zero vec-
tors which are fixed by the pro-p-radical of the maximal parahoric subgroup GLy (o) of
GLy(F). The set of equivalence classes of irreducible cuspidal representations contained
in Cusp(F) of depth zero is denoted Cuspy(F). Similarly, we write Cuspyy (F') for the set
of equivalence classes of depth zero self-dual irreducible cuspidal representations, which is

contained in Cusp(F).

Any 7 € Cuspy(F) is of the form

. GLx(F)
T = mdFX]CV;LN(oF)w”AW

where \; is the inflation of an irreducible cuspidal representation 7, from the finite re-
ductive quotient GLy(kr). One then extends A, to F*GLy(0g) by the central character
w, and compactly induces to m. Provided the representation A, is self-dual and w, is

quadratic, then its compactly induced representation 7 is also self-dual | .

We write Cusp(G) for the set of equivalence classes of irreducible cuspidal representations
of GG, which contains the set of equivalence classes of depth zero cuspidal representations
of the classical group G, which we denote Cuspyg (G). Any o € Cuspy(G) can be written

as

— ind€
o =indj; A,

where J, is the normalizer of a maximal parahoric J; of G, itself a classical group. More-

Jor= Ar is the inflation of 7, = rf}) ®Tf,2) an irreducible cuspidal representation of

over, A,
the finite reductive quotient JZ/J}, ~ Gn, X Gn,. The integers N; satisfy N1+ Ny = dim G

and are wholly determined by o.
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4.2 Covers and Hecke Algebras

Let m be a depth-zero irreducible cuspidal representation of GL,,_ (F) and o be a depth-
zero irreducible cuspidal representation of a classical group G. We naturally view M =~
GL,,, (F) x G as a maximal Levi subgroup of G’ a larger classical group of the same type
as G. We now construct a cover in the sense of Bushnell-Kutzko using the local data

describing 7 and o, as given in the previous section.

Write P = MN™ for a parabolic subgroup of G’ with Levi factor M and denote by
P~ = MN~ for the opposite parabolic subgroup to P*. Set Jy = GL,, (0p) X J, a
compact open subgroup of M and Ay = A\; ® A\, an irreducible representation of Jy,.

The pair (Juq, Ar) is a type for M.

Recall from | , (8.1)] that there exist a compact open subgroup J of G and a repre-

sentation A of J satisfying:

1) JNM=J M

11) )\ ’ Im— )\ M

i) A |jopc+ is trivial.
Whilst J is not itself a maximal compact subgroup of G’, it is contained in the intersection
of two maximal compact subgroups, namely J; := Jn,4m.,n, and Ja2 := Jn, Nptm,.. The
reductive quotients .J;/.J}, Jo/.J5 are isomorphic to Gy = GNitmaNe> 92) = OGNy Notma
respectively. The maximal compacts J; come equipped with Weyl group elements s; € J;.

These elements are denoted si,s2 = s7 in | , Section 6.2] and interchange (up to

scalars) the GL,,_  factors in M whilst stabilizing the block associated to G.

The embedding of J into the maximal compact subgroup J; give rise to the following
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commutative diagram:
J ——m— J;

O

PO e /T
Here P® are parabolic subgroups: they are the image in J; /J 11 of the parahoric J° asso-
ciated to J. The parabolics have Levi factors M¥ ~ GL,, (kr) X Gy, X Gn,. We write
) = GLyn, (kr) X Gn,.-

The embedding of J into the maximal compact J; also gives rise to an embedding of

spherical Hecke algebras
Endg( (Ind g(mw)T ) (g(l ) H(‘]Za )‘) — H(Ga )‘>7

for 7@ a representation of the parabolic PO which satisfies 7¢ | g = Tr ® TE:'). The
endomorphism algebra Endg, )(Ind g((l,; )T( )) is two-dimensional, so In(f g((m )T( ) = T(Ii) @T(l;)
with dim T(Z-) > dim T(i) [ , 3.18,4.5]. We take T; € H (G, 7') with support on the non-
trivial double coset P s, P and which satisfies the quadratic relation (T;+1)(T;—q") =
0, where (up to normalization)

dim 7;)

T

q . "o
dim )

Through the embedding, this element corresponds to T; € H(G', \) which is supported on

the non-trivial double coset Js;.J, which also satisfies the quadratic relation (7; + 1)(T; —
q") =0.

We form the element ¢ = T,T}, which is invertible since each T; is invertible, with support
supp (¢) C JsaJs1J

= Jsy(JNN)sy? SQ(Jﬂ M)syt spsy s (T NNT)s T

cCJANT  CJNM CINN"

== J8281J.
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Thus ¢ is an invertible element of H(G’, \) which is supported on the double coset Jsys;.J,

with s9s1 a strongly positive element of the centre of M, showing that (J, \) is a cover of

(Jats Ar).

4.3 Reducibility of Parabolic Induction and the
Jordan Set

We are motivated in this section to understand the nature of reducibility of parabolically
induced representations. More precisely, we want to answer this question when we consider
G as part of a maximal Levi subgroup M =~ GL,,_(F) x G of a larger classical group G’
of the same type as G. This means we concern ourselves with the parabolically induced

representation
I(m,s,0) = Indf\;/lmpﬂ |det | *®0o

for s € C. In each inertial equivalence class [r] = {r | det | " : t € C} it is sufficient to fix

one representation 7 and consider I(r, s, o), since I(7 | det |, s,0) = I(7,s +t,0).

The following Theorems due to Silberger, the first coming from | , 5.4.2.2 — 3], and
the second from | , Theorem 1.6], tells us the importance of self-dual representations
in our situation. Note that the results of Silberger apply to arbitrary representations 7,

not just depth-zero representations of a classical group G.

Theorem 4.3.1. (i) If there exists s € R such that I(m, s, o) is reducible, then there
exists t € R such that 7| det | * is self-dual.

(ii) Suppose I(w, s, o) is reducible for some s € R and 7 self-dual. Then there exists a
unique real number sy(m) € Rsq such that, for s € R, I(m,s,0) is reducible if and

only if s = ts,(m).

Remark 4.3.2. We note that while Silberger’s result only tells us when we obtain real
points of reducibility, we are able to extrapolate from it points of complex reducibil-

ity. This is because if 7 is a self-dual irreducible cuspidal representation of GL,,_(F') of
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depth zero, then there are two unramified twists of 7 which are self-dual: namely 7 and

s}
7= | det | mloga.

Knowing the reducibility points of parabolically induced representations has the following
impact for the local Langlands correspondence. In the same way as | | and | ],
we define Red (o) as the set of isomorphism classes of cuspidal representations 7 of some
GL,,. (F), with m, > 1, such that n := 2s,(7) — 1 € Z is non-negative. We then define
the Jordan set Jord(o) as the set of pairs (7, n) such that n > 1 and (7,n+2k) € Red(0).

Using the language of Jordan sets, Maeglin | ] gives a criterion in which one is (hypo-
thetically) able to determine the Langlands parameter ¢ for a given irreducible cuspidal
representation o of G. Explicitly, let Wy denote the Weil group of F' and “G be the
Langland’s dual group of G of dimension Nr.. Assume G is split. Let ¢ be the Langlands

parameter
¢ : Wp x SLy(C) = LG

whose L-packet ] 4 contains o (as conjectured by the local Langlands correspondence).
Let ¢ denote the natural injection from “G into GLy,,(C) x Wg. If one has an explicit
description of Jord(o) then one expects ¢ to be of the form

Lo = @ Or @ St,,

(m,n)eJord (o)
where ¢, is the irreducible representation of Wp corresponding to 7 via the local Langlands
correspondence for GL,,_(F'), and St,, is the unique irreducible n-dimensional representa-
tion of SLy(C). This result implies the following equality:
Z mzn = Nig,
(m,m)€Jord(o)

which is equivalent to

Z LSU(TF)ZJ My = Nig

w€Cusp(F)

since all but finitely many s, () are 0 or § so |s,(m)]* = 0.
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Remark 4.3.3. This sum includes both depth-zero and positive-depth irreducible cuspidal
representations 7 of GL,,_ (F). Whilst in this thesis we only consider (m,n) € Jord(o)
with 7 of depth-zero, we do not verify that there is no contribution from positive-depth
cuspidal representations. However, we later see that, at least for certain groups G,
Z LSU(TF)QJ My = Nig
(m,n)€eJord(o)
w€Cusp(F) of depth zero

which, when combined with Mceglin’s result, implies that the we have found all of Jord (o).

4.4 A Result of Blondel

Our problem of finding reducibility points for parabolic induction reduces to finding the
numbers +s,(7) and +s, (7). The following Proposition, due to Blondel | , 3.12],
shows the connection between the points of reducibility for the parabolically induced rep-
resentation [ (7, s, o) and the eigenvalues of the generators for the spherical Hecke algebra

H(G', \) in Section 4.2.

We note that Blondel works under the hypothesis that the residue characteristic is odd.
This is necessary since she considers positive-depth cuspidal representations of a classical
group, which were classified by | ] in the case of odd residue characteristic. More-
over, she uses the construction of covers given in | | which only holds under this
assumption. However, since the classification of depth-zero cuspidal representations of
an arbitrary connected reductive algebraic group is known with no restrictions on residue
characteristic, her result stands with only minor modifications. Namely we use the explicit

construction of a cover for a maximal Levi given in Section 4.2.

Let M be a maximal Levi subgroup of G', so M ~ GL,,(F) x G. Take 7 an irreducible

cuspidal representation of GL,,(F') and o an irreducible cuspidal representation of GG, both
GLm(UF
FXJ,

Section 4.1. The type (J, A) is then a G'-cover of (Jaq, M) = (Jr X Jo, Ar @A, ). Moreover,

of depth-zero. We can therefore write 7 ~ ind )/\7r and o ~ ind?a A, as described in

we saw that the spherical Hecke algebra H(G', A) = Endg (ind§ \) is two-dimensional with
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generators 17, Ty subject only to the quadratic relations
(T; +1)(Ti —q") =0,
for i = 1,2 and r; € R non-negative.

Proposition 4.4.1. Let M, 7w, 0 be as above. The real parts of the points of reducibility

of the parabolically induced representation Ind%jp m|det |° ® o are

2m 2m

(25, (7), £5, (1)} = {i(“ 1) (=) } .

Proof. Since (Ja, Arq) is an M-type, using the Bernstein Decomposition of R(M), the
block RI"®1(M) is the full subcategory of R(M) consisting of elements whose irreducible
subquotients are representations of M which are unramified twists of 7 ® o. The functor
my : RIFE7I(M) — Mod H (M, Ay which sends the representation 7 to the module

Homy,,(Am, 7) is an equivalence of categories.

Similarly, using the Bernstein decomposition for R(G") we have the block R"®°] (G") corre-
sponding to the type (J, \) is the full subcategory of R(G’) whose irreducible subquotients
are representations of G’ which have supercuspidal support an unramified twist of 7 ® o.
The functor m¢’ : RIF®7N(G") — Mod-H(G', \) which sends the representation 7 to the

module Hom ;(\, 7), which again gives an equivalence of categories.

As (J,\) is a cover of (Juq, Arq), we have a normalized embedding of spherical Hecke

algebras t : H(M, A) — H(G', \) which gives the following commutative diagram:

RIFE(G) 2 Mod — H(G',\)

Indg'T O T .

RINM) —r Mod — H(M, M)

Here Indg/ denotes the functor of parabolic induction and ¢, is the functor mapping a
module X € Mod-H (M, M) to Homgyu ) (H(G', A), X) with the module structure of
H(G', \) given by the embedding .
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Since the diagram is commutative, the representation Indg/ m|det |° ® o is reducible if
and only if the module ¢,m(Ind$, 7| det |* ® o) is reducible. We therefore need to know

when the module ¢,X of an irreducible module X € Mod-#H (M, Ap) is reducible.

Since (Ja, Ap) is a G'-cover, we know that the spherical Hecke algebra H(G', \) has two
generators 17, Ty subject to the quadratic relations
(T + (T — ¢) =0

for i = 1,2 (see section 4.2). Moreover, the element 757} is supported on the double coset
J(J for ¢ a strongly-positive element of the centre of M. The spherical Hecke algebra
H(M, Apr) is isomorphic to H(GL,,(F), A\;), which in turn is isomorphic to C[Z*!] by
[ , Section 5.5] with Z supported on (Ju. The irreducible representations of this
algebra are characters defined by their value on Z. Since t(Z) also has support on the

double coset J(J, we normalize Z so that t(Z) = Tx1}.

The group Xo(GL,,(F')) of unramified characters of GL,,(F) acts on H(GL,,(F'), \;) by

(xf)(x) = x(2) f(z)
where x € Xo(GL,,(F)), f € H(GL,,,(F), \;) and = € GL,,(F). If 7 € Irr(GL,,(F)) and
X € Xo(GL,,(F)) the image of 7 ® y under m is the character of H (M, Ar() defined by
mu (7 ® X)(Z) = X" (wr)mu(r)(2). (o)
Since Mod-H (M, A\y) is a commutative ring, all simple modules are 1-dimensional. The
embedding t(H(M, Ay )) has index 2 in H(G', ), so for any simple H (M, ) module
M, the H(G', ) module ¢,(M) is 2-dimensional. Such a module is reducible if and only

if it contains a 1-dimensional submodule. Suppose V is a 1-dimensional H(G’, \)-module.

Then for any v € V' we have
v - T‘l = )\ivi

for some \; € C* and ¢ = 1,2. The quadratic relations for the T} give the possible values

for \;, namely

)\i € {—1,qu}
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for © = 1,2. This gives at most 4 possible 1-dimensional modules V. If V' were now
a submodule of ¢,(M), then by adjunction we have that V' |yaa,)= M. These four
H(M, Ap)-modules M are precisely the modules for which ¢.(M) is reducible. On the

modules, Z acts as 15T}, i.e. with eigenvalue in

{17 _qua _QT27 qurTZ} (T)

Suppose now that 7 is chosen such that Ind %,P 7| det |* ® o is reducible for some s € R.
Then Theorem 4.3.1 tells us that s = +s; for some non-negative s; € R. Moreover, we
know that given such a 7 there is a unique inequivalent unramified twist 7’ of = with 7’
is self-dual, namely 7’ = 7 | det | wiegs. Again this is reducible for s’ = +s, with s, € R

non-negative. This gives at most 4 points of reducibility, associated to the representations

{Ind§, 7| det |** ® o, Ind§, 7| det |~ @ o,

Ind§, 7| det [**7oss @ o, Ind§, 7| det | **7hoss @ o).

Using (o) the representations 7|det |*** and 7| det |i82+n17$%4 correspond to the simple

modules in H(M, Ay) on which Z acts by

(g mu(7)(2), g () (2), —¢ " ma(m) ().~ mu(@)(Z)} . (D)

The sets () and () must coincide. By taking quotients of pairs of elements of each set,

and then looking at which pairs give a positive quotient, we find that

(Lor,bsg) — {i(mwg)’i(rl—m)}

2m 2m

4.5 Jordan Decomposition of Characters

Let GG be a linear algebraic group. Its Jordan decomposition means that we can write ev-
ery g € G uniquely as g = su with s semisimple and u unipotent such that s, u commute.
If G is abelian, then G is isomorphic to the group G of characters X : G — C. In this way

we obtain a Jordan decomposition for Gi. The idea behind the work of Lusztig [ ] is
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to do this for G non-abelian. To keep with normal notation for finite reductive groups on

this matter, the notation used in this section is independent from the rest of the thesis.

In order to classify the unipotent cuspidal representations of our finite classical groups, we
need to introduce the notion of self-dual polynomials. Let & = I, be a finite field of charac-

teristic 2. An irreducible polynomial P € k[X] is self-dual if P(0)P(X) = X9e"p(X ).

Suppose P is a self-dual irreducible polynomial of odd degree. We write P(X) = ageg pX deg P
-4+ a X +ag so ag = P(0) # 0. By definition, the coefficients of P satisfy apa; = ageqg p—i
for all 4, and so an even number of the a; are non-zero. This implies P(1) = 0. By
irreducibility of P it follows that the only self-dual irreducible polynomial of odd degree is
precisely X + 1. For P self-dual irreducible of even degree, let kp be a degree P extension

of k and k% be the degree (P/2) extension of k contained in kp.

Let G be a classical group defined over k. Denote by F the standard Frobenius map
which raises each coefficient of ¢ to the ¢ power. The fixed points of G under F is the
classical group G7 defined over the finite field k. By classical group we mean G is one of

the following types:
(a) G¥ = Sp,, (k) (for n > 1);
(b) G7 =805, (k) (for n > 2).

Remark 4.5.1. Recall from Proposition 2.5.2 that for finite fields of characteristic 2
the groups Sp,, and Og,;1 are isomorphic. We therefore need only consider Special

Orthogonal groups of even dimension.

The group G is defined by its root datum, and by taking the dual root datum, we obtain
the dual group G* to G. Writing F for the standard Frobenius map on the G* we have

that G*7 is a finite group dual to G”. In particular
(a) G =SO0gn41(k) (for n > 1);

(b) G = SOL, (k) (for n > 2).
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Denote by £ (G]r ) the set of equivalence classes of complex irreducible representations of

G7 . This set has a partition into geometric Lusztig series
EGT) = |€(GT.9)

where s runs over conjugacy classes of semisimple elements of G*7. We now describe this

partition.

Let 7 be any F-stable maximal torus in G* containing s and R5 be the corresponding
Deligne-Lusztig character | , Proposition 7.2.3]. An irreducible representation p €
E(G7) lies in £(G7, s) if and only if
S 1 S —
(BT, p) = el > Ry(g)te(p(g™") #0.

| G geG”

One can also obtain a criterion for checking whether a given representation p € G7 is
cuspidal. A representation p is cuspidal if and only if, for any pair (7, s) with 7 an F-

stable maximal torus contained in a proper F-stable parabolic subgroup of G*, we have

(R, p) =0.

We wish to be able to obtain information about cuspidal representations appearing in a
particular £(G7, s), in particular we want to know the dimensions of these representations.
This motivates the following definition. An irreducible representation p is unipotent if it

appears in £(G7, 1).

Write G;‘f for the centralizer of s in G**. The Jordan decomposition of characters [ ,
Section 7| gives a bijection of sets

U5 E(GTs) — E(GYT, 1),
which satisfies the following properties:

(i) for any p € £(G7, s) there exists a constant ¢, such that

dimyp = ¢, dim p; (%)
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(ii) if the identity components of the centres of G* and G have the same k-rank, then

¥% maps cuspidal representations to cuspidal representations.
For m € Z let m, be the maximal divisor of m prime to p. The constant ¢, above is then
*F | —1 *F
cs:|G |p"|Gs |P"

We are therefore able to classify irreducible cuspidal representations of G for any G,
providing we can classify the pairs (s, p) where s is a semisimple element of G* such that
the identity components of Z(G”) and Z(G*”) have the same k-rank and p an irreducible
cuspidal unipotent representation of G:f . In | , Section 8] Lusztig classified the
irreducible cuspidal unipotent representations of finite classical groups. He showed that in
any given geometric Lusztig series £(G7, s) there is at most one cuspidal representation.
Moreover, the author proceeded to show that the equivalence classes of irreducible cuspidal
representations of G” are in bijection with the conjugacy classes of semisimple elements

s € G*7 which have characteristic polynomial
Py(X) =[] PXO)™ (X +1)™,
P

where P runs over all self-dual polynomials of even degree and the exponents satisfy
Case (a) — > papdeg P+ ay =2n+1;

— ap = 3(m% + mp) for some mp € Z;

— ay =2(m% +my) + 1 for some m; € Z.
Case (b) — Y papdeg P+ay =2n;

~ ap = +(m% + mp) for some mp € Z;

N |+

my

— a4 = 2m? for some my € Z with the sign + = (—1)

Remark 4.5.2. If G* is an arbitrary reductive group then it is no longer the case that
a geometric Lusztig series contains at most one cuspidal representation. For example, if
G*” is an exceptional group then there are at least 2 unipotent cuspidal representations,
and so it is possible for a geometric Lusztig series to contain more than one cuspidal

representation.
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In addition, Lusztig tells us precisely when the groups Sp,,, (k) and SOZ, (k) contain ir-
reducible cuspidal unipotent representations. For G' = Sp,, (k) we require n = t? + ¢ for
some t > 1, and this unique representation has dimension

Do (k)] - gl2)+ )+
2(q+ 1% (g* + 1)1 (P + 1)

We note that if n = 2 then this is the representation 6y, introduced by Srinivasan | .

Similarly, the Special Orthogonal group G* = SOZ, (k) (with n > 1) has an irreducible
cuspidal unipotent representation when n = t? for some ¢ > 2, with £ = (—1)". This
representation has dimension

803 (k)] ¢+ )+ ()
2 g+ L2 P (P L)

Now consider s € G*7 semisimple and suppose M* is an F-stable Levi subgroup contained
in an F-stable parabolic subgroup P* of G containing s. By dualizing, we have an F-
stable Levi subgroup M of an F-stable parabolic subgroup P of G. Write M for the
centralizer of s in M, which is an F-stable Levi subgroup of G. In this way, we obtain

an analogous Jordan decomposition of characters for our Levi M”
G EMTs) — EMIT )

which has the same properties as ¢,

Every irreducible representation p of G7 appears as a component in the composition series
of a representation parabolically induced from an irreducible cuspidal representation of
a Levi subgroup M7 to a parabolic subgroup P” of G7. This means that the study
of irreducible representations of G7 reduces to understanding the irreducible cuspidal
representations of Levi subgroups of G7. Any Levi subgroup M” of G¥ is of the form

M ~T]GL], x H,

ng
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with H” a classical group the same type as G7. By dualizing, we have
MT ~T]GLL x B

since finite general linear groups are self-dual. Therefore, we can write s = (s1,.. ., Sm, Su)-

In this way, any cuspidal representation p appearing in £(M?”, s) is of the form

pP=p1&Q - Pm @ PH,

with each p; € 5(GL£_, s;), pu € E(H” , sy) cuspidal. Using the Jordan decomposition of

characters, the unipotent cuspidal representation @D?Af (p) has a similar decomposition.

This gives the following commutative diagram

ZEGT,s) — s £GP 1)

F
Indefyf O Ind™®

ZEM” | §) ————— ZEMT 1)
¥

with the vertical arrows corresponding to parabolic induction. On the left hand side, we
have normal parabolic induction from our maximal Levi M” to G7. As discussed before,
the induced representation has length two and the quotient of the dimensions of the rep-
resentations is precisely the parameter ¢"i. However, on the right hand side, the nature of
the induced representation is the same by (&). Moreover, the quotient of the dimensions
of the representations is again ¢"*. Since the right hand side consists of unipotent repre-

sentations, we can use Table II from | | to find the parameter ¢, once we identify

the groups M** and G77.

4.6 Calculation of Parameters

We now return to the notation used previously in this thesis. In this section G is either:

— Sp,,,(F) for F' an arbitrary non-archimedean local field of even residue characteristic;
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— a Split Special Orthogonal group defined over F' a dyadic field.

We consider each case separately. We use the results of the previous section in order to
verify the calculation of Meeglin | |. Explicitly, we prove the following (see Section

4.3 for notation).

Theorem 4.6.1. Suppose G is as above. If G is a Symplectic group, let ™ be an arbitrary
wrreducible cuspidal depth-zero representation. If G is a Split Special Orthogonal group, let
7w be an irreducible cuspidal depth-zero representation arising from a mazximal parahoric

subgroup as considered in Corollary 2.10.7. Then

Z | $0(m)?] M = Nig.

(m,n)€Jord(o)
w€Cusp(F) depth-zero

4.6.1 Symplectic Group

Let G = Sp,,(F) and o be an irreducible cuspidal depth zero representation of G, so we

write
o = ind§\,.

As in Section 2.9 J is the maximal parahoric associated to the almost self-dual lattice L,,
with irreducible representation A\, which is the inflation of an irreducible cuspidal repre-
sentation 7, = 7Y ® 7(2) of the reductive quotient J/.J' ~ Sp,, (kr) x SPa(n—m) (kr). Put

Ny =m and Ny = n —m.

For i = 1,2, there exists a unique conjugacy class s in SOqy, 41 (k) such that 7% is in

the Lusztig series £(Spyy, (kr), s%). We denote by

TP o s 1y
P

the characteristic polynomial of ng‘) where the product runs over self-dual irreducible monic

polynomials P € kp[X] of even degree. From the the previous section we know that the

exponents ag) satisfy the conditions
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- Zpag) degP—i—an) =2N; + 1;

ag) = %mg) (mg) + 1) for some integer mg);

B asr) — Qm(”)( @ 4 1) 4+ 1 for some integer msr)

Let 7 be a cuspidal self-dual depth-zero irreducible representation of GL,,, (F'). Then we

can write

_ GLmr (F)
T = mdFXGLmW(oF)A”

where Ar |aL,. (op) is inflated from 7, a cuspidal self-dual irreducible representation of
GLy, (kr). We now consider the group My, ~ GL,,_ (kr) X Spyy, (k) with representation
Tr ® Tf,“ which naturally appears as a maximal Levi subgroup of Gy, =~ Spyy;, +mﬂ)(k:F).
We are interested in the quadratic parameter ¢"* for the generators T; of the spherical

Hecke algebra H(Spy(y,m,)(F), T ® o), which arises from the spherical Hecke algebra
H(Grp, 7w @ 7) = End <Ind Gr - @ T(i)>
kpy Im o ng MkF 7" o

over the residue field.

We require that the induced representation Indj’j{i Te & Tff) is reducible, which we know
F

occurs if and only if the representation 7, is self-dual, which implies m, = 1 or m, even.

The representation 7, is in the Lusztig series associated to some conjugacy class s, in

GL, (kr), with self-dual irreducible characteristic polynomial Q.

Suppose m, = 1 so Q(X) = X + 1. Over the residue field, this gives a maximal Levi
subgroup My, ~ GLi(kr) X Spyy,(kr) of Gr. =~ Spyy.,o(kr). There exists a unique
conjugacy class s = (1, s ) in Mj_ such that the representation 7, ® 7' ) lies in the

Lusztig series £(M;,_, s). The corresponding centralizer of s in M"* is
Sk = GLa(kp) % 8O, (kp) X HU w (kp/kS).
The corresponding centralizer of s in G* is

Gty 2SO, )+2(kp)><HUag->(kp/k§’3).
P
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*
Ska

From the description of the groups M and G ;. above, we see that parabolic induction

is only occurring on the groups GL; (k) X SOau)(kF) C S0, (kr). Since SOg41(kr) is
+

)
+ 12
of type By, we find from Table IT in | | that

Using Proposition 4.4.1 we have

, (emP + 1)+ eem?P +1)  (@m +1) - @2n? +1)
{£s,(m), £s,(7")} = {i 5 ,+ 5 ,

and so

[s0(m)) 4 Lso ()7 = (i -l + 17 4 () = ml)?
=2mP(m{ + 1) + 2mPm? +1) +1

Now suppose m, is even. Over the residue field, this gives a maximal Levi subgroup
My = GLy, (kp) X Spoy, (kr) of Grp > SPo(n,4m,) (kr). There exists a unique conjugacy
class 5 = (55, s7) in M., such that the representation 7, ® 7@ lies in the Lusztig series

g

E(M;,.,s). The corresponding centralizer of s in M™ is
s = GLi(kg) X U (Fg/kg) X 11 Uy (kp/kp) x SO0 (kr).
P#Q
The centralizer of s in G* is
Gl = Uyt 5 (h/k) ¥ 1T U, (kp/Kp) x SO o (kr).

P£Q

*
s,kp

From the description of the groups M and G ;. above, we see that parabolic induction
is only occurring on the groups GLy (kg) x U, (kq/kg). Since Uy is of type ?A;_;, we have
Q

from Table II in | ] that
(7) m
= (2 1)—.
ri = (2mg +1) 5

Using Proposition 4.4.1 we have

+

{F50(m), £5,(7')} =

Y

2my

1 My 2 My
i((Qm(Q) + 1) 4 (2mG) + 1)m=)
2my,

(2my) +1)m= — (2m) + 1)m=) }
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Precisely one of these quantities is an integer, whilst the other is a half-integer. Taking

this into account gives

( 8) _|_m8) + 1)2 (mg) _mg)>2 1

2 N2 _
LSU<7T)J + L80'<7T )J 4 + 4 4
1 1 1 1 2 2
= §mg)(mg) +1)+ imé)(mé?) +1)
_ @ (2)
= ag + ag' .

Therefore, summing over all self-dual irreducible cuspidal depth-zero representations 7 of

GL,,, (F) gives

ST Lse(m))Png = (Z(a;l) +ai?) deg P) +al) +aP -1

WGCuspFO](F) P
= 2N +1)+ (2N, +1) -1

=2n+1.

The Langlands dual group of G = Sp,, (F) is “G = SO,41(C), and since the the sum-
mation above gives 2n + 1 = Ni(, we have found all of Jord(¢) and so Theorem 4.6.1 is

verified in this case.

4.6.2 Even Split Special Orthogonal Groups

We now consider the case G = SO5, (F). As in Section 2.10.2, let J° be a maximal para-
horic subgroup associated to the almost self-dual lattice L,, for 0 < m < n. Recall that
we impose m # 1,2,n—2,n— 1. Take ¢ an irreducible cuspidal depth-zero representation

of G, so we can write
-G
o =indjA,

for J the normalizer of J° in (G. Here A, is the extension of the representation A\, of
J which is the inflation of an irreducible cuspidal representation 7, = 7 x 7% of the

reductive quotient J°/J' ~ SO5 (kr) x SO;( (kp). Put Ny =m and Ny =n — m.

n—m)
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For 7 = 1,2, there exists a unique conjugacy class s ) in SOQN (kr) such that 7, ) is in the

Lusztig series £(SO3y (kr), s ). We denote by

HP X)F (X + 1)

the characteristic polynomial of sg) where the product runs over self-dual irreducible
polynomials P of even degree in kp[X]. From the the previous section we know that the

exponents ag) satisfy the conditions

- >p ag) deg P + agi) = 2N;;

ag) = %mg) (mg) + 1) for some integer mg);

- aQ =2(m ()) for some integer msr) and €’ (—1)m(+l).

As before let 7 be a cuspidal self-dual depth zero irreducible representation of GL,,_ (F')

SO

GLmﬂ'( )
™= 1ndFXGLm (UF)A

where Ay |gr,. (op) is inflated from 7, a cuspidal self-dual irreducible representation of
GL,,, (kr). The representation 7, is in the Lusztig series associated to some conjugacy

class s, in GL,,, (kp) with self-dual irreducible characteristic polynomial Q).

Suppose m, = 1s0 @ = X+1. We consider the maximal Levi subgroup My, ~ GL;(kr) %X
SO3, (kp) of Gy, ~ SO3y. ,o(kr). There exists a unique conjugacy class of s = (1, s)
in M;  such that the representation 7, ® 70 lies in the Lusztig series & (M., s). The

corresponding centralizer of s in M*

~ GL, (kp) x SOE(Z (kr) x HU<) kp/kS),

skF

whereas the centralizer of s in G* is

* e® o
skr = Soa$>+2(kF) x H Uag)(kP/kP)-
P
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From the description of the groups M, and G§;  above, we see that parabolic induction

is only occurring on the groups GLj(kr) X SOE(:)(k:F) - SOE((?)H(kF). Since SOy is of
(l+ (1+

type Dy, we have from Table II in | | that

— Qm(l)

Using Proposition 4.4.1 gives

2
<2msr) + 2m( )) <2m( ) QmS_Q))
+ .t ,
2 2

{50 (7), L5, ()} =

and so

[30(m) ]2 + [30(7) ]2 = (m + mP)? + (m{? — mP))?
= 2(m)? 4+ 2(m)?

RN

Now suppose m, is even. We consider the maximal Levi subgroup My, ~ GL,,_ (kr) X

(Ni+mn) (kp). There exists a unique conjugacy class of s = (s, i)

o

in M; _ such that the representation 7, ® T((f) lies in the Lusztig series £(Mj,_,s). The

corresponding centralizer of s in M* is

“ip = GLy(kg) x U o \(ko/ky) x [] U Lo (kp/kp) % soe< ) (kp),
P#£Q
whereas the centralizer of s in G* is
* o o e
Gire = U +z(kQ/k <11 U, (kp/kp) x SO (kr).
P£Q ’
We are interested in the quadratic parameter ¢“ for the generators T; of the spherical

Hecke algebra H(SO3, ,(F), 7 ® o), which arises from the spherical Hecke algebra
H(Grp, 7w @ 7) = Endg,,, (i 7 070)

over the residue field.
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From the description of the groups M, and G¢, = above, we see that parabolic induction
is only occurring on the groups GLi(kg) x U o (ko/kg) € U, o ,(kq/kg). Since Uy is of
Q Q

type 2A;_1, we have from Table II in | ] that
% My
This is precisely the same as the case m, € 2Z for the Symplectic group and so we have
2 2
(m(Ql) + mg) + 1> (mg) — mg)> 1
Lo (m)? + Lo () = . T

_ (1) (2)
= ag + ag’-

Therefore, summing over all self-dual irreducible cuspidal representations m gives
ST Lso(m))Pmg = (Z(a;” +ai?) deg P) +alV +
nECuspE‘O](F) P
- 2N1 + 2N2
=2m+2(n —m)

= 2n,

and so Theorem 4.6.1 is verified in this case.

4.6.3 0Odd Split Special Orthogonal Groups

We now consider the case G = SOg,41(F') the group isometries of a non-degenerate
quadratic form () with a 1-dimensional anisotropic subform. As in Section 2.10.2, let
J° be a maximal parahoric subgroup associated to the almost self-dual lattice L,, for
0 < m < n. Recall that we impose m # n — 2,n — 1 so that we do not have a factor of
SOZ (kr) or SOF (kr) appearing in the reductive quotient. Take ¢ an irreducible cuspidal

depth-zero representation of G, so we can write
o = ind§A,

for J the normalizer of J° in G. Here A, is the extension of the representation A\, of J
which is the inflation of an irreducible cuspidal representation 7, = 79 x 7? of the reduc-

tive quotient J°/J* & Ogpy1(kp) X SO;(nfm)(kF). Put Ny = m and Ny = n—m. In what
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follows we use the isomorphism O, 41(kr) =~ Spyy, (kr) for finite fields of characteristic
2 so that we can use the work of Lusztig on the Jordan Decomposition of Characters for

the odd Orthogonal group.

Since we have different classical groups arising in the reductive quotient, we cannot con-
sider the cases ¢ = 1,2 concurrently. For i = 1 there exists a unique conjugacy class 3(1)
in O3y, ;1 (kr) >~ Spyy, (kp) such that 7 is in the Lusztig series &€(Spyy, (kr), s{”). We

denote by

I P (1

P

the characteristic polynomial of sf,l) where the product runs over self-dual irreducible
polynomials P of even degree in kr[X]. From the the previous section we know that the

(1)

exponents ap’ satisfy the conditions

- Zpag) degP+a$) =2N; + 1;

(1 _ 1 ()(() ()

myp’ + 1) for some integer mp

- a(j) = 2m$)(m(1) + 1) + 1 for some integer m$>.

Similarly, for ¢ = 2 there exists a unique conjugacy class 3 in SO n, (kr) such that 7'(2)

is in the Lusztig series £(SOsy, (kr), 5%)). We denote by

HP P 4 1)8

the characteristic polynomial of s((f) where the product runs over self-dual irreducible

polynomials P of even degree in kr[X]. From the the previous section we know that the

(2)

exponents ap’ satisfy the conditions

- > at? deg P + af) = 2Ny;

- ag) = %mg) (mgg) + 1) for some integer mj,

(2 )

2 @)
- a(f) =2 <mf)> for some integer mf) and € = (—1)m+2 .
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Let 7 be a cuspidal self-dual depth-zero irreducible representation of GL,,_ (F). We con-
sider the group
GLn, (kr) X Spay, (kF) ifi=1,

/\/l,(f; o~
Gme (k‘F) X SO;FN2<I{3F) if ¢ = 2,

with representation 7, ® 7' ) which naturally appears as a maximal Levi subgroup of

g(i) ~ Sp?(N1+mﬂ)(k?F) ifi=1,
k‘p -
SO;(Nz-i-m,r)(kF) if 1 = 2.

G\
As before, we require that the induced representation IndM( ) Te @ 7' ) be reducible, which

we know occurs if and only if the representation 7, is self-dual, which implies m, = 1 or
m, even. The representation 7, is in the Lusztig series associated to some conjugacy class

Sy in GL,,, (kp), with self-dual irreducible characteristic polynomial Q.

Suppose m,; = 1 so Q = X + 1. First we consider ¢ = 1 so we have the maximal Levi
subgroup My, ~ GLi(kr) X Spoy, (kp) of Gr. =~ Spon,4o(kr). There exists a unique
conjugacy class of s = (1,s) in M., such that the representation 7, ® 7 lies in the

Lusztig series £(M,_,s). The corresponding centralizer of s in M™ is

~ GLl(kF) x SO (1) kF X HU (1) k’p/kp)

S kF
whereas the centralizer of s in G* is
skF ~ SO (1)_~_2 ]’CF X HU (1) kp/kp)

From the description of the groups Mg, and G¢, = above, we see that parabolic induction

is only occurring on the groups GLi(kg) x SO, (kr) € SOa<1)+2(kF). Since SOy is of
+ +

type By, we have from Table II in | | that

ry = ZmS:) + 1.

Now suppose i = 2 s0 My, ~ GL;(kp) x SO3y, (kp) of Gy, =~ SO3y, 5(kr). There exists

a unique conjugacy class of s = (1, 5 ) in M, such that the representation 7, ® 7' ) lies
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in the Lusztig series £(M_,s). The corresponding centralizer of s in M™ is
skp = GLi(kp) x SOZf)(k‘F) X l;ang)(kp/k‘}),
whereas the centralizer of s in G* is
:,kF =~ SOZf>+2(kF) X 1;[ Uag>(kP/k?(1)>)-

From the description of the groups My, and G§;  above, we see that parabolic induction

is only occurring on the groups GLj(kg) x SO« (kr) C SOE(Q)JrQ(kF). Since SOy is of
(1+ (l+

type Dy, we have from Table II in | | that

o = me) .

Proposition 4.4.1 yields

(1) (2)
2 142
{:ESU(W),:ESU<7T/)} _ {:l:( m. +2+ my

) L

Qerl) +1-— Qm@) }
5 :

Since both reducibility points are half-integers, we have

1 2 1 2 1
[so(m)]* + [s0(7)|* = (m(ﬁ) to m(f)> + (mi” 5= mf)> T2
2
=2 (mi”) + Qm(f) (mf) +1)

= asrl) —|—af) - 1.

Now suppose m, is even and ¢+ = 1. We consider the maximal Levi subgroup My, ~
GLy, (kr) X Spon, (kr) of Grp = SPo(n, 4m, (kr). There exists a unique conjugacy class
of s = (5,,5Y) in M;,,. such that the representation 7, ® 7 lies in the Lusztig series

g

E(Mj,.,s). The corresponding centralizer of s in M™ is

S = GLi(kq) X U, (g /) 11 U (kp/kp) x SO, (kr),
P#£Q
whereas the centralizer of s in G* is

s = Uy (kg /W) 11 U, (kp/kp) x SO, (kr).
P#£Q
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From the description of the groups M, and G¢, = above, we see that parabolic induction

is only occurring on the groups GLi(kq) x U o (ko/kg) € U m_,(ko/kg). Since Uy is of
Q Q

type 2A;_1, we have from Table II in | ] that

_ (1) M
For i = 2 we have the maximal Levi subgroup My, ~ GL,,_(kr) X SO;NQ(ICF) of Gy, =~
SOJ“N2er (kp). There exists a unique conjugacy class of s = (s,,s?) in M., such

that the representation 7, ® 72 lies in the Lusztig series £(M; kps5). The corresponding

centralizer of s in M" is
My, = GLi(kg) x U, (ko k) % IIv o (kp k) X SO%o (kr),
P#Q
whereas the centralizer of s in G* is
ke = Uy (ko k) X IIv w2 (kp/kp) x SO (kp).
P#Q
From the description of the groups Mg, and G¢, = above, we see that parabolic induction
is only occurring on the groups GLi(kq) x U o (ko/kg) € U, o ,(ko/kg). Since Uy is of
Q Q
type %4;_1, we have from Table IT in | ] that

_ (2 Mn
In the same way as for the Symplectic group and the Even Split Special Orthogonal group

we have that

2
(m(Ql) + mg) + 1> (mg) — m(QZ)> 1

[30(m)]* + Lso(7)]* = I + 7 -3

=) 1 a2,

Therefore, summing over all self-dual irreducible cuspidal representations m gives

ST se(m))Pm, = (ng) +af )degP) +al’ +a? —1

TrECuspE‘O] (F) P

= (Zag) degP~|—a$)) + <Z ag) degP+a(f)> -1
P P
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=2m+1+4+2(n—m)—1

= 2n.

This completes the proof of Theorem 4.6.1.






Chapter 5

Positive Depth Representations of
Spy(F)

5.1 Notation

Let F' be a dyadic field with op its ring of integers and pp its unique maximal ideal so

that the residue field kr ~ op/pr is finite. Fix a uniformizer @ of F.

Let V be a 4-dimensional F-vector space and write A = Endp(V). Let h: V XV — F
be a symplectic bilinear form with ordered Witt basis {e_s,e_1,e1, e} so that the Gram

matrix associated to h is

With respect to this basis, we identify Auty(V) with G = GL4(F). The Symplectic group

115
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G = Sp4(F), the subgroup of G consisting of elements which preserve the symplectic form

h, is then

Spy(F)={g €V | g"Ang = A3}

5.2 Root System of Sp,(F)

Let g = {X € My(F) : A, X + X" A;, = 0} denote the Lie algebra of G. By this definition,

a matrix X € A is in g if and only if X is of the form

11 T12  T13 T14
To1 T2  T23 x13
r31 X32 —T22 —T12

Tg1 X311 —T21 —T11

Since G is a linear algebraic group it has the rational representation Ad : G — GL(g)
with action given by conjugation. Let T' = {diag(t,,ts,t; ", t;") : t; € F*} be a maximal
F-split torus in G. If we consider the image of T" under the adjoint representation Ad(7")
we get a set of commuting semisimple elements, which can be diagonalized. We write
X(T) = Hom(T, F*) for the set of rational characters of T. For x € X(T) the weight

space associated to y is the T-eigenspace
gy, ={X eg: Ad(t)X = x(t)X for all t € T'}.

We call x the weight of g,. The set ® of non-zero weights with non-zero eigenspaces is
called the set of roots of G. Let gy denote the 0-weight space, which is a self-normalizing
nilpotent subalgebra of g called the Cartan subalgebra. With respect to our basis, gq is
the subalgebra of diagonal matrices. We obtain the weight space decomposition of g
g=00D @ Gy
NED
Let E;; denote the monomial matrix with (¢, j) coefficient 1 and all other coefficients 0.
From our explicit description of the Lie algebra of G' we have the following basis for g,

where g, is spanned by X, and, writing go = g, + gn,, 97, is spanned by X; (i = 1,2).
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ch = E12 - E34 X—a = E21 - E43

XIB:E23 X—ﬂ:E32
Xotg = Eiz+ Eoy | X_(a48) = 31 + Ey
Xoarp = Eiy X _2a+p) = En

Xl = Ell - E44 X2 = E22 - E33

In order to describe the roots in our root system we consider the adjoint action of T" on

basis elements X, of g,. For example, with ¢ = diag(t,t, 25", ;"),

tt 0 0 0 010 0 tt 0 0 0

0 t, 0 0 000 O 0 t, 0 .
Ad(t)Xa = :tth Xa;

0 0 t,' 0 000 —1 0 0 t,' 0

0 0 0 ¢! 000 O 0 0 0 ¢!

which gives the root a(t) = t;t;*. A routine calculation gives the following set of roots of
g:
& = {a, 24, £(a + §), £(20 + )},

where
a:T — F~ B:T — F~ a+p:T— F* 20+ :T — F*
t s bty t st t s bty t s t]
and the negative roots are the inverse of their positive counterparts. We call the one-

dimensional subspace g, of g generated by X, the root subspace corresponding to v € ®.

We write & = &g U & where &g = {f+a,£(a + ()} denotes the short roots and
O, = {£5,+(2a + B)} denotes the long roots. We see that ® is of type Cy with base

A ={a, p}.

Let Y(T') = Hom(F*,T) denote the set of rational cocharacters of T. There is a natural
non-degenerate pairing (,) : X(7') x Y/(T') — Z given by evaluation: for 6 € X(7') and
7" € Y(T) the pairing (4,v") corresponds to the integer exponent

§o~Y(z) =z for all z € F*.
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g a+p 20+ f3
—a4 >«
v
—2a—f8 —a—p —f

Figure 5.1: Root System of Sp,(F)

Let s, denote the reflection in the hyperplane perpendicular to the root v € ® in the
space X (T) ®z R. Then there is a unique v* € Y(T') such that

$,(8) =6 — (0,7")y for all § € P.

Moreover, v" satisfies (y,7") = 2. The set ®' = {y" : v € ®} is called the set of coroots
of g. Thus

Y = {+a", £8", (a + ), (20 + B)"},

where
o' F* =T pY F* = F
a’(x) = diag(z, 2™, z,27) Y (x) = diag(1,z,271,1)
and
(a+B8)Y F*—=T a+B)Y : F* = F
oY (z) = diag(z, z, 271, z71) BY(r) = diag(x,1,1,27h).

5.3 Parahoric Subgroups
There are three G-conjugacy classes of self-dual lattice chains in V', namely:

Ao : ...D0pe_oDope_1 Dope; Dopey D Pre_oDPre; DPpre; Bpres DO ...
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A1 : ...D0pe_2®Dope_1 Dope; DPprey D ope_oDPre; D Pre; D pres
Dpre_oDpre_; ®pre; @p%eg ...

AQ : ... 0pe_o2Dope_1 DPpre; BPres D Ppre_o D Ppre; @pQFel @p%eg DI

Let 2A; be the hereditary og-order corresponding to A; with Jacobson radical ;. The
stabilizers of these almost self-dual lattice chains 2 NG are maximal parahoric subgroups
of G. Each maximal parahoric K; := 2 N G has a filtration by normal compact open

subgroups K := U"(2;) N G. With respect to our chosen Witt basis these groups have

the following description:

Ko = Spy(or) Ky = (1+ Maty(p)) NG;
3 3 3 5|1
Pr Op oOp Op n PFJH 1+ Pz[ﬂﬂ Pf[ﬂ F’FJ )
K= NG Ki=1 |3/ 3] ] [z | NG
pr O Op OF Pr bp 1+pp br
Pr Pr Pr Op ]JP[%1 ! P;L%JH PEJ o + PLQ
op op Pp Pp O O
—1 —1 n 1 4 n n—1 n—1
K, — O Op Pp Pp NG Ki— 1:::1 nle Pr ) pFn NG
Pr Pr O0p Op Pr PR IT+pr g
n+1

Pr Pr O Op Pr pitt P 1 +pp

The pro-p-radical K is the maximal normal pro-p-subgroup of K;. The maximal para-
horics have reductive quotients Gy = Ko/K}§ ~ Ky/Ky = Go ~ Sp,(kr) and K,/K} =
g1 ~ Sp2(/€F) X SpQ(k‘F) = SLQ(/{ZF) X SLQ(kF)

Let S = {so, 51,52} be a set of fundamental reflections for the affine Weyl group W. We

choose the following representatives for s; in W:

Sp —
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The fundamental reflections s; satisfy the braid relations:

2 _ 9.
s; =1;
S0S2 = 5250;
50515051 = 51505150,

51525182 = S$25159571.

where 1 denotes the trivial word.

Let J = ﬂ?:o K; denote the standard Iwahori subgroup of G. For S’ C S let Wg denote
the subgroup of W generated by S’. The standard parahoric subgroups of G correspond
to proper subsets S’ of S via the map

S Gg =TINg7T, (@)

where Ng is any set of representatives of Wg in G. In particular the maximal parahorics

K; correspond to the sets S; := S\{s;}. In this case we write W; = W,.

5.4 Characters of Filtration Subgroups

We now turn the the question of describing characters of the abelian quotients K"/ K7

For 1 <m <n < 2m we have
BB = U™ () /U™ ()
B—1+p

Remark 5.4.1. In this Chapter we use  for both a root in the root system ® and for an
element of some power of the Jacobson radical B". We do not distinguish further since it

is clear from the context which meaning is implied.

We fix ¢r an additive character of F' with conductor pr. Set ¥4 = ¥ o tr a character of

A = Endp(V) where tr denotes the trace map. For S a subset of A let

S*={aeA:pa(aS) =1},
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This gives the identification () * =B} " which in turns gives rise to the isomorphism

PP (PPt

Thus, if we impose 0 < m < n < 2m + 1, then we have an isomorphism between cosets

B+ P;" and characters of the abelian quotient U™(2;) /U™ (2A,):

BB~ (UMRA) /U ()"
B4+ plm s (&ﬁ Lz Ya(B(x — 1)) for z € U”(Qli)) .

Since G is a subgroup of G we can consider the restriction map

Res: (U™(2,;)/U" ()" — (K?/K?H)A

Y =Yg

which gives an induced map

BB - (KR
B .

The induced map 8 + 13 is a homomorphism of abelian groups since ¥5, 57 = Res OQZﬂJrﬁ/ =
(Res ozzg) - (Res o{/;ﬁ/) = 1pg -1z . Thus, in order to calculate the fibres of Res, it is enough
to compute the kernel of Res. Once we do this, and show that it is surjective, we have the

following commutative diagram

P/ (P + Ker(Res)) — 20— (U(2)/07H ()
Bniaad lRes:zZHwﬁ

(rc7 /57"
We now show that the map Res is surjective. Let x be a character of K trivial on
K and set L = U™ (2,;)K? a subgroup of U™(2;). Define a character y; of L by
xz(hg) := x(g) for all h € U™ (2;),g € K. Note that this is well-defined since y is
trivial on U™ (2A;) N KT = K7™, and defines a character since K normalizes the trivial
character of U™ (2;). Using Mackey Restriction-Induction:

U™ Un (2 Unt (L,
Res Un(ﬂ()mi) <Ind X ( )XL> = @ Ind gKmU(nﬁ(%) Res iﬁmmﬂ(%)g)@
UmHH)\U™ (0:)/ L
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_ Unt(2) IK
= . @ Ind U (L) Res Un+1(mi)gXL
UnTH (A)\U™ (A;)/ L

= D Respa)xs
U @\ (@) /L

= D LRCD

UL ()\U™ () /L

since K N U™ (A;) = U™ () and yg is trivial on U"TH(RL). As U™(21,;)/U™(2L;) is

Ur(2;)

abelian, Ind g"(mi)xL — Ind U (1)

Tyn+1(g,) is a sum of characters of U"(2;) trivial on
U™ (2;). Using Frobenius reciprocity each of these restricts to yz. Thus we are able to

extend characters of K'/K?"™ to characters of U™(24;)/U" ™ (24;).

In order to find Ker(Res) we need to find all 5 € ;" such that 1}5 is the trivial character
of K}'. This is equivalent to finding conditions on § = (f;;) such that tr(fz) C pp for
all 1 + 2 € K7 since we fixed our additive character ¢ to have conductor pr. When
calculating tr(fx) = Zl,k Bixxr we reduce modulo pr to find that some [yxy already lie
inside pp. Since the containment must hold for all z, on the remaining 3;; we may pick
certain elements x € P" to find necessary conditions on (3, and then check that these are

in fact sufficient.

Example 5.4.2. Consider Ky = Sp,(0r). We take x € PBj such that 1 + 2 € G and
B € P,". We calculate

4
tr(Br) = Z By mod pp.
Lk=1
Consider the summands (12721 + Ba3x34, Which corresponds to intersecting Ky with the

root, subgroup U, of G. Choose

1 T12

1+ = € KP\Kyt
1 w3y
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which forces x34 = —x12 € PR \p

n+1

since 1 +x € G. Now

tr(Bx) = Ba1x12 + Pagrss mod pp

= I12(521 - ﬁ43) mod pp

=0 mod pp

implies that (81 — i3 € p};” i.e. 91 = Paz mod p}_”. Carrying out this calculation for

all root subgroups and standard maximal parahorics we find the kernel of Res. This leads

to the following Proposition.

Proposition 5.4.3. Let 3 € B;"/B; ™™ correspond to the character J/B of the abelian
group U™(2A;) /U (2;). Let Res : (U(Qll-)"/U"“(Qli))A — (K?/K?H)A denote the re-

striction map on characters. The following table gives necessary and sufficient conditions

on (B such that 125 lies in the kernel of Res.

2o 2y 2y
n even n odd

Bu= Pumodpp™ | = LBumodpy" | fiz= Paamodpy" | 1= [uumodpy”

B2 = PBssmodpp " | fo= Pszmodpy ™ | fis=—Lauamodp, " | faa= [s3 mod py "

Brz = P3 mod py " Ba € pp " Bor= Pismodpp™ | fro= Pz modpp™”

Bor = Byz mod pp " Bos, B2 € pp " Bs1 = —Bpmod pp ™ | for = Pz mod pp "

Brs = —24 mod py " Bn €py” Brg = — 24 mod p7 "

Bs1 = —Bi2 mod pp " f31 = —B42 mod pp "

Bra, Bos, Baa, Bar € pp " Bos, Bu € p7 "
Bia; Bs2 € pp "

Remark 5.4.4. Since we are working in residue characteristic 2, where 1 = —1 (mod pp),

we do not need to have minus signs in the table above. However, since our calculations

do not depend on the characteristic, we retain them to allow for comparison to similar

results in arbitrary residue characteristic.
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Example 5.4.5. Let

0 1 01
I A
e 10 01|
0 -1 0 0

0O 1 O
e 0 0 1
Ya(14+x) =potr(fz) =Ypotr
1 0 O
0O -1 0
To1 + Ta1
T
=ypotr o
T11 + Ta1
—T21

6/ — w—n
]_ T11
O T21
1 31
0 T41
Too + Tyo

T32

T12 + T2

—T22

o o o O
o o o O
o O = O

12 T13
Lo T23
T32 T33

T42 T43

o o o =

To3 + T43 Tog + Taa

X33

T13 + Ty3 X1

—T23

= Yp(T13 — Toa + To1 + Ty3 + T3z + Ta1).

Similarly, we have

0 0
- 00
Y (l+x) =1po tr(B'x) = potr
0 0
00
T4
= wF otr 31
0
0

= Yp(T32 + 41).

o O = O
o o o =

T42 T43

T3z XT33

0 O
0 0

11 T2
To1 22
31 I32

Tg1 T42

L44

T34
0
0

Z13
T23
x33

X43

T34
4+ Ty

—T24

T4
T24
T34

Lg4q

Thus 1;5 =+ {bvﬁ/. However, by appealing to Proposition 5.4.3, we find that ¢ = 5.
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This now raises the following important question: is the stratum [A, n,n—1, 5] with associ-
ated character 13 fundamental? Recall that a stratum is fundamental if the characteristic

polynomial p(X) # X*. A quick calculation shows that
ps(X) = X* +1, op(X) = X*.

Thus the stratum [Ag,n,n — 1, 5] with character JB is fundamental whilst the stratum
[Ao, n,n — 1, '] with character zzﬁ/ is non-fundamental, and yet they determine the same
character of K. In order to answer the above question, we turn to the Moy-Prasad

filtration | , Section 3].

The phenomena exhibited above motivates the following definition.

Definition 5.4.6. Let 2 be a hereditary order with Jacobson radical 93 and let 3, 3’ € B™"

for some n € N. We say ' is anti-upper triangular if 5 is of the form

¥ % ok %
- * x x 0
* x 0 0

* 00 0

Moreover, 3 is obtained from 3 arbitrary by anti-upper triangularization if 5’ is anti-upper
triangular and ¢3 = ¢g. We call a stratum [A,n,n — 1, 5] with § upper-anti triangular

skew.

5.5 Moy—Prasad Filtration

Given the Lie algebra g and a point x in the Bruhat-Tits building of G, there exist two
filtrations. One filtration is given by | , Section 3|, in which Moy and Prasad use the
filtration g,, (for r € R), and its dual g, _,, to define characters of abelian quotients of
filtration subgroups of a parahoric subgroup of GG associated to the point x. The second
filtration is given by | , Section 9], in which the authors again use the filtration g, ,,

but instead interpret x as a self-dual lattice function. Here a self-dual lattice function is
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a self-dual lattice sequence in which the domain is R instead of Z, along with a necessary

continuity condition | , Section 2].

In | , Theorem 1.8], the author showed that these two filtrations coincide (up to
normalization). Moreover, Lemaire proves that the filtration given by Broussous—Stevens
extends to include the case that F'is dyadic. We can therefore move between the lattice
theoretic setting of Bushnell-Kutzko-Stevens and the filtration of the dual of the Lie al-
gebra g* given by Moy—Prasad. We can then answer the question of whether the stratum

given in Example 5.4.5 is fundamental by interpreting 13 in the language of Moy—Prasad.

Let A be a self-dual lattice sequence in A and K be the stabilizer of A, a parahoric subgroup
of G. In the lattice theoretic setting, characters of the abelian quotients K"/K™*! are
determined by an element 8 € P~"/PB'"". In the Moy Prasad setting, we turn to the
dual of the Lie algebra g. Let g* = Hom(g, F') denote the dual of g, and x be the point in
the Bruhat-Tits building associated to A. Given the filtration g, , for r € R, there is an

associated filtration of the dual g*, given by
g, ,={Xeg | X(Y)eppforall Y € g, ,+},

where gy .+ = U,s, 0ss- In this setting, characters of K"/K" above correspond to
the coset X + g;_%Jr, where e = e(A) | , 3.7-3.8]. The character xx associated to
X+ g;_% . is said to non-degenerate if the coset does not contain any nilpotent elements.
If the character 15 is equivalent to a non-degenerate character xx then the stratum
[A,n,n — 1, 0] containing 14 is fundamental. Thus, given a non-fundamental stratum
[A,n,n—1, ], one can find an element X € g;’_% such that the coset X+g;’_%+ contains

a nilpotent element. We therefore have the following definition.

Definition 5.5.1. Let A be a lattice sequence in A with stabilizer K and [A,n,n — 1, ]
be a stratum. Let 13 be the character of K" trivial on K" associated to [A,n,n— 1, A].
Let X be an element of the filtration of the dual Lie algebra g;_% so that the character
Xx coincides with 3. We say that the stratum [A,n,n — 1, 5] is G-fundamental if the

character yx is non-degenerate.
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Now we must be able to translate our choice of § € P7" toan X € g;_% so that 3 = xx.
For g we have the weight space decomposition, which gives a decomposition of g into one-
dimensional subspaces associated to the root system ¢ and the Cartan subalgebra g,. We
have a similar weight space decomposition for g*, namely

v=sno@Pe

vED
where g = Hom(go, ') and ¢! = {X € g" | Ad*(t)X = y(t)X for all t € T’} for Ad the
coadjoint action. Each g is a one-dimensional subspace of g* and is identified with the
dual of g_,. Given X_, the basis vector for g_, defined previously, we denote by X~ the
unique vector in g7, such that X7 (X _,) = 1. Thus any X € g* can be uniquely written as

2
X = ZaiX;k —1—2@7)(;,
i=1

veD

where a;,a, € F and X7, X7 is the standard basis for g;.

Using | , 4.2-4.3], if we can find a one-parameter subgroup A : GL;(kr) — K/K' so
that
lim AdA() X =0 (#)

for all t € T', then the coset X + g;_% 4 contains a nilpotent element, and so the stratum
[A,n,n — 1, ] with character 15 is not fundamental. Let \(t) = diag(t®,t*,t7°,t7%) € T.
Then by translating from X to a 3 so that xx = 13, we can find conditions on a,b € Z so
that the one-parameter subgroup A satisfies (#). We note that if we wish to satisfy ()

then we always require a; = 0 for 1 = 1, 2.

Example 5.5.2. For example, consider X = a_, X, with a_, # 0 and all other coefficients

zero. After upper anti-triangularizing, the corresponding [ is of the form

0 ae 0 O

0 0 00
b=

0 0 0O

0 0 00
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Let \(t) = diag(t®,#°,t7°,¢t=%) € T. Then

0 0 0\ [0 a,o00\[t" 0 0 0
st |0 # 0 ollo o oollo 0 0
0o t* o llo o oollo o & o
00 0 ¢t</\o 0o 0oo0/\o o o

0 t*b_, 0 0

o 0 0o

“lo 0o oo

0 0 00

By translating back into the Moy—Prasad language, we have X = a_, X", satisfies (#) if
and only if t*7° tends to 0 as t tends to 0. This is true if and only if a > b.

Coefficient a, # 0 | Condition on A(t)

Qg b>a
ag 0>b

Aot 0>a+b
20+ 8 0>a
Q_q a>b
a_g b>0

A—(a+B) a+b>0
a_(20+8) a>0

Suppose now that A is a lattice chain of period e = e(A), so that K(A) is a standard
parahoric. Fix a skew stratum [A,n,n — 1, 5] with ¢ of depth 2. Write n = ek —m,

with m € {0,1,...,e — 1}. For a fixed m, we have ¢z is a character of K™ triv-

K7 with 8 € ek \ G1gm—er.  Since Y on K®~™ depends only on the

ial on
coset of 5 in Gy ek /01 4m—ek, We can assume [ is a matrix whose non-zero coefficients are

contained in those where there is a jump in the filtration from K™ to KT~ or
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equivalently from g; _» to g, . In this quotient we let =, denote the subset of ® such

that g;f% ng, # g;f%Jrﬂg: for all v € Z,,. One readily sees that as m varies ® = | | = =,,.

If 95 = xx then we write X =3 - a, X7 and set Z(8) = {7y € E,, : , X} ¢ g -2}
so that we can replace X by ZvEE( 8 a, X, without changing the character xx on K ck=m
We consider all the possibilities for Z(f) for which there is a one-parameter subgroup A
satisfying (#) as per the table above. For example, we cannot have both a, and a_, non-
zero because if A(t) = diag(t®,t°,¢7" ¢7) satisfied (#) then we would need both b > a
and a > b, a contradiction. This immediately implies that we can only have at most
four coefficients non-zero for any given m. Similarly, we see that we can not have all of
A, 48, G_(q+p) NON-ZETO, since we have the conditions b > a, 0 > b and a + b > 0 which is

absurd.

In each case considered for Z() above, we can find a stratum [A’,n’,n" — 1, a] such that
B+ a14m-er Ca , and Z—,, < % =k — . This containment implies that the character ¥
on K™ restricts to the trivial character of K'™*'. Therefore, there exists a character
Vo of K" trivial on K'™*! with depth ’e‘—,/ This means that given a character 1z of a
prescribed depth, we can find another character v, of a strictly smaller depth. The lattice
chain A" which we move to need not be a standard parahoric. In fact, in most cases we
must move to a conjugate of a standard parahoric. This gives the following result, which

is a direct proof of | , 6.3] in our case.

Theorem 5.5.3. Let A be a self-dual lattice chain of period e = e(A) and [A,n,n — 1, 3]
be a non-fundamental skew stratum. Then there exist a self-dual lattice chain A of period

¢ = e(N) and an integer n' such that

/!
n n
_/<_

and B+a,Ca .
€ (&

We now give an example of such a calculation outlined above.

Example 5.5.4. Consider the chain of period 1 with A = Ay = 0e_y P 0e_1 B 0e; D oes.
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Then K = Ky, m =0 and =,, = Z9 = ®. Here

0o 0

0o 0
ap =

0o 0

0o 0

0

0

and a,, = w"a, for n € Z. Since e(A) = 1, we need only consider the stratum [A, k, k—1, j]

with 8 € a_y. Here 13 has depth k, @w®j3 € ay and we identify ag/a; with

* 00

Since all short roots (resp. long roots) are conjugate by the Weyl group and W normalizes

T by definition, by conjugating if necessary, we need only consider the cases X = L Ay X 5

with v negative. Therefore, we may choose =y a subset of {—a, =8, —(a+8), —(2a+ )},

and we need only consider 8 possible cases for X =3, - asX5. In what follows we write

L for a “long root” and S for a “short root”.

Remark 5.5.5. The lattice chain A" which we move to need not be unique. In fact, in

all the cases above, we could also move to the lattice chain A’ associated to the standard

Iwahori with n’ = 4k — 1 and Z—,/ =k — }l < k.
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Roots in = X A n'
1S (_q 0000 D opop 2k — 1
1L a_g 0000 D oopp 2k —1

0000 D 000p D
1S+ 1L s, G 4k — 1
O 08 0opp O oppp
0000 D
25 a_a,a_(a+ﬂ) 000p S Oppp 3k —1
2L a—g, A_(20+8) 0000 D oopp 2k —1
0000 D
25+ 1L A, A (atB)s G—(2a+8) 000p O oppp 3k—1
18 +2L A—(a+8)s A—B; A—(20+3) 0000 D o0pp 2k —1
0000 D 000p D
25 + 2L (_tyy O3, A_ (018, 0 (20 4k — 1
B (a+B) (2a+p) oopp D oppp

Theorem 5.5.6. Let m be a smooth irreducible representation of G of positive depth. Then

7 contains some G-fundamental skew stratum [A,n,n — 1, 3].

Proof. Let S denote the set of pairs (A,n) with A a lattice chain in A and n € N such
that 7 contains the trivial character of K"*(A). This is non-empty by smoothness of 7.
We choose (A, n) € S with (a7 minimal, which is possible since e(A) is bounded. Since 7
contains the trivial character of K™*'(A), it contains some character ¢35 of K"™(A) trivial
on K" (A) i.e. 7 contains the stratum [A,n,n — 1,3]. Suppose [A,n,n — 1, ] is not
fundamental. By Theorem 5.5.3 there exist a self-dual lattice chain A’ of period €’ and an
integer n’ with 8+ a;_, C o', and ’6‘—,/ < 2. This means that ¢g restricts to the trivial
character of K™ *'(A’), and so m contains the trivial character of K™ *'(A’). Moreover,
n

n’ > 0 since 7 has positive depth. Therefore (A',n") € S with %,, < 2, contradicting the

minimality of n/e. L



132 MICHAEL ARNOLD

5.6 Future Work

It was hoped that once we had verified that a smooth irreducible representation 7 of
G of positive-depth contains some G-fundamental stratum, we would then move on to
obtain intertwining results akin to | ]. This relies on having a nice set of double coset
representatives, and since we have been working explicitly with the example of Sp,(F),
we would also need explicit descriptions of such sets. In the work that follows, we give
an explicit description of the double coset spaces K\G/K for K a maximal parahoric
subgroup of GG. This was intended to be the basis for obtaining results on the intertwining

of G-fundamental strata, but time constraints prohibited this.

5.6.1 The Geometric Representation

We now recall the relative theory of Coxeter groups which will be of use to us. We will
apply the following with W the affine Weyl group and S the set of fundamental reflections,

although makes sense in greater generality. For more information, see | , Chapter 5].

A Coxeter system is a pair (W, S) consisting of a group W and a subset S of generators

subject to relations of the form
(ss/)m=) =1, for s,s" € S,

where m(s,s) = 1 and m(s,s’) = m(s',s) > 2 for s # s'. If there is no relation between
s and s in W then we set m(s,s’) = co. Any w € W\{1} can we written in the form
w = 8189 - - - S, for some s; € S, but by virtue of the braid relations above, this need not
be unique. If w has such a presentation with » minimal, then we say that the presentation
is reduced; all reduced presentations of w have the same length r, which we call the length

[(w) of w. We interpret the trivial element 1 as having length zero.

Let V be a real vector space with basis {as : s € S}. Define a symmetric bilinear form T

on V by
T
T )= — —_—
(a57a5) COS (m(s’ 8/>) )
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which, in the case that m(s,s") = oo, we interpret as T (ag, ay) = —1. For each s € S, we

define the reflection o4 : V — V by
os(v) :=v —2Y(as,v)as for all v € V.

The reflection o4 sends o to —ag and fixes the hyperplane Hy = {v € V : T(as,v) = 0}.

The symmetric bilinear form T is preserved by the action of o, i.e. for all v,v" € V

T(04(0), 04(11)) = T(v = 2 (@, V), ' — 27 (a0 )ar,)
=T (v,0") — 2T (v, ') T (v, vg) — 27 (vs, v) T (s, ')
AT (0, 0) T (s, ) T (s, )
= T(v,v)

since T is symmetric and T(ag, as) = 1. One would hope that s — o, extends to a
homomorphism from W to the subgroup of GL(V) generated by the reflections . This

turns out to be true and is summarised in the following Proposition.

Proposition 5.6.1. There is a unique homomorphism o : W — GL(V) which sends s € S
to o5 € GL(V). Moreover, (W) preserves the bilinear form T on V.

We call o the geometric representation of W.

Now let @y = {o(w)(as) : w € W, s € S} be the root system of W. We can write any

root @ € Py (uniquely) as

o= Z AsQrg,

seS

with A\; € R all of the same sign. We say that « is positive, and write o > 0, if Ay, > 0
for all s. We have the analogous definition for « being negative. The following theorem
highlights the interplay between the geometric representation, positive/negative roots and

the length function.

Theorem 5.6.2. | , Chapter 5.4] Let w € W and s € S. Letl : W — N denote the
length function. Then l(ws) > l(w) if and only if o(w)(cs) > 0. Moreover, l(ws) < l(w)
if and only if o(w)(as) < 0.
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5.6.2 Distinguished Double Coset Representatives

We now turn to the question of finding a set of representatives for the double coset space
K;\G/K; with particular properties, which by () in section 5.3 is equivalent to finding
a set of representatives for the double coset space W;\W/W,. For S’ 5" C S, let

gD ={weW:l(sw) > Il(w) for all s € §'},

Dgr = {w € W : l(ws") > l(w) for all 5" € S"},
denote the unique sets of coset representatives of minimal length for the right coset space

We\W and left coset space W/Wgn respectively. We call ¢ Dgr a set of distinguished
(double coset) representatives for Wg\W/Wgn if

W= || WsdWs

degDgn”
and each d € ¢ Dgr has minimal length in its double coset [ , Section 3]. We say that
a set ¢ Dgr of double coset representatives for Gg/\G/Ggr is distinguished if the projection
¢ Dgn C Ng(T) of ¢ Dgn to W is distinguished. Distinguished coset representatives satisfy

1(s'ds") = 1(s") + 1(d) + I(s")

for all s € 5/, s" € S”.

We now construct a set of distinguished double coset representatives for the space W;\W/W;,
1 =0,1,2. While the method we use can be generalised to any symplectic group, it is not

feasible for larger groups for reasons which will become evident.

Theorem 5.6.3. Let S = {sg, s1, 52} be a set of fundamental reflections in G. Let S; :=
S\{si} and W; := Wg, denote the subgroup of the affine Weyl group W generated by

reflections in S;. Let
— DCRg, = {1, so, 505150, S0A”, s05150B°, s0s180B"A" : 1,5, t,u € N and t odd}
where A = 51898189 and B = $95150;
- DCRSl == {I]_, S1, SlCT, SlAis, SlAitSOSl, AuSl, AU818281,51A7wcx,

AYs1C* i rys tyu, v, w, x,y, 2 € N} where C' = sg8951;
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~ DCRg, = {1, s9, 825152, 50D, 528182 F°, 835180 E'D" : v, s,t,u € N and t odd}
where D = $1808182 and E = sy5183.

Then DCRg, is the set s;Ds; of distinguished double coset representatives for WA\W/W,;

for each 1.

Proof. The proof can be split into two parts. The first is to show that the conjec-
tured set of representatives have minimal length in their double cosets. This shows that
DCRs, C s,Ds,. The second is an inductive argument to show that DCRg, exhausts all

distinguished representatives, which forces equality above.

For the first part, since distinguished representatives have minimal length in their cosets,
we need to show that our conjectured list consists of distinguished elements. By definition,
we have that d € g, D, ifand only if d € 5,D and d € Ds,. These sets of distinguished right
and left cosets representatives are in bijection by the anti-automorphism w — w™'. This
means that d is a distinguished left coset representative if and only if d' is a distinguished
right coset representative. Thus d is a distinguished double coset representative if and only

if both d and d™' are distinguished right coset representatives.

Remark 5.6.4. If w is a distinguished word in the double coset W;\W/W; then the

number of s; appearing in the presentation for any element of that coset is determined.

In order to motivate the inductive nature of our exhaustion argument we have the following

result.

Lemma 5.6.5. Let i = 0,1,2 and W;,.S; be as above. Let w € W be a distinguished word
with n + 1 occurrences of s; appearing in its reduced presentation. Then there exists a
distinguished word d with n occurrences of s; in a reduced presentation and w; € W; such

that w = dw;s;.

Proof. Suppose w € W is distinguished with n 4+ 1 occurrences of s; in its reduced pre-

sentation. Write a reduced presentation

W = US;Vs;
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with v € W;. The word us; is reduced and has n occurrences of s; in its reduced presen-

tation. This means we can write
us; = xdy
for some x,y € W; and d distinguished with n occurrences of s;. Then
Hx us;) = I(dy) = l(zdy) — 1(z) = l(us;) — (z)
implies
W) <1z us;) + 1(vsy) = U(usy) + L(vs;) — I(z) = I(w) — I(z).

Since w is distinguished, we conclude that I(z) = 0 and so x = 1. Thus

w = us;vs; = d(yv)s; = dw;s;
with w; = yv € W; as required. O]
We now proceed to show that DC Rg, is contained in s;Ds;.

Lemma 5.6.6. Let DCRg, be as in Theorem 5.6.3. Then every element of DCRg, as an
element of W is distinguished. Moreover, the expressions given for the elements of DC Ry,

are reduced.

Proof. With respect to the ordered basis {as,, s, , @5, } of V we have

-1 v2 0 1 0 0 1 0 0
cs=10 1 0}, o, =|v2 -1 V2|, o, =10 1 0
0 0 1 0o 0 1 0 V2 -1

For each d € DCRg, we compute o(d)(a,) and o(d™")(ay) for s € S;. In all cases, the
resulting vectors are positive i.e. all coefficients are nonnegative. Theorem 5.6.2 implies

that [(ds) > I(d) and [(d"'s) > [(d™"), so every element is distinguished.

To show each element d is reduced we compute (d) by building it up as a product of s;
(from left to right) and verifying (using Theorem 5.6.2) that the length increases at each
step. This is done by induction and a direct calculation. We note that the cases ¢« = 0, 2

are dual to each other by swapping sy with s,. O]
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Example 5.6.7. We give an example of the calculations needed in the Lemma above for
the case i = 0. Consider the element syA™ in the double coset space Wy\W /W, where

A = 51898189 and n > 1. Then

—1 V2 0\ [-2n+1 nv2 0
o(s0A") =0a(sp)oc(A)"=| 0 1 0 —2nv2 2n41 0
0 0 1 —2n 2 1
—2n—1 (n+1)vV2 0
= —2nv2 2n+1 0

—2n n\/§ 1
Now
—2n—1 (n+1)v/2 0\ (0 (n+1)v2
o(soA")(as)) = —2nvV/2  2n+1 0 1| = m+1 |,
—2n nv2 1 0 nv2

and

—2n—1 (n+1)vV2 0) (0 0

o(soA")(as,)=| —2nv2 2n+1 0| ]0| =10

—2n nv?2 1 1 1

This shows that [(sgA"s1) > l(spA") and [(s9gA"s3y) > (s9A™) by Theorem 5.6.2. Thus
s0A™ € Dg, and, since (s9A™)"" = s0A", we also have (s9A")"' € Dg, so soA™ € g,D.

Similarly,

O'(SoSlsan> = 0'(508180)0'(3)

-1 0 2 —n+i(l4+(-)") LA-(-1)" n-1ia-(-1)"
=|-v2 1 V2 —ny/2 1 nv/2
0 0 1 —n—3(1—-(-1)") 20— (-1)") n+1-501-(=1)"
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We see that since both o(sps150B")(as,) and o(sps150B™)(as,) are positive, sps150B" is

positive.

It remains to show that each word is reduced. We inductively assume d = sy A" is reduced,

with the base case sq trivially satisfied.

~2r—1 (r+1)v2 0 (r+1)v2
od)=|-2rv2 2r+1 0] ando(d)(as)=| 2r+1
—2r 2 1 2
is positive so I(dsy) = I(d) + 1,
1 —(r+1v2  2r+2 2r + 2
o(dsi)=|+v2 —2r—1 (2r+1)v/2| and o(dsi)(as,) = | (2r + 1)V2
0 -2 2r +1 2r +1

is positive so [(ds1s2) = I(d) + 2,

1 (r+1)v2 0 (r+1)v2
o(dsis2) = | v2  2r+1  —(2r+1)V2 | and o(dsisy)(as,) = [ 2r 41
0 (r+1v2 —(2r+1) (r+1)v2
is positive so I(ds;ses1) = I(d) + 3,
2r+3  —(r+1v2 0 2r + 3
o(dsisast) = | (2r +2)v2 —(2r+1)v2 0] and o(dsisesi)(as,) = | (2r +2)v/2
2r+2  —(r+1)v2 1 2r + 1

is positive so [(ds1528180) = [(dA) = I(d) + 4.

This shows that dA is reduced. Next consider d = sys159B°. The base case is s9s; 59 which

is certainly reduced. We inductively assume that d = sys1s0B* is reduced.

S

—(s+ D)+ 31 -(=1)) B —(=1)°) (s+2)—5(1—(-1)")
o(d) = —(s+1)V2 1 (s +1)v2
—(s+ 1) =31 = (=1)°) FA—(=1)°) (s+1)—3(1—(=1)")

e[
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(s+2) = 51— (=1)")
and o(d)(as,) = (s +1)v2 is positive so l(dsy) = I(d) + 1,
(s+1)—5(1—(=1))

(1) = 1= (-1)) (+2V2 —(s+2)+ (1 - (-1))

o(dsz) = —(s+1)v2 25+ 3 —(s+1)V2
—s—3(1=(=1))  (s+1)v2 —(s+1)+3(1~(-1))
(s+2)Vv2
and o(dss)(as) = | 2512 | is positive so I(dsss1) = I(d) + 2,
(s+1)v2
(s+3) = 5(1= (1)) —(s+2)v2 (s+2)+5(1—(-1)°)
o(dsgs1) = (s +2)v2 —25—3 (s +2)v2

(s+1) =31 = (=1)°) —(s+DV2 (s+1)+35(1-(=1)")
(s+3)—3(1—(=1)")
and o(dsys1)(as,) = (s +2)v2 is positive so
(s+1)—5(1—(=1))
[(ds1s280) = 1(dB) = I(d) + 3.
Thus dB is reduced. We finally consider d = sys150B"A" with ¢ odd. We have

—(t+2) V2  t+1

o(s0s180B") = —(t+1DvV2 1 (t+1)V2
—(t+1) V2 t
is reduced by the previous case which provides the base case of an induction on u. Then
—(t+2u+2) (u+1)V2 (t+1) (u+1)v2
od)=|-t+2u+1v2 2u+1 (t+1)vV2]| ando(d)(o,) = | 2u+1
—(t+2u+1)  (u+1)V2 t (u41)v2

is positive so I(dsy) = I(d) + 1,
—t  —(u+1)vV2  (t+2u+3) t+2u—3

o(dsi) =] —tv/2 —Qu+1) (t+2u+2)vV2 | and o(dsi)(as,) = | (t+ 2u +2)v/2
—(t=1) —(u+1)vV2 (t+2u+2) t42u+2
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is positive so [(ds1sz) = I(d) + 2,

—t  (t+u+2vV2  —(t+2u+3) (t+u+2)v2
o(dsis2) = | —tv/2  2t+2u+3 —(t+2u+2)v2 | and o(dsisy)(ag,) = | 2t4+2u+3
—(t—1) (t+u+1DvV2 —(t+2u+3) (t+u—+1)Vv2

is positive so l(ds;s251) = I(d) + 3,

t+2u+4 —(t+ut+2V2  t+1
o(dsiszs1) = | (t+2u+3)vV2 —(2t+2u+3) (t+1)v2 | and  o(dsisesi)(as,) =
t+2u+3  —(t+u+1)V2 t

is positive so [(ds;ses150) = [(dA) = 1(d) + 4.

It now remains to show that the sets DC'Rg, exhaust all distinguished double coset rep-
resentatives. Let (DCRg,), denote the subset of DCRg, consisting of elements with n
lots of s; occurring in its reduced presentation. Then DCRs, = | |,5o(DCRs,)n, with the
understanding that w € DCRg, having no occurrences of s; implies w = 1. The details

for the case ¢ = 0 are given below.

Lemma 5.6.8. Let A = 51595150 and B = s35159. Let DCRg, be as in Theorem 5.0.3
and (DCRg,)n be as above. Assume that d € W is distinguished for Wo\W/Wy and has
n € NU{0} lots of so appearing in its presentation (with the understanding that n = 0

corresponds to the trivial word.) Then

d e U DCRSO {:ﬂ_ S0, S0S150, SoA 8081803 SQA }

n=0
if n <4, and
d € (DCRgs,), = {30 1 sgs1 50 BV %, 505150 BTAY cx+y=n—2 and x odd}
ifn > 4.

Proof. We proceed by induction on n, with the base case (n = 0) trivial. The inductive
hypothesis and Lemma 5.6.5 tells us that any distinguished representative with n + 1

occurrences of sq is of the form dwgsg with d € (DCRg,),, and wy € Wy. There are only

t+2u+4
(t 4 2u + 3)v/2
t+2u+3
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a finite number of possible elements of this form, which is bounded by | Wy | - | (DCRs, ), |-

The set Wy consists of 8 elements, namely
Wo = {1, s1, 52, 5152, 5251, 515251, 525152, 51525152 }-

Using the braid relations, we see that the elements s1s95; and s951595159 represent the
same word, but have differing lengths. Since distinguished words have minimal length
in their double cosets, we choose elements of minimal length which represent a word. If
wo € Wy ends in so then (dwgsg)ss = d(wpsa)so and wpss is shorter and ends in s;. On
the other hand, dsg ends in sysg and so has reduced expression with fewer than n lots of

So. Thus we need only consider ds;sg, dsss1590 = dB and ds;s25159 = dA.

We write s;, s; to indicate that we have considered the element s;dwgsgs; for s;,s; € Wy,
which we are permitted to do since we are in Wy\W/W,. To ease notation we abbreviate

1:=5;.

Number of sy’s | Distinguished Representatives

1 0
010, 0A

0108, 0A?

01082, 010BA, 0A?

010B%, 010BA?, 010A*

010B*, 010BA?, 010B*A, 0A®

010B°, 010BA*, 010B3A?, 0A°

8 010B°, 010BA®, 010B3A3, 010B°A, 0A”

N O Ot = W N

Table 5.1:  Distinguished Reps of Wo\W/Wj with up to 8 occurrences of sj.

We consider Table 5.1 as our base case in our induction. In what follows, we use “="
to mean that two elements reside in the same double coset. We readily make use of the

following relations, which can be derived directly from the braid relations:

B’A = AB?; (o)
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A(10B) = (10B)A; (0)
A2 = 24. (D)

Case 1: Let d = 0A™ 1

(i) d10 = 0A" 110 = 0A" 21210101 = 0A" 212010 = 0A"210B
2 010BA™2 € (DCRs, st

(i) dB = 0A™'B = 0A"'210 £ 2024"*1210101 = 0A™ 212010
= 0A"210B 2 010BA" 2 € (DCRg,)ns1.

(iii) dA = 04" 'A =0A" € (DCRg,)n41.
Case 2: Let d = 010B™ 2

(1) d10 = 010B™ %10 = 0108 *210210101 = 010B™*2102010 = 0105™ 21210
= 0108™*121202 = 010B™ * A has fewer than n lots of 0 in its reduced expression.

(ii) dB = 010B"?B = 010B" ' € (DCRs,)pn11-

(iii) If n is odd then dA = 010B" %A € (DCRs,)n+1,
If n is even then dA = 010B™ ?A = 010AB™ 2 = 10101210B™ 2
= 010B"" € (DCRsy)nt1-
Case 3: Let d = 010B*AY with x odd and z +y =n — 2:

(i) Ifz=1then d10=010BAY10 g 0AY10B10 = 0AY10210101
= 0A4Y102010 = 0AY"! has fewer than

n lots of 0 in its reduced expression,
If > 1 then d10=010B*AY10 = 010B*AY 11210101

= 010B*AY"'12010 = 010B*AY~'10B
2 010B*10BAY~! = 010B°~221021010BAY ! =
010B* 121020101 BAY~! has fewer than n lots of 0

in its reduced expression.
(ii) dB = 010B*AYB = 010B"AY"'AB = 010B* A¥~' B*
= 010B""?AY"! € (DCRs,)ns1-

(iii) dA = 010B"AYA = 010B*“ A" € (DCRsy)ni1
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Thus every distinguished element with n + 1 lots of sy in its reduced expression lies in

(DCRSO)n+1. D

Theorem 5.6.3 now follows immediately from Lemma 5.6.6 and Lemma 5.6.8 (and its

analogous statement for i = 1,2). O
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