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Abstract

Despite the development of more sophisticated airborne systems that are equipped with hy-

perspectral sensors, the more cost effective commercially sponsored multispectral satellite sys-

tems are still in use today. Consequently, the research topic of multispectral panchromatic image

sharpening is still active, whose sole purpose is to produce high spatial resolution imagery while

preserving the spectral integrity of the original spectral image. The component substitution

injection scheme is still a foundation for many of today’s techniques. Working under the as-

sumption that a low-pass filtered panchromatic image can be constructed from a linear mapping

of the spectral bands, an unsharp mask can be created and fused into the original multispectral

image. The challenge in deciding how the band weights are computed is typically solved using

linear regression, however, this produces a greyscale with different global statistics to the stand-

ard intensity mapping thus altering the spectral properties of the pan-sharpened image. We

tackle this problem with a different approach; that is to produce a method of mapping a four

band image into a real greyscale that preserves the global statistics of the standard intensity

mapping all the while increasing the correlation with the panchromatic. Starting with colour to

greyscale mappings, we produce a closed form solution to a maximum variance greyscale subject

to preserving image mean. By exploiting the cubic constraints on the band weights, we reduce

the time complexity from that of quadratic programming to one which is limited by sorting three

numbers. We further expand on this optimisation to produce greyscales with maximum image

variance which has application to multi-banded images for dimensions limited by the ability to

compute a convex-hull. Lastly we adapt our solution by introducing a quadratic constraint on

image variance. This method is based on a novel solution to the geometric intersection of a

hyper-ellipse with hyper-planes. Lastly we further this solution to finding the band weights that

will enhance the correlation of our mapping to the panchromatic image. Post image evaluation

our technique was seen to improve on classical component substitution methods.



Access Condition and Agreement 
 
Each deposit in UEA Digital Repository is protected by copyright and other intellectual property rights, 
and duplication or sale of all or part of any of the Data Collections is not permitted, except that material 
may be duplicated by you for your research use or for educational purposes in electronic or print form. 
You must obtain permission from the copyright holder, usually the author, for any other use. Exceptions 
only apply where a deposit may be explicitly provided under a stated licence, such as a Creative 
Commons licence or Open Government licence. 
 
Electronic or print copies may not be offered, whether for sale or otherwise to anyone, unless explicitly 
stated under a Creative Commons or Open Government license. Unauthorised reproduction, editing or 
reformatting for resale purposes is explicitly prohibited (except where approved by the copyright holder 
themselves) and UEA reserves the right to take immediate ‘take down’ action on behalf of the copyright 
and/or rights holder if this Access condition of the UEA Digital Repository is breached. Any material in 
this database has been supplied on the understanding that it is copyright material and that no quotation 
from the material may be published without proper acknowledgement. 
 



Chapter 1

Introduction

1.1 Motivation

The broad definition of remote sensing includes many forms of data collection that have been

carried out at a distance as opposed to in-situ (Schowengerdt, 2007). This encompasses vision,

astronomy, space probes, most medical imaging and sonar (Schott, 2007). For our purposes, we

shall solely associate this term to that of digital image acquisition by aircraft and satellites.

The year 1972 saw the release of the United States Geological Survey (USGS) & North

American Space Association (NASA) Landsat Multispectral Scanner System (MSS) satellite,

which possessed a sensor capable of capturing surface reflectance data from Earth over four

regions (multispectral bands each with a bandwidth of about 100 nm) of the electromagnetic

(EM) spectrum. Since then, we have seen the release of four additional MSS (Landsat 2 - 5,

the last two of which also using the Thematic Mapper (TM) sensor), the Enhanced Thematic

Mapper Plus (ETM+) sensor (Landsat 7) and most recently Landsat 8, which is equipped

with the Operational Land Imager (OLI) and the Thermal Infrared Sensor (TIRS), capable of

collecting image data for nine short-wave bands and two long-wave thermal bands respectively.

There have also been seven French “Satellite Pour l'Observation de la Terre” (SPOT) systems

as well as the commercially (Digital Globe) developed IKONOS, QuickBird and OrbView earth

observation platforms. The optics that collect spectral information on many of these commer-

cial satellite platforms generally comprise around four to ten spectral band sensors i.e. Coastal
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Aerosol, Blue, Green, Red, Near-Infrared, Short-Wave Infrared 1&2, Cirrus and Thermal In-

frared 1&2 (CA,B,G,R,NIR,SWIR,C,TIRS) (Barsi et al., 2014). These image sets are

referred to as multispectral, whereas satellites such as the Advanced Visible/Infrared Imaging

Spectrometer (AVIRIS) utilise hundreds of sensors (with approximately 10 nm wide bandwidths)

that collect data for 400 to 2400 nm of the electromagnetic spectrum and are referred to as hy-

perspectral. Ghassemian (2016) states that it is not unheard of to add further classification by

referring to systems that capture more than ten bands (with bandwidths between 50 - 10 nm)

in the EM spectrum as superspectral and sensors with bandwidths of less that or equal to 1 nm

as ultraspectral.

The bandwidth of these spectral bands is confined to the window of electromagnetic radiation

the sensors can detect; the narrower this bandwidth, the greater the sensors spectral resolution.

The spatial resolution of a sensor depends on its Instantaneous Field Of View (IFOV): the ground

area captured by the sensor at any given instant of time (Campbell, 2006). Digitally this can be

thought of as the area of the ground captured by one pixel. For a given number of pixels, the

finer the IFOV is, the higher the spatial resolution; the greater the clarity of the high-frequency

information available in an image (in the absence of sensor noise).

The design of multispectral sensors with increasingly higher spatial resolutions is limited by

technical constraints of onboard storage and bandwidth transmission from the satellite to the

Earth’s surface. For this reason, Earth observation platforms are equipped with a single high

spatial, low spectral resolution panchromatic sensor that is sensitive to a large portion of the

EM spectrum from the visible to the thermal infrared. Images acquired from the panchromatic

sensor are often referred to as the “panchromatic image” P and it provides a single measure of

reflectance of the scene over the wavelengths that the panchromatic sensor can detect. In addition

to data handling constraints, remote sensing systems are subject to the trade-off between IFOV

and signal-to-noise ratio (SNR). Since multispectral, and to a greater extent hyperspectral,

sensors have reduced spectral bandwidths compared to panchromatic sensors, they typically

have for a given IFOV a reduced spatial resolution in order to collect more photons and preserve

the image SNR. With these constraints in mind, generating high spatial and spectral resolution

imagery are not immediately available via image acquisition by remote sensing but instead by

fusion methods. This concept is known as multispectral or multi-sensor merging, fusion or
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pan-sharpening which has been defined by Amro et al. (2011) as “a pixel-level fusion technique

used to increase the spatial resolution of the multispectral image, while preserving the spectral

information in the multispectral image”.

1.2 Research Problem

The classical techniques of pan-sharpening rely on Component Substitution (CS) and include

the Intensity-Hue-Saturation (IHS), Principal Component Analysis (PCA) and Gram Schmidt

(GS) methods (Amro et al., 2011). Pan-sharpening based on CS is one of the most popular

methods to employ due to its simplicity, computational speed and the ability to inject high level

of spatial detail. The technique relies upon swapping out the low-resolution spatial information

(or part of it) with that of the high-resolution P . How the low-resolution spatial information is

acquired from the colour image depends on the transformation done prior to the substitution.

The transformation can be viewed as a projection of the image from RGB vector space to a

component space that separates the spatial from the spectral information. After the substitution

has been made, the inverse transform provides the final pan-sharpened image.

CS is an incredibly simple method for fast image pan-sharpening. Undesirably, this simplicity

comes at a cost; CS methods suffer the most from a significant problem in the field of image fu-

sion: spectral distortion. Spectral distortion describes a whole range of unwanted characteristics

that can be present in the fused image, from visual artefacts/errors such as contrast inversion to

quantifiable deviations from a statistical norm or metric. It has been identified that one of the

main causes of these distortions is caused by the spectral mismatch between the multispectral

and panchromatic sensors, see Figure. 1.1. Here we can see the dispersive nature of each sensor;

they are not equally sensitive across their respective bandwidths, as seen by the normalised

peaks in the spectra. Among the ‘tails’ of the band sensor responses there exists redundant

overlapping, with the most severe being between the blue and green bands. The overlapping

between adjacent bands diminishes with increasing wavelength, to the extent that the red and

near-infrared (NIR) being almost entirely vacant. The panchromatic band is depicted by the

black line where its low spectral resolution can be seen by its broad bandwidth. The spectral

mismatch can be identified by the panchromatic sensor being overly sensitive in the infrared and
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QuickBird 
 
The QuickBird satellite also carries a high resolution panchromatic band covering most of the silicon 
response and four lower resolution spectral bands.  The spectral responses of the bands are shown in 
Figure 2, individually normalized to the maximum value.  Table 2 gives the 5% response upper and 
lower edges and center wavelengths for each. 
 

 
Figure 2. Spectral Response of the QuickBird panchromatic and multispectral imagery. 
 
 

Table 2.  QuickBird Spectral Band Edges and Center Wavelengths 
 Band Name  Center 

Wavelength 
(nm) 

Lower Band 
Edge (nm) 

Upper Band Edge 
(nm) 

Panchromatic  729 405 1053 
Blue 488 430 545 
Green 543 466 620 
Red 650 590 710 
NIR 817 715 918 
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Figure 1.1: QuickBird Relative Spectral Response (Dig, 2019).

not sensitive enough in the blue; as depicted by the sensors response to EM-radiation post 950

nm and its rapid decline at wavelengths smaller than 450 nm. A good example as to how this

mismatch of the spectral responses can affect a fused image can be made when considering the

spectral characteristics of vegetation (Zhang, 2004); vegetation appears of relatively high reflect-

ance in the near-infrared and panchromatic bands, while its reflectance is low in the visible. The

implications of this would be seen post CS, where the brightness levels in the pan-sharpened

image with areas possessing vegetation appearing brighter than the original multispectral im-

age. In addition to introducing this offset in brightness, using the panchromatic image in a CS

can lower the correlation between the bands (Thomas et al., 2008) which can lead to contrast

inversion.
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1.2.1 Image Pre-processing

To mitigate the introduction of spectral distortions in the pan-sharpened image, it is usual for

the panchromatic image to undergo standard (as found in many text-books on the subject such

as Gonzalez and Woods, 2008) image pre-processing prior to fusion. One of these pre-processing

steps aims to preserve the spectral characteristics of the multispectral image, by matching the

statistical mean and standard deviation of the panchromatic to that of the component it is

replacing (Amro et al., 2011). For IHS pan-sharpening this would be the intensity image I: a

single band image computed by averaging across the multispectral bands. In the pan-sharpening

literature this process is known as histogram matching which is a misnomer, it is more accurate

to refer to it as statistical matching. The remaining two pre-processing stages include image

registration; the process of making the pixels of two or more scenes of the same geographical

region precisely coincide with the same points on the ground (Zitová and Flusser, 2003) and res-

ampling (upsampling), a means of changing (improving) the image resolution using interpolation

techniques.

Although P is usually statistically matched prior to CS, significant spectral distortion still

remain in most pan-sharpened images. Consider IHS pan-sharpening, where the global statistics

of P are matched to those of I. Globally the statistics have been matched, however at the

local level level we could have introduced or exasperated deviations with I. As Zhang (2010)

has described it: “To develop an image fusion method preserving the spectral characteristics,

the high resolution image has to sharpen the multispectral image without adding new grey level

information to its spectral components; the local means must ideally be preserved between the

panchromatic and the intensity image”. Additionally, there could still exist areas where there is

a lack of correlation between the I and P components which leads to areas of contrast inversion.

This brings to light a fundamental assumption behind the CS technique; there exists a linear

relationship between the multispectral and panchromatic bands. If this assumption were true

then it would be possible to construct the panchromatic image from a linear combination of the

multispectral bands.
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1.2.2 Relative Spectral Contribution

A single band image represents the sensor response captured at a pixel which when viewed will

appear composed of shades of grey with black representing the lowest intensity and white the

highest. For this reason they are usually referred to as greyscale images. This idea of constructing

a greyscale panchromatic-like image (known either as a synthetic/approximate panchromatic im-

age) using a linear combination of the multispectral bands forms a new group of pan-sharpening

techniques known as Relative Spectral Contribution (RSC). Although RSC techniques do not

directly pan-sharpen multispectral images, they are usually affiliated with methods where a lin-

ear combination of the bands is used to provide the spatial detail over that of I. Constructing a

synthetic panchromatic image J using a linear combination of the bands can be formulated as

J =

d∑
1

wnMn, (1.1)

where d is the total number of bands being used in the fusion, wn is the nth band weight and Mn

is the nth multispectral band. For example, the classic IHS transform uses Eq. (1.1) to compute

the intensity mapping J = I from the R, G and B bands by setting w = 1
3 . This leads to the

generalisation of intensity where any number of multispectral bands by setting w = 1
d .

To illustrate the flaws of equally weighting the bands we must look back to the sensor re-

sponse. Ideally, the multispectral bands (B,G,R,NIR) from Figure. 1.1 should be disjoint,

equally sensitive and together form a continuous response that covers the range of the panchro-

matic sensor. This idealised conceptual sensor response is shown in Figure. 1.2. Under such

circumstances the intensity mapping would produce an image that possesses the exact same

spectral properties of that collected from the panchromatic sensor. From Figure. 1.1 this is

clearly not the case; there is overlap between the B and G bands in addition to spectral mis-

match of the B and NIR bands with P . This illustrates the problem of using an equally

weighted average and how fusion schemes that don’t account for these spectral mismatches can

cause distortions in the pan-sharpened image. Nowadays the occurrence of these distortions are

reduced by computing J in such a way that the spectral response of the sensor is considered,

by weighting the contributions from the multispectral bands appropriately. This is the general

premise behind the RSC approach. This has been discussed by Aiazzi et al. (2007) where they
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Figure 1.2: Idealised QuickBird spectral response of the multispectral bands (Thomas et al.,
2008).

developed a method of determining the weights of Eq. (1.1) by minimising the square error

between their J and P using linear regression.

Currently there is no linear relationship between the multispectral and panchromatic sensors.

This means that the problem with computing J that adopts the approach of maximising the

correlation with P is that it does not fully address the problems that using I can cause. Ulti-

mately what we we desire is the intensity image but at a higher resolution (the ARSIS concept:

Ranchin et al., 1996) and it is this objective that pan-sharpening techniques now seek to satisfy,

while having as low a time-complexity as possible.

To attempt to achieve this goal, further mitigation of the spectral distortions with global

CS/RSC techniques have been addressed in frequency domain methods. It is well known that the

spatial information of the panchromatic image is mostly carried by its high-frequency compon-

ents, while the spectral information is mostly carried by its low-frequency components (Fonseca

et al., 2011, Guo et al., 2010). Performing a global CS can dramatically alter the low-frequency

components of the original multispectral image, which can produce distortions in the spectral

bands (Zhou et al., 1998). The basic solution to this would be to extract the high-frequency

components from P and inject them into the M bands, a form of pan-sharpening known as

High-Pass Frequency (HPF) injection (Chavez et al., 1991). With regards to the RSC method,

Thomas et al. (2008) states that “a filtering operation applied on the panchromatic image is
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implicitly required” when using the P in a linear combination of multispectral bands.

1.3 Aims and Scope

The scope of this thesis is limited to constrained linear mappings and their application to pan-

chromatic image sharpening. With respect to the intensity image I, our final aim is to produce

a method of linearly mapping four spectral bands into a single band greyscale such that the

global statistics are preserved all the while having a greater correlation with the panchromatic.

To accomplish this we complete the following objectives:

1. We produce a closed form solution to linearly mapping a three band (colour) image into a

normalised single band (greyscale) such that the statistical mean of I is preserved.

2. Using psychophysics, we evaluate our greyscales against those from competing techniques.

3. By applying a constraint on variance, we further develop our method for use in panchro-

matic image sharpening. To this end we develop a novel solution to the intersection of a

hyper-plane with a hyper-ellipsoid.

4. Using linear regression, we produce a novel method of producing weights that increase the

correlation of J subject to our constraints on the global statistics.

5. We evaluate our pan-sharpened imagery against other methods found in the literature.

1.4 Thesis Outline

Computing a greyscale J by linearly mapping multiband data is a form of dimensionality reduc-

tion. Consequently this is a natural place for Chapter 2 to begin the narrative for this thesis: a

literature review in colour-to-greyscale mappings.

Further to this review, Chapter 3 shows how we expand on and develop a closed form solu-

tion to a published brightness preserving colour-to-greyscale method that previously relied on a

quadratic programming algorithm to solve.
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Chapter 4 finishes our work in colour-to-grey by presenting our psychophysical evaluation

experiment. Here we gauge the overall preference of our colour-to-greyscale conversion against

competing techniques.

Chapter 5 sees us moving onto the research field of panchromatic image sharpening with a

literature review.

In Chapter 6 we demonstrate the strength of the model by introducing a novel constraints

on image variance. Additionally we show how we can produce a mapping that has a greater

correlation with the panchromatic image while satisfying our constraints.

Chapter 7 is our panchromatic sharpening evaluation chapter and shows how using our

greyscale we can improve on the classical methods.

Lastly we finish with a conclusion and further work discussion in Chapter 8.
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Chapter 2

Colour-to-Greyscale: Literature

Review

The research problem in panchromatic image sharpening is how one can reproduce the edge

information of the panchromatic in the multispectral image. This problem bears strong simil-

arity to that found in the field of colour-to-greyscale conversion, where the research community

attempts to reproduce the edge information of the colour image in their greyscale mappings. Re-

searching colour-to-greyscale methodologies is therefore the natural place to begin our research

to the pan-sharpening problem.

In this chapter we shall present our literature review for the research topic of colour-to-

greyscale. We shall briefly introduce the research problem before dividing the review into the

four sections. The first two sections 1) luminance-chromaticity and 2) RGB colour cube based

mappings deal with the current state of the art. The third section we shall look deeper and

analyse their compatibility to panchromatic image sharpening. Lastly we shall finish with a

conclusion.

2.1 Introduction

Linearly mapping a multiband image down to a single band is a dimensionality reduction prob-

lem. Dimensionality reduction in imaging is well documented in the field of colour-to-greyscale,
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where a three band image is reduced to one. The challenge concerns preserving the information

content of the data as one reduces its dimensionality. This problem is generally solved by trying

to find a greyscale that possesses the same contrast as that of the original colour image.

Contrast in an image is the difference in colour or brightness between two points that make

them distinguishable from each other. Due to the discrete nature of digital images, the min-

imum incremental spatial distance between two potentially different loci of information is 1, i.e.

neighbouring pixels i and j. This allows local contrast to be expressed as an approximation of a

gradient, which for our greyscale can be written as ∇Ji,j. Replicating the contrast of the colour

image in the greyscale can be posed in the image gradient domain using the cost function (Bhat

et al., 2008, Jin and Süsstrunk, 2017)

min
∑

(i,j)∈κ

‖∇Ji,j −∇Mi,j‖2 , (2.1)

where κ represents the set of all pixel pairs, ∇Ji,j contain the gradients for the single band

greyscale

∇Ji,j = Ji − Jj (2.2)

and ∇Mi,j the gradients for the three band colour image. Since gradients are scalar quantities

and pixel information for multiband imagery are represented by vectors, the resultant Euclidean

vector magnitude across the three bands are used to define the differences between pixels. For

example, if we have a pixel at location i and another at location j then an element in the matrix

∇M would be

∇Mi,j = ⊕i,j

√
(Ri −Rj)2 + (Gi −Gj)2 + (Bi −Bj)2, (2.3)

where Ri,Gi,Bi represents a vector components from the red, green and blue bands. As all

Euclidean magnitudes are positive, a sign function ⊕ is needed to define the gradient direction

(positive or negative), which visually means that the brightness ordering between the pixels is

an accurate representation of what would be seen in the colour image. Typically this function

produces signs based on the gradient directions from particular single band image i.e. the

luminance image from either the RGB colour cube model L or L∗ from the perceptually uniform

CIE L∗a∗b∗ colour space.
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Minimising the objective function described by Eq. (2.1) is a known problem in multivariate

calculus, where the desired gradients ∇J is as close as possible to the given gradient field ∇M .

This is posed with the integral ∫∫
F (∇J ,E) dxdy, (2.4)

where E = ∇M and F (∇J ,E) = ‖∇J −E‖2. Following the formulation of Fattal et al. (2002),

isolating the integrand

‖∇J −E‖2 =

(
∂J

∂x
−Ex

)2

−
(
∂J

∂y
−Ey

)2

(2.5)

and then by using Variational Principle, that states that a function that minimises the integral

Eq. (2.4) must satisfy the Euler-Lagrange equation

∂F

∂J
− d

dx

∂F

∂Jx
− d

dy

∂F

∂Jy
= 0, (2.6)

which is a partial differential equation in J . Substituting Eq. (2.5) into Eq. (2.6) and differen-

tiating results in the Poisson equation

∇2J = ∇E, (2.7)

where ∇2 is the Laplacian operator. The task then becomes one of solving the Poisson equation

where the final greyscale is found (subject to a additive constant) by integrating twice. Unfor-

tunately ∇E typically forms a non-conservative vector field and is non-integrable. This means

our final greyscale in only a least squares approximation, which would be noticed upon viewing

by the presence of smearing and halo type artefacts, see Figure. 2.1.

The challenge for researchers became that of finding the desired ‘real’ greyscale image that

minimises Eq. (2.1). We shall now review the methods that have been developed to solve this

problem. These methods will be split into two categories; mappings from luminance-chromaticity

based colour spaces and those from the RGB colour space. In the last section we shall briefly ana-

lyse these methods to determine which one will be most suited for our multiband panchromatic

image sharpening problem.
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(a) Original RGB (b) Least squares solution to Poisson equation

Figure 2.1: Colour-to-greyscale example from solving Poisson’s equation. Note the artefacts
that can be produced in the greyscale from the optimisation. The white and grey boarders

around the images serve to add clarity and were not involved in the mapping.

2.2 Luminance-Chromaticity Space Mappings

How best to incorporate the chromaticity information from a colour image when producing its

greyscale has become a standard problem in the field of colour-to-grey. To simplify this process

it is convenient to work in a colour space where the image can be represented by the components

of visual perception: hue, saturation and brightness. Decomposing the image into its visual

components allows them to be individually operated on which allows for greater control when

producing a visually pleasing greyscale. There are many varieties of brightness/chromaticity

based colour spaces with CIE L∗a∗b∗ being the most prevalent within the literature. In this

colour space L∗ represents the image luminance and a∗ and b∗ the opponent colours red-green

and yellow-blue respectively. This device independent colour space has become an industry

standard in colour imagery. It takes into account the non-linear response of the human visual

system to optical stimuli. It is a perceptually uniform colour space, which is to say that stimuli

that exhibit the same perceived differences will have the same Euclidean vector magnitudes in

the colour space.
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Using the resultant Euclidean magnitude between pixels as the measure of contrast to pre-

serve, Rasche et al. (2005) posed Eq. (2.1) as a Multi-Dimensional Scaling (MDS) problem, with

the constraint of preserving the luminance ordering on their final greyscale. This constraint is

applied to the optimisation when the Euclidean magnitude between two pixels is lower than a

threshold. In these instances an inequality is added to the optimisation and this ensures that the

luminance ordering is maintained in the greyscale output. Visually this means that no contrast

inversion occurs between pixels of similar chrominance. As these constraints are posed as an

inequality, their solution is found within an intersection of half-spaces and solved using linear

programming. To avoid the high computational cost of solving a constrained MDS problem

for complex colour images, the authors proposed solving for a sparse system based on image

landmark points which provides a global solution for their final greyscale by using a constrained

interpolation.

Gooch et al. (2005) solved Eq. (2.1) using the gradient descent method to produce a luminance-

like greyscale that has its contrast enhanced from the information contained in the chromaticity

channels. Operating in the gradient domain of the luminance image, substitutions were made

with the magnitude of the 2-dimensional chromatic vector gradients (|∇C|), on the condition

that it be larger. The direction of |∇C| was determined by what half of the polarised chromin-

ance plane ∇C falls within. The gradient descent method is used as their solver to produce a

real image that is as close as possible to the luminance image in a least squares sense.

Neumann et al. (2007) proposed using gradient correction to address un-conservative image

vector fields. Their gradient correction was conducted using a negative feedback loop, which

reduces the gradient magnitudes at each iteration such that the error (which was calculated by

taking the gradient sum in a square four pixel window) is below a threshold. Ideally this error

would be zero for all loops, thus producing an artefact-free image. To avoid the sign problem

that occurs when taking colour contrasts as the Euclidean norm, they instead used the L3 norm

metric of the (L∗, a∗, b∗) vector. They reported a much faster processing time than the iterative

solution of Gooch et al. (2005).

Kuhn et al. (2008) proposed solving Eq. (2.1) using Verlet (1967)’s time-step integration on

the luminance image to iteratively converge to a greyscale whose gradients are as close as can

be to ∇M . To ensure that the gradient field is conservative, they apply Newtonian physics to
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their model as well as weights (based on the inverse of the magnitude chromaticity vector) to

each luminosity pixel. This means that pixels with low saturation are permitted to change at

a slower rate per iteration than high saturation ones, while pixels having zero saturation being

unable to change. Due to the high computational complexity of O(n
2
), colour quantisation and

interpolation can be applied to reduce run times.

Instead of trying to increase the contrast of the luminance image using the chromaticity

information, Smith et al. (2008) produce a base greyscale L∗HK from the perceptually uniform

CIE L∗u∗v∗ colour space using the Helmholtz-Kohlrausch (HK) effect: an empirical model

of assigning colour ordering for greyscale pixels that takes into account the fact that hue and

saturation of two chromatically different yet isoluminant stimulii affect its perceived brightness by

the human visual system. By testing various HK models, the authors decided on using Nayatani’s

lightness metric (Nayatani, 1997) because of its greater variance in its assignment of lightness

values to pixels across the RGB spectrum. Specifically the Nayatani metric uses the images

chromaticity from the perceptually uniform CIE L∗u∗v∗ colour space to adjust the luminance

levels in L∗. Local greyscale contrasts are then enhanced in a multi-resolution framework (an

adaptively-weighted multi-scale unsharp masking technique (Nowak and Baraniuk, 1998)) by

modulating the bandpass levels (hi) in a Laplacian pyramid by the root of an image consisting

of the ratio

λi =

(
∇(hi(M))

|hi(L∗HK)|

)p
, (2.8)

where M is the colour image in CIE L∗a∗b∗ space. Their final greyscale J is computed by

superimposing the sum of the Laplacian pyramid levels upon the base greyscale

J = L∗HK +

n−1∑
i=0

kiλihi(L
∗
HK), (2.9)

where parameters p (0 ≤ p ≤ 1) and k (≤ 1) exist as decision level tuning parameters that

control contrast.

The unique property of using the Laplacian pyramid is that it allows for selective enhance-

ment. Image features are segregated by size; fine details will be prominent in the lower levels

whereas progressively coarser features are prominent in the higher levels. This can be advant-

ageous when it comes to enhancing image contrast without increasing image noise.
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Kim et al. (2009) optimised Eq. (2.1) by solving Poisson’s equation. Their optimisation

consists off finding the a∗, b∗ component weights that produces a greyscale mapping that when

added to L∗, minimises Eq. (2.1)

x = M−1
s bs, (2.10)

where Ms is a matrix that contains the gradients of the chromaticity information that is con-

structed from the outer-products of the ∇a∗, ∇b∗ components and bs a vector that contains the

gradient enhancement (using the chromaticity components) for L∗ pixels that have lost contrast

from the original colour image. To prevent the computational cost of inverting a large matrix

that contains all colour contrast, they allow for a limitation on the number of hues used in their

optimisation. Greyscale brightness ordering from their colour gradients were assigned to that

of the HK lightness predictor. If this positive or negative direction happens to be zero, the

luminance direction should be used and if this fails, the sign of the L3 norm should be adopted

akin to Neumann et al. (2007).

Song et al. (2010) constructed their gradient vector field ∇J by summing the individual

gradient fields for their image over their modified hue (∇H ′), saturation (∇S′) and lightness

(∇L′) based colour space, ∇J = 1
3 × (∇H ′ +∇C′ +∇L′) and then solving Poisson’s equation

(Davis, 2003, W.H.Press et al., 1992, Bolz et al., 2003). The novelty of their work is how they

construct these gradient vector fields; a method that they link to the psychology and biology

of the human visual system. Gradients were calculated using the centre difference, with hue

gradients being modulated by the square of the saturation; the rationale being that the human

visual system is not sensitive to hue changes at low saturations. Adopting a similar approach

to colour ordering as Gooch et al. (2005), they used a linear classifier to define a 1-dimensional

space upon which to project the hue information. The gradient directions were given by the

priority of hue, saturation and lastly lightness in addition to having their magnitudes modulated

by the priority factors, 1, exp(−xC) and exp(−xCexp(−xL).

Du et al. (2015) proposed solving Eq. (2.1) between colour SM (si) and greyscale SJ (si)

image segments. They defined a statistical measure of colour contrast at a pixel/segment by

modelling the chromaticity information with a normal distribution. Using simple linear iterative

clustering (Achanta et al., 2012) to segment their colour and greyscale images, contrast/saliency

16



values were calculated by

SM (si) =
∑
si∈S

N(si)exp

(
−∇Di,j

σ2

)
∇Mi,j/3 (2.11)

and

SJ (si) =
∑
si∈S

N(si)exp

(
−∇Di,j

σ2

)
∇Ji,j, (2.12)

where S is the set of segments in the image, N is the number of pixels in the segment si and

σ2 = 0.4×(width×height), ∇Di,j is the Euclidean distance between the segment centres i and j,

∇Mi,j the Euclidean distance between the segments in CIE L∗a∗b∗ and∇Ji,j the scalar difference

between the two segments. Using the Variable-Achromatic-Colour mapping as a base greyscale

LHK , a series of candidate greyscale images (which is used to compute ∇J) are produced by

adding on a different chromaticity mapping

Jp = L∗HK + k
∑
q∈Ω

(ap − aq)exp

(
−∇Dp,q

σ2

)
+ l
∑
q∈Ω

(bp − bq)exp

(
−∇Mp,q

σ2

)
, (2.13)

where each greyscale is produced as a function of the parameters k and l. Eq. (2.1) is consequently

solved by choosing the greyscale that provides the minimum value.

2.3 RGB Colour Cube Space Mappings

The sRGB colour space is the most popular among the RGB colour cube models. Invented by

Microsoft and Hewlett-Packard, it was created to address the device dependency problem of

the RGB model. This device dependency meant that different devices would output a different

colour for a given RGB vector. This problem was exasperated with the advent of the internet

when images were being viewed from different devices and displays on different browsers. The

sRGB colour space was designed as a device independent consumer ‘standard’ colour space

whose viewing characteristics matched those of the standard CRT computer monitors under

typical home and office viewing conditions. As with the RGB colour model, each pixel in an

image is represented by the RGB additive primary colours in the form of a 3-dimensional vector.

The additive nature of these primary colours means that the pixel brightness is the sum of the
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vector components. Normalising each vector component at a pixel by its brightness produces a

mapping to the Maxwell Triangle, which allows the saturation to be visualised as the Euclidean

distance from the Triangle centre (white point - zero saturation) to its edge and the hue being

the azimuth angle about said centre.

Grundland and Dodgson (2005) produced a unique means of injecting chromatic contrast

into the luminance image by producing an image that contains the contrast lost from that of the

colour image (in RGB space), and then adding it back onto the luminance. They first defined

the contrast loss as

D = 1−
1

Yaxis
|∇Yi,j|

∇Mi,j
, (2.14)

where Yaxis is the NTSC-Rec.601 standard luminance axis and ∇Yi,j is the luminance gradient

image from their YPQ colour space. This linear luminance (Y ) chromaticity (P ,Q) colour

space can be accessed by linearly mapping the gamma corrected RGB pixels using the transform

provided by the authors. Eq. (2.14) demonstrates that when the fraction is equal to 1, Di,j

becomes zero and this means that there has been no contrast loss from the colour image after it

has been mapped to the luminance image. The opposing answer being 1 would mean all contrast

has been lost. Defining the contrast loss in this way allows for it to be used as a modulating

coefficient on the chromaticity gradients, whose sum defines a 2-dimensional vector of contrast

loss through the chromaticity plane. The authors refer to this as the Predominant Component

(analogous to the principal component from PCA) and it is used to produce a vector whose

weights are used for reducing the dimensionality of the chromaticity components of each pixel

to a single band C. Their enhanced greyscale J is then produced by adding on these pixel

dependent scalars to Y

J = Y + λC, (2.15)

where λ is a tuning parameter for the desired degree of contrast enhancement. Setting bounding

constraints on the values each pixel can have allows for the image to take advantage of the

dynamic range of the display output. Grundland and Dodgson (2005) carried this out using the

saturation component S =
√
P 2 +Q2 and it attributes to the boundary condition if

ymin < Y ± λymax

smax
S < ymax, (2.16)
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where the subscripts min/max define the dynamic range of the display. Grundland’s technique

also comprises further constraints which allow for greyscale preservation (grey pixels in the

colour image will have the same shade in the greyscale) and luminance ordering (colour pixels

of increasing luminance will be mapped to increasing grey levels).

Qiu et al. (2008) developed a constrained PCA optimisation that, subject to equality and

inequality constraints produces a greyscale that possess maximum global contrast. Using global

statistical variance as their metric for overall image contrast, they produced a simple optimisation

based on the quadratic form

max
w

wTΣw, (2.17)

where Σ is the covariance matrix of the colour image and w is a 3-dimensional vector that con-

tains the RGB band weightings. To ensure that the image mean (µI) and energy are preserved,

they impose two linear equality constraints on their optimisation

µI =

3∑
1

wnµn (2.18)

and

1 =

3∑
1

wn, (2.19)

subject to the inequality constraints

0 ≤ wn ≤ 1 : n = 1, 2, 3. (2.20)

Applying quadratic programming to maximise Eq. (2.17) outputs w: a 3-dimensional vector

that contains the band weights for their colour-to-grey mapping that possesses maximum global

contrast.

Alsam (2009) presented a local linear colour to grey mapping. Defining contrast as the high-

frequency information contained in each band, they modulate contrast lost from luminance with

the colour images unsharp mask, CRg, CGg, CBg (based on a 25 × 25 Gaussian filter) to create
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an image of pixel weights

α(x, y) =
CRg(x, y)

CRg(x, y) + CGg(x, y) + CBg(x, y)

β(x, y) =
CGg(x, y)

CRg(x, y) + CGg(x, y) + CBg(x, y)

γ(x, y) =
CBg(x, y)

CRg(x, y) + CGg(x, y) + CBg(x, y)
,

(2.21)

where the denominator normalises the pixel weights to lie between 0 and 1. Their greyscale is

obtained by applying these individual pixel weights to each band and taking their sum.

Cui et al. (2010) presented a global mapping that uses the ISOMAP algorithm for their colour-

to-greyscale conversion. ISOMAP was created on the basis of finding an optimum solution for

maintaining the proportions between the geodesic and Euclidean magnitudes when mapping from

a higher to a lower-dimensional space. This technique bears a strong resemblance to classical

MDS, which Rasche et al. (2005) used in their optimisation to maintain the proportions of the

Euclidean distances between their colour and greyscale images. To avoid the computational

burden of calculating all distances between pixels, the authors proposed using the landmark

ISOMAP algorithm that finds sparse nodes in a kd-tree. This essentially means that their

landmarks are based on outliers that are defined by a user controlled parameter. Additional

contrast enhancement of their final greyscale was made available by allowing for the manipulation

(using nonlinear scaling xλ) of the geodesic distances. By treating each colour vector as the node

on a graph, a curved manifold is created. The structure of the manifold depends on determining

which nodes belong to which neighbourhood, solved by a user parameter k that states how

many neighbours a node can have. Computing the Euclidean magnitude between the k -nearest

neighbour nodes defines the graph edge weights. Summing the edge weights between two nodes

of interest allows for the shortest path to be found, i.e. the geodesic distance, which when

applied to the entire graph results in a matrix of geodesic distances. Applying classical MDS

to this matrix outputs a lower-dimensional representation that preserves the original manifolds

intrinsic geometry.

Lu et al. (2012a) solved Eq. (2.1) using the fixed-point iteration method to produce a globally

mapped greyscale that has been constructed from a weighted linear, bilinear and quadratic

combination of the RGB monomials. The bulk of their contribution was in designating a sign
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⊕ to their colour ordering of ∇M . This was computed by using the signs that maximise the

likelihood under the assumption that the colour differences follow a bimodal distribution. As

maximising the likelihood is the same as minimising its negative logarithm

E(w) = −
∑

(i,j)∈N

ln

{
αi,jexp

{
−|∇Ji,j −∇Mi,j|2

2σ2

}
+

(1− αi,j)exp

{
−|∇Ji,j +∇Mi,j|2

2σ2

}}
,

(2.22)

where N is a four neighbour set, w is a 9-dimensional vector whose components contain the

monomial weights and

αi,j =

 1.0 if Ri ≤ Rj,Gi ≤ Gj,Bi ≤ Bj

0.5 otherwise.
(2.23)

In a second paper Lu et al. (2012b) produced a means of reducing the time complexity of

their technique so that it can be used in real-time video. Uniformly sampling band weighting

space defined by Eq.(2.19) and (2.20), they produce a library of greyscales (by linearly mapping),

with their final greyscale being chosen on the basis that it minimises Eq. (2.22).

This process of creating a library of greyscales and choosing the one that satisfies our desired

properties is a Look Up Table (LUT) approach to the problem. Song et al. (2013) have also

utilised this method with the objective of preserving global contrast in their greyscale, which

they find by finding the minimum of Eq. (2.1) between bilaterally filtered (Yang et al., 2009)

greyscale images (JΥ) and the original colour RGB (MΥ).

Bilateral filters are edge preserving operators defined as

MΥ(p) =

∑
q∈Ωp

Gσs(||p− q||)Gσr (||Υ(p)−Υ(q)||)M(q)∑
q∈Ωp

Gσs(||p− q||)Gσr (||Υ(p)−Υ(q)||)
, (2.24)

where q is a pixel in the neighbourhood Ωp of pixel p, and Gσs
and Gσr

are the spatial and

range filter kernels measuring the spatial and colour/intensity similarity, and Υ is the guidance

image, which in this case is the RGB image (M) and a series of linearly mapped greyscales (J)

constructed from the weights in Eq. (2.19).

They also extended the work to real-time (Song et al., 2014). Again with the use of bilateral
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filtering, they estimated the contrast lost in the luminance mapping by creating a 3-dimensional

contrast loss image

D = MM −ML, (2.25)

where the colour image that has been bilaterally filtered with both itself (MM ) and the lumin-

ance (ML) image respectively and D is the 3-dimensional contrast loss image. The authors

proposed using this contrast loss image to identify which vector component at a pixel to use

from the gradient colour image to represent the desired contrast in the greyscale. That is to

say, at a pixel, the largest vector component in D defines the vector component from the colour

gradient image to use as the metric of colour contrast to be represented in the greyscale, i.e.

∇Mx,y from Eq. (2.1). The objective then becomes one of solving for band weights w that can

provide a linear mapping of D that can be mapped to the luminance image L that minimises

Eq. (2.1) i.e. ∇Dw +∇L = ∇Jx,y.

2.4 Analysis of Colour-to-Greyscale Linear Mappings

We seek to choose a method of converting a colour image to a greyscale, that would be ap-

plicable to multispectral (> 3 bands) imagery and the pan-sharpening problem. Most of the

early methods in colour-to-grey operate in the perceptually uniform CIE L∗a∗b∗ colour space: a

3-dimensional space that represents the image by L∗ the lightness, a∗ and b∗ the colour oppon-

ents green-red and blue-yellow respectively. From these chromaticity components, the hue and

saturation can be computed showing the resemblance to the standard IHS space commonly used

in pan-sharpening. Consequently, CIE L∗a∗b∗ shares the same shortcomings of the IHS method

in that it requires a transformation from RGB space meaning that it is limited to three bands.

None of the methods mentioned minimise Eq. (2.1) in closed form and require the use of

iterative search based algorithms to produce their solutions. This increases the complexity of

the method.

Methods that use the RGB colour cube model offer the advantages that the inclusion of the

NIR band comes as a natural addition to the dimension of the vector space. Furthermore,

they also encompass the methods that have low complexity, the simplest being that of globally

projecting the RGB bands onto a vector. Provided that the components of this vector are all
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greater than zero, image brightness ordering is maintained as a consequence of the additive

nature of the colour cube model. The challenge of these methods becomes one of finding the

vector that satisfies the optimisation with respect to any imposed constraints.

Using their predominant component analysis, Grundland and Dodgson (2005) define a direc-

tion of contrast loss in the chrominance plane with the standard luminance mapping. Projecting

the chrominance information onto this vector and then adding it onto the luminance increases

the contrast in the greyscale, which is further enhanced when the saturation component is used

to increase the dynamic range of their greyscale. Although this method operates in their own

luminance/opponent based colour space, the colour image contrast is defined by the Euclidean

magnitude of the RGB vectors which can extend to inclusion of the NIR band. The disadvant-

age is that they rely on the gradient image of the luminance mapping to define the direction of

the colour image contrast, which does not take into consideration the NIR band.

Qiu et al. (2008) posed a constrained PCA based method that produces a projection vector

that maximises the image variance subject to preserving the statistical mean of the colour image.

This optimisation is designed to output maximum global greyscale image contrast and can be

easily extended for use with multispectral imagery. It has advantages over LUT approaches in

that it produces a mathematically optimum answer to the problem. The disadvantage being

that it is currently solved using the complex quadratic programming algorithm.

Alsam’s (Alsam, 2009) local approach computes a projection vector for each pixel in the

colour image. This approach requires creation of a high-frequency edge map of the RGB bands

and a low-frequency map of the luminance image to calculate individual pixel weights to reinforce

edges in the luminance image. Creation of these maps not only increases complexity but also

involves user defined parameters that would need a trial and error style testing to produce the

satisfactory results. A further disadvantage to this technique is that it would increase any sensor

noise present in the image.

Song et al. (2013) creates a LUT of projection vectors. For each colour image, they produce a

library of band weights by uniformly sampling coefficient space and then selecting the greyscale

that has a contrast (defined by joint bilateral filter) that is as close as possible to the colour

input. The use of the linear energy preserving constraint of Qiu et al. (2008) also means the

method can be constrained further to preserve image brightness. Additional advantages to the
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LUT approach is in its flexibility with respect to its objective function. The method falls short in

that the greyscale output is only a close approximation to the optimal greyscale; a consequence

of the discrete selection of band weights in the LUT. The authors argue that this approximation

would look identical to a human observer to that of the optimum greyscale, however this would

also mean that its scores would be lower than the optimum when evaluated using numerical

metrics. Applying this method to the IHS pan-sharpening problem requires producing a LUT

that includes the NIR component, and then selecting the image that has the highest correlation

with that of P . As this is a simple extension to their work, we feel there is not enough scope for

novelty to warrant further development.

2.5 Conclusion

In this chapter we have reviewed the state of the art in colour-to-greyscale mappings, where the

objective is to replicate colour contrasts in its greyscale mapping. Typically this is carried out

by either injecting the chromaticity information into the luminance mapping from a perceptually

uniform colour space, or from linearly mapping the colour bands from the additive RGB colour

cube.

From this review we feel that the work of Qiu et al. (2008) has the greatest synergy to

the pan-sharpening problem. The optimisation is based on linearly mapping from the RGB

colour space which can be naturally extended to multispectral imagery. From the construction

of their model, linear constraints can be easily applied as has been demonstrated by the authors

with regard to their constraints on preserving image energy and statistical mean. Although the

optimisation currently uses a quadratic programming algorithm to solve, we shall show in the

next chapter that it can be solved in closed form, thus reducing its computational complexity.
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Chapter 3

Colour-to-Greyscale: Linear

Mappings

So far we have described how producing a single band image from a linear mapping of multiple

bands has applications in panchromatic image sharpening and in constructing a visually pleasing

greyscale image. The problem behind both applications is how to compute the band weights

such that high-frequency information is preserved in the greyscale. Qiu et al. (2008) designed a

colour-to-greyscale algorithm that maximises contrast in the greyscale with an optimisation that

we recognise as being fundamental to both colour-to-grey and pan-sharpening image fusion. We

start this chapter by reviewing their optimisation and exploring in detail the objective function

posed by Qiu et al. (2008). Currently solved using quadratic programming, we shall show

how their optimisation can be solved using standard arithmetic calculations of the image band

means. In addition to this, we further their work by showing how a simple modification to their

optimisation can produce band weights that produces full dynamic range greyscale imagery by

number sorting.
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3.1 Linear Mapping

Linear mappings offer the lowest time complexity for producing a greyscale from a colour image.

In Chapter. 1 we defined linearly mapping of image bands to be

J =

d∑
1

wnMn, (3.1)

where J is the single band greyscale, d is the total number of bands being used in the fusion,

wn is the nth band weight and Mn is the nth multispectral band.

The standard choice of band weights for colour-to-greyscale is to map the RGB pixel triplet

to a single intensity value. As we described in Chapter 1, this is achieved by setting the band

weights to 1/3

I =
R+G+B

3
. (3.2)

The numerator of Eq. (3.2) defines the arithmetic sum for the RGB triplet at a pixel and we

refer to this as its brightness. It is clear that by mapping pixels with different RGB components

yet identical brightness values will result in pixels being mapped to the same shade of grey, and

ultimately a decrease in global image contrast and information. An image dependent means

of determining the band weights must be used so that these instances of contrast loss in the

greyscale can be minimised.

These weights are generally constrained to sum to unity

1 =

3∑
1

wn, (3.3)

which preserves (i) the spectral contribution and (ii) the greyscale values already present in the

RGB. In addition to Eq. (3.3), the boundary conditions

0 ≤ wn ≤ 1 : n = 1, 2, 3 (3.4)

ensure that no clipping occurs in the greyscale.

Compared to the intensity mapping (Eq. (3.2)), the colour-to-greyscale methods reviewed in
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Chapter 2 enhance the contrast of the greyscale reproduction at a cost of altering its brightness

(which is preserved in the I mapping). With these observations in mind, Qiu et al. (2008) novelly

considered maximising contrast while simultaneously maintaining the reproduction brightness:

the brightness preserving greyscale conversion.

3.2 Brightness Preserving Greyscale Conversion: Prelim-

inaries

Using global statistical variance as their metric for overall image contrast, Qiu et al. (2008)

produced an optimisation based on the quadratic form

max
w

wTΣw, (3.5)

where the covariance matrix Σ of the colour image is computed by

Σm,n = E[(mm − µm)(mn − µn)] ∀ m,n ∈ {R,G,B}. (3.6)

Here E is the expectation operator, mn is a pixel value in a given band n and µn is the mean

of that band. To ensure that the image brightness is preserved and that all output greyscale

pixels lie between 0 and 1, they impose the equality constraints

wTµ = uTµ

3
(3.7)

and

wTu = 1, (3.8)

in addition to the inequality constraints in Eq. (3.4). Here µ is a vector whose components

contain the statistical mean of the RGB bands. In Eq. (3.8) we have re-written Eq. (3.3) as a

dot product between the band weighting vector w and the unitary vector u

wT = [α β γ], uT = [1 1 1] and µT = [µR µG µB]. (3.9)
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Eq. (3.5) represents the quadratic objective function which is satisfied when w provides a

maximum variance subject to the constraints in Eqs. (3.8), (3.7) and the boundary condition

Eq. (3.4).

As the covariance matrix is positive-definite, the calculation of variance using the quadratic

form is always positive

wTΣw > 0 ∀ w ∈ Rn. (3.10)

As with all positive-definite quadratic equations, there exists a single root. By exploiting a

property of the positive-definite matrix, the quadratic form posed by Qiu et al. (2008) can be

reduced to a vector magnitude.

By computing the square root of Σ (Golub and Loan, 1996) by singular value decomposition

(SVD)
√

Σ = U
√
SUT (3.11)

and

Σ =
√

Σ
√

Σ. (3.12)

Substituting Eq. (3.12) into the quadratic form that defines variance (Finlayson and Math-

eson, 2012) gives

wTΣw = wT
√

Σ
√

Σw = ẇTIẇ = ‖ẇ‖22, (3.13)

where I is the identity matrix and ẇ =
√

Σw.
√

Σ linearly transforms the band weighting

vector w in such a way that the quadratic form is reduced to a simple vector magnitude of the

vector ẇ.

3.2.1 The Positive-Definite Quadratic Form and Convex Sets

Linear equality constraints define hyper-planes that are sets of the form (Boyd and Vanden-

berghe, 2009) {
x|aTx = b

}
, (3.14)

where a ∈ Rn and b ∈ R. a is the normal vector to the hyper-plane whose components are defined
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by coefficients of the variables x. Each plane divides Rn into two half-spaces. A half-space is a

set of the form {
x|aTx ≤ b

}
, (3.15)

where the boundary of a half-space is described by the equation of a plane (Eq. (3.14)). The

intersection of closed half-spaces describe a convex set. A known property of convex sets is that

any vector that lies within the convex hull of its vertices v can be obtained by their convex

combination

c =

n∑
i=1

xivi, s.t xi ≥ 0 and

n∑
i=1

xi = 1, (3.16)

where xi represents the weight of the ith vertex vi. We can write this in the form Ax = c where

the columns of A contain the vectors that represents a vertex, x the vector containing our vertex

weights and c the vector that defines our interior point. Substituting into our quadratic form

(Eq. (3.5))

max
x

xTV x, V = AT
√

Σ
√

ΣA, (3.17)

where V is a positive-definite matrix that has been formed by the inner cross product of the

matrix A
√

Σ. This new quadratic form is a function of the vertex weights that are subject to

the constraints in Eq. (3.16). Reducing this new quadratic form down to a vector magnitude by

making the substitution ẋ =
√
V x gives

‖ẋ‖2= ‖ċ‖2 > 0. (3.18)

‖ẋ‖2 can be increased by scaling ẋ with a number greater than 1. As linear mappings are

operation preserving transforms, this scaling would be equivalent to increasing the magnitude of

the vector x. From this we can say that in maximising ‖x‖2 we in turn maximise our variance

‖ẋ‖2. Recall that the constraints on our vertex weights sums to unity: ‖x‖1= 1 and this

describes a plane under cubic constraints that is identical to Eq. (3.8) which visually is the

(+ +... +) quadrant of a L1 norm-ball. We therefore wish to find the x that has maximum

Euclidean magnitude subject to ‖x‖1= 1.

The relationship between the L2 norm (Euclidean magnitude) to each point on the normalised
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L1 and L2 norm-ball can be defined as

∣∣∣∣∣∣∣∣ x

||x||1

∣∣∣∣∣∣∣∣
2

≤
∣∣∣∣∣∣∣∣ x

||x||2

∣∣∣∣∣∣∣∣
2

= 1. (3.19)

By using Hölders (and its special case, the Cauchy-Schwarz ) inequality, the well known

inequality relationship between L1 and L2 norms can be obtained

||x||2 ≤ ||x||1 =

n∑
i=1

|xi| =
n∑

i=1

|xi| · 1 ≤

(
n∑

i=1

|xi|2
) 1

2
(

n∑
i=1

12
i

) 1
2

=
√

n ||x||2 , (3.20)

where n is the dimensionality of our vector. From Eq. (3.20) ||x||2 ≤ ||x||1 ≤
√

n ||x||2, the

denominator on the left side of the inequality in Eq. (3.19) will indeed be larger than or equal

to the denominator on the right side (in agreement with Eq. (3.19)). This result implies that

the maximum L2 of our L1 magnitude will exist at the upper bound of the left side of the

inequality of Eq. (3.19), i.e. where ||x||1 = ||x||2. The only time when this can occur is when

||x||1 =
√

n ||x||2 which only happens when n is equal to 1. That is to say the L1 and L2 metric

equal each other when the dimensionality of our vector is 1 which when considering Eq. (3.16)

and that 0 ≤ xi ≤ 1 ∀ i ∈ x is true iff xi ∈ Rn = 1.

This general result tells us that the vector that maximises our quadratic form is located

where xi = 1; a single vertex v of our convex polytope (which could be of any size and possess

any number of vertices). All that is left for us to do, is check each vertex and select the one

that has the greatest measure of variance. As we have shown, this is true for all positive-definite

quadratic forms (as it is independent of the images covariance matrix) it is invariant of the image.

In the next section we shall describe how to compute the convex polytope from an intersection

of half-spaces.

3.2.2 Intersection of Half-spaces

The solution to the intersection of half-spaces problem posed by Preparata (1985) will be de-

scribed in this section. Although the solution applies to half-spaces of any dimension, for ease

of understanding we refer to 2-dimensional and 3-dimensional cases. To begin, we introduce

homogeneous coordinates (C.R. Wylie, 2008).
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Consider a 2-dimensional vector space R2. If (x, y) are the rectangular coordinates, of an

arbitrary point, p, and if (x1, x2, x3) are any real numbers such that x1/x3 = x and x2/x3 = y,

then the triple x1, x2, x3 is said to be a set of homogeneous coordinates for p.

The original rectangular coordinates (dimensionality d = 2) (x, y) are often referred to as

nonhomogeneous coordinates. The homogeneous coordinate representation adds an extra di-

mensionality (d + 1), x3, to our vector space, and that the rectangular coordinate (x, y, z) =

(x1/x3, x2/x3, x3/x3) is simply a central projection of the homogeneous coordinate to the (pro-

jected) plane z = 1, that contains our rectangular coordinate vector space. It is clear from the

description of the homogeneous coordinate, that the unique instance when x3 = 0 defines points

at infinity in our projected plane/rectangular coordinate space, and lies within the subspace

defined by the plane z = 0 in R3.

The homogeneous coordinate representation of a point also extends to geometric structures

such as lines, hyperplanes and conics. For example, the equation of a line

ax + by + c = 0, (3.21)

becomes that of a plane that passes through the origin of R3 in homogeneous coordinates

ax1 + bx2 + cx3 = 0. (3.22)

By setting x3 = 1 returns us to our original equation of a line. Additionally, the instances when

x3 = 0 defines the equations when the lines pass through the origin of R2.

Equations of lines can be expressed with a homogeneous coordinate representation that is

determined by their coefficients [a, b, c] (C.R. Wylie, 2008). If ax + by + c = 0 is the equation of

a line, p, in rectangular coordinates, then the triple [a, b, c] is said to be a set of homogeneous

coordinates for p.

To distinguish between triples that are coordinates of a line and those that are coordinates

of a point, we shall adopt the notation of C.R. Wylie (2008) who uses square brackets for the

former and parentheses for the latter. If [a, b, c] are the coordinates of a line p, then the equation

of p in homogeneous point-coordinates is ax1 + bx2 + cx3 = 0. If (x1, x2, x3) are the homogeneous

coordinates of a point p then the equation of p in line-coordinates is x1a + x2b + x3c = 0.
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There exists a relationship between the Euclidean distance dl of a line in R2 and its non-

homogeneous point coordinates. The Euclidean distance of a line from the origin of R2 is

dl =
|c|√

a2 + b2
. (3.23)

If we substitute Eq. (3.23) into Eq. (3.21) and calculate the Euclidean distance dh of its homo-

geneous coordinates from the origin of R2, it cancels down to

dh =
1

dl
, (3.24)

which simply states that the distance of a line from the origin is inversely proportional to the

distance of its homogeneous point coordinates. If we imagine that the equation of a line is

tangent to a unit circle in R2, then its homogeneous coordinates will define a point that lies on

the exact opposite point of the circle, and this is true for all tangent lines and their homogeneous

coordinate points. This scenario portrays another property of this transform of lines to points,

and that is it preserves the incidence ordering. If we were to look at the ordering of lines relative

to each with respect to the unit circle, then their homogeneous points would possess the same

order.

This process of mapping a line into a point, or a point into a line is known as a duality

transform, and objects that have been mapped to its dual are said to reside in its dual (as

opposed to its primal) space. There are many different types of duality transforms and this one

we have described is known as the duality with respect to the unit circle (Franco P. Preparata,

1985).

Intersections of many closed half-spaces will often define a set which only a portion have

contributed to the boundary/faces of the polytope. The remaining half-spaces are redundant.

Provided that the origin of our coordinate system lies within the intersection (and if it doesn’t,

we can simply translate the half-spaces until it is) of half-spaces, we can apply the duality

transform with respect to a unit circle to exploit the inverse proportionality property between

the distances of the lines and their homogeneous coordinates. The half-spaces that we contribute

to the bounded solution will be ones whose homogeneous coordinates contribute to the convex

hull that encloses the homogeneous points for all the half-spaces.
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Algorithm 1 Half-space Intersection.

1: procedure IntersectHalf-spaces
2: Input: Array of half-spaces Πi in form aT

i x ≤ bi
3: Output: Vertices of the convex polytope (vk) defined by the half-space intersections
4: Π+ ← duality transform Π with respect to the unit circle
5: V ← conv(Π+) . Removes redundant half-spaces
6: V ← remove colinear points . Vertices in dual space
7: u← dim(x)-dimensional vector of minus ones
8: for k from 1 to length of V do
9: vk ← V (k)−1u . Solving for the vertices in the primal space

10: Return vk

Algorithm. 1 summarises the steps for computing the vertices that define the polytope from

an intersection of half-spaces. Here we use the duality transform with respect to the unit circle

(line 4). After the redundant half-spaces have been removed (line 5) we remove colinear dual

points as these represent parallel half-spaces which will never intersect. The final step (line 9) is

carried out by computing the vertices in the primal space by computing the intersection of the

ordered polytope edges by simply solving a set of linear equations for each vertex.

3.3 Brightness Preserving Colour-to-Greyscale

We start by labelling Eqs. (3.8), (3.7) and the boundaries of the three half-spaces from Eq. (3.4)

that intersect with the origin as linear subsets in R3

E = {w ∈ R3 : wTu = 1} ⊆ R3, (3.25)

B = {w ∈ R3 : wTµ = uTµ

3
} ⊆ R3, (3.26)

Ci = {w ∈ R3 : wTei = 0 | i = 1, 2, 3} ⊆ R3, (3.27)

where

e1 =


1

0

0

 , e2 =


0

1

0

 , e3 =


0

0

1

 . (3.28)

L = B ∩ E describes a line in R3. The boundaries of the half-spaces (Eq. (3.27)) truncate
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Figure 3.1: Geometric representation of the closed form solution. Here the sets have been
assigned a colour: E, B and C (α = β = γ = 0). The dashed yellow line represents the

intersection of the sets E and B to give the solution set L.

this line to the convex set S (see Figure. 3.1)

S = {ρ ∈ R : ρwx + (1− ρ)wy | 0 ≤ ρ ≤ 1} ⊆ L (3.29)

where wx|y ∈ S define the two vertices of the line segment and ρ is the mixing coefficient. As we

know from Section 3.2.1, the vertices of our convex set will be candidates for maximum variance.

We can readily solve for our vertices by solving for E ∩ B ∩ Ci using the tools of linear algebra.

A generalised solution can be formulated using only the RGB band means which we shall now

describe.

The set of all vectors w ∈ R3 that lie in both B and E are given by their intersection L. For

w ∈ L we define the variance K by the quadratic form Eq. (3.5)

K : L→ R;w 7→ wTΣw. (3.30)

The set L is a line in R3

w = kn+ i, (3.31)

where k is our variable in R and i is our known vector in R3 that defines a point on the line,
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whose components are the band weights for the standard intensity mapping

iT =

[
1

3

1

3

1

3

]
(3.32)

and n is the basis which provides the direction of our line L. This can be computed by a cross

product between the normal vectors of Eqs. (3.25) and (3.26)

N = Null


u
µ


 = n = u× µ =


µB − µG

µR − µB

µG − µR

 . (3.33)

If we substitute Eq. (3.31) into Eq. (3.27)

k(nT · ei) +
1

3
(uT · ei) = 0 (3.34)

and solve for k

k = − 1

3(nT · ei)
(3.35)

allows for us to calculate wi by making the substitution of k into our equation of a line Eq. (3.31)

wi =
1

3

[
− n

(n · ei)
+ u

]
. (3.36)

Finally by substituting our vectors defined by Eqs. (3.28) and (3.33) into Eq. (3.36) gives us the

three intersections at the half-space boundaries α = β = γ = 0

w1 =
1

3


0

µB−µR
µB−µG

+ 1

µR−µG
µB−µG

+ 1

 , w2 =
1

3


µG−µB
µR−µB

+ 1

0

µR−µG
µR−µB

+ 1

 , w3 =
1

3


µR−µG
µG−µR

+ 1

µB−µR
µG−µR

+ 1

0

 (3.37)
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which can be re-written as

w1 =
1

3(µB − µG)


0

2µB − µR − µG

µR + µB − 2µG

 ,

w2 =
1

3(µR − µB)


µG + µR − 2µB

0

2µR − µB − µG

 ,

w3 =
1

3(µG − µR)


2µG − µB − µR

µB + µG − 2µR

0

 .

(3.38)

One of the three vectors in Eq. (3.38) will contain a negative component. As this vector

defines an intersection that violates the cubic boundary condition we can dismiss it, leaving us

with two vectors that are the end points (wx and wy) of S. Substituting each of these two vectors

into the quadratic form Eq. (3.5) will give us two calculations of variance that our greyscale will

possess should we use them in our linear mapping. Choosing the vector that produces the largest

variance is the weighting vector that we seek for our closed form maximum variance, brightness

preserving colour-to-greyscale solution. As this closed form solution produces the same greyscale

as that of Qiu et al. (2008), we shall call refer to it as Q.

The pseudocode is shown in Algorithm. 2, where lines 8 to 12 represent the solution we have

just presented. Lines 4 to 6 represent the solution to the degenerate case which we will now

discuss.

3.3.1 Degenerate Case

Eq. (3.38) define three vectors that are computed by arithmetic operations on the band means

of our colour image. So far we have assumed (fairly) that these band means are all different.

There exists an unlikely scenario where they are identical (for example, if our image had been
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Algorithm 2 Brightness Preserving Colour to Grey.

1: procedure brightnessPreservingColour2Grey
2: Input: Colour image, M
3: Output: Image band weights w and greyscale Q
4: if µR = µG = µB then . Degenerate case
5: w1 = [1 0 0]T,w2 = [0 1 0]T,w3 = [0 0 1]T

6: w ← max
wi

wT
i Σwi for i = 1,2,3

7: else
8: Compute the three vectors w1, w2, w3

9: if any vector component in wi < 0 for i = 1, 2, 3 then
10: Ø← wi

11: w ← max
wi

wT
i Σwi for i = 1,2

12: Use w in Eq. (3.1) to linear map M to a single band greyscale Q
13: Return w, Q

colour corrected using the greyworld assumption) whereupon using Eq. (3.38) would result in

three vectors at infinity. To understand why this happens, we need to look back at Eq. (3.7).

It is trivial to show that when µR = µG = µB Eq. (3.7) reduces to Eq. (3.8) and this means

that our planes now overlap. When this occurs we say that they have become degenerate.

This degeneracy increases the dimensionality of our solution space from a line to planar region

described by Eq. (3.8). If our optimisation includes the cubic boundary conditions then our

solution space is a 2-simplex and our solution can be found at one of its vertices (as we described

in Section 3.2.1). This can be shown by solving for the intersection of the half-spaces defined by

Eq. (3.4) in the basis of E. The vertices of Eq. (3.8) are

w1 = [1 0 0]T, w2 = [0 1 0]T, w3 = [0 0 1]T, (3.39)

which mean that a single image band (red, green or blue) is a candidate for our greyscale (line

5 in Algorithm. 2). As before, we use Eq. (3.5) to determine which vector produces the largest

variance for our maximum contrast brightness preserving greyscale.
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3.4 Brightness Preserving Colour-to-Greyscale: Enhanced

Dynamic Range

In the previous section, we described a closed form solution to the brightness preserving greyscale

of Qiu et al. (2008). This solution was subject to unit-cubic boundary conditions which with

Eq. (3.25) ensured no pixel clipping in the greyscale. The shortcomings of this optimisation

occur for images that do not possess full dynamic range. While still outputting a maximum

variance solution subject to the cubic constraints, we were producing a greyscale image with a

variance lower than that of one which was allowed to possess full dynamic range.

To increase the dynamic range of our images we need to allow our band weights to take on

values greater than 1 and less than 0, which we do by removing the cubic boundary conditions.

To ensure that we get no image clipping in our greyscale we therefore need to impose the following

inequality on each pixel

0 ≤ αRi + βGi + γBi ≤ 1. (3.40)

Each pixel ‘i’ in the colour image will therefore have two inequalities associated with it and

this ensures that our linear mapping outputs a greyscale that has pixels values between 0 and

1. In the absence of our previous inequalities that described the unit cube, our band weights

can now take on values less than 0 and greater than 1. These inequalities represent half-spaces

(wTh) whose intersection we will now describe. We start by defining our half-spaces

Pi = {w ∈ R3 : wThi = k | i = 1, 2, ..., 2n, 0 ≤ k ≤ 1}, (3.41)

which subject to our inequality constraints defines a new set of half-spaces

Πi = L ∩ Pi. (3.42)

As described in Section 3.2.2, the half-spaces that contribute to their intersection satisfy

⋃
Πi = conv(Π+

i ), (3.43)
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where the superscript (+) defines the dual points of the half-spaces.

Let us look at the simple case, where we have three half-spaces defined by the planes that

make up the unit cube faces α = β = γ = 0. By defining our half-spaces of the form Ax− b ≤ 0

(Franco P. Preparata, 1985), we can map our half-spaces in R3 to L

eTi nx + eTi i− bi ≤ 0, (3.44)

which becomes

− n(i) x− i(i) ≤ 0 i = 1, 2, 3, (3.45)

where a single vector component i ∈ n defines one of the three half-spaces in L with non-

homogeneous dual points (3n). Our two candidate points are found by taking the convex hull

of the dual of the points mapped to L, which in a single dimension becomes a sorting operation

d =

dmax = max {3n(i) : i = 1, 2, 3}

dmin = min {3n(i) : i = 1, 2, 3}

 . (3.46)

Having filtered out the redundant half-space, we can solve for x in Eq. (3.45). Mapping x

back to R3 and adding on our translation vector i leads to

wT
i = − 1

d(i)
nT + iT i = 1, 2 (3.47)

and this produces two band weighting vectors w. One of these vectors will maximise the quad-

ratic form (Eq. (3.5)) which is the solution we seek to the brightness preserving colour-to-

greyscale problem.

Let us now return to the case where every pixel in the image represents two half-spaces. As

before we map them to L (see Algorithm. 3 line 11)

hT
i nx + hT

i i− bi ≤ 0 i = 1, 2, ..., 2n (3.48)
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and this results in 2n dual points (where n is the number of pixels in the image)

d =


dmax = max

{
hT
i n

hT
i
i−bi

: i = 1, 2, ..., 2n

}
dmin = min

{
hT
i n

hT
i
i−bi

: i = 1, 2..., 2n

}
 . (3.49)

Again by substituting d into Eq. (3.47) gives us our two band weighting vectors in R3. As

before, we choose the vector that maximises Eq. (3.5) as our band weights to produce our desired

greyscale J .

The pseudocode for the enhanced dynamic range brightness preserving colour-to-grey is

shown in Algorithm. 3 and begins on line 8 for the case we have just described. Lines 8 and

9 defines and maps our half-spaces to the basis of L. Line 10 computes the vertices of the

intersection of half-spaces defined by the union of our inequalities. As these half-spaces form

points on our line L, the convex hull of our dual-points are found by finding the maximum and

minimum points (Eq. (3.49)), and this step is carried out in Algorithm. 1 (line 5). The vertices

are then calculated using Eq. (3.47) (line 8 of Algorithm. 1) and mapped back to our original

vector space (line 11 of Algorithm. 3).

Lines 5 to 8 addresses the degenerate case which we shall discuss in the next subsection.

Algorithm 3 Enhanced Dynamic Range Brightness Preserving Colour-to-Grey.

1: procedure enhancedBrightnessPreservingColour2Grey
2: Input: M as an array of pixel inequalities P, Σ
3: Output: Greyscale image J
4: iT ← [1/3, 1/3, 1/3] . Interior point
5: if µR = µG = µB then
6: Γ←N . Eq. (3.50)
7: else
8: Γ← n . Eq. (3.33)

9: Πi ← [PiΓ, (Pii + bi)] . Π = P ∩ L
10: vi ← intersectHalfspaces(Π) . Algorithm. 1
11: wT

i ← ΓTvi + iT . L → R3

12: w ← max
wi

wT
i Σwi

13: Use w in Eq. (3.1) to linear map M to a single band greyscale J
14: Return w, J
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3.4.1 Degenerate Case

As for our closed form solution that uses the cubic boundary conditions, we must address the

situation when our equality constraints are degenerate; a situation that occurs when µR = µG =

µB. As we have previously described, we have removed the cubic constraints on our band weights

and instead posed inequality constraints on each pixel. We must now solve for the intersection of

half-spaces (Eq. (3.41)) defined by these inequality constraints in the basis of E (see Algorithm. 3

line 6).

Using the tools of linear algebra, an orthogonal basis in E that spans the null space of our

unitary vector u can be computed to be

N = Null(u) =


−
√

2
2 −

√
6

6

0 −
√

6
3

√
2

2 −
√

2
2

 . (3.50)

By swapping out n with N in Eq. (3.44) we can produce a mapping of our half-spaces in

the basis of E. As our half-spaces are now described by 2 dimensions, we can no longer use

sorting to discriminate against our redundant half-spaces and instead we rely on a convex hull

algorithm. The convex hull labels which half-spaces form edges of our convex set in addition

to their ordering with respect to a circle. We solve for the intersection for their boundary

intersections by computing line intersections between two edges of the convex set, before moving

onto the next edge. After all the vertices have been computed, we perform the inverse mapping

to bring them back to R3 to obtain a library of coefficient vectors w. As before, selecting

the vector that gives the highest variance from Eq. (3.5) is the one we use for our brightness

preserving greyscale.

Figure. 3.2 shows an example image whose bands all possess the same statistical mean of

0.309 (without gamma correction). In this case the solution to the optimisation of Qiu et al.

(2008) would be the vertex of E (subject to the cubic boundary conditions) with the highest

variance, which for Figure. 3.2(a) is the red band (see Figure. 3.2(b)).
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(a) Colour image (b) Red band

(c) Green band (d) Blue band

(e) Convex set caused by the (green) intersection
of half-spaces for each pixel and the (black) cubic

constraints.

Figure 3.2: (a) Raw colour photo (https://www.wesaturate.com/photo/9HG77ydMR2) that
has been colour corrected using the Grey World assumption. The mean of for all bands is 0.309.

(b) red band with a variance of 0.402 and range of 1.000, (c) green band with a variance of
0.386 and a range of 0.968 and (d) the blue band with a variance of 0.390 and a range of 0.966.
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Figure. 3.2(e) shows the geometry (looking down the γ axis) of the optimisation constructed

by Qiu et al. (2008) (black triangle) and our enhanced dynamic range optimisation (green dashed

convex set). As the dynamic range for all image bands is not equal to one, the convex set that is

produced from our intersection of half-spaces can produce vertices that give band weights greater

than 1 and less than zero. For this particular image, Qiu et al.’s (2008) solution is the band

with the largest variance; which for the image in Figure. 3.2(a) is the red band (Figure. 3.2(b)).

For our enhanced dynamic range optimisation, solely using the red band is also the solution we

seek (α = 1, β = 0 in Figure. 3.2(e)), as it has a larger variance than the greyscales produced

using the band weights defined by the vertices for the convex set produced by the intersection

of half-spaces. If each band of the image had a range equal to one, then the convex set defined

by the intersection of half-spaces for our enhanced dynamic range solution would have reduced

to the black triangle and our solution could be computed using our closed form solution to Qiu

et al.’s optimisation.

3.5 Results and Discussion

Figures. 3.3, 3.4, 3.6 and 3.7 show greyscale examples Q and J . Image (d) in these figures

illustrate the areas of contrast change between the two optimisations which has been computed

by the ratio

J

Q+ J
, (3.51)

where greyscale pixels lower and higher than that of one at 0.5 (see the scale to the right side

of the contrast difference image) respectively show darker and brighter regions in J over that of

Q.

The subfigures (a) and (b) of Figures. 3.5 and 3.8 show the geometry (in band weighting

space) of our optimisation where we are looking down the γ axis. The black triangle represents

set E subject to the cubic boundary conditions. The green dotted convex polytope represents

the intersection of half-spaces in the basis of E for our enhanced dynamic range solution. The

red dotted line segment represents L, the intersection of our equality constraints.

These figures show the increase of magnitude of the line segment, over that of the optimisation

of Qiu et al. (2008) which reaches the edge of the black triangle only. This increase in line
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segment magnitude can allows for new line segment end points that gives us RGB band weights

for a greyscale with enhanced dynamic range and contrast (see Figures. 3.3, 3.4, 3.6 and 3.7).

Subfigures (c)-(f) of Figures. 3.5 and 3.8 shows the greyscale histograms between the method

of Qiu et al. (2008) and our enhanced dynamic range solution. As we can see, by increasing

the dynamic range of the optimisation of Qiu et al. (2008) we see a smoothing and of the

distribution of the bin population. The variance, entropy and band weights are quantitatively

shown in Table. 3.1 accurate to three decimal places. As can be seen we have increased not just

the variance (K) but also the image entropy (S). To understand why this is, we need to consider

the entropy of a multivariate Gaussian (Cover and Thomas, 2006)

S =
1

2
log(2πe)d |Σ| , (3.52)

where |Σ| is the determinant of the d×d covariance matrix and e is the exponential. For a single

greyscale the covariance is simply the variance K of the image. So with respect to Eq. (3.52), as

our J mapping has a larger variance than Q we are also increasing its entropy and information

content.

Quantitatively our J mapping shows an approximate increase of variance and entropy for

‘The Scream’ and ‘Sunrise’ of 20% and 2% respectively. ‘Pool Balls’ exhibits a much lower

increase in variance and entropy; approximately 5% and 0.4% respectively. This result can be

explained by looking at Figure. 3.8(a) where we see our enhanced dynamic range line end points

barely surpassing the black triangle boundary (whose intersection defines the band weights of

Qui’s solution) which results in a small increase in magnitude of the line segment. ‘Monarch’

gives a 2% increase in entropy and a 38% increase in variance. Qiu’s solution for this image

Table 3.1: Brightness preserving colour-2-greyscale band weights, variance (K) and entropy
(S).

Image
Qiu et al. (2008), Q Enhanced Dynamic Range, J

α β γ K S α β γ K S

The Scream 0.199 0.801 0.000 0.009 6.552 0.009 1.466 -0.475 0.011 6.696

Sunrise 0.857 0.143 0.000 0.015 7.005 0.989 0.095 -0.084 0.0182 7.142

Pool Balls 0.437 0.563 0.000 0.038 7.262 0.446 0.584 -0.031 0.040 7.290

Monarch 0.258 0.742 0.000 0.026 7.208 0.514 -0.645 1.131 0.036 7.345
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lies at the top most line segment end point in Figure. 3.8(b). For our enhanced dynamic range

solution the optimum vertex switches to the lowest line segment end point. Although this results

in a large increase in image variance, it also introduces contrast inversion on the wing, where the

yellow shades in the colour image become very dark grey values in our enhanced greyscale (see

Figure. 3.7(c)). The result from Qiu’s optimisation remains a more accurate representation of

the colour image, where these pixels on the wings are assigned brighter values. The remaining

images are consistent between the two optimisations with respect to greyscale ordering.

3.6 Complexity Analysis

Our solutions to the brightness preserving colour-to-greyscale all rely on arithmetic calculations

in addition to rational number sorting or convex hull functions. Arithmetic calculations have

a linear time complexity whereas number sorting and convex hull functions vary depending

on which algorithm is used. We implement all of our algorithms in the technical computing

language MATLAB. For the convex hull and sort functions, MATLAB uses the versatile divide

and conquer recursive algorithms: ‘quickhull’ and ’quicksort’ that have time complexities of

O(n2) (Franco P. Preparata, 1985, O’Rourke, 1998). The rational number sorter ‘mergesort’ is

well suited for our purposes and has a time complexity of O(n log n), lower than that of quicksort.

The quickhull is a generic and well accepted algorithm which can be applied to problems with

dimensionalities greater than two. For our application we will only ever need to compute the

convex hull in the plane (when our band means are degenerate) which allows us to use either

of the O(n log n) time complex algorithms ‘monotone chain’ and ‘Graham scan’ algorithms. As

these algorithms possess time complexities greater than that of the linear arithmetic calculations

they become the limiting operations for our solution.

Qiu et al. (2008) use the quadratic programming function in MATLAB which for the interior-

point method has a time complexity of O(n3) (YE and TSE, 1989). This time complexity is

greater than the solution we present which if we use the mergesort and monotone chain results

in an overall time complexity of O(n log n).
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(a) M

(b) Q (c) J

(d) J/(Q + J)

Figure 3.3: (a) The Scream and (b) the brightness preserving colour-to-grey of Qiu et al.
(2008), (c) our enhanced dynamic range brightness preserving colour-to-grey and (d) the

differences in contrast between the two mappings.
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(a) M

(b) Q (c) J

(d) J/(Q + J)

Figure 3.4: (a) Monet’s sunrise and (b) the brightness preserving colour-to-grey of Qiu et al.
(2008), (c) our enhanced dynamic range brightness preserving colour-to-grey and (d) the

differences in contrast between the two mappings.
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(a) The Scream: coefficient space (b) Sunrise: coefficient space

(c) The Scream histogram: Q (d) Sunrise histogram: Q

(e) The Scream histogram: J (f) Sunrise histogram: J

Figure 3.5: Looking down the γ axis of coefficient space for the images (a) The Scream and (b)
Sunrise. (c) The image histograms from Qiu et al. (2008) for The Scream and (d) Sunrise. The
image histograms from our enhanced dynamic range optimisation for (e) The Scream and (f)

Sunrise.
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(a) M

(b) Q (c) J

(d) J/(Q + J)

Figure 3.6: (a) PoolBalls colour image taken from Cadik’s dataset, (b) its brightness preserving
colour-to-grey of Qiu et al. (2008), (c) its enhanced dynamic range brightness preserving

colour-to-grey and (d) the differences in contrast between the two mappings.
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(a) M

(b) Q (c) J

(d) J/(Q + J)

Figure 3.7: (a) Monarch taken from Cadik’s dataset, (b) its brightness preserving
colour-to-grey of Qiu et al. (2008), (c) its enhanced dynamic range brightness preserving

colour-to-grey and (d) the differences in contrast between the two mappings.
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(a) PoolBalls: coefficient space (b) Monarch: coefficient space

(c) PoolBalls histogram: Q (d) Monarch histogram: Q

(e) PoolBalls histogram: J (f) Monarch histogram: J

Figure 3.8: Looking down the γ axis of coefficient space for the images (a) PoolBalls and (b)
Monarch. (c) The image histograms from Qiu et al. (2008) for PoolBalls and (d) Monarch.

The image histograms from our enhanced dynamic range optimisation for (e) PoolBalls and (f)
Monarch.
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3.7 Conclusion

We started this chapter by showing that a vertex of a convex set is the solution to maximising

positive-definite quadratic forms. Consequently, this formed the foundation of our closed form

solution to the brightness preserving colour-to-greyscale problem. For the optimisation of Qiu

et al. (2008), this convex set is typically a line segment whose vertices can be found using the

band means in standard arithmetic calculations or by solving for the intersection of three half-

spaces. The vertex of the convex set that provides the greatest image variance is found by a

sorting operation, the computation that bounds the time complexity of the solution. When using

the mergesort algorithm, the complexity of our solution is O(3 log(3)).

Using the optimisation of Qiu et al. (2008) on colour images that do not possess full dynamic

range results in greyscale images that also lack full dynamic range. To maximise the dynamic

range of our greyscales we remove the cubic boundary conditions and instead add two inequality

constraints to every pixel to ensure no image clipping. This optimisation relies on solving for the

intersection of half-spaces to solve for our new line segment. Again, the line segment end points

are the candidates to the solution to our enhanced dynamic range brightness preserving colour-

to-greyscale with the final solution found by rational number sorting, which if the mergesort

algorithm is used results in a time complexity of O(n logn), where n is the number of inequalities

used in the optimisation (twice the number of pixels).

Both solutions presented in this chapter have lower time complexities than using the quadratic

programming solver in MATLAB (O(n3)). In the next chapter we shall bench-mark our greyscale

images produced from our enhanced brightness preserving greyscale solution by psychophysical

preference experiment.
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Chapter 4

Colour-to-Greyscale: Evaluation

In the previous chapter we described a closed form solution to the brightness preserving greyscale

problem. Subject to unit cube boundary conditions, this solution was found by arithmetic

calculation followed by sorting three rational numbers. By removing the cubic constraints on

the band weights, we expanded on the number sorting solution by constraining each individual

pixel to the dynamic range of the display. This allowed for greyscales with greater contrast for

colour images that were deficient in their dynamic range.

In this chapter we seek to ascertain whether our brightness preserving greyscale method

produces visually pleasing greyscales. To carry out this task we employ psychophysics on results

collected from a participant based preference experiment: a tournament of image comparisons

between different colour-to-grey methods.

The outline of this chapter follows a standard experiment based research methodology. We

begin by introducing the topic of psychophysics in the context of comparative judgement. We

then progress to the sections: method, results and discussion and lastly a conclusion.

4.1 Psychophysics

In the field of colour-to-grey, it has become common practice (Connah et al., 2007, Montagna,

2011, Harris, 2015) to rank images from the scores obtained in a preference experiment. From

this competitive tournament, colour-to-greyscale algorithms can be ranked by their ability to
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produce visually pleasing greyscales.

There is an abundance of algorithms that convert colour images into their respective grey-

scale. Depending on the desired criteria, some algorithms perform better than others for certain

image types and vice versa. At the fundamental level, the criteria that a viewer uses when

deciding on how well an algorithm performed when producing a greyscale depends on their own

unique psychology and it is for this reason that we evaluate our technique using psychophysics.

A typical means of applying psychophysics to acquire a metric of preference is to apply Thur-

stone’s law of comparative judgement. Thurstone believed that when two stimuli are perceived

each one produces psychological response (SA and SB ) in the human mind. When both stimuli

are presented together multiple times in a discriminatory manner, the psychological response

can be modelled by a normal distribution whose mean value SA − SB provides a measure of

which stimuli “won”, see Figure. 4.1. Here we see an example where the discriminate difference

is equal to 1, which tells us SA produce a greater psychological stimulation than SB over mul-

tiple observations. Either side of the 0 represents the probability that P (SA > SB) (right) or

P (SB > SA) (left) was preferred. Under certain assumptions it is possible to generate a scale

of which stimuli produces the greater response without the observer ever having to specifically

quantify the discriminate difference but by simply making a choice of preference.

There are numerous cases for which Thurstone’s law of comparative judgement can be ap-

plied (Engeldrum, 2000 and Gescheider, 1997). We use Case V as it is typically used in the

imaging literature especially with respect to colour-to-greyscale preference experiments. The

major underlying assumption for this case is that the standard deviation for the distributions of

each stimuli are equal. When assigned an arbitrary value of 1 results in the distribution SA−SB

having a standard deviation of
√

2. We shall now show how we apply Case V to our work.

Throughout the course of our experiment, we are measuring the proportion of time that

P (SA > SB) or P (SB > SA). By measuring the frequency of “wins” an algorithm collects

throughout our tournament of comparisons allows us to apply Gaussian statistics to compute this

scale of proportionality. These measured values should follow the normal cumulative distribution
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Figure 4.1: The shaded area represents the probability P (SA > SB) that the response to
stimulus SA is greater than that to a stimulus SB (Montagna, 2011).

function H. That is to say, we assume

H(SA − SB) =P (SA > SB)

=
1

2
√
π

∫ +∞

0

exp

(
−1

2

(
t− (SA − SB)√

2

)2
)
dt,

(4.1)

where SA−SB is the mean and
√

2 the standard deviation (Case V assumption) of the distribu-

tion and t is the number of algorithms. It is now possible to calculate the scale value differences

SA − SB from P by inverting H(·)

SA − SB = H−1(H(SA − SB)) = H−1(P (SA > SB)). (4.2)

For the sake of simplicity we have only described the scenario of comparing two different
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stimuli. To extend the model to our experiment where we are comparing four, we tabulate the

data in a proportion matrix

P =


P (S1 > S1) · · · P (S1 > S4)

...
. . .

...

P (S4 > S1) · · · P (S4 > S4)

 , (4.3)

which if we substitute into Eq. (4.2) results in the score matrix gives us

S = H−1(P ) =


S1 − S1 · · · S1 − S4

...
. . .

...

S4 − S1 · · · S4 − S4

 . (4.4)

From the score values we can compute the final score for each row j by summing along the

columns i of our proportion matrix

1

t

t∑
i=1

(Sj − Si) = Sj − S̄ j = 1, 2, ..., t. (4.5)

Making the assumption that the mean scale value S̄ = 0 then allows us to calculate the scale

value for each treatment Sj .

4.2 Preference Experimental Method

In this section we shall describe the method where we gauge the effectiveness of our enhanced

brightness preserving colour-to-greyscale against competing pre-existing colour-to-grey algorithms.

To conduct this experiment we first needed to gather greyscale imagery from the algorithms

we wished to benchmark ours against. We did this by emailing the authors of the published

work reviewed in Chapter 2 for 22 greyscales produced from their algorithms using what has

now become the standard dataset in the colour-to-grey literature: http://cadik.posvete.cz/

color_to_gray_evaluation/. From those that responded, we selected three algorithms that

are based on linear mappings from the colour cube model: GRU (Grundland and Dodgson,

2005), ALS (Alsam, 2009) and SNG (Song et al., 2013). We imposed this selection process as we
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wished to benchmark our method against similar competing techniques that potentially could

have application to panchromatic image sharpening. We decided against using the greyscales

outputted from the optimisation of Qiu et al. (2008) on the basis that our enhanced method

would either replicate or produce superior (with respect to contrast and information content)

greyscales depending on whether their RGBs were full dynamic range or not.

32 anonymous volunteers were recruited via word of mouth to participate in our image

preference experiments (one participant per experiment). Each volunteer was verbally checked

for colour normal vision before being allowed to participate. No other discriminatory measures

were used in the participant selection process.

The experiment was conducted in a dark room run by the Colour Laboratory at the University

of East Anglia. To avoid eye strain and unwanted reflections, the room was dimly lit by overhead

lamps in addition to a globe lamp (6500K) that was situated behind a calibrated (sRGB colour

space) HP LP2480zx PC monitor. Participants were allowed to freely adjust the viewing angle

and distance to the monitor based on their own comfort.

The image preference experiment comprises of comparisons of two greyscale images by an

observer. For a single comparison two greyscale images of the same scene were shown that had

been generated by 2 out of the 4 methods: GRU, ALS, SNG and our own enhanced dynamic range

brightness preserving colour-to-greyscale, UEA. Participants were asked to consider both images,

and to select one using the computer the experiment was being ran on. The explicit instructions

will be: “Which greyscale image do you prefer?” No further direct instructions were given,

rather they were left free to choose their own criteria on which to form their judgements. The

results collected over the course of 32 experiments were analysed using standard psychophysical

statistical analysis. At the end of an experiment, each participant was given the opportunity to

provide feedback about how they went about defining their preference or about the experiment

itself.

For the sake of participant attention span, the experiment was broken down into two sessions:

11 different images per session with a break of at least three hours between them. The greyscale

comparisons were made between images of the same scene only. As there are 4 methods of doing

this greyscale conversion, this results in N(N − 1)/2 comparisons for a single image, where N

is the number of‘ “versions” of the same image to be tested (in this case N = 4). Each pair of
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Table 4.1: Frequency matrix collected over the entire dataset for all participants.

Algorithm ALS GRU SNG UEA Total

ALS 0 560 555 641 1756
GRU 848 0 683 713 2244
SNG 853 725 0 712 2290
UEA 767 695 696 0 2158

versions will be compared twice over the course of the experiment, one iteration of version A on

the left, B on the right, and one of A on the right and B on the left. This means that a single

participant will make 264 comparisons over the course of both sessions (a single experiment).

4.3 Results and Discussion

Throughout the course of the experiment, participant choices are stored in a frequency matrix.

Table. 4.1 shows the frequency matrix collected over all 32 participants for all 22 images. The

rows of this table catalogue the total wins during a comparison with the columns. For example,

over the entire experiment, GRU beat ALS 848 times. The total number of wins are stored in

the final column where our algorithm (UEA) came third place with 2158 wins out of a total of

8448 comparisons.

Thurstone’s Case V was applied to a frequency matrix comprising of all data entries collected

during our psychophysical experiment to produce the final score values for each algorithm, see

Figure. 4.2. The error bars were calculated from the normal distribution at the 95% upper (+)

and lower (−) confidence interval

x± 1.96×
√

2√
n
, (4.6)

where n is the number of observations (4224 for each algorithm over all images and participants).

Due to the significant overlap of the error-bars between GRU and SNG we conclude that there is

no clear decisive winner for producing greyscales for this dataset. We can say that our algorithm

came third and ALS was the least preferred overall. Participant feedback would generally report

poorly on the increased texture the ALS method would produce, often referring to its ‘muddiness’

and ‘artefacts’.

Figures. 4.3 - 4.6 shows the algorithm score values for each image, with 95% confidence
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Figure 4.2: Score values for each algorithm over the entire experiment.

interval error bars. As is expected, there is dispersion among the favoured algorithm across the

image dataset. Our maximum contrast brightness preserving algorithm performs particularly

well for the synthetic images, IM2, C8TZ7768 and ramp. It lost every comparison for the

synthetic ‘ColorsPastel’ due to the ‘C’ having no contrast, making the word unreadable. This

particular image draws attention to a flaw in our enhanced brightness preserving colour-to-

greyscale method. The presence of a white border (or even a single pixel) around the image

automatically reduces our optimisation to that of Qiu et al. (2008). Now, if a given component

i in our weighting vector w approaches one, then the solution will approach a single band from

the colour image M . The information in the remaining bands is lost in the greyscale mapping.

For the chosen image band, pixels that have identical brightness values will exhibit no contrast,

or difference, between each other. This problem will result in contrast loss if they are adjacent

to one another. We can express this as

lim

w(i)7→
Mk(i)
Ml(i)

7→1

∇Jk,l = 0, i = 1 or 2 or 3, (4.7)

where the subscripts k and l refer to two different RGB pixel triplets. The weighting vector for
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the image ‘ColorsPastel’ is α = 0.002, β = 0.98, γ = 0; approximately all the information in

the mapping is from the green band, which for the ‘C’ and its surrounding contain green band

values 0.68 and 0.69 respectively. The information in the red and blue bands is lost, despite

them having significantly different values from each other at the two different locations. As a

result of this mapping, all contrast is lost for the ‘C’ and its background to an observer.

We also performed poorly for our greyscale of Monet’s Sunrise, where participants favoured a

darker, higher contrast night-time setting. This is a point of interest: upon feedback, participant

preference was generally made on a compromise between contrast and realism. Participants

would favour images that displayed a level of contrast that they felt the original colour image

possessed. A number of the participants were ignorant to the painting by Monet and assumed

that the colour original depicted a full moon in a nights sky.

Amongst the photos in the dataset (see photos in the Figures. 4.7 to 4.10), UEA scored

neutral/positive. It was heavily favoured on the images ‘peppers’ and ‘poolballs’. The only

photo it scored negatively on was ‘monarch’ where the butterfly’s wings appeared as a dark-

grey. As this occupies the central and focal point of the image, participants felt that there was

a general lack of visible detail and contrast and so favoured the treatment of ALS, whose local

contrast enhancing approach performed particularly well. GRU and SNG scored consistently

around the neutral/positive. The only images where these algorithms scored last were ‘IM2’ for

GRU and ‘watch’ for SNG.

Table. 4.2 contains the statistical analysis which serves to provide insight into the behaviour

of the participants during the experiment. ‘Agreement’ (u) shows how often participants would

choose the same image in a comparison. It ranges from 1 in the case of perfect agreement to

-0.042 (Connah et al., 2007). It is possible that purely random selection of preferred images could

result in perfectly correlated choices among the participants. To strengthen our confidence in

our calculated u, we test the null hypothesis that selections were made at random through the

chi squared (χ2) test. Lastly we looked at participant consistency (ξ), which is a measure of

how often a participant would make the same choice when presented with the same comparison.

The synthetic images ‘ColorsPastel’ and ’ramp’ scored the highest in agreement (∼ 0.7 and

0.5) and achieved a value greater than 0.9 for consistency. This means there was very little

uncertainty about what a participant preferred when confronted with different treatments for
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Table 4.2: Summary statistics for each image from the preference experiment. The line in the
middle divides session 1 and session 2.

Image Agreement (u) chi-square (χ2) Confidence Consistency (ξ)

25ishi 0.2791 111.5 p <0.001 0.8594
peppers 0.2793 111.5625 p <0.001 0.8594

arctichare 0.0152 42.9375 p <0.001 0.8203
poolballs 0.0977 42.9375 p <0.001 0.9453
butterfly 0.0526 25.8750 p <0.001 0.5234

C8TZ7768 0.2320 93.6875 p <0.001 0.8828
ColorsPastel 0.7116 275 p <0.001 0.9609
colorWheel 0.0561 27.1875 p <0.001 0.8828
bouquette 0.0933 41.2500 p <0.001 0.8125

fruit 0.0355 19.4375 p <0.050 0.8594
IM2 0.2774 110.8750 p <0.001 0.9375

poppy 0.1103 47.6875 p <0.001 0.9141
hats 0.0747 34.25 p <0.001 0.8281

monarch 0.1870 76.6875 p <0.001 0.8047
portrait 0.1204 51.5 p <0.001 0.7891

ramp 0.5056 197.1250 p <0.050 0.9688
serrano 0.1123 48.4375 p <0.001 0.8516

ski 0.0073 8.75 0.2> p 0.6875
monet 0.3575 141.1250 p <0.001 0.9063
tree 0.0288 16.8750 p <0.01 0.5469
tulip 0.0645 30.3750 p <0.001 0.8594
watch 0.1237 52.75 p <0.001 0.7734

this image. The more complex photo images showed less agreement, with ‘girl’ scoring a u value

of 0.3, however the consistency was high (0.85) which means that the participants were certain in

their selection, it just differed between participants based on their own psychology. Participants

would often mention the image ‘tree’ as being the hardest to make a clear preference on, as

all algorithms would produce a similar looking greyscale. Similarly for the image ‘ski’ , which

possesses a multitude of focal points for a participant to use during image comparison. This is

clearly evident from Table. 4.2 where they broadly had low coefficient scores. Upon feedback,

participants in these instances would claim to often choose randomly or simply change their

mind on what image they preferred during the experiment due to a change in their image focal

point of reference. This can be seen to be true for the image ‘ski’ where the confidence is above

our threshold at the 5% limit which means we can claim the images were chosen at random. A

final point of interest from participant feedback concerned the image ‘serrano’. Post experiment,
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Table 4.3: Tally based on the method ranks order for the dataset.

1st place 2nd place 3rd place 4th place

ALS 6 1 7 9
GRU 6 6 6 4
SNG 6 8 5 3
UEA 4 7 6 6

most participants did not know what the picture portrayed until they were presented with the

colour original; a point that perfectly illustrates the struggle of greyscale imaging when trying

to convey colour information.

Table. 4.3 shows the tally from Figures. (4.3) - (4.6) and provides of how many times an

algorithm came first, second, third or fourth. The tally is based solely on the scores and shows

the distribution of numbers per place. It can be seen SNG and ALS has the highest tally for the

first and last two places, GRU is consistently high from first to third place and that UEA peaks

in wins around second and third places.

Figures. (4.7) - (4.10) show the original colour and the treated images for each algorithm

over both sessions. From visual inspection we can see that the 5 images where our optimisation

scored first place (‘peppers’, ‘arctichare’, ‘poolballs’, ‘IM2’ and ‘ramp’) typically possess a low

number of hues.
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Figure 4.3: Image preference scores over the 32 participants.
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Figure 4.4: Image preference scores over the 32 participants.
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Figure 4.5: Image preference scores over the 32 participants.
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Figure 4.6: Image preference scores over the 32 participants.
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RGB ALS GRU SNG UEA

Figure 4.7: Images used in the paired comparison experiment for each algorithm in addition to
the original RGB. From top to bottom: 2 ishihara, peppers, arctichare, poolballs, butterfly and

C8TZ7768.
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RGB ALS GRU SNG UEA

Figure 4.8: Images used in the paired comparison experiment for each algorithm in addition to
the original RGB. From top to bottom: ColorsPastel, ColorWheelEqLum200, bouquette, fruit

and IM2.
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RGB ALS GRU SNG UEA

Figure 4.9: Images used in the paired comparison experiment for each algorithm in addition to
the original RGB. From top to bottom: poppy, hats, monarch, portrait, ramp and serrano.
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RGB ALS GRU SNG UEA

Figure 4.10: Images used in the paired comparison experiment for each algorithm in addition
to the original RGB. From top to bottom: ski, monet, tree, tulips and watch.
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Figure 4.11: Raw consistency for each participant for all images in the dataset. A white square
(1 on the key) means that when a participant made am algorithm choice for that particular
image, they would always make the same algorithm choice when confronted with the same

image combination. A black square (0) would mean they were not consistent at all and they
would choose a different algorithm when presented the same image pair.

A detailed depiction of consistency is given in Figure. 4.11 which shows the individual parti-

cipant consistency per image. White blocks correspond to a value of 1, which means that they

were 100% consistent for all algorithm combinations for that image. Conversely, black means

that they never chose the same algorithm. The scale from white to black (defined by the key)

defines the fractional consistency between 100% and 0%. For example, from this, we can say that

for the image ‘tree’ only participant 19 always chose the same algorithms during a comparison

for this image.
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4.4 Conclusion

In this chapter we described how we evaluated the images produced from four colour-to-grey

methods using psychophysical preference experiments. Including our own maximum contrast

brightness preserving solution, we chose three other competitive methods based on similar pro-

jection based mappings.

The data collected through the participation of 32 volunteers and 22 images in a tournament

of comparisons ended with each method receiving a score of preference at the 95% confidence

limit. Subject to this confidence interval, our maximum contrast solution was seen to score

third out of fourth place. The method whose score came first was based on an optimisation

of preserving colour contrast and the lowest came from the local pixel based method, which

un-naturally increased texture in many of the greyscale images.

Although many participants chose contrast and image detail to be of paramount importance

when making a choice of preference, a portion felt that too much contrast was un-natural and

instead preferred a compromise which reflects the contrast that would have been seen in the

colour original. Our method tended to score highly on images with a low number of hues

and score second place more than other ranks. Despite coming third overall we conclude that

an optimisation grounded in maximising contrast is still a viable means of producing visually

pleasing greyscales.

This chapter finishes our work in colour-to-greyscale mappings. In the next chapter we

shall move onto the topic of panchromatic image sharpening and report on how linear mapping

multiband data has application in producing edge maps.
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Chapter 5

Panchromatic Sharpening:

Literature Review

Having brought an end to our work in colour-to-greyscale mappings, we now seek to apply

what we have developed to the field of panchromatic image sharpening. There exists a wealth

of journal articles that review existing pan-sharpening techniques. Recently Li et al. (2017)

have produced a paper that broadly describes the state of the art of pixel-level image fusion

techniques and their applications. Ghassemian (2016) looks at the broader context of image

fusion by reviewing techniques used in all three levels; pixel, feature and decision. Vivone et al.

(2015) have produced a critical comparison among pan-sharpening algorithms and Amro et al.

(2011) published a survey on pan-sharpening with new and classical methods. Lastly it is worth

mentioning the work of Pohl and van Genderen (1998) as it is cited frequently in the literature

especially when it comes to what are now known as the classical pan-sharpening techniques.

Their follow up article Pohl and van Genderen (2014) builds of their previous publications and

mostly serves as a source of references for recent advances in the field.

Following the structure of these articles we shall start our review with the classical tech-

niques and move onto how more recent methods attempt to solve their short comings. We

shall then move onto frequency domain, multi-resolution and hybrid methods and how they are

incorporated in the component substitution framework.
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5.1 Component Substitution (CS)

Panchromatic sharpening methods by Component Substitution (CS) are often referred to as the

classical techniques and comprise of the Intensity-Hue-Saturation (IHS), Principle Component

Analysis (PCA) and Gram Schmidt (GS). Pan-sharpening based on CS is one of the most popular

methods to employ due to its simplicity, computational speed and their ability to inject high levels

of spatial detail. The technique relies upon swapping out the low resolution spatial information

(or part of it) with that of the high resolution panchromatic image P . How the low resolution

spatial information is acquired from the colour image depends on the transformation done prior

to the substitution. The transformation can be viewed as a projection of the image from RGB

vector space to a component space that separates out the spatial and spectral information. After

the substitution has been made, the inverse transform provides the final pan-sharpened image.

5.1.1 Intensity-Hue-Saturation (IHS)

IHS is the most common of the CS due to its simplicity. The colour image is projected into a space

that separates the image into the three components of human colour perception: The intensity

component is a brightness map that contains the spatial information in the image, hue relates to

the dominant wavelength that contributes to what we see as the colour and saturation provides

the measure of the colours purity relative to grey. There is an abundance of ways to decompose

an RGB image into IHS space, with the main difference being that of which colour model they

are derived from (Smith, 1978). Image intensity calculations based on Smith’s Triangle Model

is popular within the literature for its accurate undiscriminatory representation of RGB image

brightness (Carper et al., 1990, Núñez et al., 1999)
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and

S =
√
V 2

1 + V 2
2 . (5.3)

Substituting out I with the high spatial resolution P followed by an inverse transform back

to the original RGB colour space results in the pan-sharpened image. The disadvantage of the

IHS technique is that it is limited to just three bands.

To reduce spectral distortions that a full substitution of I with the P can bring, partial

replacement of the intensity component can be made to produce a new greyscale J . Full re-

placement simply requires a direct substitution of I with the P , whereas a partial replacement

is given by (Thomas et al., 2008)

J = ρI + (1− ρ)P , (5.4)

where ρ is the mixing coefficient of the intensity image. When ρ = 0 the replacement becomes

full and J = P .

To overcome having to apply a transform and its inverse, Tu et al. (2001) proposed a Gener-

alised Intensity-Hue-Saturation (GISH) method which simplifies the process to adding injection

gains to the RGB vectors. The injection gains can be computed by taking the difference between

P and I images. The disadvantage of this technique is that the authors are adding a numerical

constant to their RGB vectors which changes their direction resulting in saturation distortion.

This method does provide the advantage over standard IHS by allowing for more than three

spectral bands to be used in the process by allowing for a simple approximation of the intensity

image J by either an equally weighted convex sum (Tu et al., 2001) or from scene specific em-

pirical analysis (Tu et al., 2004) that best represents the degrees of spectral overlap between the

multispectral (M) and panchromatic bands. The CS method has been summarised (Rahmani

et al., 2010, Vivone et al., 2015) with the following injection scheme

Hn = Mn + gn(P − J), (5.5)

where J is our greyscale created from a weighted sum of the spectral bands

J =

d∑
1

ωnMn, (5.6)
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Hn represents the nth high resolution pan-sharpened spectral band, Mn the nth low resolution

spectral band captured from the satellite and the vector gn is a vector that modulates the gains

for the nth band.

As we mentioned in Chapter 1, the band weights are typically chosen such that J has the

maximum correlation with P . Provided there is sufficient correlation, the assumption that J is a

low-pass-filtered approximation of P can be made and that by taking their difference (P −J) we

are extracting an edge map that contains the parts of P not obtainable by convex combination

of the spectral bands M . In other words, this difference can be regarded as the high resolution

spatial details missing from the low resolution multiband image. This process of edge extraction

is often used in colour image contrast enhancement and is known as an unsharp mask.

The assumption that P − J produces an unsharp mask for P is only valid to an approx-

imation because it is dependent on the level of spectral overlap and correlation between the

panchromatic and multispectral bands. In the instances when the correlation is sufficient then

a linear regression is used to determine the band weights ω. Bands that do not have sufficient

overlap with the panchromatic can be dismissed; Mascarenhas et al. (1991) excludes both the

blue and infrared bands in their regression for their SPOT-1 images and Boggione et al. (2003)

and Xu et al. (2008) remove the blue for their Landsat-7 imagery. Using this discriminatory

selection process, Xu et al. (2008) fused multispectral bands taken from six additional satellites.

From these additional six, only two had the range in the union of their multispectral bands that

had sufficient overlap with the panchromatic: QuickBird and IKONOS. To further minimise the

least squares error in their J , Xu et al. (2008) allowed for an additional constant to the convex

sum of M .

Instead of calculating the band weights for the upsampled M bands that best approximate

P , Aiazzi et al. (2007) proposed applying a low-pass filter to P and then calculating ω that

would approximate this downsampled panchromatic image. These weights were then applied to

the upsampled M bands under the assumption that the coefficients would be nearly identical

had the spectral bands been captured at the full resolution as that of P . They refer to this as

adaptive GISH/IHS or GISHA/IHSA.

Garzelli et al. (2008) elegantly solve for band dependent gains by minimising the mean square

error (MMSE) between each spectral band and the panchromatic. This produces an edge map for
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each band. The MMSE optimisation was solved using the minimum variance unbiased estimator.

Rahmani et al. (2010) compute their band weights using a constrained linear regression.

Using the Lagrangian Multiplier method, they constrain their weights to be non-negative. To

further insure the quality of their unsharp mask, they use an edge-detecting function to mitigate

distortion of the low-frequency components of M . As the band weights for J and its edge map

are image dependent they refer to the method as Adaptive-IHS (AIHS).

To avoid drastically changing the low-frequency components of M , Choi et al. (2011) applies

partial-replacement (Eq. (5.4)) to produce high resolution spectral bands. Appreciating that the

quality of fusion relies heavily on the correlation of M with P , they weight the contribution of

the P injection into eachM band on the correlation betweenM and the synthetic panchromatic

image J to produce a set of high resolution intensity bands. The difference between these bands

and J form the high-frequency information that are modulated with the gains vector (gn) and

added onto the original spectral bands M in the usual CS framework (Eq. (5.5)).

Recently, Leung et al. (2014) proposed the Improved-Adaptive-IHS (IAIHS) that expands on

the study of Rahmani et al. (2010) who proposed that the gains gn be dependent on the edges of

P . Under the rationale that injecting the same amount of detail into different bands promotes

spectral distortion, Leung et al. (2014) instead proposed using gains based on the spectral band

specific edges, such that the ratios between the bands are preserved. Their algorithm excelled

with scenes containing areas of vegetation, beating AIHS and standard multi-resolution based

methods with respect to preserving correlation with M .

5.1.2 Principal Component Analysis (PCA)

PCA is a multi-disciplinary tool used in many areas of science. It is a statistical technique that

transforms a multivariate dataset of correlated variables into a new uncorrelated dataset that has

been constructed from a linear combinations of the original variables. PCA rotates the original

basis such that one of the axis (the first principal component) defines the vector direction of

maximum statistical variance of the multivariate dataset. The remaining orthogonal axis point

in deceasing directions of variance and it is the projection of the original data onto these new axis

that provides the newly constructed uncorrelated dataset. For images, it creates an uncorrelated

feature space that serves the hypothesis in pan-sharpening that the spatial information (from all
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the spectral bands) is contained within the first principal component, to the extent proportional

to the correlation amongst M (Vivone et al., 2015) while the spectral information is accounted

for by the remaining principal components (Pat S. Chavez and Kwarteng, 1989).

Mathematically, PCA is a matrix decomposition that operates on a multivariate data positive-

definite covariance (unstandardised) or correlation (standardised - normalised variance) matrix.

The use of the correlation matrix scales the axis so that the features receive a unit variance, this

prevents certain features/statistical anomalous/noisy data from dominating the image because

of their large values (Pohl and van Genderen, 1998) that one might otherwise see with a un-

normalised covariance matrix. In addition it also removes the differences in dynamic range that

might exist between the channels (Yésou et al., 1993).

Pan-sharpening with PCA requires projecting all the multispectral bands M onto the ei-

genvector associated with the largest eigenvalue (the first principal component), this new high

spatial resolution image can be referred to as PC1 in keeping with the notation in the literature.

Projecting onto the additional components can be referred to as PC2, PC3 etc. In the same vein

as the IHS, now that the image as been decomposed into spectral and spatial components, substi-

tution of PC1 with P can occur, after which the inverse transform produces the pan-sharpened

image (Chavez et al., 1991).

The injection gains gn per band has been stated by Vivone et al. (2015) to be defined by the

first column in the eigenvector matrix U .

It is well established that pan-sharpening from PCA is superior to IHS (Chavez et al., 1991)

not only in that it is not limited to three spectral bands, but also in post fusion statistical evalu-

ation. It does suffer from similar problems to that of the IHS method; the spectral characteristics

of PC1 will never exactly match the spectral response of P .

We know PCA based pan-sharpening provides high levels of spatial enhancement of M at

the cost of altering their spectral characteristics (González-Aud́ıcana et al., 2004). In an attempt

to fix this unwanted spectral distortion caused by standard PCA pan-sharpening, Shahdoosti

and Ghassemian (2011) and Shahdoosti and Ghassemian (2016) proposed combining “spectral-

PCA (SPCA)” with regular PCA. They rationalise that because of this high correlation, the

difference in the global statistics between the bands corresponds with the spectral dispersion

between the bands. Histogram matching P to each M band will provide a PC1 that contains
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the spectrally distorted characteristics, which if substituted with M (statistically matched to

PC1) will provide an accurate spectral band-set to be used with the spatially enhanced band-set

obtained via the regular PCA-CS based method. Combining SPCA with regular PCA can be

done by low-pass filtering the original PCA pan-sharpened bands and adding it onto the the

low-pass filtered SPCA bands.

5.1.3 Gram-Schmidt (GS)

The GS transform is a well-known technique used in linear algebra and multivariate statistics

that uses a series of projections to orthogonalise a set of vectors or - similarly to PCA - to produce

an uncorrelated basis (Fraleigh and Beauregard, 1995). The GS method for pan-sharpening was

invented by Laben and Brover in 1998, patented by Kodak (Laben and Brower, 2000) and is

apart of the software package ENVI-IDL, where there exist two modes of operation: GS1 and

GS2. The GS1 mode starts from a pre-defined vector, which is chosen to be a mean-centred

synthetic low resolution approximation of P (usually taken as an average for all bands, I).

Following GS orthogonalisation, pan-sharpening is accomplished by replacing I with P before

the inverse transformation is performed to obtain the new RGB vectors. The GS technique is

often referred to as a generalisation of PCA; the GS technique reduces to the standard PCA

method when PC1 is used as I (Aiazzi et al., 2009). The GS2 mode uses a low-filtered version

of the original panchromatic image as the starting vector instead of I used in GS1. Amro et al.

(2011) reports that GS1 produces pan-sharpened images with outstanding spatial quality at the

cost of introducing spectral distortions, whereas GS2 suffers from lower spatial enhancement

but superior spectral preservation. The low resolution intensity image described by Aiazzi et al.

(2007) has been applied to the GS2 mode as adaptive-GS (or GSA) where it was reported to

have reduced spectral distortions over the standard GS mode, especially on vegetated areas.

The injection gains gn has been given by Aiazzi et al. (2007) as cov(Mn,I)
var(I) .

5.1.4 Intensity Modulation

Although generally labelled among methods featuring an RSC, the Brovey Transform (BT)

has been cited (Alparone et al., 2004) as being based on the chromaticity transform (Gillespie

et al., 1987). The BT seeks to preserve the chromatic properties of an image by modulating the

79



magnitude of the RGB vectors by multiplying the original RGB by a high resolution image. This

process is known as Intensity Modulation (IM) and in the case of the BT, it serves the purpose

of spatial enhancement of three band images, by modulating the original intensity mapping by

that of a higher resolution one. Assuming that P has the same mean as I, the BT preserves the

global mean of the RGB from construction of the modulating image; a ratio of a high resolution

image to that of the intensity image. The BT can be considered to be a CS method. This has

been shown by Vivone et al. (2015), where they substitute the gain: gn = Mn
I into Eq. (5.5),

which results in the famous BT equation

Hn = Mn ◦
P

I
, (5.7)

where ◦ represents the Hadamard product; a matrix multiplication where the matrix elements at

their row/column location are multiplied by the other matrix elements at the same row/column

location. The denominator of Eq. (5.7) can either be (as we have shown) I or a constructed

image J using the RSC approach. As such it can either be considered to be a CS or an RSC

technique.

It has been reported that the BT provides excellent improvement in contrast and preserves

the chromatic information yet suffers with respects to spectral distortion in the image (Vijayaraj

et al., 2004). Many authors cite the reasons for the spectral distortion as being down to the

difference in spectral range of the intensity (or modulation) image being different to spectral

range covered by the colour composition (Chavez et al., 1991, Guo et al., 1997, Guo and Moore,

1998, Liu, 2000, Ranchin and Wald, 2000, Alparone et al., 2004).

The BT was developed to enhance contrast in features such as shadows, water and high

reflectance areas. As it is prone to spectral distortion, it should not be used if preserving the

original scene radiometry is important. It is good for producing RGB images with a higher

degree of contrast (Fonseca et al., 2011).

The general form of the BT that operates on images with an arbitrary number (d) of spectral

bands is obtained by swapping out I on the numerator with the total sum of the M bands (Pohl
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and van Genderen, 1998, Wiemker et al., 1998)

Hk = Mn ◦
P

d∑
n
Mn

. (5.8)

Amro et al. (2011) outline the use of Eq. (5.8) where the panchromatic image is statistically

matched to each spectral (upsampled to the same resolution as P ) band to produce the new pan-

sharpened bands. Variations of the IM method have been published: Synthetic Variable Ratio

method, proposed by Munechika et al. (1993), which replaces the denominator of Eq. (5.8) with

I that is constructed using the weighted sum (Eq. (5.6)) of the upsampled M bands. Using

reflectance spectra for five land and three different atmosphere types, a linear least squares

optimisation was carried out to calculate the band weightings for the synthetic panchromatic

image J .

5.1.5 Synthetic Variable Ratio

Generating new bands based on ratio methods that utilise the RSC date back to the 1980s.

Price (1987) produced a method of pan-sharpening that relied on the assumption that because

of the high correlation between the green, red and panchromatic bands, the downsampled P

(P L; equally weighted mean of a pixel neighbourhood) can express any of the M bands subject

to a scaling and offset operation

MJ
n = αnP

L + βn, (5.9)

where MJ
n is the approximation of the original Mn spectral band. The weights α and β can be

determined using a linear least squares optimisation, which when applied to P , produces high

resolution spectral bands MH
n band estimations that possess local means (in a super pixel i.e.

a 2×2 pixel block) that are the same as the registered pixel in the low resolution spectral band.

The following pan-sharpened image is then calculated using

Hn = Mn ◦
MH

n

MH,L
n

, (5.10)

where the numerator is essentially a histogram stretched P (for each band) and the denominator
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is its downsampled counterpart. The authors bring the images to the same size using a nearest

neighbour interpolation. Following this, Munechika et al. (1993) proposed a method which

replaces the denominator of Eq. (5.8) with a J that is constructed with Eq. (5.6) using upsampled

M bands. To save on computation time, a linear least squares optimisation was used to compute

the band weights for specific landscapes and viewing conditions. These were based on reflectance

spectra for five and three different land and atmosphere types respectively. P was histogram

matched to this J such that atmospheric and illumination differences between the two could be

minimised.

In order to free up the user from having to decide on these fusion parameters, Zhang (1999)

proposed calculating a high resolution J using the least squares approach on upsampled M

bands. They forego the histogram matching process of P to J because on the high correlation

of the Landsat Thematic Mapper bands with the SPOT panchromatic.

Wang et al. (2008) suggested calculating the weights based on the sensor response of the

satellite, where they proposed a fast integral approximation that takes into account not just the

areas under the band sensor spectrographs, but also the regions of low/zero sensitivity between

them. Similarly, Chen et al. (2008) tackled the problem using the ratio of the integral of the

spectral sensor characteristics to that of the overlap with the panchromatic spectral response.

Instead of modulating their ratio with the spectral bands they used the luminosity component

from CIE L∗a∗b∗ space, which required the addition of an RGB to CIE L∗a∗b∗ space transform

and its inverse before producing the desired pan-sharpened image. This satellite dependent

means of calculating the coefficients is popular as it speeds up the fusion process (the coefficients

only need to be calculated once). The disadvantages to this approach are 1) prior knowledge of

the satellite is required and 2) a different set of weights would need to be computed for platforms

that have variations in their sensors.

5.2 High-Pass Frequency Injection

To prevent distortions of the low-frequency component that the RSC/CS can cause, High-Pass

Filtering (HPF) of P was constructed on the basis of providing a edge map that only effects

the high-frequency components of M . Introduced by Schowengerdt (1980) and modified by
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Chavez et al. (1991), the panchromatic image is convolved with a high-pass filter kernel; a

process that removes the low-frequency information. Alternatively, a low-pass filtered version of

the panchromatic image can be subtracted from the original to provide the high-frequency edge

information.

One of the problems with this type of fusion is that the size of the filter kernel is not arbitrary

however, Chavez et al. (1991) have suggested that the best size is approximately twice the size of

the ratio of the spatial resolutions of the sensors. Wald et al. (1997) state that pan-sharpening

methods based on injecting high-frequency components into resampled versions of the spectral

data have demonstrated a superior performance and compared with many other pan-sharpening

methods such as CS.

Liu (2000) apply a box filter kernel to P that is directly based on the size of its ratio with

M . Using a ratio, this low-pass filtered P is used to extract the high-frequency information

from band dependent statistically matched P which are used as an IM image for M .

Li et al. (2015) have applied a Gaussian filter (σ = 3) to decompose the P and M images

into their high/low -frequency components. They create low resolution panchromatic images

by adding the low-frequency parts of P onto the high-frequency components of the M bands.

Using the SVR method, they take the ratio of the original M bands with these new pan-like

spectral bands and modulating it with P provides their desired high resolution H bands. They

reason that by taking this ratio, they can successfully cancel out the low-frequency (spectral)

information contained in P and the spatial information in the original M bands which results

in a sharpened image H with the spatial and spectral characteristics of the panchromatic and

original multispectral image respectively.

5.3 Multi-Resolution Analysis (MRA)

Ranchin et al. (1996) proposed a model of panchromatic image fusion that operates on the

principle that M is merely a downsampled (blurred) version of the desired high resolution

image H. Using the information in P , the goal is to solve for this high resolution image H, an

inverse problem which the authors originally posed using a Multi-Resolution Analysis (Ranchin

and Wald, 2000) framework. This concept has been referred to as ARSIS (Amélioation de la
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Résolution Spatiale par Injection de Structures).

Overall the premise behind the MRA pan-sharpening is the same as the previous methods;

to extract the spatial detail from P and inject it into the resampled M bands. However, the

MRA class of pan-sharpening offers a more selective (compared to global methods at a single

resolution) means of fusion. By decomposing the image to an ordered set of resolutions image

manipulation can take place at the feature level (high-frequency components disappear at low

resolutions leaving only the coarser structures).

5.3.1 Wavelets

Wavelet analysis originated in signal processing (Mallat, 1989) and has found applications in

image pan-sharpening. The discrete wavelet transform (DWT) is a frequency domain transform

that is localised in time and space making it ideal for extracting image details. It has become a

popular tool for pan-sharpening for its ability to detect/inject high-frequency components into

the M bands.

Mallat (1989) originally implemented the DWT using a recursive dyadic subsampling and

decimation process (MWT). For images (Zhou et al., 1998), this MRA can be represents by a

pyramid, where the base is the original image, with successive levels representing coarser and

coarser resolutions. At each level in the pyramid, the DWT outputs three wavelet coefficient

images which contain the high-frequency components lost between the changes in resolution in

the three directions: horizontal, vertical and diagonal. When the DWT process is inverted,

the original image can be reconstructed exactly from an approximation image and the wavelet

coefficients.

Another classical implementation of the DWT is known as the ‘à trous’ (Holschneider and

Tchamitchian, 1989) wavelet transform (ATWT). In contrast to MWT, the ATWT is undecim-

ated making it shift invariant. The approximation images remain the same size despite being

downsampled in resolution at each level. At each of these levels, the ATWT outputs a single im-

age that contains the horizontal, vertical and diagonal spatial information that is lost between the

levels. The original image can be recovered exactly by using the inverse transform and adding

the wavelet plane. Unlike MWT which is critically subsampled, the ATWT is oversampled

(which will contain redundancies). The omission of the decimation step allows an image to be
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decomposed into nearly disjointed bandpass channels in the spatial frequency domain, without

losing the spatial connectivity (translation invariance property) of its high-pass details e.g, edges

and textures. This property is fundamental because, for critically subsampled schemes, spatial

distortions, typically ringing or aliasing effects may be present in the fused image which can be

seen as blur of contours and textures (Stathaki, 2008). As a consequence of this, the ATWT is

seen to perform better at the pan-sharpening problem than decimated approaches (Aiazzi et al.,

2002). González-Aud́ıcana et al. (2005) have studied in detail the differences between MWT

and the ATWT and how to apply them to the pan-sharpening problem. Generally speaking,

image fusion based on the wavelet transform (WT) preserves the spectral characteristics of fused

satellite images over that of the IHS method (Yocky, 1996, Zhou et al., 1998, Choi et al., 2005),

but provides much less spatial information (Gharbia et al., 2014). The problem with wavelet

based fusion methods is that they are not efficient enough to quickly merge massive volumes of

data from recent satellite images because of the higher computational complexity (Choi, 2006).

5.4 Hybrid Methods

CS/RSC pan-sharpening methods produce images with good spatial enhancement at the cost

of spectral distortion. MRA pan-sharpening excel at preserving the spectral properties, and

in some cases can even match the spatial enhancement of the CS i.e. the undecimated DWT.

The problem of these frequency domain methods is in their computational complexity. Hybrid

methods that attempt to incorporate the strengths of CS and MRA methods have become the

direction to address the pan-sharpening problem. The general form of the hybrid method is to

create a new spatial component i.e. a new intensity image in the case of IHS by injecting the

edge information of P into the original I.

Based on the IHS transform, Núñez et al. (1999) uses the ATWT to simply add the high

resolution information from P directly onto the intensity image I.

Hong and Zhang (2003) and Zhang and Hong (2005) investigate how different IHS transforms

affect the low-frequency components of the I mappings once they have been substituted into P

for wavelet fusion.

Ling et al. (2007) uses partial replacement of I based on fast Fourier transform (FFT) filter-
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ing. Low-pass filtering I and then substituting it with the complimentary high-pass information

from P creates the new intensity image. Similarly, Mitianoudis et al. (2010) apply coefficient

substitution of P with I in the wavelet domain using a decimated WT. To reduce the complexity,

they forego the initial upsampling step on the rationale that downsampling occurs during the

WT and that all that is required to maintain a resolution between P and I, is to downsample

P until it matches the resolution of the I.

Shettigara (1992) applied the additive wavelet method to PCA, where they add the spatial

detail from P that is is missing from M to the first principle component mapping PC1.

González-Aud́ıcana et al. (2004) investigated the quality of using decimated/undecimated

WT based mergers with IHS and PCA techniques and found them to give superior fusion results

to their stand-alone means of pan-sharpening, with the best results coming from the undecimated

WT.

An extension to the wavelet concept, the Curvelet transform (Ma and Plonka, 2010) boasts

superior representation of directional edges and has been applied to IHS pan-sharpening (Valiz-

adeh and Ghassemian, 2012) where it produced superior spectral properties to that of IHS and

ATWT.

The Radon transform has been applied to pan-sharpening as an IHS hybrid approach. The

Radon transform is an integral transform that has found use in medical imaging. As with all IHS

hybrid approaches, the I component is isolated and transformed. Sujitha et al. (2013) substitute

the intensity images Radon coefficients with the P Radon coefficients using the maximum fusion

rule, which means that the larger of the two is selected for the fused image. The inverse transform

provides the final intensity mapping for the pan-sharpened image. Although this approach

was shown to provide higher information and lower spectral errors than other techniques, it

unfortunately requires two computationally complex transforms.

Adopting a similar fusion method to González-Aud́ıcana et al. (2004), Shah et al. (2008) use

the Contourlet transform (CT) with a hybrid PCA approach. The CT is based on the Laplacian

pyramid decomposition with direction filter banks applied on each bandpass sub-band. Instead

of using PC1, they use the PC that has the highest correlation with P (which they call adaptive

PCA). PC substitutions of the detail Contourlet coefficients are made with P before the inverse

transform provides the final pan-sharpened image. Evaluation of the post-fused images using
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global metrics showed superior results in nearly all cases against the wavelet PCA approach

(González-Aud́ıcana et al., 2004).

The non-subsampled Contourlet transform (NSCT) has been used to separate the high fre-

quency information from P to inject intoM for pan-sharpening (Mahyari and Yazdi, 2011). The

NSCT has been previously applied to denoising, enhancement and contour detection (da Cunha

et al., 2006). As with the ATWT, non-subsampling makes the NSCT shift invariant. Addition-

ally, it allows for redundancies in the basis functions which results in a lower complexity than

the CT. So as not to introduce noise into the pan-sharpened image, the authors forego using the

maximum fusion rule and instead inject the non-subsampled Contourlet coefficients from P into

M on the condition that their correlation be similar (as defined by a threshold).

Using calculus of variations, Zhou et al. (2013) construct a high resolution I that contains

the same high-frequency components as that of P . In order to preserve the spectral properties,

partial differential equations that describe the gradient information in the fused image J are

constructed such that its low-pass filtered version approximates the original intensity mapping

I. The partial differential equations are solved using the gradient descent method. Once J has

been constructed it is substituted into the IHS method and converted back to RGB space.

Kaplan et al. (2012) extract the image detail of P using the bilateral filter before modulation

and addition onto the M bands. It has been reported that the bilateral filter can sometimes

produce gradient reversal artefacts, a problem that was fixed by the creation of the guided

filter (He et al., 2013). As with the joint bilateral filter, the guided filter uses a guiding image

with which to approximate to a filtered output. In pan-sharpening, I would be guided by the

high-pass filtered P (Jameel et al., 2016) to produce a new intensity mapping for IHS technique

(Jameel et al., 2016, Yang et al., 2016).

Using the injection model (Eq. (5.5)), Shahdoosti and Ghassemian (2015) computed J by

using the appropriate filter ‘h’ on P . This filter must produce the pan-sharpened spectral bands

(Hn) that minimise the sum of the mean square errors of Mn and their histogram matched

Pn. This constrained optimisation is solved using the Lagrangian multiplier method which has

a low computation complexity that is limited by computing correlation matrices. The final pan-

sharpened images were competitive against Bayesian, improved-IHS, sparsity, non-subsampled

Contourlet and other filter based approaches.
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5.5 Analysis of Pan-Sharpening by Linear Mappings

Recall the general scheme for CS

Hn = Mn + gn(P − J), (5.11)

where J is our greyscale created from a weighted sum of the spectral bands

J =

d∑
1

ωnMn (5.12)

and d is the total number of spectral bands. Various calculations of the spectral band weights

ωn(≥ 0) and the injection gains gn have been proposed. Pre-defined static weights are shown in

Table. 5.1, and are used in the classic IHS transform, the GIHS (Tu et al., 2001) and the FGIHS

(Tu et al., 2004). The first, while being fast, introduced large spectral errors and is limited to

only three bands. The later two aim to reduce this by generalising the intensity mapping by

allowing for the inclusion of the NIR band thus increasing the correlation with P . To reduce

spectral distortion, redundancies due to the spectral overlap in the blue and green bands were

taken into account by altering the weights, which were calculated based on empirical data taken

from the IKONOS satellite (Tu et al., 2004). Unfortunately these pre-defined weights limit the

application to imagery of landmasses dominated by vegetation.

To increase the utility of previous IHS methods, image dependent/adaptive methods of

determining the band weights were developed. Adopting the method found in colour image

sharpening, M band weights are calculated to produce J that best approximates the P in a

least squares sense. This is based on the assumption that J is a blurred version of P which when

applied to the second term of Eq. (5.5) results in an edge map that contains the high-frequency

components missing from the spectral bands. These components are injected into M by arith-

metic addition. Computing J has been carried out by linear regression (Xu et al., 2008, Choi

et al., 2011) or multivariate calculus (Rahmani et al., 2010, Zhou et al., 2013).

The assumption that J is a low-frequency filtered version of the P wrongly assumes that

there is a near perfect construction of the panchromatic low-frequency components from the
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Table 5.1: Summary of static channel weights and injection gains.

Method ωB ωG ωR ωNIR gn

IHS 1/3 1/3 1/3 0 1
GIHS 1/4 1/4 1/4 1/4 1

FGIHS 1/12 1/4 1/3 1/3 1

linear combination of spectral bands. To address this flaw, it is common practice to use the

injection gains gn as an edge map operator (εA) that extracts the high-frequency components.

Rahmani et al. (2010) use an exponential edge detector on their panchromatic image (AIHS)

εA = exp

(
− λ

|∇A|4 + ε

)
, (5.13)

where A is the image whose edges are being extracted (εP for P and εM for M), λ being a user

defined edge tolerance parameter and ε is a small constant to avoid division by zero. The AIHS

method has the simplest means of extracting and injecting edges. It merely extracts from the

panchromatic image and adds them into the spectral bands, which is the same for each band

and will undesirably change the spectral bands vector direction in the final fused image, thus

introducing spectral distortion (Tu et al., 2001). To reduce the spectral distortion in areas of the

image where edge injection has occured, Leung et al. (2014) believes that the injection into each

band should be different and suggest a user defined (β) parameter that provides for a compromise

between P injection and M edge enhancement for each individual spectral band (IAIHS) that

Table 5.2: The methods of calculating weights and injection gains for the CS schemes.

Method ω gn

BT min
ω
||P − J ||2 Mn

I

AIHS min
ω
||P − J ||2 εP

IAIHS min
ω
||P − J ||2 Mn

1
d

∑d
1 Mn

(ρεP + (1− ρ)εM )

PRACS min
ω
||P − J ||2 βCC(J ,Mn) std(Mn)

1
d

∑d
1 std(Mn)

Ln

WLS-IHS min
ω
||PH − JH||2

[
min
Dn

∥∥∥PH −
∑d

1 ωn

(
MH

n +Dn

)∥∥∥2
]

1
Dn

MGF-IAIHS min
ω
||P − J ||2 Mn

1
d

∑d
1 Mn

(ρnεP + (1− ρn)εM )
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is modulated by the normalised spectral band pixel ratio. This alleviates the problem of over

compensating already salient edges that appear in both the spectral and panchromatic bands,

a problem that can occur with the AIHS method. The disadvantage is that this applies to all

spectral bands, which while not necessarily a problem for many edges (due to the large degree

of correlation between the spectral bands), can still be a problem for some where edges appear

in P and not in certain M bands (Thomas et al., 2008).

Yang et al. (2016) (MGF-IAIHS) seeks to address this problem by proposing a band depend-

ent calculation of the ρ parameter that satisfies the optimisation that the edge filtered P is a

linear combination of the edge filtered M bands

min
ρ

∥∥∥∥∥εP −
d∑

n=1

ρiεM

∥∥∥∥∥
2

, (5.14)

which is then used to calculate the band dependent gains in a similar manner to IAIHS. For

approximation of the panchromatic image, J is used as the guiding image for the multi-layered

guided filter (MGF-IAIHS) P j
D = GF j−1(P ) − GF j(P ,J), where the sum of the ‘j’ layers

provides the edge map in Eq. (5.5)

Hn = Mn + gn

K∑
j=1

P j
D. (5.15)

Song et al. (2016) propose a weighted least squares filter (WLS-IHS) to compute the high-

frequency/edge maps for both the panchromatic (PH) and spectral bands (MH
n ). Using a linear

combination of MH
n that best approximates PH provides JH, which is then used to calculate

the edge map Dn = PH − JH. Specifically, ωn is calculated by

ωn =
((
MH

n

)T
MH

n

)−1 (
MH

n

)T
PH. (5.16)

Instead of using an edge map operator, Choi et al. (2011) extract the high-frequency com-

ponents based upon a partial replacement approach. The authors propose constructing a pan-

chromatic image for each spectral band that is based on the correlation with J

Pn = CC(J ,Mn)P + (1− CC(J ,Mn))Mn, (5.17)

90



where CC(J ,Mn) is the correlation coefficient between the approximated panchromatic and the

nth spectral band. Pn is then used as a set of target images for another linear regression of M to

produce band specific synthetic Jn. The injection gains are calculated by in two parts, a global

and local computation. The global component starts by calculating a band specific constant

that is produced by normalising the standard deviation of M with the mean standard deviation

across all bands and is finished by the product of the bands correlation with Jn. Further to this,

a tuning parameter β is utilised to stabilise the dynamic range of the final image. The pixel and

band specific adaptive factor Ln serves the purpose of reducing what the authors define as the

spectral instability error between the synthetic component image and the spectral band and is

calculated by

Ln =

(
1−

∣∣∣∣1− CC(J ,Mn)
Mn

Jn

∣∣∣∣) . (5.18)

5.6 Conclusion

In this chapter we introduced the component substitution (CS) method of pan-sharpening. Al-

though this collection of methods has seen great success enhancing the spatial resolution of

satellite imagery, it is known for distorting the spectral characteristics of the original multiband

image.

The most popular CS method is based on the IHS transform where a greyscale J is created

by linear mapping the spectral bands such that it has a maximum correlation with panchromatic

band P . This method is based on the assumption that J is a low-pass approximation of P and

that one can extract its high-frequency information by taking their difference. The validity of

this assumption is limited by the correlation of J with P which in turn is affected by the spectral

overlap between the M and the P sensors.

The problem that researchers have since tried to address is how they go about injecting

this information into the spectral bands without distorting the low-frequency components of the

original image. At additional computational cost, hybrid methods based on the IHS transform

have been created that rely on a) edge-detecting masks and b) multi-resolution analysis, each

with their own unique way of extracting high-frequency information from P and injecting it into

I.
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Despite the advent of these newer hybrid methods, the low complexity of CS based methods

keeps it of interest to the research community. In the next chapter we present a novel adaptive

method of constructing J that has maximum correlation with P subject to preserving the global

statistics of I.
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Chapter 6

Multispectral Panchromatic

Image Sharpening: Linear

Mappings

The review in the last chapter introduced the popular component substitution injection scheme.

In its simplest form, this method is faced with two challenges 1) how the synthetic panchromatic

image J is computed and 2) how the edge map is injected into the spectral bands. The standard

method to compute J is by linear regression. Ideally this would produce a perfect mapping of

J = P . In this instance the correlation would be equal to 1 and the global statistics of both

mappings would be identical. Unfortunately there is no known linear relationship between the

M bands and P and the best we can hope for is a close approximation.

In this chapter we shall adopt a different approach to the problem. Bearing in mind the

importance of correlation between our greyscale J with P , we instead prioritise preserving the

mean and variance of our mapping. The rationale behind this is that the ideal J would be equal

to a P that had been statistically matched to I. Furthermore, we impose that J be a real

normalised image and that by introducing a constraint on variance we shall further reduce our

solution space where the ideal mapping band weights would reside (if it existed). Lastly, from

this reduced space, we introduce a method of computing J that, with respect to I, will give a
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greater correlation with P .

This chapter builds directly from our work in Chapter 3 and shall be structured accordingly.

First we shall show how we can produce the closest approximation to the panchromatic image

using a least squares optimisation. Secondly we shall show that by natural extension of our

vector space we can produce a brightness preserving multiband-to-greyscale conversion and how

using multivariate calculus we can produce the optimum J subject to preserving image mean.

Lastly we shall introduce a novel constraint on variance which confines our solution space to lie

on a elliptical line segment and how we can enhance our correlation subject to this constraint.

6.1 Linear Mapping for Maximum Correlation

If there was a linear relationship between the spectral bands M and the panchromatic image P

then

P = Mw, (6.1)

where M (dimensions [l, w, d]) and P ([l, w,1]) have been arranged into an array of [l × w, d]

and a single (l×w,1) vector.

As there is no known linear relationship between the spectral bands and the panchromatic

image, the best we can achieve is to maximise the correlation between J and P by minimising

the sum of the squares

min
w
‖Mw − P ‖2 = wTMTMw − 2wTMTP + PTP . (6.2)

We know from Finlayson and Matheson (2012) that in using multivariate calculus we can

show that positive-definite quadratic forms possess a single minima. Differentiating with respect

to wT and rearranging for the minima gives

wcor = (2R)
−1

2MTP , (6.3)

where R = MTM and wcor is the vector in R4 that contains the band weights to produce J

that has the maximum correlation with P . As there are no constraints on this optimisation, it
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would be an almost certainty that J would have pixel values that are outside the viewing range

and have different global statistics to I.

To address the former we could, in a similar manner to that used in Chapter 3, produce

a convex set Q in R4 from an intersection of half-spaces. If our wcor were to exist outside of

this set then we would need to compute the point on its hull that would produce J with the

greatest correlation with P . This is undesirable as it would involve computing a convex hull in

4 dimensions thus increasing the complexity of our solution.

Instead we choose to truncate the vector space by adding a constraint on the statistical mean

of our mapping. In the next section we shall describe how we can reduce the dimensionality of

our vector space by 2 by introducing constraints on image energy and mean.

6.2 Multispectral Brightness Preserving Greyscale Con-

version

In Chapter 3 we showed that by linear mapping it was possible to create a greyscale that

possessed the same average brightness as the original colour image. We shall now show that the

addition of an extra dimension to our vector space (V) from R3 to R4 we can accommodate the

NIR band to the brightness preserving multiband-to-greyscale.

Previously we defined the brightness of a pixel for three band colour image to be the arith-

metic sum of the RGB triplet. Extending this to account for the NIR

I =
R+G+B +NIR

4
, (6.4)

which is the intensity mapping used in the GIHS method (Tu et al., 2001). Preserving this

averaging of the bands is a simple alteration of our previous equality constraint from Chapter 3

(Eq.(3.7))

B =
{
w ∈ R4 : wTµ = uTµ

4

}
⊆ R4, (6.5)

which we also apply to the energy

E = {w ∈ R4 : wTu = 1} ⊆ R4 (6.6)
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and

wT = [α β γ ε], uT = [1 1 1 1], µT = [µR µG µB µNIR], (6.7)

with L = B ∩ E; a space that has two 4-dimensional basis vectors N in R4

N = Null


uT

µT


 . (6.8)

To ensure no pixel clipping in our greyscale we again pose two inequalities on each pixel (hi)

Pi = {w ∈ R4 : wThi = k | i = 1, 2, ..., 2n, 0 ≤ k ≤ 1}. (6.9)

Solving for the intersection of halfspaces Pi in L (described in Chapter 3) gives us a 2-

dimensional convex set Q and this defines all possible band weightings that will give us a greyscale

J that preserves the mean and energy of our multiband image. Using multivariate calculus, we

shall now show how we can obtain the band weights for J that has a maximum correlation with

P subject to the constraints defined by Eq. (6.5) and (6.6).

6.2.1 Constrained Maximum Correlation

In Section 6.1, we solved for the solution of maximum correlation using a least squares optim-

isation. Using the Lagrangian Multiplier method (Jordan and Smith, 1997) we can produce the

solution for maximum variance subject to our equality constraints. Our optimisation becomes

min
w
‖Mw − P ‖2 s.t. w ∈ L. (6.10)

Expanding out

L(w,λ) = wTMTMw − 2wTMTP + PTP − λ1

(
wTu− 1

)
− λ2

(
wTµ− uTµ

4

)
, (6.11)

where λ is a vector that contains the Lagrangian Multipliers λ1 and λ2. Continuing with the
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Lagrangian Multiplier method, we differentiate Eq. (6.11) with respect to each variable

∂L

∂wT
= 2Rw − 2MTP − λ1u− λ2µ = 0,

∂L

∂λ1
= wTu− 1 = 0,

∂L

∂λ2
= wTµ− uTµ

4
= 0,

(6.12)

which gives us a system of linear equations which we can solve using the methods of linear

algebra wcor

λ

 =

2R −AT

A 0


−1 M

k

 , (6.13)

where wcor is the vector that defines the solution for maximum correlation in R4 subject to L, λ

the vector containing the Lagrangian Multipliers, M is a vector from 2MTP and lastly k and

A a vector and matrix that contain the constants and coefficients of our equality constraints

respectively.

As in Section 6.1, our wcor could produce band weights for an image that was beyond the

dynamic range of our display and that we would need to find the closest correlation vector on

the 2-dimensional convex set Q. In the next section we shall instead propose that by adding

an additional constraint on the variance of our J , we can reduce our solution space down to a

single dimension, thereby simplifying the process of finding the point of nearest correlation.

6.3 Positive-Definite Quadratic Form and the Hyper-Ellipse

To satisfy a complete statistical matching operation during our linear mapping process we must

produce an additional constraint that preserves the statistical variance. Recall that our variance

is defined by our quadratic form K = wTΣw, and this describes the equation of a hyper-ellipse

in non-homegeneous coordinates. For ease of description we shall refer to a 2-dimensional ellipse.

Performing singular value decomposition (SVD) on our covariance matrix (Σ) decomposes

it into a matrix of eigenvectors (U) and eigenvalues (S). The S matrix contains zeros with the
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(a) wTΣw = 1
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(b) wTSw = 1

Figure 6.1: (a) Ellipse that is described by the positive-definite quadratic form. (b) Rotated
ellipse using the eigenvector basis.

eigenvalues (λ1...λd) in descending order on the diagonal

Σ = USUT. (6.14)

The presence of off-diagonal zeros in S and the orthogonal property of U means that if we

rearrange Eq. (6.14) for S

S = UTΣU (6.15)

and use it as our new covariance matrix in our quadratic form

wTSw = wTUTΣUw, (6.16)

then we have rotated Σ and our quadratic form now describes the standard equation of an ellipse

(see Figure. 6.1).

The major a =
√

K/λ2 and minor b =
√

K/λ1 semi-axis of our ellipse can now be calculated

from S and K as
√

K
√
S−1. As we saw from Chapter 3, as we increase the Euclidean magnitude

of w the variance K increases. Geometrically, this equates to our ellipse increasing in area while

maintaining its aspect ratio. In our original frame of reference, the semi-major/minor axis of

this ellipse can now be calculated from

M =
√

KU
√
S
−1
, (6.17)
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where the rows of M define the axis-vectors in our vector space. For our purposes we wish to

preserve the variance of our mapping subject to equality constraints. Fundamentally this is a

problem of solving for hyper-plane/hyper-ellipse intersections. We shall now describe how we go

about solving this problem.

6.4 Multispectral Brightness and Contrast Preserving Grey-

scale Conversion

For a given variance Kp, we define our hyper-ellipse in R4 as the set S of all the vectors w that

satisfy wTΣw = Kp (see Figure. 6.2(a) for an analogue in one fewer dimension)

S = {w ∈ R4 : wTΣw = Kp} ⊆ R4. (6.18)

Using the subscript o, let us also define Eo and Bo, the origins that have been translated

from E and B

Eo = {w ∈ R4 : wTu = 0} ⊆ R4, (6.19)

Bo = {w ∈ R4 : wTµ = 0} ⊆ R4. (6.20)

Again, L = E ∩ B defines the set from the intersection of two 3-dimensional hyper-planes

that produces a 2-dimensional plane in R4 (see Figure. 6.2(b)). Similarly Lo = Eo ∩Bo and this

represents L as a subspace that passes through the origin of R4. Let us define the projection of

all vectors w ∈ V onto Lo using the function

F : V→ Lo;w 7→NTw, (6.21)

where the two columns of the matrix N represent the 4-dimensional basis vectors of Lo in R4

and can be computed by

N = Null


uT

µT


 . (6.22)

The vectors g represent all the vectors in Lo and can be defined by g = F (w). Likewise we
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can define all vectors g using the basis of our original vector space V with w = F ′(g)

F ′ : Lo → V; g 7→Ng. (6.23)

W = L ∩ S defines the set that is the intersection of the 2-dimensional plane L with the

4-dimensional hyper-ellipse S, and this produces a 2-dimensional ellipse W (see Figure. 6.2(c)-

(d)) with a centre coordinate value wc from the origin of R4. Ellipse W defines the spectral

band weights that preserve our variance from linearly mapping subject to our linear equality

constraints. We know that the positive-definite quadratic form defines the equation of an ellipse,

with the positive-definite matrix defining the ratio and orientation of its major and minor semi-

axis. Using Eq. (6.23) with Eq. (6.18) we can project Σ onto Lo and this provides us with the

positive-definite matrix ΣN that is needed to describe W

Xo = {wTΣw ∈ Lo : gTNTΣNg = gTΣNg = Kp} ⊆ R4, (6.24)

where ΣN = NTΣN is the positive-definite matrix that we need to describe our ellipse W and

the set Xo = Lo ∩ S (see Figure. 6.2(e)).

This basis N is computed as a subspace that passes through the origin of R4 which means

that Eq. (6.24) describes the ellipse Xo that possesses axis magnitudes that are larger (although

the ratio and orientation are correct) than the one we seek to describe W (an ellipse formed

from a plane intersecting an origin centred ellipsoid will be largest when the plane intersects

the origin, see Figure. 6.2(e)-(f)). From the construction of our constraints E and B, L will not

naturally pass through the origin, which means that the ellipse W that we seek is smaller than

that computed by Eq. (6.24) (see Figure. 6.2(d) and (f)). We therefore must adjust the value of

the variance we wish to preserve (Kp) so that the major and minor semi-axis of Xo are reduced

to the same major and minor semi-axis as W. We shall now describe how we alter Kp so that it

produces the ellipse that has the same major and minor semi-axis as W.
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(a) S; the ellipsoid describing the variance we wish
to preserve

(b) L = E ∩ B; plane produced by intersection of
the equality constraints

(c) W = L ∩ S; the intersection of the equality
constraints with the ellipsoid S

(d) W looking down the normal of L; this is the
desired ellipse subject to our equality constraints

(e) Xo = Lo ∩ S; translation of our equality
constraints to the origin

(f) Xo looking down the normal of Lo; translation
causes an increase in size of our ellipse

Figure 6.2: Geometric representation of our sets and their intersections. Subfigures (d) and (f)
are the same as (c) and (e) respectively. The different perspective is provided to aid

understanding.

101



6.4.1 Minimum Variance and the Hyper-Ellipse Centre

Subject to our linear equality constraints, the centre of our ellipse wc can be described by the

minimum variance (wT
c Σwc = Kc < Kp) in R4. At this point L is tangent to a smaller ellipsoid

Sc = {w ∈ R4 : wTΣw = Kc} ⊆ R4, (6.25)

where the normal vector on Sc at wc is parallel to the vector that is normal to L.

To find this point in R4 that defines the lowest variance subject to these equality constraints

we must solve the following optimisation

min
w

wTΣw s.t. w ∈ L, (6.26)

which we can do by again using the Lagrangian Multiplier method

L(w,λ) = wTΣw − λ1

(
wTu− 1

)
− λ2

(
wTµ− uTµ

4

)
. (6.27)

As before, we differentiate Eq. (6.27) with respect to each variable

∂L

∂wT
= 2Σw − λ1u− λ2µ = 0,

∂L

∂λ1
= wTu− 1 = 0,

∂L

∂λ2
= wTµ− uTµ

4
= 0

(6.28)

and solving a system of linear equations provides the general solution

wc

λ

 =

2Σ −AT

A 0


−1 0

k

 , (6.29)

where wc is the vector that defines the solution for minimum variance in R4, λ the vector

containing the Lagrangian Multipliers and lastly k and A a vector and matrix that contain the

constants and coefficients of our linear constraints respectively.

Now that we know wc, we can compute Kc using the quadratic form in Eq. (6.26).
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In translating L to the origin, the ellipsoid defined by a variance of Kc goes to zero. In order

to preserve the proportions of the major and minor semi-axis of S and W, we subtract Kc from

Kp to form ellipsoid S− (see Figure. 6.3(c))

S− = {w ∈ R4 : wTΣw = K} ⊆ R4, (6.30)

where K = Kp −Kc.

The intersection of S− with Lo gives us the ellipse we seek (W) at the origin (Wo) of our

vector space, Wo = S− ∩ Lo, see Figure. 6.3(c)-(d). So,

Wo = {g ∈ L : gTΣNg = K} ⊆ R4. (6.31)

Now we have the ellipse we seek at the origin, we can use SVD

ΣN = UNSNU
T
N . (6.32)

Following this we are now in a position to follow the steps in Section (6.3) to obtain the major

and minor semi-axis of Wo

MN =
√

KUN

√
S
−1

N . (6.33)

Algorithm. 4 summarises these steps to compute the major and minor semi-axis of the el-

lipse/plane intersection that we have just described in this subsection.

Algorithm 4 Ellipsoid-Plane Intersection.

1: procedure nullEllipse
2: Input: Image covariance matrix Σ, null-space basis N of equality constraints.
3: Output: Matrix that contains the semi-minor/major axis MN of the ellipse generated

from the plane/ellipsoid intersection.
4: wc ← min

w
wTΣw . Solve using Lagrangian Multiplier method Eq. (6.29)

5: Kc ← wT
c Σwc

6: K ← Kp −Kc . Kp is the variance we wish to preserve
7: ΣN ←NTΣN
8: UNSNU

T
N ← ΣN . singular value decomposition

9: MN ←
√

KUN

√
S
−1

N

10: Return MN,UN ,SN ,ΣN ,K
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(a) W = L ∩ S; the intersection of the equality
constraints with the ellipsoid S. Ellipse centre is

at wc ∈ R3

(b) W looking down the normal of L; this is the
desired ellipse subject to our equality constraints.

wc is the centre of the ellipse

(c) Wo = S− ∩ Lo; S reduced by change in
variance produced from moving wc to origin

(d) Wo looking down the normal of Lo; our desired
ellipse centred at the origin of our vector space

Figure 6.3: Geometric representation of our sets and their intersections. Subfigure (b) is the
same as (a). The different perspective is provided to aid understanding.

6.4.2 Ellipse and Line Segment Intersections

In Chapter 3 we described the intersection of half-spaces to provide a convex set (that we call Q

in this chapter) that defined band weights for linearly mapping a colour image to its greyscale.

This problem was solved for a 1-dimensional space L and our convex set was simply a line

segment. Solving the same problem with four bands means that L is now 2-dimensional; the

edges of our convex set are now formed of multiple line segments. The intersection of these edges

with the ellipse W (in addition to the elements of W ∈ Q) will define the band weights that will

preserve our variance Kp for our linear mapping.
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To calculate our intersection of the line segments that make up the edges of Qo (Qo is our

convex set Q that has been translated to the origin by wc), we must formulate Wo into the

general form of an ellipse (so we don’t have any bilinear terms in our equation, see Section 6.3).

Let’s begin by defining our rotation function

R : g ∈ L : Lo → D, g 7→ UNg (6.34)

and its inverse

R−1 : d ∈ D : D→ Lo,d 7→ U−1
N d, (6.35)

where D is our rotated subspace L and d represent all of the rotated g vectors. Applying this

rotation to our ellipse Wo

R(Wo) = {d ∈ D : dTSNd = K} ⊆ R4. (6.36)

Let us express the equations of our line segments as

R(Qo) = {ρ ∈ R : d = ρdy + (1− ρ)dx, 0 ≤ ρ ≤ 1} (6.37)

where ρ is the mixing coefficient in R and dx and dy are the rotated vertices of Qo. Substituting

these line segments into our quadratic form that describes our ellipse R(Wo) results in a quadratic

equation of the form (Finlayson and Matheson, 2012),

xρ2 + yρ+ z = 0, (6.38)

where

x =
(
dTx SNdx

)
− 2

(
dTx SNdy

)
+
(
dTy SNdy

)
,

y =
(
dTx SNdy

)
−
(
dTx SNdx

)
,

z =
(
dTx SNdx

)
−K,

(6.39)
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which can be solved for ρ using the quadratic equation

ρ =
−y±

√
y2 − 4xz

2x
. (6.40)

The value y2−4xz is called the determinant and the number of real solutions to the equation

depends on whether the determinant is positive; the line will intersect twice, negative; the line

and ellipse do not intersect or zero; the line and ellipse are tangent (Stephens, 2017, Weisstein,

2019a, Weisstein, 2019b). Filtering out the lines with determinants less than zero is shown by

lines 8 to 10 of Algorithm. 5 and only allows ρ to be calculated for lines that will intercept the

ellipse.

Substituting the remaining coefficients from Eq. (6.39) into the quadratic equation (Eq. (6.40))

provides the values of ρ where the line defined by the vectors dx and dy intersect with the ellipse

defined by Eq. (6.36). As we are only interested in the points where the line segment intersect

(as only the segment make up the boundaries of our convex set and not the entire line itself)

we dismiss lines that correspond with ρ values less than 0 or greater than 1 (lines 11 to 12 of

Algorithm. 5).

Substituting our computed values of ρ from Eq. (6.40) into the equation of our line segment

Eq. (6.37) gives us our ellipse/line-segment intersection, dx (line 13 of Algorithm. 5).

Algorithm 5 Ellipse Line-Segment Intersections.

1: procedure ellipseLineX
2: Input: S,K and radially ordered vertices of convex set Q
3: Output: line segment intersections with ellipse, dx

4: Insert a copy of the first column of Q as (n+1) column of Q
5: Qi, Qi+1 ← vertices of line segment
6: for i from 1 to length of Q− 1 do
7: xi, yi, zi ← Solve coefficients of contrast form, Eq. (6.39)
8: if y2

i − 4xizi < 0 then
9: Ø← xi, yi, zi

10: ρi ←
(
−yi ±

√
y2
i − 4xizi

)
/2xi

11: if 0 > ρi > 1 then
12: Ø← ρi
13: dx

i ← Qi+1 + (1− ρi)Qi

14: Return dx
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6.4.3 Enhanced Correlation

In Section 6.2.1 we described how to calculate the band weights (wcor) that produces a greyscale

that has maximum correlation with P . A problem arises in that wcor is very unlikely to lie on

our ellipse W. As we wish to prioritise preserving the image variance, we must instead find the

point on W that would produce a correlation that is as close to the one produced with the band

weights defined by wcor. Like variance, correlation can be described by a quadratic form which,

in two dimensions, describes an ellipse. Recall that a correlation matrix is just a normalised

covariance matrix and will possess the same eigenvectors and eigenvalues. In other words, with

regard to variance and correlation, the metric space is anisotropic, the incremental change in

correlation/variance depends on the vector direction through the space. In this section we shall

show that we can simply use the Euclidean metric from the origin to find the shortest distance

to the ellipse W. To apply the Euclidean magnitude as our metric of distance we have transform

the vector space such that it is isotropic, the incremental change in variance/correlation is

independent of direction and we can do this by transforming the covariance matrix into the

identity matrix I (Golub and Loan, 1996, Finlayson and Matheson, 2012).

With reference to the pseudocode shown by Algorithm. 6, we use the mappings described in

Section 6.4 to map wcor to dcor (line 6 of Algorithm. 6) and here the positive-definite matrix

that describes the elliptical space is described by the eigenvalues (SN) of ΣN. In this elliptical

space, dcor will define a point on the ellipse Kcor = dTcorSNdcor (line 7 of Algorithm. 6)

Wcor
o = {d ∈ D : dTSNd = Kcor} ⊆ R4, (6.41)

which will sit on the circle where our metric space is isotropic

Ocor
o = {d ∈ D : dT

√
S

T

NI
√
SNd = Kcor} ⊆ R4. (6.42)

Transforming our elliptical space to a spherical one also means that the ellipse that describes

our variance K becomes

Oo = {d ∈ D : dT
√
S

T

NI
√
SNd = K} ⊆ R4. (6.43)
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(a) Ellipse that defines our variance s.t. our
equality constraints

(b) Close-up to show resolution between
dcor(magenta) and d∼

cor (black)

Figure 6.4: Example of the geometry of our ellipse R(Wo) in D. The coloured markers are as
follows: Brown = ellipse centre, red = vertices of R(Qo) , green = dx, cyan = dI = u/4→ d,

magenta = dcor, black = d∼cor.

The Euclidean magnitude from
√
SNdcor to the circle that describes our transformed variance

Oo is a straight line through the origin. So by modulating
√
Sdcor so that it has a magnitude

K, we can find the intersection with Oo to be

√
K

Kcor

√
SNdcor. (6.44)

Transforming the vector space (and the vector described by Eq. (6.46)) back to an ellipsoid to

give us the vector

d∼cor =
√
S
−1

N

√
K

Kcor

√
SNdcor, (6.45)

which cancels down to (line 7 of Algorithm. 6)

d∼cor =

√
K

Kcor
dcor, (6.46)

which is a vector whose inner product is scaled by the ratio of K to Kcor. In other words, the

vector dcor has been linearly scaled such the vector d∼cor lies on our ellipse Wo, see Figure. 6.4.

All that is left to do is to check if this vector lies within the elliptical line segment defined by

the vectors dx. If it does, then we have our solution. If it does not, then we select the dx closest

to it. Either way, we map our vector back to R4 to obtain our final band weights. So, inverting
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Algorithm 6 Enhanced Correlation.

1: procedure enhCor
2: Input: Multiband image M , panchromatic image P , basis N
3: Output: vector that defines band weights to preserve variance and enhanced correlation
d∼cor

4: Compute wcor . Eq. (6.13)
5: UN ,SN ,wc,K ← nullEllipse (Σ,N) . Algorithm. 4
6: Map wcor to dcor ← UT

N ∗ ((wcor −wc)
T ∗N)T

7: Kcor ← dTcorSNdcor
8: Compute d∼cor . Eq. (6.46)
9: Return d∼cor

our rotation; R−1(dx) : dx → gx, mapping back to R4; F ′(gx) : gx → wx
o and translating back

by wc to obtain our line segment ellipse intersections, wx; w = wx
o +wc in our original vector

space V.

We include Algorithm. 7 as our final pseudocode that brings together all of our work in this

chapter for producing our approximation of the panchromatic image. To aid the reader we shall

review the process.

Lines 5 to 11 computes the basis of the intersection of our equality constraints, where we check

for degeneracy (line 5) of our brightness preserving constraint (discussed in the next subsection).

Lines 12 and 13 defines and computes the intersection of our half-spaces (Section 3.2.2) in

the basis of these equality constraints; the polytope formed from this step defines all the possible

band weightings available to produce a linearly mapped and visually meaningful greyscale subject

to our constraints.

Line 14 calls Algorithm. 4; our procedure for computing the intersection of our linear and

quadratic equality constraints. This involved solving for the intersection of hyper-planes with a

hyper-ellipse; a solution we presented in Section 6.4.1.

Lines 15 to 17 takes the vertices that we computed from line 13, maps them back to our

original vector space (Eq. (6.35)), translates them by wc and maps them back (Eq. (6.21))

to the basis defined by the intersection of our equality constraints (line 16). These translated

vertices are finally rotated (Subsection 6.4.2 Eq. (6.34)) by the eigenvector matrix UN .

Line 18 calls Algorithm. 5; our procedure for computing where our convex polytope formed

from the vertices in d intersects the our ellipse defined on line 14. We discussed this in Subsec-
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tion. 6.4.2.

Line 19 calls Algorithm. 6; our procedure for computing the band weights for producing our

greyscale J subject to all of our constraints that has a greater correlation than I with P .

Lines 21 to 24 ensure that these band weights from line 19 produce a greyscale with no pixel

clipping. If it does, the closest point (using the Euclidean metric) where our convex polytope

intersects our variance preserving constraint is used.

Lines 25 to 28 reverses all of our mappings (Eq. (6.23)), translations and rotations (Eq. (6.35))

to bring our final set of band weights (from lines 21 to 24) back to our original vector space.

Algorithm 7 Contrast and Brightness Preserving Panchromatic Approximation.

1: procedure contrastBrightnessPreservePan
2: Input: Spectral bands as an array of pixel inequalities P , covariance matrix Σ and the

panchromatic image P
3: Output: Greyscale image J and the vector that contains the band weights w
4: IT ← [1/4, 1/4, 1/4, 1/4] . Interior point
5: if µR = µG = µB = µNIR then . Degenerate case

6: A←
([
u, µ, ψ

]T)
7: k← [1,µI,ψI]

T

8: else
9: A←

([
u, µ

]T)
10: k← [1,µI]

T

11: N ← Null (A)
12: Π← [PN , (PI + b)] . Π = P ∩ L
13: v ← intersectHalfspaces (Π) . Algorithm. 1
14: SN,UN,wc,K← nullEllipse (Σ,N) . Algorithm. 4
15: wT ←

(
NTv + IT

)
−wc

16: g ←NTw
17: d← UNg
18: dx ← EllipseLineX (SN,K,d) . Algorithm. 5
19: d∼cor ← enhCor (M ,P ) . Algorithm. 6
20: insert d∼cor as last vector in dx

21: if dx has 5 vectors then
22: dx ← vector associated with the median angle from the radially sorted vectors in dx

that coincide with the same sign as d∼cor
23: else
24: dx ← vector associated with the median angle from the radially sorted vectors in dx

25: gx ← U−1
N dx

26: wx
o ←Ngx

27: w ← wx
o +wc

28: Construct J using the band weights contained in w
29: Return w, J
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6.4.4 Degenerate Case

Unlike the colour-to-greyscale case, degeneracy in the equality constraints is not a simple matter

of increasing the dimensionality of our convex set and finding the correct vertex. This is due

to our solution being reliant on finding the intersection of a line segment with an ellipse. For

example, if we were to add just one extra dimension to L then it would possess 3 basis vectors

in R4 which increases the dimensionality of our convex set; the line segments that define the

edges of Q become convex faces, our ellipse W becomes an ellipsoid and their intersection creates

ellipses and not points. The option available to us in these instances would be to add another

equality constraint to reduce L back to 2 dimensions. One such constraint would be to add one

that allows for us to control the range (ψ) of our J mapping. For example, if we decided to

preserve the range of I then

R =

{
w ∈ R4 : wTψ = uTψ

4

}
⊆ R4, (6.47)

where

ψT = [ψR ψG ψB ψNIR]. (6.48)

There are two points worth noting with this constraint: 1) it can be applied even when

we are not dealing with the degenerate case, and this would reduce the basis of L down to a

single vector in R4. Consequently we would then be looking at where this single line segment

in L intersects W to find our solution. 2) This constraint is only viable provided that at least

one band in M has a range different to 1. Otherwise it would be degenerate with the energy

preserving constraint.

6.5 Results and Discussion

We tested our mean and variance preserving multispectral-to-greyscale conversion using five

images collected from three different satellites. Images of Rio de Janeiro; 512×512 (Figure. 6.5 (a)

and (b)) and Tripoli; 512×512 (Figure. 6.7 (a) and (b)) were taken with the World-View 3 (WV-

3), Stockholm; 512×512 (Figure. 6.9 (a) and (b)) and Washington DC 2048×2048 (Figure. 6.11
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(a) and (b)) the World-View 2 (WV-2) and lastly, Toulouse; 1024×1024 (Figure. 6.13 (a) and

(b)) with the Pléiades. In these figures, subfigure (c) represents our greyscale mapping J . We

have not included the intensity mapping I as there is no significantly noticeable difference with

J . The differences between the two (d) and the difference in their edge maps (f) are better

portrayed using the ratio method described in the subfigure captions.

Table. 6.1 shows the results for our greyscale mappings J which, with respect to I, possesses

a greater than or equal correlation with P . For the Toulouse image, we see a maximum increase

in correlation of 0.15%. Interestingly for this particular image there is no contribution of the

green band in producing J ; a consequence of prioritising preserving the global statistics over

maximising correlation. Additionally it is worth noting that for this image only P was synthet-

ically generated by the authors by averaging the green and the red bands followed by a series of

filtering steps. For the remaining images the increase in correlation is smaller and is especially

noticeable for the Tripoli image which sees no significant (at 4 decimal place accuracy) difference

from I, a result that is expected given that the band weights for this image are the closest to

those of I than the remaining four. This is portrayed with the difference map in Figure. 6.7(d)

where the image is dominated with grey values of 0.5, which is to say that J ≈ I. For the

remaining difference maps, despite there being only a small deviation in the correlations at 3

to 4 decimal places, more variation from 0.5 can be seen as random noise scatter or image edge

definition.

To show the differences between the edge maps produced using P − J and P − I we have

Table 6.1: Multispectral band weights for J and correlation data with the panchromatic image
across the five datasets.

Satellite Image
Weights for J Correlation with P

α β γ ε I J

WV-3
Rio de Janeiro 0.2748 0.2790 0.2359 0.2102 0.9517 0.9519

Tripoli 0.2580 0.2363 0.2555 0.2501 0.8527 0.8527

WV-2
Stockholm 0.3090 0.1152 0.3171 0.2588 0.8709 0.8710

Washington DC 0.3115 0.1861 0.2436 0.2528 0.7978 0.7979
Pléiades Toulouse 0.3113 0 0.4226 0.2661 0.8737 0.8750
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calculated images using the ratio

P − J
(P − I) + (P − J)

=
P − J

2P − I − J
. (6.49)

Computing the ratio of the edge maps in this way means that when I = J then the calculation

reduces to produce a greyscale pixel value of 0.5. Instances when P = J will result in a black

pixel and conversely a white pixel is produced when P = I. Subfigure (f) in Figures. (6.5), (6.7),

(6.9), (6.11) and (6.13) show these differences in the edge maps where the largest difference can

be seen for the Rio de Janeiro and Toulouse datasets.

Subfigures (a) and (b) in Figures. (6.6), (6.8), (6.10), (6.12) and (6.14) show the geometry of

our solutions and the image histograms for I (subfigure (c)), J (subfigure (d)) and P (subfigure

(e)). The geometry of our solution shows us looking down the normal of D where we see ellipse

R(Wo), the vertices d (red) of the convex set R(Q), the intersection of this convex set with R(Wo)

(green), the vector of highest correlation subject to our equality constraints dcor (magenta) and

its projection to Wo from the originwc, d
∼
cor (black) and lastly the transformation of the intensity

mapping vector to D (cyan).

As we have previously said, the images where d∼cor exists outside the elliptical line segments

(defined by the intersection of Wo with the convex set Q) will produce band weights for J that

will cause image clipping. In this instance we dismiss it and take the elliptical line segment

vertex that is closest to d∼cor. This occurs for two images; Tripoli and Toulouse (Figures. 6.8(b)

and 6.14(b)). For these images we select the bottom and top line segment intersections (green)

respectively. Coincidently these images also possess the respective lowest and largest correlation

differences with P .

The remaining three images produce not only d∼cor within Q but also dcor. This means that

should we wish to release our constraint on variance, we could produce a normalised image J

with an even greater correlation with P while preserving the mean of M .

With respect to I, the Tripoli image shows very little difference in band weights and correl-

ation (see Table. 6.1) with P and this is reflected in subfigure (b) where d∼cor approximates dI,

with a difference of 0.02 in their y vector components. This is in contrast to the Toulouse image,

which has a far larger difference of approximately 0.5.
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Given the very similar measures of correlation for J and I to P it is expected that their

histograms look nearly identical to each other. The highest correlation to P was for the image

Rio de Janeiro (0.9519) and this can be visually seen in how close the histograms of J , I and

P all appear for this dataset. Disappointingly P contains pixel values greater than 1; a side

effect from the image pre-processing statistical matching procedure. This puts our solution at

an immediate handicap as our intersection of half-spaces computation restricts our convex set Q

to only allow for band weights to take values between 0 and 1. This problem also restricts our

solution for the Stockholm image in addition to the peak at around a pixel value of 0.2, where

I and J have approximately 10,000 pixels missing (which accounts for approximately 4% of the

image) from this bin.

The remaining image histograms show greater dispersion from P . The Washington DC

dataset gives the lowest correlation for I and J to P which we attribute to the presence of

additional pixel values in the 0.2 pixel bin that are missing from P . Further to this disparity,

P appears to possess a significant amount of pixels at around the 0 and 0.82 values that are

missing from J .
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(a) M (b) P

(c) J (d) J/(J + I)

(e) P − J (f) (P − J)/(2P − I − J)

Figure 6.5: Rio de Janeiro captured from the WV-3 satellite (a) RGB, (b) panchromatic, (c)
our linear mapping J that preserves variance and mean of I, (d) differences between J and I,
(e) edge map produced from P −J and (f) difference between the edge maps P −J and P− I.
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(a) Geometry of our solution (b) Close-up geometry of our solution

(c) Histogram of I (d) Histogram of J

(e) Histogram of P

Figure 6.6: Rio de Janeiro: (a)-(b) Geometry of our ellipse R(Wo) in D. The coloured markers
are as follows: Brown = ellipse centre, red = vertices of R(Qo) , green = dx, cyan = u/4→ d,

magenta = dcor, black = d∼cor, (c) I, (d) J and (e) P histograms.
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(a) M (b) P

(c) J (d) J/(J + I)

(e) P − J (f) (P − J)/(2P − I − J)

Figure 6.7: Tripoli captured from the WV-3 satellite (a) RGB, (b) panchromatic, (c) our linear
mapping J that preserves variance and mean of I, (d) differences between J and I, (e) edge

map produced from P − J and (f) difference between the edge maps P − J and P− I.
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(a) Geometry of our solution (b) Geometry of our solution: Enlarged

(c) Histogram of I (d) Histogram of J

(e) Histogram of P

Figure 6.8: Tripoli: (a)-(b) Geometry of our ellipse R(Wo) in D. The coloured markers are as
follows: Brown = ellipse centre, red = vertices of R(Qo) , green = dx, cyan = u/4→ d,

magenta = dcor, black = d∼cor, (c) I, (d) J and (e) P histograms.
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(a) M (b) P

(c) J (d) J/(J + I)

(e) P − J (f) (P − J)/(2P − I − J)

Figure 6.9: Stockholm captured from the WV-2 satellite (a) RGB, (b) panchromatic, (c) our
linear mapping J that preserves variance and mean of I, (d) differences between J and I, (e)
edge map produced from P − J and (f) difference between the edge maps P − J and P− I.
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(a) Geometry of our solution (b) Geometry of our solution: Enlarged

(c) Histogram of I (d) Histogram of J

(e) Histogram of P

Figure 6.10: Stockholm: (a) Geometry of our ellipse R(Wo) in D. The coloured markers are as
follows: Brown = ellipse centre, red = vertices of R(Qo) , green = dx, cyan = u/4→ d,

magenta = dcor, black = d∼cor, (c) I, (d) J and (e) P histograms.
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(a) M (b) P

(c) J (d) J/(J + I)

(e) P − J (f) (P − J)/(2P − I − J)

Figure 6.11: Washington DC captured from the WV-2 satellite (a) RGB, (b) panchromatic, (c)
our linear mapping J that preserves variance and mean of I (d) differences between J and I,

(e) edge map produced from P −J and (f) difference between the edge maps P −J and P− I.
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(a) Geometry of our solution (b) Geometry of our solution: Enlarged

(c) Histogram of I (d) Histogram of J

(e) Histogram of P

Figure 6.12: Washington DC: (a) Geometry of our ellipse R(Wo) in D. The coloured markers
are as follows: Brown = ellipse centre, red = vertices of R(Qo) , green = dx, cyan = u/4→ d,

magenta = dcor, black = d∼cor, (c) I, (d) J and (e) P histograms.
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(a) M (b) P

(c) J (d) J/(J + I)

(e) P − J (f) (P − J)/(2P − I − J)

Figure 6.13: Toulouse captured from the Pléiades satellite (a) RGB, (b) panchromatic, (c) our
linear mapping J that preserves variance and mean of I, (d) differences between J and I, (e)
edge map produced from P − J and (f) difference between the edge maps P − J and P− I.
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(a) Geometry of our solution (b) Geometry of our solution: Enlarged

(c) Histogram of I (d) Histogram of J

(e) Histogram of P

Figure 6.14: Toulouse: (a) Geometry of our ellipse R(Wo) in D. The coloured markers are as
follows: Brown = ellipse centre, red = vertices of R(Qo) , green = dx, cyan = u/4→ d,

magenta = dcor, black = d∼cor, (c) I, (d) J and (e) P histograms.
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6.6 Complexity Analysis

In this section we shall discuss the time complexity of our algorithm. Our algorithm relies on

three functions: singular value decomposition (SVD), convex hull and matrix inversion. The

complexity is determined by the method that is used to carry out the function, for example, in

Chapter 3 we mentioned that if the mergesort was used instead of quicksort then the complexity

would change from O(n2) to O(n log n). Let us assume the worst case for the SVD and matrix

inversion and that both have a complexity of O(d3) (Pan and Chen (1999), Tian et al. (2014)),

where d is the dimensionality of the square matrices.

In our algorithm SVD can be used to compute the null spaces of our two 3-dimensional

hyper-planes in R4 by finding the eigenvectors associated with the zero eigenvalue. Additionally

we carry out SVD on a 2×2 matrix when we compute the eigenvalues of our positive-definite

matrices. For our constrained minima (using the Lagrangian Multiplier method) optimisation

we invert a 6×6 matrix and this is the upper limit for our worst case; a complexity of O(63). The

time it takes to compute the convex hull in the plane depends on the number of different pixels

(n) in an image, with the fastest method having a complexity of O(n log n). This means that we

would need at least 107 points in the plane for the complexity of the convex hull to equal that of

our matrix inversion. The J images that we use in our experiment range have histograms that

occupy a minimum of 80% of the 256 available bins between 0 and 1. This means that the range

in pixel values for our image is 205 in the worst case which if we assume that no multispectral

band pixels are being mapped to the same shade of grey means we have 205 different pixels and

410 points in the plane (2 inequalities per different pixel). As 410 > 216 we conclude that the

convex hull function is the limiting factor for time complexity over that of the functions based

on arithmetic operations.

6.7 Conclusion

In this chapter we produced a novel solution to linearly mapping four spectral bands to a single

greyscale J such that the mean and variance of the intensity mapping I is preserved. To carry

out this task we used multivariate calculus to 1) create a novel solution to the intersection of a
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hyper-ellipse (or hyper-sphere) with a hyper-plane and 2) produce a method of enhancing the

correlation of J with the higher resolution panchromatic image P . Both of these solutions can

be extendeds to imagery of any number of dimensions d.

To ensure that our image J had brightness values within the dynamic range [0 1] we imposed

inequality constraints on our multispectral band (M) pixels. Solving these inequalities in an

intersection of half-space framework provided for us our convex set that defined band weighting

vectors needed to producing a normalised image that preserved the statistical mean of I. To

preserve image variance the problem became one of finding where this convex set intersected an

ellipse. Subject to our linear equality constraints, this problem could be solved in 2 dimensions,

(thus limiting the complexity of our method to that of creating convex hulls in the plane) by

limiting the number of bands in M to four.

We tested our solution on five datasets from three different satellites and we found that with

respect to I, J had a greater or equal correlation with P , with the highest increase being 0.15%.

In the next chapter we seek to apply our J images to component substitution based pan-

sharpening methods. We shall evaluate the performance of doing this using Wald’s protocol and

standard evaluation metrics.
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Chapter 7

Multispectral Panchromatic

Sharpening: Evaluation

In the previous chapter we demonstrated that by extending the dimensionality of our vector

space from 3 to 4, we could modify our convex model so that it could be used for a brightness

preserving multispectral-to-greyscale. We then went on to show how we could further adapt

our solution to linearly map a four band image into a normalised greyscale which preserved the

variance of the intensity mapping while increasing its correlation with the panchromatic.

It is well known that the effectiveness of component substitution (CS) methods for panchro-

matic sharpening is limited by the correlation of I with P . In this chapter we wish to see if

we can improve on these methods by employing our new greater correlated image J . Using the

the freely available toolbox that accompanies the work of Vivone et al. (2015) as a basis for our

experiments, we incorporate our imagery into their implementation and process the results using

standard metrics provided by the authors.

This chapter follows a standard experimental methodology. We shall first introduce the pro-

cess of how pan-sharpened images are evaluated followed by outlining our experimental design.

We shall then present the results of the pan-sharpened images and their evaluation scores before

finishing with a conclusion.
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7.1 Introduction

The aim of panchromatic sharpening algorithms is to inject high-frequency panchromatic in-

formation into the lower resolution spectral bands. The ideal outcome from this process is to

produce a colour image that would be identical to the one captured had the spatial resolution

of the spectral band sensors been the same as the panchromatic sensor. If this high-resolution

multispectral image was available, then a sensible post-sharpening evaluation would be to then

measure the difference between the two images.

Unfortunately the desired high-resolution image (typically referred to as the ground-truth)

from which a comparison can be made is not usually available. A solution to this problem would

be to degrade the spatial resolution of a copy of the multispectral image followed by upsampling

it back to its original size. The original image can then be used as the ground-truth for the

pan-sharpened image in accordance with the criteria defined by Wald’s protocol (Wald et al.,

1997).

7.1.1 Wald’s Protocol

Let us summarise Wald’s protocol.

1. Our pan-sharpened image H, once degraded, should be as close as possible to the original

multispectral image M .

2. Our pan-sharpened image H should be as close as possible to the ground-truth T .

3. Each individual spectral band in our pan-sharpened image H should be as close as possible

to the corresponding spectral bands in the ground-truth T .

Reducing the resolution is carried out by applying a low-pass filter (LPF) and decimation

operator (characterised by a sampling factor equal to resolution ratio between the original pan-

chromatic and multispectral images) on the images. For an accurate representation of the

imagery at this reduced resolution, the choice of LPF must me made such that it simulates the

modular transfer function (MTF) of the satellite sensor.

To apply Wald’s protocol we must use similarity metrics between the pan-sharpened image

and the ground-truth. One such metric would be to sum the measure of variation between the
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vectors at each pixel,

SAM(Hi,Ti) = arccos
〈Hi,Ti〉
‖Hi‖ ‖Ti‖

(7.1)

which is known as the Spectral Angle Mapper (SAM). Here the subscript refers to a pixel, 〈·, ·〉

the inner/scalar product and ‖·‖ the Euclidean norm. The optimum value is when there is no

dispersion for the vectors between each image which would give a sum of 0.

A common metric that measures the similarity of two signals is the Root-Mean-Square Error

(RMSE),

RMSE(H,T ) =
√
E [(H − T 2] (7.2)

The RMSE is popular as it is used in other metrics like the Erreur Relative Globale Adimensionnelle

de Synthèse (ERGAS),

ERGAS =
100

R

√√√√1

d

d∑
n=1

(
RMSE(Hn,Tn)

µHn

)2

(7.3)

which is a scaled average of the band specific RMSE that has been normalised to the bands mean.

Another metric of choice that is based on statistical moments is the Universal Image Quality Index

or Q-index. Vivone et al. (2015) have eloquently written it in the form,

Q(H,T ) =
σH,T

σHσT

2µHµT

(µ2
H + µ2

T )

2σHσT
(σ2

H + σ2
T )

(7.4)

which, by order of appearance, shows that the metric is based on the correlation, brightness

and contrast between the images. The correlation coefficient is the ratio of the covariance to

the product of the standard deviations of the images. The standard deviation describes the

distribution of data around the mean pixel value. Covariance is the un-normalised measure

of the relationship between the bands of the image. Dividing through by the product of the

standard deviations of both images normalises the the covariance to lie within the range [-1, 1]

and this is what we call the correlation. The second term measures the proximity of the average

brightness of the pixels between the compared images and the third describes the similarity of

contrast.

Having described our evaluation metrics, we shall now outline our experimental design.
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7.2 Experimental Design

The aim of our experiment is to assess whether using a greyscale J that has the same global

statistics as I but with a greater correlation with P will produce superior evaluation metric

scores in component substitution pan-sharpening methods. For our image pre-processing, pan-

sharpening and evaluation we use the toolbox ‘Pansharpening Tool ver 1.3’, created by Vivone

et al. (2015). This toolbox can be downloaded for free at http://openremotesensing.net/

knowledgebase/a-critical-comparison-among-pansharpening-algorithms.

7.2.1 Image Acquisition and Pre-Processing

We acquired 16-bit multispectral (M) and panchromatic (P ) imagery from the Digital-Globe

(Maxar) sample series found at https://www.digitalglobe.com/samples. This imagery con-

sists of four datasets: Washington DC (2048 x 2048), Stockholm (512 x 512), Tripoli (512 x

512) and Rio de Janeiro (512 x 512). The spatial resolution of P is four times greater than that

of M for all of the datasets. The toolbox contains functions for image viewing (‘viewimage’)

and downsampling (‘resize image’ ). Using the viewimage function, we exported the normalised

datasets (M and P ) to use as the imagery in our experiment. Storing a copy of the original

M to be used as a ground-truth (T ), we followed the scheme outlined in Figure. 7.1 to produce

lower resolution imagery. In Figure. 7.1, ‘Reduce’ refers to downsampling that was carried out

using the ‘resize image’ function. This function and takes both T and P ∗ as inputs and produces

P and M∗; degraded version that have been reduced in resolution by a pre-defined integer (4

in our case). To bring M∗ back to the same size as T we perform upsampling (interpolate)

using the standard bi-cubic interpolator to produce M . With spatially degraded imagery to

pan-sharpen and a ground-truth to act as a basis for comparison, we are now equipped to apply

Wald’s protocol post pan-sharpening.

Out of the four Digital-Globe (Maxar) datasets, Washington DC and Stockholm were cap-

tured using the World-View 2 (WV-2) satellite whereas Tripoli and Rio de Janeiro used the more

recent World-View 3 (WV-3). Both of these satellites collect radiation from eight multispectral

bands with the WV-3 having eight additional short-wave-infrared sensors. As our method for

linear mapping only allows for four bands we limit our choice to blue, green, red and near-infrared
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Figure 7.1: Image pre-processing for Wald’s protocol. We produce the ground-truth (T ) and
degraded panchromatic (P ) and spectral bands (M). The fractions on the left refer to the

ratio in size with the original panchromatic image (P∗).

1, a decision that was based on what earlier satellites were restricted to (IKONOS, QuickBird).

The toolbox comes with the dataset Toulouse (1024 x 1024) that has been captured by the

French Space Agencies Pléiades aerial platform. This dataset comes without a panchromatic

image so the authors instead synthesised their own using the red and green bands, a series of

filtering steps and a nominal MTF for the panchromatic sensor.

The toolbox contains the gain values at Nyquist used in the MTF for several satellites, one

of which is the WV-2. Upon contacting the authors we were supplied the gain values needed

for the WV-3 imagery which we incorporated into their toolbox. These values are required in

the toolboxes ‘resize images’ function which generates our lower resolution imagery needed for

Wald’s protocol to be tested.

As we described in Chapter 6, CS pan-sharpening methods usually require statistically match-

ing the panchromatic image to the component it is replacing i.e. the intensity mapping.

To match the first two statistical moments of P to I it is common (Dou and Chen, 2008,

Rahmani et al., 2010, Vivone et al., 2015) to use the linear relationship

Psm =
σI
σP

(P − µP ) + µI , (7.5)
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where Psm, P , µP , µI , σP and σI are the statistically matched panchromatic and original

panchromatic image respectively. Mean centering P by subtracting its mean (µP ) allows for a

controlled way of altering the panchromatic images standard deviation (σP ). If the multiplier

for (P − µP ) is the ratio of the intensity images standard deviation (σI) to the σP then we

have matched the variance of P to I. The addition of a constant to this controls the new mean

of our output image; choosing the mean of I (µI) gives us our new panchromatic image which

possesses the same means and and variance as that of I.

Previously we have mentioned how statistically matching I to P reduces the chromatic

differences between M and our pan-sharpened image H. An additional effect is that statistical

matching P to I means that the edge map produced from their difference has a zero mean and

will therefore not change the global brightness of H from that of M post pan-sharpening.

7.2.2 Methods

With respect to I, our aim is to report on whether using our greyscale mapping J which has

a greater correlation with the panchromatic image P , than the standard intensity mapping I,

produces superior evaluation scores. With this in mind, we have selected the methods that allow

for CS of our mapping J with the intensity mapping I:

• Generalised Intensity-Hue-Saturation (GIHS) Tu et al. (2001)

• Brovey Transform (BT) Gillespie et al. (1987)

• Gram-Schmidt mode 1 (GS1) Laben and Brower (2000)

For the sake of comparison we have also included results from the methods:

• Gram-Schmidt mode 2 (GS2) Laben and Brower (2000)

• Principle Component Analysis (PCA) Chavez et al. (1991)

• Band Dependent Spatial Detail (BDSD) Garzelli et al. (2008)

• Partial Replacement Adaptive Component Substitution (PRACS) Choi et al. (2011)

• High Pass Filtering (HPF) Chavez et al. (1991)
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• Smoothing Filter Based Intensity Modulation (SFIM) Liu (2000)

These methods have been discussed in Chapter 5. The first five methods comprise the

classical CS techniques. BDSD and PRACS are the latest CS methods available in the toolbox

and will provide a reference as to how well the classical techniques that use J score. The last

two methods in the second list contain filter based approaches which we decided to include

because they are more selective at extracting high-frequency information from P and don’t

require complex transforms i.e. wavelets.

In the next section we shall present the imagery that have been pan-sharpened using these

methods.

7.3 Results and Discussion

Figures. 7.2 and 7.4 show the World-View 3 datasets; Rio de Janeiro and Tripoli, Figures. 7.6

and 7.8 show the World-View 2 datasets; Stockholm and Washington DC. Lastly, Figure. 7.10

shows the Pléiades dataset; Toulouse. To assist in demonstrating the pan-sharpening effects of

each algorithm we have included Figures. 7.3, 7.5, 7.7, 7.9 and 7.11. These figures show where

we have manually zoomed-in on the initial pan-sharpened images to better show the effects of

the sharpening.

Each of these figures show the ground-truth (T ), its degradation (M) and their outputs from

the various pan-sharpening algorithms. Where the (+) notation has been used for the methods

IHS, BT and GS defines where we have used our greyscale mapping J instead of I. To show the

differences between J and I we have, in a similar manner to Chapter 6, included the edge map

produced from P − J and its difference with the edge map P − I

P − J
2P − I − J

. (7.6)

Computing the ratio of the edge maps in this way means that when I = J then the calculation

reduces to produce a greyscale pixel value of 0.5. Instances when P = J will result in a black

pixel and conversely a white pixel is produced when P = I.

In Chapter 6, we saw for the dataset Tripoli the closeness in the coefficients that map M
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to J with respect to I and their near identical correlation with P . We also saw how this led

to identical edge maps between the two mappings when Eq. (7.6) was visualised (shown again

in Figure. 7.4 where the image was dominated by pixel values at 0.5). In Figure. 7.5 we show

where we have zoomed-in on the image and this allows us to see slight noise in the image. For

the remaining difference map images we see stronger differences in the form of image feature

edge definition.

The bottom three rows of Figures. 7.2 to 7.10 show the outputs (H) from the various pan-

sharpened methods. Upon initial visual inspection all of the methods provide improved spatial

resolution compared to that of the degraded spectral imageM . It is not until we look at enlarged

areas of these figures, (Figures. 7.3, 7.5, 7.7, 7.9 and 7.11) do we begin to see disparity in the

visual quality of the methods. The CS methods (that use either I or J) still boast enhanced

visual spatial resolution, however methods that incorporate the bi-cubic interpolator in their

fusion process i.e. PRACS suffer dramatically with blurring. Khan et al. (2008) have reported

that bi-cubic interpolation is prone to this introduction of image blur. Another cause of image

blur has by attributed to poor registration between the P and M which, in the case of SFIM,

produces blurring when the high-frequency information of P is extracted when they ratio it with

the low-pass filtered P .

It has been reported (González-Aud́ıcana et al., 2004) that relative to the multi-resolution

bracket of pan-sharpening methods, CS techniques fail to preserve the spectral integrity of the

original unsharpened images. We can visually see examples of this by again looking at Figure. 7.3

where the colour of the red object in the north-east quadrant has been lost in the IHS and BT

methods and is only vaguely evident with PCA and GS. Visually, SFIM comes close to preserving

the spectral content of this object. The problem with this method is that it relies on computing

a ratio (similarly with the BT), and this can sometimes cause excessive pixel modulation values

resulting in unnatural levels of brightness, see the sports field in Figure. 7.9. This image of

Washington DC also causes problems for the PCA method where there are very noticeable areas

of contrast inversion (1) the sports field appears almost black relative to the forestry and (2) the

area of grass at the bottom of the image is overly bright.

Visually the BDSD method excels at adding high levels of spatial detail while maintaining the

spectral integrity of the original M bands. However it is not until we look into the evaluation
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Table 7.1: World-View 3.

(a) Rio de Janeiro

Method Q4 SAM ERGAS

GIHS 0.7271 3.8076 7.0932
IHS+ 0.7277 3.7527 7.0939
BT 0.7214 3.7324 7.1336

BT+ 0.7229 3.7307 7.0916
GS 0.7273 3.8966 7.1149

GS+ 0.7280 3.8101 7.1153
PCA 0.7265 3.9773 7.1209

PRACS 0.7073 3.4009 7.4658
GS2-GLP 0.7253 3.4604 7.7132

BDSD 0.7110 3.6822 7.9963
HPF 0.7230 3.4768 7.5790
SFIM 0.7244 3.3573 7.5218

(b) Tripoli

Method Q4 SAM ERGAS

GIHS 0.8817 5.9491 6.1575
IHS+ 0.8817 5.9495 6.1574
BT 0.8755 5.9231 6.2405

BT+ 0.8749 5.9142 6.2363
GS 0.8817 5.8615 6.1319

GS+ 0.8818 5.8618 6.1318
PCA 0.8820 5.8619 6.1229

PRACS 0.8652 5.1664 6.3958
GS2-GLP 0.8867 5.3487 6.4732

BDSD 0.8939 5.3632 6.4546
HPF 0.8692 5.3902 6.5385
SFIM 0.8695 5.4381 6.4896

scores that are based in making comparisons with the ground-truth do we get an objective

measure of how well it and every other method does. Tables. 7.1 to 7.3 show the evaluation

scores for the images acquired by the three satellites: World-View 3, World-View 2 and Pléiades

respectively. The ideal evaluation metric scores that each method aspires to achieve for Q4,

SAM and ERGAS is 1, 0 and 0 respectively. The evaluation scores for the image Rio de Janeiro

are shown in Table. 7.1(a) where we can see that the GS+ method ranks the highest for the

Q4 metric. This metric is grounded in the global statistics of the image, which given the large

correlation that I and J have with P , has meant that it and other CS methods have scored

highly. The BT+ has the best ERGAS score, which we again attribute to the high correlation of

J with P and with its band dependent injection gains. Band dependent gains play an important

role to avoid saturation distorting of image pixels and these methods tend to have a superior

SAM score.

For the Tripoli dataset (Table. 7.1(b)), the BDSD scores the highest for the Q4 metric followed

by the CS methods. Of these our J mapping does not produce a significant score difference to

the classic techniques; a consequence of J ≈ I for this image. PRACS obtains the best SAM

score and the classic techniques beat the remaining methods on ERGAS.

As we mentioned earlier, the PCA and SFIM methods cause severe distortions for the Wash-

ington DC dataset (Table. 7.2(b)). This reflects in their metric scores where SFIM has scores
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Table 7.2: World-View 2.

(a) Stockholm

Image Q4 SAM ERGAS

GIHS 0.7458 7.8753 8.4829
IHS+ 0.7460 7.8891 8.4795
BT 0.7511 7.1486 8.4366

BT+ 0.7509 7.1467 8.3959
GS 0.7470 7.8452 8.4309

GS+ 0.7471 7.8587 8.4265
PCA 0.7371 8.3112 8.5701

PRACS 0.7228 6.8199 9.0781
GS2-GLP 0.7346 6.7708 9.2901

BDSD 0.7244 7.0330 9.8059
HPF 0.7365 6.7901 9.1560
SFIM 0.7520 6.0228 8.8909

(b) Washington DC

Method Q4 SAM ERGAS

GIHS 0.7697 12.1000 9.6328
IHS+ 0.7697 12.1110 9.6240
BT 0.7580 11.3424 10.0189

BT+ 0.7586 11.3194 9.9816
GS 0.7166 13.0366 10.2719

GS+ 0.7162 13.0637 10.2663
PCA 0.4718 21.3630 18.1914

PRACS 0.6717 11.4194 11.6626
GS2-GLP 0.6565 16.1856 14.4686

BDSD 0.6996 17.7455 15.5249
HPF 0.7165 15.1197 12.5761
SFIM 0.3801 17.0674 448330

that are so poor (ERGAS 448330) as to make it incomparable to the other methods. As with the

BT method, the SFIM extracts the high-frequency components by taking a ratio. In particular,

the SFIM method relies on dividing P with a blurred copy. During this resolution reduction

it is possible that pixel values are assigned to approximate zero, and this means that it can

cause excessively large values in the modulation image. Effects of this can be seen in Figure. 7.7

(SFIM), where we can see overly bright pixel values in and around the baseball field, and are

the cause the excessively large metric result in Table. 7.2. The highest scoring methods for this

dataset are the IHS and BT followed by PRACS.

Although the CS methods score the lowest for the Q4 metric on the Pléiades dataset (Table. 7.3),

our J mapping increases the performance of the methods against the classics by the largest mar-

gin when compared with the other datasets. The SAM and ERGAS metrics see the BT+ and

GS+ having the best scores respectively.

As we have already mentioned, the Pléiades dataset comes with the toolbox ‘Pansharpening

Tool ver 1.3’ and is presented in the publication by Vivone et al. (2015). Upon comparison of our

metric scores with theirs, we see that our scores are significantly worse. We attribute this to a

variation in the experimental methods. The method that Vivone et al. (2015) follows is based on

pan-sharpening then evaluating non-normalised data prior to visualising it with the ‘viewimage’

function (which contrast stretches to fill the range of the display subject to clipping in the upper
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Table 7.3: Pléiades.

(a) Toulouse

Method Q4 SAM ERGAS

GIHS 0.8922 8.0786 7.2902
IHS+ 0.8936 8.0564 7.2495
BT 0.8915 7.4108 7.4934

BT+ 0.8918 7.3984 7.4561
GS 0.8918 8.0105 7.2871

GS+ 0.8933 7.9754 7.2423
PCA 0.9068 7.7823 6.9154

PRACS 0.9184 7.6598 7.3829
GS2-GLP 0.9096 10.007 8.3339

BDSD 0.9052 9.8802 8.5868
HPF 0.9222 7.9789 7.6064
SFIM 0.9227 7.6274 7.5696

and lower quantile). This is in opposition to our method where we contrast stretched our images

as a pre-processing step. This introduces pixel clipping for the upper and lower quantiles of pixel

values in the image with the result being that they be clipped to either 1 or 0 during the export

procedure and thusly effecting the metric scores.

Lastly we have included Table. 7.4 which contains the relative metric placement ranks for

each method over all datasets. If a particular method has the best metric score (accurate to 4

decimal places) relative to the rest, then it was ranked first. For example, for the Washington

DC dataset, the methods GIHS and IHS+ both had the highest Q4 values and as a result were

given a first place rank for that metric. SFIM had the lowest Q4 score and was therefore ranked

last for the dataset. Ideally a method aspires to achieve a first place rank for all metrics on

all datasets. The summation of these ranks in this case would give an ideal total of 15. The

last column (Rank) in Table. 7.4 shows these rank summations and their placement rank (value

inside the parenthesis) relative to each other. Displaying the results in this way allows us to

show the overall performance of the methods in our experiment in a manner where outliers (see

the Washington DC Q4 value for the SFIM method in Table. 7.2) from their metric scores won’t

severely effect their overall rank placement.

From Table. 7.2 we can see that across all of the datasets, our J mapping improves the

classical pan-sharpening methods to an extent that they take the top three positions.
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T M P − J (P − J)/(2P − I − J)

GIHS IHS+ BT BT+

GS1 GS1+ GS2 PCA

PRACS BDSD HPF SFIM

Figure 7.2: World-View 3, Rio de Janeiro. First row: ground-truth (T ), multispectral image
M , edge map P − J and its normalised ratio with P − I. Last three rows: pan-sharpened

images H.
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T M P − J (P − J)/(2P − I − J)

GIHS IHS+ BT BT+

GS1 GS1+ GS2 PCA

PRACS BDSD HPF SFIM

Figure 7.3: World-View 3, Rio de Janeiro zoomed-in. First row: ground-truth (T ),
multispectral image M , edge map P −J and its normalised ratio with P − I. Last three rows:

pan-sharpened images H.
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T M P − J (P − J)/(2P − I − J)

GIHS IHS+ BT BT+

GS1 GS1+ GS2 PCA

PRACS BDSD HPF SFIM

Figure 7.4: World-View 3, Tripoli. First row: ground-truth (T ), multispectral image M , edge
map P − J and its normalised ratio with P − I. Last three rows: pan-sharpened images H.
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T M P − J (P − J)/(2P − I − J)
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PRACS BDSD HPF SFIM

Figure 7.5: World-View 3, Tripoli, zoomed-in. First row: ground-truth (T ), multispectral
image M , edge map P − J and its normalised ratio with P − I. Last three rows:

pan-sharpened images H.
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Figure 7.6: World-View 2, Stockholm. First row: ground-truth (T ), multispectral image M ,
edge map P − J and its normalised ratio with P − I. Last three rows: pan-sharpened images

H.
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Figure 7.7: World-View 2, Stockholm, zoomed-in. First row: ground-truth (T ), multispectral
image M , edge map P − J and its normalised ratio with P − I. Last three rows:

pan-sharpened images H.
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Figure 7.8: World-View 2, Washington DC. First row: ground-truth (T ), multispectral image
M , edge map P − J and its normalised ratio with P − I. Last three rows: pan-sharpened

images H.
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GS1 GS1+ GS2 PCA

PRACS BDSD HPF SFIM

Figure 7.9: World-View 2, Washington DC, zoomed-in. First row: ground-truth (T ),
multispectral image M , edge map P −J and its normalised ratio with P − I. Last three rows:

pan-sharpened images H.
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Figure 7.10: Pléiades, Toulouse. First row: ground-truth (T ), multispectral image M , edge
map P − J and its normalised ratio with P − I. Last three rows: pan-sharpened images H.
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PRACS BDSD HPF SFIM

Figure 7.11: Pléiades, Toulouse zoomed-in. First row: ground-truth (T ), multispectral image
M , edge map P − J and its normalised ratio with P − I. Last three rows: pan-sharpened

images H.
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Table 7.4: Metric ranks for each method across the five datasets.

Method Metric Rio de Janeiro Tripoli Stockholm Wash. DC Toulouse Rank

GIHS
Q4 4 5 7 1 9

90 (5)SAM 9 11 10 4 10
ERGAS 2 5 6 2 5

IHS+
Q4 2 5 6 1 7

82 (3)SAM 8 12 11 5 9
ERGAS 3 4 5 1 3

BT
Q4 10 6 2 3 11

90 (5)SAM 7 10 7 2 2
ERGAS 7 7 4 4 8

BT+
Q4 9 7 3 2 10

72 (1)SAM 6 9 6 1 1
ERGAS 1 6 1 3 7

GS
Q4 3 5 5 4 10

86 (4)SAM 11 6 8 6 8
ERGAS 4 3 3 6 4

GS+
Q4 1 4 4 6 8

78 (2)SAM 10 7 9 7 6
ERGAS 5 2 2 5 2

PCA
Q4 5 3 8 10 5

106 (7)SAM 12 8 12 12 5
ERGAS 6 1 7 11 1

PRACS
Q4 12 10 12 8 3

97 (6)SAM 2 1 4 3 4
ERGAS 8 8 9 7 6

GS2-GLP
Q4 6 2 10 9 4

111 (9)SAM 3 2 2 9 12
ERGAS 11 10 11 9 11

BDSD
Q4 11 1 11 7 6

126 (10)SAM 5 3 5 11 11
ERGAS 12 9 12 10 12

HPF
Q4 8 9 9 5 2

109 (8)SAM 4 4 3 8 7
ERGAS 10 12 10 8 10

SFIM
Q4 7 8 1 11 1

97 (6)SAM 1 5 1 10 3
ERGAS 9 11 8 12 9
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7.4 Conclusion

In this chapter we reported on the effect of using a greyscale (J), that preserved the global

statistics of the intensity mapping (I), while having a greater correlation with the panchromatic

(P ) had on component substitution pan-sharpening methods.

Over the course of the experiment we found that over a total of five datasets and three

evaluation metrics, substituting J into the intensity-hue-saturation (IHS+), Brovey transform

(BT+) and Gram Schmidt (GS+) led to superior evaluation scores. Upon ranking the summation

of the ranked metric scores across the datasets showed that these enhanced classical techniques

outperformed the more recent competing methods in our experiment, with the BT+ being ranked

first followed by the GS+ and IHS+. From this we conclude that our solution can be used in the

classical CS methods to outperform more recent CS methods despite the numerous constraints

that prioritise preserving the global statistics over correlation on our computation of J .

The more recent CS methods that used the bi-cubic interpolator were seen to score poorly

which we conclude is due to the introduction of misinformation into the spectral bands during

these sampling steps.

Further work on this study would look at the impact of removing the constraint on variance

to see how much it had inhibited the potential increase in correlation, and how this would

effect the evaluation metric scores. Additionally we would be interested in looking at the effects

of changing certain image-preprocessing steps; like looking at linearly scaling the image post-

sharpening instead of prior to sharpening (which introduced pixels being clipped to 0 or 1).
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Chapter 8

Conclusions and Further Work

This chapter consists of two sections. The first section concludes the total body of work presented

in this thesis by highlighting our contributions made throughout. The second section discusses

further work that could improve upon our current solution and bring to light alternative applic-

ations to problems in imaging.

8.1 Conclusion

In the field of imaging, linear mappings have the simplest mathematical model and offer the

lowest time complexity in producing greyscales from multiband imagery. It has found use in

1) colour-to-greyscale, where the aim is to reproduce an image that best represents colour con-

trast and 2) panchromatic image sharpening, where the desire is to create a greyscale that has

maximum positive correlation with the higher resolution panchromatic image. The desire of

colour-to-grey is still popular for vintage style imagery and a cheaper alternative to colour print-

ing whereas in multiband-to-grey, the image is used as a low-pass approximation to create an

unsharp mask with the panchromatic image.

Depending on the desired properties of the greyscale is the deciding factor on how weights are

chosen for linearly mapping a multiband image into a single band. In colour-to-grey one of the

challenges is avoiding the occurrence of mapping different colours with identical brightness values

to the same shade of grey. In Chapter 3, we minimise the chances of this happening by optimising
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a constrained positive-definite quadratic objective function that produces band weights for a

greyscale with maximum global variance. The convex set formed from these constraints led us

to show that the optimum solution to our linearly constrained objective function for any positive-

definite quadratic form will always exist at one of its vertices. The problem we then tackled was

how we go about finding these vertices. While constraining our solution for the band weights to

to lie within a unit cube as well as preserving the mean and energy of the colour image, we posed

the solution using arithmetic operations on the colour images band means. This resulted in a

sorting of three rational numbers to find the appropriate band weighting vector, an operation

that can on average be solved with a time-complexity of O(n).

An additional outcome from this optimisation occurs for colour images that do not possess

full dynamic range and this will produce a greyscale image that similarly lacks full dynamic

range. We addressed this scenario by releasing the cubic constraints on the band weights and

instead imposed constraints on each pixel to ensure the final greyscale pixel values lay between 0

and 1. This problem became one of solving for an intersection of halfspaces in R and finding its

vertices by number sorting: an operation that increased the time complexity of our solution to

O(n log n). This solution to the colour-to-grey brightness preserving problem will always produce

the optimal answer. Previous solutions to this optimisation used the Quadratic Programming

function in MATLAB to solve which a) uses a higher time-complexity O(n3) and b) has been

known to produce a greyscale that was not optimal.

All facets in the field of image fusion require evaluation metrics to assess the quality of the

fused output image. In Chapter 4 we assessed the effectiveness of our brightness preserving

colour-to-greyscale using psychophysics to analyse choices made in participant based preference

experiments. Selecting three competing colour-to-grey techniques, our enhanced brightness pre-

serving optimisation obtained a third place ranking across a standard image-set. The images

where we came first typically possessed a low number of hues (∼ 5) and it was reported that

participants would penalise our greyscales for possessing unrealistic amounts of contrast.

Multispectral image fusion evaluation metrics adopt a more quantitative (and arguably sim-

pler) approach to ranking fusion performance. Based on the rationale that if a greyscale pro-

duced from linearly mapping a multispectral image has a correlation of 1 with the panchromatic,

then the statistical moments of both images would be the same. The addition of a quadratic
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constraint on image variance to our existing objective function (with the inclusion of an extra

dimension to include the near-infrared) would therefore further limit the band weighting solu-

tion space for which to look for the solution to this ideal greyscale (if it exists). Chapter 6

addresses this problem in a unique and novel way by applying constrained multivariate calcu-

lus and linear algebra to the geometry produced by the objective function and the intersecting

equality constraints. Fundamentally this involved us producing a novel solution to defining the

equation of an ellipse that is produced by the intersection of two intersecting hyper-planes with

a hyper-ellipse. By intersecting our convex set that contains the band weights for greyscales

that fall within our desired dynamic range do we reduce our solution space to an elliptical line

segment. Projecting the point of highest correlation (found by a least squares optimisation) to

this segment do we find the weights for a greyscale that preserve our energy/mean and variance

while increasing the correlation with the panchromatic image. Despite the increase (compared

to our colour-to-greyscale) in arithmetic operations in producing our multispectral-to-greyscale,

the time complexity is still limited by that of computing a convex hull.

We evaluated our pan-sharpened imagery using metrics based on the correlation coefficient

and the root-mean-square error in association with Wald’s Protocol. Using a published toolbox

for pan-sharpening images, we incorporated our greyscale into the classical methods to test

the hypothesis that preserving the statistical moments of the intensity mapping yet improving

the correlation with the panchromatic will produce superior images when evaluated. Over five

datasets and three metrics, our mapping produced a maximum increase of correlation with the

panchromatic image of 0.15%. Ranking each dataset for each metric and then ranking their

sum gave us an overall metric of performance for each method. From this we found that the

three methods that used our greater correlated greyscale took the top three rankings: 1) Brovey

Transform (BT+), 2) Gram-Schmidt (GS+) and 3) the Intensity-Hue-Saturation (IHS+).

8.2 Further Work

One of the advantages of the mathematical model presented in this thesis lies with its versatility.

Our method of preserving the energy, mean, variance with further options on range and correl-

ation make it applicable to many forms of dimensionality reduction problems. In the field of
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imaging, fusing near-infrared with the optical bands to produce high detail greyscales would find

use in surveillance applications. In photography, fusing near-infrared with its respective colour

image would improve clarity by compensating for the information lost by optical Rayleigh light

scattering.

In direct relation to the work we presented in this thesis, we would begin with adapting the

optimisation presented in Chapter 4. The participant feedback from our preference experiment

in Chapter 5 brought to our attention that our colour-to-grey optimisation would give unnatural

levels of contrast in some of our greyscales. Using a previously defined metric of variance/contract

in the RGB, we could use our variance preserving solution on this 3-dimensional scenario. This

would produce a single point (the position of which depends on the variance we wish in our

greyscale) on a line segment that would give us the band weights for our contrast constrained

greyscale. Further preference experiments would be needed to see if this satisfied users.

The natural extension to the work presented in Chapter 7 would be to investigate how much

constraining the correlation (by prioritising the preservation of variance of the intensity mapping)

had on the evaluation metrics. This would involve computing the band weights of maximum

correlation (presented in Chapter 6) and then mapping them to the convex set (if the band

weights define a point outside of it) that defines our mean preserving normalised image.

How our solution can be implemented on individual image segments is another avenue for

further work. For example, using techniques based on the histogram of the image (i.e. Voronoi

image segmentation) one could individually pan-sharpen vegetation, urban and oceanic scenes.

Additional further work would be aimed at fine-tuning the image pre-preparation stages and

lastly making comparisons with more recent and competitive hybrid pan-sharpening methods.
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Neumann, L., Čad́ık, M., and Nemcsics, A. (2007). An efficient perception-based adaptive

color to gray transformation. In Proceedings of Computational Aesthetics 2007, pages 73– 80.

Eurographics Association.

Nowak, R. and Baraniuk, R. (1998). Adaptive weighted highpass filters using multiscale analysis.

IEEE Transactions on Image Processing, 7(7):1068 – 1074.
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