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ABSTRACT

The hydroelastic symmetric response of a floating ice sheet caused by a pressure moving either in the ice lead or on the infinite ice sheet with
a crack (a lead of zero width) is investigated. The ice sheet is modeled as a viscoelastic thin plate. The water is of constant depth. The flow
under the ice is potential and linear. A boundary integral method (BIM) for the flow under the ice is combined with the finite difference
method for the ice plate with free-free edge conditions to solve the coupled problem of linear hydroelasticity. Numerical results for deflec-
tions and stress distributions are shown to agree well with the available results by others. The proposed approach can be applied to problems
with different edge conditions and different positions of the load with respect to the lead. The ice responses are studied with respect to the
speed of the load. The speed can be subcritical, critical, and supercritical with respect to the critical speed for a floating infinite elastic plate.
The speeds of the load, which provide maximum deflection, maximum stress, and maximum wave-making resistance, are determined. All
these speeds are different and greater than the critical speed for an infinite elastic plate. The effect of the ice thickness, lead width, and load
properties on these speeds is discussed.

Published under license by AIP Publishing. https://doi.org/10.1063/5.0037682

I. INTRODUCTION

The problem of ice-water-structure interaction received consider-
able attention starting from pioneering work by Kheisin (1963) and
Squire et al. (1985). Comprehensive reviews of these problems were
given by Squire et al. (1996) and recently by Ni et al. (2020). The latter
paper reviews existing analytical, numerical, and experimental meth-
ods to solve such problems and their major applications to date. One
of typical application is that of an air cushion vehicle (ACV) moving
in ice covered regions. For an ACV moving on an infinite ice sheet,
cracks can be induced under the ACV, which may have an obvious
influence on the response and resonant behavior of the ice. In some
cases, the ACV needs to move in water channels generated by an ice-
breaker or various natural forces including wind, wave, and current,
see Squire (2007). Therefore, it is important for ice breaking ability
and safety operation of the ACV in ice covered regions to investigate
the ice response to a vehicle moving either along an ice channel of con-
stant width confined by semi-infinite ice plates on both sides of the
channel or on an infinite ice sheet with a crack.

Ice response to a load moving along a floating infinite ice sheet,
see Fig. 1, was well investigated. Squire et al. (1996) reviewed this

subject in full details. The steady-wave patterns and the stresses in an
ice sheet caused by a pressure traveling at a constant speed were of the
main concerns (Davys et al., 1985; Squire et al., 1985; and Milinazzo
et al., 1995). Much attention has also been paid to time dependent
results (Schulkes and Sneyd, 1988; Pogorelova and Kozin, 2010; and
Dinvay et al., 2019). The developed models and obtained results make
it possible to conclude whether the infinite ice sheet would be broken
by the moving pressure or not by comparing the computed maximum
bending stress with the so-called yield stress. Then one can either use
the ice cover as an ice road in winter time or break the ice sheet by a
moving hovercraft to prevent flooding on a river, for example.
Kheysin (1963) could be the first researcher, who considered the prob-
lem of a load moving on a floating ice sheet. Takizawa (1985) con-
ducted systematic field experiments with a vehicle moving on the ice
sheet by measuring the deflections of the ice sheet. He determined the
critical speed of the moving load, for which the deflection of the ice
sheet was maximum. These experimental results are still in use to vali-
date numerical models of ice response. Parau and Vanden-Broeck
(2011) adopted BIM to study this problem including the nonlinear
effects and found the critical speed of the load which provides the
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maximum deflection of ice. The linear theory of hydroelasticity with-
out account for any dissipation predicts unbounded ice response for a
so-called critical speed of the load, which is equal to the minimum of
the phase speed of an uni-directional flexural-gravity waves propagat-
ing in the ice sheet (Hosking et al., 1988). At the wavenumber, for
which the minimum phase speed is achieved, the phase speed and the
group speed are equal. This provides a physical explanation of the
unbounded response of a floating ice sheet within the linear theory of
hydroelasticity for a load moving at the critical speed. Parau and Dias
(2002) and Bonnefoy et al. (2009) demonstrated that the nonlinear
effects made the deflection of ice near the critical speed finite.
Viscoelastic models of ice also provide finite ice response at the critical
speed (Takizawa, 1985 and Hosking et al., 1988). In addition, visco-
elastic theory can explain the wave decay with the distance from the
load (Hosking et al., 1988) and the offset of the maximum deflection
position behind from the load (Takizawa, 1985). There are several vis-
coelastic constitutive models of ice including widely used Kelvin-Voigt
model and Maxwell model (Mase, 1970). Kozin and Pogorelova
(2009) studied response of viscoelastic ice to moving pressure by using
the Kelvin-Voigt model, Maxwell model, and generalized
Maxwell–Kelvin models. They compared their theoretical results with
the experimental ones by Takizawa (1985) and concluded that the
relaxation time s should be a function of the load speed in these three
models. In present study, the Kelvin-Voigt model of viscoelastic ice is
used. This is one of the simplest models of viscoelastic materials.

The problems with loads moving on a semi-infinite ice sheets are
more complicated than the problems for an infinite ice sheet. The edge
of a floating semi-infinite ice sheet can be either clamped (frozen) to a
vertical wall, see Fig. 2(a), or free-free, see Fig. 2(b), with the rest of the
water surface being open. Other edge conditions are also possible. The
edge conditions change significantly the ice response to a moving load.
A load moving on a semi-infinite ice sheet which is clamped to a verti-
cal wall, as shown in Fig. 2(a), was studied by Brocklehurst (2012). He
studied the linear problem of a load moving at a constant distance
from the wall by using Fourier transforms in both x- and y-directions,
see Fig. 2(a) and Chap. 5 in Brocklehurst (2012). The ice deflection
was obtained in terms of Fourier integrals, which were evaluated
numerically. Different speeds of the load were considered with respect
to the critical speed of the infinite ice sheet. The effect of the vertical

wall on the ice deflection for slow load speed was shown to be mostly
dampening with the magnitude of the ice response being smaller due
to the presence of the wall. For faster speeds, strong interaction
between the wall and the generated waves was observed with signifi-
cant deflections between the load and the wall. Brocklehurst (2012)
also studied the same problem with a vertical wall in non-linear for-
mulation for water of infinite depth, see Chap. 6. The plate equation
was linear, but the hydrodynamic part of the problem was nonlinear.
The BIM with the three-dimensional free-space Green's function,
which accounts for the presence of the wall, was used. The biharmonic
term in the plate equation was approximated using central finite differ-
ences. The problem was reduced to a system of nonlinear equations
with respect to the values of the potential on the plate, plate deflection,
and its first derivatives with respect to x and y. The system of the
obtained equations was solved by Newton's method. It is not clear
how this algorithm can be extended to other edge conditions, for
example, free edge or simply supported edge. The numerical solution
of the nonlinear problem of hydroelasticity made it possible to con-
clude that the speed of the load is the most important parameter of the
problem. For slow speeds of the load and small distances of the load
from the wall, the deflections in the wake behind the load are greater
than for infinite ice sheet. This was not the case in the linear
formulation.

By using the integral Fourier transform and the expansion of the
speed potential with respect to the so-called vertical eigenfunctions,
Sturova (2018) studied the same problem in the subcritical regime,
where the speed of the load was below the critical speed for an infinite
elastic ice sheet. She considered both the clamped edge and the free
edge boundary conditions between the ice sheet and the vertical wall.
It was found that the maximum bending moment occurred in the
vicinity of the wall for the clamped edge, but it was at the center of the
load region for the free edge. This proved that the boundary conditions
have strong influence on the response of ice sheets.

In the problem with semi-infinite ice sheet and semi-infinite
water surface, as shown in Fig. 2(b), the load can move either on the
ice or on the water surface along the linear edge of the ice sheet. The
ice edge is free of stresses and shear forces in this problem. By using
BIM and a viscoelastic model of the ice sheet, Li et al. (2017) calculated
the stress distribution and deflection of the ice sheet when the load
moved either on the ice or open water. This problem, in particular,
describes ice response to a boat navigating near the ice edge. However,
Li et al. (2017) did not account for the free edge conditions in their
analysis, which is inappropriate. The approach of the present paper
properly accounts for the edge conditions. Sturova (2018) studied the
problem of a load moving on a semi-infinite ice sheet in the subcritical
regime. She compared the deflections of the semi-infinite ice sheet and
infinite ice sheet for the same load and the same conditions. It was
found that the deflection of the semi-infinite ice sheet is larger than
that of the infinite ice sheet. Sturova and Tkacheva (2018) extended
the analysis to the hydroelastic response of a semi-infinite ice sheet
with a load moving on the water surface. They used the Fourier trans-
form and the Wiener-Hopf technique. It was found that both the wave
resistance and the side force acting on the moving load oscillated
when the speed of the load was close to the critical speed of the infinite
floating ice sheet.

Another related problem was formulated for a frozen channel, in
other words, for an ice sheet of finite width confined by two vertical

FIG. 1. Sketch of a load moving on an infinite ice sheet.
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walls on two sides, as shown in Fig. 3. Korobkin et al. (2014) studied
the hydroelastic waves propagating along a frozen channel and their
dispersion relations for the ice plate clamped (frozen) to the vertical
walls. The linear theory of hydroelasticity and the normal mode
method were used. It was found that there are infinitely many waves
of the same wavelength, and correspondingly, infinitely many disper-
sion relations and critical speeds of these waves. The lowest critical
speed for a frozen channel was shown by Shishmarev et al. (2016) to
be higher than the critical speed for the identical infinite plate. Batyaev
and Khabakhpasheva (2015) studied a similar problem but with free
edge conditions between the ice and the channel wall. They also found
that there are an infinite number of critical speeds, but their values of
critical speeds were different from those calculated by Korobkin et al.
(2014) for clamped edge conditions. By using these results,
Shishmarev et al. (2016) studied the problem of a load moving along a
frozen channel with clamped edge conditions at a constant speed by
combining the Fourier transform along the channel with the normal
mode method across the channel. The Kelvin-Voigt model of

viscoelastic ice was used. Shishmarev et al. (2016) were looking for the
critical speeds in term of the maximum deflection, which were found
to be larger than the first critical speed of the elastic ice in Korobkin
et al. (2014). It was concluded that the viscoelastic model of ice pro-
vides maximum deflection at a speed of the load which is slightly dif-
ferent from the critical speed of the elastic ice. However, it was shown
that the difference between the elastic and viscoelastic critical speeds
decreases when the relaxation time of the viscoelastic model, see Eq.
(1) below, tends to zero.

The problem of a load moving along a frozen channel within the
elastic model of ice without viscoelastic effects was studied by
Khabakhpasheva et al. (2019) for a load starting its motion from the
rest and moving then with a constant speed. It was shown that the ice
deflection for large times consists of several terms: time-independent
deflections under the load and systems of hydroelastic waves from
Korobkin et al. (2014) both behind and in front of the load. These
hydroelastic waves move at the speed of the load and, therefore, they
are standing waves in the system moving together with the load. The
ice response can be caused not only by a load moving over the ice
cover but also by a body moving in the channel under the ice. Such ice
responses were studied by Shishmarev et al. (2019) using asymptotic
methods and the viscoelastic model of ice for an underwater dipole.
Hydroelastic waves in the channel with different edge conditions and/
or a crack along the channel were studied recently by Ren et al. (2020)
using their own original method.

The problem with two semi-infinite ice sheets separated by a
channel of open water (lead) of constant width was studied in both
two-dimensional and three-dimensional formulations. Chung and
Linton (2005) studied two-dimensional problem of flexural-gravity
waves propagating across a lead, see Fig. 4. Shi et al. (2019) studied
waves interact with multiple wide ice leads. Ren et al. (2016) studied
the problem of waves propagating across a lead with a rectangular
body floating in the lead by the method of matched eigenfunction
expansions. It was found that the presence of ice makes the hydrody-
namic coefficients of the floating body, which are functions of the
frequency of incident wave, oscillate. The method is restricted to rect-
angular floating bodies. Li et al. (2017) considered floating elliptical
cylinder in the lead based on wide spacing approximation. Then, Li

FIG. 2. Sketch of a load moving on a semi-infinite ice sheet. (a) semi-infinite ice sheet with a vertical wall, (b) semi-infinite ice sheet beside semi-infinite water surface.

FIG. 3. Sketch of a load moving along a frozen channel.
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et al. (2018a) solved the same problem by using a simple source Green
function and eigenfunction matching method.

When the width of a lead approaches zero, we have a linear crack
in an infinite ice sheet. Evans and Porter (2003) studied scattering of
an obliquely incident flexural-gravity wave by a narrow straight-line
crack separating two semi-infinite thin elastic plates floating on water
of finite depth. They showed, in particular, that symmetric edge waves
exist which travel along the crack and decay in a direction normal to
the crack. Li et al. (2018b) considered a two-dimensional problem of
incident flexural-gravity wave interaction with circular cylinder placed
below an ice sheet with a crack. It was shown that the hydrodynamic
coefficients of this cylinder oscillate as functions of the wave frequency
in contrast to the coefficients determined for the ice sheet without the
crack. The presence of a crack in the ice sheet has a significant effect
on ice response. For three-dimensional problems of waves propagating
along an ice lead or crack, Marchenko (1997) studied the dispersion
relations of such waves within the shallow water approximation.
Porter (2018) considered the same problem as Marchenko (1997) but
for water of infinite depth. He determined the so-called edge waves,
which do not penetrate the ice sheets deeply and are localized near the
ice edges. He determined dispersion relations for such waves, see Fig. 3
in Porter (2018), and calculated the corresponding profiles of the
waves across the lead. Tkacheva (2019a) and Sturova and Tkacheva
(2019) studied the ice responses and wave forces for a load moving at
a constant speed in an ice channel (lead) between two semi-infinite ice
sheets. The Wiener–Hopf technique was used. Tkacheva (2019a) pre-
sented the ice sheet response for three different ice thicknesses and
two load speeds. She found that the strains of the ice sheet near the
edge may exceed the maximum permissible strain, so-called yield
strain, for some speeds of the load, which indicates that the ice sheet
can be broken near the edge by a ship moving in the lead. Tkacheva
(2019b) studied also generation of waves by a load moving on infinite
ice sheet with a crack within linear hydroelasticity theory. The thick-
nesses of the two semi-infinite ice sheets were different. The deflection
of the ice sheet was analyzed for sub- and supercritical speeds of the
load with respect to the critical speeds of the unbounded ice sheets
with corresponding thicknesses. The deflection of the ice sheets was
unbounded at the critical speeds in the solution obtained by the
Wiener–Hopf technique.

In the present paper, we focus on the numerical analysis of ice
response to a moving load in the presence of a lead of open water or a
crack. BIM is used for this aim. The numerical results are compared
with available theoretical results by others listed above. The present
numerical approach is more general than the theoretical solutions,

which makes it possible to investigate practical problems with non-
simplified configurations. The edge conditions are properly taken into
account in the present numerical algorithm. Load speeds, which pro-
vide maximum deflection of the ice cover, maximum stress in the ice,
and maximum wave-making resistance, are determined.

The formulation of the problem is given in Sec. II. The numerical
algorithm is described in Sec. III. The numerical results are validated
with the results by others in Sec. IV, where also new results concerning
ice response are presented. The conclusions are drawn and future
work is discussed in Sec. V.

II. MATHEMATICAL FORMULATION

We consider the problem of a load moving in an ice lead or on
an infinite ice sheet with a crack at a constant speed U, see Fig. 5 where
dimensions of both the load and the lead are introduced. A crack is
treated as a lead (a channel of open water between two ice sheets) of
zero widthW in the present study. BelowW> 0 for a lead andW¼ 0
for a crack. A coordinate system that moves together with the external
load along the lead is used, see Fig. 5. The origin O of the system is
located at the center of the external load, which is symmetric in both
the x-direction along the lead and in the y-direction across the lead.
The z-axis points upwards, opposite to the gravitational acceleration~g .
The water is of constant depthH, see Fig. 5. The fluid is assumed to be
inviscid and incompressible, and the flow is irrotational. The ice sheet
is assumed of infinite extent and homogeneous with thickness h and
rigidity D ¼ Eh3½12ð1� �2Þ�, where E is Young's modulus of the ice
and � is Poisson's ratio of the ice. The deflection of the ice sheet is
described by the thin viscoelastic Kelvin–Voigt plate model (Mase,
1970). The edges of the ice sheet along the lead and/or crack are free of
stresses and shear forces. The draft of the ice sheet is neglected in this
study with the ice thickness h being much smaller than the water
depth H. The external load is modeled by a localized smooth pressure
Pðx; yÞ with characteristic length L along the lead and B across the
lead, see Fig. 5. The pressure Pðx; yÞ is even in x and y. The pressure is
applied over the water surface for ice lead and over the upper surface
of the ice sheet for infinite ice sheet with the crack along y¼ 0. We
shall determine the time-independent flow and ice deflection in the
moving coordinate system.

The ice deflection and the free-surface elevation are described by
the equation z ¼ gðx; yÞ, where gðx; yÞ is a solution of the viscoelastic
plate equation written in the moving coordinates (Mase, 1970)

D 1� sU
@

@x

� �
r4gþ qihU

2 @
2g

@x2

¼ pðx; y; 0Þ � Pðx; yÞ ðjxj < 1; jyj < 1Þ; (1)

where h¼ 0 and D¼ 0 in open water, �W=2 < y < W=2, s ¼ l=E
is the relaxation time, l is the viscosity of ice, r4 ¼ @4=@x4 þ 2@4=
ð@x2@y2Þ þ @4=@y4 is the biharmonic operator, qi is the density of
ice, which is taken as qi ¼ 900 kg=m3 in this study, and pðx; y; 0Þ is
the hydrodynamic pressure. Note that Eq. (1) is the plate equation
only in jyj > W=2. In jyj < W=2, the left-hand side of (1) is zero and
the equation represents the dynamic boundary condition for open
water.

The external pressure Pðx; yÞ is described in this study by
(Doctors and Sharma, 1972)

Pðx; yÞ ¼ P0Sða; 2x=LÞSðb; 2y=BÞ; (2)

FIG. 4. Sketch of wave propagation across a lead.
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Sða; 2x=LÞ ¼ 1
2

tanh a
2x
L
þ 1

� �� �
� tanh a

2x
L
� 1

� �� �� �
;

Sðb; 2y=BÞ ¼ 1
2

tanh b
2y
B
þ 1

� �� �
� tanh b

2y
B
� 1

� �� �� �
;

where P is the equivalent pressure over the area LB, which provides
the same total load as (2), and a and b are dimensionless parame-
ters which control the pressure decay with the distance from the
pressure center. The limiting case with a ! 1 and b ! 1 corre-
sponds to a uniform pressure acting over the rectangular area:
jxj � L=2; jyj � B=2. It is known that such a uniform pressure
moving over a water surface provides a wave-resistance with unre-
alistic oscillations at low Froude numbers; see Doctors and Sharma
(1972) for details. In practice, it takes a finite distance for the pres-
sure at the edge of the ACV to drop to zero gradually rather than
suddenly (Doctors and Sharma, 1972). The function Sða; 2x=LÞ is
even and positive, and monotonically decays from tanhðaÞ at x¼ 0
to zero as x ! 1.

The conditions that the ice edges are free of stresses and shear
forces read

@2

@y2
þ �

@2

@x2

 !
g ¼ 0;

@

@y
@2

@y2
þ ð2� �Þ @2

@x2

 !
g ¼ 0

jxj < 1; y ¼ �W
2
� 0 and y ¼ W

2
þ 0

� �
: (3)

Note that the free-surface elevation, z ¼ gðx; yÞ, where jyj < W=2,
and the ice deflection, which is described by the same equation but
where jyj > W=2, are not continuous, in general, at the ice edges,

g x;6
W
2
� 0

� �
6¼ g x;6

W
2
þ 0

� �
;

together with their derivatives. On the other hand, for the crack, due
to the symmetry of the problem, gðx; yÞ is continuous but not differ-
entiable at y¼ 0.

The hydrodynamic pressure pðx; y; 0Þ on the upper boundary of
the fluid in the moving coordinate system is given by the linearized
Bernoulli equation

FIG. 5. Sketch of a load moving in an ice lead or on an infinite ice sheet with a crack at a constant speed: (a) side view, (b) top view (lead), and (c) top view (crack).
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pðx; y; 0Þ ¼ qwU
@u
@x

� qwgg ðjxj < 1; jyj < 1; z ¼ 0Þ; (4)

where qw is the density of water taken as qw ¼ 1000 kg=m3 in this
paper, uðx; y; zÞ is the velocity potential, which satisfies Laplace's
equation in the flow region,

@2u
@x2

þ @2u
@y2

þ @2u
@z2

¼ 0 ðjxj < 1; jyj < 1;�H < z < 0Þ; (5)

the linearized kinematic boundary condition on the upper surface,

@u
@z

¼ �U
@g
@x

ðjxj < 1; jyj < 1; z ¼ 0Þ; (6)

and the bottom boundary condition,

@u
@z

¼ 0 ðz ¼ �HÞ: (7)

The deflections and the flow generated by the moving load within the
model of viscoelastic ice plate decay with the distance from the load,

g ! 0 ; u ! 0 ðjxj ! 1; jyj ! 1Þ: (8)

The wave resistance Rw acting on the moving load is given by
(Doctors and Sharma, 1972)

Rw ¼
ðþ1

�1

ðþ1

�1
Pðx; yÞ @g

@x
ðx; yÞ dxdy: (9)

The non-dimensional resistance coefficient Cw is defined by

Cw ¼ Rwqwg
P2
0L

: (10)

The stress distribution in the ice sheet is of particular concern. It
is of practical interest to know whether a load moving in the lead can
generate stresses in the ice sheet which are large enough to break the
ice. In the linear theory of hydroelasticity, the bending stresses vary
linearly through the ice thickness being zero at the middle of the plate
thickness. At any location, the maximum stress is achieved at the
upper or lower surface of the ice plate. Considering that the absolute
values of the stresses at the upper and lower surfaces are the same, we
are just concerned with the stress at the upper surface of the ice

rxx
ryy
rxy

0
B@

1
CA ¼ Eh

2ð1� �2Þ 1� sU
@

@x

� �
@2g
@x2

þ �
@2g
@y2

�
@2g
@x2

þ @2g
@y2

ð1� �Þ @2g
@x@y

0
BBBBBBBB@

1
CCCCCCCCA
: (11)

The flow domain and the ice sheets are of infinite extent
which makes the problem complicated for analysis. However, the
viscoelastic model of ice introduces damping responsible for fast
decay of the solution with distance from the load. The present
problem is solved numerically for a finite region around the load.
The numerical region is wide enough, which makes the numerical
solution practically independent of the dimensions of the region.

A special attention is paid to the edge conditions (3) in the present
numerical solution.

The problem (1)–(11) cannot be used for s ¼ 0. The numerical
domain should be large for small s in order to arrive at the converging
solution. For s ¼ 0, other approaches should be used, see
Khabakhpasheva et al. (2019), for example.

III. NUMERICAL METHOD

The boundary problem (1)–(8) is solved by the Boundary
Integral Method (BIM) using a Rankine source for a half-space
z > �H. The Rankine sources are distributed around the load and
slightly above the upper boundary of the flow region, at z ¼ z0 > 0.
The plane z ¼ z0 is covered with small rectangular panels. The
strength of the Rankine source is approximated as constant at each
panel. In this way, the velocity potential, its first derivatives, and the
hydrodynamic pressure at z¼ 0 are approximated by finite series of
smooth functions with unknown coefficients. The kinematic condition
(6), the edge conditions (3), and the plate equation (1), where the
external pressure, Pðx; yÞ, is given, provide an algebraic system for
unknown coefficients through the collocation method.

In the BIM, the velocity potential uðx; y; zÞ is sought in the fol-
lowing form:

uðx; y; zÞ ¼
ðþ1

�1

ðþ1

�1
rðx0; y0Þ 1

r
þ 1
r0

� �
dx0dy0; (12)

where r ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðx � x0Þ2 þ ðy � y0Þ2 þ ðz � z0Þ2

q
, r0

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðx � x0Þ2 þ ðy � y0Þ2 þ ðz þ z0 þ 2HÞ2

q
, and the function

rðx0; y0Þ is to be determined. The potential (12) satisfies Laplace's
equation (5), the bottom boundary condition (7), and decays at infin-
ity. Here z0 is a small positive number, such that r 6¼ 0 and r0 6¼ 0 at
any point of the flow region including its boundary z¼ 0.

Distributions of panels and control points are shown in Fig. 6.
The surface of integration in (12), z ¼ z0 ¼ c1Dx, is limited to
�Lbx < x0 < Lfx and �Ly < y0 < Ly , where both Lbx , Lfx , Ly are
large enough compared with the width of the lead W and the load
dimensions, L and B, and discretized into small rectangular panels with
m panels in the x-direction and n panels in the y-direction. The dimen-
sions of the panels are Dx ¼ ðLbx þ LfxÞ=m and Dy ¼ 2Ly=n in the x-
and y-directions, respectively. The coefficient c1 is taken usually
between 1 and 3 based on numerical experience (Raven, 1996). Control
points are placed on z ¼ 0 under the center of each panel and moved a
short distance c2Dx forward, in the direction of the load motion. In this
way, the control points are uniformly spaced, with intervals Dx and Dy
in the x- and y-directions, respectively, between control points. The
shift c2Dx, where c2 < 1, improves stability of the numerical solution
(Raven, 1996). In the present simulations, we take c2 ¼ 0:15. The rela-
tive positions of the panels and the control points are shown in Fig. 7.

We number the panels and the corresponding control points by
j ¼ ðk� 1Þmþ l, where l ¼ 1; 2;…;m is the number of the panel in
the x-direction and k ¼ 1; 2;…; n is the number of the panel in the y-
direction. Note that j and pairs ðl; kÞ correspond one-to-one for given
n and m. The function rðx0; y0Þ in (12) is approximated as constant,
r ¼ rj, on the jth panel Sj, where �Lbx þ ðl � 1ÞDx < x0 < �Lbx
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þlDx and �Ly þ ðk� 1ÞDy < y0 < �Ly þ kDy. Then, the velocity
potential at the ith control point, ui ¼ uðxi; yi; 0Þ, is given by

ui ¼
Xm�n

j¼1

rjUi;j; Ui;j ¼
ð ð
Sj

1
ri
þ 1
r0i

� �
dx0dy0; (13)

where ri ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðxi � x0Þ2 þ ðyi � y0Þ2 þ z20

q
, r0i

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðxi � x0Þ2 þ ðyi � y0Þ2 þ ðz0 þ 2HÞ2

q
, i ¼ ðp� 1Þmþ q,

p ¼ 1; 2;…; n, q ¼ 1; 2;…;m and xi ¼ �Lbx þ ðq� 1ÞDx
þ 0:5Dx þ c2Dx, yi ¼ �Ly þ ðp� 1ÞDy þ 0:5Dy. The derivative
@uðxi; yi; 0Þ=@z ¼ uz;i at the ith control point is given by

uz;i ¼
Xm�n

j¼1

rjWi;j; Wi;j ¼
ð ð
Sj

z0
r3i

� z0 þ 2H
r0i3

� �
dx0dy0: (14)

The integral Ui;j and Wi;j are calculated by the Hess–Smith method
(Hess and Smith, 1964).

The elevation of the upper surface of the flow region, gðx; yÞ, is
obtained from (6) and (8)

gðx; yÞ ¼ 1
U

ð1
x

@u
@z

ð~x; y; 0Þ d~x;

where the integral is evaluated by the trapezoidal rule. At the ith con-
trol point, we have

gi ¼
1
U

ð1
xi

@u
@z

ð~x; yi; 0Þ d~x

� Dx
U

1
2
uz;i þ

Xm�1

l¼qþ1

uz;ðp�1Þmþl þ
1
2
uz;pm

2
4

3
5; (15)

where gi ¼ 0 for q ¼ m. Equations (14) and (15) provide

gi ¼
Dx
U

Xm�n

j¼1

rj
1
2
Wi;j þ

Xm�1

l¼qþ1

Wðp�1Þmþl;j þWpm;j

8<
:

9=
; ¼

Xm�n

j¼1

rjEi;j;

(16)

where 1 � i � nm and Ei;j depend on z0, H, Dx, and Dy for a given
panel j and a given control point i.

The x-derivative @uðx; y; 0Þ=@x in (4) is calculated by the
upstream finite difference

ux;i ¼

�3ui þ 4uiþ1 � uiþ2

2Dx
q < m� 1;

uiþ1 � ui

Dx
q ¼ m� 1;

ui � ui�1

Dx
q ¼ m;

8>>>>><
>>>>>:

(17)

which reasonably well fits the radiation condition far from the moving
load, see Letcher (1993) and Liu et al. (2013) for more details and dis-
cussions. The second x-derivative @2g=@x2 in (1) is calculated using
(6), gxx ¼ �uzxðx; y; 0Þ=U , and (17)

gxx;i ¼ � 1
U

�3uz;i þ 4uz;iþ1 � uz;iþ2

2Dx
q < m� 1;

uz;iþ1 � uz;i

Dx
q ¼ m� 1;

uz;i � uz;i�1

Dx
q ¼ m:

8>>>>>><
>>>>>>:

(18)

This second derivative is needed only for the control points on the ice
surface, where 1 � p � s and t � p � n, see Fig. 6(a). Note that s
+1¼ t forW¼ 0, which is for the problem with a crack.

FIG. 6. Distributions of panels and control points: (a) top view and (b) side view.

FIG. 7. Relative positions of the jth panel and jth control point on the upper surface
of the flow region.
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In order to calculate the biharmonic term r4g, which is needed
only for the control points on the ice plate, we divide it into three
terms, @4g=@x4, @4g=@y4, and @4g=ð@x2@y2Þ. The first term,
@4g=@x4, at the control points on the ice surface with q ¼ 3;
4;…;m� 2 is approximated using the central finite differences with 5
points. For the control points with q¼ 1, 2 and m − 1, m, which are
near the boundary of the calculation domain, @4g=@x4 is approxi-
mated using the same finite differences as the control points with
q¼ 3 and m − 2, respectively. The second term, @4g=@y4, at the con-
trol points on the ice surface with p ¼ 3; 4;…; s� 2 and p ¼ t þ 2;
t þ 3 � � � ; n� 2 is approximated using the central finite differences
with 5 points. For the control points with p¼ 1, 2 and n − 1, n, which
are near the boundary of the calculation domain, @4g=@y4 is approxi-
mated using the same finite differences as the control points with
p¼ 3 and n − 2, respectively. To calculate @4g=@y4 near the ice edges,
we introduce two layers of fictitious control points outside the ice
edges, as it is shown in Fig. 8 (Ertekin and Xia, 2014), and new
unknowns, which are considered as deflections of the fictitious points,
gr , with numbers r ¼ ðn� 1þ uÞmþ q, where q ¼ 1; 2;…;m and
u ¼ 1; 2; 3; 4. In this way, the term @4g=@y4 at the control points with
p¼ s − 1, s, t and t+1, is also approximated using the central finite dif-
ferences with 5 points, see Figs. 9(a) and 9(b), using 4m extra
unknowns. The term @4g=ð@x2@y2Þ at the control points with p ¼ 2;
3;…; s� 1 and p ¼ t þ 1; t þ 2;…; n� 1, where q ¼ 2; 3;…;
m� 1, is approximated using the central finite differences with 9
points. For the control points with p¼ 1 and n, where q ¼ 2;
3;…;m� 1, @4g=ð@x2@y2Þ is approximated using the same finite
differences as the control points with p¼ 2 and n − 1, where q ¼ 2;
3;…;m� 1, respectively. For the control points with p¼ s and p¼ t,
where q ¼ 2; 3;…;m� 1, @4g=ð@x2@y2Þ is also approximated using
the central finite differences with 9 points, see Fig. 9(c). For the control

points on the ice surface with q¼ 1 and m, @4g=ð@x2@y2Þ is approxi-
mated using the same finite differences as the control points with
q¼ 2 andm − 1, respectively. Therefore, in the present approximation,
we have 4m more unknowns gr , in addition to n�m unknowns rj,
and we calculate the termr4g at any control points on the ice surface
by the 13-points scheme through n�m deflections gi of the ice,
which are related to the rj by (16), and 4m fictitious deflections gr ,
which are unknowns on their own. Additional 4m equations for the
extra 4m unknowns gr will be obtained below using the conditions at
the ice edges. The relative positions of the control points, fictitious
points, and interpolating points are shown in Figs. 8 and 10.

The x-derivative of the biharmonic term @ðr4gÞ=@x ¼ r4

ð@g=@xÞ, which comes from the damping term in the plate equation
(1), is needed at each control point on the ice plate. This term is
approximated in the same way as the termr4g, see above, where gx is
approximated using (6), @g=@x ¼ �ð@u=@zÞ=U , and (14) at the con-
trol points of the ice plate, and by the finite differences at the fictitious
points

@g
@x

� �
r
¼

grþ1 � gr�1

2Dx
1 < q < m;

grþ1 � gr
Dx

q ¼ 1;

gr � gr�1

Dx
q ¼ m:

8>>>>>>><
>>>>>>>:

We require that Eq. (1) is satisfied at each control point

D 1�sU
@

@x

� �
r4gi�qihU

@2g
@x2

� �
i
�qwU

@u
@x

� �
i
þqwg

U
gi¼�Pi;

(19)

FIG. 8. Relative positions of the control points, fictitious points, and interpolating points (top view).
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where i ¼ ðp� 1Þmþ q, p ¼ 1; 2;…; n, q ¼ 1; 2;…;m, and
Pi ¼ Pðxi; yiÞ. Each term in (19) is approximated by finite differences,
as explained above, and expressed through rj and gr . For
s < p < t, see Fig. 8, the control points are located on the water
surface, where D ¼ 0 and h¼ 0. Equation (19) provides m� n lin-
ear equations with m� nþ 4m unknowns. Additional 4m equa-
tions follow from the edge conditions (3). These conditions are
imposed at the ice edges, which are on the boundaries between
panels, see Fig. 6(a). The edge conditions are satisfied at interpola-
tion points, see Fig. 8, which are placed along the ice edges. We
introduce the deflections of the interpolation points, gd , with num-
bers d ¼ ðn� 1þ eÞmþ q, where q ¼ 1; 2;…;m and e ¼ 5; 6. The
deflection of the interpolating points is calculated by using three-
point Lagrange extrapolation function

gd ¼
15
8
gi �

5
4
gi�m þ 3

8
gi�2m ðe ¼ 5; p ¼ sÞ

15
8
gi �

5
4
giþm þ 3

8
giþ2m ðe ¼ 6; p ¼ tÞ

:

8>><
>>:

where i ¼ ðp� 1Þmþ q, q ¼ 1; 2;…;m. Applying edge conditions
(3) to dth interpolating points at the ice edges, one can obtain

@2g
@y2

 !
d

þ�
@2g
@x2

� �
d
¼ 0

�
@3g
@y3

�
d

þ 2��ð Þ @3g
@x2@y

 !
d

¼ 0: (20)

where for e ¼ 5,

@2g
@y2

 !
d

¼ 4

Dyð Þ2 gi�2gdþgrð Þ

@2g
@x2

� �
d
¼gdþ1�2gdþgd�1

Dxð Þ2 ;

8>>>>><
>>>>>:

@3g
@y3

 !
d

¼ 2

Dyð Þ3 3gi�gi�m�3grþgrþmð Þ

@3g
@x2@y

 !
d

¼grþ1�giþ1�2 gr�gið Þþgr�1�gi�1

Dy Dxð Þ2

p¼ s;u¼1ð Þ;

8>>>>>><
>>>>>>:
for e ¼ 6,

@2g
@y2

 !
d

¼ 4

Dyð Þ2 gi�2gdþgrð Þ

@2g
@x2

� �
d
¼gdþ1�2gdþgd�1

Dxð Þ2 ;

8>>>>><
>>>>>:

@3g
@y3

 !
d

¼ 2

Dyð Þ3 �3giþgiþmþ3gr�gr�mð Þ

@3g
@x2@y

 !
d

¼giþ1�grþ1�2 gi�grð Þþgi�1�gr�1

Dy Dxð Þ2

p¼ t;u¼4ð Þ:

8>>>>>><
>>>>>>:
Equation (20) provides the additional 4m equations. In this way,
Eqs. (19) and (20) give m� nþ 4m equations for m� nþ 4m
unknowns in total. The described numerical algorithm is applied
below to the problems of pressure moving either along the ice lead or
on infinite ice sheet with a crack.

For a lead of non-zero width, water waves propagate along the
lead in both directions from the moving load with small dissipation
even for a viscoelastic model of ice. Such waves are well described
numerically by using the upstream finite difference scheme (17). To
avoid large computational domains in the y-directions, and to enforce
the far-field condition (8) as jyj ! 1, damping regions are intro-
duced near the ends of the computational domain and far from the ice
edge, see Figs. 5(b) and 5(c). In these regions, a dissipative term tui is
added to the left-hand side of Eq. (19), where t is a positive coefficient
of artificial viscosity, see Parau et al. (2007) for details of this approach.
The value of the coefficient t depends on the load speed. The

FIG. 9. The control and fictitious points used in calculations of the fourth derivative with respect to y [(a) and (b)] and in calculations of the derivative ð@4g=ð@x2@y2ÞÞi near
the ice edge (c).

FIG. 10. Relative positions of the control points, fictitious points and interpolating
points (side view).
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dissipative term in the damping regions is responsible for smooth
decay of the ice deflection there without reflection waves from these
regions caused by the sudden change in viscous damping.

IV. VALIDATION OF THE ALGORITHM

In order to validate the present numerical algorithm, we compare
our numerical results with available theoretical results of others. Three
problems are considered for validation.

The first problem (case 1) deals with a pressure moving on open
water without ice. This problem was studied by Doctors and Sharma
(1972) for the conditions listed in the first column of Table I. Our
numerical algorithm was applied to this problem with the following
parameters of calculations: Lbx ¼ 5L, Lfx ¼ 3L, Ly ¼ 2:5L,
Dx ¼ 0:2m, and Dy ¼ 2m. The mesh size in the y direction is much
larger than in the x direction, because, in this problem, there are no y-
derivatives in the boundary conditions. No artificial dissipation on the
free surface is used in our calculations. The far-field condition of out-
going waves is satisfied by using the upstream finite difference scheme
(17). Our numerical results are compared well with the theoretical
results by Doctors and Sharma (1972) in Fig. 11 in terms of the wave-
making resistance coefficient in deep water.

The second problem (case 2) is concerned with a pressure mov-
ing on the ice surface of infinite extend. This problem was studied by
Kozin and Pogorelova (2003) for the conditions listed in the second
column of Table I. Our numerical algorithm was applied to this prob-
lem with the following parameters of calculations: Lbx ¼ 8L, Lfx ¼ 5L,
Ly ¼ 6:5L, Dx ¼ 5

3 m, and Dy ¼ 2m. Our numerical results agree
well with the theoretical solution of Kozin and Pogorelova (2003) in
terms of the wave-making resistance coefficient for infinite ice sheet,
see Fig. 12.

The third problem (case 3) deals with a uniform rectangular load
moving on the semi-infinite elastic ice sheet beside the semi-infinite
water surface. This problem was studied by Sturova (2018) for the con-
ditions listed in the third column of Table I. Note that s ¼ 0 in this

TABLE I. The parameters used for simulation.

Case 1 Case 2 Case 3 Case 4

L (m) 20 20 40 40
B (m) 10 10 20 20
a 5 5 1 5
b 2.5 2.5 1 2.5
P0 (Pa) 1000 1000 1000 1000
H (m) Infinite 6 350 100
h (m) … 0.2 2.5 0.4
� … 1/3 1/3 1/3
E (N/m2) … 5� 109 5� 109 5� 109

s(s) … 1 0 0.7

FIG. 11. Wave-making resistance coefficient for deep open water from Doctors and
Sharma (1972).

FIG. 12. Wave-making resistance coefficient for infinite ice sheet from Kozin and
Pogorelova (2003).

FIG. 13. Profiles of semi-infinite ice calculated theoretically by Sturova (2018) for
three different speeds of the load moving along the ice edge. Numerical results are
obtained by the present algorithm.
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problem. In order to satisfy the far-field condition (8) numerically
in our solution, a dissipative term tui is introduced in damping
regions far from the ice edge, see Figs. 2(b) and 5(b). The distance
between the center of the load and the ice edge is 50m. Our numer-
ical algorithm was applied to this problem with the following
parameters of calculations: Lbx ¼ Lfx ¼ 11L, Ly ¼ 11L, Dx ¼ 5m,
and Dy ¼ 5m. The deflections of the ice sheet are compared with
the theoretical solution of Sturova (2018) for three speeds of
the load, 10m/s, 15m/s, and 20m/s in Fig. 13. One can see that the
numerical results are in good agreement with the theoretical
results. Different from two other problems, this case involves
the free edge of ice sheet. Therefore, the demonstrated good agree-
ment further validates the numerical scheme proposed in this
paper to solve properly the problems for floating ice sheets with
free edges.

After the validation of the algorithm, two following problems are
investigated: (1) pressure moving along an ice lead, see Sec. V, and (2)
pressure moving on the ice sheet with a crack, see Sec. VI. The condi-
tions of these two problems are presented in the fourth column
(case 4) of Table I. The numerical algorithm for these two problems is
applied with the following parameters of calculation: Lbx ¼ 8L,
Lfx ¼ 5L, Ly ¼ 6:5L, Dx ¼ 8

3 m, and Dy ¼ 10
3 m.

V. PRESSURE MOVING IN ICE LEAD

This problem is studied for the external moving pressure given
by Eq. (2), where dimensionless parameters a and b control how
quickly the load decays with the distance from the center of the load.
We assume that the pressure moving along a lead models an air cush-
ion vehicle of rectangular shape. Then the equivalent moving load is
almost constant under the ship and quickly decays with distance from

FIG. 14. Three-dimensional free surface elevation and ice deflection for three speeds U of the load: (a) subcritical case, U ¼ 6m=s; (b) critical case, U1
cr ¼ 11:1m=s; and

(c) supercritical case, U ¼ 20 m=s.
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the ship. If the ship does not touch the ice on the sides of the lead,
then the parameters a and b cannot be too small. They also cannot be
large in order to avoid the difficulties with sharp edges of the external
pressure on a free surface, see Doctors and Sharma (1972). As a result,
we use 2 � a;b � 10 in the present method. Other parameters are
given by case 4 in Table I.

A. Effect of the load speed

The minimum phase speed of flexural-gravity waves of small
amplitude in an infinite elastic ice sheet for the parameters of this
paper is equal approximately to 11.1m/s, which as the critical speed of
a load U1

cr , at which the deflection of the infinite elastic ice sheet
becomes unbounded (Hosking et al., 1988) if the viscous properties of
ice are not accounted, s ! 0. Subcritical speed region, critical speed,

and supercritical speed region are defined with respect to U1
cr . Note

that the critical speed or critical speeds of the ice sheets with a lead
between them could be different from U1

cr . However, in this study, the
value U1

cr , which is independent of both the width of the lead and the
width of the channel, is used as the reference speed. We calculate
deflections of the ice sheets and elevation of the water surface in the
lead for subcritical, critical and supercritical speeds of the load and
characteristics of the ice listed above.

The shapes of the upper surface of the flow region for three dif-
ferent speeds of the load are shown in Fig. 14. It can be seen that for
the subcritical case the water surface oscillates relatively regularly, the
amplitude of the waves gradually decreases with the distance from the
load, and the ice sheet remains almost flat. Differently from the sub-
critical case, ice sheets oscillate visibly for both critical and supercritical
cases. The water surface elevations are more complicated in these two

FIG. 15. The longitudinal profiles of water elevation along the central line, y¼ 0, of the channel for the load moving along the ice lead (solid lines) and on open water without
ice (dashed lines): (a) subcritical case, U ¼ 6 m=s; (b) critical case, U1

cr ¼ 11:1 m=s; and (c) supercritical case, U ¼ 20 m=s.
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cases. For critical case, the deflection of the ice sheet is confined to the
region near the ice edge and behind the load. For supercritical speed,
the deflection of the ice sheet propagates within a certain angle behind
the load. Note that the wavelength becomes larger with increase in the
speed. To show the details of ice deflections and free-surface elevations
in these three cases, transverse and longitudinal profiles of ice sheets
and the water surface in the lead are presented in Figs.15 and 16.

Figure 15 depicts the longitudinal profiles of water surface along
the central line y¼ 0 for different speeds of the moving load. For com-
parison, the profiles without the presence of ice for the same load and
the same parameters are shown by the dashed lines in the figure. For
subcritical case, see Fig. 15(a), these two profiles almost coincide even
far away from the load. The oscillation of the water surface is relatively
regular, with the lowest depression under the load, the highest

elevation a short distance behind the load, and waves of decaying
amplitude behind the load. Note that the free-surface elevation and
the ice deflections are stationary in the system moving together with
the load. The relaxation time, s ¼ 0:7 s, in present calculations, is
large, which explains the quick decay of the waves behind the load. In
the critical case, see Fig. 15(b), the wave profile in the lead is different
from that in completely open water but only in the wake behind the
load. The waves in the lead behind the load decay slower than the
waves on completely open water even for relatively large relaxation
time. The waves in the lead behind the load are the superposition of
the waves generated by the load and water waves reflected from the ice
edges, which may result in the wave amplification behind the load. For
the supercritical case, see Fig. 15(c), the free-surface elevation in the
lead weakly depends on the presence of ice.

FIG. 16. The transverse profiles of both the water surface and ice surface through the highest water wave crests of Fig. 15. (a) subcritical case, U ¼ 6m=s; (b) critical case,
U1
cr ¼ 11:1 m=s; and (c) supercritical case, U ¼ 20m=s.
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Figure 16 provides the transverse profiles through the highest
water wave crests of Fig. 15, which are approximately at x¼ 30m,
49m, and 81m corresponding to subcritical case, critical case,
and supercritical case. One can find that the deflection of ice
sheet becomes larger as the speed increases. For subcritical case,
deflection of the ice sheet is very small. For critical and supercriti-
cal cases, the ice deflections are maximum at the ice edge
and decays with the distance from the edge without visible
oscillations.

Figure 17 shows the deflection of the ice sheet and water ele-
vation along the ice edge at y¼W/2. Water elevation is usually
higher than the deflection of ice edge. The wavelengths of the

waves on both the ice sheet and water surface become longer, and
the difference between the amplitude of the ice deflection and the
water elevation decreases with increase in the load speed. For the
subcritical case, only a very small localized deflection of the ice
sheet occurs near the place of the load, see Fig. 17(a). For the criti-
cal and supercritical cases, waves in ice are formed visibly behind
the load; see Figs. 17(b) and 17(c). The ice deflections in front of
the load are restrained due to the large relaxation time
(Shishmarev et al., 2016).

The moving load generates waves on the water surface and in the
ice. The flexural-gravity waves may break the ice plate. We restrict
ourselves to the stress rxx x;W=2ð Þ along the ice edge. The stress

FIG. 17. The deflection of the ice sheet and water elevation along the ice edge at y¼W/2: (a) Subcritical case, U ¼ 6 m=s; (b) critical case, U1
cr ¼ 11:1m=s; and (c) super-

critical case, U ¼ 20 m=s.
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ryy x;W=2ð Þ is zero at the edge; see conditions (3). The formula (11)
for the stress components and condition (3) provide rxx x;W=2ð Þ
¼ Eh

2 ð1� sU @
@xÞ @

2g
@x2. The stress rxy x;W=2ð Þ is not zero at the ice edge

but we do not consider this stress in the present study. The stress com-
ponent rxx x;W=2ð Þ as a function of x is shown in Fig. 18 for three
speeds of the load. The figure shows that the stress at U ¼ 6m=s is
the lowest, which corresponds to the small deflection of ice edge at this
subcritical speed, see Fig. 17. The maximum stress of ice edge at
U1
cr ¼ 11:1m=s is larger than that at U ¼ 20m=s although the maxi-

mum ice deflection is higher at U ¼ 20m=s, as shown in Fig. 17.
When the stress is larger than a failure stress of the ice sheet, cracks at
the ice edge might be generated under the effects of a moving load.
Within a linear model of ice plate deflection, the stresses near the ice
edge are proportional to the magnitude of the load. Thus, one can

predict the required nominal pressure P0 to break ice, provided the
failure stress of the ice sheet is given.

B. Load speeds on maximum deflection
and maximum stress

In this section, we investigate the maximum magnitude of the ice
deflection, gmax Uð Þ ¼ max�1<x<1 jg x;W=2ð Þj, and the maximum
magnitude of the bending stress, rmax Uð Þ ¼ max�1<x<1
jrxx x;W=2ð Þj, along the edge of the ice plate as functions of the load
speed U. Calculations were performed for the load speeds from 4 to
27m/s. The maximum deflection, gmax Uð Þ, and maximum stress,
rmax Uð Þ, are shown on Fig. 19.

It is seen that both the maximum deflection, gmax Uð Þ, and the
maximum stress, rmax Uð Þ, at the ice edge are small for speeds below 6
m/s. Then both gmax Uð Þ and rmax Uð Þ increase sharply. The maxi-
mum deflection of the edge, gmax Uð Þ, peaks at the load speed
Umd ¼ 14:8m=s, and the maximum stress, rmax Uð Þ, peaks at the
speed Ums ¼ 11:85m=s. Both load speeds, Umd and Ums, are larger
than the critical speed of the infinite elastic ice sheet, U1

cr ¼ 11:1m=s.
As the load speed continues to increase, both the maximum deflection
and maximum stress decay, see Fig. 19. Different from U1

cr , which is
given by an analytical formula without account for the relaxation time
s, the speeds Umd and Ums are obtained numerically for a given s,
given load and given parameters of the ice sheet and the lead. It is
expected that for s ! 0 the speeds Umd and Ums converge to a single
speed Ulead

cr , and the peaks in Fig. 19 grow beyond all bounds. Note
that Ulead

cr is expected to be different from U1
cr .

In the previous section, the critical speed of the infinite ice sheet,
U1
cr , was chosen as a reference speed. However, Fig. 19 shows that

gmax U1
crð Þ ¼ 0:0538m, which is approximately twice smaller than the

maximum gmax Umdð Þ ¼ 0:0982m. Moreover, gmax Uð Þ > gmax U1
crð Þ

for load speeds from U1
cr ¼ 11:1m=s up to U ¼ 27m=s. Similarly, in

the interval U1
cr < U < 14m=s, Fig. 19(b) shows that rmax Uð Þ is

greater than rmax U1
crð Þ. Therefore, the critical speed for infinite ice

FIG. 18. The stress along the edge of ice sheet at y ¼ W=2 for different speeds.

FIG. 19. (a) Maximum deflection, gmaxðUÞ, and (b) maximum stress, rmaxðUÞ, along the ice edge.
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sheet, in general, cannot be regarded as the critical speed of a load
moving along the lead.

To illustrate difference between the ice response for U1
cr and a

speed U� from the interval Ums < U� < Umd , we select U� ¼ 13m=s
and compare deflections and stresses calculated for speeds U1

cr and
U� ¼ 13m=s. Figure 20 shows the deflection of the ice sheet along the
edge, the bending stress components along the edge, and the longitudi-
nal profiles of water elevation along the central line. One can see that
both the magnitudes of both the ice deflections and stresses along the
ice edge for U� ¼ 13m=s are larger than those for U1

cr . Therefore, the
critical speed for the infinite ice sheet cannot be regarded as the critical
speed of a load moving in the ice lead. Figure 21 shows three-
dimensional free surface elevation and ice deflection for speed
U� ¼ 13m=s. It is seen that the ice deflections for this speed are

higher than for U1
cr , see Fig. 14(b), can be observed at larger distances

from the ice edge, and occur also in front of the load, compare with
Fig. 14(c).

The difference of the speeds Umd and Ums from U1
cr can be

explained by different geometries of the corresponding problems: Umd

and Ums are calculated for the ice sheet with a lead but U1
cr is defined

for the infinite ice sheet, as well as by the effect of the damping: Umd

and Ums are calculated with s ¼ 0:7 s but U1
cr is defined without

account for damping. The effect of damping on the speeds Umd and
Ums can be understood calculating them for the infinite continuous ice
sheet without a lead. The dashed lines in Figs. 28 and 29 depict
gmax Uð Þ and rmax Uð Þ for the infinite ice sheet without a crack, where
y¼ 0 and s ¼ 0:7 s, for the same conditions. It is seen that gmax Uð Þ
peaks at speed 12.2 m/s and rmax Uð Þ peaks at speed 11.85 m/s, both

FIG. 20. (a) The ice deflection along the edge, (b) the stress along the edge, and (c) the longitudinal profile of water elevation along the centerline, y¼ 0, for U1
cr ¼ 11:1 m=s

and U� ¼ 13 m=s.
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of which are higher than the critical speed for the infinite ice sheet,
U1
cr . Therefore, the relaxation time s not only makes deflections and

stresses finite for any speeds of the load, but also increase the speeds
Umd andUms of maximum deflection and maximum stress.

C. Effect of the ice thickness

To investigate the effect of ice thickness on Umd and Ums, the
maximum ice deflection, gmax Uð Þ, and maximum stress, rmax Uð Þ,
along the ice edge are presented in Fig. 22 for h¼ 0.4 m and h¼ 0.8 m
with the lead width W ¼ 2L ¼ 80m and parameters of the load for
case 4 from Table I. The corresponding critical speeds of infinite elastic
ice sheet are 11.1 m/s for h¼ 0.4 m and 14.3 m/s for h¼ 0.8 m. It is
seen that both speeds Umd and Ums increase with increase in ice thick-
ness. The speed Umd ¼ 21m=s for h¼ 0.8 m is much larger than the

corresponding critical speed of infinite elastic ice sheet. However, the
speed Ums ¼ 14:3m=s for h¼ 0.8 m is equal to the corresponding
critical speed of infinite elastic ice sheet. Further research explaining
the effects of ice elastic characteristics on stresses and deflections of the
ice sheet is required. In particular, it would be interesting to know the
speedsUmd and Ums as functions of the ice thickness h.

D. Effect of the load properties

The ice response is proportional to the magnitude of the load
within the linear model of hydroelasticity. The present calculations are
done for P0 ¼ 1000 Pa, see Eq. (2). By using the obtained deflections
and stresses, it is not complicated to find the ice response to any given
load magnitude. Note that the total load is equal to P0LB for any a and
b in Eq. (2) for the load distribution. The maximum ice deflection,
gmax Uð Þ, and maximum stress, rmax Uð Þ, along the ice edge as func-
tions of the load speed are presented in Fig. 23 for a ¼ 5, b ¼ 2:5 and
a ¼ 10, b ¼ 5 with W ¼ 2L ¼ 80m and h¼ 0.4 m. It is seen that
both speeds Umd and Ums weakly depend on a and b, but the magni-
tudes of both maximum ice deflection, gmax Uð Þ, and maximum stress,
rmax Uð Þ, increase with increase in a and b at a given load speed.

One may expect that the aspect-ratio of the load, L/B, where L is
the length of the load along the lead and B is the width of the load, has
an influence on the speed Umd and Ums. The maximum ice deflection,
gmax Uð Þ, and maximum stress, rmax Uð Þ, along the ice edge as func-
tions of the load speed are presented in Fig. 24 for different B and
L¼ 40 m, a ¼ 5, b ¼ 2:5, h¼ 0.4 m,W ¼ 80m. The total load P0LB
is constant in these calculations. The critical speed for infinite ice sheet
for the same elastic characteristics of ice is U1

cr ¼ 11:1m=s. The speed
Umd ¼ 14:35m=s for L/B¼ 1, Umd ¼ 14:8m=s for L/B¼ 2,
and Umd ¼ 15:1m=s for L/B¼ 4. The speed Ums ¼ 11:85m=s
for L/B¼ 1, Ums ¼ 11:85m=s for L/B¼ 2, and Ums ¼ 12:9m=s for
L/B¼ 4. It is seen that both the speed Umd and Ums increase with
decrease in the width of the load across the lead. In other words,
both speeds increase if the load becomes more elongated along the

FIG. 22. (a) Maximum ice deflection, gmaxðUÞ, and (b) maximum stress, rmaxðUÞ, along the ice edge, y¼W/2, as functions of the load speed for h¼ 0.4 m and h¼ 0.8 m
with W ¼ 2L ¼ 80m and parameters of the load for case 4 from Table I.

FIG. 21. Three-dimensional free surface elevation and ice deflection for speed 13 m/s.
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channel. All of these speeds are larger than the corresponding criti-
cal speed of infinite elastic ice sheet, U1

cr ¼ 11:1m=s. It can be con-
cluded that the larger the ratio L/B, the larger the ice deflection
and stress in the ice sheet for a constant total load, P0LB. Further
research clarifying the effect of load characteristics on ice response
is required including the problems of non-uniform load and two
loads moving at the same speed one after another.

E. Effect of the lead width

In terms of the effects of lead width on Umd and Ums, the maxi-
mum ice deflections, gmax Uð Þ, and maximum stresses, rmax Uð Þ,
along the edge are presented in Fig. 25 for different lead widths with

h¼ 0.4 m and parameters of the load for case 4 from Table I. It is seen
that Umd decreases as the lead width increases, but Ums increases as
the lead width increases. The speed Umd ¼ 14:8m=s for W¼ 2L
and Umd ¼ 14:5m=s for both W¼ 3L and 4L. The speed
Ums ¼ 11:85m=s for W¼ 2L, Ums ¼ 12:2m=s for W¼ 3L, and
Ums ¼ 12:4m=s for W¼ 4L. Note that all of these speeds are larger
than the corresponding critical speed of infinite elastic ice sheet,
U1
cr ¼ 11:1m=s. Further research on ice response for different widths

of the lead is required with asymptotic analysis for very wide and very
narrow leads. The meaning of wide lead with respect to the character-
istic length of the ice sheet and dimensions of the load should be
clarified.

FIG. 24. (a) Maximum ice deflection, gmaxðUÞ, and (b) maximum stress, rmaxðUÞ, along the ice edge, y¼W/2, as functions of the load speed for different B and L¼ 40 m,
a ¼ 5, b ¼ 2:5, h¼ 0.4 m, W ¼ 80m. The total load P0LB is constant.

FIG. 23. (a) Maximum ice deflection, gmaxðUÞ, and (b) maximum stress, rmaxðUÞ, along the ice edge, y¼W/2, as functions of the load speed for a ¼ 5, b ¼ 2:5 and
a ¼ 10, b ¼ 5 with W ¼ 2L ¼ 80m and h¼ 0.4 m.
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FIG. 25. (a) Maximum ice deflection, gmaxðUÞ, and (b) maximum stress, rmaxðUÞ, along the ice edge, y¼W/2, as functions of the load speed for different lead width with
h¼ 0.4 m and parameters of the load for case 4 from Table I.

FIG. 26. Deflection of an infinite ice sheet along y¼ 0 with and without the crack: (a) subcritical case, U ¼ 6m=s; (b) critical case, U1
cr ¼ 11:1m=s; and (c) supercritical

case, U ¼ 20 m=s.
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VI. PRESSURE MOVING ON AN ICE SHEET ALONG
A CRACK

If the bending stresses in the ice sheet are over the failure stress,
cracks are generated in the ice sheet (Cui et al., 2018; Yuan et al.,
2020), and the calculations should be terminated because generation
and propagation of cracks are beyond the simulation ability of the pre-
sent numerical model. However, the numerical algorithm can simulate
the pressure moving on ice with an existing crack, which would be
very helpful to understand the response of ice sheets after their dam-
age. We consider a pressure moving on an infinite ice sheet with a
crack at y¼ 0. The center of the pressure moves in the x direction
along y¼ 0. The obtained results are compared with those for an infi-
nite ice sheet without cracks.

Figure 26 provides the deflections g x; 0ð Þ of the ice sheet along
y¼ 0 with and without the crack for three speeds of the load, U¼ 6,
11.1, and 20 m/s, where U1

cr ¼ 11:1m=s is the critical speed for infi-
nite continuous ice sheet. It is seen that the presence of the crack does
not change significantly the ice deflections for any speed of the
load. However, the deflections with the crack are slightly larger than
without it.

Figure 27 provides the stress rxx x; 0ð Þ of the ice sheet along y¼ 0
with and without the crack for three speeds of the load, U¼ 6, 11.1,
and 20 m/s. One can see that the stress rxx x; 0ð Þ oscillates both with
and without crack. It is seen that the maximum stress of ice sheet with-
out crack is larger than that of ice sheet without crack.

Figure 28 shows the maximum deflection, gmax Uð Þ, of the ice
sheet with and without crack as functions of the load speed U. The

FIG. 27. Stress of an infinite ice sheet along y¼ 0 with and without the crack: (a) subcritical case, U ¼ 6m=s; (b) critical case, U1
cr ¼ 11:1m=s; and (c) supercritical case,

U ¼ 20m=s.
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maximum deflection of infinite ice sheet with crack is larger than that
of the intact ice sheet at each speed. For the ice sheet without and with
crack, deflection magnitude peaks at Umd � 12:2m=s and
Umd � 12:8m=s, respectively. Both these speeds are higher than the
critical speed of an infinite elastic plate, U1

cr ¼ 11:1m=s. For the ice
without the crack, this shift of the critical speed can be explained by
the damping within the present viscoelastic model of ice sheet. For the
ice with the crack, the shift in the critical speed is affected also by the
presence of the crack in addition to the damping effect.

In contrast to the ice deflection, the maximum stress, rmax Uð Þ, of
the infinite ice sheet with the crack is smaller than that of the intact ice
sheet at each speed, as shown in Fig. 29. This also indicates that an ice
sheet with an initial crack is hard to break again with the same load.

Whether the ice sheet is with or without crack, the stress peaks at
Ums � 11:85m=s.

According to Eq. (9), the wave-making resistance of a moving
load depends on the ice slope in the direction of the load motion. The
resistances of the same load moving on ice sheet with and without
crack are shown in Fig. 30. One can see that the resistance peaks at
load speed Umr ¼ 13:3m=s for ice sheet with crack and 13 m/s for ice
sheet without crack. We conclude that the wave-making resistance for
the ice sheet with crack is slightly lower than that for the ice sheet
without crack for load speeds close toUmr .

VII. DISCUSSION AND CONCLUSION

A numerical method based on BIM has been proposed to esti-
mate responses of ice sheets with a lead between them to a load mov-
ing on either ice or water surface. The method can deal with different
conditions at the ice edge but it is limited to constant speed of the load
and constant width of the lead. The approach allows variation of ice
properties in the y-direction, perpendicular to the ice edge, but not in
the x-direction along the ice edge. By introducing fictitious points
along the ice edge within a finite difference method, the edge condi-
tions were properly approximated. The approach and the numerical
algorithm were validated by comparing the obtained results to the
results obtained by different methods.

For the pressure moving in an ice lead, elevation of the water sur-
face and the deflection of the ice sheet oscillate for the load speeds
being close to the critical speedU1

cr . Interaction of the waves generated
by the moving load and reflected by the ice edges amplifies the water
waves behind the load for critical and supercritical speeds of the load.
This wave amplification is likely to influence a body moving behind
the load, like a merchant ship following an ice-breaker. For case 4
from Table I, the maximum deflection of ice sheet peaks at
Umd � 14:8m=s, while the maximum stress of ice sheet peaks at
Ums � 11:85m=s. We concluded that both the wave amplitude and
the wavelength contribute to the stress magnitude, which explains the
difference between Ums and Umd. Both of them are higher than the
critical speed of infinite elastic plate, U1

cr ¼ 11:1m=s, under the

FIG. 30. Resistance of pressure moving on an infinite ice sheet with and without a
crack.

FIG. 28. The maximum deflection, gmaxðUÞ, of an infinite ice sheet with and without
crack.

FIG. 29. The maximum stress, rmaxðUÞ, of an infinite ice sheet with and without
crack.
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combined effects of boundary conditions and damping of the ice
sheets. The speeds Umd andUms increase with increase in ice thickness.
As the lead width increase, the speed Umd decreases but the speed Ums

increases. Variation of the parameters a and b in Eq. (2) does not
change significantly the speeds Umd and Ums, but they increase with
increase in the ratio L/B. The larger the ratio L/B, the larger the ice
deflection and stress in the ice sheet for a constant total load, P0LB.

For the pressure moving on an infinite ice sheet with a crack, the
results were compared with those for the pressure moving on an infi-
nite ice without the crack. The maximum deflection of ice sheet with a
crack is always larger than for the ice sheet without a crack. The deflec-
tion peaks at the load speed Umd ¼ 12:8m=s for the ice sheet with the
crack and at Umd � 12:2m=s for the ice sheet without a crack.
Therefore, the presence of a crack makes the ice sheet easier to deform
under the same pressure load. In contrast, the maximum stress in the
ice sheet with a crack is always lower than in the ice sheet without a
crack although the peaks of the maximum stress for these two cases
reach at the same speed, Ums ¼ 11:85m=s. This indicates that the
existence of initial crack makes the ice sheet more difficult to break by
using the same moving pressure. With respect to the wave-making
resistance, it is slightly lower for a moving on an ice sheet with a crack
than that for the same load moving on an intact ice sheet and only for
load speeds close to the speed of maximum resistance Umr . Last but
not least, one should notice that the difference in the numerical results
between the ice sheets with and without a crack comes only from the
free-edge boundary conditions. In other words, if the free-edge bound-
ary conditions are not incorporated properly in the numerical model,
then the numerical results will be inconsistent.
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