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Abstract19

Oceanography has entered an era of new observing platforms, such as biogeochemical20

Argo floats and gliders, some of which will provide three-dimensional maps of essential21

ecosystem variables on the North-West European (NWE) Shelf. In a foreseeable future22

operational centres will use multi-platform assimilation to integrate those valuable data23

into ecosystem reanalyses and forecast systems. Here we address some important ques-24

tions related to glider biogeochemical data assimilation and introduce multi-platform data25

assimilation in a (pre)operational model of the NWE Shelf-sea ecosystem. We test the26

impact of the different multi-platform system components (glider vs satellite, physical27

vs biogeochemical) on the simulated biogeochemical variables. To characterize the model28

performance we focus on the period around the phytoplankton spring bloom, since the29

bloom is a major ecosystem driver on the NWE Shelf. We found that the timing and mag-30

nitude of the phytoplankton bloom is insensitive to the physical data assimilation, which31

is explained in the study. To correct the simulated phytoplankton bloom one needs to32

assimilate chlorophyll observations from glider or satellite Ocean Color (OC) into the33

model. Although outperformed by the glider chlorophyll assimilation, we show that OC34

assimilation has mostly desirable impact on the sub-surface chlorophyll. Since the OC35

assimilation updates chlorophyll only in the mixed layer, the impact on the sub-surface36

chlorophyll is the result of the model dynamical response to the assimilation. We demon-37

strate that the multi-platform assimilation combines the advantages of its components38

and always performs comparably to its best performing component.39

Plain Language Summary40

North-West European (NWE) Shelf is a region of major importance for both Eu-41

ropean economy and climate. Observational oceanography has entered an important era42

of new observing biogeochemical platforms, such as Biogeochemical Argos and gliders.43

Gliders are being currently deployed to measure three-dimensional distributions of some44

essential biogeochemical variables on the NWE Shelf. This work establishes a multi-platform45

assimilative system on the NWE Shelf which will be used to combine multiple different46

types of observing platforms (e.g. satellite, gliders) with our up-to-date models in or-47

der to optimize our estimate and forecast of the NWE Shelf ecosystem state. We pro-48

vide an understanding for how the different components of the system interact. We demon-49

strate that the assimilative system is skilled to combine physical data with satellite and50

glider data for chlorophyll, as well as the glider data for oxygen. The work establishes51

the foundations of a system that is planned to be used in the future operational oceanog-52

raphy on the NWE Shelf.53

1 Introduction54

Understanding the state and the future of shelf-sea ecosystems is essential from the55

point of view of economy, conservation and the global carbon cycle (Pauly et al. (2002);56

Borges et al. (2006); Friedlingstein et al. (2006); Jahnke (2010)). Reanalyses provide our57

best estimate of the ocean state by optimally combining the state-of-the-art knowledge58

from models with the most up-to-date observations. In marine biogeochemistry the pre-59

vailing approach is to assimilate satellite products into models, either for Ocean Color60

(OC) derived total chlorophyll (e.g Ishizaka (1990); Carmillet et al. (2001); Natvik and61

Evensen (2003); Hoteit et al. (2005); Triantafyllou et al. (2007); Nerger and Gregg (2007,0);62

Gregg (2008); Fontana et al. (2010); Ford et al. (2012); Ciavatta et al. (2011,0); Kala-63

roni et al. (2016); Ford and Barciela (2017); Pradhan et al. (2019)), Phytoplankton Func-64

tional Type (PFT)-specific chlorophyll (Ciavatta et al. (2018,0); Skákala et al. (2018,0)),65

or surface radiances (Shulman et al. (2013); Ciavatta et al. (2014); Jones et al. (2016);66

Gregg and Rousseaux (2017); Skákala et al. (2020)). Additionally a number of studies67

have assimilated biogeochemical data from in situ measurements, either using single-location68
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profiles (e.g. Allen et al. (2003); Hoteit et al. (2003); Torres et al. (2006); Lenartz et al.69

(2007)), or using surface data from ships, floats and buoys (e.g Anderson et al. (2000);70

Cossarini et al. (2009); Song et al. (2016)). The typical disadvantage of the tradition-71

ally assimilated biogeochemical data-sets is that they are either constrained to the ocean72

surface (e.g. in the case of satellite data), or they are typically limited to a single loca-73

tion (in the case of vertically-measured data). Assimilating such data into the model has74

either only local impact, or its impact on biogeochemical fields is typically constrained75

to the upper oceanic layer, with uncertain impact on the vertical profiles of biomass, or76

nutrients.77

However, the situation on the data-front is rapidly changing, with new programmes78

(e.g. AtlantOS, Visbeck et al. (2015)) aiming at revolutionizing biogeochemical oceanog-79

raphy with novel observing platforms covering large parts of the ocean both horizontally80

and vertically, such as floats deployed in the Biogeochemical-Argo programme (e.g. John-81

son and Claustre (2016); Johnson (2016); Germineaud et al. (2019)), and gliders with82

optical and biogeochemical sensors (Telszewski et al. (2018)). Some of the Argo float oxy-83

gen data were already assimilated to constrain the biogeochemistry in the Southern Ocean84

(Verdy and Mazloff (2017)) and Argo-measured chlorophyll was assimilated to improve85

phytoplankton dynamics in the Mediterranean Sea (Cossarini et al. (2019)). This new86

observational activity quite understandably focuses on regions of high importance for fish-87

eries, economy and climate, such as the North-West European (NWE) Shelf (e.g. Legge88

et al. (2020)), where a number of gliders have been deployed as a part of the Alterna-89

tive Framework to Assess Marine Ecosystem Functioning in Shelf Seas (AlterECO) pro-90

gramme (http://projects.noc.ac.uk/altereco/ ). The rapid development of these new au-91

tonomous observation systems opens up an entirely new range of possibilities on how to92

optimally integrate multi-platform observing networks with our present oceanographic93

models (Lellouche et al. (2013); Bell et al. (2015)). The observational work on the NWE94

Shelf from the AlterECO project is coupled to a sister programme, the CAMPUS (Com-95

bining Autonomous observations and Models for Predicting and Understanding Shelf seas,96

https://www.campus-marine.org/ ) project, aiming to consistently combine the different97

sources of information, such as gliders, satellite OC data and models, in order to improve98

our capability to understand, represent and forecast the NWE Shelf biogeochemistry (e.g99

spring bloom, carbon and nutrient cycle, oxygen depletion events). Future plans, based100

on CAMPUS and in line with the European Copernicus Marine Environment Monitor-101

ing Service (CMEMS), are to have a multi-platform assimilative system on the NWE Shelf,102

where the autonomous vehicles will navigate to specific locations using a combination103

of Artificial Intelligence (AI) and model forecast, to observe important processes such104

as the onset of the phytoplankton bloom, or hypoxic events.105

Trying to establish glider data assimilation as part of such a multi-platform assim-106

ilative system often leads to two non-trivial problems: a) how to consistently combine107

high resolution glider data with much coarser model resolution, b) how to achieve rea-108

sonable consistency between the assimilation-corrected variables and the coupled physical-109

biogeochemical model dynamics. The problem of dynamical consistency needs special110

mention, since both physical and biogeochemical fields have typically much larger gra-111

dients in the vertical than in the horizontal dimension. The vertical correlation length112

scales have large spatio-temporal variability and model dynamics can be quite sensitive113

to spurious vertical gradients (Doney (1999); Oschlies and Garçon (1999); Doney et al.114

(2004)). Such model sensitivity is often noticed when physical data (such as sea surface115

height, or temperature and salinity) are assimilated into the model, as the spurious ver-116

tical mixing introduced by such assimilation is known to often degrade the skill of the117

biogeochemical model (e.g Berline et al. (2007); While et al. (2010); El Moussaoui et al.118

(2011); Holt et al. (2014); Raghukumar et al. (2015); Park et al. (2018)). However, sim-119

ilar issues can be easily overlooked when we assimilate surface biogeochemical data (ex-120

cept extreme regions with substantial small-scale horizontal variability, such as the Gulf121

Stream, Anderson et al. (2000)), since the biogeochemical fields have smaller gradients122
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in the horizontal direction than in the vertical, which means they are more dynamically123

stable in the horizontal than in the vertical direction. For the gliders, it is of vital in-124

terest to understand the potentially complex interaction between the physical and the125

biogeochemical data assimilation, or the interplay between the different biogeochemical126

variables updated by the assimilative system.127

In this study we extend the operational assimilative system on the NWE Shelf to128

successfully produce a multi-platform reanalysis including both physical (satellite sea sur-129

face temperature, temperature and salinity from in situ platforms and an AlterEco glider)130

and biogeochemical (total chlorophyll a and oxygen from an AlterECO glider, and chloro-131

phyll a from a satellite OC product) variables. The main focus of the paper is to assess132

the impact of the different multi-platform assimilative system components (satellite vs133

glider, physical vs biogeochemical) on the simulated ecosystem processes in relation to134

the phytoplankton spring bloom. Being able to estimate the impact of the different sys-135

tem components is important, since it indicates what the assimilation impact will be on136

the simulated biogeochemistry in regions where only a specific type of data (e.g. satel-137

lite OC, physical variables) is available. The focus on the processes around the spring138

bloom is a natural choice due to a) the availability of high quality chlorophyll glider data,139

and b) because the spring bloom is a key driver of the ecosystem dynamics on the NWE140

Shelf (Lutz et al. (2007); Henson et al. (2009)). The results of this study should form141

a basis for an integrated multi-platform assimilative system, that will optimize the avail-142

able information from observations and models in order to improve our understanding143

of the NWE Shelf biogeochemistry. The assimilated biogeochemical glider variables were144

selected based on the data availability, but both chlorophyll and oxygen are expected145

to play an important role in the future multi-platform operational assimilation: chloro-146

phyll is a proxy for phytoplankton biomass, which forms the base of the marine food web,147

while oxygen needs to be monitored and forecast in order to identify oxygen depletion148

events (i.e. hypoxia, Vaquer-Sunyer and Duarte (2008)), which can have disastrous im-149

pacts on marine life.150

2 Methods151

The paper uses a hindcast version of the operational modelling system for the NWE152

Shelf run by the Met Office in the framework of the CMEMS, i.e. the physical model Nu-153

cleus for European Modelling of the Ocean (NEMO, Madec et al. (2015)) coupled through154

the Framework for Aquatic Biogeochemical Models (FABM, Bruggeman and Bolding (2014))155

with the biogeochemical model European Regional Seas Ecosystem Model (ERSEM, Baretta156

et al. (1995); Blackford (1997); Butenschön et al. (2016)). We used measurements from157

an AlterEco glider that operated in the central North Sea between May-August 2018 pro-158

viding data for temperature, salinity, chlorophyll (derived from fluorescence) and oxy-159

gen concentrations. In multi-platform assimilation the glider data were complemented160

with the Ocean Colour-Climate Change Initiative (OC-CCI) satellite product of the Eu-161

ropean Space Agency (ESA) for total chlorophyll (version 3.1, Sathyendranath et al. (2019)),162

Sea Surface Temperature (SST) data from the GCOM-W1/AMSR-2, NOAA/AVHRR,163

MetOp/AVHRR, MSG/SEVIRI, Sentinal-3/SLSTR, and Suomi-NPP/VIIRS satellite164

products, and the temperature and salinity in situ data from the EN4 dataset (Good et al.165

(2013)), which includes profiles from Argo floats, fixed moored arrays, XBTs, CTDs, glid-166

ers, and marine mammals. The physical and biogeochemical data were assimilated on167

a daily basis into NEMO-FABM-ERSEM using NEMOVAR (the assimilative system used168

operationally by the Met Office, Mogensen et al. (2009,0); Waters et al. (2015); King et al.169

(2018)).170

The model free simulation was run from 01/09/2017 until the end of the year 2018171

and was initialized from a 2016-2018 run of a very similar model configuration presented172

in Skákala et al. (2020). The free run outputs have been analysed for the period of the173

glider data availability (08/05-15/08, 2018). The assimilative runs used identical model174
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settings as the free run, only with the added assimilation components. The different as-175

similative runs compared in this study are (see also Table 1): a) physical data assimi-176

lation (satellite SST, temperature and salinity from EN4 data and the AlterEco glider),177

b) satellite OC total chlorophyll a assimilation, c) AlterEco glider chlorophyll a assim-178

ilation, d) AlterEco glider oxygen assimilation and e) multi-platform assimilation com-179

bining all the data from a)-d). Note that wherever we mention the assimilation of spe-180

cific data (e.g. glider chlorophyll) we mean a simulation where only those data have been181

assimilated (as opposed to multi-platform assimilation, which assimilates all the avail-182

able data). All the assimilative runs were started from the initial value conditions pro-183

duced by the free simulation for 08/05/2018.184

Table 1. The observations assimilated in the different data assimilation (DA) experiments.

The table uses some of the following abbreviations: temperature (T), salinity (S) and ‘EN4”

means the EN4 in situ data-set.

185

186

187

Experiment satellite SST EN4 T&S glider T&S satellite OC glider chl a glider O2

physical DA Yes Yes Yes No No No

satellite OC DA No No No Yes No No

glider chl a DA No No No No Yes No

glider O2 DA No No No No No Yes

Multi-platform DA Yes Yes Yes Yes Yes Yes

2.1 The physical component: NEMO188

The NEMO ocean physics component (OPA) is a finite difference, hydrostatic, prim-189

itive equation ocean general circulation model (Madec et al. (2015)). The NEMO con-190

figuration used in this study is similar to the one used by Ford et al. (2017); Skákala et al.191

(2018), and almost identical to Skákala et al. (2020): we use the CO6 NEMO version,192

based on NEMOv3.6, a development of the CO5 configuration explained in detail by O’Dea193

et al. (2017). The model has 7 km spatial resolution on the Atlantic Margin Model (AMM7)194

domain using a terrain-following z∗−σ coordinate system with 51 vertical levels (Sid-195

dorn and Furner (2013)). The lateral boundary conditions for physical variables at the196

Atlantic boundary were taken from the outputs of the Met Office operational 1/12◦ North197

Atlantic model (NATL12, Storkey et al. (2010)); the Baltic boundary values were derived198

from a reanalysis produced by the Danish Meteorological Institute for CMEMS. We use199

annually varying river discharge based on data from Lenhart et al. (2010). The model200

was forced at the surface by atmospheric fluxes provided by an hourly and 31 km res-201

olution realisation (HRES) of the ERA5 data-set (https://www.ecmwf.int/ ).202

2.2 The biogeochemical component: ERSEM203

ERSEM (Baretta et al. (1995); Butenschön et al. (2016)) is a lower trophic level204

ecosystem model for marine biogeochemistry, pelagic plankton, and benthic fauna (Black-205

ford (1997)). The model splits phytoplankton into four functional types largely based206

on their size (Baretta et al. (1995)): picophytoplankton, nanophytoplankton, diatoms207

and dinoflagellates. ERSEM uses variable stoichiometry for the simulated plankton groups208

(Geider et al. (1997); Baretta-Bekker et al. (1997)) and each Phytoplankton Functional209

Type (PFT) biomass is represented in terms of chlorophyll, carbon, nitrogen and phos-210

phorus, with diatoms also represented by silicon. ERSEM predators are composed of three211
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zooplankton types (mesozooplankton, microzooplankton and heterotrophic nanoflagel-212

lates), with organic material being decomposed by one functional type of heterotrophic213

bacteria (Butenschön et al. (2016)). The ERSEM inorganic component consists of nu-214

trients (nitrate, phosphate, silicate, ammonium and carbon) and dissolved oxygen. The215

carbonate system is also included in the model (Artioli et al. (2012)).216

We used in this study a similar ERSEM configuration to Skákala et al. (2020), but217

unlike Skákala et al. (2020) we implemented an updated ERSEM version (v20.10), with218

a notable upgrade to the benthic code. The ERSEM parametrization is identical to the219

one described in Butenschön et al. (2016). The Atlantic boundary values for nitrate, phos-220

phate, silicate and oxygen were taken from World Ocean Atlas (Garcia et al. (2013)) and221

dissolved inorganic carbon from the GLODAP gridded dataset (Key et al. (2015); Lau-222

vset et al. (2016)), while plankton and detritus variables were set to have zero fluxes at223

the Atlantic boundary. The ERSEM irradiance was calculated using a new bio-optical224

module implemented in the NEMO-FABM-ERSEM AMM7 configuration by Skákala et al.225

(2020). The bio-optical module resolves light spectrally and distinguishes between down-226

welling direct and diffuse streams. The module is forced by ERA5 atmospheric inputs227

(https://www.ecmwf.int/ ) for total vertically integrated ozone, water vapour, cloud cover,228

cloud liquid water and sea-level air pressure, as well as by a satellite product for aerosol229

optical thickness (MODerate resolution Imaging Spectroradiometer, MODIS, https://modis.-230

gsfc.nasa.gov/data/dataprod).231

2.3 The assimilative system: NEMOVAR232

NEMOVAR is a variational Data Assimilation (DA) system (Mogensen et al. (2009,0);233

Waters et al. (2015)) used for operational ocean DA at the Met Office. Via the assim-234

ilation of satellite OC derived (total, or PFT) chlorophyll concentrations, NEMOVAR235

has been demonstrated as being highly successful in improving the phytoplankton com-236

munity structure (PFT chlorophyll assimilation), phytoplankton seasonal cycle and the237

timing and magnitude of the spring bloom (Skákala et al. (2018,0)). There are also in-238

dications that satellite OC assimilation can improve the carbon cycle (Skákala et al. (2018,0)).239

When it comes to the non-assimilated variables, satellite OC reanalysis typically has a240

comparable skill to the free run (Skákala et al. (2018,0)). The satellite OC chlorophyll241

assimilation using NEMOVAR on the NWE Shelf has been thoroughly validated on bi-242

decadal time-scales (Kay et al. (2019)), showing a good overall skill and no spurious trends243

in biogeochemical tracer concentrations.244

In this study the observations are assimilated on a daily basis. The model is first245

run for the day and background values are calculated in observation space by interpo-246

lating the model fields to the observation locations at the nearest model time step (300247

seconds) to the observation time, an approach known as First Guess at Appropriate Time248

(FGAT). NEMOVAR is then run, calculating a set of increments for each updated vari-249

able on the model grid. After the assimilation step the model is re-run with the incre-250

ments applied to the model variables gradually at each model time-step using incremen-251

tal analysis updates (IAU, Bloom et al. (1996)). For the physical variables the increments252

are calculated for temperature, salinity, sea surface height and the horizontal velocity253

components, by accounting for their correlations by transforming those variables through254

a set of linear balancing equations into an independent set of variables that is assimi-255

lated separately. For biogeochemical variables, the increments are initially calculated for256

the observed variable. For total chlorophyll the assimilation is applied in log-space, since257

chlorophyll is typically log-normally distributed (Campbell (1995)). After calculating the258

total chlorophyll increments, we use a balancing module to split those increments into259

the model state variables. The applied scheme (Skákala et al. (2018,0)) redistributes to-260

tal chlorophyll increments into the 4 ERSEM PFTs based on background PFT-to-total261

chlorophyll ratios. The PFT chlorophyll is used to update the remaining PFT compo-262

nents (carbon, phosphorus, nitrogen for all PFTs, silicon for diatoms) following the back-263
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ground stoichiometric ratios. In the case of oxygen assimilation the only updated vari-264

able is the simulated oxygen concentration. There were attempts to extend the currently265

applied balancing scheme to other ERSEM variables (e.g nutrients), but so-far this pro-266

duced sub-optimal results degrading the biogeochemical model skill (see discussion in267

Skákala et al. (2018)). Any combined physical-biogeochemical assimilation in NEMOVAR268

is weakly coupled, which means that the physical and the biogeochemical variables are269

assimilated separately, with physical assimilation impacting biogeochemistry only through270

the model dynamics, and no feedback from biogeochemistry to physics.271

The multi-platform assimilation is based on the development from Waters et al.272

(2015) extended to biogeochemical variables by Ford (2020), i.e. the combined assim-273

ilation of satellite OC and glider chlorophyll data is performed by following a scheme pre-274

viously applied to temperature by Waters et al. (2015). The satellite and in situ glider275

data are combined to calculate a single set of 3D increments, while allowing for differ-276

ent observation errors to be specified for the different data sources (for the details see277

Waters et al. (2015); Ford (2020)). Since each of the physical data, chlorophyll and oxy-278

gen assimilation provides increments for different variables, the multi-platform assim-279

ilation simply aggregates the increments from the physical, chlorophyll and oxygen as-280

similative components.281

The background covariances are represented as a product of background variances282

and a diffusion operator (Mirouze and Weaver (2010); King et al. (2018). Within the283

diffusion operator, the same length-scales are set for all the assimilated (physical, bio-284

geochemical) variables. The horizontal correlation length-scales are specified a-priori, and285

are based on two different length scales, a longer 100 km correlation scale and a shorter286

length-scale based on the first baroclinic Rossby radius of deformation (King et al. (2018)).287

The vertical length-scales use the scheme from Waters et al. (2015); King et al. (2018);288

Ford (2020), where NEMOVAR calculates directly the set of 3D increments (we call this289

scheme a “3D variant”) using flow-dependent vertical length-scales (`), which are the fol-290

lowing function of depth (d):291

`(d) =
dml

2
−
(

1

2
− 2G(dml)

dml

)
· d, 0 ≤ d ≤ dml, (1)

`(d) = 2G(d), d > dml,

where dml is the mixed layer depth (MLD) and G(d) is the vertical grid spacing as a func-292

tion of depth. Equation 1 means the surface length-scale is equal to half of the MLD,293

the length scale decreases linearly with depth until the MLD, while beneath MLD the294

length-scales are two times the local vertical grid resolution. Such vertical correlation295

length-scales are designed to minimise any spurious mixing of surface increments beneath296

the mixed layer (King et al. (2018)). It should be noted that satellite OC data assim-297

ilation in some previous studies (e.g. Skákala et al. (2018,0)) used a ”2D variant”, where298

surface chlorophyll increments were applied throughout the mixed layer. Both 2D and299

3D variants were tested in this study and we have found that they produced almost iden-300

tical results (not shown here). In this study we will present the outputs of the 3D vari-301

ant, but these are representative of both methods.302

NEMOVAR has two important drawbacks: (i) the background errors (square-root303

of background variances) have to be specified mostly a priori and those do not always304

capture how the reanalysis approximates the true state, (ii) it does not account for the305

observational error correlations. Both (i) and (ii) tend to artificially increase the impact306

of the assimilated observations (especially when there is high density of observations)307

and likely contribute to the fact that biogeochemical reanalyses on the NWE Shelf are308

relatively insensitive to the precise value of the background-to-observational error ratio309

(e.g. Skákala et al. (2018)). Then, provided that the reanalysis state is sufficiently in-310

ternally consistent, NEMOVAR reanalyses on the NWE Shelf tend to converge for a wide311

interval of background-to-observational error ratios towards the assimilated observations312
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(Skákala et al. (2018,0)). Improvements could be achieved by using hybrid methods (e.g.313

background errors calculated as a weighted combination of the parameterised compo-314

nent and a flow-dependent component calculated from an ensemble), or flow-dependent315

iterative methods based on error diagnostics, such as the scheme of Hollingsworth and316

Lönnberg (1986); Andersson (2003); Desroziers et al. (2005) (e.g. Mattern et al. (2018);317

Cossarini et al. (2019)). For physical assimilation (King et al. (2018)) the background318

errors were estimated using the innovation method of Hollingsworth and Lönnberg (1986)319

applied to innovations from an existing reanalysis by O’Dea et al. (2017), with background320

errors between 1-3.5 times larger than the observational errors (Table 2). For biogeochem-321

ical assimilation the background errors, Σ{Qbkg}, were estimated from the observational-322

to-free run differences and observational errors, Σ{Qo}, (Qbkg, Qm and Qo stand sub-323

sequently for the background, model free run and observed concentrations), along the324

scheme of Skákala et al. (2020):325

Σ{Qbkg} =
√
〈[Qm −Qo]2〉 − Σ{Qo}2, (2)

which assumes that for a suitable spatio-temporal binning the model and observational326

errors are uncorrelated (Skákala et al. (2020)). In the case of the glider data the total327

observational errors (including representation error) were estimated from the difference328

between variances of the observations, V {Qo}, and the variances of the true state, V {Qt}:329

Σ{Qo} =
√
V {Qo} − V {Qt}, (3)

where the variances of the true state were estimated from the model outputs. This scheme335

assumes that the observations have zero bias and that (for the limited spatio-temporal336

range of glider data) the observational errors and the true state deviations from the mean337

are uncorrelated. After estimating the observational errors for gliders, one proceeds with338

the equation 2 to estimate the corresponding background errors. The methods based on339

equation 2 and equation 3 produced background and observational errors with compa-340

rable values, with background-to-observational error ratios on average between 0.77-2.3341

(see Table 2). For the two different chlorophyll observational products, the estimate of

Table 2. The Table shows parts of the multi-platform assimilative system with the list of

the updated physical-biogeochemical variables and the mean values of the background-to-

observational error ratio (B-O error ratio, with error understood as standard deviation). The

physical variables are abbreviated as temperauture (T), salinity (S), sea surface height (SSH) and

horizontal velocity components (U,V).

330

331

332

333

334

component updated variables B-O error ratio

satellite OC chl a PFT components 2.3

glider chl a PFT components 1.4

glider O2 oxygen 0.77

satellite T T,S,SSH,U,V 1.55

in situ T T,S,SSH,U,V 1.04

in situ S T,S,SSH,U,V 3.42

342

glider chlorophyll error (using equation 3) turned out to be on average 22% lower than343

the satellite OC chlorophyll error.344
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2.4 Glider data345

The study used data from a Slocum glider (Teledyne Webb Research, Falmouth,346

USA) named Cabot (Unit 345, National Oceanography Centre, Southampton) deployed347

during the AlterEco mission (deployment 454). The glider sampling transect was situ-348

ated in the Central North Sea (see Figure 1), between May-August 2018, collecting data349

for temperature and salinity (Seabird SBE42 CTD), colored dissolved organic matter,350

particulate backscattering, chlorophyll a fluorescence (Wetlabs ECOpuck), and oxygen351

(Aanderaa AA4831 optode). After Quality Control (QC) the quenching-corrected chloro-352

phyll (derived from fluorescence) and oxygen concentrations were available for slightly353

different periods: chlorophyll for 08/05 - 15/08, 2018 and oxygen for a shorter period of354

08/05 - 30/06, 2018. The Cabot glider was chosen because it provided high-quality data,355

but the period of the glider mission was also of special interest for assimilation, since it356

marks a known discrepancy between the timing of the spring bloom in the model and357

observations, with the model biased towards a late bloom (see Skákala et al. (2020)). The358

QC glider outputs contained a substantial number of data-points (2·106 for chlorophyll359

and 3·105 for oxygen) which were mapped to the model AMM7 grid (each observation360

to the nearest model grid point). The observations that were mapped on the same day361

into the same model grid point were then averaged into a single value. The grid-averaging362

of glider observations is a practice adopted in the physical DA to avoid assimilating many363

observations at higher resolution than the model can represent. However, our tests have364

shown that the impact of grid-averaging on the biogeochemical reanalysis was negligi-365

ble. During each day the glider typically covered 3 model horizontal grid-cells and for366

each model horizontal location the glider scanned nearly the full vertical water column.367

The glider data (publicly available from www.bodc.ac.uk) were processed by the Na-377

tional Oceanography Centre (NOC) AlterECO team using the GEOMAR glider tool-378

box for salinity and oxygen lag corrections (following Bittig et al. (2014)). The glider was379

fitted with a standard non-pumped SBE CT sensor, a WETLabs ECOpuck to measure380

chlorophyll fluorescence, and an Aanderaa 4330 oxygen optode. Oxygen data were cor-381

rected based on comparisons between Winkler samples and local crossings with the rest382

of the AlterEco glider fleet.383

The fluorescence sensor on Cabot (454) was calibrated prior to deployment, and384

recovered data were converted to chlorophyll concentration from raw voltages using the385

manufacturer supplied calibration routine. The derived chlorophyll record was filtered386

such that negative values were set to zero. Multiple quenching corrections were tested,387

including: Hemsley et al. (2015); Swart et al. (2015); Biermann et al. (2015) and Xing388

et al. (2012). The former three methods rely on the use of algal particle scattering to389

correct for quenching. However, these approaches proved unsatisfactory for use in case-390

2 waters (e.g. the North Sea). Consequently, the Xing et al. (2012) method was adopted.391

Under this approach the maximum value of chlorophyll concentration above the mixed392

layer depth (MLD) is extrapolated to the surface for daytime profiles. Night-time chloro-393

phyll profiles are not corrected. MLD is calculated from glider CTD profiles according394

to the method of Holte and Talley (2009).395

2.5 Used metrics (definitions)396

The paper uses two metrics: a) model-to-observation bias (∆Qmo) defined as397

∆Qmo = 〈Qm −Qo〉, (4)

where, as before, Qm are the model free run and Qo the observed concentrations (by the398

observations we will automatically mean the glider data), and b) Bias-Corrected Root399

Mean Square Difference (BC RMSD, ∆RDQmo) defined as400

∆RDQmo =
√
〈[Qm −Qo −∆Qmo]2〉 . (5)
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Figure 1. The panels show the NEMO-FABM-ERSEM (AMM7) domain with the Cabot

glider data locations (chlorophyll data locations for the full 08/05-15/08, 2018 mission, oxygen

data for a shorter period of 08/05-29/06, 2018) marked by yellow dots, as well as glider horizon-

tal area of impact on the reanalysis. The color scale in the two panels shows the weekly (23-29-th

June 2018) mean percentage (%) difference between reanalysis and free run in the surface chloro-

phyll (upper panel) and surface oxygen (bottom panel) concentrations, and reveals the horizontal

extent of the glider’s impact on the assimilation. The percentage difference is calculated by di-

viding the absolute value of the difference between reanalysis and the free run, with the free run.

The black lines show the boundary of the NWE Shelf (¡ 200 m bathymetry).

368

369

370

371

372

373

374

375

376
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The BC RMSD metric is applied in two different contexts: as a “spatial BC RMSD” and401

a “temporal BC RMSD”.402

In the case of spatial BC RMSD, we calculate for each day (td) the difference be-403

tween the model and the observed daily mean, which we call model-to-observation daily404

bias:405

∆Qmo(td) = 〈Qm(td)−Qo(td)〉, (6)

where Qm(td) and Qo(td) are the model free run and the observation data from the day406

td, and the model free run is taken only from the spatial locations visited by the glider407

(about 150 model grid points per day). Then we calculate “daily BC RMSD”, ∆RDQmo(td),408

by applying equation 5 on each day using the model and the observation daily data, as409

well as their daily biases:410

∆RDQmo(td) =
√
〈[Qm(td)−Qo(td)−∆Qmo(td)]2〉 . (7)

The spatial BC RMSD, ∆S
RDQmo, is then obtained as a time-average of the daily BC411

RMSD, i.e. averaging ∆RDQmo(td) through the glider data availability period (100 days412

for chlorophyll and 53 days for oxygen):413

∆S
RDQmo = 〈∆RDQmo(td)〉td , (8)

where 〈〉td means averaging through the interval of td values. Since the glider moves on414

the model grid dominantly in the vertical dimension, the spatial BC RMSD mostly mea-415

sures how well the model simulation represents the vertical profile of the glider obser-416

vations.417

The temporal BC RMSD, ∆T
RDQmo, is based on calculating a time-series, δ, of the418

daily mean values (for both model, δm, and the observations, δo), averaged through the419

spatial locations visited by the glider:420

δm(td) = 〈Q(td)〉, δo(td) = 〈Qo(td)〉, (9)

then applying equation 5 to those time-series, with bias understood as the model-to-observation421

difference in the temporal mean of the time-series data:422

∆T
RDQmo =

√
〈[δm(td)− δo(td)− 〈δm(td)− δo(td)〉]2〉td . (10)

The temporal BC RMSD is designed to capture how the model represents the observed423

phytoplankton phenology.424

It should be noted that the metrics discussed in this section are used to measure425

“the skill” of the assimilative runs by comparing the simulation outputs to the assim-426

ilated glider data, rather than to an independent validation data-set. There are two rea-427

sons for this: firstly, to get sufficient validation data for the limited spatio-temporal re-428

gion of this study is nearly impossible, however, most importantly, this study has no am-429

bition to produce a skill-assessed reanalysis, its ambition is to test the impact of the as-430

similative system components on the simulated variables. Since the NEMOVAR reanal-431

yses tend to converge under optimal conditions to the assimilated observations (Skákala432

et al. (2018,0)), the performance of the assimilative system can be measured by compar-433

ing the model to the assimilated data.434

3 Results and Discussion435

The model free run shows a late and intense spring bloom, with a timing about 1436

month later than the bloom observed in the satellite OC and in situ data (Figure 2 and437

Skákala et al. (2020)). The late timing of the model bloom is most likely influenced by438

the interplay between the model vertical mixing scheme and the simulated irradiance (see439

–11–
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Figure 2. The mean daily surface chlorophyll concentrations averaged across the NWE Shelf

for the year 2018. We compare a model free run used in this study with the physical data as-

similation (the physical data assimilation started on 01/09 2017 from the model free run initial

values), the satellite OC and the North Sea Biogeochemical Climatology (NSBC) in situ data set

(Hinrichs et al. (2017)). The satellite OC chlorophyll values are masked for the October-February

period when there is sparsity of data due to the extensive cloud cover and the low solar zenith

angle. The model is shown to have an intense and late spring bloom: the observed bloom is much

less pronounced than the bloom in the model and the timing of the observed bloom is around the

early April, as opposed to the early-mid May bloom simulated by the model.

449

450

451

452

453

454

455

456

457

the discussion in Skákala et al. (2020)). The results from the study of Skákala et al. (2020)440

are confirmed by Figure 3, which shows the chlorophyll concentrations in the region mea-441

sured by the glider between May and August 2018. When the assimilation starts in early442

May (Figure 3), the glider is in the post-bloom period showing some deep chlorophyll443

maxima, whereas the model free run has yet to see the onset of the bloom with chloro-444

phyll concentrations predominantly in the mixed layer. Since the North Atlantic sees sub-445

stantial seasonal patterns in primary productivity (e.g. Henson et al. (2009)), the late446

and intense model bloom has a large impact on the biogeochemical model skill (Skákala447

et al. (2020)).448

The simulated surface chlorophyll on the NWE Shelf is typically corrected by the469

assimilation of OC satellite data (Skákala et al. (2018,0)) and the positive impact of satel-470

lite OC assimilation on the simulated NWE Shelf surface chlorophyll is shown in Fig-471

ure 4:A-B. Around the glider locations, it is shown that both satellite OC and glider chloro-472

phyll assimilation remove the late simulated bloom and improve the surface phytoplank-473

ton phenology (Figure 5:D,F, Figure 6:A-B). However, unlike the satellite OC compo-474

nent, the glider chlorophyll assimilation has a limited impact on the model domain (Fig-475

ure 4:D). The horizontal spatial impact of glider assimilation varies with time (Figure476

7A-B), but any substantial impact of glider assimilation on the simulated chlorophyll (on477

the level of ¿10%) is typically constrained to a 50 km radius around the glider location478

(Figure 7:A).479

Since glider chlorophyll a data were assimilated across the whole water column, the480

glider chlorophyll assimilation is also able to substantially improve the sub-surface chloro-481

phyll concentrations (Figure 5:F). The three skill metrics (bias, spatial and temporal BC482

RMSD) capturing how the simulated chlorophyll a matches with the glider observations483

were all substantially improved by the glider chlorophyll assimilation: the model bias was484

reduced by almost 50% (Table 3 and Figure 6:D), the spatial BC RMSD by 60% (Ta-485

ble 3) and the temporal BC RMSD by 70% (Table 3). Unlike glider chlorophyll assim-486

ilation, satellite OC assimilation updates chlorophyll concentrations only in the mixed487
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Figure 3. Hovmöller diagrams for the model free run and the observations. The left panel (A)

shows the model free run outputs for total chlorophyll a (mg m−3) horizontally averaged through

the area covered by the glider during each day (the plot is depth vs time). The middle panel

(B) shows the same for the glider-observed chlorophyll concentrations and the right panel (C)

shows the satellite OC chlorophyll observations at the glider locations. The yellow lines mark the

mixed layer depth of the model free run (left-hand panel) and of the physics-assimilative run (the

middle and right-hand panels). The satellite observations are plotted in the mixed layer, with

the dotted black line broadly corresponding to the average satellite optical depth (Skákala et al.

(2020)). The several missing data in the right hand plot are due to the cloud cover. The missing

data at the bottom of panels A-B are due to the varying bathymetry along the horizontal glider

trajectory.

458

459

460

461

462

463

464

465

466

467

468

layer, but the model dynamics propagates the updates to chlorophyll beneath the mixed488

layer and gradually spreads the impact of assimilation across the whole water column489

(Figure 5:C). It is encouraging to see that the model dynamics acting on the satellite OC490

assimilation increments produces a qualitatively similar change to the sub-surface chloro-491

phyll as the glider assimilation (Figure 5:C and Figure 5:E). We propose a simple ex-492

planation based on chlorophyll dynamics: The satellite-only assimilative run removes the493

intense late model bloom in May, removing chlorophyll from the mixed layer and increas-494

ing the light penetrating into the water column. The increased irradiance combined with495

nutrient availability produces deep chlorophyll maxima around the pycnocline (Figure496

5:C). Furthermore, the removal of the late (mid-May) bloom in the satellite OC reanal-497

ysis means the assimilation also removes the gradually deepening chlorophyll maxima498

(the July-August period in Figure 3:B and Figure 4:C), as the nutrients become confined499

deeper in the water column. The satellite OC assimilation improves both temporal BC500

RMSD (by 55%, Table 3) and spatial BC RMSD (by 15%, Table 3). Although the im-501

provement of BC RMSD is in both cases outperformed by the glider chlorophyll assim-502

ilation, the substantial reduction of temporal BC RMSD by 55% in the satellite OC re-503

analysis is non-trivial, and it is only possible due to (i) a relative consistency between504

the satellite OC data and the glider surface measurements (Figure 3, Figure 6:A-B), and505

(ii) a realistic update to sub-surface chlorophyll driven by the model dynamics.506

Whilst the physical data assimilation improves the model representation of both559

temperature and salinity (Figure 6), it is unable to correct the late model spring bloom560

(Figure 2) and has a relatively modest impact on chlorophyll concentrations (Figure 3:C,561

Figure 5:C,E, Figure 8:E). This can be understood as follows: As the pycnocline is pri-562

marily controlled by temperature and salinity, we expect that assimilating the physical563

variables may improve vertical gradients in water density and consequently vertical mix-564

ing. However, in the well-mixed nutrient-rich waters the onset of the spring bloom de-565

pends on the interplay between vertical mixing in the upper oceanic layer and the irra-566

diance (e.g. Huisman et al. (1999); Waniek (2003); Smyth et al. (2014)). Such interplay567

is closely related to the model atmospheric forcing product for the wind stress and the568

net incoming short-wave radiation, but an even greater issue is the model response to569
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Figure 4. Comparison of the time median surface chlorophyll a distributions (mg m−3) for

the simulation period (08/05 - 15/08, 2018) and the AMM7 domain. The upper two panels show

differences in the mean concentrations between the free run (panel A), the multi-platform re-

analysis (panel B) and the assimilated satellite OC product (the differences are simulated minus

observed chlorophyll). The bottom two panels display the impact of the physical (panel C) and

the glider chlorophyll (panel D) assimilation on the simulated surface chlorophyll a concentra-

tions by showing the differences between the two reanalyses and the free run (reanalysis minus

free run). The NWE Shelf-wide impact of the multi-platform assimilation on the surface chloro-

phyll a concentrations is dominated by the satellite OC assimilation component (not shown here).

The multi-platform reanalysis (panel B) is therefore almost identical to satellite OC reanalysis.

507

508

509

510

511

512

513

514

515

516
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Figure 5. The left hand panels (A,C,E,G) demonstrate the spatio-temporal impact of the

multi-platform system components on the simulated chlorophyll a concentrations (mg m−3) by

comparing different simulations to the free run. One major advantage of the left-hand side panels

is that they demonstrate how the changes introduced by the assimilation propagate vertically

with the model dynamics, e.g. for the satellite OC assimilation (panel C) that updates the model

only in the mixed layer (the MLD is marked in panels C-D by a yellow line). The right hand

panels (B,D,F,H) show the skill of each component by comparing the simulations to the glider

observations. The first row shows the skill of the free run (panel B) and the required changes to

the free run in order to better match the glider observations (panel A). The rows beneath the

first row compare the chosen reference (free run or glider) with a range of system components:

i) the reanalysis assimilating satellite OC chlorophyll (panels C and D), ii) the reanalysis assimi-

lating glider chlorophyll (panels E and F) and iii) the multi-platform assimilation (joint physical

data, glider chlorophyll and oxygen, and satellite chlorophyll assimilation, panels G and H).

517
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Figure 6. The impact of different multi-platform system components on the model chloro-

phyll concentrations. The panels A-B compare the daily chlorophyll values spatially averaged

throughout the upper 10 meters of the water column, within the part of the model domain vis-

ited by the glider. The panels C-D show the daily values spatially averaged throughout the whole

water column, within the part of the model domain visited by the glider (the daily time series

from equation 9), and the remaining panels E-F show the daily BC RMSD (equation 7) for the

same part of the model domain as the panels C-D. The panels display the skill of the following

system components: physical data assimilation (grey color), satellite OC chlorophyll assimilation

(orange) and oxygen assimilation (brown). These components are compared with the multi-

platform assimilative run (joint physical data, glider chlorophyll and oxygen, and satellite OC

chlorophyll assimilation, green color), the free run (blue), the glider observations (red) and the

satellite OC data (pink).
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Figure 7. The horizontal scales for the impact of the glider chlorophyll (panels A-B) and the

glider oxygen (panels C-D) assimilation. The impact of glider assimilation is shown for a range

of days (between 08/05-17/06, 2018). The impact is calculated by comparing the mean absolute

value of the difference in chlorophyll (A-B panels), or oxygen (panels C-D) concentration between

the reanalysis and the model free run. The mean absolute difference is shown relative to the free

run values (in %, panels A,C), or in the absolute values (panels B,D). The absolute difference

was averaged on the circles with 7-200 km radii (the spatial scales shown on the x-axis). The

circles were centered around the glider daily mean location. The mean absolute differences (y-

axis) are shown on a log-scale, a straight-line therefore represents an exponential decrease of the

assimilation impact as a function of spatial scale.
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Table 3. The Table demonstrates the skill measured by bias (equation 4), spatial BC RMSD

(equation 8) and temporal BC RMSD (equation 10) of the free run and the relative (%) changes

to the skill carried by the different assimilative system components. The skill compares the model

simulations with the glider data. The percentage changes in the columns for the assimilative

runs are calculated relative to the free run skill. The negative percentage means that the bias, or

(spatial, temporal) BC RMSD is reduced by the specific system component, whilst the positive

percentages mean that bias, or (spatial, temporal) BC RMSD, increases.

552

553

554

555

556

557

558

variable free run phys DA sat Chl a DA glid Chl a DA O2 DA multi DA

Chl a bias 0.31 mg m−3 +6.8% -80% -46.4% 0% -56.7%

Chl a temporal BC RMSD 0.77 mg m−3 +5.2% -54.6% -70.3% 0% -65.4%

Chl a spatial BC RMSD 1.14 mg m−3 -5.5% -15.3% -61.9% 0% -59%

O2 bias 25 mmol m−3 -3.8% +10.6% +0.7% -97% -98%

O2 temporal BC RMSD 13.5 mmol m−3 -4.3% +10.8% -5.4% -83.8% -83.7%

O2 spatial BC RMSD 29.8 mmol m−3 -7% -5.7% -14.6% -44.5% -47.4%

the used atmospheric forcing product, which consists here mostly of the ERSEM under-570

water light attenuation, the phytoplankton response to specific light conditions and the571

model vertical mixing scheme. The ERSEM response to the atmospheric forcing is known572

to be sensitive to the forcing temporal resolution, leading to shifts of up to one week in573

the timing of the phytoplankton bloom (Powley et al. (2020)). Since the assimilation does574

not alter the atmospheric forcing, the model mixing scheme, or the phytoplankton re-575

sponse to light, assimilating physical data was found to have relatively modest impact576

on chlorophyll bias, as well as spatial and temporal BC RMSD (between 5-7%, Table 3).577

However, the impact of physical data assimilation on the simulated phytoplankton could578

become more substantial within a strongly coupled system (Goodliff et al. (2019)). In579

such system we would mutually update the biogeochemical and the physical increments580

within a balancing scheme, which could be ideally defined using a two-way coupled physical-581

biogeochemical model (e.g. Lengaigne et al. (2007)). Such development is planned in the582

foreseeable future.583

Finally, we have observed that assimilating glider oxygen into the model has a neg-593

ligible impact on the simulated chlorophyll concentrations, with a change to the skill met-594

rics of the order O(10−2) percent (Table 3, see also Figure 5:C,E). This is expected, as595

within ERSEM the oxygen variable influences phytoplankton concentrations only indi-596

rectly through a complex chain of marine chemical and biological processes (e.g. through597

influencing remineralization, or nitrification rates, and through the impact of hypoxia598

on zooplankton).599

There is a clear discrepancy between the oxygen time series of the glider and the600

model free run (Figure 9, Figure 10:A-B), with glider oxygen concentrations steadily de-601

creasing, while the simulated oxygen peaks in late May (Figure 10:A-B). Furthermore,602

simulated oxygen concentrations have a substantial positive bias (25 mmol m−3, Table603

3, Figure 10:A-B) relative to the glider observations. Figure 9:A clearly shows that pho-604

tosynthesis is an important driver of the simulated oxygen, producing a large oxygen surge605

in the mixed layer during the simulated late spring bloom. Some connection between oxy-606

gen and chlorophyll concentrations (a proxy for primary productivity) appears also in607

the glider observations (Figure 9:B), with the peak in oxygen concentrations located in608

–18–



A
cc

ep
te

d
 A

rt
ic

le

This article is protected by copyright. All rights reserved.  

 

 

 

 

 

 

 

manuscript submitted to JGR - Oceans

Figure 8. Hovmöller diagrams to demonstrate the impact of physical (SST, in situ temper-

ature and salinity, including Cabot glider data) assimilation on the model variables. The upper

row (A and B) shows the difference between glider (”G” in the title) and free run (”F”) outputs

for temperature (A) and salinity (B). The middle row (C and D) shows differences for the same

variables between physical reanalysis (”R”) and the free run. The bottom row (E and F) shows

the same differences between physical reanalysis and the free run, but for the two biogeochemical

variables addressed by this study: total chlorophyll and oxygen. The two lines in the panel C

compare the mixed layer depth of the free run (yellow) and of the physical reanalysis (black).

The mixed layer depth has been obtained in both cases from the model outputs.
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the neighborhood of the glider deep chlorophyll maxima (Figure 3:B). As for chlorophyll,609

a simple way to improve simulated oxygen is to assimilate the glider oxygen data into610

the model (Figure 10:D, Figure 11:H). Assimilating glider oxygen into the model reduces611

the oxygen bias by 97%, temporal BC RMSD by 84% and spatial BC RMSD by 45% (Ta-612

ble 3). However, as in the case of chlorophyll, such assimilation has a limited spatial im-613

pact on the NWE Shelf (Figure 7:C-D and Figure 12:C). Unlike chlorophyll, the glider614

oxygen assimilation horizontal impact reduces with spatial scale at a rate largely inde-615

pendent of time (Figure 7:C-D). Beyond the 50 km scale the assimilation horizontal im-616

pact decays approximately exponentially (a straight line in Figure 7:C-D), with a halv-617

ing scale of approximately 40 km, which means the impact is reduced by an order of mag-618

nitude at a 130 km scale.619

Since the modeled oxygen concentrations are largely driven by the phytoplankton620

seasonal cycle, it is not surprising that assimilation of either satellite OC, or glider chloro-621

phyll, has a major influence on the simulated oxygen (Figure 11:C,E, Figure 12:B). The622

assimilated chlorophyll modifies the simulated oxygen after a necessary time-lag, remov-623

ing the excess oxygen from the model spring bloom and generating some deep oxygen624

maxima in early-to-mid June (Figure 11:C-F). The chlorophyll assimilation consistently625

improves oxygen in the period up to the start of June, but typically degrades oxygen in626

early-to-mid June (Figure 10:B,D,F), mostly due to the surge in oxygen concentrations627

around the deep oxygen maxima (Figure 11:C,E). The oxygen surge is likely to be partly628

driven by the deep chlorophyll maxima, e.g. by the overestimated chlorophyll concen-629

trations around the deep maxima in the satellite OC assimilation (Figure 5:D). However,630

other drivers such as zooplankton and bacteria respiration are likely to contribute to the631

deep oxygen maxima. The mechanism for this is suggested by Figure 13:C-F: the chloro-632

phyll assimilation removes phytoplankton biomass from the mixed layer, limiting the re-633

sources for the simulated zooplankton and bacteria, and reducing their concentrations.634

The reduced phytoplankton concentrations seem to have much larger and more consis-635

tent impact on the zooplankton concentrations than on bacteria (Figure 13:C-F) and the636

reduced zooplankton concentration means less oxygen is removed through respiration,637

which likely produces excess oxygen concentrations.638

Compared to chlorophyll assimilation, the physical data assimilation has a relatively639

modest impact on the simulated oxygen (Figure 8:F, Figure 12:A-B), but it tends to con-640

sistently improve both the oxygen bias, and the spatial and temporal BC RMSD (by 3−641

7%, Table 3). The impact of physical data assimilation on the oxygen concentrations can642

be explained by the lowered oxygen saturation concentrations under the increase in tem-643

perature within the reanalysis (Figure 8:C).644

Finally, we have combined all the assimilative system components (physical data645

assimilation, satellite OC, glider chlorophyll and oxygen) into a multi-platform assim-646

ilative run and we have shown that multi-platform assimilation has the capability to op-647

timally combine the skill of all its components (Figure 4:B, Figure 6:D,F, Figure 9:D-648

E, Table 3). The multi-platform chlorophyll re-analysis is dominated in the vicinity of649

the glider by the glider chlorophyll assimilative component (Figure 5:E,G), whilst fur-650

ther away from the glider it is dominated by the satellite OC assimilation (Figure 4:D).651

The multi-platform oxygen re-analysis is dominated near the glider locations by the glider652

oxygen assimilation (Figure 10:D), whilst further away from the glider locations it is dom-653

inantly shaped by the satellite OC assimilation (Figure 12:B,D).654

4 Summary692

Present and future glider missions on the NWE Shelf will provide us with three-693

dimensional (3D) data on some specific biogeochemical variables (presently mostly for694

chlorophyll and oxygen) combined with physical measurements (e.g. temperature and695

salinity). These data will be, together with satellite missions, integrated into our ecosys-696
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Figure 9. Hovmöller diagrams for the model free run and the glider observations. The left-

hand panel (A) shows the model free run outputs for oxygen (mmol m−3) horizontally averaged

through the area covered by the glider during each day (the plot is depth vs time). The right-

hand panel (B) shows the same for the glider-observed oxygen.

655

656

657

658

tem models by means of a multi-platform assimilative system. It is of crucial importance697

to understand what observed variables need to be assimilated in order to represent well698

a target ecosystem indicator, and what assimilation may need to be avoided because it699

can paradoxically degrade the model skill for the target indicator. Furthermore, differ-700

ent data will be available for different spatial and temporal regions on the NWE Shelf701

and it is essential to understand how the limitations imposed by the availability of the702

observational data impact on the quality of the multi-platform reanalyses. To address703

these questions we explored the impact of different system components (physical data,704

satellite OC chlorophyll, glider chlorophyll and oxygen assimilation) on the simulated705

ecosystem state, using the operational set-up currently assimilating physical variables706

and satellite OC chlorophyll. This study has taught us several important lessons:707

a) Assimilating physical data (SST, in situ temperature and salinity) has a neg-708

ligible impact on the simulated phytoplankton bloom. This is because the modeled phy-709

toplankton bloom depends in the North Sea mostly on the model response to the atmo-710

spheric forcing (wind stress and solar radiance), which remains unchanged by the tem-711

perature and salinity assimilation. Since the phytoplankton bloom is an essential driver712

of the ecosystem dynamics on the NWE Shelf (Henson et al. (2009)), it is quite likely713

that physical glider data assimilation has a relatively minor importance for the simulated714

ecosystem dynamics on the NWE Shelf. This is quite different from some other global715

regions where physical assimilation is either desirable (Anderson et al. (2000); Yu et al.716

(2018)), or can degrade the biogeochemical model skill (Berline et al. (2007); Holt et al.717

(2014); Raghukumar et al. (2015); Park et al. (2018)). Based on this study we would sug-718

gest that, at least around the spring bloom in the North Sea, physical assimilation can719

be used to improve the physical model skill, whilst its impact on the coupled biogeochem-720

ical model can be relatively ignored.721

b) In terms of chlorophyll, the glider chlorophyll assimilation is the dominant and722

best performing component of the multi-platform assimilative system within the 50 km723

horizontal proximity of the glider. Further away from the glider locations, assimilating724

satellite OC data substantially improves the surface chlorophyll concentrations, but it725

can also produce realistic updates to the sub-surface chlorophyll. Since satellite OC as-726

similation updates chlorophyll only within the mixed layer, the updates to the sub-surface727
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Figure 10. The impact of different multi-platform system components on the model oxygen.

The panels A-D compare the daily oxygen values spatially averaged throughout the whole water

column, within the part of the model domain visited by the glider (the daily time series from

equation 9), and the panels E-F show the daily BC RMSD (equation 7). The panels display the

skill of the following system components: physical data assimilation (grey color), satellite OC

chlorophyll assimilation (orange), glider chlorophyll assimilation (light blue) and oxygen assimi-

lation (brown). These components are compared with the multi-platform assimilative run (joint

physical data, glider chlorophyll and oxygen, and satellite chlorophyll assimilation, green color),

the free run (blue) and the glider observations (red).

659

660
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664
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666
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Figure 11. The left hand panels (A,C,E,G) demonstrate the impact of the multi-platform

system components on the simulated oxygen concentrations (mmol m−3) by comparing different

simulations to the free run. These panels are particularly well suited to see how chlorophyll as-

similation dynamically influences the simulated oxygen. The right hand panels (B,D,F,H) show

the skill of each component by comparing the simulations to the glider observations. The first

row shows the skill of the free run (panel B) and the required changes to the free run in order

to better match the glider observations (panel A). The rows beneath the first row compare the

chosen reference (free run or glider) with a range of system components: i) the reanalysis assimi-

lating satellite OC chlorophyll (panels C and D), ii) the reanalysis assimilating glider chlorophyll

(panels E and F) and iii) the multi-platform assimilation (joint physical data, glider chlorophyll

and oxygen, and satellite chlorophyll assimilation, panels G and H).
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Figure 12. Comparison of the time median surface oxygen distributions (mmol m−3) for the

oxygen glider data period (08/05/2018 - 29/06, 2018). The panels show the impact of the dif-

ferent multi-platform system components on the modelled oxygen by comparing the differences

between four reanalyses and the free run. The reanalyses presented in the panels are the physical

data assimilation (panel A), the OC satellite chlorophyll assimilation (panel B), the glider oxygen

assimilation (panel C) and the multi-platform assimilation (panel D).
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Figure 13. The different panels help to interpret the impact of the simulated primary pro-

duction and respiration on the modeled oxygen concentrations. We show the difference between

the glider chlorophyll assimilation (left-hand side panels, A,C,E), or OC chlorophyll assimilation

(right-hand side panels, B,D,F) and the model free run (always assimilative run minus free run).

The difference is shown for (i) the total net primary production (mg C m−3day−1, panels A-B),

(ii) total zooplankton carbon concentrations (mg C m−3, panels C-D) and (iii) heterotrophic

bacteria carbon concentrations (mg C m−3, panels E-F).
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chlorophyll are explained by the model dynamical response to the assimilation. The skill728

of satellite OC assimilation in sub-surface chlorophyll is important, as glider technology729

will be able to cover only limited parts of the NWE Shelf and future multi-platform as-730

similative system will have to rely heavily on satellite data.731

c) The modelled phytoplankton dynamics is impacted by the oxygen concentrations732

only indirectly, e.g. through remineralization, or nitrification rates and the impact of hy-733

poxia on zooplankton (Butenschön et al. (2016)). It is therefore hardly surprising that734

univariate assimilation of oxygen has a negligible impact on the simulated phytoplank-735

ton chlorophyll concentrations. This also means that one can assimilate oxygen into ERSEM736

without worrying about its consequences for the modelled phytoplankton. Such an oxy-737

gen assimilation has an obvious advantage in that it outperforms any other run in the738

model simulation of oxygen.739

d) Two important drivers of the simulated oxygen concentrations are the primary740

production and respiration. Consequently, assimilating (satellite OC, or glider) chloro-741

phyll was found to have a major impact on the modeled oxygen. The removal of the late742

model bloom in the reanalysis improves the modeled oxygen, however it produces spu-743

rious deep oxygen maxima, partly due to the productivity at the deep chlorophyll max-744

ima and partly due to the reduced respiration by the ERSEM zooplankton. Physical data745

assimilation has a stronger impact on the oxygen than on chlorophyll (oxygen satura-746

tion levels depend substantially on temperature), but it had substantially less impact747

on the simulated oxygen than the chlorophyll assimilation.748

e) The multi-platform assimilation (joint physical data, glider chlorophyll and oxy-749

gen, satellite OC chlorophyll assimilation) combines optimally the skill of its components750

and always performs comparably to, or better than its best performing component.751

f) Based on the results of this study we expect that the multi-platform system will752

provide us with improved-quality operational products on the NWE Shelf.753
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marine ecosystem model ersem ii with decoupled carbon assimilation and nutrient797

uptake, Journal of Sea Research, 38 (3-4), 195–211.798

Bell, M. J., A. Schiller, P.-Y. Le Traon, N. Smith, E. Dombrowsky, and K. Wilmer-799

Becker (2015), An introduction to godae oceanview.800

Berline, L., J.-M. Brankart, P. Brasseur, Y. Ourmières, and J. Verron (2007), Im-801

proving the physics of a coupled physical–biogeochemical model of the north802

atlantic through data assimilation: Impact on the ecosystem, Journal of Marine803

Systems, 64 (1-4), 153–172.804

Biermann, L., C. Guinet, M. N. Bester, A. Brierley, and L. Boehme (2015), An805

alternative method for correcting fluorescence quenching.806

Bittig, H. C., B. Fiedler, R. Scholz, G. Krahmann, and A. Körtzinger (2014), Time807
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