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The response of a poroelastic ice plate to an external pressure
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The response of a poroelastic ice cover to an external load is considered. The ice cover is modeled by a
thin poroelastic floating plate within the linear theory of hydroelasticity. The porosity parameter is defined
as the coefficient of proportionality of the velocity of liquid penetration into the plate and hydrodynamic
pressure. The fluid under the plate is inviscid and incompressible. The flow caused by the ice deflection is
potential. The external load is modeled by a localized smooth pressure. The two-dimensional problem of
waves caused by a periodic external pressure on a floating porous-elastic plate is considered. The profiles
of the generated waves are calculated for a given oscillation frequency of the amplitude of the external
pressure. It was found that taking porosity into account leads to damping of oscillations in a distance
from the external load.
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Introduction

The interaction of gravitational waves with thin porous structures is of considerable interest
[1], [2]. Such structures used as models for a wide range of physical problems, which include
wave interactions with floating flexible breakwaters, large floating structures and thin ice sheets.
At the moment, a lot of research has been done on the oscillations of floating structures and thin
plates immersed in liquid [3], [4], [5]. In the study of dynamics of an ice cover, the most studied
problem is determining of deflections of an elastic ice plate [6], [7], [8], [9]. The problems were
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solved within the linear theory of hydroelasticity. Porosity of ice was not taken into account
in these studies. A poroelastic ice plate model based on the Biot [10] theory of a poroelastic
material is investigated in [11]. Dispersion relations of flexural gravity waves were investigated
in [12] for one particular model of a poroelastic ice cover.

The focus of this article is on nonstationary oscillations of a poroelastic ice cover caused by
an applied periodic pressure. The poroelastic ice cover is modeled by an elastic ice sheet with
nonzero constant parameter of the porosity. The formulation of the problem is given in section
1. The porosity of the ice is modeled through the kinematic condition at the ice-liquid interface
using a term proportional to the fluid pressure [3]. Method of the solution is presented in section
2. Numerical results are discussed in section 3. The focus of the study is on the effect of the
porosity on the deflections of the poroelastic ice plate. The main results of the work are presented
in the conclusion and plan of the further work is discussed.

1. Formulation of the problem

Oscillations of a poroelastic ice plate caused by external pressure are considered. The fluid
under the plate is inviscid and incompressible and is of finite depth H, (−H < y < 0). The plate
is infinitely long in the x direction, where (x, y) are Cartesian coordinates. The flow caused by
the plate deflection is potential. The liquid can penetrate the plate on the liquid/plate interface:
the liquid velocity along the normal to the plate (VnL) is equal to the normal component of the
plate velocity (Vns) plus the velocity of the liquid penetrating into the plate along the normal
to it (vn). The liquid velocity (vn) is considered proportional to the liquid pressure on the lower
surface of the plate. If plate deflections y = w(x, t) are small, then the kinematic condition has
the form

∂φ

∂y
=

∂w

∂t
+ vn, vn = αp(x, 0, t),

where p(x, 0, t) is the hydrodynamic pressure, p = −ρφt − ρgw(x, t), w(x, t) is the vertical
displacement (deflection) of the plate from the rest position, φ(x, y, t) is the potential of the fluid
flow velocity, α describes the porosity of the plate, ρ is the fluid density, g is the acceleration of
gravity and the hydrodynamic pressure above the plate is assumed to be zero. In a more general
case, vn = α(p− − p+), where p− is the hydrodynamic pressure on the lower surface of the plate,
p+ is the hydrodynamic pressure above the fluid that has penetrated into the plate (arises in the
case of the plate immersed in the fluid), vn > 0 if the liquid enters the plate from below. The
assumption that the normal velocity of the penetrating fluid is proportional to the hydrodynamic
pressure was used in many works, for example, in [3], [13], [14]. A similar model obtained using
Darcy’s Law is used in [5].

A periodic external load modeled by a pressure with an amplitude oscillating in time is
considered. External pressure is applied to the upper surface of the plate and its position does
not change over time. The problem is solved within the linear theory of hydroelasticity [6]. In
this case the governing equations describing the problem are

Mwtt + EJwxxxx = p(x, 0, t)− Pext(x) cos(ωt), (1)

φxx + φyy = 0 (−H < y < 0), (2)

φy = 0 (y = −H), φy = wt + αp (y = 0), (3)

p = −ρφt − ρgw (y = 0), (4)
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where M = ρihi is the mass of the ice per unit area, ρi is the ice density, hi is the plate thickness,
Pext(x) is the function describing the shape of the external load, EJ = Eh3

i /(12(1− ν2)) is the
flexural rigidity, E is the Young’s modulus, ν is the Poisson’s ratio, wxxxx = ∂4w/∂x4, ω is the
frequency of the load’s amplitude oscillations.

In general the equations (1) – (4) should be supplemented by the initial conditions and the
condition for x → ∞, as it was done, for example, in [8] for the problem of the large time
response of an ice cover to a load moving along a channel. We shall study a stationary problem:
the system (1) – (4) using the representation for unknown functions introduced below is reduced
to a system of stationary equations, which is closed by the boundary condition for x → ∞. As a
consequence, the problem does not need initial conditions and their definition is not discussed in
this article. The external load has a given form and periodic amplitude with a given frequency
ω. It is convenient to seek the functions w(x, t), φ(x, y, t) and p(x, y, t) in the form

w(x, t) = Re[W (x)eiωt], (5)

φ(x, y, t) = Re[iωΦ(x, y)eiωt], (6)

p(x, 0, t) = Re[P (x)eiωt]. (7)

Seeking the solution in the form (5) – (7) is a common method in problems of oscillations of
a thin plate with a load with a given constant frequency of the oscillating amplitude (see, for
example, the method of the solution in [15]). Substitution of the functions (5) – (7) to the system
(1) – (4) provides

−ω2MW + EJWxxxx = P (x)− Pext(x), (8)

P (x) = ρω2Φ(x, 0)− ρgW (x), (9)

Φy(x, 0) = W (x) +
α

iω
P (x), (10)

∇2
2Φ = 0 (−H < y < 0), Φy(x,−H) = 0. (11)

The system of equations (8) – (11) is supplemented by the damping conditions of the ice deflec-
tions and fluid disturbances far away from the load

W → 0, Φ → 0 (x → ∞). (12)

The solution to the problem (8) – (12) depends on the shape of the external pressure Pext(x),
frequency ω, fluid parameters ρ, H, parameters of the plate M , EJ and parameter of the
porosity α. We shall find the function W (x) and use it to determine the deflections w(x, t) of
the poroelastic ice plate for some given parameters of the problem. The study in this article is
focused on the effect of the parameter of the porosity α on the behavior of the poroelastic ice
plate under the applied external periodic pressure. The correctness of the described problem
is not considered in this article. In [16] the uniqueness of the classical solution of the problem
of oscillations of a thin elastic plate in a channel for an arbitrary external load is proved and
a review of the results on the correctness of the initial-boundary value problems of the joint
dynamics of fluid and elastic ice cover is given. It is noted that the correctness of problems
of the dynamics of a thin plate or fluid is well studied separately by many authors, when the
problems of joint dynamics get much less attention. More results were obtained in the study of
fluid filtration in porous ice cover based on Biot’s theory. See, for example, articles [17], [18]. In
this article the process of fluid filtration in the ice plate is not taken into account.
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2. Method of the solution

The problem (8) – (11) is solved using the Fourier transform along the plate

WF (ξ) =
1√
2π

∞∫
−∞

W (x)e−iξxdx W (x) =
1√
2π

∞∫
−∞

WF (ξ)eiξxdξ.

The Fourier transform applied to the system of equations (8) – (11) provides the equation for
the plate

(ρg − ω2M)WF (ξ) + EJξ4WF (ξ) = ρω2ΦF (ξ, 0)− PF
ext(ξ). (13)

The Fourier image of the fluid velocity potential ΦF (ξ, y) satisfies boundary problem

ΦF
yy − ξ2ΦF = 0 (−H < y < 0),

ΦF
y (ξ, 0) = WF +

α

iω
(ρω2ΦF − ρgWF ), (14)

ΦF
y (ξ,−H) = 0.

The solution for ΦF (ξ, y) is

ΦF (ξ, y) = ΦF (ξ, 0) cosh[ξ(y +H)]/ cosh(ξH), ΦF
y (ξ, 0) = ξ tanh(ξH)ΦF (ξ, 0).

Substitution of ΦF
y (ξ, 0) to the transformed kinematic condition (14) gives[

ξ tanh(ξH)− α

i
ρω

]
ΦF (ξ, 0) =

(
1− α

iω
ρg

)
WF (ξ),

and ΦF (ξ, 0) can be written in the form

ΦF (ξ, 0) =
1 + [αρg/ω]i

ξ tanh(ξH) + αρωi
WF (ξ).

Substituting ΦF (ξ, 0) to the equation (13) we obtain the equation for determining WF (ξ)[
EJξ4 + ρg − ω2M − ρω2 1 + [αρg/ω]i

ξ tanh(ξH) + αρωi

]
WF (ξ) = −PF

ext(ξ), WF (ξ) = −PF
ext(ξ)

Q(ξ)
,

where

Q(ξ) = EJξ4 + ρg − ω2M − ρω2 ξ tanh(ξH) + α2ρ2g − αρωi+ ξ tanh(ξH)(αρg/ω)i

ξ2 tanh2(ξH) + (αρω)2
.

The function Q(ξ) is symmetric, Q(−ξ) = Q(ξ). Note that the functions Q(ξ), WF (ξ) and PF
ext

are dimensional. For convenience and analysis of the convergence of the numerical solution we
introduce the following parameters and dimensionless variables: ξ̃ = ξH, α̃ = αρωH is the dy-
namic porosity, Ω = ω2H/g, Lc = (EJ/(ρg))1/4 is the characteristic length [6]. In dimensionless
variables Q(ξ) reads

Q(ξ) = EJ
1

H4
ξ̃4 + ρg − ω2M − ρω2H

ξ̃ tanh(ξ̃) + α2ρ2gH − αρωHi+ ξ̃ tanh ξ̃(αρg/ω)i

[ξ̃2 tanh2 ξ̃ + (αρωH)2]
.

Q

ρg
=

EJ/ρg

H4
ξ̃4 + 1− Ω

M

ρH
− Ω(ξ̃ tanh(ξ̃) + α̃2/Ω+ i[ξ̃ tanh(ξ̃)α̃/Ω− α̃])

ξ̃2 tanh2(ξ̃) + α̃2
= Q̃R(ξ̃) + iQ̃I(ξ̃),
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where

Q̃R(ξ̃) =

(
Lc

H

)4

ξ̃4 + 1− Ω
M

ρH
− α̃2 +Ωξ̃ tanh(ξ̃)

(ξ̃ tanh2(ξ̃) + α̃2)
, Q̃I =

α̃Ω− α̃ξ̃ tanh(ξ̃)

(ξ̃ tanh2(ξ̃) + α̃2)
.

The function W (x) is defined using the inverse Fourier transform applied to WF (ξ)

W (x) =
1√
2π

∞∫
−∞

−PF
ext(ξ)

Q(ξ)
eiξxdξ = − 1

2π

∞∫
−∞

Pext(x0)

∞∫
−∞

e−iξx0+iξx

Q(ξ)
dξdx0 =

= − 1

2π

∞∫
−∞

Pext(x0)K(x− x0)dx0,

K(x) = 2

∞∫
0

cos(ξx)

Q(ξ)
dξ = {ξ = ξ̃/H} = 2

∞∫
0

cos(ξ̃x/H)dξ̃

Hρg[Q̃R + iQ̃I ]
=

2

ρgH
[KR(x/H)− iKI(x/H)],

where K(x) is a dimensional function, KR(x/H) and KI(x/H) are dimensionless functions cal-
culated by the equations

KR(x/H) =

∞∫
0

Q̃R(ξ̃) cos(ξ̃x/H)

Q̃2
R + Q̃2

I

dξ̃, KI(x/H) =

∞∫
0

Q̃I(ξ̃) cos(ξ̃x/H)

Q̃2
R + Q̃2

I

dξ̃.

Note that
Q̃R = O(ξ̃4), Q̃I = O(1/ξ̃) ξ̃ → ∞,

so we can expect that the integrals KR(x/H) and KI(x/H) will quickly converge in the numerical
solution. The final equation for determining W (x) is

W (x) = − 1

πρgH

∞∫
−∞

Pext(x0)

[
KR

(
x− x0

H

)
− iKI

(
x− x0

H

)]
dx0 = WR(x) + iWI(x). (15)

The equation (15) is written in dimensional variables. Rewriting the equation for W (x) in
trigonometric form we get

W (x) = |W (x)|eiΘ(x).

Accordingly, the deflections of the poroelastic ice plate under the action of periodic pressure are
determined from the equation

w(x, t) = Re[W (x)eiωt] = |W (x)| cos[Θ(x) + ωt], (16)

where

Re[W (x)eiωt] = Re[(WR(x) + iWI(x))e
iωt] = WR(x) cos(ωt)−WI(x) sin(ωt)

and the function Θ(x) is defined by

cos(Θ(x)) = WR(x)/|W (x)|, sin(Θ(x)) = WI(x)/|W (x)|, |W (x)| =
√
(WR(x))2 + (WI(x))2.

It is expected that the parameter Θ(x) will be related to the wave number of waves propagating
from the load in the poroelastic plate.
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3. Numerical results

Calculations of the deflections of the poroelastic ice plate under the action of the external
pressure were made for following parameters of the problem: H = 2 m, E = 4.2 ·109 Pa, ν = 0.3,
hi = 0.1 m, ρ = 1024 kg/m3, ρi = 917 kg/m3, g = 9.8 m/s2, ω = 1 s−1. The shape of the
external load Pext(x) in our calculations is given in the form

P (x) = P0P1(x),

P1(x) =
(
cos(πcx) + 1

)
/2 (c|x| < 1), P1(x) = 0 (c|x| > 1),

where c = 1, P0 = 1000 Pa.
The function W (x) is calculated using the equation (16). In calculating the integrals for

the poroelastic plate we need to investigate the functions under the integrals and choose the
integration step carefully. The integrands in (16) have no singularities due to the term with
the porosity, but as the parameter α decreases these functions tend to singular functions with a
singularity at some point in ξ. For example, let us consider the function Q̃R/(Q̃

2
R + Q̃2

I), which
appears in the integral WR(x). This function is shown in Figure 1 a for α = 0.1, in Figure 1 b
for α = 0.01 and in Figure 1 c for α = 0.0001. The distance between the negative and positive
peaks of this function decreases for large (> 0.1) and small (< 0.0001) values of the parameter α.
In all presented cases this function quickly damped. To accurately calculate W (x) the function
Q̃R/(Q̃

2
R + Q̃2

I) was calculated for cases (a) and (c) with 2 · 105 number of steps on the interval
from 0 to 1 in ξ̃. In (b) case the number of steps can be reduced without the loss of accuracy.

Figure 1: Function Q̃R/(Q̃
2
R + Q̃2

I) for α = 0.1 (a), for α = 0.01 (b) and for α = 0.0001 (c).

In all following presented results we use the following parameters of the integration: the
integrals over ξ̃ on the interval from 0 to 1 are calculated with 2 · 105 number of steps, then from
1 to 10 with 104 number of steps. All integrals were calculated using the trapezoidal rule with
appropriate steps on the intervals from 0 to 1 and from 1 to 10. In Section 2 it is noted that the
calculated integrals will decay quickly due to the properties of the functions Q̃R and Q̃I when
ξ̃ tends to infinity. A series of calculations with different upper limits (10, 20, 30) showed that
for the considered values of the parameter of the porosity increasing the value of the upper limit
more than 10 does not lead to noticeable changes in the ice deflections W (x). This is confirmed
by the estimates of these integrals. For example, in the integral KR for ξ̃ > 1 one can use the
estimate Q̃R(ξ̃) cos(ξ̃x/H)

Q̃2
R+Q̃2

I

< 1/ξ̃4. The ice deflections w(x, t) calculated by the equation (16) for

t = 0 s are shown in Figure 2. The solid line shows the case with α = 10−8, the dotted line
shows the case with α = 10−6. The horizontal lines show the amplitude level of the generated
waves. Note that in the presence of porosity, waves in the ice sheet will propagate from the
load due to the presence of an imaginary part in determining W (x). For the interval in x under
consideration, in accordance with Figure 2, we can assume that for finite x the solution converges
as the value of α decreases. Ice deflections for α = 10−8 can be interpreted as an approximation
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of the ice deflections of an elastic plate with zero porosity for similar parameters of the problem.
For a complete analysis, it is necessary to solve the problem (8) - (12) with α = 0 separately.

-100 -50 0 50 100
x (m)

-5

0

5

w
(x

,0
) 

(m
)

10-3

Figure 2: The deflections of the poroelastic ice plate for α = 10−8 (solid line) and for α = 10−6

(dotted line), t = 0 s.

To study the effect of porosity on the deflections of the poroelastic ice plate some calculations
were carried out with different numbers of α. The choice of the value of α is not obvious. In
[5] the porosity parameter is denoted as P , P = ωKρ/(νhi), where K is the permeability of the
ice and ν is the dynamic viscosity of the fluid. Matching the parameter P with the parameter
α considered in this article by converting the kinematic condition to one form (equation 2a
in [5]), we obtain the relation P = αωρ. In the work [5], the calculations were made for the
values PH = 0, 0.5 and 1. For the model considered in this article, these values correspond to
α = 0, α ≈ 0.00025 and 0.0005, respectively. The results of the calculations of the deflections
are shown in Figure 3 for α = 10−8, 0.00005, 0.0001 and 0.00025. It was found that the increase
in the parameter of the porosity increases the amplitude of the deflections in the load area, but
decreases the amplitude at a distance from the load. With the increase in the parameter of the
porosity the width of disturbed area of the ice cover decreases as well as the length and rate
of decaying of the hydroelastic waves propagating from the load. The calculated ice deflections
w(x, t) for any nonzero value of the parameter of the porosity tend to 0 when x → ∞, which
means that the condition (12) with the nonzero parameter of the porosity is natural.

As shown in Figure 3, the deflections of the poroelastic ice plate have a wave structure.
Moreover, the length of these waves differs for different values of the parameter of the porosity. To
determine the length of the generated waves on the considered fixed segment in x, the following
algorithm is proposed. The wavelength depends on the function Θ(x). This function is the
solution of the equations cos(Θ(x)) = |W (x)|/WR(x), sin(Θ(x)) = |W (x)|/WI(x). The functions
cos(Θ(x)) and sin(Θ(x)) are shown in Figure 4 for α = 0.0001. The function Θ(x) is calculated
as a periodic function with values from 0 to 2π using the mentioned equations. This function is
even, Θ(x) = Θ(−x). Consider Θ(x) for positive values of x, x > 0. We introduce the function
Θ̃(x) = Θ(x) + 2π(m − 1), where m corresponds to the m-th periodic part of the function
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Figure 3: The deflections of the poroelastic ice plate for t = 0 s. Black line shows the case with
α = 10−8, green line – α = 0.00005, red line – α = 0.0001 and blue line – α = 0.00025.

Figure 4: Functions cos(Θ(x)) and sin(Θ(x)) for α = 0.0001 (a). The wave number k as a
function of α (b).
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Θ(x) in positive x direction, starting from x = 0. The function Θ̃(x) satisfies the equations
cos(Θ̃(x)) = |W (x)|/WR(x), sin(Θ̃(x)) = |W (x)|/WR(x) and can be approximated by the linear
function kx+ b, where the parameter k is the wavenumber of the considered wave. These wave
numbers k are shown in Figure 3 b as a function of the parameter of the porosity α. For the
presented wave numbers we used the approximation of the function Θ(x) on the interval [0, 120].
The approximated function Θ̃(x) for positive x for different values of α are shown in Figure 5.

The deflections of the poroelastic ice plate w(x, t) at t ∈ [0, 6] are shown in Figure 6 in the

Figure 5: Approximated function Θ̃(x) for positive x with α = 0.001 (black line), α = 0.0005
(red line) and α = 0.0001 (blue line).

Figure 6: The deflections of the poroelastic ice plate w(x, t) in the form of the surfaces in (x, t)
domain for ω = 1 s−1 (a) and for ω = 2 s−1 (b), t ∈ [0, 6].

form of the surfaces in (x, t) domain with different values of ω for α = 0.0001. The case for
ω = 1 s−1 is shown in Figure 6 a, the case for ω = 2 s−1 is shown in Figure 6 b. The period of
the oscillations of w(x, t) in t for ω = 1 s−1 is 2π (Figure 6 a), and for ω = 2 s−1 is equal to π

(Figure 6 b). The increase in the frequency decreases the disturbed area of the plate, amplitude
of the ice deflections and wavelength of the hydroelastic wave in the plate.

This work was carried out according to project MK-204.2020.1 "Initial-boundary value prob-
lems for equations of fluid motion in poroelastic media and their application in the dynamics of
snow-ice cover" with the support of a grant from the President of the Russian Federation.

Conclusion

The non-stationary oscillations of the poroelastic ice cover caused by the external periodic
pressure are considered. The ice cover is modeled by a thin poroelastic floating plate with a given
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parameter of the porosity. The parameter of the ice porosity is defined as the coefficient of pro-
portionality between the velocity of the liquid penetrating into the plate and the hydrodynamic
pressure. The formulation of the problem statement and method of the solution are presented.
The problem is solved using the Fourier transform along the plate. The numerical convergence
of the obtained integrals is investigated.

The effect of the porosity on the deflections of a poroelastic ice plate is investigated. Porosity
leads to damping of oscillations at a distance from the applied pressure. It is shown that the
ice deflections have a wave structure. It was found that the increase in the porosity parameter
increases the deflections of the poroelastic plate near the applied pressure, decreases the ice
deflections at a distance from it, decreases the width of the disturbed area of the plate. We
associate this behavior of the ice cover with the dissipation caused by the porosity. Porosity
increases deflections under the load because of the applied pressure, and reduces deflections away
from the load, where dissipation due to the porosity is important. The porosity also increases
the length of the hydroelastic wave propagating from the applied pressure. The method of
calculating the length of such a wave is proposed, and calculations are performed for different
values of the porosity parameter. To verify this fact, it is necessary to investigate the dispersion
relations of the generated waves, in particular, with zero porosity. It is shown that the increase
in the frequency of oscillations of the applied pressure’s amplitude decreases the ice deflections,
the disturbed area of the plate, and the wavelength. We associate this with the fact that the
dissipation is usually higher for high frequencies. High frequency oscillations decay faster and
the wavelength should decrease with the frequency.

The obtained results make it possible to evaluate the effect of the porosity on the behavior of
the ice cover under the action of the applied external loads. In this work the effect of a periodic
load is investigated, however, the load can move and have a different shape, then in this case the
problem requires additional research. Most of the articles that consider models of the porous
plates similar to one used in this article are devoted to the study of wave scattering and energy
dissipation [5], [19]. The external load is not taken into account in these works. In the work
[19] wave scattering by a poroelastic plate of any shape in a three-dimensional formulation was
investigated and it was found that the increase in the porosity parameter decreases the amplitudes
of the deflections of the poroelastic plate, which is in good agreement with our results for the ice
deflections away from the load. For further comparison of the obtained results, it is necessary to
investigate the considered problem in a three-dimensional formulation taking into account the
ice plate of finite length and different boundary conditions. Also, for a better understanding
of the effect of porosity, it is necessary to investigate the considered problem with the porosity
coefficient equal to zero and compare the results. In this case, the damping conditions is not
guaranteed and the Fourier transform cannot be used. To find a solution in this case, the vertical
mode method can be used [20].
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Поведение пороупругой ледовой пластины под действием
приложенного давления
Кристина Н. Завьялова, Константин А. Шишмарев, Александр А.

Коробкин

Рассматриваются колебания пороупругого ледового покрова под действием приложенной внеш-
ней нагрузки. Лед моделируется тонкой пороупругой плавающей пластиной в рамках линейной
теории гидроупругости. Параметр пористости определяется как коэффициент пропорционально-
сти скорости проникновения жидкости в пластину и гидродинамического давления. Жидкость
под пластиной идеальная и несжимаемая. Течение, вызванное прогибом пластины, считается
потенциальным. Внешняя нагрузка моделируется локализованным гладким пятном давления.
Рассмотрена двумерная задача о волнах, вызванных периодическим внешним давлением на пла-
вающую пороупругую пластину. Вычислены профили генерируемых волн при заданной частоте
осцилляций амплитуды внешнего давления. Определено влияние пористости на прогибы поро-
упругого ледового покрова. Получено, что учет пористости приводит к затуханию колебаний в
отдалении от области приложенного давления.

Ключевые слова: пороупругая ледовая пластина, идеальная жидкость, внешняя нагрузка, потен-
циальное течение.
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