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Abstract 

The spatio-temporal dynamics of an outbreak provide important insights to help direct public 

health resources intended to control transmission. They also provide a focus for detailed 

epidemiological studies and allow the timing and impact of interventions to be assessed.  

 

A common approach is to aggregate case data to administrative regions. Whilst providing a 

good visual impression of change over space, this method masks spatial variation and 

assumes that disease risk is constant across space. Risk factors for COVID-19 (e.g. 

population density, deprivation and ethnicity) vary from place to place across England so it 

follows that risk will also vary spatially. Kernel density estimation compares the spatial 

distribution of cases relative to the underlying population, unfettered by arbitrary 

geographical boundaries, to produce a continuous estimate of spatially varying risk. 

 

Using test results from healthcare settings in England (Pillar 1 of the UK Government testing 

strategy) and freely available methods and software, we estimated the spatial and spatio-

temporal risk of COVID-19 infection across England for the first six months of 2020.  

Widespread transmission was underway when partial lockdown measures were introduced on 

the 23
rd

 March 2020 and the greatest risk erred towards large urban areas. The rapid growth 

phase of the outbreak coincided with multiple introductions to England from the European 

mainland. The spatio-temporal risk was highly labile throughout. 

 

In terms of controlling transmission, the most important practical application of our results is 

the accurate identification of areas within regions that may require tailored intervention 

strategies. We recommend that this approach is absorbed into routine surveillance outputs in 
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England. Further risk characterisation using widespread community testing (Pillar 2) data is 

needed as is the increased use of predictive spatial models at fine spatial scales.  
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Background 

 

On the 31 December 2019, the World Health Organization (WHO) was informed of a cluster 

of cases of pneumonia of unknown cause detected in Wuhan City, Hubei Province, China. 

Since the initial identification of   SARS-CoV-2 as the cause of COVID-19, over 32 million 

cases have been diagnosed globally, with more than 900,000 fatalities, as of 27
th
 September 

2020 [1]. The first laboratory confirmed case in England was reported on the 31
st
 January 

2020. A series of interventions designed to slow rates of infection followed, culminating in a 

partial lockdown announced by the UK Government on the 23rd March 2020.  

 

Understanding the spatiotemporal dynamics of COVID-19 helps to clarify the extent and 

impact of the pandemic and can aid decision making, planning and community action 

intended to control transmission [2]. It also provides an opportunity to assess the impact of 

interventions over space and time.   

 

One approach is to describe changes in infection rates within administrative boundaries in 

England have been published widely. This approach expresses the disease risk per head of 

population and assumes that risk is constant across space i.e. the risk of disease does not 

depend upon spatial location. This is rarely the case and the distribution of risk factors for 

COVID-19 (for example population density, deprivation and ethnicity) are known to vary 

across England so it follows that absolute risk will also vary spatially.  

 

Another approach is to plot points to produce a spatial point pattern. This is useful for small 

data sets but as the number of points increases, over plotting makes it difficult to discriminate 

between the relative densities of points.  
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Kernel density estimation (KDE), also known as kernel smoothing, is a flexible, non-

parametric method by which spatially varying risk may be estimated without the need to 

aggregate data. Smoothing a spatial point pattern (using an appropriate bandwidth) 

overcomes the over plotting problem by expressing the number of points as an intensity 

function. Comparing the intensities of two groups, for example those with an infectious 

disease and those without, across a defined geographical area results in an intensity (or risk) 

ratio. If the ratio is ~1, this suggests that the risk of infection is unrelated to spatial location. 

Evidence of spatial variation in risk occurs where the intensities differ. Ratio values >1 

indicate an increased risk and values <1 indicate lower risk. 

 

As the COVID-19 outbreak progresses in England, KDE provides a scalable means to 

identify areas of significantly higher or lower risk to inform national policy and local action.  

 

Using established methods [3-5] and freely accessible software [3, 6], we conducted a spatio-

temporal point pattern analysis of COVID-19 risk in England between January and June 

2020. Our aims were to describe the spatio-temporal dynamics of the first six months of the 

COVID-19 outbreak and assess the potential use of this method to inform and support public 

health policy decisions as the outbreak progresses. 

 

Methods 

The method we followed is described in detail by Davies et al. [3] and Elson et al. [7]. For the 

spatial estimates, each set of points (case and control) were smoothed using an adaptive [4, 8] 

bandwidth to determine the spread of smoothing kernels centred on each point to produce a 

density surface. Adaptive bandwidths account for greater uncertainty in areas with fewer 

points (e.g. rural areas) so the bandwidth is large resulting in greater smoothing. In urban 
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areas, more data points mean the bandwidth is smaller resulting in a surface with less 

smoothing. Calculating the ratio of case and control densities provides a continuous estimate 

of relative risk which can be plotted on a map [4, 9, 10].   

 

Case locations 

We selected confirmed cases of COVID-19 reported to the PHE Second Generation 

Surveillance System (SGSS) under Pillar 1 of the UK Government testing strategy between 

the 31
st
 January 2020 and the 30th June 2020. Pillar 1 includes tests only for those with a 

medical need (symptomatic and seen by a clinician) but may also include some healthcare 

workers and samples taken as part of outbreak investigations [11]. The data was checked for 

duplicates and presence of a valid residential postcode. Postcodes are like US Zip codes and 

represent a single residential street or group of houses.  

The statistical methodology for spatial point processes are very sensitive to duplicate data 

points [12].  We used unique control locations but included multiple cases with the same 

postcode to account for sporadic and outbreak cases. 

Population at risk (‘control’) locations 

The underlying population at risk (‘controls’) was represented by points randomly sampled 

from the National Population Database (NPD). The NPD is a Geographical Information 

System (GIS) dataset that combines multiple layers of data (including population) in a 100-

metre by 100-metre grid [13, 14]. Based on the centroid coordinates of each grid square, 

‘control’ locations were randomly drawn without replacement. The probability of a location 

being drawn was weighted by the summed population of each grid square to reflect the 

spatially varying nature of the underlying population at risk. The number of controls was 

chosen to match the number of cases.  
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For the spatial estimates, we attempted four bandwidth initialisation methods to set the 

‘global’ and ‘pilot’ smoothing parameters needed to calculate the adaptive bandwidths 

themselves:  maximal smoothing [15], bootstrapping [3, 16], least-squares cross validation 

(LSCV) [17] and likelihood cross-validation [18, 19]. 

The resulting bandwidths were used to produce density estimates at all locations of a fine grid 

of co-ordinates laid within a simplified polygon of the mainland boundary of England and the 

Isle of Wight.  

To explore the temporal variation in the spatial risk, we marked each case with the date that 

their specimen was taken. For cases with multiple test results, the specimen date that gave the 

most recent positive result was used. We then calculated the number of days that had elapsed 

from the specimen date of the first confirmed case (31
st
 January 2020) as the temporal event. 

The spatiotemporal relative risk surface was then calculated using the fixed estimator of 

Fernando & Hazelton [20]. 

All estimates are edge-corrected to account for kernel weight lost over the boundary of the 

study region [21, 22] and, for the spatial analyses only, are calculated as symmetric adaptive 

risk function estimates using the pooled case/control data and equal global and pilot 

bandwidths [5]. Unless stated otherwise, results are reported as log-relative risk surfaces.  

Contours identifying areas of significantly higher risk were superimposed at the 1% 

significance level for the spatial estimates and 1% and 0.01% levels for the spatio-temporal 

estimates. Wherever temporal results are referred to in terms of weeks, this refers to the 

corresponding International Organization for Standardization (ISO) week.  

All analyses were performed using the contributed packages sparr [3] and spatstat [12, 23] in 

the R language [6].  

Results 
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Between the 31st January and the 30
th 

June 2020, 160,976 cases of COVID-19 were reported 

to PHE under Pillar 1 of the UK Government testing strategy [11]. Of these, residential 

postcodes were available for 154,210 (96%). Of these, multiple cases were recorded at 

44,989 (30%) postcode locations. 

Bandwidth selection 

The oversmoothed and bootstrap methods produced usable spatial and space-time 

bandwidths. The LSCV approach did not provide a result and the likelihood-based approach 

produced a very small bandwidth that resulted in an under smoothed, ‘spiky’ surface.  

Spatial risk 

Figure 1 shows the areas in England classified as urban by the Office for National Statistics 

(ONS) [24]. The relative risk across England during the study period is presented in Figure 2. 

With some exceptions, the areas with the highest risk tended to be large urban areas.  

Spatio-temporal risk 

An animation of the spatio-temporal analysis combining an epidemic curve with the risk 

surfaces using the oversmoothed and bootstrap estimators can be viewed here. The individual 

risk surface for the oversmoothed version is here and the bootstrap version is here.  The 14-

day space-time slices are presented in Figures 3 and 4 for the oversmoothed and bootstrap 

estimators respectively. 

Fewer than twenty cases were recorded between the confirmation of the first case (Week 5 

commencing January 27th) and the end of Week 8 (February 23
rd

). Weeks 9 -10 were 

characterised by a greater geographical spread of small areas of elevated risk and an increase 

in case numbers to ~400 by the end of Week 10 (March 8
th

). Week 11 (commencing 9
th
 

March) saw a rapid increase in case numbers and significantly elevated risk, particularly in 
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the cities of London and Birmingham. By the end of Week 14 (5th April), 47,668 cases had 

been reported. From Week 15 (commencing 6
th
 April) onwards, areas of significantly 

elevated risk became more dispersed with some areas in the North and far South East of the 

country experiencing sustained periods of elevated risk, even as case numbers declined 

towards the end of the study period. 

Of note is the generalised increase in risk across the country between Weeks 13-19 and the 

abrupt change in risk seen in London between Weeks 13 and 15. 

Discussion 

To the best of our knowledge, this is the first description of the spatio-temporal distribution 

of COVID-19 in England using unaggregated data. As such, it defines areas of statistically 

significant high and low risk at a very fine spatial scale, unhampered by administrative 

boundaries.  

Taking into account a seven-day lag for the incubation period [25] prior to sample collection, 

our results show that geographically widespread transmission was underway at least one 

week prior to the partial lockdown announced on the 23rd March 2020. 

The rapid increase in cases and geographical spread in risk coincided with the roll out of PCR 

assays to hospitals during March resulting in greater ascertainment. However, intensive 

sequencing of SARS-CoV-2 genomes revealed that there were multiple introductions from 

European countries. The frequency of these imports (introduced via multiple entry points by 

travellers returning to the UK predominately from Spain, Italy and France) reached a peak in 

mid-March 2020 (Week 12) and led to widespread onward transmission within the UK [26].  

The risk was greatest in some, but not all, large urban areas. At the beginning of the outbreak, 

the risk in London was significantly elevated for a prolonged period but changed abruptly 

within the period of a single week (Week 15). The reasons for this are unclear but may be 
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related to the impact of non-pharmaceutical interventions (social-distancing, reduced use of 

public transport etc.) or factors related to immunity. Seroprevalence of antibodies to SARS- 

CoV-2 in samples from healthy adult blood donors in England showed that the prevalence in 

London, adjusted for assay accuracy, age and sex, increased from 1.5% in Week 13 to 12.3% 

in Weeks 15 to 16 and 17.5% in Week 18. Given that the antibody response takes at least two 

weeks to become detectable, those displaying a positive result in Week 18 are likely to have 

become infected before mid-April. By the end of our study period (Week 27), prevalence had 

dropped to 10% in London [27].  

Large urban areas in England have higher population densities and tend to have higher 

numbers of black, Asian and minority ethnic residents. They are also the areas with the 

highest deprivation and air pollution scores: all factors associated with an increased risk of 

infection and/or poorer outcomes following infection with SARS-CoV 2 [28-30].  

Selecting the ‘right’ bandwidth is crucial for this approach. Calculation of the over smoothing 

bandwidth is extremely quick, and the results provide a good overview of elevated risk. 

However, this somewhat rudimentary approach is unlikely to identify focused hotspots. The 

bootstrap method, whilst more computationally intensive, produced a usable bandwidth in 

less than thirty minutes for the spatial analysis and around ten hours for the spatio-temporal 

bandwidth. The resulting output provides superior geographical detail allowing resources to 

be targeted more efficiently. Notwithstanding this, too small a bandwidth results in an under 

smoothed surface which can erroneously identify ‘significant’ peaks in risk as a result of 

increased variability of the kernel estimator. The numeric stability of LSCV and likelihood 

based methods is known to be questionable in practice, with resulting estimates often being 

under-smoothed[9]. 
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There are some limitations to this analysis. First, our approach was exploratory and does not 

account for groups more likely to experience poorer outcomes following infection due to 

socio-demographic, occupational and environmental factors. Also, the data we used 

represents those who were symptomatic and sought healthcare. In common with all 

surveillance systems, this is biased towards the severe end of the disease spectrum. One way 

of overcoming this bias would be to include results from the wider community testing 

performed under Pillar 2 of the UK testing regime. We decided not to include this data 

because Pillar 2 testing was introduced part way through the study and was also subject to 

data quality issues until May 2020 [11]. The decline in cases described here is likely to be an 

underestimate of the true community incidence and may not reflect the spatial locations of 

cases identified under Pillar 2. This requires further investigation, however, considering the 

way that SARS-CoV-2 is transmitted, we anticipate that this will not differ considerably, and 

our analysis represents the spatio-temporal ‘tip of the iceberg’ for COVID-19 in England 

during the study period. Finally, the PCR assay used by hospitals was rolled out nationally 

during March 2020 resulting in greatly improved case ascertainment. This coincided with the 

rapid increase seen during March 2020 so may be an artefact of improved surveillance. 

However, this does not explain the spatial variation noted beyond the end of March (when the 

assay was in widespread use) nor the sudden decline in cases in Birmingham and London. 

Our analysis demonstrates how KDE can identify areas of England where the risk of COVID-

19 infection differs significantly. In terms of controlling transmission, the most important 

practical application is the accurate identification of areas within regions that require 

improved public health messaging or tailored intervention strategies. Spatial modelling can 

be used to the predict the spread of infection [31, 32] and the methodology to do this has been 

available for some time [32, 33]. Such approaches have already been applied to COVID-19 

case data [34] and self-reported symptoms [33]. It’s hoped that this will form part of the UK 
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response strategy in the coming months and will be most informative at very fine spatial 

scales [33]. To harness the benefits of such modelling approaches, public health organisations 

and academic centres must find ways to share information and promote collaboration without 

compromising patient confidentiality.  

 

To conclude, we present a spatio-temporal analysis of COVID-19 in England covering the 

first six months of 2020. We recommend that this approach is absorbed into routine 

surveillance outputs and that ways to confidentially share patient data with academic 

collaborators are explored. Further work using Pillar 2 test data and the development of 

predictive spatial models at fine spatial scales is needed. 
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