Enhanced chlorinated very short-lived substances in South East Asia:Potential source regions and source types

Hanif, Norfazrin Mohd, Reeves, Claire E. ORCID: https://orcid.org/0000-0003-4071-1926, Oram, David E., Ashfold, Matthew J., Panagi, Marios, Fleming, Zoe L., Gooch, Lauren J., Laube, Johannes C., Samah, Azizan Abu, Abdullah, Ahmad Amin and Sturges, William T. ORCID: https://orcid.org/0000-0002-9044-7169 (2020) Enhanced chlorinated very short-lived substances in South East Asia:Potential source regions and source types. IOP Conference Series: Earth and Environmental Science, 616 (1). ISSN 1755-1307

[thumbnail of Published_Version]
PDF (Published_Version) - Published Version
Available under License Creative Commons Attribution.

Download (1MB) | Preview


Enhancements of the mixing ratios of short-lived halogenated gases were observed in air samples collected at Bachok Marine Research Station (BMRS), Peninsular Malaysia during Northern Hemisphere winters in 2013/2014 and 2015/2016. This study investigates the potential source regions and source types that influenced the variability in chlorinated very short-lived substances (Cl-VSLS) [dichloromethane, 1,2-dichloroethane, trichloromethane, tetrachloroethene] and methyl halides [methyl chloride and methyl bromide]. The UK Met Office’s Numerical Atmospheric Modelling Environment (NAME) dispersion model, was used for tracking the origin of air masses arriving at BMRS. For the purpose of identifying possible sources of these compounds, carbon monoxide (CO) emission data taken from the Representative Concentration Pathway 8.5 were used along with NAME footprints to calculate modelled CO mixing ratios. A correlation analysis between the mixing ratios of measured compounds and the modelled CO from various emission sectors was perform to assess the extent to which emission sectors might be related to the mixing ratios of halogenated gases. The results show that the events of higher mixing ratios were associated with air masses, especially from East China. During the 2013/2014 campaign, the modelled CO from industrial, solvents and agriculture (waste burning on fields) were significantly correlated with the mixing ratios of Cl-VSLS (R > 0.7) and methyl halides (R > 0.40). During the 2015/2016 campaign, the strength of these correlations reduced for Cl-VSLS (R > 0.5) and with no significant correlations for methyl halides. Instead, mixing ratios of methyl halides were correlated (R=0.4) with modelled CO from forest burning. This work provides evidence that East and South East Asia act as important sources of halogenated gases. This is of significant given the proximity of these regions to prevalent deep convection which can rapidly transport these halogen-containing gases into the stratosphere and impact the ozone layer.

Item Type: Article
Uncontrolled Keywords: environmental science(all),earth and planetary sciences(all),sdg 14 - life below water ,/dk/atira/pure/subjectarea/asjc/2300
Faculty \ School: Faculty of Science > School of Environmental Sciences
UEA Research Groups: Faculty of Science > Research Groups > Centre for Ocean and Atmospheric Sciences
Related URLs:
Depositing User: LivePure Connector
Date Deposited: 23 Feb 2021 01:04
Last Modified: 23 Oct 2022 02:15
URI: https://ueaeprints.uea.ac.uk/id/eprint/79306
DOI: 10.1088/1755-1315/616/1/012011


Downloads per month over past year

Actions (login required)

View Item View Item