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ABSTRACT
In spite of the continuous advancement in computer science and technology,
the real-world engineering optimization process is still facing challenges due
to the huge computational cost on simulations. To address this issue, TARBF
algorithm (trust-region based adaptive radial basis function interpolation) for
solving expensive constrained black-box optimization problems is proposed
in this paper. The approach successfully decomposes the original optimiza-
tion problem into a sequence of sub-problems approximated by radial basis
functions in a series of trust regions. Then, the solution of each sub-problem
becomes the starting point for the next iteration. According to the values
of objective and constraint functions, an effective online normalization tech-
nique is further developed to adaptively improve the model accuracy in the
trust region, where the surrogate is updated iteratively. Numerical exper-
iments on 21 G-problems (CEC’2006) and 4 engineering problems prove
that TARBF is a convergent paradigm, which can find more accurate solu-
tions than other state-of-the-art metamodel-based algorithms within compa-
rable computational budget. Moreover, the sophisticated trust region strategy
developed in TARBF has the capability to facilitate an effective balance of
exploration and exploitation for solving constrained black-box optimization
problems.

1. Introduction

Physics-based simulation and optimization is absolutely imperative for the cost
reduction required by smart and modern industry. In spite of continuous advance-
ment in computer science, real-world engineering optimizations are still challeng-
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ing due to the huge computational cost on simulations [1]. It is rarely practicable
to utilize traditional global optimization methods, such as particle swarm opti-
mization (PSO) [2] and genetic algorithms (GAs) [3], which require an awful lot
of evaluations to seek an optimum. In addition, detailed finite element analysis
model is usually a black-box, i.e., there is no explicit mathematical expressions of
the design variables.

Faced with these limitations, surrogate modeling techniques that manage to
imitate the behavior of high-fidelity model have won critical acclaim in recent
years. Given a dataset containing vectors of design variables together with their
responses, a metamodel can be built and used for further analysis. It is particularly
beneficial to optimization because multiple calls for expensive functions can be
replaced by calls for comparatively cheap metamodels.

Generally, methods for metamodel building include polynomial regression
(PS) [4], radial basis function (RBF) [5], kriging [6], multivariate adaptive re-
gression splines (MARS) [7], artificial neural networks (ANN) [8] and support
vector regression (SVR) [9]. Comparative studies have been made over the past
years. For example, Jin et al. [10] investigated and compared PS, Kriging, MARS
and RBF models. The authors claimed that RBF metamodel outperforms others
in most instances, especially in shortage of computational resource (sample size is
small). With the increased fitting points, the performance of Kriging and MARS
models will gain improvement. In addition, Kriging is sensitive to the noise but
PR performs well in this situation. In a comparison with PR, Kriging, MARS and
RBF metamodels, Clarke et al. [9] found that SVR has the overall performance
in regard to accuracy and robustness with the manually optimized Guassian ker-
nel function. In contrast, Kim et al. [11] compared moving least squares method
(MLS), Kriging, RBF and SVR metamodels and concluded that Kriging and MLS
are able to build more accurate metamodels than RBF and SVR models. There-
fore, it is impractical to draw any decisive conclusions on the superiority of any
of the mentioned metamodels. The quality of a metamodel can vary considerably
depending on how many design variables are involved, what types of the fitting
functions are, and how well the predefined parameters are tuned.

Once the metamodel has been built, optimization methods can then be ap-
plied to seek for the optimum, which is therefore referred as metamodel-based
or surrogate-assisted design optimization (MBDO) [12, 13]. MBDO has gained
continuous development over the past two decades. For example, John et al. [14]
proposed efficient global optimization (EGO), which employs Kriging metamodel.
The optimization progress is guided by both the prediction and error estimations.
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Younis et al. [15] also built Kriging metamodel for objective functions but a re-
gion reduction and elimination strategy is used to locate the global optimum. An
application of RBF interpolation can be found in [16], which solved sub-problems
in successive trust regions. In addition, metamodels have been widely incorpo-
rated into evolutionary algorithms [17, 18, 19] and particle swarm optimization
[20, 21, 22] for solving expensive black-box problems.

Although the above-mentioned algorithms can obtain good results on black-
box problem with boundary constraints, most of them have difficulty dealing with
nonlinear constrained optimization problems. As stated by Haftka et al. [23] and
Muller et al. [24], the state of the art about constrained optimization is less ad-
vanced. The main challenge lies in the definition of a general convergent scheme
that seeks a feasible and optimized solution under a reasonable number of function
evaluations. The hurdles become even more distinct as the number of constraints
increases or when binary and discontinuous responses are present [25]. One com-
mon approach is to transform the constrained problem to a unconstrained problem
by using a penalty function (penalizing the fitness value of infeasible solutions),
as shown in [26, 27, 28]. However, the information of the individual constraint
is lost and the additional penalty parameters need to be well tuned for different
problems [29]. As a result, this penalty-based technique does not work well in
solving complex constrained optimization problems. Recently, there are various
novel techniques for tackling expensive constrained black-box optimization prob-
lems. For example, Brekelmans [30] applied linear approximation within sequen-
tial trust regions and used a filter method to select current iterates. Basudhar et
al. [31] developed a constrained EGO, where SVM is applied to approximate the
boundary of the feasible region and to support the expected improvement (EI).
Regis [32] proposed the ConstrLMSRS that uses RBF surrogate to model objec-
tive and constraint functions separately. A feasible starting point is necessary in
ConstrLMSRS because further candidate points are generated by perturbing all
or a fraction of the coordinates of the current best feasible solution. In addition,
Regis [33] developed another RBF-assisted algorithm named as COBRA, where
a new iterate is selected according to the distance from previous points. Recently,
a self-adjusted version of COBRA was proposed by Bagheri et al. [34] to avoid
tuning the parameters manually. Dong [35] presented a kriging-based constrained
global optimization algorithm SCGOSR with space reduction strategy. In SC-
GOSR, new added samples are selected from optimal solutions obtained by the
multi-start solver.

However, relatively few algorithms can handle expensive constrained black-
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box optimization problem under severely limited budget. Jiao et al. [36] introduced
a self-adaptive selection strategy into the evolutionary algorithm which combines
feasibility withmulti-objective problem techniques. 22G-problems [37] have been
tested and some of them (G05, G06, G08, G11, G12, G18) can be solved very
efficiently in less than 1000 evaluations, but others require 5000-100000 evalua-
tions to be solved. COBRA [33], ConstrLMSRS [32] and KCGO [38] can obtain
feasible solutions on some G-problems within hundreds or thousands of function
evaluations but are not competitive with regard to precision and optimality. Za-
hara and Kao [39] tested G04, G08, G12, which can be solved within 20000 eval-
uations. Bagheri’s SACOBRA [34] is very efficient that 11 G-problems can be
solved within 500 function evaluations under a relaxed threshold.

In this paper, a novel trust-region based adaptive radial basis function algo-
rithm (TARBF) is proposed for solving expensive constrained black-box problems
especially under very limited budget. A description of the constrained black-box
optimization problem is given in Section 2. Next, an overview of the TARBF
framework is presented in Section 3.1. The following subsections will give details
such as the novel design of experiments in Section 3.2, the adaptive online normal-
ization strategy in Section 3.3, the metamodel building strategy using radial basis
functions in Section 3.4, the moving trust region strategy in Section 3.5, and the
early termination strategy in Section 3.6. In Section 4, the experimental and com-
parison results of TARBF on 25 benchmark problems are given and conclusions
are drawn in Section 5.
2. Constrained black-box optimization (CBO) problem

The constrained black-box optimization (CBO) problem addressed in this paper
can be formulated as follows:

min
x∈Q

f (x)

s.t. gj(x) ≤ 0 (j = 1,… , m)
Ai ≤ xi ≤ Bi (i = 1,… , d)

(1)

where x refers to the vector of design variables; Q is the design space bounded
by [A,B], Ai and Bi are the given lower and upper bounds on the design variable
xi; d is the total number of the design variables; f (x) is the objective function;
gj(x)(j = 1,… , m) is the constraint function and m is the total number of the
constraint functions.

The main characteristic of a CBO problem is that there are no algebraic ex-
pressions of both the objective and the constraint functions. In other words, the
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Figure 1: Black-box simulation

functional relationship between the design variables and the response is implicit.
It is quite common in engineering when simulation models are used. As illustrated
in Fig 1, a set of design variables x ∈ Q ⊆ ℝd are inputted to the black-box, e.g.,
a simulation tool, and a certain set of responses F (x) ⊆ ℝm+1 are the outputs
based on the unknown relationship between the variables and responses. In this
paper, we assume the CBO problem is computationally expensive and the values
f (x) and gj(x) (j = 1, ..., m) for any input x ∈ [A,B] can be obtained without anycrash on the simulator. Besides, the derivative information of any response is also
unavailable or impractical to obtain.
3. Trust-region based adaptive radial basis function interpolation algorithm (TARBF)
3.1. Overview

TARBF is a trust-region based iterative method, which attempts to solve a se-
quence of constrained optimization sub-problems by using the radial basis function
interpolation of the objective and constraint functions in a series of regions of inter-
est (trust region). In this way, TARBF replaces the original optimization problem
(Equation 1) by a succession of approximate subproblems as

min
x∈Qk

f̃ k(x)

s.t. g̃kj (x) (j = 1, ..., m)
wℎere Qk = [Ak,Bk] ⊆ ℝd ,

Aki ≥ Ai, B
k
i ≤ Bi (i = 1, ..., d)

(2)

where f̃ k(x) and g̃kj (x) (j = 1, ..., m) are approximated objective and constrained
functions respectively, Qk is the subregion in ktℎ iteration that bounded by Ak

and Bk. The solution of an individual sub-problem becomes the centering point
of the trust region in the next iteration and the trust region is resized based on
several indicators. This procedure is repeated until certain termination criteria are
satisfied. In each iteration, a large portion of the fitting points are generated in the
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Inputs:
Starting point: x0
Initial trust region: Q0

Maximum iteration number: kmax
Current iteration number: k = 0

1 Design of Experiments

2 Evaluate new points inside Qk

3 Adaptive online normalization
of responses

4 Build metamodels using RBF

5
Use SQP method to solve the
approximate optimization

subproblem

Suboptimal solution: xk+1

Termination criteria
satisfied?

Output:
Final optimum x∗ = xk+1

6 Resize and move the
trust region to Qk+1

Update:
Starting point: xk+1
Trust region: Qk+1

iteration number: k = k + 1

Figure 2: Flow chart of TARBF Method

current trust region, and the rest is taken from the pool of points in the previous
iterations.

Figure 2 shows the optimization process of TARBF step by step and Figure
3 displays graphically how the trust regions are progressively resized and moved
towards the optimum in a 2D optimization problem.
3.2. Design of experiments (DOE) strategies

As discussed by Kitayama [40], the key for obtaining the high-quality approx-
imate global minimum is simultaneously adding new sampling points around (1)
the optimum in the subregion and (2) the sparse region in the design space. TARBF
achieves the two requirements with the novel design of experiments (DOE) and the
moving trust region strategy. As metamodels are constructed within sequential
trust regions centered at the successive sub-optimums, the first requirement above
Chengyang Liu et al.: Preprint submitted to Elsevier Page 6 of 38
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is automatically achieved in TARBF. More specifically, the design of experiments
(DOE) applied in TARBF to build themetamodel comprises three parts of the sam-
pling points as shown in Figure 4. The first part of points (rectangle points in Figure
4) are randomly generated inside the trust region by the maxmin stochastic sam-
pling strategy (MSS) [41, 42]. An additional constraint on the minimal distance
between the points is imposed to improve the uniformity of the random plan. Be-
sides, an extended-box selection strategy (EBS) is applied to select previous points
located in the neighborhood of the current starting point. The size of the extended
box is just 1.4 times larger than that of the current trust region and these points are
considered alternatives to new points required in the current iteration. But in order
to avoid the abuse of previous information which might cause the deterioration of
the quality of the metamodel, only half of the number of points selected by EBS is
deemed to be qualified for the alternatives. Last but not the least, for the purpose
of making full use of previous information, additional points (triangle points in
Figure 4) which are close to the current starting point and positioned out of the
extended box are selected into the fitting pool by the global intelligence selection
strategy (GIS). Summarily, MSS is responsible for uniformly scattering new points
inside the trust region to improve the accuracy of the approximation. EBS is the
key to maximally reducing the required number of new sampling points in each it-
eration without damaging the quality of the metamodel. And GIS reduces the risk
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Figure 4: Design of experiments in TARBF

of the optimization process being trapped into local optima as a refined metamodel
is built by adding points located outside of the trust region. As a result, the DOE in
TARBF takes full advantage of the previous experimental data and contributes to
high-accuracy local approximations. But in general, it is the trust region strategy
which will be discussed in Section 3.5 that satisfies the second requirement to find
the global optimum by attaining the balance between exploration and exploitation
of the search space.
3.3. Adaptive normalization of the objective and constraint functions

Relatively few surrogate-based algorithms manage to scale the constraint vio-
lations to the same order of magnitude although it is a common sense that scaled
constraint and objective functions can smooth the landscape of the metamodel sur-
face and then affect the efficiency and accuracy of the optimization progress. One
customary approach is to carry out a pre-process before building the metamodel.
This is to say, identify the min-max range of each constraint over the entire design
space and then divide each constraint by the determined values [34]. Although
this technique does flatten the function by avoiding the extreme value globally, it
makes the optimizer even harder to escape from the flat surface because this trans-
formation makes the function where is already somewhat flat surface much flatter.
This kind of issue also occurs in the logarithmic transformation proposed by Regis
[33].
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Based on the aforementioned limitations, a general, easy-to-implement and
self-adaptive normalization strategy (SANS) is developed, as shown in Algorithm
1. In the first step of SANS, the maximum of actual responses (both the objective
and constraint values) of the fitting points should be determined by

gmaxj = max(|gj(Xk)|)
fmax = max(|f (Xk)|)

(3)

where Xk is the set of fitting points which are used for metamodel building in the
ktℎ iteration, f (x) is the objective function and gj(x) (j = 1,… , m) are the jtℎ con-straint functions. Then, the objective and constraint functions could be normalized
respectively according to

g′j(x) =
gj(x)
gmaxj

⋅ �g ∈ [−�g, �g], if gmaxj > �g

f ′(x) = f (x)
fmax

⋅ �f ∈ [−�f , �f ], if fmax > �f

(4)

where g′j(x) and f ′(x) are the normalized constraint and objective functions; �gand �f are two user-specified parameters. Note that usually the inappropriate nor-
malization of objective function (�f takes a relatively small value and smaller than
�g) would obscure the improvement over consecutive iterations, thus, �f should bemuch larger than �g. Based on our numerous test results, �g = 1.0 and �f = 10.0would be good choices for general optimization tasks.

In this way, the constraint and objective functions can be normalized adaptively
during the entire optimization process. When the trust region Qk is large, the
responses of the points located inQk usually differ much from each other and then
they will be scaled to the same level accordingly. In this situation, SANS is similar
with the usual approach. However, when the trust region Qk is sufficiently small,
normally there will be few extreme values in objective and constraint functions in
such small design space. In this situation, the conditions gmaxj > �g and fmax > �fare usually not satisfied and then there is no need to scale the functions. On the
other hand, if the landscape of the function in such small region is still not flat, the
SANS will be activated as normal. But since the maximum response values gmaxjand fmax generally should be smaller than the values in the initial stage, only a
minor scale is sufficient enough to be applied to the original functions in support
of accurate metamodels. Compared with the customary normalization strategy,
SANS avoids the risk of normalizing the functions too much and improves the
quality of approximations.
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Algorithm 1: Self-adaptive normalization procedure (SANS)
Function SANS(�f , �g,f (Xk), gj(Xk) (j = 1,… , m)):

Input:
• �f : Normalizing the objective function value into the range [−�f , �f ].• �g: Normalizing the constraint function value into the range [−�g , �g].
• f (Xk): The objective function values of the fitting points.
• gj(Xk): The jtℎ constraint function values of the fitting points.

Output:
• f ′(x): The normalized objective function
• gj(Xk) (j = 1,… , m): The normalized constraint functions

fmax, gmaxj =Max(|f (Xk)|, |gj(Xk)|)
if fmax > �f then ⊳ Objective normalization

f ′(x) = f (x)
fmax

⋅ �f
else

f ′(x) = f (x)
if gmaxj > �g then ⊳ Constraint normalization

g′j(x) =
gj(x)
gmaxj

⋅ �g

else
g′j(x) = g(x)

Return f ′(x), gj(Xk) (j = 1,… , m)

3.4. Metamodel building using radial basis functions
Generally, any type ofmetamodel can be implemented in this trust region based

framework. But by taking into account the computational time, themodel accuracy
and the model complexity, we use the simpler radial basis function surrogate in
this paper. Given n distinct points x1,x2, ...,xn ∈ ℝd and their corresponding real
function values f (x1), f (x2), ..., f (xn), where f (x) could be either the objective
function or the constraint function. The metamodel built by radial basis function
interpolation can be expressed as

s(x) =
n
∑

i=1
�i�

(

∥ x − xi ∥
)

+ p (x) ,x ∈ ℝd (5)

where ∥ x − xi ∥ is the Euclidean distance between the studied point x and the
fitting point xi. The coefficient �i is the unknown parameter that needed to be
determined during the process of metamodel building. P (x) is a linear polynomial
Chengyang Liu et al.: Preprint submitted to Elsevier Page 10 of 38
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in d variables with d + 1 coefficients as in the form:
p(x) = c0 + c1 ⋅ x1 + c2 ⋅ x2 + ... + cd ⋅ xd = cT ⋅ x (6)

where � is the radial basis function which can be of any forms but are always
radially symmetric. Common types include the cubic (�(r) = r3), multiquadric
(�(r) = −

√

r2 + 
2), Gaussian (�(r) = exp(−
r2)) and thin plate spline (�(r) =
r2 log r) forms. Here, 
 is a shape parameter related to the smoothness of the func-
tion [43]. In this paper, the cubic form of RBF is adopted because it was success-
fully employed in several surrogate-based algorithms [44, 34, 16] and Wild et al.
[45] suggested that the cubic variant is better than other choices especially under
limited budget in terms of accuracy. Although themodel accuracy can be improved
by tuning the shape parameter 
 when Gaussian or thin plate spline form is used,
the additional computational burden may be unbearable especially for large-scale
optimization problems.

To determine the parameters �i and c, it results in the following linear system
of equations:

[

�n×n Pn×(d+1)
P T 0(d+1)×(d+1)

]

·
[

�(n)
c(d+1)

]

=
[

F(n)
0(d+1)

]

(7)
where � is an n × n square matrix containing evaluations of the RBF for the dis-
tances between all the sampling points, i.e., �ij = �

(

∥ xi − xj ∥
)

(i, j = 1, ..., n).
P ∈ ℝn×(d+1) is a matrix, of which the i-th row is [1,xTi ]. 0(d+1)×(d+1) ∈
ℝ(d+1)×(d+1) is a zero matrix, �(n) = [�1, ..., �n]T ∈ ℝn, c(d+1) = [c0, c1, ..., cd]T ∈
ℝd+1, F(n) = [f (x1, f (x2), ..., f (xn)]T ∈ ℝn and 0(d+1) ∈ ℝd+1 is a vector of zeros.
The coefficient matrix in Equation 7 is invertible if it has full rank. In other words,
there exits a subset of d + 1 linearly independent points among the fitting sets.
3.5. Modified trust region strategy

Once the RBF surrogates for the objective and constraint functions have been
identified, the optimization subproblem (Equation 2) can be solved using anymath-
ematical or metaheuristic solvers. Here, the sequential quadratic programming
(SQP) solver in Scipy library [46] is employed as an optimizer to find the opti-
mal solution mathematically. Then, the new search subregion in the next iteration,
which is centered at this optimal solution should be determined, i.e., the move lim-
its Aki and Bki should be updated. Inspired by the move limit strategy described in
[47], several indicators as shown in Table 1 have been formulated in support of
moving and resizing the trust region.
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Table 1
Indicators for trust region strategy

1st indicator
The size of the current trust region Qk

Small Large

2nd indicator
The location of xk+1 in local bounds [Ak,Bk] and global bounds [Ai, Bi]

internal external boundary

3rd indicator
The movement history of the each design variable xk+1i (i = 1,… , d)

forward backward

4th indicator
The movement history of xk+1 in the design space

Forward Backward Uncertain

The first indicator is the size of the current search subregionQk. IfQk ≤ Δmin,the size of Qk will be marked as ‘Small’, or else it will be denoted as ‘Large’.
The second indicator is used to identify the location of the each design variable

xk+1i (i = 1,… , d) of the sub-optimal solution xk+1 in current bounds [Aki , Bki ] andin global bounds [Ai, Bi]. If none of the current move limits ([Aki , Bki ]) is active(for example, when one design variable reaches either the upper bound or the lower
bound, this move limit is activated), this variable xk+1i (i = 1,… , d) is considered
an ‘internal’ variable. If any of the current move limits ([Aki , Bki ]) is active but
none of the global bounds [Ai, Bi] is active, the location of this variable is marked
as ‘external’. Otherwise the location is denoted as ‘boundary’.

The third indicator illustrates the movement history of the each design variable
xk+1i (i = 1,… , d). For simplicity, a measure �ki (i = 1,… , d) is defined as

�ki = (x
k+1
i − xki ) ⋅ (x

k
i − x

k−1
i ) (i = 1,… , d) (8)

If �ki > 0, the movement of this variable in this dimension is considered ‘forward’.
Otherwise, this variable is moving ‘backward’.

The forth indicator aims to show the movement history of the sub-optimal so-
lution xk+1 in the design space. Therefore, the angle between the last two move
vectors is defined as

'k = xk+1 − xk
|xk+1 − xk|

⋅
xk − xk−1
|xk − xk−1|

(9)

If 'k > 0.5, the optimization process is moving more or less in the same direction,
so the sub-optimal solution is moving ‘Forward’. If 'k <= 0, the convergence
Chengyang Liu et al.: Preprint submitted to Elsevier Page 12 of 38
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history is marked as ‘Backward’. Otherwise, the next search subregion will not be
dependent on this indicator because the movement of optimal solutions is ‘Uncer-
tain’.

Based on the above indicators, the next search subregion Qk+1 can be deter-
mined by new move limits Ak+1i and Bk+1i as

Bk+1i − Ak+1i = �ki ⋅ (B
k
i − A

k
i ) (10)

where �ki is the resizing coefficient. In the current implementation, �ki = 1.5 is
used for enlargement and �ki = 1∕1.5 is used for reduction. To ensure a robust ex-ploration of the design space, in the first kRES (the default value is 5) iterations, thesubspace of each design variable will only be shrunk when this variable is located
at either the global lower bound or the global upper bound, i.e., this variable is con-
sidered ‘boundary’. Otherwise, the size of the subspace will remain unchanged to
keep the global searching ability. And in order to achieve a moderate exploitation
of the promising region where the global optimum might be located, the subspace
of each design variable will only be shrunk when this variable is not located on the
global bounds and the movement history is labelled as ‘Backward’. A schematic
description of the trust region strategy is given in Figure 5. The symbols ∥ (log-
ical OR) and & (logical AND) are logical operators. For example, only if the itℎvariable is ‘external’ and ‘forward’, the subspace will be enlarged accordingly.
3.6. Early termination strategy (ETS)

The early termination strategy (ETS) is developed to abort the optimization
process appropriately if a really good solution has been found and there seems
no big margin for improvement on this solution. In the current implementation,
ETS will be activated if three conditions are all satisfied. First, the obtained sub-
optimal solution xk+1 in ktℎ iteration should be feasible because an infeasible solu-tion is definitely not the global optimum and indicates that the optimization process
should continue to run. Second, the variation of the objective function values of
the last two sub-optimal solutions defined by I = f (xk+1) − f (xk) should be pos-
itive and less than a small value Imax (for example, 1e − 8). If this condition is
satisfied, the optimization process possibly converges to a solution so there will be
little room for reduction on the objective function value. Third, in order to avoid
premature convergence, the relative size of the current search subregion Sk should
be smaller than a proposed value of Δmin,2. From numerical tests, Δmin,2 = 0.01 isa suitable value for solving general optimization tasks.
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Inputs:
xk+1,Ak,Bk,Δmin

1st Indicator

2nd Indicator

3rd & 4th Indicator

For itℎ variable

Keep size EnlargeReduce

Next iterationTermination

Small

Large

Else

(external & backward) ∥
((k <= kRES) & boundary)

(k > kRES) &
(internal ∥ boundary) &

(Backward)

external & forward

Figure 5: Schematic description of the trust region strategy

4. Experimental results

In this section, computational experiments are executed for the purpose of eval-
uating how well TARBF performs on seeking the global optima of the black-box
constrained optimization problems.
4.1. Benchmark functions

In this work, 21 well-known G-problems of CEC’2006 test suite [37] are used
for performance evaluation. Here we do not consider the problems G02, G20 and
G22 which are hardly solved by any metamodel-based algorithms. Table 2 shows
the main properties of the benchmark functions and please refer to [37] for more
details about the functions. Note that in this study, all equality constraints ℎ(x) =
0, are converted into inequality constraints of the form |ℎ(x)| − � ≤ 0 and � =
1e − 6 is used for both equality constraints and inequality constraints, which is
more stringent than the proposed value � = 1e − 4 in CEC’2006. Hence, we use
the results given in [48] and [49] as known optima for problems including equality
constraints (G03, G05, G11, G13, G14, G15, G17, G21, G23).
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Table 2
Summary description of G-problems

Prob.* Optimum da mb Typec �(%)d

G01 -15.0000 13 9 L+Q 0.0111
G03 -1.0050 10 2 N 0.0000
G04 -30665.5387 5 6 Q+N 52.1230
G05 5126.4967 4 8 L+C+N 0.0000
G06 -6961.8139 2 2 C+N 0.0066
G07 24.3062 10 8 L+Q+N 0.0003
G08 -0.0958 2 2 N 0.8560
G09 680.6300 7 4 N 0.5121
G10 7049.2480 8 6 L+N 0.0010
G11 0.7500 2 2 Q+N 0.0000
G12 -1.0000 3 1 Q+N 4.7713
G13 0.0540 5 6 N 0.0000
G14 -47.7611 10 6 L+N 0.0000
G15 961.7152 3 4 Q+N 0.0204
G16 -1.9052 5 38 L+N 0.0204
G17 8876.9807 6 8 N 0.0000
G18 -0.8660 9 13 Q+N 0.0000
G19 32.6556 15 5 N 33.4761
G21 193.7869 7 11 L+N 0.0000
G23 -400.0000 9 10 L+N 0.0000
G24 -5.5080 2 2 L+N 79.6556
* The problem in bold face means that the optimum
satisfies a more stringent constraint tolerance (1e−
6) than the proposed value (1e − 4) in [37].

a The number of design variables.
b The number of inequality constraints.
c The problem contains linear (L), quadratic(Q), cu-
bic (Q) or nonlinear (N) functions.

d The ratio between the feasible region and the entire
search space.

4.2. Parameter settings
The parameter settings in TARBF are summarized in Table 3. Note that al-

though there is a number of ad hoc parameters in TARBF, they have been properly
adjusted and determined through extensive experiments and sensitivity analyses.
The default values listed in Table 3 are configured for tackling general optimiza-
tion tasks and do not need further adjustment. In this paper,TARBF is written in
Python and is executed on a desktop machine with an AMD Ryzen CPU 1800X.
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Table 3
User parameters of TARBF with their descriptions and default values

Parameter Description Value

x0 The initial trial solution Random

Kmax The maximum number of iterations 100

Nplan The number of required sampling points d + 5

Δ0 The relative size of the initial trust region 1.0

Δmin The minimum relative size of the trust region 1e − 5

Δext The relative size of the extended box 1.4

TOLcon The constraint tolerance 1e − 6

�g, �f The normalization coefficients 1.0, 10.0

Imax
The tolerated variation in objective function values
in ETS 1e − 8

Δmin,2
The tolerated relative size of the trust region in
ETS 0.01

For each problem, TARBF is executed 25 times independently.
4.3. Performance criteria

To illustrate the convergence performance of TARBF, the following perfor-
mance criteria are used [37].

• xopt, f (xopt): xopt is the best point found by TARBF and f (xopt) is the cor-responding objective value.
• Best, Worst, Average, Median: The best, worst, average and median value

from all trials.
• Feasible run and feasible rate (FR): If xopt is feasible, this run is a feasible

run and the feasible rate is equal to the number of feasible runs over total
runs.

• Successful run and success rate (SR): Let x∗ be the known optimum of the
problem, a successful run is a run which finds a feasible solution satisfying
f (xopt) − f (x∗) ≤ 1e− 4. The success rate is the number of successful runs
over total runs.
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• NFEs, NTEs, ANFEs, ATEs, ENFEs, EATEs, : NFEs is used to record the
number of function evaluations in each run when TARBF terminates and at
least one feasible solution is found, while NTEs records the number of func-
tion evaluations when TARBF first finds the successful solution satisfying
f (xopt) − f (x∗) ≤ 1e − 4. ANFEs or ATEs is the average of the values
of NFEs or NTEs in all feasible runs. In addition, both ENFEs and EATEs
are defined as ENFEs or EATEs = ANFEs or ATEs∕SR⋅FR. Generally, ENFEs
reflects the maximum function evaluations required by TARBF to find the
optimal solution with high robustness while EATEs shows the minimum
function evaluations used. The difference between ENFEs and EATEs actu-
ally represents the convergence capability of TARBF. If this value is small,
it means TARBF converges to the global optimum quickly, and vice versa.

4.4. General performance of TARBF
Table 7 shows the optimal objective values obtained by TARBF and Table 4

presents the convergence statistics of TARBF on solving these 21 G-problems.
As can be seen from the FR values in Table 4, TARBF is able to find a feasible
solution of the majority of the G-problems with a one hundred percent. G10, G15
and G21 are three exceptions but the FR values are both over 90%. And according
to the SR values, 21 G-problems can be classified into five classes as shown in
Table 5. 11 G-problems (G01, G03, G04, G05, G06, G07, G09, G11, G15, G16
and G23) can be robustly solved by TARBF with a success rate over 92%. And
another 6 problems (G10, G14, G18, G19, G17 and G24) can still be addressed
by TARBF with a high success rate over 52%. Among them, the SR values of the
first four cases are over 72%. In addition, TARBF shows instability in solving four
problems (G08, G13, G21 and G12), of which the SR values are below 52%. The
most difficult problem to TARBF is G12, on which TARBF only has 16% chance
of obtaining the global optimum. This is mainly because the feasible region of this
problem consists of 93 disjointed spheres [37], which makes TARBF difficult to
escape from local optima.

Averagely, TARBF has 76.76% chance of finding the global optimum of one of
the 21 G-problems within 374.10 function evaluations. And in terms of the ENFEs
value, TARBF is believed to robustly and definitely solve one G-problem within
535.69 function evaluations.
4.5. Comparisons between TARBF and other state-of-the-art metamodel-based algorithms

As shown in Table 6, TARBF is compared with various advanced metamodel-
based algorithms in order to evaluate its performance. These approaches include
COBRA [33], eDIRECT-C [50], SADE-kNN [51] and SACOBRA [34]. COBRA
Chengyang Liu et al.: Preprint submitted to Elsevier Page 17 of 38
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Table 4
Convergence statistics on G-suite problems.

Prob. ATEs ANFEs FR(%) SR(%) EATEs ENFEs

G01 82 290 100 92 89 315
G02 2126 2126 100 0 - -
G03 616 1046 100 100 616 1046
G04 37 148 100 100 37 148
G05 36 55 100 96 38 57
G06 14 40 100 100 14 40
G07 396 485 100 100 396 485
G08 71 80 100 28 253 285
G09 521 557 100 92 566 605
G10 494 532 96 72 715 769
G11 27 76 100 100 27 76
G12 78 86 100 16 489 537
G13 324 360 100 28 1158 1287
G14 571 758 100 84 680 902
G15 74 101 92 92 87 120
G16 111 152 100 100 111 152
G17 366 555 100 60 610 924
G18 438 503 100 72 608 698
G19 1295 1449 100 88 1472 1646
G21 327 327 96 40 852 851
G23 106 207 100 100 106 207
G24 37 51 100 52 72 99

Average 286.75 374.10 99.24 76.76 428.34 535.69

Table 5
Classification of G-suite problems by success rate (SR)

Class Problem(s) Quantity

SR ≥ 92% G01, G03, G04, G05, G06, G07, G09, G11,
G15, G16, G23 11

72% ≤ SR < 92% G10, G14, G18, G19 4
52% < SR < 72% G17, G24 2
20% < SR < 52% G08, G13, G21 3

SR ≤ 20% G12 1

[33] makes use of the radial basis function (RBF) to build surrogate models of both
the objective and constraint functions and works well in solving the well-known
large scale optimization problem MOPTA08 [52]. eDIRECT-C [50] adaptively
select metamodel type (Kriging, RBF and polynomial) in the optimization process
and then a pure greedy search is conducted to seek the solution. SADE-kNN [51]
applied the k-nearest-neighbors (kNN) technique to make predictions of unknown
points in a differential evolution framework. In kNN, the approximate response of
a unknown solution is a weighted average of the responses of the k nearest solu-
tions from a database. SACOBRA [34] is based on COBRA [33] but capable of
efficiently solving constrained problems with no parameter tuning. As the detailed
optimization results of COBRA were not reported in [33], here we would use the
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Table 6
Comparisons between TARBF and other state-of-the-art metamodel-based algorithms on
21 G-problems

Prob. Criteria TARBF COBRA [50] eDIRECT-C [50] SADE–kNN [51] SACOBRA [34]

G01 Best -15.0000 -14.9994 -15.0000 -15.0000 -15.0
ENFEs 315 > 908.4 147 > 3722 100

G03 Best -1.0005 -0.9397 -1.0005 -0.4515 -1.0
ENFEs 1046 > 1000 145 N.A. 300

G04 Best -30665.5394 -30664.0217 -30665.5387 -30665.5386 -30665.539
ENFEs 148 72.0 65 2598 200

G05 Best 5126.4981 5202.9265 5134.9124 5126.49 5126.498
ENFEs 57 > 1000 413 > 17810 200

G06 Best -6961.8139 -6950.5314 -6961.8139 -6961.8138 -6961.81
ENFEs 40 > 1000 35 1235 100

G07 Best 24.3062 24.3220 24.3062 24.3073 24.306
ENFEs 485 > 1000 152 N.A. 200

G08 Best -0.0958 -0.095822 -0.095825 -0.09582 -0.0958
ENFEs 285 > 980.6 154 292 200

G09 Best 680.6301 696.8378 691.6906 680.638 680.761
ENFEs 605 > 1000 > 1000 N.A. 300

G10 Best 7049.2480 7370.8840 7049.2480 7049.249 7049.253
ENFEs 769 > 1000 105 N.A. 300

G11 Best 0.7500 0.7500 0.7499 0.7499 0.75
ENFEs 76 > 454.8 33 > 2995 100

G12 Best -1.0000 -1.0000 -1.0000 -1.0000 N.A.
ENFEs 537 32.0 52 > 386 N.A.

G13 Best 0.0539 0.5018 0.2225 0.05394 N.A.
ENFEs 1287 > 1000 > 1000 > 43907 N.A.

G14 Best -47.7611 N.A. N.A. -47.764 N.A.
ENFEs 902 N.A. N.A. > 55179 N.A.

G15 Best 961.7152 N.A. N.A. 961.7150 N.A.
ENFEs 120 N.A. N.A. > 11431 N.A.

G16 Best -1.9052 N.A. N.A. -1.9051 N.A.
ENFEs 152 N.A. N.A. 4633 N.A.

G17 Best 8853.5401 N.A. N.A. 8853.53 N.A.
ENFEs 698 N.A. N.A. > 69887 N.A.

G18 Best -0.8660 N.A. N.A. -0.8654 N.A.
ENFEs 698 N.A. N.A. > 253743 N.A.

G19 Best 32.6556 N.A. N.A. 32.6632 N.A.
ENFEs 1646 N.A. N.A. N.A. N.A.

G21 Best 193.7869 N.A. N.A. 193.7546 N.A.
ENFEs 851 N.A. N.A. N.A. N.A.

G23 Best -400.0000 N.A. N.A. -400.055 N.A.
ENFEs 207 N.A. N.A. > 68852 N.A.

G24 Best -5.5080 N.A. N.A. -5.5080 N.A.
ENFEs 99 N.A. N.A. 765 N.A.

* N.A. means the result is unavailable in the paper.
! The termination criteria used in algorithms are different from each other.

results obtained by Liu et al. in [50]. It is worthwhile noting that this comparison
might be unfair for TARBF as other algorithms use different termination criteria.
As described in Section 3.6, TARBF will terminate when it converges to a good
solution. But for COBRA and eDIRECT-C, Liu et al. applied the relative error
(E = f (xopt)−f (x∗)

f (x∗)
) as the stopping criteria. And in SACOBRA [34], a problem
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Table 7
Statistical results of the objective values obtained by TARBF

Prob. Target Best Worst Mean Median Std.

G01 -15.0000 -15.0000 -14.6769 -14.9794 -15.0000 7.2171e-02
G03 -1.0005 -1.0005 -1.0005 -1.0005 -1.0005 1.8212e-06
G04 -30665.5387 -30665.5393 -30665.5387 -30665.5387 -30665.5387 1.7696e-04
G05 5126.4981 5126.4981 5126.4988 5126.4981 5126.4981 1.2591e-04
G06 -6961.8139 -6961.8140 -6961.8139 -6961.8139 -6961.8139 2.5056e-05
G07 24.3062 24.3062 24.3062 24.3062 24.3062 9.0971e-07
G08 -0.0958 -0.0958 -0.0000 -0.0486 -0.0291 3.4403e-02
G09 680.6301 680.6301 680.6303 680.6301 680.6301 5.4075e-05
G10 7049.2480 7049.2480 7069.6325 7050.8757 7049.2480 5.2572e+00
G11 0.7500 0.7500 0.7500 0.7500 0.7500 2.5026e-07
G12 -1.0000 -1.0000 -0.8102 -0.9681 -0.9864 4.5660e-02
G13 0.0539 0.0539 1.0000 0.3760 0.4389 2.5044e-01
G14 -47.7611 -47.7611 -47.7602 -47.7610 -47.7611 2.3679e-04
G15 961.7152 961.7152 961.7152 961.7152 961.7152 4.3152e-06
G16 -1.9052 -1.9052 -1.9052 -1.9052 -1.9052 9.2121e-09
G17 8876.9807 8853.5419 8929.6637 8889.4008 8871.1676 3.1802e+01
G18 -0.8660 -0.8660 -0.5000 -0.7915 -0.8660 1.2794e-01
G19 32.6556 32.6556 32.6942 32.6572 32.6556 7.5597e-03
G21 193.7869 193.7859 196.2486 193.9741 193.7906 5.2647e-01
G23 -400.0000 -400.0001 -400.0000 -400.0000 -400.0000 1.9922e-05
G24 -5.5080 -5.5080 -4.0537 -4.9497 -5.5080 6.3702e-01
WBD 1.7249 1.7249 1.7249 1.7249 1.7249 2.0543e-11
SPD 0.0127 0.0127 0.0133 0.0127 0.0127 1.2386e-04
PVD 5885.3328 5885.3328 5885.3328 5885.3328 5885.3328 3.8984e-07
SRD 2994.4710 2994.4703 2994.4711 2994.4710 2994.4711 1.5679e-04

Table 8
Comparisons between TARBF and other optimization algorithms on engineering problems

Prob. Criteria TARBF KCGO [38] eDIRECT-C [50] COBRA [50] iDEaSm [53] SCGOSR[35]

WBD fmean 1.7249 2.3230 N.A. N.A. 1.7249 > 1.7249
ATEs 137 115 N.A. N.A. 4425 101.9

SPD fmean 0.0127 0.0135 0.0127 0.0131 N.A. 0.0127
ATEs 211 38 320 > 1000 N.A. 75.7

PVD fmean 5885.3328 N.A. 7006.8195 7147.0934 5887.1084 > 5885.3653
ATEs 108 N.A. 412 > 1000 20000 42.9

SRD fmean 2994.4710 2999.76 2994.4857 2994.7114 N.A. > 2994.5
ATEs 78 43 140.2 330.6 N.A. 88.1

is considered to be ‘solved’ if f (xopt) − f (x∗) ≤ 0.05 and the SR values are not
reported. And for SADE-kNN, the optimization process would stop if a solution
satisfying f (xopt) − f (x∗) ≤ 1e − 4. Overall, except TARBF, the results of other
algorithms do not show the true convergence statistics reflecting the search abil-
ity in solving these problems as the global optima are used as known conditions,
which is impractical in solving real-world optimization problems. Generally, if
the global optimum of a problem is used as a termination criterion, the required
number of function evaluations when this criterion is satisfied is less than the true
number of function evaluations when the algorithm actually converges.
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Nevertheless, from the comparison results, it can be concluded that TARBF
is superior to other algorithms in terms of accuracy and/or efficiency and/or ro-
bustness. More specifically, as compared to SADE-kNN which tests all these 21
problems, TARBF requires only a small fraction (about 1∕10 to 1∕1000) of the number
of function evaluations. Besides, SADE-kNN fails to solve 5 problems (G03, G07,
G10, G14 and G19). And among the rest three algorithms, COBRA seems to have
severe difficulty in finding the global optimum as only 3 (G08, G11 andG12) out of
the 12 problems are successfully solved. Moreover, eDIRECT-C quickly finds the
optimal solutions of the majority of the twelve problems but it fails to solve three
problems including G05, G09 and G13. For the other nine problems, although the
number of function evaluations reported by eDIRECT-C is less than the result of
TARBF, it does not mean that eDIRECT-C is much efficient than TARBF. The
main issue lies in how the eDIRECT-C defines a real convergence state. Similarly,
SACOBRA terminates before the real convergence as well. It shows good search
ability in solving 8 out of the 10 problems (G01 to G11) but does not work well
in optimizing G09 and G10 while TARBF is able to tackle these two problems
with high accuracy and robustness. Hence, TARBF can be considered the best
algorithm among these well-known algorithms.
4.6. Engineering examples

To comprehensively validate the correctness of TARBF, four widely-used real-
world engineering problems are tested as well, including the welded beam design
(WBD), the tension/compression design (SPD), the pressure vessel design (PVD)
and the speed reducer design (SRD). Themathematical formulae of these problems
are provided in Appendix A. Table 9 gives the main characteristics of the four
engineering problems. The parameter settings and the stopping criteria here are the
same as that for solving G-problems, as summarized in Table 3. For the purpose
of simplicity, similar to the literatures ([54, 50]), the design variables of integer
values are regarded as continuous ones.

Table 7 gives the best-median-worst results of TARBF and Table 10 pro-
vides the main convergence statistics (the performance criteria are the same as
described in Section 4.3). As Compared with other algorithms including KCGO
[38], eDIRECT-C [50], COBRA [50], iDEaSm [53] and SCGOSR[35] in Table 8,
the proposed TARBF achieves the highest solution accuracy with the least number
of evaluations.
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Table 9
Summary description of engineering problems

Prob. Optimum da mb Typec � (%)d

WBD 1.7249 4 6 L+N 2.7020
TSD 0.0127 3 4 L+N 0.7428
PVD 5885.3328 4 4 L+N 39.8007
SRD 2994.4711 7 11 N 0.0955
a The number of design variables.
b The number of inequality constraints.
c The problem contains linear (L), nonlinear
(N) functions.

d The ratio between the feasible region and
the entire search space.

Table 10
Convergence statistics of engineering problems.

Prob. ATEs ANFEs FR(%) SR(%) EATEs ENFEs

WBD 137 169 100 100 137 169
SPD 211 413 100 96 220 431
PVD 108 157 100 100 108 157
SRD 78 181 100 100 78 181

Average 133.52 230.13 100.00 99.00 135.72 234.44

5. Conclusion

In this paper, a novel trust-region based adaptive radial basis function (TARBF)
algorithm is proposed for solving constrained black-box problems within very lim-
ited budget. This algorithm includes the economical design of experiments, the
adaptive online normalization of the functions and the sophisticated trust region
strategy that helps TARBF balance the exploration and exploitation of the search
space for the optimal solution with a high level of accuracy and a limited number
of function evaluations. Throughout 25 benchmark examples (21 G-problems and
4 engineering problems), TARBF proves to be a convergent and efficient paradigm
to find the global optimum. Only about 500 function evaluations are required by
TARBF in average to robustly obtain the known optimal solution. By compari-
son of the published results, TARBF demonstrates the promising performance and
superiority over other state-of-the-art algorithms to deal with constrained prob-
lems in terms of accuracy, efficiency and robustness. Moreover, TARBF provides
a valuable insight into the development of metamodel assisted robust optimization
method for solving highly multi-modal and large-scale design problems with less
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Figure 6: Schematic view of the welded beam structure

computational cost.
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Appendix A
1. Welded Beam Design (WBD)

As shown in Fig. 6, the beam is welded to a rigid support and is designed for the minimum
cost, considering constraints on shear stress (�), bending stress (�), buckling load (

pc
), and end

deflection (�). The design variables comprise the thickness of the weld (

x1
), the length of the

welded joint (x2
), the width of the beam (

x3
) and the thickness of the beam (

x4
). The problem

can be formulated mathematically as Equation 11.
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Figure 7: Schematic view of the spring structure

min f (x) = 1.10471x21x2 + 0.04811x3x4(14 + x2)

s.t. g1(x) = �(x) − �max ≤ 0
g2(x) = �(x) − �max ≤ 0
g3(x) = x1 − x4 ≤ 0

g4(x) = [0.10471x21 + 0.04811x3x4(14 + x2)] − 5 ≤ 0

g5(x) = 0.125 − x1 ≤ 0
g6(x) = �(x) − �max ≤ 0
g7(x) = p − pc (x) ≤ 0

wℎere P = 6000 lb, L = 14 in, E = 30 × 106 psi, G = 12 × 106 psi,

�max = 13600 psi, �max = 30000 psi, �max = 0.25 in

� , = P
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J
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J = 2
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√
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[

x22
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+
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]}

� (x) = 6PL
x4x23
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Ex33x4

pc (x) =

4.013E

√

√

√
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(

x23x
6
4

36

)

L2

(

1 −
x3
2L

√

E
4G

)

0.1 ≤ x1 ≤ 2, 0.1 ≤ x2 ≤ 10, 0.1 ≤ x3 ≤ 10, 0.1 ≤ x4 ≤ 2

(11)

2. Tension/compression spring design (SPD)
As shown in Figure 7, the design variables include the wire diameter d (x1

), the mean coil
diameter D (

x2
), and the number of active coils N (

x3
). The design objective is to minimize the

weight of the spring subject to constraints on the minimum deflection g1, shear stress g2, surge fre-quency g3 and the limits on the outside diameter g4. The mathematical description of this problem
is given as follows:
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Figure 8: Schematic view of the pressure vessel

min f (x) = x21x2
(

x3 + 2
)

s.t. g1 (x) = 1 −
x32x3

71785x41
≤ 0

g2 (x) =
4x22 − x2x1

12566
(

x2x31 − x
4
1
)
+ 1
5108x21

− 1 ≤ 0

g3 (x) = 1 −
140.45x1
x22x3

≤ 0

g4 (x) =
x2 + x1
1.5

− 1 ≤ 0

wℎere 0.05 ≤ x1 ≤ 1; 0.25 ≤ x2 ≤ 1.3; 2 ≤ x3 ≤ 15.

(12)

3. Pressure vessel design (PVD)
Figure 8 shows a cylindrical pressure vessel capped at both ends by hemispherical heads. Ac-

cording to the American society of mechanical engineers (ASME) boiler and pressure vessel code,
this vessel is designed for a working pressure of 3000 psi and a minimum volume of 750 ft3. The
objective is to minimize the total cost which involves a welding cost, a material cost and a forming
cost. The variables include the thickness of shell (x1), the thickness of the head (x2), the inner
radius (x3), and the length of the cylindrical section of the vessel (x4). Among them, x3 and x4 arecontinuous variables but the thickness x1 and x2 can only take integer multiples of 0.0625 incℎ.
The mathematical expression of this problem is given in Equation 8.

min f (x) = 0.6224x1x3x4 + 1.7781x1x23+

3.1661x21x4 + 19.84x
2
1x3

s.t. g1(x) − x1 + 0.0193x3 ≤ 0
g2(x) = −x2 + 0.00954x3 ≤ 0

g3(x) = −�x23x
2
4 −

4
3
�x33 + 129600 ≤ 0

g4(x) = x4 − 240 ≤ 0
wℎere 1 × 0.0625 ≤ x1, x2 ≤ 99 × 0.0625

10.0 ≤ x3, x4 ≤ 200.0

(13)

4. Speed reducer design (SRD)
A speed reducer as shown in Figure 9 is part of the gear box of mechanical system. The total

weight of the speed reducer is to be minimized subject to the nine constraints which include the
limits on the bending stress of the gear teeth, surface stress, transverse deflections of the shafts and
stresses in the shafts. The design variables are the face width (x1), the module of the teeth (x2),
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Figure 9: Schematic view of the speed reducer

the number of teeth on pinion (x3), the length of the first shaft between bearings (x4), the lengthof the second shaft between bearings (x5), the diameter of the first and the second shaft (x6 and
x7). Among them, x3 is integer and the rest are continuous. The mathematical formulation can be
summarized in Equation 14.

min f (x) = 0.7854x1x22(3.3333x
2
3 + 14.9334x3 − 43.0934)

− 1.508x1(x26 + x
2
7) + 7.4777(x

3
6 + x

3
7)

+ 0.7854(x4x26 + x5x
2
7)

s.t. g1(x) =
27

x1x22x3
− 1 ≤ 0

g2(x) =
397.5
x1x22x

2
3

− 1 ≤ 0

g3(x) =
1.93x34
x2x3x46

− 1 ≤ 0

g4(x) =
1.93x35
x2x3x47

− 1 ≤ 0

g5(x) =
1.0
110x36

√

(
745.0x4
x2x3

)2 + 16.9 × 106 − 1 ≤ 0

g6(x) =
1.0
110x36

√

(
745.0x4
x2x3

)2 + 16.9 × 106 − 1 ≤ 0

g7(x) =
x2x3
40

− 1 ≤ 0

g8(x) =
5x2
x1

− 1 ≤ 0

g9(x) =
x1
12x2

− 1 ≤ 0

g10(x) =
1.5x6 + 1.9

x4
− 1 ≤ 0

g11(x) =
1.1x7 + 1.9

x5
− 1 ≤ 0

wℎere 2.6 ≤ x1 ≤ 3.6, 0.7 ≤ x2 ≤ 0.8, 17 ≤ x3 ≤ 28
7.3 ≤ x4 ≤ 8.3, 7.8 ≤ x5 ≤ 8.3, 2.9 ≤ x6 ≤ 3.9
5.0 ≤ x7 ≤ 5.5

(14)
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5. G01

min f (x) = 5
4
∑

i=1
xi − 5

4
∑

i=1
x2i −

13
∑

i=5
xi

s.t. g1(x) = 2x1 + 2x2 + x10 + x11 − 10 ≤ 0
g2(x) = 2x1 + 2x3 + x10 + x12 − 10 ≤ 0
g3(x) = 2x2 + 2x3 + x11 + x12 − 10 ≤ 0
g4(x) = −8x1 + x10 ≤ 0
g5(x) = −8x2 + x11 ≤ 0
g6(x) = −8x3 + x12 ≤ 0
g7(x) = −2x4 − x5 + x10 ≤ 0
g8(x) = −2x6 − x7 + x11 ≤ 0
g9(x) = −2x8 − x9 + x12 ≤ 0

wℎere 0 ≤ xi ≤ 1(i = 1,… , 9),
0 ≤ xi ≤ 100(i = 10, 11, 12),
0 ≤ x13 ≤ 1

(15)

6. G03

min f (x) = −(
√

n)n
n
∏

i=1
xi

s.t. ℎ1(x) =
n
∑

i=1
x2i − 1 = 0

wℎere 0 ≤ xi ≤ 1(i = 1,… , n), n = 10

(16)

Chengyang Liu et al.: Preprint submitted to Elsevier Page 27 of 38



Trust-region Based Adaptive RBF Algorithm

7. G04

min f (x) = 5.3578547x23 + 0.8356891x1x5+
37.293239x1 − 40792.141

s.t. g1(x) = 85.334407 + 0.0056858x2x5+
0.0006262x1x4 − 0.0022053x3x5 − 92 ≤ 0
g2(x) = −85.334407 − 0.0056858x2x5−
0.0006262x1x4 + 0.0022053x3x5 ≤ 0
g3(x) = 80.51249 + 0.0071317x2x3+
0.0029955x1x2 + 0.0021813x23 − 110 ≤ 0
g4(x) = −80.51249 − 0.0071317x2x5−
0.0029955x1x2 − 0.0021813x23 + 90 ≤ 0
g5(x) = 9.300961 + 0.0047026x3x5+
0.0012547x1x3 + 0.0019085x3x4 − 25 ≤ 0
g6(x) = −9.300961 − 0.0047026x3x5−
0.0012547x1x3 − 0.0019085x3x4 + 20 ≤ 0

wℎere 78 ≤ x1 ≤ 102, 33 ≤ x2 ≤ 45,
27 ≤ xi ≤ 45(i = 3, 4, 5)

(17)

8. G05

min f (x) = 3x1 + 0.000001x31 + 2x2 + (0.000002∕3)x
3
2

s.t. g1(x) = −x4 + x3 − 0.55 ≤ 0
g2(x) = −x3 + x4 − 0.55 ≤ 0
ℎ3(x) = 1000 sin

(

−x3 − 0.25
)

+
1000 sin

(

−x4 − 0.25
)

+ 894.8 − x1 = 0
ℎ4(x) = 1000 sin

(

x3 − 0.25
)

+
1000 sin

(

x3 − x4 − 0.25
)

+ 894.8 − x2 = 0
ℎ5(x) = 1000 sin

(

x4 − 0.25
)

+
1000 sin

(

x4 − x3 − 0.25
)

+ 1294.8 = 0
wℎere 0 ≤ x1 ≤ 1200, 0 ≤ x2 ≤ 1200,−0.55 ≤ x3 ≤ 0.55,

− 0.55 ≤ x4 ≤ 0.55

(18)

9. G06

min f (x) =
(

x1 − 10
)3 +

(

x2 − 20
)3

s.t. g1(x) = −
(

x1 − 5
)2 −

(

x2 − 5
)2 + 100 ≤ 0

g2(x) =
(

x1 − 6
)2 +

(

x2 − 5
)2 − 82.81 ≤ 0

wℎere 13 ≤ x1 ≤ 100, 0 ≤ x2 ≤ 100

(19)
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10. G07

min f (x) = x21 + x
2
2 + x1x2 − 14x1 − 16x2+

(

x3 − 10
)2 + 4

(

x4 − 5
)2 +

(

x5 − 3
)2 +

2
(

x6 − 1
)2 + 5x27 + 7

(

x8 − 11
)2 +

2
(

x9 − 10
)2 +

(

x10 − 7
)2 + 45

s.t. g1(x) = −105 + 4x1 + 5x2 − 3x7 + 9x8 ≤ 0
g2(x) = 10x1 − 8x2 − 17x7 + 2x8 ≤ 0
g3(x) = −8x1 + 2x2 + 5x9 − 2x10 − 12 ≤ 0

g4(x) = 3
(

x1 − 2
)2 + 4

(

x2 − 3
)2 + 2x23 − 7x4−

120 ≤ 0

g5(x) = 5x21 + 8x2 +
(

x3 − 6
)2 − 2x4 − 40 ≤ 0

g6(x) = x21 + 2
(

x2 − 2
)2 − 2x1x2 + 14x5 − 6x6 ≤ 0

g7(x) = 0.5
(

x1 − 8
)2 + 2

(

x2 − 4
)2 + 3x25 − x6−

30 ≤ 0

g8(x) = −3x1 + 6x2 + 12
(

x9 − 8
)2 − 7x10 ≤ 0

wℎere − 10 ≤ xi ≤ 10(i = 1,… , 10)

(20)

11. G08

min f (x) = −
sin3

(

2�x1
)

sin
(

2�x2
)

x31
(

x1 + x2
)

s.t. g1(x) = x21 − x2 + 1 ≤ 0

g2(x) = 1 − x1 +
(

x2 − 4
)2 ≤ 0

wℎere 0 ≤ x1 ≤ 10, 0 ≤ x2 ≤ 10

(21)

12. G09

min f (x) =
(

x1 − 10
)2 + 5

(

x2 − 12
)2 + x43 + 3

(

x4 − 11
)2

+ 10x65 + 7x
2
6 + x

4
7 − 4x6x7 − 10x6 − 8x7

s.t. g1(x) = −127 + 2x21 + 3x
4
2 + x3 + 4x

2
4 + 5x5 ≤ 0

g2(x) = −282 + 7x1 + 3x2 + 10x23 + x4 − x5 ≤ 0
g3(x) = −196 + 23x1 + x22 + 6x

2
6 − 8x7 ≤ 0

g4(x) = 4x21 + x
2
2 − 3x1x2 + 2x

2
3 + 5x6 − 11x7 ≤ 0

wℎere − 10 ≤ xi ≤ 10(i = 1,… , 7)

(22)
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13. G10

min f (x) = x1 + x2 + x3
s.t. g1(x) = −1 + 0.0025

(

x4 + x6
)

≤ 0
g2(x) = −1 + 0.0025

(

x5 + x7 − x4
)

≤ 0
g3(x) = −1 + 0.01

(

x8 − x5
)

≤ 0
g4(x) = −x1x6 + 833.33252x4 + 100x1−
83333.333 ≤ 0
g5(x) = −x2x7 + 1250x5 + x2x4 − 1250x4 ≤ 0
g6(x) = −x3x8 + 1250000 + x3x5 − 2500x5 ≤ 0

wℎere 100 ≤ x1 ≤ 10000, 1000 ≤ xi ≤ 10000(i = 2, 3),
10 ≤ xi ≤ 1000(i = 4,… , 8)

(23)

14. G11

min f (x) = x21 +
(

x2 − 1
)2

s.t. g(x) = x2 − x21 = 0
wℎere − 1 ≤ x1 ≤ 1,−1 ≤ x2 ≤ 1

(24)

15. G12

min f (x) = −

(

100 −
(

x1 − 5
)2 −

(

x2 − 5
)2 −

(

x3 − 5
)2
)

100
s.t. g(x) =

(

x1 − p
)2 +

(

x2 − q
)2 +

(

x3 − r
)2 −

0.0625 ≤ 0
wℎere 0 ≤ xi ≤ 10(i = 1, 2, 3),

p, q, r = 1, 2,… , 9

(25)

16. G13

min f (x) = ex1x2x3x4x5

s.t. ℎ1(x) = x21 + x
2
2 + x

2
3 + x

2
4 + x

2
5 − 10 = 0

ℎ2(x) = x2x3 − 5x4x5 = 0
ℎ3(x) = x31 + x

3
2 + 1 = 0

wℎere − 2.3 ≤ xi ≤ 2.3(i = 1, 2),−3.2 ≤ xi ≤ 3.2(i = 3, 4, 5)

(26)
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17. G14

min f (x) =
10
∑

i=1
xi

(

ci + ln
xi

∑10
j=1 xj

)

s.t. ℎ1(x) = x1 + 2x2 + +2x3 + x6 + x10 − 2 = 0
ℎ2(x) = x4 + 2x5 + x6 + x7 − 1 = 0
ℎ3(x) = x3 + x7 + x8 + 2x9 + x10 − 1 = 0

wℎere 0 < xi ≤ 10(i = 1,… , 10),
c1 = −6.089, c2 = −17.164, c3 = −34.054,
c4 = −5.914, c5 = −24.721, c6 = −14.986,
c7 = −24.1, c8 = −10.708, c9 = −26.662,
c10 = −22.179

(27)

18. G15

min f (x) = 1000 − x21 − 2x
2
2 − x

2
3 − x1x2 − x1x3

s.t. ℎ1(x) = x21 + x
2
2 + +x

2
3 − 25 = 0

ℎ2(x) = 8x1 + 14x2 + 7x3 − 56 = 0
wℎere 0 ≤ xi ≤ 10(i = 1, 2, 3)

(28)
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19. G17

min f (x) = f (x1) + f (x2)

s.t. ℎ1(x) = −x1 + 300 −
x3x4

131.078
cos(1.48477 − x6)+

0.90798x23
131.078

cos(1.47588)

ℎ2(x) = −x2 −
x3x4

131.078
cos((1.48477 + x6)+

0.90798x24
131.078

cos(1.47588))

ℎ3(x) = −x5 −
x3x4

131.078
sin((1.48477 + x6)+

0.90798x24
131.078

sin(1.47588))

ℎ4(x) = 200 −
x3x4

131.078
sin((1.48477 − x6)+

0.90798x23
131.078

sin(1.47588))

wℎere

f1(x1) = {
30x1 0 ≤ x1 < 300
31x1 300 ≤ x1 < 400

.

f2(x2) = {
28x2 0 ≤ x2 < 100
29x2 100 ≤ x2 < 200
30x2 200 ≤ x2 < 1000

.

0 ≤ x1 ≤ 400, 0 ≤ x2 ≤ 1000, 340 ≤ x3 ≤ 420,
340 ≤ x4 ≤ 420,−1000 ≤ x5 ≤ 1000, 0 ≤ x6 ≤ 0.5236

(29)
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20. G18

min f (x) = −0.5(x1x4 − x2x3 + x3x9−
x5x9 + x5x8 − x6x7)

s.t. g1(x) = x23 + x
2
4 − 1 ≤ 0

g2(x) = x29 − 1 ≤ 0
g3(x) = x25 + x

2
6 − 1 ≤ 0

g4(x) = x21 +
(

x2 − x9
)2 − 1 ≤ 0

g5(x) =
(

x1 − x5
)2 +

(

x2 − x6
)2 − 1 ≤ 0

g6(x) =
(

x1 − x7
)2 +

(

x2 − x8
)2 − 1 ≤ 0

g7(x) =
(

x3 − x5
)2 +

(

x4 − x6
)2 − 1 ≤ 0

g8(x) =
(

x3 − x7
)2 +

(

x4 − x8
)2 − 1 ≤ 0

g9(x) = x27 +
(

x8 − x9
)2 − 1 ≤ 0

g10(x) = x2x3 − x1x4 ≤ 0
g11(x) = −x3x9 ≤ 0
g12(x) = x5x9 ≤ 0
g13(x) = x6x7 − x5x8 ≤ 0

wℎere − 10 ≤ xi ≤ 10(i = 1,… , 8), 0 ≤ x9 ≤ 20

(30)

21. G19

min f (x) =
5
∑

j=1

5
∑

i=1
cijx(10+i)x(10+j) + 2

5
∑

j=1
djx

3
(10+j)

−
10
∑

i=1
bixi

s.t. gj(x) = −2
5
∑

i=1
cijx(10+i) − 3djx2(10+j)−

ej +
10
∑

i=1
aijxi ≤ 0 j = 1,… , 5

wℎere b = [−40,−2,−0.25,−4,−4,−1,−40,−60, 5, 1],
See Table 11
0 ≤ xi ≤ 10(i = 1,… , 15)

(31)
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Table 11
Data set for test problem G19

j 1 2 3 4 5

ej -15 -27 -36 -18 -12
c1,j 30 -20 -10 32 -10
c2,j -20 39 -6 -31 32
c3,j -10 -6 10 -6 -10
c4,j 32 -31 -6 39 -20
c5,j -10 32 -10 -20 30
dj 4 8 10 6 2
a1,j -16 2 0 1 0
a2,j 0 -2 0 0.4 2
a3,j -3.5 0 2 0 0
a4,j 0 -2 0 -4 -1
a5,j 0 -9 -2 1 -2.8
a6,j 2 0 -4 0 0
a7,j -1 -1 -1 -1 -1
a8,j -1 -2 -3 -2 -1
a9,j 1 2 3 4 5
a10,j 1 1 1 1 1

22. G21

min f (x) = x1
s.t. g1(x) = −x1 + 35x0.62 + 35x0.63 ≤ 0

ℎ1(x) = −300x3 + 7500x5 − 7500x6 − 25x4x5+
25x4x6 + x3x4 = 0
ℎ2(x) = 100x2 + 155.365x4 + 2500x7 − x2x4−
25x4x7 − 15536.5 = 0
ℎ3(x) = −x5 + ln

(

−x4 + 900
)

= 0
ℎ4(x) = −x6 + ln

(

x4 + 300
)

= 0
ℎ5(x) = −x7 + ln

(

−2x4 + 700
)

= 0
wℎere 0 ≤ x1 ≤ 1000, 0 ≤ x2, x3 ≤ 40, 100 ≤ x4 ≤ 300,

6.3 ≤ x5 ≤ 6.7, 5.9 ≤ x6 ≤ 6.4, 4.5 ≤ x7 ≤ 6.25

(32)
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23. G23

min f (x) = −9x5 − 15x8 + 6x1 + 16x2 + 10
(

x6 + x7
)

s.t. g1(x) = x9x3 + 0.02x6 − 0.025x5 ≤ 0
g2(x) = x9x4 + 0.02x7 − 0.015x8 ≤ 0
ℎ1(x) = x1 + x2 − x3 − x4 = 0
ℎ2(x) = 0.03x1 + 0.01x2 − x9

(

x3 + x4
)

= 0
ℎ3(x) = x3 + x6 − x5 = 0
ℎ4(x) = x4 + x7 − x8 = 0

wℎere 0 ≤ x1, x2, x6 ≤ 300, 0 ≤ x3, x5, x7 ≤ 100,
0 ≤ x4, x8 ≤ 200, 0.01 ≤ x9 ≤ 0.03

(33)

24. G24

min f (x) = −x1 − x2
s.t. g1(x) = −2x41 + 8x

3
1 − 8x

2
1 + x2 − 2 ≤ 0

g2(x) = −4x41 + 32x
3
1 − 88x

2
1 + 96x1 + x2 − 36 ≤ 0

wℎere 0 ≤ x1 ≤ 3, 0 ≤ x2 ≤ 4

(34)
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25. G16
min f (x) = 0.000117y14 + 0.1365 + 0.00002358y13 + 0.000001502y16+

0.0321y12 + 0.004324y5 + 0.0001
c15
c16

+ 37.48
y2
c12

− 0.0000005843y17

s.t.

g1(x) =
0.28
0.72
y5 − y4 ≤ 0 g2(x) = x3 − 1.5x2 ≤ 0

g3(x) = 3496
y2
c12
− 21 ≤ 0 g4(x) = 110.6 + y1 −

62212
c17

≤ 0
g5(x) = 213.1 − y1 ≤ 0 g6(x) = y1 − 405.23 ≤ 0
g7(x) = 17.505 − y2 ≤ 0 g8(x) = y2 − 1053.6667 ≤ 0
g9(x) = 11.275 − y3 ≤ 0 g10(x) = y3 − 35.03 ≤ 0
g11(x) = 214.228 − y4 ≤ 0 g12(x) = y4 − 665.585 ≤ 0
g13(x) = 7.458 − y5 ≤ 0 g14(x) = y5 − 584.463 ≤ 0
g15(x) = 0.961 − y6 ≤ 0 g16(x) = y6 − 265.916 ≤ 0
g17(x) = 1.612 − y7 ≤ 0 g18(x) = y7 − 7.046 ≤ 0
g19(x) = 0.146 − ys ≤ 0 g20(x) = y8 − 0.222 ≤ 0
g21(x) = 107.99 − y9 ≤ 0 g22(x) = y9 − 273.366 ≤ 0
g23(x) = 922.693 − y10 ≤ 0 g24(x) = y10 − 1286.105 ≤ 0
g25(x) = 926.832 − y11 ≤ 0 g26(x) = y11 − 1444.046 ≤ 0
g27(x) = 18.766 − y12 ≤ 0 g28(x) = y12 − 537.141 ≤ 0
g29(x) = 1072.163 − y13 ≤ 0 g30(x) = y13 − 3247.039 ≤ 0
g31(x) = 8961.448 − y14 ≤ 0 g32(x) = y14 − 26844.086 ≤ 0
g33(x) = 0.063 − y15 ≤ 0 g34(x) = y15 − 0.386 ≤ 0
g35(x) = 71084.33 − y16 ≤ 0 g36(x) = −140000 + y16 ≤ 0
g37(x) = 2802713 − y17 ≤ 0 g38(x) = y17 − 12146108 ≤ 0

wℎere

y1 = x2 + x3 + 41.6 y2 =
12.5
c1
+ 12

y3 =
c2
c3

y4 = 19y3
y6 = x1 − y5 − y4 − y3 y5 = c6c7
y7 =

c8
y1

y8 =
c8
3798

y9 =
96.82
c9
+ 0.321y1

y10 = 1.29y5 + 1.258y4 + 2.29y3 + 1.71y6
y11 = 1.71x1 − 0.452y4 + 0.580y3
y12 = c10x1 +

c11
c12
y13 = c12 − 1.75y2

y14 = 3623 + 64.4x2 + 58.4x3 +
146312
y9+x5

y15 =
y13
c13

y16 = 148000 − 331000y15 + 40y13 − 61y15y13
y17 = 14130000 − 1328y10 − 531y11 +

c14
c12

c1 = 0.024x4 − 4.62
c2 = 0.0003535x21 + 0.5311x1 + 0.08705y2x1
c3 = 0.052x1 + 78 + 0.002377y2x1
c4 = 0.04782

(

x1 − y3
)

+ 0.1956(x1−y3)2
x2

+ 0.6376y4 + 1.594y3
c5 = 100x2 c6 = x1 − y3 − y4
c7 = 0.950 −

c4
c5

c8 =
(

y5 + y4
)

0.995
c9 = y7 −

0.0663y7
y8

− 0.3153 c10 =
12.3
752.3

c11 =
(

1.75y2
) (

0.995x1
)

c12 = 0.995y10 + 1998
c13 = 0.995y10 + 60.8x2 + 48x4 − 0.1121y14 − 5095
c14 = 2324y10 − 28740000y2 c15 =

y13
y15
− y13

0.52
c16 = 1.104 − 0.72y15 c17 = y9 + x5
704.4148 ≤ x1 ≤ 906.3855 68.6 ≤ x2 ≤ 288.88
0 ≤ x3 ≤ 134.75 193 ≤ x4 ≤ 287.0966
25 ≤ x5 ≤ 84.1988

(35)
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