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Abstract 

Floral heteromorphy in Primula is the phenomenon whereby one plant species 

produces two flowers types; pin flowers have long styles with low anthers and thrum 

flowers have the opposite arrangement.  This system promotes outcrossing and is 

mediated by a hemizygous S locus comprising five genes, one of which encodes a 

Kelch repeat domain protein called KFBT.  Kelch repeat domains form β propellers 

for protein-protein interactions.  Five Kelch motifs were identified in KFBT alongside 

an N-terminal F-box domain.  A total of 155 Kelch proteins were found in P. vulgaris 

and conservation of KFBT was confirmed across fifteen other Primulaceae species.   

Spatial and temporal expression analysis of KFBT detected consistently high 

transcript quantities in the gynoecium, with increasing levels in the anthers toward 

flower maturation.  Function of the KFBT promoter in the gynoecium was also 

confirmed by using a GUS reporter gene assay. 

Plant transformation and virus induced gene silencing were carried out with a series 

of KFBT overexpression and knockdown constructs out to generate irregular floral 

phenotypes for functional analysis.  Yeast two-hybrid screens were used to identify 

candidate partner proteins potentially targeted for degradation by KFBT and these 

inferred a possible role in the self-incompatibility system that reinforces floral 

heteromorphy.  
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Chapter 1 

1 Introduction 

Investigations have been carried out to characterise the function, expression and 

mechanisms of KFBT; one of five proteins encoded by the S locus that mediates floral 

heteromorphy in Primula vulgaris (Li et al., 2016).  A background to heteromorphy is 

included here and Kelch F-box proteins are introduced.  An outline of the project is also 

provided. 

1.1 Floral heteromorphy 

Many of the ~350,000 angiosperm species exhibit hermaphroditism (Chapman, 2009; 

Paton et al., 2008).  This introduces the problem of self-fertilisation, which leads to 

inbreeding depression due to decreasing genetic diversity within a population 

(Charlesworth & Charlesworth, 1987).  Plants have therefore developed a number of 

mechanisms to promote outcrossing, such as the sequential timing and positional 

separation of their reproductive organs (Sprengel, 1793).   

Charles Darwin noted a phenomenon called floral heteromorphy that existed in Primula 

species “to favour the intercrossing of distinct individuals” (Darwin, 1862).  He observed 

how plants from one half of a Primrose population would produce one kind of flower (called 

thrum) and the other half would present a second (called pin).  Thrum flowers have a short 

style and high anthers positioned at the mouth of the corolla.  Pin flowers have low anthers 

with long styles that present the stigma at the corolla mouth.  Darwin demonstrated that 

inserting a proboscis into one flower morph collected pollen in such a place to correctly 

deposit it on the stigma when subsequently inserted into the alternate flower morph 

(Darwin, 1862).  These opposite floral morphologies are an example of reciprocal 

herkogamy and in Primula are reinforced by a self-incompatibility system in which a plant 

rejects its own pollen to further ensure cross-pollination. 

Style length in Primula is mediated by cell elongation, with thrum style cells being twice as 

long as those in pin (Webster & Gilmartin, 2006).  Alternatively, cell sizes are equal in the 

lower corolla tubes (LCT) of pins and thrums; anther height is therefore controlled by cell 

division instead (Webster & Gilmartin, 2006).  Darwin also observed differing corolla 

diameters between the two floral morphs and it has since been confirmed that cells in the 
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thrum upper corolla tube (UCT) are wider than in pin, leading to a larger thrum flower 

mouth (Darwin, 1862; Webster & Gilmartin, 2006).  Both flower types are of equal length 

and, as the LCT and UCT regions are defined by point of anther attachment, it could also be 

said that thrum flowers have a shorter UCT and longer LCT than pins. 

Thrum pollen is more opaque, spherical and larger in comparison to the oblong-shaped pin 

pollen grains (Darwin, 1862).  There is also evidence to suggest that pin pollen may develop 

earlier than thrum pollen (Burrows & McCubbin, 2018).  Scanning electron microscopy by 

Pandey and Troughton revealed thrum pollen to have rougher exine sculpturing than pin 

(Pandey & Troughton, 1974).  Pin plants have a globular-shaped stigma with a rougher 

surface due to longer papillae cells (Darwin, 1862).  Lewis defined the six aspects of floral 

heteromorphy as pollen size, anther height, male incompatibility component, female 

incompatibility component, style length and stigmatic papillae length (Lewis, 1949).  The 

latter is probably a consequence of the increased cell elongation in pin styles (Webster & 

Gilmartin, 2006) but may also play a vital role in pollen germination (Richards, 1993).   

1.1.1 Self-Incompatibility in Primula 

Darwin observed that Primula vulgaris did not set seed when covered under a net and so 

concluded that insects were required for pollination (Darwin, 1862).  In the near-absence 

of any visiting bees, he proposed that these flowers must instead be pollinated by moths 

at night.  In contrast, Darwin’s self-pollination tests on P. sinensis did successfully produce 

seed (Darwin, 1862).  This occurred with a 24-fold increase in pins, which he assumed was 

caused by anthers brushing across stigmas when the post-pollination corollas fell off in this 

species.  Thrum self-pollination could simply have occurred via gravity acting on pollen from 

anthers positioned above the stigma. 

Darwin initially noted that intra-morph crosses are significantly less fertile than inter-

morph pollination and this self-incompatibility is even stricter in thrums (Darwin, 1862).  He 

later argued that any breakdown in the self-incompatibility system was not a malfunction 

but instead perfect adaptation because it retained the possibility of self-fertilisation as a 

final resort in the absence of insect-mediated cross-pollination (Darwin, 1877).  Darwin also 

noted how progeny from self-fertilised P. veris were weaker than those from legitimate 

crosses (Darwin, 1868; 1876). 
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The stringency of self-incompatibility varies between and even within populations of the 

same Primula species (Shao et al., 2019).  This variance persisted when wild plants were 

transplanted from their separate geographies into the same glasshouse, thereby 

suggesting these quantitative inter-population differences in self-compatibility could have 

been environmentally induced pre-transplantation or even controlled epigenetically.  The 

authors concluded that self-incompatibility is likely mediated by multiple networked genes. 

Dowrick recorded that pollen tubes of P. obconica usually grow ~3 mm in 24 hrs during 

compatible interactions and rarely penetrate the stigma during incompatible self-

pollination (Dowrick, 1956).  The site of self-incompatible pollen tube inhibition differs 

between Primula species and also between pins and thrums of the same species 

(Wedderburn & Richards, 1990).  Pollen germination often stalled at the stigmatic surface 

but some species had multiple sites of inhibition at varying distances down the style and 

this led Lloyd and Webb to suggest that the Primula incompatibility system is different from 

currently known mechanisms of pollen self-recognition (Lloyd & Webb, 1992).  It has even 

been shown that P. oreodoxa is entirely self-fertile (Yuan et al., 2019).  Only P. polyneura 

and P. pulverulenta demonstrated absolute self-incompatibility in both floral morphs, while 

thrums of nine further species and pins from five more were completely self-incompatible 

(Wedderburn & Richards, 1990).  However, these differences may be population-specific 

instead of species-specific (Shao et al., 2019). 

Self-incompatibility systems have independently evolved multiple times across different 

heteromorphic angiosperm lineages (East, 1940) and they fall under two classes: 

gametophytic and sporophytic (de Nettancourt, 1977).  Efforts to describe these 

mechanisms in different species have so far consistently found a male and female 

determinant in each class that are tightly linked in the genome and therefore inherited 

together (McCubbin & Kao, 2000).  Gametophytic self-incompatibility (GSI) is controlled by 

the haploid genotype of each pollen grain and sporophytic self-incompatibility (SSI) is 

mediated by the parent plant genotype that produced the pollen (Pandey, 1959).  In this 

way, Primula self-incompatibility is said to be sporophytic (Dowrick, 1956). 

1.1.2 Gametophytic Self-Incompatibility Mechanism 

Normal fertilisation involves pollen adhesion to the stigmatic papillae, grain hydration and 

subsequent penetration of a pollen tube into the pistil, which grows through the style to 

the ovary.  GSI is the most common incompatibility mechanism and has been identified in 
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over sixty plant families (Kao & McCubbin, 1996).  Symptoms of this pollen rejection 

response in the Solanaceae family include cell wall thickening and slow growth of the pollen 

tube followed by its eventual eruption in the style (Ebert et al., 1989).  There is also a 

perturbed pattern of callose plugs, usually deposited at regular intervals in the pollen tube 

(de Nettancourt, 1977). 

S-RNase glycoproteins exhibiting ribonuclease activity have been identified as the female 

component of GSI in the Rosacea and Scrophulariaceae families in addition to widespread 

Solanaceae members including Petunia, Lycopersicon, Nicotiana and Solanum (reviewed in 

Silva & Goring, 2001).  Their expression levels correlate with acquisition of the SI response 

throughout flower maturation (Cornish et al., 1987).  These diverse ~30 kDa enzymes 

demonstrate marked similarity to the active site of fungal RNase T2 (Kawata et al., 1988).  

Different allelic forms can share as little as 38 % sequence identity (Ioerger et al., 1990) but 

there are seven to ten consistently conserved cysteine residues (Tsai et al., 1992) 

responsible for disulphide bridges that stabilise the tertiary protein structure (Oxley & 

Bacic, 1996; Ishimizu et al., 1996).   

Antisense inhibition of such S-RNase genes is linked with self-compatible mutants (Lee et 

al., 1994).  A plant exhibiting GSI rejects pollen that possesses the same S-RNase allele as 

itself and this has been proven in vivo via gain-of-function experiments in which 

misexpression of an S-RNase gene from an alternative allele resulted in rejection of non-

self-pollen (Murfett et al., 1994).  The protein backbone determines allelic specificity 

(Karunanandaa et al., 1994) and further structural analyses found two catalytic histidine 

residues to be responsible for ribonuclease activity of the protein (Huang et al., 1994). 

Mutation of S-RNase genes in the pollen genome did not affect self-incompatibility, 

showing their role solely as the female component of GSI (Dodds et al., 1999).  The pollen 

component of GSI was first identified as a novel F-box protein in Antirrhinum (Lai et al., 

2002) and studies of Petunia have shown three divergent sets of S locus F-box (SLF) proteins 

are responsible for recognising non-self pistil S-RNases (Kubo et al., 2010).  These SLF 

proteins define specificity for targeted ubiquitination and degradation to disable the S-

RNases and permit cross-fertilisation (Kubo et al., 2016).  Investigations in the Solanaceae 

have suggested background modifiers may be necessary to enable self-incompatibility too 

(Bernatzky et al., 1995), as the S-allele from a self-compatible cultivar was crossed into a 

self-incompatible cultivar and found to be functional (Ai et al., 1991). 
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The gatekeeper and inhibitor models have both been proposed for GSI; the former suggests 

a membrane-bound receptor protein uptakes allele-specific S-RNases into the pollen tub 

whereas the latter predicts the uptake of all S-RNases with specific inhibition occurring 

within the cytosol (Silva & Goring, 2001).  Although the gatekeeper model has received 

support from McCubbin (McCubbin et al., 1997), Luu showed S-RNase accumulation in 

pollen tubes was not allele-specific (Luu et al., 2000).   

Unlike in Solanaceae members, pollen rejection in Papaver rhoeas occurs at the stigma 

surface (Franklin-Tong et al., 1992).  It is not mediated by RNases but 15 kDa secreted 

proteins that are rendered dysfunctional by mutating any of four invariant cysteine resides 

or the aspartic acid residing in the sixth hydrophilic loop responsible for self-incompatible 

pollen recognition (Kakeda et al., 1998).  Protein phosphorylation has been detected in the 

GSI pathway of poppies (Rudd et al., 1996; Rudd et al., 1997), with inositol triphosphate 

potentially inducing the characteristic Ca2+ wave (Franklin-Tong et al., 1997) that signals 

programmed cell death to inhibit incompatible pollen tube growth (Jordan et al., 2000).  

1.1.3 Sporophytic Self-Incompatibility 

The SSI response in Brassica occurs rapidly on the stigmatic surface and prevents pollen 

hydration (Dickinson, 1995).  The male SSI component responsible for pollen specificity was 

identified as an S locus cysteine rich (SCR) protein highly expressed in the anthers (Schopfer 

et al., 1999).  An S locus receptor kinase (SRK; Stein et al., 1991) and S locus-specific 

glycoprotein (SLG; Nasrallah et al., 1985) were the two main female SSI candidate 

mediators.  These polymorphic proteins are believed to have co-evolved and fall under two 

classes; Class II is recessive to Class I and demonstrates less variance and weaker self-

incompatibility (Silva & Goring, 2001).  SRK was later shown to be the single definitive pistil 

determinant of SSI but the response appears to be enhanced by the presence of SLG 

(Takasaki et al., 2000; Silva et al., 2001).   

The THL1 and THL2 thioredoxin proteins undergo inhibitive interaction with the 

extracellular domain of SRK (Bower et al., 1996).  The SCR protein is believed to diffuse 

through the papillae cell wall and overcome the thioredoxin inhibitors to initiate the SSI 

signal cascade (Cabrillac et al., 2001).  The downstream cellular events are still not fully 

understood.  Promotion of ethylene signalling has been shown to breakdown SSI (Su et al., 

2020) and overexpression in Arabidopsis of an Armadillo Repeating Containing (ARC) gene 

from Erigeron breviscapus has been shown to induce self-incompatibility (Chen et al., 
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2020).  Calmodulin proteins, kinase-associated protin phosphatase (KAPP) and sorting 

nexin 1 (SNX1) have been shown to interact with SRK too (Vanoosthuyse et al., 2003).  

Furthermore, self-compatible mutants caused by the knockout of M-locus protein kinase 

(MLPK) proteins in Brassica napus suggests they are an upstream positive regulator of SSI 

(Chen et al., 2019). 

1.1.4 Scientific History of Floral Heteromorphy 

Pin flowers acquired their name due to the appearance of their stigmas like pin heads at 

the corolla mouths and thrums are so called because their anthers resemble the ends of 

weavers’ threads (Darwin, 1877).  It is believed that Curtis first used these two terms in the 

late 1700s in writing Floral Londinensis (cited in Gilmartin, 2015) and Hildebrand described 

this as heterostyly (Hildebrand, 1866).  Ganders elicited surprise at the interest given to a 

rare breeding system that appeared in such economically unimportant plants (Ganders, 

1979).  However, Primula species have been horticulturally cultivated since the early 17th 

century (Li et al., 2010) and currently provide an annual turnover of $50 million for the 

ornamental flower industry (Richards, 2003).  Florists valued Primroses by the late 1800s 

and the children of Darwin’s village would thread the long upper corolla tube from pin 

flowers into necklaces (Darwin, 1877).  Ganders conceded that heteromorphy offered a 

remarkable example of convergent evolution and lent itself well to scientific investigation, 

as self-incompatibility and morphology can be visually investigated without need for 

intensive breeding experiments (Ganders, 1979) – or modern day genotyping. 

Clusius offered the earliest documented evidence for the different Primula morphs in 1583 

but it was Darwin who first recognised their significance in nature – though Linnaeus 

overlooked their importance and was not concerned by such slight variations (Linnaeus, 

1792).  Darwin exchanged letters with Hooker in 1860 to discuss the tendency of these two 

forms toward adopting the male and female roles of a dioecious state.  He also mentioned 

that Henslow, his Cambridge mentor, had noted the phenomenon too.  These early 

observations on heterostyly from Clusius to Darwin were reviewed in Gilmartin, 2015. 

Darwin identified no intermediary morphs between the pin or thrum types, which excluded 

the possibility of natural variation (Darwin, 1862).  He also found that one plant only ever 

produced one kind of flower and this remained perennially persistent.  Although his 

correspondent, Mr Wooler of Darlington, claimed to possess a spring-blooming Primula 
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that presented the alternate flower that following autumn, Darwin believed this to be a 

case of poor seasonal development and not a true anomaly of the model (Darwin, 1862). 

1.1.5 Original Diallelic Genetic Model for Floral Heteromorphy 

In 1905, Bateson and Gregory defined that floral heteromorphy in Primula was controlled 

by a single genetic unit, which they named the S locus (Bateson & Gregory, 1905).  They 

proposed that thrums were heterozygous (S/s) for this S allele and pins were homozygous 

recessive, which accounted for the 1:1 ratio of thrums to pins observed in wild populations.  

While no intermediary morphs exist (Darwin, 1877), short and long homostyles do rarely 

occur that present both reproductive organs at the low or high positions, respectively.   

Ernst undertook vast screening experiments between 1926 and 1938 to identify individuals 

in which heterostyly had broken down, such as self-fertile short homostyles, long 

homostyles and pin plants producing large thrum-type pollen.  These studies led to the 

accepted model that floral heteromorphy was mediated by three tightly linked 

components at the S locus: G, P and A, which was superimposed onto Bateson and 

Gregory’s observation (Bateson & Gregory, 1905) of a heterozygous thrum (GPA/gpa) and 

a homozygous pin (gpa/gpa).  The dominant G allele – from the German word, ‘griffel’, 

meaning stylus – was thought to suppress style length, the dominant A allele to promote 

anther height and the dominant P allele to control larger thrum-type pollen.  Lewis and 

Jones proposed an order of the S locus subunits to be G, P and then A, based on the 

reanalysis of Ernst’s original data (Lewis & Jones, 1993).  Webster and Gilmartin identified 

the first signs of heteromorphy in developing P. vulgaris flower buds and suggested the G 

gene acted to suppress style length before A acted to elevate anthers (Webster & Gilmartin, 

2006). 

Crosby discovered two naturally-occurring British long homostyle populations in Somerset 

(Crosby, 1940) and the Chiltern Hills (Crosby, 1949).  Observation of their self-fertility led 

him to predict the consequential extinction of pin and thrum morphs due to future 

replacement by homostyles.  He hypothesised that homostyles would almost always self-

pollinate and produce greater seed quantity (confirmed by Piper et al., 1984) while 

outcompeting thrums to fertilise pin plants and proposed this would lead to the eventual 

extinction of the thrum allele and render pin flowers unable to pollinate anything due to 

the continuing self-pollination of homostyles. 
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One opposing argument claimed inbreeding depression would counteract dominion of the 

fitter homostyles (Charlesworth & Charlesworth, 1979).  Darwin indeed demonstrated that 

self-crossed P. veris exhibited less vigour after only a few generations (Darwin, 1876).  

However, Crosby’s theory suggested this would at least result in a mixed population of pins 

and homostyles (Crosby, 1949) – and his ecological data appeared to confirm this process 

was underway.  Alternatively, Bodmer proposed that homostyles rarely self-pollinate and 

presented thirteen years of data to show declining homostyle frequencies (Bodmer, 1958; 

1960; 1984).  The debate has been revisited (Curtis & Curtis, 1985) and remains ongoing at 

present. 

Ernst believed such homostyles were derived from mutations in heterostylous plants 

(Ernst, 1933) while Darwin believed they arose from hybridisation events (Darwin, 1877) 

and Dowrick argued that recombination within the S locus was responsible (Dowrick, 1956).  

It has since been confirmed that Ernst’s assumptions (Ernst, 1928b; 1936a) were correct 

and mutations are the cause of these homostyle variants (Li et al., 2016).  Charlesworth 

and Charlesworth explained the much rarer occurrence of short homostyles must be a 

symptom of their ill fitness, otherwise they would be expected to arise as frequently as long 

homostyles (Charlesworth & Charlesworth, 1979). 

Richards proposed the inclusion of two further genes at the S locus to account for the male 

and female incompatibility components (Richards, 1997).  The only allelic combination that 

had not been established was GPA/GPA – although it was reported in P. sinensis – and this 

led Kurian and Richards to propose the existence of a lethal gene that prevented this 

genotype (Kurian & Richards, 1997).  They also restructured the S locus ordering to G, A 

then P before extending the model to include seven genes. 

1.1.6 Progress Toward New S Locus Model 

Modern laboratory techniques have allowed investigators to undertake differential 

expression analyses (McCubbin et al., 2006; Huu et al., 2016), mutant analysis (Webster & 

Gilmartin, 2003; Li et al., 2008; Li et al., 2010; Cocker et al., 2015; Li et al., 2015), genetic 

mapping (Li et al., 2011b) and genome assembly (Nowak et al., 2015; Li et al., 2016; Cocker 

et al., 2018) to elucidate the genetic mechanisms of floral heteromorphy. 

Multiple Primula mutant phenotypes were found to be linked with the S locus, such as 

Sepaloid, which produces flowers containing only sepals and carpels (Li et al., 2008).  The 
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Hose-in-Hose mutant presents conversion of sepals to petals due to upregulation of the 

Primula GLOBOSA gene caused by a retrotransposon insertion within the promoter (Li et 

al., 2010).  The Oakleaf S-linked mutation leads to the development of lobed leaves, and 

further genetic mapping placed Oakleaf and GLO on opposite sides of the S locus (Li et al., 

2008; Cocker et al., 2015). 

Analysis of fluorescent differential display data (Li et al., 2007) and random amplified 

polymorphic DNA led to the identification of markers now known to border the S locus, 

such as PvSLP1, which is tightly linked but not expressed (Manfield et al., 2005).  

Subsequent in situ hybridisation assays used these markers to locate the S locus near the 

centromere of the largest P. vulgaris chromosome (Li et al., 2011b). 

McCubbin utilised suppressive hybridisation to subtract a thrum cDNA library from that of 

a pin flower and highlighted eleven distinct genes that, although not encoded by the S 

locus, were potentially involved in downstream pathways (McCubbin et al., 2006).  In 2018, 

Burrows and McCubbin again tackled differential expression assays to identify 229 and 311 

transcripts that were respectively upregulated and downregulated in early flower buds, 

with 1489 and 1612 in mature buds (Burrows & McCubbin, 2018).   

Nowak identified 113 genes with morph-specific expression via RNA-Seq of P. vulgaris and 

P. veris (Nowak et al., 2015).  From these candidate heterostyly genes, particular focus was 

given to one sequence found to be completely silenced in pin plants.  This has now been 

identified as the GLOT gene, which duplicated from GLO 51.7 million years ago (Li et al., 

2016).  The Nowak publication also signified the first draft genome for P. veris, assembled 

from combined pin and thrum reads (Nowak et al., 2015).  However, the Gilmartin lab 

answered with their dual P. vulgaris genome assemblies of separate pin and thrum 

samples; a decision that proved imperative for it allowed elucidation of the S locus and the 

groundbreaking discovery of its absence from the pin genome (Li et al., 2016; Cocker et al., 

2018).  

The Primula S locus was identified as a hemizygous 278 kb region containing five genes, in 

the order of: CCMT, GLOT, CYPT, PUMT and KFBT (Li et al., 2016).  The GLO duplication and 

positioning of the thrum-specific GLOT paralogue alongside CYPT at the S locus was also 

later reconfirmed by Burrows and McCubbin (Burrows & McCubbin, 2017).  The CCMT 

protein contains a conserved cysteine motif, GLOT is a paralogue of PvGLO, CYPT is a 

member of the cytochrome P450 family, PUMT encodes a Pumilio-like RNA-binding protein 
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and KFBT is a Kelch F-Box protein (Li et al., 2016).  The S locus is flanked by two Cyclin-like 

F-box genes, CFBL and CFBR.  Only CFBL is present and shows low levels of expression; CFBR 

from the right border of the S locus is thrum-specific and no transcripts have been detected 

(Li et al., 2016). 

Huu compared transcriptome sequencing data between styles and corollas of pins and 

thrums (Huu et al., 2016).  From eleven candidate genes, CYP734A50 (CYPT) was confirmed 

via virus induced gene silencing (VIGS) to be responsible for the style length dimorphism by 

degrading brassinosteroid hormones in thrum styles (Huu et al., 2016) to limit cell 

elongation (Webster & Gilmartin, 2006).  The CYPT S-locus gene also derived from 

duplication – like GLOT (Nowak et al., 2015; Li et al., 2016) – and Huu detected no CYPT 

reads in a long homostyle transcriptome dataset, providing further proof of function (Huu 

et al., 2016).  Members of two geographically separated long homostyle populations have 

also been found to contain mutations in CYPT; a single base substitution in exon 2 and the 

introduction of a premature stop codon by base insertion at exon 3 (Li et al., 2016) from 

Somerset (Crosby, 1940) and Chiltern (Crosby, 1949) populations.  Furthermore, PCR 

designed to genotype exon three of CYPT failed to amplify in the naturally occurring long 

homostyle species of P. grandis, P. halleri and P. scotica (Huu et al., 2016).  This points 

toward consistency of the model across the wider Primula genus. 

A rare short homostyle line occurred as a progeny plant in the three-point cross to map 

Oakleaf and Hose in Hose (Li et al., 2015) and was found to contain a 2.5 kb insertion in 

exon 2 of GLOT (Li et al., 2016).  This resulted in a frameshift mutation that indicated a role 

for GLOT in the anther height dimorphism (Li et al., 2016).  In the same way that Ernst used 

homostyles to define the genetic components of the S locus, homostyles have now been 

used to define the molecular genetic basis of heterostyly.  As long (Piper et al., 1984) and 

short homostyles are also self-compatible, this suggests single genes could mediate the 

male and female components of both incompatibility and dimorphism.  These findings also 

confirm Ernst’s prediction that homostyles arise from mutation (Ernst 1928b; 1936a) and 

not recombination (Dowrick, 1956; Lewis & Jones, 1992) or hybridisation (Darwin, 1877) – 

although Darwin’s words preceded the rediscovery of Mendel’s work and the definition of 

genetics. 
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1.1.7 Evolution of Heteromorphy in the Primulaceae 

Heteromorphy has been observed in 199 genera across 28 angiosperm families (Ganders, 

1979) over 18 orders of monocots and dicots, though it is not seen in the most primitive 

subclasses: Magnoliidae, Alismatiae, Hamamelidae, Arecidae and Commelinidae 

(Cronquist, 1968). Approximately 92 % of the ~430 Primula species have distylous 

populations and so do 40 of 41 Dionysia species, one of two Hottonia species and the single 

Vitalania species within the broader Primulaceae family (Richards, 2003). 

The existence of heteromorphy in distantly related families suggests a polyphyletic origin 

with independent evolution multiple times across the plant kingdom (Lloyd and Webb, 

1992), however heteromorphy only evolved once within the Primulaceae family itself (Mast 

et al., 2006).  The new S locus model (Li et al., 2016) should therefore be applicable to all 

heteromorphic Primula species.  The entire hemizygous S locus has been confirmed in P. 

veris (Cocker et al., 2018). 

In 1877, Darwin proposed that reciprocal herkogamy evolved before self-incompatibility as 

he saw no benefit to a mutation that rendered plants unreceptive to half of their population 

(Darwin, 1877).  Charlesworth and Charlesworth used computer simulations based on the 

assumption of a self-compatible monomorphic ancestor (Charlesworth & Charlesworth, 

1979).  They suggested an initial mutation that generated pollen that was incompatible 

with all stigmas, before evolution drove selection for a novel stigma that was compatible 

with this mutant pollen.  They believed this sequence of events was imperative because a 

novel stigma would almost certainly be eliminated without a compatible pollen type.  Tight 

linkage would be essential for spreading the novel mutations throughout the population 

and the reduced rate of self-pollination would lead to the development of spatial 

separation between anthers and stigmas (Charlesworth & Charlesworth, 1979). 

Ganders acknowledged that Charlesworth and Charlesworth’s 1979 model proved 

mathematical viability for the evolution of floral heteromorphy but noted their ignorance 

toward asymmetric pollen flow caused by stamen and style dichogamy (Ganders, 1979).  

Ganders fundamentally disagreed with Charlesworth and Charlesworth’s founding 

assumption of a monomorphic self-compatible ancestor due to the high rate of self-

pollination and subsequent inbreeding depression that would ensue (Piper et al., 1984; 

Ganders, 1979).  Richards also contradicted Charlesworth and Charlesworth’s proposal that 

self-incompatibility arose before dimorphism by highlighting examples of heteromorphic 
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plants lacking self-incompatibility yet the absence of any monomorphic plants with two 

mating types (Richards, 1986; 1993).  Ganders proposed it was more likely a population 

experienced a sudden increase in self-fertilisation due to a rapid depletion of fauna 

(Ganders, 1979).  He doubted that reciprocal herkogamy evolved to reduce self-pollination 

and instead proposed that the monormophic ancestor already had spatial separation of the 

reproductive organs, as many plants do.   

Lloyd and Webb noticed heterostyly had only evolved in tubular flowers and suggested that 

a self-fertile ancestor exhibiting approach herkogamy (with the stigma positioned above 

the anthers) acquired a dominant mutation to shorten the style, which would be selected 

for due to increased male fitness (Lloyd & Webb, 1992).  A subsequent mutation would 

raise anthers to the previous stigmatic position before adapting self-incompatibility.  This 

Lloyd and Webb model is therefore coherent with propositions from Charlesworth and 

Charlesworth for the development of heterostyly but instead places incompatibility at the 

final stage of heteromorphic evolution.  Predictions by Al Wadi and Richards agree that 

self-incompatibility was the final aspect of heterostyly to evolve, with an initial short style 

mutation followed by pollen heteromorphy (Al Wadi & Richards, 1993).   

However, Mast carried out phylogenetic analyses on chloroplast DNA from 207 samples 

(comprising 51 % of species from 95 % of the Primula sections) and confirmed that Primula 

heteromorphy arose from a distylous ancestor (Mast et al., 2006).  They showed how long 

homostyles first developed (as seen in P. sinensis and P. verticillata) before the thrum 

morph was acquired (evident in P. boveana, P. gaubeana and P. davisii) and high anthers 

were finally lost in pin morphs of P. gaubeana and P. davisii.  They concluded that there are 

now four Primulaceae lineages of heteromorphy in V. primulifora, H. palustris, P. prolifera 

and the most recent common ancestor of Primula. 

The high density of transposable elements and repetitive sequences at the S locus suggest 

it could be involved in non-homologous recombination with other parts of the 

chromosome (Huu et al., 2016; Li et al., 2016; Burrows & McCubbin, 2017).  Therefore, 

instead of stepwise development, the S locus may instead have derived from segmental 

duplication with subsequent loss of intervening genes (Kappel et al., 2017).  Duplication of 

CFB genes that border the S locus could have initiated this illegitimate crossing over, and 

gene duplications at S loci in Fagpopyrum and Linum suggest this model may apply more 

widely too (reviewed in Kappel et al., 2017). 
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1.1.8 Floral Heteromorphy in Other Species 

After his initial Primula observations in 1862 (Darwin, 1862), Darwin studied Linum 

grandiflorum (Darwin, 1863) and tristylous Lythrum salicaria (Darwin, 1864) before 

publishing his landmark text regarding the different forms of flowers on plants of the same 

species (Darwin, 1877).  Darwin wrote how realising the purpose of heterostylous flower 

structure was his most pleasurable and satisfying work from a long and prestigious career 

(Darwin, 1887).  Hildebrand first used the term ‘heterostyly’ and Darwin restricted its use 

to only those plants that contain a self-incompatibility mechanism (Hildebrand, 1866; 

Darwin, 1887). 

Heteromorphy is presented inconsistently between species.  Ganders noted that Armeria 

maritima has self-incompatibility without heteromorphy (Ganders, 1979), Linum 

grandiflorum has self-incompatibility with dimorphic styles but monomorphic anthers and 

Narcissus tazetta also presents these two features unlinked to each other (Dulberger, 

1964).  Flowers of Eichhornia paniculata present a third form (an example of tristyly) that 

is mediated by two separate loci (Arunkumar et al., 2017). 

Research into Linum grandiflorum identified twelve morph-related genes, four of which are 

post-transcriptionally regulated and believed to mediate heterostyly (Ushijima et al., 2012).  

One of these four candidates was an S-linked gene called TSS1 found to be uniquely 

expressed in thrum styles and the authors showed that a second, LgMYB21, reduced pistil 

length when overexpressed in Arabidopsis.  It has been suggested that the Fagopyrum 

esculentum and Linum usatissimum S loci are hemizygous too (Kappel et al., 2017), as in 

Primula (Li et al., 2016).   

A large 5.4 Mb region containing 32 predicted genes and many transposable elements was 

shown to be missing from the F. esculentum pin genome (Yasui, 2016).  Four thrum-specific 

transcripts were identified and a mutation in one of them led to self-compatible long 

homostyle plants (Yasui et al., 2012), which is coherent with the behaviour of CYPT in P. 

vulgaris (Li et al., 2016).  This candidate, S-LOCUS EARLY FLOWERING 3 (S-ELF3), also arose 

via gene duplication from a Fagopyrum homologue of EARLY FLOWERING 3 (ELF3) in 

Arabidopsis (Yasui et al., 2012). 

Another well-studied heteromorphic species is Turnera subulata, which presents bowl-

shaped flowers and not the tubular ones discussed by Lloyd and Webb in 1992.  Two genes 

external to the S locus, coding for polygalacturonase (Athanasiou et al., 2003) and α-



19 
 

dioxygenase (Khosravi et al., 2004), both demonstrated thrum-specific expression – the 

former is S-linked and the latter unlinked (Athanasiou & Shore, 1997).  Another non-S-

linked polygalacturonase gene was specifically detected in thrum styles of F. esculentum 

(Takeshima et al., 2019).  Labonne discovered three S-linked markers in T. subulata 

(Labonne et al., 2009) that were used to characterise deletion mutants (Labonne et al., 

2010) and initiate a chromosome walk for progression toward identifying genes are the T. 

subulata S locus (Labonne & Shore, 2011). 

1.2 Kelch F-Box Proteins 

The purpose of this PhD project was to characterise KFBT from the P. vulgaris S locus and 

identify its role in floral heteromorphy.  This gene encodes a member of the Kelch F-box 

protein family that functions in targeted protein degradation via the ubiquitinase pathway, 

which is one of two major eukaryotic protein turnover systems; the other is the lysosomal 

pathway in which degradation is carried out by proteolytic enzymes in membrane-bound 

vacuoles or lysosomes (Hassan et al., 2015).  

1.2.1 The Ubiquitinase Pathway 

 Up to 50 % of plant proteins are turned over every week (Vierstra, 1993) and 

approximately ~5 % of the Arabidopsis proteome (>1300 genes) is dedicated to the 

ubiquitinase pathway (Vierstra, 2003).  Ubiquitin is an 8.6 kDa protein discovered in 1975 

(Goldstein et al., 1975) that behaves as a reusable recognition tag for degradation by the 

26S proteasome (Ciechanover & Iwai, 2004).  This highly conserved protein is abundantly 

present in all studied eukaryotes and has an almost invariant 76 amino acid sequence with 

only rare cases of deviation outside of the plant kingdom (Catic & Ploegh, 2005).  Overall 

stability of the structure is conferred by many hydrogen bonds that permit recycling (Vijay-

Jumar et al., 1987).  Love found that substituting two amino acids of ubiquitin introduced 

destabilising cavities into the protein (Love et al., 1997). 

Covalent conjugation of ubiquitin to the target protein is an ATP-dependent process 

requiring three enzyme groups (Hassan et al., 2015).  An E1 ubiquitin-activating enzyme 

catalyses bond formation between ATP and ubiquitin before subsequently binding to 

ubiquitin itself (Hassan et al., 2015).  This activated ubiquitin is transferred to an E2 

ubiquitin-conjugating enzyme and an E3 ubiquitin-protein ligase acts as the recognition 
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element to complete delivery of this ubiquitin complex to the target protein (Hassan et al., 

2015).  Addition of a single ubiquitin molecule in this way is important for triggering 

endocytosis, virus budding or regulating gene expression via monoubiquitination of 

histones (Hicke, 2001).  However, polyubiquitination is more common and ubiquitin is here 

added to one of seven lysines on a previously conjugated ubiquitin molecule (Peng et al., 

2003). 

There are only two E1 isoforms in Arabidopsis and their efficiency is adequate to ensure 

sufficient abundance of activated ubiquitin (Pickart, 2001).  Alternatively, there are 37 

isoforms of E2 enzymes across 12 protein subfamilies in Arabidopsis (Vierstra, 1996; 

Backmair et al., 2001).  There are over 1300 E3-encoding genes in Arabidopsis that fall into 

four categories: HECT, RING, APC and SCF (Hassan et al., 2015).  The SCF multi-protein 

complex consists of SUPPRESSOR OF KINETOCHORE PROTEIN 1 (SKP1), CELL DIVISION 

CONTROL PROTEIN 53 (CDC53, or Cullin 1) and an F-box protein (Feldman et al., 1997). 

1.2.2 The F-box Domain 

The F-box was initially discovered in 1996 as a 40-50 amino acid motif in humans (Bai et al., 

1996) that confers target specificity (Skowyra et al., 1997) of the Cullin-SKP1 complex, 

which provides ubiquitin transferase activity.  It was subsequently identified in the plant 

protein, UNUSUAL FLORAL ORGANS (Hepworth et al., 2006), and is now known to comprise 

one of the largest plant protein families; there are ~700 Arabidopsis F-box proteins (Gagne 

et al., 2002) and only 11, 36 and 326 in yeast, humans and nematodes, respectively (Kipreos 

& Pagano, 2000). 

F-box proteins in plants are associated with hormone signalling, circadian clock, flowering 

time and pathogen defence (Kipreos & Pagano, 2000).  These proteins contain F-box motifs 

at their N-terminus and protein-protein interaction domains at their C-terminus to confer 

target specificity, such as leucine rich repeats, WD domains, tetratricopeptide repeats, 

Armadillo domains or Kelch motifs.  The SCF complex transfers target proteins to the 26S 

proteasome, which is a 2MDa ATP-dependent proteolytic complex consisting of 31 subunits 

arranged into a 20S core protease and 19S regulatory particle (Smalle & Vierstra, 2004).  

The regulatory particle recognises and unfolds ubiquitinated substrates before directing 

polypeptides into the core protease lumen (Hartmann-Petersen et al., 2003), which is a 

cylindrical stack of four heptameric rings that cleaves peptide bonds and completes 

degradation (Voges et al., 1999). 
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1.2.3 The Kelch Propeller 

Kelch motifs were first discovered in Drosophila through mutants that resulted in female 

sterility due to abnormal eggs that failed to transport the nurse cell into the oocyte via the 

cytoplasm (Schüpbach & Wieschaus, 1991).  This repeat-containing gene was later 

characterised and found to produce a component of ring canals that form intercellular 

bridges in egg chambers (Xue & Cooley, 1993).  Full crystal structure analysis of the human 

Keap1 Kelch protein is now complete (Li et al., 2004). 

Kelch domains are widely dispersed throughout the biological kingdoms and initial screens 

found they typically contain four to seven repeats of 44-56 amino acid motifs that encode 

a cylinder of β-barrel sheets arranged into a propeller (Bork & Doolittle, 1994).  Motifs 

within a protein share just 25-50% similarity (Xu & Cooley, 1993) and motif similarity 

between different proteins may be as low as 11 % (Bork & Doolittle, 1994).  Kelch proteins 

have been associated with cell morphology, gene expression, cellular organisation and 

extracellular functions (Adams et al., 2000). 

While interaction sites in Kelch proteins are poorly studied, propeller proteins without 

Kelch domains have varying and sometimes multiple binding positions on the upper 

propeller surface (Lambright et al., 1996), grooves between blades (Haar et al., 1998; Sun 

et al., 2017) or on opposing sides of the propeller (Renault et al., 1998).  It has been 

predicted that inter-blade loops and intra-blade variation may aid in defining target 

specificity (Adams et al., 2000) and each propeller blade could exhibit a particular function 

(Schumann et al., 2011). 

Kelch domains paired with F-box domains are commonly but almost exclusively found in 

plants, with few exceptions in other organisms (Hasan et al., 2015).  The evolution of Kelch 

F-box proteins occurred prior to the divergence of animals and plants before undergoing 

rapid gene duplications in the plant kingdom (Sun et al., 2007).  They have a particularly 

well-characterised role in regulation of the circadian clock and flower timing.  The 

CONSTANS flowering time regulator is stabilised via degradation of its repressors (Imaizumi 

et al., 2005) by ZEITLUPE (ZTL; Somers et al., 2000), FLAVIN BINDING KELCH REPEAT F-BOX1 

(FKF1; Nelson et al., 2000) and LIGHT OXYGEN OR VOLTAGE KELCH PROTEIN 2 (LKP2; 

Schultz et al., 2001).  These proteins have a C-terminal Kelch domain containing six repeats, 

a central F-box domain and an N-terminal LIGHT OXYGEN OR VOLTAGE (LOV) domain. 
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There are ~100 Kelch F-Box proteins in Arabidopsis (Zu et al., 2009; Sun et al., 2007; 

Schumann et al., 2011) with a further three in Juglans regia (Yan et al., 2019), 36 in Vitis 

vinifera, 44 in Sorghum bicolor, 46 in Selaginella moellendorfii and 71 in Physcomitrella 

patens (Schumann et al., 2011).  Between 35 and 68 Kelch F-Box proteins have been 

identified in Oryza sativa and ~35 in Populus tricocarpa (Schumann et al., 2011; Zu et al., 

2009).  The number of repeats is more variable in plant Kelch domains and only a single 

motif has been detected in some, such as the BIG24.1 protein involved in the grapevine 

stress response (Pasquis et al., 2011).  The Chickpea F-Box 1 (CarF-Box1) gene also encodes 

a Kelch protein involved in abiotic stress (Jia et al., 2012). 

Of the ~35 rice Kelch F-box proteins (Schumann et al., 2011; Zu et al., 2009), RICE KELCH 

CONTAINING F-BOX 12 has been shown to modulate ethylene levels to regulate leaf 

senescence and grain size (Chen et al., 2013), another changes panicle architecture with 

consequential effects on grain yield (Li et al., 2011a) and IBF1 inhibits brown pigmentation 

in rice hull furrows (Shao et al., 2012).  Furthermore, hypocotyl elongation in Arabidopsis 

is controlled by the COP9 INTERACTING F-BOX KELCH 1 (Franciosini et al., 2013) protein and 

TOO MUCH LOVE maintains root nodulation in Lotus japonicus (Takahara et al., 2013). 

1.2.4 The KFBT Gene at the Primula S Locus  

The closest homologues of the P. vulgaris KFBT gene are found in the Arabidopsis family of 

four Kiss Me Deadly (KMD) genes.  Expression of the KMD genes varies across flowers, 

shoots and roots but KMD2 exhibits the highest transcript levels of all known Arabidopsis 

Kelch F-Box genes in root meristems and KMD3 demonstrated the greatest expression in 

young flower tissue (Sun et al., 2007).  These proteins modulate cytokinin signalling via 

degradation of type-B Arabidopsis response regulators (Kim et al., 2013a).  Furthermore, 

upregulation of KMD3 has been shown to promote root susceptibility to nematode attack 

(Curtis et al., 2012).  A Kelch F-box protein in sugar beet is also known to promote viral 

infection by suppressing pathogen resistance (Thiel et al., 2012).  An additional function for 

KMD2 has been found in modulating phenylpropanoid biosynthesis by degrading the 

phenylalanine ammonia lyase enzyme (Zhang et al., 2013).  This is also known to be 

regulated by a second Arabidopsis Kelch F-box protein, SMALL AND GLOSSY LEAVES 1 (Yu 

et al., 2019).  The overexpression of KMD1, KMD2 or KMD4 is associated with a reduction 

of Arabidopsis lignin content (Zhang et al., 2013). 
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The KFBT gene was subjected to bioinformatical and experimental analyses to improve 

understanding of its role in floral heteromorphy.  Kelch motifs were identified in the KFBT 

amino acid sequence and comparative genomics was used to assess similarity across 

sequences from other P. vulgaris Kelch proteins, the Arabidopsis KMD sequences and KFBT 

from multiple Primulaceae species.  The KFBT nucleotide sequence was screened for 

potential promoter elements and secondary structures that may potentially regulate 

transcription or translation. 

Both RNA-Seq and qPCR were utilised to quantify differential KFBT expression across 

various P. vulgaris floral morphs.  Spatial and temporal expression of KFBT was also 

measured across the floral whorls throughout development.  These assays were supported 

at the protein level via transformation of a GUS reporter gene construct into Arabidopsis.  

Further overexpression and knockdown constructs were transformed into plants for 

generating mutants to aid the elucidation of KFBT function.  Yeast two-hybrid screens of 

protein libraries were used to identify partner proteins that KFBT may target for 

degradation via the ubiquitinase pathway. 
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Chapter 2 

2 Materials and Methods 

This chapter outlines the materials and methods that were used throughout the project.  

Full equipment and reagents lists are provided in Appendix B. 

2.1 Plant Material 

Unless stated otherwise, all Primula vulgaris and P. veris plants were from glasshouses at 

the University of East Anglia, Norwich.  They were grown under long day conditions with 

16 h light periods and maintained at daytime and night time temperatures of 15 °C and 16 

°C, respectively.  For transformation via vacuum infiltration (Chapter 2.15.1), wildtype P. 

vulgaris seeds were purchased from Thompson & Morgan, Ipswich.  With permission from 

Norfolk County Council, wildtype P. vulgaris flowers for the qPCR assays (Chapters 4.2-4.4) 

were selected from a roadside verge in Ketteringham, Norfolk.  These were transported on 

dry ice to long term storage at -70 °C. 

The VIGS experiment (Chapter 5.7) utilised P. vulgaris plants of the long-stemmed, yellow-

flowered, Polyanthus horticultural variety purchased from Wymondham Garden Centre in 

Norfolk.  The Columbia Col-0 ecotype of Arabidopsis thaliana were grown by Timothy Wells 

at the John Innes Centre and used for transformation (Chapter 2.16).   

2.1.1 Definition of P. vulgaris Flower Developmental Stages 

To monitor expression of KFBT throughout flower development (Chapter 4), a consistent 

method for defining maturity of P. vulgaris buds had to be established.  They were initially 

categorised by size but it became obvious that, due to natural variation, buds of the same 

length were clearly at different stages of development.  This same issue of natural variation 

in the length of flowers at similar stages of maturity was encountered by Webster and 

Gilmartin (2003).  They used visible physiology to recognise six stages of development – 

each further split into two or three substages.  

Visible physiology was therefore similarly used here to define four broader stages of flower 

development.  Stage one buds (approximately ~5 mm) were the earliest presented by the 

plant that could be cleanly excised from the petiole.  The calyx that sheaths these young 
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buds was particularly variable in length.  Stage two buds had begun to swell and were 

typically enlarged to approximately ~10 mm.  Stage three buds had elongated and were 

beginning to present petal tissue immediately prior to opening.  Stage four samples had 

fully opened and were the most mature flowers on the plant. 

2.2 Seed Sterilisation 

All seeds were sterilised prior to germination on MS media.  Larger seeds, such as those of 

P. vulgaris, had to be sterilised using bleach (Chapter 2.2.1).  For the smaller seeds of A. 

thaliana, sterilisation with chlorine gas was suffice (Chapter 2.2.2).   

2.2.1 Sodium hypochlorite sterilisation of Primula seeds 

Approximately fifty P. vulgaris seeds from the Thompson & Morgan foil sachet were put 

into a 2 ml Eppendorf tube and washed in 70 % ethanol.  This wash step was repeated with 

sterile water.  After adding 1 ml of 10 % sodium hypochlorite, the tube was placed on a 

gently rocking platform for 20 mins at room temperature.  Seeds were subsequently 

washed three times with sterile water before 1 ml of gibberellic acid (0.4 mg/ml) was 

added. 

After being kept in a dark place at room temperature overnight, the seeds were poured 

onto tissue to soak up the gibberellic acid in a sterile laminar flow hood.  Sterile tweezers 

were subsequently used to scatter the seeds onto Murashige and Skoog (MS) media 

(Chapter 2.3.1).  Plates were kept in darkness at 4 °C for one week before being moved to 

a SANYO growth cabinet with 15 h light periods, a daytime temperature of 18 °C and a night 

time temperature of 13 °C.   

2.2.2 Chlorine gas sterilisation of Arabidopsis seeds 

To sterilise A. thaliana seeds prior to germination, a glass beaker containing 100 ml of 

sodium hypochlorite was placed into a bell jar stored in a fume hood.  The bell jar had 

previously been checked with the smoke from burning paper to ensure it was airtight.  The 

seal was optimised by coating the rim of its lid in petroleum jelly.  A rack of open 1.5 ml 

Eppendorf tubes was placed alongside it, in which the Arabidopsis seeds had been poured.  

It was essential that only a light dusting of seeds was used here to reduce crowding and 

ensure the maximum surface area of each seed was in contact with air.  A 3 ml aliquot of 
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hydrochloric acid was added to the sodium hypochlorite before rapidly closing the bell jar 

lid.  A record of the Eppendorf arrangement was kept because chlorine gas often erases ink 

from tubes.  The bell jar remained closed overnight before the sterile seeds were scattered 

onto MS (Chapter 2.3.1).  Plates were stored in the growth cabinet described in Chapter 

2.2.1.   

2.3 Media Recipes 

All media was autoclaved at 121 °C for 30 mins.  Any necessary antibiotics were only added 

after the autoclaved material had cooled below 50 °C to prevent degradation of the 

antibiotic compounds.  Media was stored at room temperature in sterile flasks and solid 

media was microwaved before use, when required later.   

2.3.1 Murashige and Skoog Media 

MS media was used for the germination of seeds and initial growth of seedlings.  Where 

necessary, kanamycin was added to select for transgenic plants because the vectors used 

for transformation contained a kanamycin resistance gene and this chemical causes 

necrosis of non-transformed plant tissue (Hayta et al., 2018; Chapters 2.15.2 & 2.16.2).  The 

constituents for solid MS media were as follows: 4.41 g/l of MS powder including vitamins, 

30 g/l of sucrose and 8 g/l of agar.  Sterile distilled water was used to achieve the desired 

volume and, before the addition of agar, media was brought to pH 5.8 using 3M HCl or 3M 

NaOH. 

2.3.2 Lysogeny Broth 

LB media was used in the growth of bacterial species, such as Escherichia coli and 

Agrobacterium tumefaciens.  The constituents for LB were: 10 g/l of tryptone, 5 g/l of yeast 

extract and 10 g/l of NaCl.  It was used both with and without 10 g/l of agar powder, 

depending whether the bacteria were spread on solid medium or used to inoculate a liquid 

culture.  Antibiotics were also commonly added for selection of positive colonies. 

2.3.3 Yeast Peptone Dextrose Adenine (YPDA) Media 

YPDA is a general purpose non-selective growth media for yeast.  It was used as an agar gel 

in yeast two-hybrid assays (Chapter 6), on which Y187 or AH103 yeast strains were grown 
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to acquire cells for transformation.  YPDA liquid was used at double strength to maintain 

the yeast cells during the mating stage of library screening (Chapter 2.20.3).  It was also 

used at half strength to suspend the final diploid cells for plating on selective media.  YPDA 

was made with 20 g/l of peptone, 10 g/l of yeast extract and 20 g/l of glucose.  The pH was 

adjusted to 6.5 before agar was added at 20 g/l (if solid plates were required) before 

autoclaving.  

2.3.4 Synthetic Defined Medias  

Synthetic defined medias were used with amino acid dropout mixes to select for plasmids 

in yeast two-hybrid assays (Chapter 2.20.3).  The pGADT7 prey plasmid possesses a leucine 

biosynthesis gene (Figure 6.1 lower) and so a -leucine (-L) mixture containing all the 

essential amino acids except for leucine was used to select for yeast cells containing this 

plasmid that were autonomously providing their own leucine requirements.  The pGBKT7 

bait plasmid contains a tryptophan biosynthesis gene (Figure 6.1 upper) and so could be 

selected by using SD media made with a -tryptophan (-W) amino acid dropout mixture.   

A -WL media was used to select for diploid cells containing both plasmids during the library 

screen (Chapter 2.20.3).  This was not indicative of protein interaction but was instead used 

to estimate the number of screened genes and confirm successful mating.  Diploid cells 

that did contain a pair of interacting proteins were selected with -WHL media because 

histidine biosynthesis was triggered by the binding proteins and both leucine and 

tryptophan were provided by the two vector backbones.  

These medias contained 6.7 g/l of yeast nitrogen base without amino acids, 20 g/l of 

glucose and an appropriate quantity of amino acid dropout mixture (-W = 0.74 g/l; -L = 0.69 

g/l; -WL = 0.64 g/l; -WLH = 0.62 g/l) from Clontech.  The pH was adjusted to 5.8, agar was 

added at 20 g/l if solid media was required and the solution was subsequently autoclaved 

before 2.5 mM of 3-Amino-1,2,4-triazole (3-AT) was added.  The 3-AT was used as an 

inhibitor for histidine biosynthesis and 2.5 mM was found by Dr Barry Causier (University 

of Leeds) to be suffice at preventing auto-activation of the KFBT binding domain construct 

(Figure 2.3.4). 
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2.4 Nucleic Acid Extraction 

Nucleic acid extraction from plant material was used throughout the project to prepare 

DNA stocks for genome analysis and RNA for studying expression.  A miniprep procedure 

was used to obtain vector constructs from bacteria and yeast to confirm plasmid integrity 

or identify interacting partners of KFBT in mating experiments and two-hybrid library 

screens. 

2.4.1 Plant DNA Extraction 

All reagents and spin columns for DNA extraction were from the QIAGEN DNeasy Plant Mini 

Kit.  A heating block was preheated to 65 °C.  Young leaves were cut from plants, added to 

Eppendorf tubes and immediately frozen in liquid nitrogen before weighing to ensure they 

did not exceed 100 mg.  A hole was first pierced into the lid of each Eppendorf to prevent 

tube explosion in the event that a small amount of rapidly expanding liquid nitrogen had 

entered the tube.  Any tubes or utensils that contacted the sample during or prior to tissue 

disruption were also pre-chilled in liquid nitrogen.  Centrifugation steps were carried out at 

22000 gn. 

Figure 2.3.4:  Auto-activation of the KFBT yeast two-hybrid bait plasmid across a gradient of 3-amino-triazole inhibitor.  
A 2.5 mM concentration of 3-AT was found to be sufficient for preventing auto-activation of the histidine reporter 
gene required for survival. 
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Frozen tissue was disrupted into fine powder using a mortar and pestle before adding 400 

µl of buffer AP1 and 4 µl of RNase A.  Samples were vortexed then incubated for 10 mins 

at 65 °C, during which the tubes were inverted every 3 mins.  A 130 µl aliquot of Buffer P3 

was added to each sample and mixed.  The tubes underwent an incubation step on ice for 

5 mins.   

After centrifugation for 5 mins, each sample was added to a QIAshredder spin column and 

centrifuged for 2 mins.  The flow-through was transferred to a new tube (being careful not 

to disturb any pellet that may have formed) and 1.5 volumes of Buffer AW1 was added and 

mixed via pipetting.  The samples were each passed through a DNeasy Mini spin column in 

650 µl aliquots via centrifugation steps of 2 mins, with the flow-through discarded after 

each spin.  Collection tubes were replaced with clean ones and 500 µl of Buffer AW2 was 

added to the spin columns before centrifugation for 1 min.  Flow-through was discarded, 

another 500 µl of Buffer AW2 was added and the samples were centrifuged for 2 mins.   

Spin columns were transferred to 1.5 ml Eppendorf tubes for the final elution steps.  A 100 

µl aliquot of Buffer AE was added to each spin column before incubation for 5 mins at room 

temperature followed by 1 min of centrifugation.  This step was repeated once more.  A 

spectrophotometer was used to measure DNA concentration (Chapter 2.6.1) and DNA 

precipitation was used to clean up samples and increase concentration, where necessary 

(Chapter 2.7).  Stocks were adjusted to 100 ng/µl and stored at -70 °C.   

2.4.2 Bacterial Miniprep 

This method was used for all E. coli minipreps, including those for destination vectors 

before and after recombination during the Gateway cloning procedure (Chapters 2.11.9 & 

2.11.10).  It was also used to obtain crude DNA extract from Agrobacterium tumefaciens 

(Chapter 2.14.3).  Centrifugation steps were carried out at 22000 gn.  All reagents and spin 

columns came from the Wizard Plus SV Miniprep DNA Purification System.   

A 1 ml aliquot of the bacterial culture in liquid LB was used to make a 30 % glycerol stock 

solution for long term storage at -70 °C, when necessary.  The remaining culture for each 

sample was centrifuged in a 2 ml Eppendorf tube before repeating this step in 2 ml aliquots 

until all the culture had been processed to form a pellet.  The supernatant was discarded 

and the pellet was resuspended in 250 µl of cell resuspension solution.  Samples were not 

vortexed after this stage to prevent damage to the DNA.   
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A 250 µl aliquot of cell lysis solution was added and the tubes were inverted four times 

before incubation at room temperature for 3 mins.  After adding 10 µl of alkaline protease, 

the tubes were inverted another four times before further incubation for 3 mins at room 

temperature.  A 350 µl aliquot of neutralisation solution was added to each sample before 

undergoing another four tube inversions and centrifugation for 10 mins.   

The liquid from each sample was transferred to filter tubes (without disturbing the pellet) 

and underwent centrifugation for 1 min.  After discarding the flow-through, 750 µl of 

Column Wash Solution was added before further centrifugation for 1 min.  The flow-

through was discarded and 250 µl of Column Wash Solution was added to each tube.  After 

centrifugation for 2 mins, the filters were transferred to 1.5 ml Eppendorf tubes and 35 µl 

of elution solution was added.  Samples were left to stand for 5 mins and then centrifuged 

for 2 mins.  This stage was repeated once.  The resultant DNA concentrations were 

measured via spectrophotometry (Chapter 2.6.1). 

2.4.3 Yeast miniprep 

Yeast minipreps were used to recover vectors from yeast cells during yeast two-hybrid 

assays (Chapter 2.13).  This allowed for PCR to be carried out on DNA extracted from the 

transformed yeast cell for final confirmation that the yeast two-hybrid KFBT constructs 

were correct.  The same technique was used later to identify cDNA fragments from 

potential positive yeast colonies that had displayed interaction with the KFBT protein in 

library screens (Chapter 2.20.3). 

Liquid yeast culture was added to a 2 ml Eppendorf tube and centrifuged for 5 mins at 

22000 gn.  The supernatant was removed and these steps were repeated until the 

remaining sample had been processed.  The final pellet was resuspended in 300 µl of 

extraction buffer, which had been prepared in advance of the miniprep.  The extraction 

buffer contained 1 % SDS, 100 µM of NaCl, 10 µM of TRIS (pH 8), 1 mM of EDTA and 2 % 

Triton X-100.  

After the addition of 0.3 g of acid washed glass beads, 300 µl of chloroform was added to 

the cell suspension.  Samples were vortexed for 5 mins.  After centrifugation for 5 mins, the 

aqueous phase was ethanol precipitated according to Chapter 2.7 and resuspended in a 

final 20 µl volume of TE buffer.  This crude DNA extract was suitable for direct use in PCR 
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or 2 µl could be transformed into chemically competent E. coli cells via heat shock for 

plasmid rescue (Chapter 2.12). 

2.4.4 RNA Extraction 

RNA extraction from P. vulgaris flowers was used for the spatial and temporal analysis of 

KFBT expression (Chapters 4.1-4.5).  Specimens were cut from plants and immediately 

transferred to pre-cooled tubes lodged in dry ice.  Samples were frozen in liquid nitrogen 

prior to tissue disruption.  All reagents and spin columns were used from the RNAqueous 

Total RNA Isolation Kit made by Ambion.  Centrifugation steps were carried out at 22000 

gn. 

Samples were weighed and these figures were used to prepare a master solution 

containing 12 µl/mg of Lysis/Binding solution and 1 µl/mg of Plant RNA Isolation Aid from 

Ambion.  The master mix was incubated at room temperature on a roller mixer for 20 mins 

before use.  A heating block was set at 75 °C and used to heat the final elution solution, of 

which 70 µl/sample was prepared.  All tubes and utensils that came into contact with the 

sample during or prior to tissue disruption were pre-cooled in liquid nitrogen.   

Cooled pestles were fixed to a cordless pestle motor and used to disrupt each tissue sample 

before immediately adding the pre-calculated amount of master mix appropriate for the 

sample mass.  Tubes were centrifuged for 3 mins and pellets were subsequently avoided 

with the pipette tip as each sample was added to one volume of ethanol.  Samples were 

passed through the filter cartridge in 700 µl aliquots and 1 min centrifugation steps.   

A 700 µl aliquot of Wash Solution #1 was centrifuged through each filter cartridge for 1 

minute.  This was repeated with 500 µl of Wash Solution #1/#2.  Each sample had a further 

500 µl of Wash Solution #1/#2 added before centrifugation for 2 mins.  The filter cartridges 

were moved to 1.5 ml Eppendorf tubes and 35 µl of pre-heated elution solution was added, 

allowed to stand for 3 minutes and centrifuged for 1 min.  This elution step was repeated 

once.  Nucleotide concentrations were quantified using a fluorometer (Chapter 2.6.2) and 

samples were precipitated to remove impurities and increase concentration, if necessary 

(Chapter 2.7). 
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2.5 cDNA Synthesis  

A High-Capacity cDNA Reverse Transcription kit with random primers was used to obtain 

cDNA from P. vulgaris RNA, in coherence with the established qPCR protocol for Primula 

(Kent, 2016).  Although the true quantities of gene transcripts can be misrepresented by 

these random primers, the amount to which they are misrepresented should be equal 

across samples, therefore the systematic error does not invalidate results if only one gene 

is being screened.  This would not be suitable for comparing the expression levels of 

multiple genes. 

An 8 µl aliquot of each RNA sample was treated with 1 µl of RQ1 DNAse enzyme and 1 µl 

of RQ1 buffer for 30 mins at 37 °C before 1 µl of DNAse stop solution was added to the 

mixture, which was incubated for a further 10 mins at 65 °C.  An 8 µl water sample was also 

passed through this process, to be used as a negative control containing no template.  The 

DNAse-treated RNA was added to 10 µl of master mix containing 2 µl of buffer, 0.8 µl of 

dNTPs, 2 µl of random primers, 4.2 µl of H2O and 1 µl of the reverse transcriptase enzyme.  

All of these components were used directly from the kit.  A second negative control was 

setup that contained the RNA template but had 1 µl of H2O added instead of the reverse 

transcriptase.  This is common practice in qPCR so that the source of any contamination 

can be quickly localised.  

A PCR thermocycler was used to incubate the samples at 25 °C for 10 mins, before raising 

the temperature to 37 °C for 2 hrs and finally increasing it further to 85 °C for 5 mins.  The 

machine was chilled to 4 °C until samples could be removed.  The QUBIT fluorometer was 

used in ssDNA mode to measure the final concentration of cDNA (Chapter 2.6.2).  These 

were diluted for normalisation against the sample with the weakest concentration before 

use in PCR.  The two negative control samples were not diluted.    

2.6 Nucleic Acid Quantification 

Nucleic acid concentrations were measured for samples after DNA extraction, RNA 

extraction, plasmid minipreps, cDNA synthesis and purification of PCR products.  This 

confirmed that the processes had worked correctly, enabled standardisation of PCR 

template concentrations and allowed for the suitable dilutions required for DNA 

sequencing. 
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2.6.1 Nucleic Acid Quantification by NanoDrop 

The NanoDrop Lite was used for spectrophotometry of DNA samples.  To initialise the 

machine, two blank measurements were first carried out using the same buffer that the 

DNA sample was dissolved in, such as nuclease-free water or TE buffer.  A 1.5 µl droplet 

was consistently used on the pedestal, which was cleaned with a lint-free tissue between 

measurements.  The 260/280 ratio provided by the NanoDrop was used as an indication of 

sample purity; values of ~1.8 and ~2.0 was expected for good quality DNA and RNA, 

respectively (Thermo Fisher Scientific, 2012).   

2.6.2 Nucleic Acid Quantification by Fluorometer 

The QUBIT 2.0 fluorometer was used for the quantification of RNA after extraction or 

ssDNA samples after cDNA synthesis.  It was also used for DNA samples when improved 

accuracy over the spectrophotometer was required.  This increased accuracy comes from 

fluorescent dyes that are designed for specific binding to the desired nucleotide type being 

measured, thereby eliminating any sample impurities or alternative nucleotide 

contaminants from interfering with the quantification result. 

A master mix was made containing 1 µl/sample of the appropriate fluorescent dye and 199 

µl/sample of the corresponding buffer from Invitrogen®.  A 199 µl aliquot of this master 

mix was added to each 1 µl sample to be measured.  They were thoroughly mixed and 

allowed to reach room temperature before measurement on the fluorometer.  

2.7 Nucleic Acid Precipitation  

RNA, cDNA and genomic DNA samples were precipitated and resuspended in a smaller 

volume to increase their concentration, when necessary.  This method also aids in the 

removal of impurities from the solution.  A centrifuge was cooled to 4 °C and both 100 % 

and 70 % ethanol were pre-cooled in a -70 °C freezer before use.  A 10 % sample volume of 

3 M sodium acetate was added to each sample and thoroughly mixed before adding 3x 

volume of 100 % ethanol.  After mixing, tubes were stored at -70 °C for 30 mins before 

centrifugation at 35000 gn. 

The ethanol was removed and the pellet was resuspended in 500 µl of 70 % ethanol for 

washing.  Tubes were centrifuged for a further 10 mins (35000 gn).  The ethanol was 
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removed and the tubes were air dried before final resuspension to the desired volume in 

nuclease free water.  The new concentration was checked on a spectrophotometer 

(Chapter 2.6.1) or fluorometer (Chapter 2.6.2).         

2.8 Polymerase Chain Reactions and Product Purification  

Non-quantitative PCR was used frequently for various purposes, such as acquiring 

amplicons for plasmid vectors (Chapters 2.11.2-2.11.6), detecting KFBT transcripts (Chapter 

2.10) and finding KFBT-interacting partners through the yeast two-hybrid assay (Chapter 

2.20.3).  Quantitative PCR was used in the spatial and temporal expression analysis of KFBT 

(Chapters 4.2-4.4). 

2.8.1 Non-Quantitative PCR Reagents and Primer Design 

Primers were designed manually, purchased from Eurofins Genomics and diluted to a stock 

concentration of 100 ng/µl for long term storage at -20 °C.  They were aliquoted and diluted 

to a 10 ng/µl working solution before use in PCR.  GoTaq Flexi DNA polymerase was used 

as standard.  For products longer than ~1 kb – or when proofreading ability was required – 

Phusion High-Fidelity DNA polymerase was utilised.  The dNTPs were used at a 10mM 

working solution. 

2.8.2 Gel Electrophoresis and PCR Product Purification 

To visualise PCR results, products were electrophoresed at 80 V on an agarose gel for 1 hr.  

The gel mixture contained 1.2 % agarose that was dissolved in 0.5x EDTA buffer under 

heating in a microwave before 20 µl/l of ethidium bromide was added after cooling.   

Where possible, PCR product purification was carried out via the QIAquick PCR Purification 

Kit (QIAGEN, 2018).  Centrifugation steps were carried out at 22000 gn.  The PCR product 

was mixed with 5 volumes of Buffer PB and centrifuged through a QIAquick spin column 

for 1 minute.  The flow-through was discarded and 750 µl of Buffer PE was centrifuged 

through the spin column.  After discarding the flow-through again, the column was 

recentrifuged for another minute to remove any excess buffer and ensure the filter was 

dry.  The filter cartridge was transferred to a labelled 1.5 ml Eppendorf tube for final 

elution, in which 30 µl of Buffer EB was added to the filter disc and allowed to stand for 5 
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mins before the final 2 minute centrifugation step.  This step could be repeated to ensure 

maximum product was obtained. 

If multiple bands were present after electrophoresis, the desired product was excised from 

the gel under UV light and purified with the QIAquick Gel Extraction Kit instead.  The excised 

gel block was weighed and 3 volumes of Buffer QG was added to 1 volume of gel.  The gel 

was melted in the buffer via incubation at 50 °C for 10 mins with vortexing every 3 mins.  

After 1 gel volume of isopropanol was added to the mixture, the sample was centrifuged 

through a filter cartridge in 800 µl aliquots before continuing from the same Buffer PE 

washing step in the direct PCR purification protocol above.  

2.8.3 Suitable qPCR Reference Genes  

In addition to non-quantitative approaches that screened for the presence of KFBT in flower 

buds of different sizes, qPCR was used to quantitatively compare relative expression levels 

throughout flower development.  Template concentrations were normalised across 

samples to ensure fair comparison of gene expression levels.  Reference genes were also 

selected to reinforce this, which must exhibit stable expression levels across the sample 

set.  These provide a baseline for relative expression analysis and allow for the difference 

in expression quantity between a target gene and reference gene in one sample to be 

compared against the difference between the target and reference in another sample, 

which is more reliable than directly comparing raw Cq values that can be significantly 

affected by the error margins of pipettes and nucleotide quantification equipment.  Raw 

Cq values are usually only used alongside standard qPCR templates to calculate the 

absolute nanogram quantity of target template in the sample (Life Technologies, 2011).  

These qPCR assays used relative expression analysis instead. 

Primers had previously been designed to screen reference genes suitable for use in qPCR 

analysis of P. vulgaris (Kent, 2016).  For added reliability, the KFBT qPCRs underwent 

technical repeats with multiple reference genes: protein phosphatase 2 (PP2A F: 

TCATGGGTGACTATGTTGATCG; R: ATTTGCCGACTTTCGTGATTCC), elongation factor-1α (ELF1α F: 

TTATCGACTCGACTACTGGAGG; R: GGTAGCGTCCATCTTGTTACAG) and alpha tubulin (F: 

CTATCCTTCCCCTCAGGTATCG; R: AAGCACAGCCACGTCTGTATG). 
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2.8.4 Efficiency and Design of KFBT qPCR Primers  

The SYBR Green PCR master mix was used in the KFBT qCPR assays.  Although this system 

is suitable for use in one-step qPCR – where RNA is used directly and a reverse transcription 

phase is added to the beginning of the thermocycling protocol – this was not used in these 

experiments because cDNA had already undergone synthesis and quality control previously 

(Chapter 2.5).  The SYBR method combines both annealing and extension stages of PCR, 

therefore primers were designed to function at 60 °C and generate a product of ~100-150 

bp from the KFBT coding region.  The Primer3 online primer design tool was used to 

highlight candidate primer pairs that fit these criteria (Koressaar & Remm, 2007; 

Untergasser et al., 2012). 

An initial non-quantitative PCR was carried out to test the suitability of six primer pairs, of 

which two pairs were carried forward into a qPCR trial designed to calculate primer 

efficiency.  Primer efficiency was queried because qPCR is based on the mathematical 

model that template quantity doubles after every PCR cycle, therefore it had to be ensured 

that the primer pairs fit this model and amplified with ~100 % efficiency.  This was achieved 

by using a trial qPCR to test the primers against a serial dilution of P. vulgaris cDNA.  As 

template concentration halves, the Cq value should increase by one.  Chapter 2.8.5 outlines 

the component quantities used in this qPCR reaction.   

A primer efficiency curve was made by plotting the log of the sample dilutions against the 

Cq values of each primer pair.  The gradient of the trendline was calculated.  A slope of -

3.32 indicates primer efficiency equivalent to 100 % (Thermo Fisher, 2016).  The PP2A 

reference gene was used as a positive control to check that the serial dilution qPCR worked 

and reconfirm validity of the previously defined primers (Kent, 2016). 

2.8.5 Standard qPCR Reaction 

A series of qPCR assays were designed to investigate the spatial and temporal expression 

of KFBT across various P. vulgaris samples, including dissected floral whorls from thrum, pin 

and homostyle morphs.  In each investigation, sample cDNA concentration was measured 

on the QUBIT fluorometer (Chapter 2.6.2) and subsequently normalised to that of the 

weakest sample in the series.  The No Reverse Transcriptase and No Template negative 

controls from cDNA synthesis (Chapter 2.5) were also used without dilution.  Sterile distilled 

water was used as a third negative control. 
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Samples were tested for KFBT expression and repeated to screen the reference gene too.  

They underwent three technical repeats, amounting to six wells for each sample.  Individual 

20 µl reactions contained 10 µl of SYBR Green Ready Mix, 1 µl of the forward primer, 1 µl 

of the reverse primer, 7 µl of H2O and 1 µl of cDNA template.  The series of qPCR assays 

were carried out in 96-well plates.  Master mixes were made that contained all components 

except for the template – which was the varying component across samples – and an extra 

10 % volume was added to account for pipetting error.  One master mix was made with the 

KFBT target gene primers (F: TGATTTGGGACGGGATGAGT; R: CTACTGGTGTCGTATCCGCT) and a 

second was made to contain the reference gene primers. 

The plate was sealed with transparent film, positioned in the qPCR thermocycler and 

heated to 94 °C for 2 mins before undergoing 40 cycles of 94 °C for 15 secs and 60 °C for 40 

secs.  After the reaction, the thermocycler carried out an automated dissociation step on 

the qPCR products to plot a melt curve.  Monitoring peaks of this melt curve offers 

information about the characteristics of the qPCR products (Thermo Fisher, 2016).  Multiple 

peaks indicate non-specific amplification and shoulders in the peak are indicative of primer 

dimers.  This is vital to confidently rule out any spurious fluorescence in negative control 

samples and identify anomalous results in others.  The Cq values for each sample were 

exported into a spreadsheet for mathematical analysis using the ΔΔCt method (Livak & 

Schmittgen, 2001).  Cq and Ct are interchangeable terms, the latter meaning ‘cycle 

threshold’ and will be used hereon as it is the term usually seen in mathematical 

publications regarding qPCR.   

To calculate the expression fold change via the ΔΔCt method, the individual KFBT Ct value 

from each sample was first subtracted from its corresponding reference gene Ct value 

(Figure 2.8.5A).  This method is regularly used to compare gene expression before and after 

a treatment, so at this stage the ‘before treatment’ figure is usually subtracted from the 

‘after treatment’ figure.  This was unsuitable for the KFBT qPCR assays, so instead the figure 

from sample one was subtracted from each of the others, thereby presenting gene 

expression of each sample relative to the first (Figure 2.8.5B).  These are the ΔΔCt values 

and calculating 2-ΔΔCt provided the final index (Figure 2.8.5C).  Sample one therefore always 

had a value of 1, relative to itself.  In this way, the reference gene provides a baseline and 

qPCR finds how much greater the target gene expression is over the reference gene 

expression in one sample, compared to how much greater that target gene expression is 
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over the reference gene expression in a second sample.  Standard error bars were also 

calculated across the triplicate repeats for each sample.   

  

Figure 2.8.5: Outline of the ΔΔCt mathematical method to calculate relative gene expression between 
samples via qPCR (Livak & Schmittgen, 2001).  A)  Reference gene Ct values are subtracted from target 
gene Ct values for each sample.  B) The resultant value of sample A is further subtracted from each value 
from step (A).  C)A calculation of two to the power of the negative values from step (B) provides the final 
relative expression index for each sample. 
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2.9 Comparison of KFBT in Self-Compatible and Self-Incompatible Plants 

To assess a possible role for KFBT in the heterostylous self-incompatibility system, KFBT 

sequences were queried in DNA samples from mutant plants identified as being self-

compatible (Chapter 5.1).  This screened for mutations to find whether plants that acquired 

a dysfunctional incompatibility system also possessed a mutated KFBT sequence, which 

would link this gene to a role in self-incompatibility.  If this was the function of KFBT then 

mutants from the planned transgenic experiments would not present a morphologically 

obvious phenotype and crossing experiments would have to be carried out instead. 

DNA was extracted (Chapter 2.4.1) from the young leaves of eight plants across four lines 

of self-compatible P. veris mutants.  These were identified from a population that 

underwent mutagenesis at the International Atomic Energy Agency in Vienna for a reverse 

genetics experiment (Li et al., unpublished).  DNA was also extracted from three wildtype 

plants, to be used as a control in the assay.  After quantification (Chapter 2.6.1), 2 µl of 

each sample was used in a PCR to amplify KFBT from the genomic DNA.  Each 40 µl reaction 

contained 23.6 µl of H2O, 8 µl of Phusion High-Fidelity Buffer, 0.8 µl of dNTPs, 1.2 µl of 

DMSO, 0.4 µl of Phusion polymerase and 2 µl of each primer (F:  ATGGAAGTTATTCCTGGTCTGC; 

R: TCAAATTTCAACAGAACAGCCAG).  These primers amplified from the KFBT start codon through 

to its stop codon and so gel electrophoresis of the PCR products would highlight any partial 

or entire gene deletions.  

After checking 10 µl of the PCR products on an agarose gel, the remaining 30 µl was directly 

purified (Chapter 2.8.2) and sequenced by Eurofins Genomics.  Clustal Omega (Sievers et 

al., 2011) was used to align KFBT sequences from the eight self-compatible samples against 

those from the three wildtype plants to find any potential mutations between them. 

2.10 Screening for Presence of KFBT in Flowers of Four Developmental Stages  

Assays were designed to understand the location and timing of KFBT transcription, which 

could indicate gene function in that corresponding location and phase of heterostyly 

development.  To understand the timing of KFBT transcription, a non-quantitative PCR was 

carried out to initially screen for the presence or absence of KFBT across flowers of four 

developmental stages (Chapter 4.5).  This presented a broad overview of temporal KFBT 
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expression to inform which developmental stages should be included in the downstream 

qPCR experiments for observing more intricate details of dynamic KFBT activity. 

Long homostyles were sampled in this preliminary screen due to the restricted availability 

of seasonal flower material at that time.  RNA was extracted (Chapter 2.4.4) from each of 

the four developmental flowering stages of P. vulgaris (Chapter 2.1.1).  One sample set was 

taken from a glasshouse long homostyle line (Chapter 2.1) deriving from a UK population 

in the Chilterns (Crosby, 1949) and another was taken from a Somerset population (Crosby, 

1940).  This process was repeated so a total of sixteen RNA samples were collected, 

consisting of two biological repeats of four flower stages from two long homostyle 

populations.  There is no known phenotypic difference between the Chiltern and Somerset 

long homostyle lines so actually four biological repeats were made overall. 

Gel electrophoresis and the QUBIT fluorometer (Chapter 2.6.2) were used to check 

concentration and quality of the extracted RNA before cDNA synthesis.  After normalisation 

of the final cDNA concentrations, 1 µl of each sample was used as template in a 20 µl PCR 

containing 0.1 µl of Taq polymerase, 4 µl of buffer, 2 µl of MgCl2 (25 mM), 0.4 µl of dNTPs, 

11.7 µl of H2O and 0.4 µl of each primer.  The reaction was held at 95 °C for 2 mins and then 

underwent 35 cycles of 95 °C for 45 secs, 60 °C for 45 secs and 72 °C for 30 secs before a 

final extension of 72 °C for 5 mins.   

Primers were used to amplify a 402 bp fragment from the middle of the KFBT coding region 

(F: AACATTCCGAGTCGTTTCCCAAAC; R: CGTTTGGACGGCATATCTTTACC).  A second PCR was 

simultaneously carried out on each sample using positive control primers to confirm cDNA 

integrity and support the KFBT results (F: GTGATAATGGGACCGGAATG; R: 

TGCTTCCGTCAACAAAACAG).  It was important to confirm that cDNA was the only template 

present, so these primers were designed across an intron in the actin gene, which proved 

that the earlier DNAse step prior to cDNA synthesis had worked because amplification from 

residual genomic DNA would have given a significantly larger product.  The PCR products 

were electrophoresed on an agarose gel and photographed under UV light to confirm the 

presence or absence of KFBT in the sampled flower transcriptomes (Figure 4.5-2). 
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2.11 Gateway Cloning 

Gateway Cloning was used to generate plasmid vectors for plant transformation (Figures 

5.2-5.4), yeast two-hybrid screening (Figure 6.1) and Virus Induced Gene Silencing (Figure 

5.7-1).  These experiments were used to deduce the function and protein-protein 

interactions of KFBT.  Gateway cloning involves making plasmids in two stages: initial 

ligation of the amplified fragment of interest into an entry vector (Chapter 2.11.8) followed 

by recombination of the entry vector with an appropriate destination vector (Chapter 

2.11.10).  Entry vectors carry a Gateway cassette either side of the fragment insert that 

allows for recombination into the compatible Gateway cassette found on the destination 

vector (Figure 2.11.10).  The cassettes contain att sites for bacteriophage lambda in E. coli 

and those on the left and right of the insert differ to preserve orientation during 

recombination. 

A ~3 kb pCR8 plasmid (ThermoFisher: K250020) was used as the entry vector.  It contains a 

spectinomycin resistance gene to allow for selection in E. coli.  The kanamycin or ampicillin 

resistance genes are used as a selection marker in the destination vectors.  The pCR8 

plasmid is linearised so that only circular plasmids (formed after successful ligation with the 

fragment of interest) survive in E. coli.  Destination vectors that fail to recombine do not 

interfere with the experiment because they contain a lethal ccdB gene that is otherwise 

swapped out for the fragment of interest during successful recombination with the entry 

vector.  Lethality of the ccdB gene is derived from its interference with DNA gyrase that 

results in destruction of the chromosome (Bernard and Couturier, 1992). 

The entry vector generation process is outlined in Figure 2.11.  Once established, the entry 

vector acts as a checkpoint that can be kept in long term storage and used in combination 

with any Gateway-compatible destination vectors.  Reading frame is always conserved 

because recombination with the destination vector is conservative in that there is no net 

gain or loss of base pairs (Invitrogen, 2003).  All attR sites recombine with attL sites and all 

attB sites recombine only with attP sites.  Mutations have been made in these sequences 

to ensure this specificity and eliminate stop codons (Invitrogen, 2003).  A 43 bp fragment 

of the attR sites has also been removed to improve efficiency and ensure the reaction is 

irreversible.  In standard gene expression, the 3’-att site will not be expressed and the 5’-

att site will reside in the upstream untranslated region.  Gateway cloning can also be used 

for gene fusion but the intervening att site will code for a linker of eight amino acids 

between the gene and its fused domain. 
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Figure 2.11:  Ligation process to generate entry vectors for Gateway cloning.  A) The fragment of interest is amplified.  
B) The PCR product is purified.  C) Adenine residues are added at the 3’-ends of the purified PCR product.  D) The 
adenine tails ligate the PCR fragment to 5’-thymine overhangs on the linearised entry plasmid.  E) The completed 
entry vector. 
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2.11.1 Destination Vector Preparation  

Gateway cloning can be utilised with a binary vector system in which the pSoup helper 

plasmid (Hellens et al., 2000) carries the necessary virulence genes for Agrobacterium-

mediated transformation and the co-transformed destination vector contains the 

appropriate format of genes required to generate the desired mutant.  It was discovered 

in 1983 (Hoekema et al., 1983; de Framond et al., 1983) that transformation would occur 

successfully if this machinery was held on separate plasmids, both contained within the 

same Agrobacterium cell. 

A list of destination vectors used in this project is provided in Table 2.11.1.  Due to the 

presence of the ccdB gene in these plasmids prior to recombination, all destination vectors 

were transformed into One Shot ccdB Survival T1R Competent E. coli Cells (Chapter 2.12).  

The plasmid region swapped out during the recombination reaction also contains a 

chloramphenicol resistance gene, so transformed cells were grown on LB agar plates 

containing 25 mg/ml of kanamycin and 25 mg/ml of chloramphenicol.   

 

 

 

 

 

 

To generate KFBT fusions with the necessary transcription activation (AD) and DNA-binding 

domains (BD) required for yeast two-hybrid assays (Chapter 2.20), pGADT7 (AD) and 

pGBKT7 (BD) vectors were used.  These vectors had been modified from the original 

Clontech backbones by Dr Barry Causier at the University of Leeds via the addition of an att 

cassette for use in the Gateway cloning system. 

The pBRACT507 destination vector contains a double Gateway cassette in alternative 

orientations, spaced by a linker (Figure 5.4).  Therefore, upon expression, the inserted 

fragment folds into a hairpin loop and triggers the RNA interference pathway that 

consequently targeted all KFBT transcripts for degradation (Girin et al., 2010). 

Table 2.11.1: Gateway-compatible destination vectors and their usage. 
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The KFBT coding sequence was installed into the pBRACT114 destination vector, containing 

the 35S promoter (Figure 5.2).  The 35S promoter is from the Cauliflower Mosaic Virus 

(Hohn & Hohn, 1982) and is used to provide constant expression throughout an entire 

transgenic organism.  This extreme overexpression presents the greatest chance of 

observing mutant effects, though it can cause non-specific or deleterious phenotypes that 

do not represent true native gene function (Bolognesi & Lehner, 2018). 

The KFBT promoter region underwent Gateway cloning into the pGWB203 destination 

vector, which was obtained from Dr Tsuyoshi Nakagawa at Shimane University.  This vector 

contains a Gateway recombination site immediately preceding the GUS gene, directing the 

KFBT promoter into a position in which it drives expression of the reporter.  The final 

construct (Figure 4.8-1) therefore allowed the location of KFBT activity to be visualised. 

The pTRV2 destination plasmid was used for virus induced gene silencing (Figure 5.7-1).  

The destination vector was obtained from Professor Cathie Martin’s group at the John 

Innes Centre and had been modified for Gateway compatibility.  However, the Gateway 

cassette had been attached in reverse.  Although this would not impede the VIGS 

experiment (because the fragment is reverse transcribed after expression), since the TOPO 

ligation occurs randomly in both directions (Chapter 2.11.8), an entry vector containing the 

antisense KFBT amplicon was simply selected anyway – thereby being installed in the 

forward orientation after recombination between pTRV2 and pCR8 (Figure 2.11.10).  

The viral replication machinery for pTRV2 is held on a separate pTRV1 plasmid.  A stock of 

the pTRV1 partner plasmid transformed into the GV3101 Agrobacterium strain was 

obtained from Dr Mark Smedley at the John Innes Centre.  These TRV vectors are derived 

from tobacco mosaic virus, which has a bipartite genome (Ramegowda et al., 2014) 

consisting of two RNAs; one encoding the coat protein (Liu et al., 2002) and the other 

responsible for RNA-dependent RNA polymerase, movement protein and cysteine rich 

protein (Macfarlane, 1999).  The two vectors were only mixed at the moment of injection 

and this is one of the biosafety methods used to ensure containment of the virus. 

Bacterial colonies containing these destination vectors were used to inoculate 5 ml of liquid 

LB containing 25 mg/ml of kanamycin and 25 mg/ml of chloramphenicol.  They were 

incubated at 37 °C overnight on a platform shaking at 180 rpm.  A 1ml aliquot was added 

to 1 ml of sterile 60 % glycerol for long term storage at -70 °C.  A miniprep was carried out 
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on the remaining liquid culture (Chapter 2.4.2) and plasmids were digested for 1 hr at 37 

°C with the BsrGI restriction enzyme to check integrity of the vectors (Chapter 2.11.11).  

2.11.2 Amplification of KFBT Fragments for Y2H Vectors 

To generate bait and prey constructs for yeast two-hybrid assays (Figure 6.1), the KFBT 

coding region was amplified without its start codon for suitable fusion at the 5’-end with 

pGADT7 and pGBKT7.  The KFBT fragment was obtained via a 100 µl PCR containing 20 µl of 

Phusion High-Fidelity Buffer, 2 µl of dNTPs, 1 µl of P. vulgaris genomic DNA template, 3 µl 

of DMSO, 63 µl of H2O, 1 µl of Phusion DNA polymerase and 5 µl of each primer (F: 

GAAGTTATTCCTGGTCTGCCT; R: TCAAATTTCAACAGAACAGCCAG).  The reaction was heated to 98 °C 

for 30 secs and subsequently underwent 35 cycles at 98 °C for 10 secs, 57 °C for 30 secs 

and 72 °C for 40 secs before a final 72 °C extension stage for 10 mins.  Products were 

electrophoresed and excised from the gel for purification (Chapter 2.8.2). 

The purified PCR product was used in the Gateway cloning procedure to generate the final 

KFBT yeast two-hybrid vectors (Figure 6.1).  Ampicillin and kanamycin were used to select 

for the pGADT7 and pGBKT7 vectors, respectively.  

2.11.3 Amplification of KFBT Coding Region for Constitutive Overexpression Vector 

A vector was assembled with the pBRACT114 plasmid (Smedley & Harwood, 2014) 

containing the 35S promoter to constitutively drive overexpression of KFBT in an effort to 

generate mutants and elucidate its function (Figure 5.2).  The KFBT coding sequence was 

amplified from the start codon to the stop codon for eventual recombination with the 

destination plasmid (Figure 5.2).  To maximise amplicon concentration, a 180 µl PCR was 

used containing 36.13 µl of Phusion High-Fidelity buffer, 3.61 µl of dNTPs, 9.03 µl of thrum 

genomic DNA template, 5.42 µl of DMSO, 105.94 µl of H2O, 1.81 µl of Phusion polymerase 

and 14.4 µl of each primer (F: ATGGAAGTTATTCCTGGTCTGC; R: TCAAATTTCAACAGAACAGCCAG).  The 

PCR product was directly purified (Chapter 2.8.2) and underwent Gateway cloning into 

pBRACT114 to generate the final overexpression vector (Figure 5.2).  

2.11.4 Amplification of KFBT Fragment for RNAi Knockdown and VIGS Vectors 

A 549 bp fragment was amplified for use in pBRACT507 (Figure 5.4; Smedley & Harwood, 

2014) and pTRV2 (Figure 5.7-1) plasmids for the elucidation of gene function via RNAi and 
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viral knockdown of KFBT.  The targeted region commenced 450 bp upstream of the KFBT 

stop codon and continued a further 99 bp into the 3’-untranslated region (Figure 2.11.4).     

The fragment was obtained via a 60 µl PCR containing 36.3 µl of H2O, 12 µl of Taq Buffer, 

1.2 µl of dNTPs, 6 µl of MgCl2 (25 mM), 1 µl of P. vulgaris thrum genomic DNA template, 

0.5 µl of Taq polymerase and 1.5 µl of each primer (F: CGGGATGAGTGGACTGAGAT; R: 

GTAGAAACCGTACTTACTTATAC).  The reaction was heated to 95 °C for 2 mins before undergoing 

35 cycles of 95 °C for 30 secs followed by 51 °C for 30 secs and 72 °C for 1 min.  A final 72 

°C extension step was carried out for 10 mins and samples were maintained at 4 °C until 15 

µl was electrophoresed on an agarose gel.  The remaining 45 µl was directly purified 

(Chapter 2.8.2) and used in the Gateway cloning procedure. 

2.11.5 Amplification of KFBT and Its Native Promoter 

A Ti plasmid vector was made with KFBT under regulation by its native P. vulgaris promoter 

(Figure 5.3) to observe the effects of expressing this gene at normal levels in isolation from 

any other S locus genes.  This could be achieved via transformation into pin plants or 

Arabidopsis.  An amplicon beginning 3 kb upstream from the start codon was used for this 

Figure 2.11.4:  The fragment amplified from the 3’-end of KFBT for use in its knockdown via RNA interference and viral 
induced gene silencing. 
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vector; usually ~2 kb is suffice however initial sequence analysis suggested KFBT may have 

a 5’-UTR in excess of 1 kb (Chapter 3.6).  The fragment extended through the open reading 

frame and continued until ~450 bp downstream of the KFBT stop codon to ensure inclusion 

of the transcription terminator.  A total length of ~4.5 kb was therefore amplified in a 50 µl 

PCR containing 1.25 µl of thrum genomic DNA template, 29.85 µl of H2O, 10 µl of Phusion 

High-Fidelity buffer, 1.25 µl of dNTPs, 1.4 µl MgCl2 (50 mM), 1.25 µl of Phusion polymerase 

and 2.5 µl of each primer (F: GTTAATTATGGTGTGTTCACC; R: CTGAAACTTCAACAAACTACC).  The 

entire PCR product was electrophoresed on an agarose gel (Chapter 2.8.2).  This presented 

two bands, of which the upper ~4.5 kb fragment was excised from the gel and purified for 

use in pBRACT103 (Chapter 2.8.2). 

2.11.6 Amplification of the KFBT Promoter for Use in the GUS Reporter Gene Construct 

The KFBT promoter had to be amplified (Figure 2.11.6) from the P. vulgaris genome for 

inclusion in the GUS reporter gene vector (Figure 4.8-1) to visualise location of KFBT activity.  

This included the 5’-UTR after the transcription start site, so the GUS reporter gene may be 

subjected to any regulatory activity that this region might natively impart on KFBT.  Simply 

amplifying 2 kb upstream of the start codon is usually suffice for obtaining a gene’s 

promoter (Rockman & Wray, 2002), however the potentially long 5’-untranslated region of 

KFBT (Figures 3.6.1-1 & 3.6.3-3) meant it was decided to amplify a ~3 kb region upstream 

of the KFBT start codon instead (Figure 2.11.6).   

 

 

 

 

To improve PCR efficiency and reduce any risk of non-specific amplification from the 

genome, a vector containing the same desired KFBT promoter region (Chapter 2.11.5) was 

used as PCR template.  Phusion polymerase was utilised due to the requirements for high-

fidelity and large product size.  A 60 µl reaction volume was used, containing 34.4 µl of H2O, 

12 µl Phusion high-fidelity buffer, 1.2 µl of dNTPs, 0.6 µl of polymerase enzyme, 1.8 µl of 

DMSO, 3 µl of MgCl2 (50 mM), 2 µl of DNA template (10 ng/µl) and 3 µl of each primer (F: 

GTTAATTATGGTGTGTTCACC; R: ATTATTTTCAAAAGATTGGCTATGAAATAG).  The reaction was held at 98 

Figure 2.11.6:  The 2.9 kb region immediately upstream of the KFBT coding sequence was amplified for use in the 
promoter-driven GUS reporter gene construct to highlight the location of KFBT protein production in vivo.  
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°C for 30 secs before undergoing 45 cycles of 98 °C for 10 secs followed by 55 °C for 30 secs 

and 72 °C for 5 mins.   

After a final extension step at 72 °C for 5 mins, products were maintained at 4 °C until 10 

µl could be analysed via gel electrophoresis.  Although minor non-specific bands appeared 

faintly on the gel, the remaining 50 µl were directly purified (Chapter 2.8.2) because the 

brightness ratios between gel bands showed the majority of amplicons in the product pool 

would be correct and proper downstream screening checkpoints were in place to confirm 

this. 

2.11.7 A-tailing Blunt-End PCR Products   

The Taq polymerase enzyme automatically adds an adenine residue to the 3’-end of all PCR 

products (Figure 2.11C) but Phusion polymerase does not.  This adenine sticky end 

facilitates ligation with the overhanging 5’-thymine residues on the pCR8 entry vector 

(Figure 2.11D).  The blunt-end PCR products generated from Phusion polymerase must first 

undergo A-tailing before their use in Gateway cloning.  To achieve this, 4.4 µl of fresh PCR 

product was added to 2 µl of GoTaq Flexi Buffer, 1 µl of GoTaq Flexi DNA polymerase, 2 µl 

of dATPs (10 µM) and 0.6 µl of MgCl2 (25 mM).  The solution was incubated at 72 °C for 6 

hrs. 

2.11.8 PCR Product Ligation into the pCR8 Entry Vector 

Cloning of PCR products into the entry vector (Figure 2.11D) utilised the pCR8/GW/TOPO 

TA Cloning Kit.  This reaction included 1 µl of pCR8 vector and 1 µl of salt solution (1.2 M 

NaCl and 0.06 M MgCl2).  A volume of PCR product was calculated to allow for a 3:1 

molecular ratio of insert to entry vector (Equation 2.11.8).  The product concentration in 

Equation 2.11.8 must consider the 2.27x dilution that the PCR underwent during the A-

tailing reaction (Chapter 2.11.7).  The pCR8 plasmid is 2817 bp in length and Invitrogen 

provide this at a concentration between 5 and 10 ng/µl so a figure of 7.5 ng/µl was assumed 

and used in the equation.  After the addition of this pre-calculated volume to the ligation 

mixture, the solution was diluted with water to a final volume of 6 µl.  Ligation was carried 

out overnight at room temperature and the products were subsequently transformed into 

E. coli (Chapter 2.12). 



49 
 

 

 

2.11.9 DNA Sequencing 

Fragments undergoing TA cloning can be inserted in either orientation, so the direction and 

integrity of these inserts had to be checked.  After miniprep from E. coli, DNA samples were 

therefore sent for sequencing.  Products less than 1 kb in length were provided at a 

concentration of 5 ng/µl and longer products were provided at a concentration of 10 ng/µl.   

Entry vectors were sequenced by Eurofins Genomics using primers with the standard M13 

Uni (-21) sequence: TGTAAAACGACGGCCAGT.  Vectors with larger inserts were also sequenced 

using primers with the standard M13 rev (-49) sequence: GAGCGGATAACAATTTCACACAGG.  

Plasmid samples were provided as 15 µl aliquots containing DNA at a concentration of 50-

100 ng/µl.  When non-vector PCR products were sequenced that did not contain a standard 

primer site, 2 µl of an appropriate user-defined primer (10 ng/µl) was added instead. 

A chromatogram was used to allow analysis of the presence and fluorescence of each base 

throughout the sequencing run.  This aided in identifying regions of low intensity or areas 

containing multiple sequences.  Sequencing results were provided as raw reads and also as 

clipped sequences that had 5’ and 3’-regions of poor quality removed.  These were used in 

BLASTn searches to check their identity.  Clustal Omega (Sievers et al., 2011) online 

alignment software was used to screen for errors.  If anomalous bases were found, it had 

to be established whether these were sequencing errors or if they were integral to the 

amplified sequence – in which case the cloning was repeated.   

2.11.10 Entry Vector Recombination with the Destination Vector  

To complete the Gateway cloning procedure and assemble the desired construct 

containing a DNA insert of interest, the entry vector was recombined with the destination 

vector (Figure 2.11.10).  Recombination occurred between the attL sites of the entry vector 

and the attR sites of the destination vector in a 10 µl reaction consisting of 6 µl of TE buffer, 

1 µl of destination vector, 1µl of entry vector and 2 µl of LR clonase II enzyme.  A vector 

(150 ng/µl) to entry vector (50 ng/µl) ratio of 3:1 was used for most recombination 

Equation 2.11.8: Volume of PCR product required in ligation reaction to ensure a 3:1 molecular ratio between the 
PCR product and the pCR8 entry vector. 
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reactions.  A 1:1 ratio was found to be more effective in assembling the VIGS construct 

(Figure 5.7-1). 

The recombination solution was gently mixed and incubated at 25 °C overnight before 1 µl 

of Proteinase K solution was added and the reaction was incubated for 10 mins at 37 °C.  A 

2 µl aliquot of the reaction was transformed into Subcloning Efficiency DH5α chemically 

competent cells, according to the heat shock method outlined in Chapter 2.12.  After 

overnight incubation on LB agar plates containing 50 µg/ml of kanamycin (or ampicillin for 

the pGADT7 yeast two-hybrid vector), positive colonies were selected and used to 

inoculate 5 ml of liquid LB.  The culture was subsequently incubated at 37 °C overnight with 

shaking at 180 rpm before miniprep (Chapter 2.4.2) the following day.  
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Figure 2.11.10:  Recombination between the att sites of the entry and destination vectors during Gateway cloning.  
A constitutive overexpression vector is shown but the principles apply to the entire series of Gateway-compatible 
vectors. 
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2.11.11 Restriction Enzyme Digest of Plasmid DNA 

After the Gateway cloning procedure, a BsrGI restriction digest was used to confirm 

integrity of the final assembled constructs (Figure 2.11.11).  The expected band patterns 

were derived from the known vector maps and insert sequences.  These predicted band 

patterns, plasmid concentration and total size were used to calculate the specific amount 

of template required for digestion to ensure the smallest band would contain 50 ng of DNA, 

which is the lowest amount generally visible on a gel after accounting for losses through 

inefficiency and error (Equation 2.11.11).  The digest reactions consisted of this calculated 

sample quantity with 1 µl of BsrGI-HF (high fidelity) restriction enzyme, 5 µl of 10x CutSmart 

Buffer and H2O to dilute the mixture up to 50 µl.  The reaction was incubated for 1 hr at 37 

°C before undergoing DNA precipitation (Chapter 2.7) to clean up buffer salts and enhance 

the gel electrophoresis quality. 

 

 

 

Digested DNA fragments were separated by size via electrophoresis (Chapter 2.8.2) and the 

agarose gel was subsequently photographed under UV light.  The band pattern was 

compared against the expected pattern to confirm successful recombination of the correct 

fragment into the destination vector.  This assay also ensured no parts of the vector 

backbone were lost during cloning. 

The Gateway cassette contains a BsrGI restriction site on either side of the insert, therefore 

this enzyme excises the insert fragment and allows plasmid integrity to be checked by band 

size.  However, the sequence of some Gateway destination vectors contains a single EcoRI 

restriction site in the vector backbone.  The KFBT sequence contains an EcoRI restriction 

site too.  Therefore, using EcoRI resulted in assymetric digestion of the insert fragment and 

allowed for the final orientation of the insert to be screened as well as just the fragment 

sizes.  This should not have been necessary due to the specificity of the att recombination 

sites but it did implement a secondary check for earlier user error.  This was useful when 

using pBRACT507 to generate an RNAi vector to knockdown KFBT (Chapter 5.4) as it was 

imperative that this vector contained two copies of the insert in inverted orientations to 

form a hairpin loop.  

  

Equation 2.11.11: Volume of sample required in digestion reaction to ensure smallest fragment is visible on agarose 

gel. 
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Figure 2.11.11:  Products of the recombination reaction in Gateway cloning.  The gene of interest is appropriately inserted into 
the destination vector at the 3’-end of the promoter element.  A constitutive overexpression vector is shown but there are a 
multitude of Gateway-compatible vectors for various other functions.  The recombined entry vector is discarded and the 
completed destination vector is transformed. 
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2.12 Transformation of E. coli  

Heat shock was used to transform vectors into E. coli cells.  One Shot TOP10 chemically 

competent cells from Invitrogen™ were used for entry vector transformation after the 

ligation reaction.  For preparation of destination vectors prior to the Gateway 

recombination reaction, One Shot ccdB Survival T1R competent cells were utilised for 

transformation.  For all other E. coli transformations, including successfully cloned 

destination vectors, Subcloning Efficiency DH5α chemically competent cells were used.  

To transform products of the TOPO cloning reaction (Chapter 2.11.8), a water bath was 

heated to 42 °C and ice was used to pre-chill 2 ml Eppendorf tubes containing 2 µl of ligated 

entry vector ligated with the A-tailed PCR product.  After slow thawing, 50 µl of E. coli cells 

were added to the Eppendorf containing the ligated entry vector before being briefly 

vortexed to gently mix.  These cells were left for 30 mins on ice before being heat shocked 

in the 42 °C water bath for 30 secs and immediately placed back on ice.   

After remaining on ice for 2 mins, 200 µl of S.O.C. medium was added and the tube was 

shook horizontally at 200 rpm for 90 mins in a 37 °C incubator to allow for the cells to 

recover.  Both 50 µl and 150 µl aliquots were spread onto separate LB agar plates 

containing 100 µg/ml of spectinomycin.  The remaining 50 µl of transformed cells were 

stored at 4 °C in a refrigerator.  The plates were incubated at 37 °C overnight in a static 

incubator.  Positive colonies were used to inoculate 5 ml of liquid LB containing 100 µg/ml 

of spectinomycin before further overnight incubation at 37 °C with 180 rpm shaking. 

2.13 Small-Scale Yeast Transformation 

The KFBT bait and prey constructs (Chapter 2.11.2) for yeast two-hybrid (Chapter 6) were 

transformed into yeast strains Y187 and AH103, respectively.  Stocks of both yeast strains 

were prepared for transformation by growing on YPDA media (Chapter 2.3.3) at 30 °C for 

three nights.  Colonies from both strains become pink over time but AH109 gains colour 

faster than Y187, especially on media containing a low adenine quantity.  This was used as 

visual confirmation that the yeast strains were correct before transformation. 

Centrifugation steps were carried out at 22000 gn.  Salmon sperm DNA at a concentration 

of 2 mg/ml was boiled for 10 mins and immediately chilled on ice prior to use.  A pipette 

tip was swiped once across the yeast culture plates to collect a cluster of cells, which were 
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resuspended in 1 ml of sterile distilled water.  They were centrifuged for 15 secs and the 

pellet was resuspended in 900 µl of H2O and 100 µl of 10x lithium acetate (1 M).   

The solution was centrifuged again and the supernatant was removed before the following 

reagents were added in this order without mixing: 240 µl of 50 % PEG, 36 µl of 10x lithium 

acetate, 50 µl of denatured salmon sperm DNA, 5 µl of plasmid DNA to be transformed and 

29 µl of H2O.  The mixture was vortexed to resuspend the pellet and then incubated at 42 

°C for 30 mins, with tube inversions every 10 mins.  The purpose of the PEG was to sink to 

the bottom of the Eppendorf and form a barrier to limit contact between the cells and LiAc 

until transformation commenced after vortexing. 

The transformed cells were centrifuged for 15 secs before finally being resuspended in 100 

µl of H2O and spread on a plate for incubation at 30 °C.  To select for the correct cells, 

pGADT7 transformants were grown on -leucine (-L) dropout media and pGBKT7 

transformants were grown on -tryptophan (-W) dropout media (Chapter 2.3.4). 

2.14 Transformation of Agrobacterium Strains 

Transgenic plants were generated to deduce KFBT function by monitoring the physiological 

effects of modified gene activity (Chapter 5).  These Primula and Arabidopsis lines required 

the use of Agrobacterium tumefaciens that had been co-transformed with both pSoup and 

the desired destination vector.  Multiple vectors had been constructed (Chapter 2.11) to 

analyse the function and location of KFBT via the Agrobacterium-mediated transformation 

of Primula and Arabidopsis.  Electroporation was used to transform these vectors into their 

respective Agrobacterium hosts. 

2.14.1 Preparing Electrocompetent Agrobacterium Strains 

The AGL1 strain was obtained from Dr Mark Smedley at the John Innes Centre in Norwich 

and used for the overexpression, knockdown and reporter gene constructs (Chapters 4.8 & 

5.2-5.4).  The GV3101 strain containing the pMP90 helper plasmid was obtained from Dr 

Laurence Tomlinson at The Sainsbury Laboratory in Norwich and used in the VIGS assay 

(Chapter 5.7). 

To prepare an Agrobacterium stock for long term storage, one colony of the AGL1 strain 

was selected and used to inoculate 5 ml of liquid LB media.  This was incubated for 6 hrs at 
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30 °C with shaking at 220 rpm before being directly poured into 100 ml of LB containing 25 

µg/ml of rifampicin and 25 µg/ml of carbenicillin, which are the AGL1 selection markers. 

After overnight incubation at 30 °C with shaking at 220 rpm, the culture was span for 5 mins 

at 8400 gn.  The pellet was resuspended in 50 ml of ice-cold sterile 10 % glycerol.  These 

centrifuge and wash steps were repeated three times.  Cells were resuspended in 1 ml of 

10 % glycerol and aliquoted into 40 µl stocks for storage at -70 °C.  The same process was 

followed for preparation of the GV3101 Agrobacterium cells by Dr Jinhong Li, except 

gentamycin was used instead of carbenicillin to select for the Ti plasmid. 

2.14.2 Electroporation of Agrobacterium cells 

Electroporation was used to transform the binary vector system into Agrobacterium.  The 

electroporator was set to 25 µF, 2.5 MV and 400 Ω.  Plasmids and culture were maintained 

on ice.  Cuvettes were stored in the freezer until imminently required.  A 1 µl aliquot of the 

pSoup helper plasmid and 1 µl of the destination vector was added to 50 µl of 

Agrobacterium under a sterile flow hood.  The pSoup plasmid was not included in 

transformation of the VIGS pTRV2 vector into strain GV3101, which already contained the 

pMP90 helper plasmid.  The mixture was transferred to a pre-cooled cuvette on ice and 

slotted into the plastic mount of the electroporator.  The mount was slid into the 

electrodes, electroporation was carried out and the cuvette was immediately returned to 

ice.  It was ensured that the time constant on the electroporator read no lower than 9 ms 

to indicate sufficiently slow electroporation.   

A 450 µl aliquot of LB was added to the transformed cells and transferred to an Eppendorf.  

This was incubated at 28 °C with shaking at 180 rpm until the end of the day, at which point 

they were plated on LB agar media containing appropriate antibiotics and returned to the 

incubator.  A combination of kanamycin and rifampicin were each used at a concentration 

of 50 mg/ml to select for the pBRACT destination vector and pSoup helper plasmid, 

respectively.  Gentamycin was also added at 50 mg/ml for selection of the pTRV2 VIGS 

vector. 

2.14.3 Growth and Screening of Transformed Agrobacterium  

The incubation of transformed Agrobacterium continued over approximately three nights 

until the selective plates presented growth.  Four colonies were used to inoculate 10 ml of 
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LB containing kanamycin and rifampicin, each at a concentration of 50 mg/ml, which were 

incubated overnight at 28 °C with shaking at 180 rpm.  A digestion had to be carried out to 

confirm final integrity of the transformed vectors.  A miniprep was therefore used to obtain 

constructs from 8 ml of the cultures (Chapter 2.4.2) for transformation back into E. coli via 

heat shock (Chapter 2.12) because the higher copy number of E. coli over Agrobacterium 

provides greater material for digestion.  The remaining Agrobacterium culture was used to 

form 30 % glycerol stocks for long term storage at -70 °C.   

Positive E. coli colonies from the heat shock transformation were used to inoculate a liquid 

culture, which subsequently underwent miniprep the following day.  The extracted 

destination vector underwent digestion with BsrGI (Chapter 2.11.11) to confirm integrity 

of the final plasmid in Agrobacterium before moving forward with plant transformation. 

2.15 Transformation of Primula vulgaris Seedlings  

The transformation of P. vulgaris was carried out to generate overexpression (Chapters 5.2 

& 5.3) and knockdown (Chapter 5.4) mutants alongside plants with virally induced KFBT 

silencing (Chapter 5.7) for the elucidation of its function.  This was achieved via vacuum 

infiltration of seedlings with Agrobacterium cultures that were previously electroporated 

with the desired binary vector system.  Dr Sadiye Hayta had developed a transformation 

system in Primula and continued to optimise the protocol throughout the duration of this 

PhD project (Hayta et al., 2018).  The final method is outlined here. 

2.15.1 Vacuum Infiltration of P. vulgaris Seedlings 

For vacuum infiltration of Primula, P. vulgaris seeds were sterilised (Chapter 2.2.1) and 

germinated on MS media (Chapter 2.3.1).  They were grown beyond the cotyledon stage 

until their first mature leaves had formed.  A 200 µl aliquot of transformed Agrobacterium 

(Chapter 2.14) was used to inoculate 10 ml of LB containing kanamycin and rifampicin at 

25 mg/ml each.  This was incubated overnight at 28 °C with shaking at 200 rpm.  A 500 µl 

aliquot of this culture was used to further inoculate 50 ml of LB, supplemented with 5 µM 

of acetosyringone and the same antibiotic concentrations from the previous step.  This was 

incubated overnight at 28 °C at 200 rpm.   
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The culture was decanted into a 50 ml falcon and centrifuged at 3200 gn for 10 mins with 

the brake setting switched off.  The supernatant was discarded and the pellet resuspended 

in 10 ml of MgCl2.6H2O infiltration buffer.  Optical density of the sample was measured at 

600 nm and the suspension was accordingly adjusted to 0.5 OD using the infiltration buffer.  

A 25 ml volume of this final culture was prepared to contain a 100 µM concentration of 

acetosyringone and incubated for 5 hrs at room temperature with shaking at 120 rpm. 

Silwet L-77 was added to the infiltration culture at a concentration of 10 µl/l, using 4 µl 

from a 1 in 10 diluted stock solution.  This is a commercial surfactant used here to aid in 

the uptake of Agrobacterium by reducing the surface tension of water.  Approximately ten 

to fifteen seedlings were transferred into the 25 ml culture from the MS plates on which 

they had germinated.  The open falcon containing the seedlings was positioned in a vacuum 

chamber and 600 mbar of negative pressure was applied.  After 15 mins, the hose was 

pulled to rapidly release the vacuum before being reattached.  This process was repeated 

a further four times across an hour.  The tube was closed with a lid and left overnight at 

room temperature with shaking at ~120 rpm.   

The transformed seedlings were washed six times in sterile distilled water and returned to 

the shaker for further overnight incubation in MS containing 250 µg/ml of cefotaxime.  

Filter paper was used to dry the seedlings under sterile conditions before being planted 

onto MS media.  They were allowed to recover for one week in a growth chamber before 

the tissue culture process was executed.  Growth chamber conditions are provided in 

Chapter 2.1.  

2.15.2 Tissue Culture of Transformed P. vulgaris Seedlings on Selective Media 

After vacuum infiltration, the seedlings were chimeric for transformed and non-

transformed cells (Hayta et al., 2018).  Tissue culture was used to induce callus from only 

transformed cells that were selected to eventually regenerate an entire mutant plant 

(Hayta et al., 2019). 

The following reagent stocks were made in advance: thidiazuron (TDZ) at 2 g/l, 

napthaleneacetic acid (NAA) at 1 g/l, AgNO3 at 1.7g/l, Timentin at 160 g/l and kanamycin at 

125 g/l.  The TDZ was dissolved in DMSO.  The other reagents were dissolved in H2O and 

filter sterilised with ~1.5 ml of NaOH used to help dissolve the NAA.   
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The callus induction media was made in two halves, which together amounted to 500 ml.  

The first half contained 2.5 g of agarose in 250 ml of H2O and this was autoclaved, as 

described in Chapter 2.3.  The second half contained 0.5 g of Gamborg B5 macro salts, 0.25 

g of MS micro salt mixture, 0.052 g of MS vitamins and 15 g of maltose in 250 ml of H2O.  

This underwent heating and stirring until the salts had dissolved.  The pH of the mixture 

was adjusted to 5.8 before being filter sterilised into an autoclaved flask.  It was maintained 

at 60 °C until use. 

When the first half had completed the autoclave process, both medias were combined and 

mixed in a sterile laminar flow hood.  They were left to cool below ~50 °C to protect the 

next reagents from degradation.  When the mixture could be handled comfortably (and 

before the agarose had solidified), 250 µl of NAA was added with 500 µl each of TDZ, AgNO3, 

Timentin and kanamycin from the aforementioned stock solutions.  This was finally poured 

into petri dishes.   

After a week of recovering on MS media, the transformed seedlings were cut into ~1 cm 

leaf sections and positioned with their adaxial surface on the Primula callus induction (PCI) 

media.  The plates were sealed and returned to the growth chamber.  Samples were 

transferred to fresh PCI media every two weeks.  They were monitored for positive 

selection of transformed material by kanamycin and regularly checked for growth of 

contaminant fungi.  

2.16 Transformation of Arabidopsis thaliana 

While Primula would be the ideal target for transformation assays aimed toward 

discovering the true function of KFBT in floral heteromorphy, transformation of Arabidopsis 

was also carried out due to its rapid life cycle and well-established protocols (Sanchez-

Serrano & Salinas, 2014).  The reliability of Arabidopsis transformation techniques has been 

proven and developed over decades, thus were used to gain initial clues regarding KFBT 

function within a heterologous plant system. 

2.16.1 Floral Dipping of Arabidopsis Plants  

Floral dipping was used to transform Arabidopsis with vector constructs designed to 

generate KFBT mutants (Figures 5.2 & 5.3).  The Colombia Col-0 ecotype of Arabidopsis, 
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described in Chapter 2.1, was grown under long day conditions in trays with 3x3 rows of 7 

cm pots containing ‘Arabidopsis mix’ by the John Innes Centre horticultural team.  Growth 

was monitored until the optimal stage for transformation; when plants had many immature 

flower clusters and only a few fertilised siliques. 

A 400 µl aliquot from a glycerol stock of Agrobacterium containing the desired construct 

was used to inoculate 10 ml of LB supplemented with kanamycin and rifampicin, both at 

50 mg/ml.  This was incubated overnight at 28 °C with shaking at 220 rpm.  The culture was 

subsequently poured into 50 ml of LB containing the same antibiotic concentrations and 

returned to the incubation conditions overnight again.  

The incubated culture was centrifuged for 10 mins at ~3200 gn with the brake setting 

switched off.  The supernatant was discarded and freshly made infiltration buffer was used 

to resuspend the pellet to an OD600 of 0.8.  At least 500 ml of infiltration medium was 

prepared for each construct to be transformed.  A litre of infiltration medium contained 4.3 

g of MS salts, 1x B5 vitamins, 5 % sucrose, 0.044 µM of 6-Benzylaminopurine and 0.03 % 

Silwet L-77.  The pH was brought to 5.8 with KOH.  The resuspended culture was kept cold 

on ice. 

The Arabidopsis plants were watered prior to transformation, to minimise the uptake of 

infiltration medium by the soil.  Any fertilised siliques on the plant were also removed with 

scissors to reduce the amount of unwanted non-transgenic seeds collected later.  The 

culture resuspended in infiltration medium had been decanted into 400 ml plastic beakers.  

The plants were individually upturned and dipped into the culture for 15 secs, with their 

flowers and stems completely submerged in the beaker as the culture was gently agitated 

to ensure infiltration.  Plants were immediately placed in a plastic biohazard bag and sealed 

for 24 hrs in the presence of light before being unbagged and allowed to continue growing 

and set seed.  

2.16.2 Seed Collection and Transgenic Screening 

Once transformed plants presented siliques, the watering routine was ceased and their 

aerial parts were bagged to capture any dispersed seeds.  When the seed capsules had 

dehydrated and turned yellow, bags were squeezed to make the seeds fall to the bottom.  

The corner was cut off the seed bag and its contents were poured onto a sieve with a pore 

size of 300 µM.  Sieving took place over a sheet of white A4 paper that had been creased 
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down the middle.  Seeds were subsequently tipped down this crease into a 1.5 ml 

Eppendorf for storage. 

The seeds were sterilised with chlorine gas (Chapter 2.2.2) and planted on MS media 

(Chapter 2.3.1) containing 50 mg/ml of kanamycin.  The kanamycin resistance gene from 

the Gateway destination vector was co-transformed into the Arabidopsis genome 

alongside the KFBT fragment of interest, therefore successfully transformed plants survived 

on the selective media and untransformed plants quickly turned colourless and died after 

germination.  Genetically modified plants were kept in a CER chamber with a 16 h light 

period, a daytime temperature of 22 °C and a night temperature of 20 °C.  Their seed was 

collected and second-generation plants were germinated and grown alongside wildtype 

Arabidopsis for fair comparison to identify mutant phenotypes. 

2.16.3 Genotyping and Phenotyping Transgenic Arabidopsis 

The Extract-N-Amp Plant PCR Kit from Sigma-Aldrich was used for genotyping second-

generation plants and confirming successful transformation.  A ~1 cm2 section of young leaf 

tissue was cut from each plant, added to 100 µl of extraction solution and incubated in a 2 

ml Eppendorf tube at 95 °C for 10 mins.  A 100 µl aliquot of dilution solution was 

subsequently added to the incubated samples and 4 µl of DNA was used in a PCR with 10 

µl of Extract-N-Amp ReadyMix, 4 µl of H2O and 1 µl of each nptII primer (F: 

GAGGCTATTCGGCTATGACTGG; R: ATCGGGAGCGGCGATACCGTA) designed to the kanamycin 

selection gene.  The PCR products were electrophoresed (Chapter 2.8.2) and those 

presenting a band were shown to contain the kanamycin resistance gene from a 

successfully transformed plasmid.  Leaf samples and flowers across the full range of 

development were screened for mutant phenotypes (Figure 5.6). 

2.17 Virus Induced Gene Silencing to Knockdown KFBT Transcripts in Primula 

To observe the functional effects of silencing KFBT transcripts, a KFBT VIGS construct was 

introduced into the Polyanthus horticultural variety of Primula (Figure 5.7-1).  This variety 

was partially chosen due to their high commercial availability but mainly because their 

flowers all emerge from a central thick stem that is well-suited to injection, which P. 

vulgaris does not have.  Open flowers, mature buds and dead leaves were removed prior 

to treatment.  Plants were transferred into 1 l pots containing peat and sand compost and 
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moved to insect-free level 2 containment chambers at the John Innes Centre on the 

Norwich Research Park.  The chamber was maintained at 15 °C during the day and 12 °C at 

night. 

The Agrobacterium was prepared by using 400 µl from a stock containing the KFBT VIGS 

vector to inoculate 10 ml of LB supplemented with kanamycin, rifampicin and gentamycin, 

each at a concentration of 25 mg/ml.  A second inoculation was prepared with a negative 

control vector.  This contained the vector backbone without anything at the cloning site 

and was used to prove that the VIGS machinery and injection process was itself not causing 

any mutant phenotype.  The phytoene desaturase (PDS) gene was also used, the silencing 

of which leads to reduced chloroplast pigment and causes white patches on infected plant 

material.  This was carried out as a positive control by Dr Jinhong Li to prove that the VIGS 

assay worked correctly.  A pTRV1 stock was used to make two 10 ml LB inoculations.  They 

were all incubated overnight at 28 °C with shaking at 200 rpm.   

These overnight cultures were poured into 50 ml of LB supplemented with the same 

antibiotic concentrations and returned to the previous incubation conditions for a further 

overnight period.  The infiltration buffer was prepared the following morning, containing 

10 mM MgCl2 and 10 mM MES.  The cultures were centrifuged at ~3200 gn with the brake 

setting switched off.  The pellets were resuspended in 25 ml of infiltration buffer and the 

OD600 was adjusted to 2.0 before the addition of 200 mM acetosyringone and subsequent 

incubation for 4-5 hrs at room temperature on a rocking platform (~40 rpm).  The VIGS 

treatment was carried out immediately after this incubation. 

Treatment was carried out in a level 2 containment glasshouse.  Equal amounts of pTRV1 

and pTRV2 cultures were combined and mixed within 50 ml Falcon tubes.  A needle with a 

0.6 mm pore was affixed to a 1 ml syringe for injection.  After being filled with 

Agrobacterium mixture, the plunger was gently depressed while being slowly inserted into 

the stem of the plant until culture was no longer dripping from the needle tip and was 

instead being taken up by the stem.  This was a good gauge of the optimum depth to insert 

the needle to find conductive vascular tissue without penetrating too far into (or entirely 

through) the plant stem.  It was essential to very slowly depress the syringe and allow 

uptake of the medium at a rate manageable by the plant.  In the best cases, droplets of 

Agrobacterium fluid could be seen emerging from the base of the floral umbel, proving that 

the viral medium had been transported to the flowers and the vascular tissue was loaded 

to maximum capacity.   
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Each stem was injected a single time until maximum uptake, which depended on the stem 

maturity and volume.  If more than one wound occurred – either by accidentally pushing 

the needle all the way through the stem or by making multiple penetration attempts – then 

a path of least resistance was created and acted as a plughole that the medium simply 

flowed through instead of reaching the apical flowers.  Likewise, if the syringe plunger was 

overly forced, the stem would entirely rupture and became unusable for VIGS.   

It was important to wear safety goggles because the plant can resist injection with such 

pressure to spray the medium back upon removal of the needle.  Treatment was repeated 

weekly until each stem had been treated twice and the plant had stopped presenting new 

flower buds.  Young stems that were too thin and flexible to properly treat were left to 

mature until deemed prime for injection during one of the later weekly repeats.  Plants 

were regularly monitored and any mutant phenotypes were photographed.  Mature 

flowers were also self-crossed to check for modifications of the self-incompatibility system.  

2.18 Execution of the GUS Reporter Gene Assay  

To visualise in situ location of KFBT, a construct had been assembled containing the KFBT 

promoter and 5’-UTR regions driving expression of the GUS reporter gene (Figure 4.8-1).  It 

was electroporated into Agrobacterium (Chapter 2.14) and transformed into A. thaliana 

(Chapter 2.16) due to its rapid life cycle and reliable protocols.  The GUS assay solution was 

made in two parts.  Containers at all stages were wrapped in foil to exclude light.  The first 

part consisted of 70 mg of X-gluc (5-Bromo-4-chloro-3-indolyl-β-D-glucoronide) added to 2 

ml of dimethyl sulphoxide (DMSO).  For the second solution, 7.602 g of sodium phosphate 

was added to 150 ml of H2O.  The pH was adjusted to 7.0 with concentrated hydrochloric 

acid before the addition of 4 ml of Na2EDTA (0.5 M) and 200 µl of Triton X-100 – the latter 

should be pipetted with a severed P1000 tip due to its viscosity.  Both solutions were mixed, 

diluted to 200 ml and stored at -20 °C in 50 ml aliquots. 

Working solutions were maintained at 4 °C.  Leaves, root samples, siliques and flowers from 

all developmental stages of transgenic Arabidopsis plants were excised and added to the 

thawed GUS mix before incubation at 37 °C with shaking at ~70 rpm.  Samples were washed 

in 100 % ethanol and incubated overnight in fresh ethanol on a rocking platform at ~45 rpm 

to remove chlorophyll.  This was subsequently replaced with 50 % ethanol before 

inspection under a light microscope for blue GUS activity. 
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2.19 Timing and Location of KFBT Protein Expression  

A series of qPCR experiments (Chapters 4.2-4.4) were designed to investigate the spatial 

and temporal expression of KFBT at the transcript level.  Antibodies were raised against 

KFBT to also carry out these investigations at the protein level.  This was designed to acquire 

data that either supported the qPCR findings or provided alternative models.  For example, 

differences between the two datasets could be indicative of post-transcriptional regulation 

or protein accumulation that highlight important areas of the KFBT pathway and its function 

in floral heteromorphy.  Flower buds had been preserved and sectioned in preparation for 

immunolocalisation assays.  A dot blot was therefore utilised to identify a suitable antibody 

and Western blots were used to locate KFBT in the dissected whorls of P. vulgaris flowers 

across several developmental stages.   

2.19.1 Production of KFBT Antibodies 

Specific peptides had been previously designed to generate polyclonal antibodies for the 

five S locus genes (Kent, 2016).  The KFBT peptide sequence used was: EVIPGLPEDLGLE.  

These antibodies were produced by Dundee Cell Products in two rabbits.  They were 

injected four times each and immunoaffinity chromatography was used to isolate the 

antibodies from antisera after the second, third and final immunisations.    

2.19.2 Identifying a Suitable KFBT Antibody 

An initial dot blot was carried out to confirm interaction between the KFBT peptide and 

antibody (Chapter 4.6).  Before testing affinity with KFBT extracted from Primula, 

interaction was first tested against the peptide that the antibodies were raised against.  

Dundee Cell Products synthesised two peptide conjugates; one bound to bovine serum 

albumin (BSA) and a second conjugated to keyhole limpet hemocyanin (KLH).  They 

provided images of their affinity purification that showed the most concentrated antibody 

fractions.  The aim of this initial dot blot was to show interaction with both peptide samples 

(thus confirming antibody affinity with KFBT and not just the BSA or KLH tags). 

The peptide conjugates were at a concentration of 2 mg/ml and 2 µl of each were dotted 

onto separate nylon membranes.  These were blocked in 5 % milk for 90 mins.  Incubation 

steps were carried out at room temperature on a rocking platform.  The blocking solution 

was made from milk powder dissolved in phosphate-buffered saline (PBS).  This process 
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allowed milk proteins to fill any vacant area around the sample, ensuring the antibody 

could only bind to the protein of interest and any excess was washed away.  This is because 

the membrane has a very high affinity for any protein and would otherwise simply bind to 

the antibody itself and give unusably high background results and present false positives.  

Milk was used as a blocking substrate to easily obtain unrelated proteins that were 

assumed to exhibit no binding activity with the KFBT antibody.   

The membranes were further incubated for 2 hrs in a 50 ml solution containing the primary 

antibody at a dilution of 1 in 10,000.  The membranes were subsequently washed in 1x PBS 

for 10 mins.  The PBS was replaced and this was repeated for 20 mins and finally for 40 

mins to wash away the primary antibody, which refers to the antibody raised against KFBT.  

The secondary antibody was an anti-rabbit immunoglobulin G from goat, which binds to 

the primary antibody.  It was conjugated to horseradish peroxidase by the manufacturer to 

undergo a light-emitting chemical reaction that allowed for visualisation of the target 

protein to confirm presence and successful binding.  The membranes were incubated 

overnight in a 25 ml solution of 5 % milk containing 0.5 µl of this secondary antibody (2 

mg/ml). 

Substrates from the SuperSignal West Femto Chemiluminescent kit were used to trigger 

the horseradish peroxidase reaction.  The peroxide buffer and luminol enhancer were 

mixed at a 1:1 ratio and 800 µl was added to each membrane, which were positioned on 

transparent laminate plastic.  A second sheet of transparent plastic was laid over the top 

and air bubbles were removed before touching the edge against blue roll to absorb any 

excess drops.  The membranes were immediately enclosed in a light-proof box for transport 

to the photographic developer machine.  In a darkroom, sheets of photographic film were 

laid over the membranes for different time lengths to provide various exposures.   

2.19.3 Crude Protein Extraction from P. vulgaris and Concentration Normalisation 

The KFBT antibodies had been preliminarily screened for affinity to the peptide that they 

were raised against.  Before carrying out an immunolocalisation experiment to visualise the 

location of KFBT in situ, the antibody was initially tested for affinity with denatured KFBT 

within a crude protein pool extracted from P. vulgaris (Chapter 4.6).  Concentrations of 

extracted protein pools had to be normalised across the sample set prior to this preliminary 

affinity test. 
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Flower samples were previously excised from petioles and stored in a -70 °C freezer.  For 

protein extraction, samples were ground by hand with a mini pestle in a 1.5 ml Eppendorf 

containing 2x LDS buffer.  The buffer was incrementally added as required until the tissue 

was ground into a viscous solution; adding too much leads to an overly diluted protein 

sample and too little gets entirely soaked up by the bud.  A 2x LDS concentration was used 

and was estimated to dilute into a 1x solution due to the high water content already 

present in the flower tissue.  The ground samples were boiled at 80 °C for 10 mins. 

A gel was used to estimate the amount of extracted protein so that concentrations could 

be normalised across the sample range before use in a Western Blot assay.  The samples 

were briefly centrifuged to pellet any tissue debris to the bottom of the tube.  To prepare 

them for loading, a 5 µl aliquot of each protein extract was used to make a 20 µl solution 

containing 10 % dithiothreitol (DTT; 0.5 M), 5 µl of H2O and 10 µl 2x LDS.  The samples were 

boiled in this solution for a further 10 mins at 80 °C. 

To run the protein gel, 950 ml of H2O was added to 50 ml of 20x NuPAGE™ SDS Running 

Buffer (ThermoFisher NP0001).  The packaging, tape and comb was removed from a premade 

gel before having its plastic cassette and wells briefly rinsed in H2O.  It was clamped 

vertically into the electrophoresis apparatus and an empty cassette was fitted into the 

second slot, if only a single gel was being run.  A 500 µl aliquot of NuPAGE™ antioxidant 

(ThermoFisher NP0005) was added to 200 ml of the running buffer (immediately prior to 

running the gel) and poured into the central compartment between the two clamped 

cassettes.  Upon ensuring no leaks were occurring between the apparatus partitions, the 

outer compartment was filled with the remainder of the running buffer that did not contain 

antioxidant.  The boiled samples were pipetted into the wells alongside an appropriate 

protein ladder and 200 V was applied for 50 mins. 

After electrophoresis, the fragile gels were carefully disassembled from their plastic 

cassettes and incubated in InstantBlue Ultrafast Protein Stain (Sigma-Aldrich ISB1L) for 1 hr on 

a rocking platform.  The intensity of bands was judged on the gel lanes and necessary 

adjustments were estimated regarding the volume of each protein extract to be used in 

subsequent analyses that were required to achieve equal concentrations across the sample 

range.  
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2.19.4 Electrophoresis Transfer of Protein Bands from Gel to PVDF Membrane 

After the initial loading gel, a second gel repeat was run containing normalised 

concentrations across the samples (Figure 4.6-1).  The vertically separated bands then had 

to be horizontally transferred onto polyvinylidene fluoride (PVDF) membrane to immobilise 

the proteins for downstream Western Blot analysis.  To transfer one gel, 1 ml of NuPAGE™ 

Antioxidant was added to 50 ml of NuPAGE™ Transfer Buffer and 100 ml of methanol 

before being diluted with H2O to a final volume of 1 l.  To transfer two gels simultaneously, 

the same solution was made containing 20 % methanol instead.   

Prior to carrying out the gel transfer, this buffer solution was used to thoroughly soak six 

blotting pads until their air bubbles were completely removed.  PVDF membrane and two 

sheets of filter paper were all cut to the dimensions of the gel.  The work area must be 

clean around exposed PVDF membrane to avoid contamination due to its high affinity for 

proteins.  It was soaked in methanol for 30 secs, briefly rinsed in deionised water and kept 

in the transfer buffer for several minutes before use. 

The cassette was disassembled and wells were excised from the gel.  Filter paper was briefly 

soaked in transfer buffer and laid just above the lip at the gel foot, with air bubbles being 

removed.  The gel was overturned, the foot was cut away and the surface was wetted with 

transfer buffer before being overlaid with PVDF membrane.  Air bubbles were removed and 

the second piece of filter paper was placed on top.  Guidance for assembling the apparatus 

for two gels is provided in the NuPAGE™ Bis-Tris Gel Instruction Booklet by Invitrogen Life 

Technologies.  

The gel sandwich was placed onto two of the pre-soaked blotting pads inside the cathode 

core.  The remaining space was filled with blotting pads until they rose 0.5 cm above the 

rim of the core before clamping it shut inside the electrophoresis block.  The central core 

was filled with transfer buffer.  The outer space was filled with deionised water until it 

reached 2 cm below the rim of the apparatus.  This acts as coolant during electrophoresis, 

which was carried out at 30 V for 1 hr.   

2.19.5 Western Blot Screen of KFBT in Crude Protein Extracts from P. vulgaris Flowers 

A Western Blot had been used to identify which rabbit had produced antibodies exhibiting 

greatest affinity for KFBT (Figure 4.6-1).  However, eight fractions of this antibody were 

available from the blood purification step carried out by Dundee Cell Products.  A Western 
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Blot was therefore required to identify the most suitable fraction for use in downstream 

immunolocalisation assays (Figure 4.6-2).  This was carried out on the denatured crude 

protein extract from ~5 mm stage one P. vulgaris flower buds (defined in Chapter 2.1.1).  

In addition to checking validity of the antibody, this assay also confirmed its affinity for 

denatured KFBT protein from the plant – as opposed to the synthesised peptide conjugates 

previously screened. 

The protein pools extracted from P. vulgaris were separated vertically by electrophoresis 

(Chapter 2.19.3) and then horizontally transferred to PVDF membrane (Chapter 2.19.4).  

The transfer apparatus was disassembled and rinsed in PBS.  The PVDF membrane was 

blocked for 20 mins in 5 % milk, as in Chapter 4.6.2.  The milk was replaced and the primary 

KFBT antibody was added.  Antibody dilutions of 1:1000 and 1:10,000 were trialled.  The 

immobilised proteins were incubated in this solution for 2 hrs on a rocking platform.    

The PVDF membrane underwent three PBS washes for 10 mins each before three further 

washes in PBS containing 0.1% Tween.  The blocking process was repeated for at least 15 

mins.  The secondary antibody was subsequently added directly to the milk and maintained 

in a 4 °C cold room overnight on a rocking platform.  Secondary antibody dilutions of 

1:100,000 and 1:1000,000 were trialled.  This goat antibody was an anti-rabbit horseradish 

peroxidase conjugate.  The previous PBS and PBS-Tween washes were repeated.  In 

accordance with Chapter 2.19.2, chemiluminescent substrates were added and 

photographic film was developed to visualise presence of any KFBT protein on the PVDF 

membrane. 

A staining solution was prepared that contained 250 ml of H2O, 200 ml of methanol, 50 ml 

of acetic acid and 0.5 ml of Coomassie Blue.  The Western Blot was stained for 5 secs in this 

solution to reveal the proteins from the crude P. vulgaris flower extract that were 

previously size-separated.  The staining solution was also made without the Coomassie Blue 

and used to wash the blot three times at 10 mins each.  The translucent developed 

photographic film was then laid over the stained membrane to align blots against 

corresponding protein bands, to allow protein size and sample lane of blots to be identified. 
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2.20 Yeast Two-Hybrid 

Yeast two-hybrid assays were used to test for protein-protein interactions involving KFBT 

(Chapter 6).  This could identify the protein targeted for degradation by KFBT and offer 

functional insight.  The paired mating assay (Chapter 2.20.1) was used when the target 

protein to be tested was known, otherwise protein libraries were screened when this 

partner was unknown (Chapter 2.20.3). 

2.20.1 Paired Individual Mating 

The interaction between KFBT and a range of known P. vulgaris proteins were tested via 

yeast two-hybrid mating.  The KFBT coding region had already been assembled into the 

pGADT7 and pGBKT7 activation and binding domain vectors (Figure 6.1).  Binding and 

activation domain vectors are respectively referred to as bait and prey constructs.  Bait 

constructs were transformed into the Y187 yeast strain and prey constructs were 

transformed into AH103 cells (Chapter 2.13).  These two cell types are compatible for 

mating (Matchmaker™, 2007). 

A GLOT fragment had been prepared in both bait and prey constructs by Dr Barry Causier 

via Gateway cloning for a previous study at the University of Leeds.  Two further genes, 

PvGLO and PvDEF, were also prepared in the same way by Dr Causier.  These proteins are 

known to interact with each other (Tröbner et al., 1992) and were therefore used as a 

positive control to ensure the mating and yeast two-hybrid screening functioned correctly.  

Stocks of KFBT, GLOT, PvDEF and PvGLO were therefore obtained as both bait and prey 

constructs transformed (Chapter 2.13) into yeast strains Y187 and AH103, respectively.  

A 10 µl aliquot from each prey sample was pipetted onto YPDA general purpose growth 

media (Chapter 2.3.3) and 10 µl aliquots of the KFBT bait sample were pipetted on top.  To 

simultaneously execute this test in the reverse direction, the KFBT prey sample was also 

pipetted onto aliquots of each bait sample too.  Mating assays were therefore carried out 

between KFBT against GLOT, PvDEF, PvGLO and itself.  Samples of the known interacting 

pair, PvDEF and PvGLO, were mated with each other as a positive control.  The PvGLO bait 

and prey constructs were also mated with each other, which was a suitable negative control 

because they are known not to homodimerize.  All plates were incubated at 30 °C for three 

days to allow mating between the compatible cells to take place. 
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The centre of each sample of mated cells was swabbed with a pipette tip and resuspended 

in 20 µl of sterile TE buffer before being transferred to -WL SD media plates lacking 

tryptophan and leucine (Chapter 2.3.4).  These plates selected only for diploid cells that 

had successfully mated to contain the tryptophan and leucine biosynthesis genes on the 

pGBKT7 and pGADT7 plasmids, respectively.  The plates were incubated at 30 °C for a 

further three days before this suspension and transferral procedure was repeated onto -

WHL media. 

The -WHL plates lacked tryptophan (W), leucine (L) and histidine (H).  This media selected 

for diploid cells containing constructs that expressed a pair of interacting proteins that 

bring together the binding and activation domains of the respective fusion proteins to 

enable expression of the histidine biosynthesis gene.  Cells without interacting partner 

proteins cannot survive in the absence of histidine.  The test was repeated with the addition 

of 3-amino triazole (3-AT) to the -WHL media at concentrations of 2.5, 5, 7.5 and 10 mM.  

This molecule inhibits binding and indicated affinity between the interacting proteins.  Dr 

Barry Causier (University of Leeds) had previously confirmed a minimum 3-AT 

concentration of 2.5 mM sufficiently prevented auto-activation of the KFBT construct 

(Figure 2.3.4).  The results of the screen were observed after five days (Figure 6.2-1). 

2.20.2 Obtaining Primula vulgaris and Arabidopsis thaliana Y2H Libraries  

Yeast two-hybrid libraries of Arabidopsis and Primula were used to screen for proteins that 

interact with KFBT (Chapter 6).  RNA was extracted from Primula flower buds by Dr Jinhong 

Li and the Matchmaker Library Construction Kit was subsequently used by Dr Barry Causier 

at the University of Leeds.  This involved synthesising cDNA from the RNA pool by using an 

oligodT primer with a 3’-end adaptor sequence.  A second adaptor sequence was attached 

to the 5’-end of the cDNA fragments during synthesis.  Primers designed against these 

adaptor sequences were used to amplify the cDNA library via PCR. 

Amplified products were co-transformed into the AH103 Saccharomyces cerevisiae yeast 

strain alongside the pGADT7 prey vector, which also contains the tag sequences.  The cDNA 

fragments were thereby incorporated into pGADT7 via homologous recombination that 

occurred between the cDNA adaptors and these matching vector sequences.  This resulted 

in a library of AH103 yeast cells that each produced a protein from a Primula cDNA 

fragment fused to the activation domain of the vector.   
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The process was repeated to generate the Arabidopsis library and an aliquot was sent to 

the Gilmartin lab.  Approximately 1.5x107 cells were plated across one hundred 15 cm 

plates of -L SD media and incubated for 4 days.  Colonies were subsequently scraped from 

the plates into YPDA liquid containing 25 % glycerol for long-term freezer storage.  A 

thawed aliquot underwent serial dilution before spreading onto plates for further 

incubation to calculate the viable cell density of the library.  

2.20.3 Yeast Two-Hybrid Protein Library Screens 

Protein libraries were screened via yeast two-hybrid to identify potential partners of KFBT 

(Chapter 6).  Medias were prepared in advance and the entire screening procedure 

required 50 ml of -W gel, 50 ml of -W liquid, 50 ml of 2x YPDA liquid, 10.5 ml of 0.5x YPDA 

liquid, 200 ml of -WL gel and 1 l of -WHL gel (Chapters 2.3.3 & 2.3.4).  The KFBT-DNA binding 

domain vector had been transformed into Saccharomyces cerevisiae strain Y187 (Chapter 

2.13), which is compatible for mating with the AH103 strain that was made to contain the 

cDNA library in the activation domain vector.   

A Y187 colony transformed with the KFBT bait plasmid (Figure 6.1 upper) was selected from 

a -W plate and used to inoculate 55 ml of -W liquid SD media.  This was incubated at 30 °C 

for three nights and a 1 ml aliquot was used to make a glycerol stock for long term freezer 

storage, 4 ml was used in a miniprep (Chapter 2.13) to confirm vector integrity via 

subsequent digestion (Chapter 2.11.11) and the remaining 50 ml was carried forward into 

the mating procedure for a yeast library screen.   

A 100 µl volume of culture was used with a haemocytometer under a light microscope to 

estimate average cell density.  This was used to calculate a volume containing 5x108 bait 

cells to be mixed with 2.5x108 AH103 cells from a pre-enumerated Primula or Arabidopsis 

prey library.  The cell mixture was centrifuged at 1000 g for 10 mins and resuspended in 50 

ml of 2x YPDA liquid media.  The suspension was incubated in a 2 l flask across three nights 

at 30 °C with shaking at 50 rpm.  It was essential that shaking did not exceed this speed or 

mating does not take place. 

The mated cell suspension was centrifuged at 1000 g for 10 mins and the pellet was 

resuspended in 10.5 ml of 0.5x YPDA liquid media.  A 10 µl aliquot of the culture was used 

to plate serial dilutions of 10 thousand, 100 thousand, 1 million and 10 million on -WL plates 

to select for diploid cells containing both the library activation domain and KFBT binding 
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domain plasmids.  This screened for successfully mated yeast.  It was not necessarily 

suggestive of protein partner interactions but the number of growing colonies was instead 

used to estimate the total number of genes assayed by the yeast two-hybrid library screen.   

The remaining culture was spread in 500 µl aliquots across 20 -WHL SD plates containing 

2.5 mM of 3-AT.  This media selected only for diploid cells containing a pair of interacting 

proteins.  All yeast plates were incubated at 30 °C.  Colonies on the -WL plates could be 

enumerated after approximately four days to calculate the total number of genes screened 

in the yeast two-hybrid library.  After two to three weeks, positive colonies on the -WHL 

media were each transferred to 10 µl of TE buffer, which was then pipetted onto fresh -

WHL media (but not spread).  This allowed a larger circular colony to grow from the droplet, 

which was used to inoculate 6 ml of -WHL liquid media before incubation at 30 °C with 

shaking at 180 rpm.   

The incubated samples subsequently underwent a miniprep a procedure (Chapter 2.4.3) 

and PCR was carried out on the extracted DNA using primers designed to either side of the 

cDNA insert within the activation domain vector.  The library fragment was therefore 

sequenced so the interacting partner protein could be identified.  A 50 µl PCR volume was 

used containing 10 µl of Phusion High-Fidelity buffer, 1 µl of dNTPs, 0.5 µl of Phusion 

polymerase, 2 µl of crude DNA extract template from the yeast miniprep and 2.5 µl of each 

primer (F: TCATCGGAAGAGAGTAG; R: GTGAACTTGCGGGGTTTTTCAGTATCTACGAT).  The reaction was 

heated to 98 °C for 1 minute before undergoing 35 cycles of 98 °C for 30 secs followed by 

60 °C for 30 secs and 72 °C for 3 mins.  After a final 72 °C extension period of 5 mins, 10 µl 

of PCR product was electrophoresed on a gel to confirm only one band was present in each 

lane.  Samples were directly purified (Chapter 2.8.2) and sequenced by Eurofins Genomics 

to identify the cDNA library fragment that produced the interacting partner protein. 
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Chapter 3 

3 Bioinformatical Analysis of the KFBT  

The KFBT gene was initially identified by Dr Jinhong Li while locating the Primula vulgaris S 

locus (Li et al., 2016).  It was found to be homologous to the four Kiss Me Deadly genes in 

Arabidopsis thaliana.  The Arabidopsis Information Resource (TAIR; www.arabidopsis.org) 

indicated that these genes were also known as Kelch Repeat F-Box or Kelch-Domain-

Containing F-Box and so the P. vulgaris gene was thereafter called Kelch F-Box THRUM (KFBT). 

The KFBT sequence was analysed to gain early information about its function that aided in 

forming initial hypotheses and directing the lab work.  This involved sequence alignments 

to homologous genes (Chapter 3.4), transcript quantification (Chapters 3.7 & 3.8), finding 

predicted regulatory elements in the 5’-promoter region (Chapter 3.6), identifying 

functional domains in the coding sequence (Chapters 3.1 & 3.5), finding other genes in P. 

vulgaris that contained these domains (Chapter 3.2) and investigating their phylogeny.  The 

KFBT gene was also identified in other members of the Primulaceae family as part of a study 

to explore conservation of the S locus across species (Chapter 3.3). 

Bespoke programs and scripts were written personally for the project.  This included tools 

for dot matrix alignment (Chapter 3.6), nucleotide translation (Chapter 3.3), stem-loop 

structure screening (Chapter 3.6), comparative genomics (Chapters 3.3 & 3.4), non-

synonymous mutation enumeration (Chapter 3.3) and Kelch motif queries (Appendix A).  

Notable exceptions were the Clustal (Larkin et al., 2007; Chapters 3.1-3.4 ) and HISAT (Kim 

et al., 2015; Chapters 3.6 & 3.7) alignment packages as well as the StringTie (Pertea et al., 

2016; Chapters 3.7 & 3.8) assembler.  

Bioinformatics was carried out in the Bourne Again Shell (www.gnu.org/software/bash), 

using its in-built command library on the cluster at the Earlham Institute, developed on a 

Red Hat Linux kernel and maintained by the Computing Infrastructure for Science 

department at the Norwich Research Park.  Graphs were generated in version 3.4.3 of R 

(www.r-project.org).  Sequence alignments carried out in the command line interface used 

version 2.1 of ClustalW (Larkin et al., 2007) and those executed in the web interface utilised 

the online version of Clustal Omega (Sievers et al., 2011).  

https://ccb.jhu.edu/software/hisat2/index.shtml
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3.1 Location of the Kelch Domain in KFBT  

The Kelch domain consists of a number of tandem motif repeats that each form one blade 

of a β-barrel propeller for directly aiding protein-protein interactions (Li et al., 2004).  There 

are usually five to seven Kelch repeats but plants often have fewer (Schumann et al., 2011).  

Kelch motifs are variable and may only loosely obey a consensus sequence with as little as 

11 % similarity (Bork & Doolittle, 1994).   

To locate the Kelch domain in KFBT and identify the number of Kelch repeats within it, 

Clustal Omega (Sievers et al., 2011) was used to align the KFBT amino acid sequence to the 

following Kelch consensus sequence: PRSGAGVVVVGGKIYVIGGFDGSQSLSSVEVYDPETNTWEKLPSMP 

(Prag & Adams, 2003).  Upon aligning this consensus sequence to the best match in KFBT, 

the identified region was manually removed from the KFBT query sequence and the 

alignment was repeated to find the next closest match.  This process continued until no 

further reasonable matches could be found. 

A scoring system was established to rank the similarity of the identified Kelch repeats.  

Amino acids that perfectly matched the consensus sequence gained three points, those 

that shared highly similar properties scored two points, those that shared lowly similar 

properties were granted one point and totally dissimilar amino acids received no points.  A 

sequence that perfectly matched the entire 46-amino acid consensus sequence would have 

achieved 138 points.  The score for each Kelch repeat motif found in KFBT was converted 

into a percentage of that highest possible score. 

Five Kelch motifs were confirmed in KFBT, with the fourth and fifth repeats intervened by 

29 amino acids containing a fractional Kelch motif (Figure 3.1).  The other four repeats were 

almost entirely continuous. 
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3.2 Identification of Kelch Proteins Encoded by the P. vulgaris Genome 

Amino acid sequences derived from the P. vulgaris genome were screened for other 

potential members of the Kelch protein family to explore the possibility that other proteins 

related to KFBT may also exist in P. vulgaris.  Phylogenetic analysis of these candidates was 

carried out to potentially identify a protein that KFBT had derived from or, if the function 

of its most closely related proteins was known, offer insight into the possible role of KFBT 

in floral heteromorphy.  

The genome of the long homostyle mutant was used for this investigation (Cocker et al., 

2018).  It was assembled by Dr Jonathan Cocker from the DNA of a single plant and is 

homozygous for the S locus, therefore making it the best draft genome available for P. 

vulgaris.  The only known mutation in this genome exists in the CYPT gene (Li et al., 2016), 

the dysfunction of which leads to reduced suppression of style length usually observed in 

thrums and therefore causes the long homostyle phenotype instead. 

Figure 3.1: Five Kelch repeats were identified in KFBT (upper).  The underlined region represents identification of a 
fractional motif.  Similarity of each motif to the Kelch consensus sequence (Prag & Adams, 2003) is shown (lower). 
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The genome had been annotated by Dr Jonathan Cocker, which provided the general 

feature format (GFF) file that was here used to acquire the coding sequences for each gene.  

A script was written (Appendix A1) that utilised coordinates from the GFF to locate exon 

positions of every P. vulgaris gene and join them together, thereby obtaining the complete 

coding sequence for every gene in the genome.  Of the 24599 genes presented by the GFF, 

15 % (3812 genes) were discarded due to not having an appropriate codon at either the 

start or stop position.  This is likely due to the automated annotation process detecting RNA 

reads that map to areas without complete sequence data available. 

The remaining genes were translated into amino acid sequences.  The C program written 

to achieve this is available on GitHub (github.com/calumraine/cranslate).  The following 

grep query was used in the Linux command line to search the amino acid sequences from 

each gene: grep -B1 -E GG.{9,25}[LFY]……W.*GG.{9,25}[LFY]……W (Figure 3.2-1).  The 

grep command is a tool used to search files and extract lines containing at least one match 

to a given query.  The -E flag was used to dictate that the search term was in the format of 

an extended regular expression and the -B1 flag requests for both the matching line and 

its preceding line to be printed, which here meant gene names would be obtained from the 

FASTA file as well as the matching sequences. 

This query searched for the glycine pair (a fundamental signature of the Kelch consensus 

sequence) followed by between nine and twenty-five amino acids of any identity – a 

number estimated from literature review (Prag & Adams, 2003; Andrade et al., 2001; 

Adams et al., 2000).  The query parameters ensured this linker was immediately followed 

by a commonly occurring leucine (hydrophobic) or phenylalanine (hydrophobic) or tyrosine 

(aromatic) residue and a final signature tryptophan separated by a linker containing exactly 

six of any amino acid.  The length of this linker was used due to its occurrence in ~70 % of 

analysed Kelch domains (Adams et al., 2000).  The query ignored candidates that did not 

contain at least two of these Kelch repeat motifs separated by any number of amino acids.  

The search was repeated with modified sizes of the 9 to 25 amino acid linker to see how 

Figure 3.2-1: Key motif parameters and amino acid landmarks used to identify Kelch repeat proteins in P. vulgaris. 
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this affected the number of results.  Amino acid sequences from candidate genes identified 

by this Kelch motif screen were aligned against KFBT (Figure 3.5 lower; Appendix A2) to 

compare similarities and begin phylogenetic analysis.  

This motif query identified 155 genes in the P. vulgaris genome that encode proteins with 

a Kelch repeat domain (Figure 3.2-2 upper).  One of these candidates was KFBT, which 

provided reassurance that the search technique had worked.  Each identified Kelch protein 

was aligned to KFBT and the number of matches was converted into a percentage of the 

total 340 amino acid length of KFBT (Figure 3.2-2 lower).  Their similarities ranged from 7.65 

% to 44.71 %.   
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Figure 3.2-2: Kelch proteins identified in P. vulgaris.  The Kelch motif consensus sequence contains a linker region of 
variable length.  Several ranges for this linker were tested (upper) but a value of 9 to 25 amino acids was used to 
identify 155 Kelch proteins.  Their similarity to KFBT was calculated (lower). 
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Figure 3.2-3: The KFBT-containing clade from a phylogenetic tree of all 155 Kelch proteins identified in 
P. vulgaris with their corresponding identities. 

A BLASTp search was carried out on amino acid sequences of the top fifteen Kelch proteins 

(Figure 3.2-2 lower) encoded by P. vulgaris that presented greatest similarity to KFBT (Table 

3.2).  One of them was exactly the same length as KFBT and presented a top match to KMD3.  

The third most similar P. vulgaris Kelch protein to KFBT was found to match a KMD2-like 

protein, seven more identified as Kelch F-box proteins, a further Kelch protein was 

identified and a final match was found to have involvement in the ubiquitinase degradation 

pathway. 

Alongside the similarity assessments of these Kelch proteins, Clustal Omega (Sievers et al., 

2011) was used to generate a phylogenetic tree of all 155 candidates.  The clade containing 

KFBT is displayed in Figure 3.2-3.  Contrary to the similarities presented in Table 3.2, 

subsequent BLAST results suggested reductase and phosphatase proteins as the most 

closely related P. vulgaris Kelch protein candidates to KFBT.  The former analysis (Figure 

3.2-2 lower) calculated these proteins to be the 47th and 137th most similar, respectively. 

 

  

Table 3.2: Top BLASTp results for fifteen Kelch proteins from P. vulgaris that demonstrated greatest similarity to KFBT.  
The number of matching amino acids was enumerated and converted to a percentage of the total query length. 
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It was noted that the 7th and 8th most similar Kelch candidates to KFBT (Table 3.2) were 

situated within close proximity of each other in the P. vulgaris genome, separated by only 

one gene.  Relationships between all 155 identified P. vulgaris Kelch genes were therefore 

investigated and six pairs were found to be immediately adjacent.  An instance of three 

Kelch genes interspersed by only one other was also found (not shown).   

To assess whether this was due to chance or if Kelch genes are more commonly co-

localised, the GFF annotation was used to calculate average distances between all 

consecutive genes in the genome and compare them to the distances between these 

adjacent Kelch family members (Figure 3.2-4).  Alignments were also carried out between 

these adjacent Kelch genes and the other identified Kelch candidates to investigate 

whether similarity was negatively correlated to the distance between them (Figure 3.2-4). 

 

  

Figure 3.2-4:  Similarity and distance between pairs of Kelch protein-encoding genes that are adjacent in 
the P. vulgaris genome, plotted on a line representing the distance between all adjacent genes from the 
genome.  Adjacent Kelch genes are not significantly closer than other adjacent genes and similarity does 
not correlate with proximity. 
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Figure 3.2-4 shows that proximity between members of the Kelch family in the P. vulgaris 

genome is not significantly closer than other consecutive P. vulgaris genes.  The figure also 

demonstrates that the percentage similarity between these Kelch pairs does not increase 

as distance between them decreases.  Though some pairs were found to share as little as 

30-35 % similarity, this is not a good criterion on which to measure homology here because 

high variance often exists between even closely related Kelch proteins (Adams et al., 2000).  

Similarity between adjacent Kelch partners was therefore compared to their similarity 

against the other 154 unconnected P. vulgaris Kelch proteins (Figure 3.2-5).   

Figure 3.2-5 demonstrates that genes encoding Kelch proteins may be less similar to their 

adjacent partner than they are to other Kelch family members positioned more distantly 

on the P. vulgaris genome.  This further confirmed a lack of correlation between gene 

distance and similarity.  While four of the pairs were the first or second most similar Kelch 

candidate to each other, other partners ranked as little as 89th or 112th in similarity (Figure 

3.2-5). 

  



82 
 

  

Figure 3.2-5:  Six pairs of P. vulgaris Kelch genes adjacent in the genome and their similarity to the other 154 
Kelch protein encoding-genes.  The adjacent gene encoded the most similar Kelch protein 42 % of the time 
and was the second most similar a further 17 % of the time. 
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3.3 Identifying KFBT in Other Members of the Primulaceae Family 

A sequence capture experiment was used by Li & Cocker (unpublished) to identify the S 

locus genes in other species of the Primulaceae family.  Amino acid sequences converted 

from contigs carrying KFBT were used to assess the evolutionary selection pressure on KFBT 

and prove its importance in heterostyly by confirming conservation across the family.  

Similarities along the protein sequences were compared to explore phylogeny and identify 

the most variable or conserved regions in each.  This were used to indicate protein motifs, 

such as Kelch repeats or F-box domains. 

3.3.1 Obtaining KFBT DNA Sequences from Sixteen Primulaceae Species  

Sequencing data from sixteen species was analysed, fifteen of which were from a sequence 

capture experiment by Dr Jinhong Li that utilised oligonucleotide primers designed to the 

278 kb P. vulgaris S locus and its ~170 kb flanking regions to obtain the S loci from other 

Primulaceae species.  Those species included P. chungensis, P. cockburniana, P. concholoba, 

P. cuneifolia, P. halleri, P. incana, P. kewensis (P. floribunda x P. verticillate), P. laurentiana, 

P. prenantha, P. prolifera, P. scotica, P. vulgaris (short homostyle mutant), P. watsonii, P. 

yuparensis and Hottonia palustris. 

The P. vulgaris sample was included in the sequence capture as a positive control.  Aside 

from the H. palustris thrum morph, homostyle plants were otherwise used because this 

experiment was originally designed to determine whether homostyle morphs in these 

species also arise via mutation in the CYPT gene (Li et al., 2016) – which has been shown to 

regulate style height (Huu et al., 2016) – but it also generated sequences of the other S 

locus genes and provided KFBT data for this investigation.  The H. palustris material was 

taken from a pond near Watton in Norfolk and all other plants were sampled from Kevock 

Garden Plants in Midlothian, Scotland.   

The contig from each sample dataset that contained the closest match to KFBT was isolated 

by Dr Jonathan Cocker.  A sixteenth KFBT sequence was also included from Dr Jonathan 

Cocker’s draft assembly of the P. veris thrum genome; this did not come from sequence 

capture but was included to maximise data quantity. 
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3.3.2 Similarity Between KFBT Nucleotide Sequences from Sixteen Primulaceae Species 

To assess whether KFBT was present in these sixteen tested Primulaceae family members, 

percentage similarity was calculated between the isolated nucleotide sequence from each 

species and the P. vulgaris KFBT sequence, which was here used as a template.  To establish 

the threshold below which it would be determined that KFBT was not present in a particular 

species, the PUMT S locus gene was included in the analysis.  This was arbitrarily selected 

as a negative control to demonstrate the chance similarity presented by the alignment of 

an unrelated gene.  The script used for this analysis is included in Appendix A2. 

The similarity calculations were carried out as presented in Figure 3.3.2, with use of 

nucleotide sequences.  ClustalW (Larkin et al., 2007) was used to align the KFBT sequence 

from each species to that of the P. vulgaris template (Figure 3.3.2A).  The sequence capture 

contigs could have contained KFBT in either the sense or antisense direction and so 

alignments were performed against both the forward and reverse complement sequences.  

Whichever presented the greater number of matches was carried forth.  The output text 

files were then manipulated to extract only the alignment data (Figure 3.3.2B), separate 

the sample and template sequences into discrete files as single lines (Figure 3.3.2C) and 

then re-join them as vertically aligned columns (Figure 3.3.2D) to enable inter-column 

comparisons and thereby allow better operation of BASH command line interface tools, 

which are usually written to handle files on a line-by-line basis. 

Differing sizes of some query sequences caused gaps in the template sequence during 

alignment, to which no nucleotide aligned (Figure 3.3.2E).  These gaps were discarded 

because the overall aim was to calculate the number of template nucleotides that appeared 

in the query sequence, not to count the number of query nucleotides that appeared in the 

template sequence.  This is an important distinction that could otherwise significantly 

underrepresent the percentage similarity of large sequences and overrepresent it in 

smaller ones.    

The number of matches between the query and template sequences were enumerated and 

converted into a percentage of 1023 (which is the nucleotide length of KFBT in P. vulgaris).  

The percentage similarity of the KFBT candidate from each species was presented in a bar 

chart (Figure 3.3.4 upper). 
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Figure 3.3.2: The process by which raw sequence alignments between KFBT and the four AtKMD proteins were 
converted into graphs for comparing how similarity changes across these sequences.  A) Clustal Omega (Sievers et al., 
2011) was used to align each AtKMD protein against KFBT.  B)  The sequence data was extracted to remove labels, 
numbers and alignment symbols.  C) The KFBT and AtKMD sequences were separated.  D) The sequences were converted 
to vertical columns and re-joined.  E) Gaps from amino acids that did not align were removed.  F) Matching amino acids 
were enumerated.  G) Average similarity was calculated for every 10 amino acids and the data was plotted on a graph. 
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3.3.3 Translating KFBT Nucleotide Sequences from Sixteen Primulaceae Species  

Nucleotide alignments are affected by synonymous substitutions that do not functionally 

modify the primary protein structure.  Analysis of the inter-species Primulaceae sequence 

capture data was therefore repeated with amino acid sequences instead.  A program was 

written in the C programming language to translate the candidate KFBT nucleotide 

sequences from each species.  The process is outlined in Figure 3.3.3, the source code is 

available on GitHub (github.com/calumraine/cranslate) and the program was compiled 

using version 5.3.0 of GCC (gcc.gnu.org).  It functions by accepting the name of an input 

FASTA file as an argument on the command interface.  The program ignores any line that 

does not begin with a sequence base (in capital letters only), therefore skipping blank lines 

and header lines containing the ‘>’ symbol.   

The program moved through the given sequence in three-base windows.  Upon recognition 

of a start codon, a ‘print’ flag was raised and it began translating each nucleotide triplet 

into the corresponding single-letter amino acid code.  This continued until the stop codon 

was found or the end of a line was encountered.  A newline was triggered in the output 

stream to position the cursor for printing the next string.   

If the end of the sequence had been reached, the process was repeated with the second 

and third reading frames.  The input sequence was subsequently reversed and the 

complementary nucleotides saved in memory as a new sequence, so codons in the reverse 

three reading frames could be translated and queried too.  If at any point the program 

encountered a non-base letter (such as sequencing gaps represented by ‘N’) that meant 

the codon could not be faithfully translated, an ‘X’ was declared instead – which could not 

be mistaken for any of the other single-letter amino acid codes.  Where possible, the 

program would attempt to translate a codon if the first two bases were available. 
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Figure 3.3.3: A program was written in the C language to find open reading frames and print their translated amino acid sequences from 
a nucleotide input file. 
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3.3.4 Similarity Between KFBT Amino Acid Sequences from Sixteen Primulaceae Species 

The program outlined in Chapter 3.3.3 was used to generate a file containing all the 

possible open reading frames from each candidate nucleotide sequence.  The KFBT protein 

is 340 amino acids long so the sequence closest to this length was extracted from each 

output file and carried forward as the final KFBT candidate amino acid sequence for that 

species.  The PUMT coding region was translated using Clustal Omega (Sievers et al., 2011) 

and its amino acid sequence was added to the sample set at this stage for use as a negative 

control.  The subsequent alignment process used was the same as that in Chapter 3.3.2 

(Figure 3.3.2).  A final bar chart (Figure 3.3.4 lower) was produced to represent the 

percentage similarity between the amino acid sequences of KFBT and its closest matches in 

these sixteen species from the Primulaceae family. 

Alignments of both nucleotide and amino acid sequences suggest KFBT is present in all 

sixteen sequence capture samples, with only minor disagreements regarding the ranking 

of species based on similarity (Figure 3.3.4).  On average, there was only a 4.53 % reduction 

in similarity between alignments of the nucleotide and amino acid sequences.  The most 

dissimilar of the sequence capture samples was Hottonia palustris and this was also the 

only sequence in which the start codon did not align to that in P. vulgaris.  The next start 

codon was 22 amino acids further upstream in the H. palustris sequence.   
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Figure 3.3.4:  Identification of KFBT in sixteen species from the Primulaceae family.  Presence was confirmed in all.  
Similarity of nucleotide (upper) and amino acid (lower) sequences differed by <5 %, on average.  The negative 
control gene is PUMT from the P. vulgaris S locus, here used as an unrelated gene to demonstrate chance similarity.  
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3.3.5 Conserved Regions in KFBT from Sixteen Primulacea Species  

The ratio of synonymous to non-synonymous mutations is an indicator of evolutionary 

selection for purification or diversification (Zhang, 2006).  A consensus sequence was 

generated by aligning the sixteen Primulaceae KFBT nucleotide sequences to each other 

(Appendix A3).  Each species was subsequently aligned to the consensus sequence and a 

script was written to detect synonymous and non-synonymous substitutions within each 

codon (Appendix A4).  The overall ratio for each species was presented on a stacked bar 

chart (Figure 3.3.5-1) and the average mutations across all sixteen nucleotide sequences 

were also plotted (Figure 3.3.5-3).  

  Synonymous and Non-Synonymous Mutations in KFBT Genes of 
Sixteen Primulaceae Species

Figure 3.3.5-1:  Ratio of non-synonymous to synonymous substitutions between KFBT nucleotide sequences from 
sixteen Primulaceae species.  The H. palustris sequence contained the most mutations but P. prolifera and P. 
cockburniana demonstrated the highest diversifying selection.  
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The lowest mutation counts (Figure 3.3.5-1) were observed in eight species that appear to 

share the most distant common ancestors from the clade containing P. vulgaris, according 

to the phylogenetic tree in Figure 3.3.5-2.  These samples also demonstrate purifying 

selection whereas P. chungensis, P. cockburniana, P. prolifera and P. prenantha 

demonstrated diversification with ratios between 1.21 and 1.33 for non-synonymous to 

synonymous mutations. 

Clustal Omega (Sievers et al., 2011) was also used to produce a phylogenetic tree of the 

Primulaceae species from their KFBT amino acid sequences (Figure 3.3.5-2).  The ranks are 

taken from the similarity assessment between the KFBT amino acid sequences in Figure 

3.3.4 (lower).  The Clustal results are largely coherent with those similarity ranks except P. 

vulgaris and P. veris appear to share a more recent common ancestor with the most 

dissimilar species than the former alignments would suggest.  Clustal also placed P. 

kewensis closer to P. vulgaris than the Figure 3.3.4 analysis proposed. 

Figure 3.3.5-2: Clustal Omega (Sievers et al., 2011) was used to align KFBT amino 
acid sequences from 16 Primulaceae species and produce a phylogenetic tree.  The 
rank value (right) is based on previous similarity calculations and here allows 
comparison between the two methods. 
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Contigs containing KFBT from the sequence capture experiment had an average length of 

~1.6 kb.  However the P. vulgaris short homostyle contig was almost 48 kb long and so was 

screened for other genes.  It was found to contain ten potential open reading frames that 

were longer than 100 amino acids.  The BLASTp results indicated that these did not 

represent novel identified genes but likely retrotransposon insertions or genes bordering 

(CfbTL) or internal (PUMT and CYPT) to the S locus (Table 3.3.5).  

 

 

 

 

 

 

 

 

 

 

  

Open Reading Frame Length /aa BLAST Identity

1 509 PUMT (P. vulgaris)

2 398 Gag-Pol polyprotein (Trifolium pratense)

3 340 KFBT (P. vulgaris)

4 312 Glycosyl transferase (Pseunocardiales bacterium)

5 220 Transposon Tv3-I Gag-Pol polyprotein (Vitis vinifera)

6 145 No matches

7 130 Hypothetical protein (Thiohalocapsa sp. ML1)

8 128 CYPT (P. vulgaris)

9 116 Hypothetical protein (Auxenochlorella protothecoides)

10 107 CfbTL (P. vulgaris)

Table 3.3.5:  A sequence capture experiment to target the S locus was carried out in 15 Primulaceae 
species and contigs containing KFBT were identified.  The P. vulgaris short homostyle contig was 
approximately 30,000 times larger than any others.  It was found to contain ten potential open reading 
frames longer than 100 amino acids.   
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Figure 3.3.5-3 presents the average number of both mutation types per ten codons along 

the KFBT sequences.  The graph demonstrates a clear crossover of synonymous mutations 

above non-synonymous mutations across the central gene regions; an area directly 

coherent with the middle three repeats of the previously identified Kelch domain (Figure 

3.1).  This represents evolutionary effort to conserve the integrity of this domain, unlike its 

diversified bordering regions that present far higher ratios of non-synonymous to 

synonymous mutations.   

  

Figure 3.3.5-3:  Average number of synonymous and non-synonymous mutations across KFBT sequences from sixteen 
Primulaceae species.  A central region of purifying selection corresponding to the middle three Kelch repeats was 
identified. 
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The large red peak immediately preceding the Kelch domain in Figure 3.3.5-3 corresponds 

to the space between the fourth and fifth Kelch repeat, in which a fractional Kelch motif 

was identified (Figure 3.1).  The 5’-end of the gene near the start codon shows more modest 

counts of non-synonymous mutations and this is exaggerated further where the 3’-

terminus exhibits resistance to change.  Sequence corresponding to the second Kelch blade 

(codon 98 to 152) presented strongest purifying selection.  The lowest number of both 

mutation types was observed in the third motif, in which the ratio between them suggests 

the presence of neutral evolutionary selection pressure.  
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3.4 Homology of KFBT to Arabidopsis KMD Proteins 

Similarity between the four Arabidopsis KMD (AtKMD) proteins and P. vulgaris KFBT was 

calculated across their amino acid sequences.  This allowed identification of the most 

similar AtKMD protein to KFBT and also highlighted the more variable or highly conserved 

regions of their amino acid sequences.  Identification of the closest known homologue to 

KFBT could provide early clues regarding its function and help direct the lab studies.  Figure 

3.3.2 outlines the process used to make these calculations and produce a graph.  The BASH 

script written to carry this out is included in Appendix A2. 

The KFBT coding region was obtained from the P. vulgaris genome (Li et al., 2016) and the 

nucleotide sequence was converted into an amino acid sequence via the ExPasy online 

translation tool (Gasteiger et al., 2003).  Amino acid sequences of the four Arabidopsis KMD 

proteins were taken from the TAIR online database (www.arabidopsis.org).  Each AtKMD 

was aligned individually to the KFBT amino acid sequence via the Clustal Omega online 

multiple sequence alignment tool (Sievers et al., 2011). 

 

 

 

 

 

 

 

 

 

The KFBT amino acid sequence was found to convey most similarity to KMD1 and KMD2 

than KMD3 or KMD4 (Table 3.4).  Although KMD3 and KMD4 are the longest of the four 

homologues, they have the fewest number of matches and therefore the lowest overall 

percentage similarities.  The function of KFBT was presently unknown but these four 

homologues had been studied in Arabidopsis.  Literature regarding the most related 

candidate was therefore reviewed to infer functional predictions for KFBT.  

Table 3.4: Amino acid sequence similarity between KFBT and the four Arabidopsis KMD homologues.  
Similarity is presented as the number of KFBT amino acids that align to KMD and these matches are also 
provided as a percentage of the KMD amino acid sequence length, shown in column 2. 
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3.5 Identification of Conserved KFBT Domains via Comparative Genomics 

To highlight conserved domains within KFBT, three sets of alignments were carried out 

between KFBT against the four Arabidopsis KMD homologues (Chapter 3.4), the other 154 

Kelch proteins identified in P. vulgaris (Chapter 3.2) and the KFBT paralogues identified in 

fifteen other Primulaceae species (Chapter 3.3).  Similarity along the KFBT amino acid 

sequence helped to identify potential functional domains alongside regions of variability in 

the protein. 

In accordance with Figure 3.1, Clustal (Larkin et al., 2007) was used to align KFBT against 

the query amino acid sequences. The raw alignment output was copied into a text file 

(Figure 3.1A) and the sequence data was extracted (Figure 3.1B) to remove any surplus 

lines, labels, numbers and alignment symbols.  Tools commonly used in the Linux command 

line interface are usually designed to handle files line-by-line, so scripts are far smoother 

when they make comparisons between individual columns instead of between separate 

lines.  The sequence for each sample was therefore extracted into a single line (Figure 3.1C) 

before both being re-joined as vertical columns (Figure 3.1D).  Lines containing amino acids 

that did not align to KFBT were removed (Figure 3.1E).  The number of matches at each 

position were then enumerated (Figure 3.1F) and the average similarity across every ten 

amino acids was calculated (Figure 3.1G) to generate a smoother graph line when 

displaying the results (Figure 3.5).   
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KFBT Vs 4 Arabidopsis KMD homologues
KFBT Across 16 Primulaceae Species
KFBT Vs 154 Other P. vulgaris Kelch proteins
Overall Average Similarity

Kelch motif

KFBT Amino Acid Position

Amino Acid Sequence Alignments Between KFBT and Various Homologues
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Figure 3.5:  Amino acid sequence alignments were carried out between KFBT and: Upper) four Arabidopsis KMD homologues, 
Centre) KFBT from across sixteen Primulaceae species, Lower) 154 other Kelch proteins identified in P. vulgaris.  They all 
demonstrate a central region of raised similarity across the Kelch repeats. 
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A central region of raised similarity was common to all three alignments (Figure 3.5), which 

corresponds to the middle three blades of the KFBT Kelch domain (Figure 3.1).  Similarity 

reduced over the fourth motif when compared across the entire P. vulgaris Kelch protein 

family but remained above average.  Although a spike of similarity was observed in the fifth 

Kelch repeat, the region between the fourth and fifth motifs (found to contain a partial 

Kelch motif) was highly variable in all three alignments.  Similarity across the first proposed 

Kelch repeat in KFBT was not strong across any of the datasets and this was also the weakest 

match to the Kelch consensus sequence (Figure 3.1).  Similarity consistently increased at 

the C-terminus of the protein but an even greater increase was observed at the N-terminus. 
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3.6 Transcriptional and Translational Regulation of KFBT  

Upstream and downstream regions of the KFBT gene were screened for potentially 

significant regulatory elements, such as secondary structures, open reading frames, a 

transcription start site and promoter components.  Annotating binding sites and modelling 

secondary structures can provide understanding of the pathways that a gene may be 

involved in or respond to.  Such insights aid in better hypothesis formulation to direct 

experimental design.  Placement of the transcription start site was also required for 

deciding how much of the upstream sequence to include in a vector designed to contain 

the KFBT promoter region (Chapters 4.8 & 5.3).   

3.6.1 Manual Screen for Promoter Elements and Transcription Start Site 

The KFBT transcript was isolated from a thrum transcriptome assembled by Dr Jonathan 

Cocker (et al., 2018) and the sequencing read was found to end 1275 bp upstream of the 

start codon, which highlighted that the 5’-UTR could be at least 252 bp longer than the 

1023 bp KFBT coding region itself.  Following this, manual analysis of the upstream region 

was carried out.   

Transcription start sites are usually overlaid by an initiator element positioned 25 to 30 bp 

downstream of a TATA box (Juven-Gershon et al., 2010), often located in a GC-rich region 

(Lewin, 2001).  For identification of the KFBT transcription start site, the 1900 bp region 

upstream of the start codon was queried for a potential initiator element linked to a TATA 

box by this distance.  An initiator element consensus sequence was used for the query: 

[C/T][C/T]AN[T/A][C/T][C/T] (Javahery, 1994).  Although identified in mammalian genomes, its 

functionality has been confirmed in plants (Nakamura, 2002).   

A total of 184 TATA box candidates and 43 potential initiator elements were identified in 

the 1900 bp upstream of the KFBT start codon.  The TATA boxes were identified as mixed 

strings of eight adenine or tyrosine bases but only five of them were between guanine or 

cytosine residues, suggesting the others were simply strings of AT repeats and not true 

TATA boxes.  All candidate initiator elements obeyed the consensus sequence but only one 

(Figure 3.6.1-1C) was paired with a TATA box (Figure 3.6.1-1B) positioned 29 bp upstream 

within a GC-rich region.  This potentially placed the KFBT transcription start site at the 

adenine base underlined (Figure 3.6.1-1C) 1644 bp upstream of the start codon. 
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The region was also screened for other common promoter elements (Porto et al., 2014), 

such as Downstream Promoter Elements (DPE): [A/G]G[A/T][C/T][G/A/C] (Burke & Kadonaga, 

1996).  A total of 35 potential DPE fragments were identified (not shown) and three kwere 

24, 30 and 37 bp downstream of the identified initiator element (Figure 3.6.1-1C).  True 

DPE sequences are approximately 30 bp downstream of the TSS (Burke, 1996).  No 

attempts to identify suitable upstream CAAT box (Bucher, 1990), Sp1-binding GC box 

(GGGCGG), B recognition element ([G/C][G/C][G/A]CGC) or gibberellin response site (AAACAGA) 

were successful (Porto et al., 2014). 

It is possible that not every gene in the S locus elicits direct function in floral heteromorphy 

but instead co-ordinates other members of the S locus.  As GLOT is a known transcription 

factor with a MADS-box domain, the upstream region of KFBT was queried for a CArG box 

(CC[A/T]6GG), which is the consensus sequence for MADS-box binding sites (Reichmann et 

al., 1996).  A match to this consensus was found 1877 bp upstream of the KFBT start codon 

(Figure 3.6.1-1A). 
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This candidate transcription start site (Figure 3.6.1-1C) is a further 367 bp from the end of 

the KFBT sequencing read in the P. vulgaris transcriptome; a total of 1644 bp upstream of 

the start codon.  To assess the hypothesis that this was significantly long, the KFBT coding 

sequence and 5’-UTR lengths were compared to those of all other P. vulgaris genes (Figure 

3.6.1-2).  This put the proposed KFBT 5’-UTR within the longest 1.15 % of all P. vulgaris 

genes.  In addition, length of the KFBT coding sequence was almost average (Figure 3.6.1-2 

lower). 

  

TTTTTTTTTTTTTTTTTTTCTCTAGAGACCACACAAATACCACCATATAAGGATTTTATT

CTCCAACATACTTTTGTTTAATTCATCTAGCAAAAACGTTTCATCCACATCCAAAAGGCT

TAGATTTGCGATGTTTTGCATAGATTGGTGATGATTGGTGTCGATTAAGGACCTAATTTG

TTGATCATGTGGTTGTGGGTGGATGACGGATGCCGATGACTGTTCACTGCGGTGGGC TAT

ATAATGGTGCTCCGACGTTCTTTGGTCACTTGT TCAGATTAGGGATTCTTTACTTACTCG

GATCTGGTTCAAGGATATTGGAGGTATGAAAGTCCAGTAAGTGTTTGGGACAAAGTTGAG

ATGGCGTTCTGGAGGAGGAGAGAATATGAAAAAAAAAATGATTTATATATTATTATTTTC

CTAAACTATAGATGTACTTATCTAAATTGATGTGCACATATTGGTAGATACACGTATAAC

TCTCTTATCTAGCTGCATTTGTCTTATATTCGTCTTATATCGAACTATTAGTTGGGAATT

TGGGATAATATAAGTAAATCTTTACAAATCTAATGAATTGAAACCCTAAACCCTAAATTA

CTAACAACTCAATTTTAATAAATAAAAAAATTTATTTCTTTA GGTATGATTAAATATATA

GAATAGAGTAAAAAACTGTTAATATCGTCCTAAATAAATAAATTGAATCTAATAAACTCA

ACTTCGTATGGGTTAGAATCTAATTAGAATTTTATTTTATTTTAGTATAAAACTAATTAC

TTGAAAAGATTCTTAAGTATTTAATAAGTTTAATAATGAATTTACATTAAAAAAAACGAT

TTAACTTATATTTATTAATTTGTAGCAAGTTGTTTTGTAGTTTTATATCATTTTTAAATT

TGCTTTTATAAAATGTTTTTTTTTTCAGTTACACATAATTTTATAAACTTTCAATATTTT

TATATAAGTGTGTAATTTATAAAATTTTCAAACGTTTATTGTAAAGTGTTAAACTATACA

TAATAAATGGAAACTTTAAAATGGGTTCTATTCAAAAAATGTAACGATGGATCACTAAAA

CAATCCAAATTTAAAATTTAGACCAAATCAGTAGCAAAATATGATTAACGTTACAAATAT

TTATAGTCACCCCGTTCCAAATAGAGTTATTCTAATTTGGGATGTATCTGGAAATGAAAC

TTTTCCGAAATTGATGTCTAATACATATGCATTTTTACCCTATTACTCTACCTGTGTACA

TAGTAAAAGAAATATTATTTTAACTAAATTGAAGGATATTTTTAACAAATAAATATAGAA

TCACTAAATTTTCATGAATAATTGGGTTCTCCAAGCGTCCTAATGAATATAACGAAGTAG

TACAAAACAAATGTGCGGTGGACACTTTAATATATTCTCCAGTACTCGATCAACACAGTT

TTTAGAAGTATAAGATTAGATTAAAATAAATTTTGATTAACAGATAGTCCCACATGCATA

ACTGCCCAAAGGCACCGGCGGGATAAAGAGAGCGAGAGAGAACTTTGCCCACAATTTCAC

CATCATTCTATTCCTTCGGCAAAAACCTTGCTATCTGAATGTACACTAATCTTTTTCGAA

TTCTTCAAGTCTTTTAATGACACACTAGTTGAAAGAACCTAGCTAGTAGCAGGGTCCTAC

TCCCGCTACAGTTACCCAAGAGTTACTTCTTCATTCTTGACAGTTGACACGTAAAAATTA

ATATTAAATCTTTTCTTTTTTCTGTGTTTATATATATTTCAGCATATTATAAGTACCTCA

CTTACTGGTCTCGGTATTTCATATCGTCATATCCCTCCCACTTCGTGAATAAAACCTTCA

TTGACAAAACTTAAATAAATATCTAAACTATTTCATAGCCAATCTTTTGAAAATAAT ATG
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Figure 3.6.1-1:  The upstream region of KFBT was searched for common promoter elements.  A) CArG consensus 
sequence for MADS-box transcription factor binding sites.  B) Potential TATA box, 30bp upstream of an initiator element.  
C) Possible initiator element, the third base of which could be the KFBT transcription start site.  D) 5’-end of the KFBT 
sequencing read from the P. vulgaris transcriptome.  E) KFBT start codon. 
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Figure 3.6.1-2:  Lengths of the KFBT 5’-UTR (upper) and coding sequence (lower) were compared to those from 
all other P. vulgaris genes. 
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3.6.2 Self-Complementarity within KFBT 

It was hypothesised that such a long 5’-UTR of KFBT (Figure 3.6.1-2 upper) could exhibit a 

regulatory role.  To investigate this further, a dot matrix alignment was carried out between 

the KFBT nucleotide sequence and its own reverse complement to identify self-

complementary regions that may have regulatory function.  The screened area included 

untranslated regions surrounding the KFBT coding sequence.  This KFBT sequence was 

broken into consecutive kmers and each one was used to scan the reverse complement 

sequence for matches.  The dot matrix presented the frequency and locations at which 

each kmer occurred.  Dots that appear close to the x=y line represent matches that are near 

to each other in the sequence, while dots further from this line represent greater distance 

between the two matching regions. 

Any matching kmer between these two sequences could form a potentially self-

complementary region in vivo.  The process was repeated using kmer lengths from 6 up to 

40 bases and the longest match was selected for each position and presented on the final 

dot matrix (Figure 3.6.2-1).  Aside from identifying self-complementary regions, areas of 

high repetition presented themselves as clusters of dots on the graph.  The script used to 

generate this data is included in Appendix A5. 

A heat map of GC content was generated for the samples by using a sliding window that 

analysed each sequence in consecutive 100 bp kmers to enumerate the frequency of 

guanine and cytosine occurrences.  This allowed the corresponding GC content to be 

identified for any part of the sequence, meaning areas of interest on the graph could 

quickly be identified as either AT repeats or something more complex.  

The KFBT coding sequences corresponded to an area of increased GC content (Figure 3.6.2-

1).  Self-complementary matches were less dense within this region than outside of it 

(Figure 3.6.2-1).  Aside from a self-complementary 13 bp fragment between 169 bp into 

the KFBT coding region and 451 bp upstream of the start codon, no other matches longer 

than 9 bp were identified within the coding sequence.   

There were two significant matches between the KFBT 3’-UTR and 5’-UTR; a 15 bp match 

linking position +1384 with -1359 and a 14 bp match linking position +1865 with -957.  A 

palindromic 14 bp fragment was identified 20 bp downstream of the KFBT stop codon: 

ACATTTTAAAATGT.  A second perfectly palindromic fragment of the same length was also 

identified in the KFBT 3’-UTR, 444 bp downstream of the stop codon: TCAGTTATAACTGA.   
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Transcription start sites are commonly found in areas of high GC content (Lewin, 2001).  

One predicted transcription start site of KFBT is 1644 bp upstream of its start codon (Figure 

3.6.1-1C) and is positioned in a GC-rich region according to the heat map in Figure 3.6.2-1, 

providing further evidence that this could be the true transcription start site of KFBT.  

However, multiple GC-rich regions also occur in the 1 kb immediately preceeding the KFBT 

start codon, which is where a transcription start site would usually be expected to be found.  

Two main clusters of repetitive regions appeared 0.5-1.5 kb and 2-3 kb upstream of the 

KFBT start codon.  These largely corresponded to areas of low GC content in the heat map 

and are therefore indicative of AT repeats in the promoter. 
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Figure 3.6.2-1:  A dot matrix alignment between the KFBT nucleotide sequence and its reverse complement to 
identify self-complementary matches and repetitive regions (upper).  Matching sequences between 7 bp and 
15 bp in length are displayed.  Co-ordinates on both axes refer to 5’-3’ positions on the forward sequence.  A 
GC content heat map corresponding to the nucleotide sequence was also generated (lower). 
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The graph allowed identification of self-complementary regions across a range of distances, 

however dots closest to x=y are nearer in the sequence and present a higher chance of 

forming RNA hairpins.  The sequence was subsequently re-screened for potential stem-

loop structures (Appendix A6).  Stem lengths of 5 to 15 bp were used based on the KFBT 

dot matrix alignment results.  Loop lengths between 3 and 20 nucleotides were screened 

because those under 20 nucleotides are most common (Schudoma et al., 2010).  Upstream 

and downstream regions of KFBT were also queried for alternate open reading frames in 

the 5’-3’ orientation. 

The results were mapped over the KFBT nucleotide sequence alongside results of the RNA 

hairpin analysis (Figure 3.6.2-3).  Figure 3.6.2-2 depicts the distribution of stem and loop 

lengths for each identified RNA hairpin.  Overall, 232 fragments mapping across ~71 

positions were identified (Figure 3.6.2-3) with the potential to form RNA hairpins and 98.77 

% of those had a stem length of 5 or 6 nucleotides (Figure 3.6.2-2).  Figure 3.6.2-2 depicts 

the distribution of stem and loop lengths for each identified RNA hairpin.  
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Figure 3.6.2-2:  Distribution of stem and loop lengths from potential RNA hairpin structures 
identified within and around the KFBT nucleotide sequence.  The query searched 3000 bp 
upstream of the KFBT start codon and 200 bp downstream of its stop codon.  Stem fragments 
between 5 and 15 nucleotides were screened.  Loops between 3 and 20 nucleotides were 
included. 
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One potential RNA hairpin, with a 5 bp stem and a loop length of 8 nucleotides, was found 

to span the KFBT start codon (Figure 3.6.2-3).  A further three were located in the KFBT 3’-

UTR.  They also had 5 bp stems and possessed loops of 19, 15 and 14 nucleotides each.  

There were no hairpins identified around the transcription start site predicted in Chapter 

3.6.1 but fourteen were found within the region of a second potential start site (discussed 

below; Figure 3.6.3-2). 

A total of thirty open reading frames at least 10 amino acids in length in the 5’-3’ orientation 

were identified in the untranslated areas surrounding KFBT.  Those in excess of 20 amino 

acids were mapped to the KFBT nucleotide sequence alongside the 232 predicted RNA 

hairpin structures (Figure 3.6.2-3).  The longest consisted of 64 amino acids and was 

situated ~200 bp upstream of the true KFBT start codon. 
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Figure 3.6.2-3:  Potential RNA hairpin structures identified in and around KFBT.  Stem lengths (red) between 5 and 15 
nucleotides with linker regions (green) between 3 and 20 nucleotides were assessed.  Alternative open reading frames 
in the 5’-3’ direction are also presented (blue). 
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3.6.3 RNA-Seq Screen for Transcription Start Site  

RNA-Seq reads from pin and thrum with both long and short homostyle samples had been 

aligned against the P. vulgaris genome to allow quantification of KFBT expression levels in 

various floral morphs (Chapter 3.7).  A secondary benefit to this alignment was the 

potential discovery of previously unidentified transcripts in or around KFBT.  The StringTie 

(version 1.3.3; Pertea et al., 2016) assembly and quantification tool was used on the 

Sequence Alignment Maps from HISAT (from Chapter 3.7.1).  The output files contained a 

table of exons and transcripts predicted from the RNA-Seq data of each sample.  All 

transcripts predicted for the scaffold on which KFBT is known to be situated were extracted.  

An R package (version 5.3.0; www.r-project.org) was used to plot positions of these 

transcripts from each sample onto a graph.  Start and end locations on the scaffold for each 

read were adjusted in relation to KFBT – with positive and negative values indicating 

upstream or downstream positions.  These were used as the x-coordinates for each 

transcript and a common y-value was assigned to those from the same sample set (Figure 

3.6.3-1).  

  

Figure 3.6.3-1:  Position and length of RNA-Seq reads that mapped to the P. vulgaris KFBT gene. 
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Assembled reads in the majority of samples appear to continue ~1 kb upstream of the start 

codon with a second ~500 bp transcript after an intervening ~350 bp gap.  However, one 

short homostyle read and another from the Somerset long homostyle sample both span 

the entire 2 kb distance into the KFBT coding region.  This is even further than the potential 

transcription start site predicted (Chapter 3.6.1) 1644 bp upstream of the KFBT start codon 

(Figure 3.6.1-1C). 

Figure 3.6.3-2 displays transcript positions that mapped to the wider S locus scaffold and 

not only the KFBT gene.  As KFBT is at the end of the S locus, downstream transcripts were 

outside of this unit and are therefore common to all samples whereas upstream reads did 

not appear in any of the pin samples.  This supports the current model that the S locus is 

not present in the pin genome (Li et al., 2016).   

RNA-Seq reads also mapped to the fellow S locus genes, CYPT and PUMT (Figure 3.6.3-2).  

Reads upstream of CYPT were 200-1456 bp in length and all only mapped to various 

bacterial artificial chromosomes made from the P. vulgaris genome for an alternative 

experiment by Dr Jinhong Li.  These were discarded as insignificant and one was a clear 

spurious misalignment that had mapped to the pin sample.  The remaining two S locus 

genes are further upstream on a different scaffold and are therefore not shown. 
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Although output files from StringTie had been used to annotate transcript locations in and 

around KFBT, nothing was known about their coverage.  This offered a third way to visualise 

expression and predict the transcription start site of KFBT.  The HISAT package (Kim et al., 

2015) had been used to map RNA-Seq reads to the P. vulgaris genome (Chapter 3.7) and 

this had produced sequence alignment maps.  The depth files associated with these 

sequence alignment maps were analysed to infer transcript expression levels from their 

coverage values.  Mean coverage was calculated between the four biological repeats of 

thrum, short homostyle and two long homostyle varieties (Figure 3.6.3-3).  Transcripts 

situated within 2000 bp on either side of the KFBT start codon were included. 

The upstream transcript in Figure 3.6.3-3 – approximately 2 kb away from the KFBT start 

codon – demonstrated significant expression, higher than the KFBT coding region itself in 

all but the Somerset long homostyle sample.  A peak containing the KFBT open reading 

Figure 3.6.3-2:  Position and length of transcripts assembled from RNA-Seq that mapped to the P. vulgaris genome 
scaffold containing KFBT.  Two other S locus genes were identified alongside KFBT.  Reads to the right of KFBT are 
outside of the S locus. 
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frame commenced approximately 900 bp upstream of the start codon (Figure 3.6.3-3), 

which is a more expected position for the transcription start site.   

Around 300 bp after the start codon, depth momentarily dropped to zero in the homostyle 

samples before resuming.  Depth values in Figure 3.6.3-3 are a mean average across four 

biological repeats for each sample but the individual datasets were each checked for this 

premature transcription termination.  It was confirmed that all eight biological repeats 

from Chiltern and Somerset long homostyle morphs exhibited this termination ~300 bp into 

the KFBT coding region. 

The four short homostyle biological repeats also demonstrated this loss of coverage; one 

of which terminated even earlier at position ~200 and another presented a complete loss 

of expression across almost the entire first half of the coding region.  Only one of the thrum 

replicates appeared to lose coverage at this position, with another showing no reduction 

in depth at all and two more demonstrating approximately 50 % loss.  Furthermore, the 

homostyle datasets included a technical RNA-Seq repeat (thrum did not) and therefore had 

greater chance of containing a read to span this gap but this did not occur. 

Some transcripts also ceased 200 to 500 bp upstream of the KFBT start codon.  This is most 

notable in the short homostyle sample presented in Figure 3.6.3-3 but was also observed 

in two thrum samples and one Chiltern long homostyle.  This did not occur in the Somerset 

mutant line.   Coverage declined rapidly in all flower morphs after the stop codon at 

downstream position 1023 (Figure 3.6.3-3).  The coverage data in Figure 3.6.3-3 suggests a 

transcription start site approximately 900 bp upstream of the KFBT start codon.  This is a 

far more reasonable proposition than the 1644 bp 3’-untranslated region previously 

proposed (Figure 3.6.1).  According to the RNA-Seq coverage data (Figure 3.6.3-3), the 

transcription start site from the previous prediction (Chapter 3.6.1) is positioned in the 

middle of what appears to be a short ~500 bp transcribed region.  This expression could 

explain why the TATA box was surrounded by a GC-rich region (Figure 3.6.1).  
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Figure 3.6.3-3:  Mean coverage of RNA-Seq reads across the KFBT region in four floral morphs of P. vulgaris.  A near total loss of 
transcript depth in homostyle samples was identified in the first quarter of KFBT. 
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3.7 Differential Expression of KFBT Across Multiple Floral Morphs 

The expression levels of KFBT in various morphs of P. vulgaris flowers were quantified via 

RNA-Seq analysis.  The floral morphs were pin, thrum, a short homostyle mutant and two 

lines of long homostyle mutants (Li et al., 2016; Crosby, 1940; Crosby, 1949).  The S locus is 

absent from the pin genome but this sample was included as a negative control to prove 

that expression does not occur.  The flowers present different morphologies and this 

experiment was used to potentially connect these morphologies with KFBT expression and 

provide early indications of its function in heteromorphy.   

All five Primula lines were from the lab glasshouse population (Chapter 2.1).  Both long 

homostyle lines were derived from UK populations naturally occurring in the wild, one from 

Somerset (Crosby, 1940; Li et al., 2016) and one from the Chiltern Hills (Crosby, 1949; Li et 

al., 2016).  Mature flower buds were sampled prior to opening at a length of 15-20 mm by 

Dr Jinhong Li.  Four biological replicates were used for each morph.  RNA was extracted by 

Dr Li and Illumina sequenced as paired-ends by the Platforms & Pipelines team at the 

Earlham Institute, Norwich. 

3.7.1 Mapping RNA-Seq Reads to the P. vulgaris Genome 

Before expression levels of KFBT in the sample transcriptomes could be quantified, the raw 

sequencing reads had to be mapped to the P. vulgaris genome.  The long homostyle 

assembly by Dr Jonathan Cocker was used as the template because it is the highest quality 

P. vulgaris genome available (Li et al., 2016).  Contigs smaller than 200 bp had previously 

been filtered from the genome, which was queried against a library of known contaminants 

to remove such sequences and improve its quality (Li et al., 2016).  The twelve homostyle 

RNA-Seq samples (containing four biological repeats for each of the two long and one short 

homostyle mutant lines) were individually sequenced on two lanes, meaning there was a 

technical repeat for each.  The four biological repeats for each pin and thrum sample were 

sequenced at an earlier date on just one lane (Li et al,. 2016).   

Version 2.1.0 of the ‘Hierarchical Indexing for Spliced Alignment of Transcripts’ (HISAT; Kim 

et al., 2015) package was used for alignment of the RNA-Seq reads to the P. vulgaris 

genome.  Using a splice-aware tool was essential due to the alignment of RNA to a DNA 

template, therefore it was imperative that the algorithm accommodated gaps caused by 

the removal of introns.  The hisat2-build command was used to make an index of the 
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reference genome, as required by the HISAT tool (Kim et al., 2015).  The hisat2 command 

was subsequently used with each set of paired read files for each sample to begin 

alignment of the RNA-Seq reads to the reference genome.  The input files were in FASTQ 

format so the -q argument was used with this command.  The -x argument was used 

because paired reads were being provided as separate files and the --dta argument was 

used, as stipulated by the StringTie package (Pertea et al., 2016) which was used for 

downstream analysis. 

3.7.2 Quantification of KFBT in Multiple Morphs of P. vulgaris Flowers 

To quantify expression levels of KFBT in the various morphs that underwent RNA-Seq, the 

number of transcripts that mapped to this gene were enumerated.  The output from the 

HISAT tool consisted of a Sequence Alignment Map (SAM) for each sample.  The samtools 

depth command was used with the -aa argument on these files to display the coverage for 

every base in the genome; including those to which zero transcripts mapped.  

The P. vulgaris reference genome (Li et al., 2016) was queried with the KFBT coding region 

to locate the exact scaffold and position at which the gene is located.  The mean coverage 

was then calculated across these co-ordinates for each depth file, to quantify the average 

expression levels of KFBT in each sample.  The number of raw reads was deduced from the 

RNA-Seq files so that the calculated expression levels could be converted into figures of 

‘transcripts per million’ (TPM), which is the standard way to present normalised RNA-Seq 

data.  The mean TPM values and standard errors were calculated across the four biological 

repeats for each floral morph and presented as a bar chart (Figure 3.7.2). 

The analysis was repeated in three different ways to check consistency across the results.  

Average TPM values from the StringTie (Pertea et al., 2016) output across the KFBT region 

were calculated and presented on a bar chart.  A second check used the average read 

counts from StringTie instead.  The final check involved using version 0.44 of the Kallisto 

package (pachterlab.github.io/kallisto/) to align and quantify the RNA-Seq reads against 

the KFBT gene (not the entire genome).  Expression level patterns were consistent across 

all four methods, which confirmed authenticity of the results. 
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The Somerset long homostyle morphs presented a mean 2.94-fold increase in KFBT 

transcription when compared to thrum, however the Chiltern long homostyle and thrum 

samples displayed similar levels of KFBT expression (Figure 3.7.2).  There are no known 

phenotypic differences between long homostyles of the Chiltern and Somerset 

populations.  Short homostyle flowers exhibited a mean 2.13-fold decrease in KFBT 

expression levels when compared to thrum (Figure 3.7.2).  The short homostyle phenotype 

is linked to a mutation in GLOT that causes a reduction in anther height (Li et al., 2016).  The 

pin flower presents no KFBT transcripts because this gene is part of the S locus, which is 

absent from the pin genome (Li et al., 2016). 

  

Figure 3.7.2:  Quantification of KFBT expression across thrum, pin, short homostyle, Chiltern long 
homostyle and Somerset long homostyle flowers via RNA-Seq.  Error bars represent standard error. 



118 
 

3.8 Differential Expression of P. vulgaris Genes In Multiple Floral Morphs 

RNA-Seq data had been used to specifically quantify KFBT expression in flowers of thrum, 

pin, short homostyle, Chiltern long homostyle and Somerset long homostyle (Chapter 3.7).  

However, the dataset also contained transcriptome-wide information.  The long homostyle 

phenotype is caused by a mutation in CYPT (Huu et al., 2016; Li et al., 2016) and the short 

homostyle phenotype is linked to a GLOT mutation; both of which lose self-incompatibility 

(Li et al., 2016).  The morphology of pin flowers is caused by absence of the entire S locus 

(Li et al., 2016). 

The phenotypes presented by these flowers are expected to be a result of differential gene 

expression.  It was therefore hypothesised that elucidating differentially expressed genes 

between these RNA-seq samples could identify candidates involved in the networks that 

ultimately regulate these various physiologies.  This information would offer insight 

regarding the end-to-end pathway that underpins both floral heteromorphy and self-

incompatibility in Primula.  It was also important to establish this dataset in advance of a 

planned yeast two-hybrid experiment (Chapter 6) to query for potential differential 

expression of genes encoding any identified KFBT partner proteins, which could offer 

significant support for functional models of KFBT. 

StringTie (Pertea et al., 2016) was used in Chapter 3.7.2 to map RNA-Seq reads from each 

sample to the P. vulgaris genome.  These output files also contained normalised expression 

levels for each predicted transcript, in the form of Transcripts Per Million (TPM) values.  A 

shell script for the Linux Command Line was written (Appendix A7) that utilised the General 

Feature Format file from the P. vulgaris genome annotation with the StringTie output files 

for each sample to calculate the average expression levels of every gene.  

With reference to wildtype thrum, overexpressed genes in each sample were separated 

from under-expressed genes.  Genes were first sorted in order of their expression levels.  

The difference between thrum TPM and corresponding sample TPM value was calculated 

for each gene.  These differential expression figures were either converted to a percentage 

of the sample TPM for overexpressed genes or a percentage of the thrum TPM for 

underexpressed genes (i.e. the larger of the two figures).  Values for under-expressed genes 

were multipled by -1. 

Differential expression percentages were presented on bar charts for each sample (Figure 

3.8-1).  As genes were first ordered by their raw TPM values, bars further to the right were 
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deemed to exhibit more significant differential expression.  For example, a 100 % bar on 

the right of the overexpression graph could mean 6000 transcripts in the sample flower 

versus 0 transcripts in the thrum, whereas the same bar on the left of the plot could 

represent just 1 transcript in the sample against 0 in thrum.  The bars were filtered to only 

include those on the righthand quarter of the graph with differential expression figures that 

exceeded 80 %.  These thresholds were arbitrary but presented a high-priority list of 

candidates for further investigation.   
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  Figure 3.8-1: RNA-Seq data was used to estimate average expression levels for every gene from five P. vulgaris floral morphs.  After 
ordering genes by normalised transcript levels, differential expression was calculated between thrum and the other morphs before 
filtering.  The most significant 25 % of genes with >80 % differential expression were extracted for further analysis (green).  The others 
were discarded (red). 
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Resultant gene lists from each sample were compared to identify common entries (Figure 

3.8-2).  For example, genes common to the Chiltern long homostyle, Somerset long 

homostyle and pin sample lists could be indicative of differential expression that occurs 

when CYPT is disrupted by mutation (Huu et al., 2016; Li et al., 2016).  Likewise, genes 

common to the short homostyle and pin lists may be affected by GLOT absence (Li et al., 

2016).  Genes in only the long or short homostyle lists could be candidates for involvement 

in the self-incompatibility pathway, which is broken down in these mutants. 

The Somerset and Chiltern long homostyle plants each respectively presented 271 and 139 

overexpressed genes for further investigation, of which 65 were common to both lists 

(Figure 3.8-2).  These were carried forward and 19 were found to be in common with the 

overexpressed genes identified in pin flowers (Figure 3.8-2).  Both long homostyle and pin 

plants have non-functional or absent CYPT genes that fail to suppress anther height (Huu et 

al., 2016).   

The GLOT gene is dysfunctional in short homostyles and entirely absent from the pin 

genome (Li et al., 2016).  Short homostyle and pin samples were found to share 33 

overexpressed genes (Figure 3.8-2).  Of the 65 overexpressed long homostyle genes, 40 

were found to be in common with those from short homostyle flowers (Figure 3.8-2).  

Mutations present in these homostyle genomes leads to a breakdown in the self-

incompatibility system. 

There were more under-expressed than overexpressed genes identified (Figure 3.8-2).  This 

is true for every sample except the Somerset long homostyle, though there was still an 

increased number of under-expressed genes in common with the Chiltern long homostyle 

(Figure 3.8-2).  Of these 116 long homostyle genes, 32 were shared with under-expressed 

genes identified in pin and 90 were shared with those from short homostyle flowers.  A 

total of 73 under-expressed genes were found in common between the short homostyle 

and pin morphs.  There were 14 overexpressed and 25 under-expressed genes common to 

all three tested morphs (Figure 3.8-2).   
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Figure 3.8-2:  Number of most significantly upregulated and downregulated genes in RNA-Seq datasets from flowers 
of thrum, pin, short homostyle and two long homostyle populations. 
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Transcript levels of nineteen genes that were deemed to exhibit the most significant 

differential expression in at least two morphs are shown in Figure 3.8-3.  Their 

corresponding descriptions were obtained via BLASTx and presented in Table 3.8.  This 

identified two genes encoding lipid transfer proteins as well as two genes involved in the 

transport of UDP.  The plant self-incompatibility S1 gene from Corchorus capsularis should 

also be a top priority for further investigation.  Transcription of this gene appears to be 

significantly upregulated in pin and long homostyle plants, which both lack a functional 

CYPT gene (Huu et al., 2016; Li et al., 2016).  
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Figure 3.8-3:  Transcript levels of genes predicted to exhibit the most significant differential expression between P. 
vulgaris flower morphs of thrum, pin, short homostyle and long homostyle.  Only those that demonstrated differential 
expression across at least two groups were included. 
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Table 3.8:  BLASTx results to identify candidate genes that exhibit greatest differential expression between thrum, 
pin, short homostyle and long homostyle P. vulgaris flowers. 
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3.9 Discussion 

3.9.1 Comparison of KFBT Against Arabidopsis KMD Homologues 

Comparisons were made between KFBT and homologous proteins with known function to 

gain early insight into potential roles within P. vulgaris.  The KFBT amino acid sequence was 

aligned against the Kiss me Deadly (KMD) proteins from Arabidopsis; its four closest 

homologues (Figure 3.5 upper).  It was found to be more similar to both KMD1 and KMD2 

than KMD3 or KMD4 (Table 3.3.5).  Although longer sequences would be expected to have 

an increased chance of containing matches during alignment, KMD1 and KMD2 were the 

shorter of the two pairs by approximately 15 %.  The KMD1 and KMD2 genes are on the 

same Arabidopsis chromosome – on opposite sides of the centromere – and KMD3 and 

KMD4 are near the telomeric side of two different chromosome arms (Sun et al., 2007).  

Of the four KMD proteins, KMD1 and KMD2 have been shown to interact with the 

Arabidopsis SKP1 (ASK1) subunit of the SCF complex responsible for protein degradation 

but KMD4 did not (Zhang et al., 2013).  Conversely, binding between all four KMD proteins 

and ASK1 has elsewhere been confirmed (Kim et al., 2013a).  While these studies present 

conflicted findings, they both agree on the affinity between ASK1 with KMD1 and KMD2, 

which together displayed most similarity to KFBT.  Expression of KMD1 and KMD2 was most 

abundant at the shoot meristem in Arabidopsis, with KMD2 and KMD3 accumulation in the 

root meristem too (Kim et al., 2013a).  Root expression of KMD2 was the highest of all 97 

Kelch F-box genes in Arabidopsis, demonstrating an approximate 3-fold increase over all 

but one of them (Sun et al., 2007).  Both areas rich in KMD2 transcripts are active regions 

of cell division. 

The KFBT amino acid sequence shared greatest similarity with that of KMD2, which was the 

Arabidopsis KMD found to exhibit greater expression in flowers and buds than other tissues 

(Zhang et al., 2013).  This study did not examine KMD3 but KMD2 displayed the lowest 

average expression compared to the other two.  Conversely, Sun (et al., 2007) found KMD3 

to have the highest expression of all 97 Arabidopsis Kelch F-box genes in young flower 

tissue by approximately double in comparison to those outside of the KMD family.  

Moreover, KMD4 exhibited second highest floral expression and approximately 3-fold 

greater anther expression than all other Arabidopsis Kelch F-box genes.  The former 

experiment utilised quantitative PCR and the latter employed a microarray method, which 

possibly explains disparity between their findings.  
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Further differential expression analyses uncovered reduced KMD2 transcription in 

sunflower embryos treated with methylviolgen, which inferred a role for this gene in 

abscisic acid signalling (El-Maarouf-Bouteau et al., 2014).  In Arabidopsis grown in reduced 

gravity on the International Space Station, a 1.5-fold increase in KMD2 expression was 

observed alongside 1.28-fold and 1.23-fold increases of KMD3 and KMD1, respectively 

(Weitzel et al., 2016).  The overexpression of KMD2 was linked to lightening of the UV-

protectant seed coat in Arabidopsis and the KMD proteins were subsequently shown to 

regulate phenylpropanoid biosynthesis by degradation of four phenylalanine ammonia-

lyase enzymes (Zhang et al., 2013).   

In a separate experiment, KMD2 was the only one of the four Arabidopsis homologues not 

to undergo transcriptional reduction when plants were exposed to cytokinin for 1 hr (Kim 

et al., 2013a), although in the same year the authors found KMD2 to downregulate 

cytokinin response in rice (Kim et al., 2013c).  Unlike the other three KMD genes, KMD2 

was not found to demonstrate circadian dependence in response to environmental factors 

(Kim et al., 2013a). 

Functional redundancy amongst the KMD family further impedes speculation regarding the 

role of KFBT.  For example, the lignin content of Arabidopsis plants has been shown to 

reduce when either KMD1, KMD2 or KMD4 are overexpressed (Zhang, 2013).  The 

knockdown of KMD3 transcripts has also been accomplished by using a KMD4 antisense 

construct in Arabidopsis (Kim et al., 2013a).   

Although KFBT has displayed greatest similarity to what appears to be the more flower-

specific of the KMD homologues (Zhang et al., 2013), the vast number of diverse roles for 

these proteins has made it difficult to establish refined hypotheses regarding KFBT function.  

However, it is reasonable to expect that KFBT may contain an F-box domain for interaction 

with SKP1 of the ubiquitinase pathway in Primula.  As roles in both cytokinin response and 

the abscisic acid pathway have been discussed in literature, KFBT could likely have a role in 

modulating sensitivity to plant hormones.  Its method of action may also be indirect, as 

seen in the targeting of the phenylalanine ammonia-lyase enzyme to limit phenylpropanoid 

biosynthesis (Zhang et al., 2013) and targeting of transcription factors to modulate 

cytokinin response in Arabidopsis (Kim et al., 2013b).   

If KFBT can recruit numerous proteins for degradation – like KMD2 – then target specificity 

must be conveyed by tight regulation of its spatial and temporal expression instead.  It 
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follows that seemingly functionally redundant Kelch F-box genes have demonstrated 

differential expression, which so far remains unexplained (Schumann et al., 2011).  

Increased impetus was therefore placed on analysis of regulatory promoter elements 

(Chapter 3.6) and qPCR experiments (Chapter 4). 

3.9.2 Characterisation of Kelch Repeat and F-Box Domains in KFBT 

Kelch proteins can be phylogenetically grouped based on their number of Kelch repeats 

(Schumann et al., 2011).  Kelch proteins without F-box domains usually contain five to 

seven repeats (Li et al., 2004) but Kelch F-box proteins in plants contain between one and 

five (Schumann et al., 2011).  Of the 263 Kelch proteins tested in Arabidopsis, 14 % 

contained a single Kelch repeat, 59 % had two, 19 % possessed three, 4 % had four and the 

final 4 % contained five (Sun et al., 2007).  Analysis of the entire Pfam database found 65 % 

of Kelch proteins to only contain one repeat (Schumann et al., 2011).  The author 

speculated how the propeller structure could be completed with just one Kelch motif but 

concluded that these proteins were likely to contain further repeats that simply went 

undetected by the bioinformatical tools due to degradation of the Kelch consensus toward 

the C-terminus.   

Five Kelch repeats were identified in KFBT.  Unlike the gradual C-terminal degradation of 

Kelch motifs observed by Schumann (et al., 2011), the fifth KFBT Kelch repeat was a closer 

match than the first (Figure 3.1).  These motifs did not exhibit less coherence with the 

consensus sequence toward the C-terminus of the protein.  The fourth and fifth repeats 

were separated by a 29 amino acid spacer that appeared to contain half a Kelch motif.  

Fractional Kelch repeats have been identified in other proteins (Kutuzov et al., 2002).  Only 

two or three Kelch repeats have been identified in the AtKMD proteins (Zhang et al., 2013).   

Alignments of the KFBT amino acid sequence to four Arabidopsis KMD proteins, 154 P. 

vulgaris Kelch proteins and KFBT sequences from sixteen Primulaceae family members 

(Figure 3.5) all presented a central region of high similarity that directly corresponded to 

the middle three Kelch repeats in KFBT (Figure 3.1).  The region between the fourth and 

fifth Kelch motifs was highly variable and similarity also reduced over the fifth Kelch repeat 

but significantly increased toward their C-termini.  While this region has not yet been 

associated with a functional domain, it has been proposed that the C-terminus of proteins 

containing Kelch domains may fold to play important roles by capping the propeller and 

protecting the hydrophobic core (Li et al., 2004).  A truncated Kelch consensus has even 
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been found to commence prior to a stop codon at the 3’-end of the human Keap1 gene yet 

the remainder of the blade resumed after the start codon (Li et al., 2004) – though this did 

not encode an F-box protein. 

A string of 45 amino acids precedes the Kelch domain in KFBT.  The first 48 amino acids of 

the Arabidopsis KMD proteins were found to contain the F-box domain (Kim et al., 2013a).  

The F-box consensus sequence used by the authors found six matches, nine highly similar 

hits and seventeen weak matches to the KMD proteins.  This same consensus sequence 

identified ten matches, eight highly similar hits and six weak matches to the N-terminal 

region of KFBT (not shown).  Findings by Kim (et al., 2013A) thus support these position, 

length and consensus sequence analyses to confirm presence and location of the F-box 

domain in KFBT.  This explains the highly similar N-termini consistently observed across 

alignments in which no Kelch repeats were located (Figures 3.5 & 3.1).   

While attempts have been made to elucidate an F-box consensus sequence, these domains 

are notoriously difficult to identify due to the low number of consistent positions (Kipreos 

& Pagano, 2000).  Similarity between the F-box regions of KFBT and other proteins was 

perceived to decline toward the C-terminal Kelch domain (Figure 3.5).  Divergence at the 

C-terminus of F-box sequences has elsewhere been observed (Mercer et al., 2005).   

Although Kelch domains on different P. vulgaris proteins have different target substrates, 

the F-box would be expected to bind with the same partner protein: an SKP1-like subunit 

of an SCF complex, of which there are approximately nineteen variants in Arabidopsis 

(Takahashi et al., 2004).  However, this N-terminal region of similarity was not as wide 

between the 155 P. vulgaris Kelch proteins than in the other two alignments.  This is 

because not every member of the Kelch protein family has an N-terminal F-box domain.  

There were also far more samples compared in this alignment, which inevitably introduces 

much greater sequence diversity.   

The number of synonymous to non-synonymous mutations across the KFBT sequences from 

sixteen Primulaceae species were tallied (Figures 3.3.5-1 & 3.3.5-3).  This is an indicator of 

the direction of evolutionary selection pressure toward either divergence or purification 

(Zhang et al., 2006).  The average number of non-synonymous mutations increased toward 

the 5’-end of the F-box consensus sequence identified in KFBT, reinforcing the earlier point 

of 5’-end variance in F-box sequences.  However, a clear crossover was observed between 

the two mutation types and a raised ratio of synonymous to non-synonymous substitutions 
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was contained to the central three Kelch repeats, suggesting their evolutionary resistance 

to change.  The most conserved region was across the second Kelch motif and crystal 

structure analysis of the human Keap1 protein showed that extra residues at this second 

propeller blade form protrusions that directly interact with the recruited target protein (Li 

et al., 2004).  Preservation of this positively charged structure was so imperative that 

mutations here resulted in total loss of binding affinity to the substrate (Li et al., 2004).  The 

mutation comparisons (Figure 3.3.5-3) show a strongly diversifying region across the fifth 

KFBT Kelch repeat and the preceding space to the fourth motif, in which a fractional Kelch 

repeat was located.  The graph returns to purifying selection at the C-terminus.  This latter 

region of conservation reinforces an earlier proposition that the C-terminus may present a 

structure important in closing the β-barrel propeller formed by the Kelch domain. 

3.9.3 Identification of P. vulgaris Kelch Protein Family 

Amino acid sequences from the P. vulgaris genome were queried for other proteins 

potentially containing Kelch domains.  Kelch motifs are usually 44 to 56 amino acids long 

and share as little as 11 % similarity between different proteins (Bork & Doolittle, 1994), 

which makes them difficult to identify via consensus sequence.  Kelch motifs at the same 

position in different proteins have been found to share more similarity than different Kelch 

motifs within the same protein and this suggests each blade may have a particular role in 

the final folded propeller (Schumann et al., 2011).   

The motif search parameters therefore had to be designed around common landmarks of 

the Kelch consensus sequence (Figure 3.2-1).  A diglycine pair, leucine and tryptophan are 

conserved in over 90 % of Kelch sequences, with the leucine and tryptophan residing a 

distance of six amino acids apart in approximately 70 % of motifs (Adams et al., 2000).  The 

P. vulgaris search parameters permitted this leucine to be replaced by either phenylalanine 

or tyrosine instead.  The double glycine pair is important for the sharp turn of the protein 

propeller structure and is separated from the downstream leucine by a linker of varying 

length (Li et al., 2004).   

Common linkers of 11 to 19 (Adams et al., 2000) and 12 (Andrade et al., 2001) were noted 

in the literature.  A gap of 9 to 25 amino acids was implemented in the P. vulgaris screen.  

Smaller gaps do exist but, although reducing this lower parameter boundary would have 

included more Kelch proteins (Figure 3.2-2 upper), the primary aim of this investigation was 

to identify KFBT-like proteins and not to exhaustively define the entire Kelch family.  
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Another 32 Kelch candidates would have been obtained if this lower gap boundary 

parameter had been reduced to nine (not shown).  Moreover, candidates were filtered out 

that did not contain at least two Kelch repeats, though proteins containing a single motif 

have been identified in plants (Schumann et al., 2011).  The number of identified genes 

would have risen to 1320 (not shown) if parameters had been adjusted to include single 

motif Kelch candidates. 

Claims of 96, 97 and 103 Kelch F-box proteins in Arabidopsis have been made (Zu et al., 

2009; Sun et al., 2007; Schumann et al., 2011).  A further 36 were identified in Vitis vinifera, 

68 in Populus tricocarpa, 39 in Oryza sativa, 44 in Sorghum bicolor, 46 in Selaginella 

moellendorfii and 71 in Physcomitrella patens (Schuman et al., 2011).  On the contrary, Zu 

(et al., 2009) identified only 35 in poplar and 27 in rice.  This highlights the difficulty in 

defining such variable proteins.  Just three Kelch F-box proteins were identified in walnut 

and they demonstrated greater expression in flowers than nutritive tissues (Yan et al., 

2019).   

A total of 155 Kelch proteins were identified in P. vulgaris, including KFBT itself (Figure 3.2-

2 upper).  Two of these demonstrated markedly increased similarity to KFBT (Figure 3.2-3), 

one of which had an amino acid sequence of exactly the same length and its most 

significant BLAST hit was to KMD3 (Table 2.11.1).  The location of this candidate in the 

genome was checked to see whether it was near any other genes similar to those in the S 

locus to perhaps begin understanding how this tightly linked supergene was derived, but 

no significant findings were made.   

Of the top fifteen most similar P. vulgaris Kelch candidates to KFBT, ten of them were 

confirmed as F-box/Kelch repeat proteins by BLAST and another was clearly linked to the 

ubiquitinase pathway in which KFBT has expected involvement (Table 2.11.1).  A 

phylogenetic tree from Clustal alignments was also analysed (Figure 3.2-3) but the 

irrelevance of its closest hits to KFBT suggested superiority of the former analytical method.   

The most commonly occurring amino acids across alignments of these P. vulgaris 

candidates were landmarks of the Kelch consensus (not shown) but little significance 

should be appointed to this as the dataset was biased toward these landmarks; sequences 

without them would have been filtered out by the search parameter criteria.  The F-box 

binds with the SCF complex and the Kelch domain confers specificity to the substrate 

(Gupta & Beggs, 2014).  As members of the Kelch family would be expected to recruit 
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different target proteins for degradation, information about the KFBT target could have 

been uncovered by alignments with the other Kelch candidates.  However it appears that 

prevailing similarity across the Kelch domain masks any subtler differences that would be 

indicative of substrate specificity (Figure 3.5 centre).  This is likely because most of the 

domain is devoted to preserving the important architecture of the complex propeller 

structure and only a small region of it is responsible for target affinity.   

It was noted that six pairs of the 155 P. vulgaris Kelch proteins were adjacent in the 

genome.  The tendency of Kelch genes to gather in adjacent clusters has been noted 

elsewhere (Andrade et al., 2001).  Plant Kelch F-box proteins have been organised into 

eighteen subfamilies and those in group 5 are commonly found as tandem repeats (Sun et 

al., 2007).  The KMD1 gene is in this family.  It is believed that 38 of the 65 Arabidopsis Kelch 

F-box proteins resulted from tandem duplication (Sun et al., 2007).  Schumann (et al., 2011) 

found a link between gene stability and spatial position on the genome, noting that 

superstable genes were evenly dispersed across chromosomes while unstable ones were 

strongly clustered. The similarity and intervening distances of the six adjacent P. vulgaris 

Kelch pairs were compared against those of other genes (Figures 3.2-4 & 3.2-5).  It is 

believed that the varying similarities between these pairs correlates to the time since their 

gene duplication events. 

3.9.4 Conservation of KFBT Across the Primulaceae Family   

The presence of KFBT in genomes of all sixteen tested Primulaceae species was confirmed 

(Figure 3.3.4).  This is not only suggestive of the importance of KFBT in floral heteromorphy 

but also supports applicability of the current S locus model across the Primulaceae family.  

Phylogeny from non-coding chromosomal DNA sequences placed a clade containing P. 

incana and P. laurentiana alongside a clade containing P. halleri and P. scotica with P. 

yuparensis positioned independently (Mast et al., 2001).  Alternatively, the Clustal 

alignment in Figure 3.3.5-2 placed P. halleri and P. incana together in a clade alongside a 

separate clade containing P. laurentiana and P. yuparensis with P. scotica positioned 

independently instead.  Both the former and latter phylogenies are reflected in Figure 3.3.4 

and appear to be distinguished by whether nucleotide (upper) or amino acid sequences 

(lower) are aligned.     

Although P. vulgaris and P. veris both have eleven chromosomes, they appear to be more 

dissimilar from species with the same number of chromosomes (P. prolifera, P. prenantha, 
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P. chungensis, P. cuneifolia and P. cockburniana) than those with nine (P. yuparensis, P. 

laurentiana, P. incana, P. helleri and P. scotica) according to phylogeny proposed by Mast 

(et al., 2001).  The P. kewensis sample is also in this group and resulted from hybridisation 

of P. floribunda and P. verticillata, which both have nine chromosomes.  The most dissimilar 

species was Hottonia palustris.  This has a chromosome number of ten and was also the 

only tested species in which the KFBT start codon was mutated.  It is unclear whether this 

gene is thereby disabled or if the consecutive start codon 66 bp upstream is active.  This 

start codon is in the correct frame but the extra 22 amino acids would significantly modify 

the F-box domain believed to exist at the N-terminus and may render the protein 

dysfunctional.  No differing phenotypic patterns could be found between these species that 

would infer a role for KFBT. 

The aforementioned group of Primula species with nine chromosomes all presented the 

lowest number of mutations against a consensus sequence made from the sixteen 

Primulaceae KFBT homologues.  However, this could simply mean they are very closely 

related and therefore skewed the consensus sequence in their own favour.  The 

synonymous to non-synonymous substitution ratios of P. chungensis, P. cockburniana and 

P. prenantha indicates these species are the most likely to be diverging, which suggests 

they contain advantageous mutations undergoing positive selection.  As non-synonymous 

mutations occur less frequently than synonymous substitutions (Nekrutenko et al., 2002), 

ratios greater than 1 for these species are probably underrepresented and should perhaps 

be emphasised.   

This analysis was inspired by Ka/Ks calculations that represent the direction of evolutionary 

selection pressure to favour or resist change.  It would be desirable to redo this analysis 

across the 155 Kelch proteins identified in P. vulgaris but their sequences are of such 

differing lengths and dissimilar content that obtaining a fair consensus across them all 

would be impossible. 

The method used here compared each codon from a sample to the corresponding codon 

in a consensus sequence derived from all sixteen Primulaceae KFBT nucleotide sequences.  

If a codon differed, each base was tested to see whether it would modify the amino acid 

and, in this way, the synonymous and non-synonymous substitutions were recorded.  

These figures should not directly be compared against Ka/Ks values from other publications 

because those are commonly the product of more complex equations in which synonymous 

or non-synonymous substitutions are enumerated per synonymous or non-synonymous 
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site.  These raw values subsequently undergo statistics to weight transversions against 

transitions and account for multiple substitutions. 

The novel script written for this Primulaceae analysis was sufficiently intricate to account 

for all information without loss through normalisation of the figures.  One potential issue 

for future use would be oversensitivity of ratios in sequences possessing a low amount of 

mutations.  For example, a sample could present a high non-synonymous to synonymous 

substitution ratio of 2 (suggestive of evolutionary divergence) even if it had only acquired 

three mutations, whereas a far more heavily mutated sample could present a lower ratio 

due to a more balanced mixture between the two substitution types.  Such problems were 

here circumnavigated by presenting the ratios in context by using stacked bar plots (Figure 

3.3.5-1).  These non-normalised raw figures were also useful for the line chart in Figure 

3.3.5-3, which proved to be very informative regarding preservation and divergence across 

domains of the KFBT nucleotide sequence.    

The mechanism by which S locus integrity is maintained remains unknown.  The 

hemizygous nature of this gene cluster means DNA repair mechanisms that depend on the 

homologous chromosome for use as template (such as one model of double stranded break 

repair) must be unable to function.  Despite this, accumulation of mutations in KFBT 

appears to be low across the Primulaceae family (Figure 3.3.5-1) and these genes 

demonstrated an average reduction in similarity of just 4.53 % when nucleotides were 

aligned instead of amino acid sequences (Figure 3.3.4).  The clear purifying selection across 

the Kelch region (Figure 3.3.5-3) proves that reparation mechanisms must somehow take 

place.  It would therefore be of great interest to use sequence capture and repeat the 

synonymous substitution analyses on a gene from outside the S locus to compare their 

mutation rates and selection pressures.  This data is not available at present. 

3.9.5 Transcriptional Regulation of KFBT 

The upstream region of the KFBT nucleotide sequence was screened for common promoter 

elements to try and identify potential binding sites for transcription factors and other 

regulatory features.  Firm conclusions were hampered by variation in the consensus 

sequences of these elements. 

There is a 1 in 512 chance of finding a 5 bp fragment coherent with the Downstream 

Promoter Element consensus sequence ([A/G]G[A/T][C/T][G/A/C]) but 35 potential matches 



135 
 

were found in the ~3 kb upstream region of KFBT.  A TATA box should statistically be 

encountered every 252 bp, therefore seven were expected in the 3 kb region upstream of 

KFBT.  However, a total of 184 were identified due to the excessive AT-richness of the 

promoter region.  It is difficult to distinguish TATA boxes from insignificant strings of AT 

repeats; only four of the 184 candidates were bordered by cytosine or guanine bases.   

The region upstream of KFBT was also screened for initiator elements (1 in 128 chance: 

[CT][CT]A.[TA][CT][CT]), of which 43 were identified.  It can function in place of a TATA box 

(Burke & Kadonaga, 1996), or the two may act in concert when present together (Smale & 

Kadonaga, 2003).  There is usually an initiator element that overlays the transcription start 

site (Juven-Gershon & Kadonaga, 2010) and thus was here used as a marker to help locate 

the position at which KFBT transcription commences.  

Various attempts have been made to elucidate a transcription start site consensus 

sequence, such as: TCA[GT]T[CT] in Drosophila or [CT][CT]AN[TA][CT][CT] in mammals (Javahery 

et al., 1994).  The most reliable – albeit vague – of these is the YR rule found in 77 % of 

Araibdopsis promoters and also confirmed in rice (Yamamoto et al., 2007).  This stipulates 

that most transcription start sites are guanine or adenine and the immediately preceding 

base is cytosine or thymine.  Patterns of up to 5 bp were queried but the authors could not 

reliably extend the rule beyond a single nucleotide.   

One initiator element was found to be located 29 bp downstream of an 8 bp TATA box 

candidate that was situated within a GC rich region (Figure 3.3.5-3).  This would have 

positioned the KFBT transcription start site at 1644 bp upstream of the start codon.  When 

compared against all other 5’-UTR lengths from the annotated P. vulgaris genome (Figure 

3.6.1-2 upper), this figure was found to be in the top 1.15 %.  The average 5’-UTR length in 

P. vulgaris was 191 bp.  This was supported by studies in Liliopsidae in which the average 

5’-UTR length was confirmed to be 129.8 bp (Pesole et al., 2001). 

A dot matrix alignment was carried out between the KFBT nucleotide sequence and its own 

reverse complement to screen for the presence of self-complementary or repetitive 

regions (Figure 3.6.2-1).  Matches between 7 and 15 bp were identified.  Regions containing 

a sparse density of matches corresponded to areas of higher GC content, such as the KFBT 

coding region.  The manually predicted transcription start site was within an area of slightly 

increased GC content.  However, raised GC content may also be indicative of coding 
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regions.  A search was thus carried out for alternative open reading frames surrounding the 

KFBT coding sequence.   

A total of nine 5’-3’ open reading frames exceeding 20 amino acids were identified 

upstream of the KFBT start codon (Figure 3.6.2-3) and most corresponded to areas of higher 

GC content (Figure 3.6.2-1).  Transcripts predicted from the RNA-Seq data were also 

mapped to the KFBT sequence and largely conformed to two regions: the KFBT transcript 

from approximately 900 bp upstream of the start codon and a second ~700 bp transcript 

beginning at position -2000 (Figure 3.6.3-1).  The -900 bp region corresponds to areas of 

progressively increasing GC content toward the KFBT start codon (Figure 3.6.2-1). 

To further assess the authenticity of these transcripts, their expression levels were inferred 

by coverage depth in the RNA-seq dataset (Figure 3.6.3-3).  The more distant transcript was 

significantly expressed in thrum, short homostyle, Somerset long homostyle and Chiltern 

long homostyle morphs – with greater expression than KFBT in all but the latter sample.  

The three open reading frames contained within this region were used in a BLAST search 

that yielded no matches (not shown).  This could represent a previously unidentified non-

coding RNA within the S locus.  The previously predicted transcription start site (1644 bp 

upstream of the start codon) is within this spuriously expressed region.  This could explain 

its situation within a GC-rich region and consequential probable false identification as a 

transcription start site. 

In conclusion, the true KFBT transcription start site is likely represented by emerging RNA-

Seq coverage approximately 900 bp upstream of the KFBT start codon in all samples (Figure 

3.6.3-3).  However, coverage momentarily drops to zero in all three homostyle morphs 

approximately 300 bp into the KFBT coding sequence before transcription appears to 

subsequently resume.  This was only observed in one of the four thrum samples but in all 

twelve of the homostyle biological repeats.  The short homostyle, Chiltern and Somerset 

long homostyle datasets overall contained an average of 17.76 %, 3.9 % and 2.7 % more 

reads than the thrum samples and therefore had greater chance of containing a read that 

spanned this gap.  The contrary occurred instead and so the significance of this potential 

premature transcription termination is reinforced. 

The homostyles present opposite mutant phenotypes but share one commonality in the 

loss of their self-incompatibility systems.  The premature termination site directly 
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corresponds to the end of the first Kelch motif.  Total loss of the remaining Kelch domain – 

especially the second blade vital for direct protein-protein interaction (Li et al., 2004) – 

would result in dysfunctionality of target protein recruitment.  It could be possible that 

KFBT plays a role in the thrum self-incompatibility pathway but loss of GLOT (short 

homostyle mutant) or CYPT (long homostyle mutant) is indirectly associated with 

premature transcription termination of KFBT or cleavage of its completed mRNA strand to 

disable the resultant protein. 

3.9.6 Translational Regulation of KFBT 

There are four complete open reading frames between KFBT and the predicted 

transcription start site approximately 900 bp upstream of the start codon (Figure 3.6.3-3).  

The scanning model of translation proposes that initiation occurs at the first AUG 

encountered by the 40S ribosomal subunit (Kozak, 1999).  Although 15 to 50 % of genes are 

believed to possess upstream start codons (Mignone et al., 2002), the number of 

alternative open reading frames prior to KFBT presents a challenge in comprehending its 

translation.  It has otherwise been suggested that, even if an upstream AUG initiates 

translation, the 40S ribosomal subunit may hold onto the mRNA after encountering a stop 

codon and resume scanning to reinitiate translation at a downstream AUG (Pesole et al., 

2001).  

In this way, multiple proteins could be obtained from a single mRNA strand (Kozak, 1991), 

although translation efficiency would be expected to decline (Pesole et al., 2001).  

However, KFBT also contravenes this model because reinitiation becomes infeasible if the 

upstream open reading frame is greater than 30 amino acids long (Luukkonen et al., 1995).  

It has further been speculated that leaky scanning may occur, in which upstream start 

codons situated within areas of low GC content are bypassed to favour those downstream 

(Davuluri et al., 2000; Suzuki et al., 2000) but the alternate open reading frames of KFBT 

generally correspond to regions of increased GC content instead.  Extended 5’-UTR lengths 

are known to improve translational efficiency and secondary structures downstream of the 

start codon can serve to reduce the risks of leaky scanning by slowing the ribosome to 

increase the chance of AUG recognition consequently initiate translation (Kozak, 1991). 

Approximately 230 potential RNA hairpin structures were identified across KFBT and its 

surrounding regions.  Only perfectly self-complementary stems were screened for but 
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multiple bulges from non-matching bases can be structurally essential in functional RNA 

hairpins (Hsue & Masters, 1997).  These stem-loop structures regulate translation by 

presenting protein binding sites and can also act in cellular localisation of RNA (Svoboda & 

Cara).  The length of stem-loop components were limited to screen for the most frequently 

occurring hairpins (Schudoma et al., 2010) but this could be expanded to include ~30 bp 

sites common for RNA binding proteins, such as iron response elements (Araujo et al., 

2012).  A signature of loop regions within iron response element binding sites 

(CAG[TA]C[TCA]) was found in the distal non-coding RNA of KFBT (not shown) but it was 

disregarded for not being bordered by a pair of self-complementary stem features. 

One RNA hairpin was found to span the KFBT start codon with a 5 bp stem and a loop length 

of 8 nucleotides.  This could have served to inhibit KFBT translation but the stem structures 

have a GC content of 0 % and a negative correlation has been observed between 

translational efficiency and the GC content of RNA hairpin stems (Babendure et al., 2006).  

In addition, Kozak (1986) found that even a moderately stable hairpin across the start 

codon did not impair translation.  It has been shown that secondary structures at the 5’-

end of mRNA are most impenetrable by 40S ribosomes (Kozak, 1989; Kozak, 1994).  Figure 

3.6.3-3 suggests transcription begins ~900 bp upstream of the KFBT start codon and there 

were fourteen potential stem-loop structures between position -800 and -1000 bp (Figure 

3.6.2-3). 

Translational efficiency can also be enhanced by secondary structures in the 3’-UTR too.  

The average 3’-UTR in Liliopsidae species was 273.3 bp long.  These usually exceed 5’-UTR 

lengths (Pesole et al., 2001) but this is not apparent in KFBT.  A transcription termination 

signal (AAUAAA) is situated 97 bp downstream of the stop codon and appears to 

correspond with the end of mRNA strands in Figure 3.6.3-3 (Connelly & Manley, 1988).  A 

16mer in the 3’-UTR of Trypanosoma brucei was found to be essential for translational 

efficiency of a procyclin protein (Hehl et al., 1994).   There were four RNA hairpins identified 

in the region downstream of KFBT, one of which began at the central base of the stop 

codon.  They all had 5 bp stems and loop lengths of 19, 15, 14 and 4 nucleotides.   

The dot matrix alignment (Figure 3.6.2-1) identified two self-complementary matches 

between the 3’ and 5’ untranslated regions that would lead to circularisation of the 

transcript.  It has been speculated that this could enhance translation (Gingras et al., 1999) 

– although the model has no founding evidence.  Unfortunately, both matches extend 
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beyond the 3’-end of the mRNA strand by at least 250 bp.  Two perfectly palindromic 14 bp 

fragments were also identified in the 3’-UTR but it is improbable that they could fold over 

on themselves to form a structure without an intervening linker region. 

3.9.7 Differential Expression of KFBT and Other P. vulgaris Genes Between Morphs 

Expression levels of KFBT were quantified between flowers of pin, thrum, short homostyle, 

Chiltern long homostyle and Somerset long homostyle plants.  If the in silico observations 

of premature transcription termination (Figure 3.6.3-3) are mirrored in nature then varying 

KFBT transcript levels would have negligible efficacy in homostyle flowers.   

In support of the current model regarding mediation of floral heteromorphy, no transcripts 

were observed in pin samples (Figures 3.6.3-1/2/3).  The Chiltern long homostyle flowers 

presented similar KFBT transcript levels to wildtype thrum, however KFBT expression in the 

Somerset long homostyle samples appeared to be vastly increased (Figure 3.7.2).  No 

phenotypic differences between the Chiltern and Somerset long homostyle mutant lines 

are currently known.  Such spurious results must be rechecked via wet lab methods 

(Chapter 4).   

A significant reduction in KFBT expression was observed in the short homostyle flowers 

(Figure 3.7.2).  The short homostyle phenotype is linked to a mutation in the GLOT S locus 

gene, which is a MADS box transcription factor (Li et al., 2016).  If GLOT activates KFBT 

expression then this would infer that KFBT is natively responsible for raised anthers in the 

wildtype thrum and its failed transcription leads to reduced anther height in short 

homostyle flowers.  MADS box transcription factors (such as GLOT) bind to CArG box 

promoter elements to activate transcription (Reichmann et al., 1996).  It follows that the 

presence of a sequence matching the CArG box consensus was confirmed 1865 bp 

upstream of the KFBT start codon (Figure 3.6.1-1), ~900 bp upstream of the predicted 

transcription start site (Figure 3.6.3-3). 

Genes demonstrating the most significant differential expression between P. vulgaris 

flower morphs were isolated (Figures 3.8-1/2/3).  The Somerset and Chiltern samples were 

collectively treated as one long homostyle dataset.  This enabled the three-directional 

comparisons between morphs (Figure 3.8-2) but analysis of KFBT expression (Figure 3.7.2) 

suggests there may be significant genetic differences between these two mutant lines.  As 

CYPT is mutated in long homostyles (Huu et al., 2016) and absent in pin (Li et al., 2016), 
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differentially expressed genes common to both plants may possibly result from dysfunction 

of that gene.  Genes only differentially expressed in long homostyle lines and not pin plants 

may highlight the effects of CYPT mutation while in the presence of a functioning S locus 

remainder. 

This same logic applies to hypotheses regarding short homostyle plants with respect to 

GLOT mutation.  Differentially expressed genes common to both short and long homostyles 

would be candidates for the self-incompatibility system, which is broken down in these 

mutants.  There were 39 significantly differentially expressed genes common to all three 

morphs and these may demonstrate sensitivity of the S locus network and highlight the 

impact of modifying any one (or more) of its genetic components. 

A probable carotenoid cleavage dioxygenase gene was found to exhibit minimal 

transcription in P. vulgaris long homostyle flowers and moderate expression across the 

other three (Figure 3.8-3).  Differential expression of genes associated with carotenoid 

biosynthesis was also observed between compatible and incompatible pollination in P. 

maximowiczii (Lu et al., 2018).  Similar transcriptomic comparisons between developing 

pin, thrum and long homostyle styles of P. oreodoxa identified an average of 5 thousand 

differentially expressed genes (Zhao et al., 2019).  Approximately 1.2 thousand genes were 

found to be differentially expressed during self-incompatibility of P. maximowiczii (Lu et al., 

2018). 

This KFBT analysis produced a list of the most differentially expressed genes between the 

P. vulgaris morphs.  These were used to query the BLAST database.  No matches to KFBT 

were found.  This was expected because KFBT only represents between 0.0005 and 0.002 

% of the P. vulgaris transcriptome (Figure 3.7.2) and the filter thresholds were arbitrarily 

set much higher (Figure 3.8-1).  Values for the genes presented by this analysis were up to 

almost 5000 transcripts per million and differential expression of KFBT was thus much too 

subtle for detection via this method.  It is essential for the Gilmartin lab to pursue this list 

of genes and accomplish characterisation of the end-to-end pathways utilised by floral 

heteromorphy.  This dataset was readied for differential expression analysis of candidate 

genes encoding potential KFBT partner proteins involved in floral heteromorphy (Chapter 

6). 
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Chapter 4 

4 Spatial and Temporal Expression of KFBT 

As the sequence of events leading to floral heteromorphy during bud growth has been 

defined (Webster & Gilmartin, 2006), identifying the developmental phase that 

corresponds with KFBT expression would offer potential insight into its function.  Transcript 

levels of KFBT had previously been quantified by RNA-Seq in flowers of thrum, pin, short 

homostyle and long homostyle plants (Chapter 3.7).  The subsequent objective was 

therefore to analyse how the quantity of KFBT transcripts changes throughout development 

of the flower bud. 

It was also hypothesised that gaining information about where KFBT expression is localised 

would give insight into which part of the flower the encoded protein played a role in the 

control of heterostyly.  This could be combined with knowledge about which aspects of 

heteromorphy are affiliated with that floral region and therefore potentially provide early 

indication of KFBT function. Further analyses were therefore carried out to locate the floral 

whorls in which KFBT is expressed.  A qPCR approach was used for these investigations 

(Chapters 2.8.3-2.8.5). 

Aside from analysing the transcriptional activity of KFBT, polyclonal antibodies were 

evaluated to observe the timing and location of in situ KFBT protein production (Chapter 

2.19).  These assays were designed to either obtain supporting data that reinforced the 

qPCR results or to highlight variance between transcript levels and post-translational 

quantities of KFBT that would demonstrate regulatory networks or protein accumulation, 

aiding to establish a model for KFBT activity and its function in floral heteromorphy.  Further 

to these immunolocalisation experiments, a vector containing the GUS reporter gene 

driven by the KFBT promoter was also constructed (Chapter 2.11.6) for in planta 

observation of KFBT in the flower (Chapter 4.8). 

A fluorescent dye is used in qPCR that binds to DNA (Thermo Fisher, 2016).  Therefore, 

fluorescence increases as DNA is duplicated during each cycle of the polymerase chain 

reaction while in linear phase (Figure 4).  This is monitored in real time by the qPCR 

thermocycler machine.  The fluorescence at each cycle is plotted on a graph and forms a 

characteristic qPCR curve (Figure 4).  This consists of an exponential amplification phase 

followed by a linear phase, in which template quantity is doubled after every cycle (Yuan 

et al., 2006).  The PCR reaches a final plateau phase when the reaction is saturated because 



142 
 

all free primers have been incorporated into products and amplification consequently 

ceases (Yuan et al., 2006).   

The user sets an appropriate fluorescence threshold that intersects all sample graphs at 

their linear phase of amplification (Thermo Fisher, 2016).  The cycle number at which a 

sample meets this fluorescence threshold is called a Cq (quantitation cycle) value and these 

figures are compared between samples.  The fluorescence at this point is relative to the 

amount of target template present at the beginning of the qPCR, therefore using cDNA 

(which is made from RNA transcripts) as template provides indication of the target gene 

expression levels in the original sample.  For example, if Sample A reaches the fluorescence 

threshold at cycle 35 and Sample B meets it at the 36th cycle, it can be concluded that 

sample A contains twice the amount of target template than sample B, thus the target gene 

was expressed doubly in Sample A.  If the living tissue was immediately frozen and handled 

properly, qPCR produces a snapshot of gene activity for the organism at that moment of 

sampling.  This method was therefore used to compare gene expression levels of KFBT in 

different floral whorls and to observe how this changes throughout flower bud 

development.   
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Figure 4: Exemplar qPCR fluorescence graph depicting the three phases of product amplification and the 
fluorescence threshold used to compare template quantity between samples. 
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4.1 Efficiency and Design of KFBT qPCR Primers 

Experiments were designed to quantify KFBT transcript levels throughout the flower during 

development, to elucidate the location and timing of its activity.  The efficiency of two 

primer pairs designed to the KFBT coding sequence was calculated and tested for qPCR 

suitability (Chapter 2.8.4).  A pair of previously designed reference gene primers were also 

included as a positive control (Kent, 2016).  These PP2A primers amplified with an efficiency 

of 99.71 % (Table 4.1).  This showed the test functioned correctly and reconfirmed validity 

of the primers.   

 

 

 

 

 

 

The two KFBT primer pairs performed with 112 % and 80.59 % efficiency.  The ideal range 

lies within 90-110 % efficiency (Thermo Fisher, 2016) and so the former primer pair was 

used (F: TGATTTGGGACGGGATGAGT; R: CTACTGGTGTCGTATCCGCT).  Efficiency exceeding 100 % is 

caused by template impurities that exhibit decreasing inhibition on the reaction as the 

template is diluted (QIAGEN, 2010).  The selected forward primer began at position 560 of 

the KFBT nucleotide sequence and so was situated sufficiently downstream of most cleaved 

regions (Figure 3.6.3-3) identified in homostyle transcripts, which had an average end site 

at position 492 (Figure 4.5-1). 

It would be invalid to compare the expression levels of two genes using primers with 

different efficiencies.  Although efficiency of the primer pairs were checked here, this series 

of qPCRs only screened the KFBT gene and all assays used the same primer pair, therefore 

any errors would have been systematic across all samples and would not have affected 

relative expression patterns.  

Table 4.1:  Efficiency of two KFBT qPCR primer pairs and 
those for a PP2A reference gene used as a positive 
control.   
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4.2 Temporal Expression of KFBT in P. vulgaris Thrum Flower Buds 

To elucidate how KFBT expression levels change throughout flower development, qPCR was 

carried out on thrum flowers of four different stages.  This indicated in which aspect of 

floral heteromorphy the gene acts and also served to highlight the stage of flowering that 

other experiments should focus on.  Floral developmental stages were defined in Chapter 

2.1.1.  A second set of flowers was sampled as a biological repeat.  The qPCR was carried 

out (Chapter 2.8.5) using the PP2A reference gene (Chapter 2.8.3).  

  

 

 

 

 

 

 

 

 

 

 

 

 

  

Figure 4.2:  Quantification of KFBT transcripts across four developmental stages of thrum flowers, from ~5 mm buds 
to fully open mature flowers.  Data is normalised to stage one and was carried out across two biological repeats 
against a PP2A reference gene.  Standard error bars are shown.  
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The greatest KFBT transcriptional activity appeared in the youngest samples at stage one of 

development (Figure 4.2), approximately ~5 mm in length.  The earliest anatomical aspect 

of heteromorphy can be observed at this stage and occurs as the suppression of style length 

in thrum buds compared to pin (Webster & Gilmartin, 2006).  Expression subsequently 

decreased in stage two and declined further at stage three before rising to the second 

highest overall levels in stage four.  This increase upon opening of mature flowers was 

consistent across all repeats and signifies a clear resurgence of KFBT expression in the latter 

phase of flower development.  Heteromorphic features linked to this latter stage include 

pollen size, shape and potential preparation of the self-incompatibility system.   

4.3 Differential Spatial Expression of KFBT Between P. vulgaris Morphs 

Transcript levels of KFBT were quantified in the dissected flowers of thrum, short homostyle 

and long homostyle buds.  Elucidating how KFBT expression levels vary throughout the 

flower itself allowed identification of where the gene acts.  This offered insight into KFBT 

function by relating the location of its expression to the known aspects of floral 

heteromorphy affiliated with that location.  Inclusion of the homostyles allowed further 

functional deductions to be made corresponding between the mutant phenotypes and 

expression anomalies in that morph.  This also highlighted links at the genetic level, by 

observing how mutations in GLOT or CYPT effect KFBT expression in short and long 

homostyles, respectively (Li et al., 2016; Huu et al., 2016). 

A pool of thrum buds containing mixed developmental stages were dissected into their four 

floral whorls for this experiment.  Aside from the technical triplicate repeats for each 

sample, the qPCR was repeated three times to include assays with the alpha tubulin, ELF1α 

and PP2A reference genes (Chapters 2.8.3 & 2.8.5).  This improved reliability if any of the 

reference genes were not expressed with perfect stability in these different tissue types.   

The ELF1α reference gene was also used to screen the dissected whorls of a P. vulgaris long 

homostyle mutant.  The long homostyle phenotype is caused by a mutation in the CYPT S 

locus gene that leads to failed suppression of style length (Li et al., 2016; Huu et al., 2016), 

so this assay highlighted any KFBT-CYPT relationship and looked for a possible KFBT role in 

the style.  The short homostyle mutant was also screened in the same way.  This phenotype 

is caused by a mutation in the GLOT S locus gene that leads to anthers situated lower in the 

corolla tube (Li et al., 2016).   
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Highest levels of KFBT transcripts were consistently observed in the gynoecium, which 

consisted of the stigma, style and ovary (Figure 4.3).  This is the site of style length 

dimorphism; the most obvious anatomical aspect of floral heteromorphy.  The gynoecium 

is a site of action for self-incompatibility.  Although the utilised primer pair was designed 

downstream of the region potentially cleaved from the centre of most homostyle 

transcripts (Figure 3.6.3-3), some of the missing regions varied greatly from this average 

size and position.  However, these qPCR samples appeared to be unaffected by this and 

long homostyles actually exhibited the greatest overall quantity of KFBT transcripts, 

especially in the gynoecium, which here far exceeded levels of all other samples.  The 

gynoecium in this morph is effected by mutation of the CYPT S locus gene and presents a 

long pin-like style (Li et al., 2016; Huu et al., 2016).   

Short homostyle samples demonstrated almost a total loss of KFBT expression in petal 

tissue.  As the anther filament is fused within the petal, this whorl is responsible for anther 

height dimorphism.  Shortening of the anther filament in this morph has previously been 

linked to a mutation in GLOT (Li et al., 2016).  The short homostyles also appeared to exhibit 

Figure 4.3:  Quantification of KFBT transcripts throughout four floral whorls in thrum, short homostyle and long 
homostyle flowers.  Gynoecia transcription of KFBT was significantly higher in long homostyles.  Expression was 
almost entirely lost in short homostyle petals.  Data is normalised to thrum sepals.  Standard error bars are shown. 
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reduced KFBT levels in the sepals, however the only mutant line available at this time were 

of the Hose-In-Hose variety in which the sepals are biologically converted to a whorl of 

petals (Webster & Gilmartin, 2003).  It can therefore be concluded that the reduction of 

KFBT here was a mirror of that observed in the petals and not a true measurement of sepal 

expression.  

The two homostyle mutants displayed raised KFBT transcript levels in their anthers (Figure 

4.3).  Long and short homostyles both exhibit a breakdown of the self-incompatibility 

system and are therefore self-fertile (Dowrick, 1955; Ernst, 1955).  These anther 

measurements include pollen, which is a possible mediator of self-incompatibility in 

Primula.  This suggests a potential self-incompatibility role for KFBT. 
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4.4 Relative Expression of KFBT Throughout the Flower Across Development  

A final effort was made to carry out a larger qPCR that repeated the spatial expression assay 

but did not mix the developmental stages.  This consisted of sixteen samples comprising of 

four dissected floral whorls from four developmental stages of flower buds.  Maintaining 

both dimensions allowed for detailed monitoring of how the location and quantity of KFBT 

transcription changed over time throughout the flower.  Obtaining this expression data 

across the life of the flower bud provided a high-resolution map of KFBT activity.  The PP2A 

reference gene (Chapter 2.8.3) was used in the qPCR (Chapter 2.8.5) and this was 

completed twice to obtain a technical replicate.  A third attempt was made with a different 

sample set as a biological repeat.   

 

 

 

 

 

 

 

 

 

 

Expression of KFBT in the sepals remained minimal and stable across flower development 

(Figure 4.4).  There are no phenotypic aspects of floral heteromorphy associated with the 

sepals of thrum plants.  Transcript levels in the petals presented a similar pattern to the 

average temporal expression data in Figure 4.2.  A reduction of KFBT transcription in the 

petals occurred at stage three of flower bud maturity.  It is approximately at this stage when 

Figure 4.4:  Quantification of KFBT transcripts across the dissected floral whorls of thrum flower buds across four 
stages of development.  Gynoecium expression of KFBT was consistently high and transcription in the anthers 
increased toward flower maturity.  Data is normalised to thrum sepals at stage one with the PP2A reference gene 
used as a control.  Standard error bars are shown. 
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cell shape is suppressed in the upper corolla tube and they remain globular while those in 

the lower corolla tube become cylindrical (Webster & Gilmartin, 2006).   

Expression of KFBT increased significantly in the anthers toward the latter two stages of 

development.  Pollen maturation occurs during these phases and begins to shed from the 

anthers.  It is therefore possible that KFBT has a role in the pollen, which may mediate self-

incompatibility. 

Levels of KFBT transcripts in the gynoecium were consistently high throughout 

development; the highest of all four whorls in the first three stages and superseded only 

by anthers upon opening of the mature flower.  The greatest KFBT expression was 

measured in the gynoecium of stage two buds and the only distinguishable feature of floral 

heteromorphy at this age is suppression of style length in thrums compared to pin flowers 

(Webster & Gilmartin, 2006). 
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4.5 Screening for Presence of KFBT in Flowers of Four Developmental Stages  

Prior to qPCR experiments, a non-quantitative PCR was used to initially screen for the 

presence of KFBT in P. vulgaris flowers across four developmental stages.  This presented a 

broad overview of temporal KFBT expression to inform which developmental stages should 

be included in the downstream qPCR assays for observing more intricate details of dynamic 

KFBT activity.   

The PCR primers spanned a site (Figure 4.5-1) that was later identified via bioinformatical 

RNA-Seq analysis to contain a gap central to most homostyle transcripts (Figure 3.6.3-3).  

The use of long homostyles therefore also allowed assessment of this gap.  It was important 

to detect intact transcripts and confirm that KFBT does not entirely undergo premature 

transcription termination or post-transcriptional cleavage, which would render it non-

functional in homostyle plants – regardless of any expression activity.  The exact size and 

border positions of the cleaved region varied between samples but the reverse primer 

(Figure 4.5-1) was either within or after the missing portion in all available homostyle 

transcriptome datasets (Chapter 3.6). 

 

  

Figure 4.5-1:  Positions of primers designed for non-quantitative amplification of KFBT from flower cDNA samples.  
Primers spanned a region that was earlier identified by RNA-Seq to be commonly absent in homostyle transcripts.  
The average size and position of this missing region is shown. 
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Expression of KFBT was identified in all developmental stages of long homostyle samples 

from the Somerset population (Figure 4.5-2), which is indicative of continuous KFBT activity 

throughout flower maturation.  Transcripts were also detected in all stages of Chiltern long 

homostyle flower buds, though more variation was observed than in Somerset samples.  

The actin positive control bands showed consistent integrity of the cDNA pools, proving 

this variance was not due to a PCR flaw.  Expression appeared extremely minimal at stage 

two of the first biological repeat, however the negative control lanes are clear, thus the 

faint band must represent true KFBT transcription and not background contamination.  

 

 

 

 

 

 

 

 

 

 

 

A gap central to most KFBT RNA strands of homostyle flowers had been identified via RNA-

Seq (Figure 3.6.3-3).  This PCR assay importantly confirmed that all flower buds contain a 

detectable level of intact transcripts and therefore KFBT transcription is not entirely 

prematurely terminated or post-transcriptionally cleaved, which would render it non-

functional in homostyle plants.  However, it remained unclear whether the variation 

observed throughout Chiltern flower bud maturation was representative of differential 

expression or the post-transcriptional modification identified from RNA-Seq (Figure 3.6.3-

3).   

This preliminary screen gave no conclusive indication of isolated stages at which KFBT 

expression is categorically turned on or off, which would have provided strong functional 

evidence and a clear area for further scrutiny.  No phenotypic differences between the 

Figure 4.5-2:  Non-quantitative detection of KFBT expression across flower 
development.  Intact transcripts were detected throughout bud maturation.  
Biological repeats were carried out on long homostyle lines from two UK 
populations.  Four developmental stages were assessed, ranging from ~5 mm 
buds to fully open mature flowers.  The actin gene was amplified as a positive 
control to prove consistent cDNA integrity across samples.   
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Chiltern and Somerset long homostyle lines have been recognised that would explain the 

observed variation.  It was decided to include all samples in downstream qPCR experiments 

with a different primer pair to focus exclusively on the intricate mapping of KFBT expression 

patterns. 

4.6 Identification of a Suitable KFBT Antibody  

A dot blot was carried out (Chapter 2.19.2) to test interaction of the KFBT antibody with the 

peptide that it was raised against.  Antibodies from two rabbits were supplied as conjugates 

to keyhole limpet hemocyanin and bovine serum albumin proteins.  After development of 

the film, no light emission had been captured at all (not shown).  There was no sign of 

protein interaction with the antibody.  As this could have been caused by a flaw in the dot 

blot procedure, the test was repeated via Western Blot (Chapter 2.19.4). 

 

 

 

 

 

 

 

 

 

 

 

 

 

The antibody from rabbit one demonstrated affinity to the KFBT-KHL and KFBT-BSA 

conjugates (Figure 4.6-1).  While rabbit two also displayed binding with KFBT-KHL, it had far 

weaker affinity for the KFBT-BSA conjugate.  This suggested that the former antibody bound 

to KFBT, whereas the second bound to the KHL tag instead.  Both proteins presented a 

Figure 4.6-1:  Affinity of antibodies raised in two 
rabbits against synthetic KFBT peptide 
conjugates.  The Western blot was carried out on 
a single sheet; white lines indicate where the 
photograph has been cropped to remove 
intervening blank lanes. 
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smear instead of a neat band, however this was still deemed to represent affinity and so it 

was concluded that the dot blot method had failed but the Western Blot had confirmed the 

rabbit one antibody should be taken forward.   

This antibody was subsequently tested against crude protein extract from P. vulgaris buds 

of mixed stages.  Eight separate fractions were tested from the antibody purification step 

carried out by Dundee Cell Products.  This tested for antibody interaction with the true KFBT 

protein from P. vulgaris and not only the synthetic peptide conjugates they were raised 

against. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The second and third antibody fractions presented a distinct band on the Western Blot 

(Figure 4.6-2), however they indicated a 70 kDa protein but KFBT is 38 kDa.  Fractions five 

and eight presented smears that spanned the 38 kDa region but these were background 

blemishes off-centre from the protein lane.  No discrete bands of the correct size were 

detected and the blotches are assumed to be background noise.  Therefore, as this Western 

Figure 4.6-2:  Antibody affinity for KFBT from the crude protein extraction of ~5 
mm P. vulgaris thrum flower buds.  Eight fractions from protein purification were 
tested.  The assay was carried out on a single sheet; white lines indicate where 
the photograph has been cropped to remove intervening blank lanes. 
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Blot had failed to identify an antibody fraction with suitable functionality, it was decided to 

move forward with the most concentrated fraction in a final Western Blot attempt to 

investigate spatial and temporal production of the KFBT protein in thrum flowers.  

Information provided by Dundee Cell Products showed that fraction one was the most 

concentrated and this appeared to perform better in initial tests (Figure 4.6-1). 

4.7 Investigating Spatial and Temporal KFBT Production via Western Blot 

Flower buds from different developmental stages were used in an effort to gain temporal 

information regarding production of the KFBT protein and spatial data was sought by 

dissecting samples into their four floral whorls.  This was designed to obtain protein-level 

data in support of the transcript-level qPCR experiments.   

 

 

 

 

 

 

 

 

 

 

 

 

 

Two large smears appeared corresponding to the anther samples at the earlier two phases 

of maturation (Figure 4.7).  This is contrary to qPCR data that indicated an increase of KFBT 

transcription in the latter two developmental stages (Figure 4.4).  The blotch at stage one 

crossed into the adjacent lane but did span the 38 kDa size marker where KFBT is expected, 

however the second stage smear was above this size.  It is unclear what is represented here 

Figure 4.7:  Antibody affinity for KFBT in dissected whorls of P. vulgaris flowers throughout development.  
White lines are a visual aid to align sample lanes.    
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on the X-ray film but no reliable insights could be gained from these assays.  It was 

concluded that the antibodies were incapable of eliciting the required function.  The qPCR 

transcription data would instead have to be supported at the protein level via 

transformation of the GUS reporter gene construct driven by the KFBT promoter (Chapter 

2.11.6).   

4.8 Visualisation of KFBT Via GUS Reporter Gene Assay 

The qPCR assays had identified the floral whorls in which KFBT is transcribed, however a β-

glucuronidase (GUS) reporter gene construct was made to complement these transcript-

level studies and explore the cellular location of KFBT expression in those identified whorls.  

A vector had been assembled so that, after transformation into the target organism, the 

KFBT promoter would be activated in vivo but had been modified to drive GUS expression 

instead (Figure 4.8-1).   

The technique works by taking samples from the transformed organism and incubating 

them with glucuronide substrates that interact with the GUS enzyme to turn it blue 

(Jefferson et al., 1987).  In this way, the exact regions of KFBT production could be 

visualised.  For the purpose of gaining data efficiently, the vector was transformed into 

Arabidopsis.  This also served to elucidate whether KFBT is regulated by a fundamental 

housekeeping gene or requires a more Primula-specific transcription factor. 
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After establishing transgenic Arabidopsis lines (Chapter 2.16.1), one leaf sample presented 

blotches of GUS activity (Figure 4.8-2B) that followed no patterns of venation or stomatal 

cells.  It was observed in no other leaf samples and is believed to be spurious misexpression 

of GUS, likely caused by bacteria.  Blue GUS staining was also noted on a leaf that appeared 

to strongly follow a tear wound caused by handling with forceps (Figure 4.8-2A).  To 

investigate whether this signified stress-induced KFBT transcription, leaves were laterally 

cut in half and added to GUS assay solution.  The remaining half – still attached to the plant 

– was severed 90 mins later and also added to GUS solution.  However, the results in Figure 

4.8-2A were not reproducible. 

Figure 4.8-2C depicts two very late stage flowers undergoing abscission after seed set and 

shedding of the siliques.  They each had a single seed affixed to the remainder of their 

senescing siliques that appeared to have imbibed water during the GUS staining process 

and commenced germination.  Both samples presented GUS staining in their carpels. 

  

GUS reporter gene

Nopaline Synthase terminator

KFBT promoter region
pGWB203

Destination Vector

Kanamycin resistance/selection gene

Figure 4.8-1:  Main features of the construct in which the KFBT promoter region drives expression of the GUS reporter 
gene to visualise location of KFBT protein production. 
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Figure 4.8-2: Location of GUS staining in transgenic Arabidopsis tissue when regulated by the KFBT promoter and 5’-
UTR regions.  A) One leaf showed GUS staining around a wound in the torn tissue.  The adaxial surface is out of focus 
beyond the depth of field because the sample had curled over due to dehydration under the microscope.  B) Blotches 
of GUS activity were found on one leaf sample and followed no pattern of venation or stomatal cells.  C) Two mature 
flowers (both pictured) undergoing post-seed set abscission presented GUS activity in the gynoecia.   
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4.9 Discussion 

The temporal and spatial expression patterns of KFBT have been investigated using qPCR 

on dissected floral whorls throughout development of thrum, pin and homostyle flower 

buds.  This has been supported at the protein level through transformation of a vector 

containing the KFBT promoter and 5’ untranslated regions driving transcription of a GUS 

reporter gene in Arabidopsis.  The GUS assay presented reporter staining in a torn leaf 

sample (Figure 4.8-2A).  This finding was irreproducible and could have been caused by 

bacterial infection via the wound.  Although it is widely accepted that endogenous GUS 

activity is absent in plants, endosymbiont bacteria have been known to display false 

positives in this way (Tör et al., 1992).  This is also believed to be the cause of the spurious 

leaf expression observed in Figure 4.8-2B. 

Alternatively, GUS expression in the torn leaf may signify stress-induced KFBT expression.  

Staining was observed during flower abscission (Figure 4.8-2C) and this pathway is also 

tightly linked to invasive stresses such as wounding and pathogen attack (Taylor & 

Whitelaw, 2001).  Endogenous GUS activity in plants has been observed with particular 

prevalence in floral reproductive organs (Alwen et al., 1992).  However, while Figure 4.8-

2C shows carpel GUS staining, no activity was observed in the male reproductive organs of 

any flowers screened.  Acidic pH and gibberellic acid treatment were both shown to induce 

intense GUS activity in most cell types from 23 model species, including A. thaliana (Sudan 

et al., 2006).  The process of flower abscission observed in Figure 4.8-2C is linked to raised 

levels of salicylic acid, jasmonic acid and gibberellic acid (Kim et al., 2013b; Setyadjit et al., 

2006).  Such acids associated with the abscission pathway could have provided the low pH 

required for exhibiting endogenous GUS activity in Arabidopsis, however this data is 

coherent with the detection of greatest KFBT transcription levels from P. vulgaris gynoecia 

in earlier qPCR experiments (Figure 4.3). 

These qPCR assays also detected KFBT activity in P. vulgaris petals that decreased in the 

absence of GLOT (Figure 4.3).  Failure to observe GUS expression in Arabidopsis petals (that 

also lack GLOT) further reinforces the hypothesis that KFBT transcription in the second whorl 

necessitates activation by GLOT.  It also suggests that a non-S locus protein more common 

to higher plants may regulate KFBT expression in the style, which successfully induced the 

GUS staining here (Figure 4.8-2C).  Although post-seed dispersal expression of KFBT would 

be too late for a role in Primula floral heteromorphy, this transgenic assay was carried out 

in a heterologous system and differences were expected. 
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Quantitative PCR assays were challenged by low overall levels of KFBT expression and a 

genome-wide approach by Sun (et al., 2007) also found that most Kelch genes were too 

lowly expressed to be reliably analysed.   However, these temporal and spatial transcription 

analyses have allowed for speculation of several potential roles for KFBT in floral 

heteromorphy.  One interpretation of the data linked the presence of KFBT with 

suppression of cell length.  The temporal expression data (Figure 4.2) suggested the 

greatest transcription occurred in the first stage of flower bud development and the spatial 

analysis (Figure 4.4) showed KFBT was particularly prevalent in the gynoecium at these early 

stages, especially stage two.  Cell length of the gynoecium style structure is suppressed at 

this primary phase of flower bud maturation and this is the earliest observable facet of 

floral heteromorphy in thrum flowers (Webster & Gilmartin, 2006).  Furthermore, KFBT 

transcription was observed to significantly increase in the anthers at stages three and four 

of flower development (Figure 4.4).  This is coherent with pollen maturation and release 

from the anthers.  It follows that thrum pollen remains spherical but pin pollen grains 

present a longer oblong shape (Darwin, 1877), thus providing a second example of cell 

length suppression in thrum compared to pin that could be connected with KFBT activity. 

However, it can also be speculated that a positive correlation exists between KFBT 

transcript levels and cell length.  There is a reduction of KFBT transcription in the petal whorl 

at stage three of thrum flower development (Figure 4.4) and it is here when cell length is 

suppressed in the upper corolla tube of thrums (Webster & Gilmartin, 2006).  Short 

homostyle mutants displayed almost a total loss of KFBT expression in the petals (Figure 

4.3) and these flowers present anthers in the low position due to reduced length of anther 

filaments, which are enclosed within the petal whorl.  Vastly increased transcription of KFBT 

was measured in long homostyle gynoecia too (Figure 4.3), which presents a pin-height 

stigma due to the failed suppression of style length that usually occurs in thrum.  Again, 

this suggests positive correlation between KFBT activity and cell length.  Moreover, while 

thrum pollen shape is suppressed, grain size is actually larger than in pin plants (Darwin, 

1877).  This could be related to the increase of KFBT anther transcription in the latter half 

of flower maturation (Figure 4.4). 

A third model implicates a role for KFBT in the self-incompatibility system that reinforces 

floral heteromorphy.  The greatest levels of KFBT transcripts were mostly found in the 

gynoecium (Figures 4.3 & 4.4) and, although this is the site of style height dimorphism, it is 

also the site of pollen rejection in self-incompatibility.  The quantity of KFBT transcripts in 
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the gynoecium were only superseded by expression levels in the anthers at the final stage 

of development (Figure 4.4), which here release pollen; the other mediator of self-

incompatibility.  Expression of KFBT in the reproductive organs was significantly greater in 

the short and long homostyles than in thrum (Figure 4.3).  These two mutant lines are 

phenotypically similar only in their breakdown of the self-incompatibility system to become 

self-fertile.   

Observations may therefore suggest a role in self-incompatibility and – though it initially 

appears counterintuitive that increasing KFBT would lead to less stringency of the infertility 

system – this could be explained in two possible ways.  The first is that P. vulgaris may reject 

all pollen by default and KFBT facilitates the breakdown of an unknown molecule to enable 

compatibility.  This would make infertility the default state and receptivity to pollen the 

exception.  Secondly, RNA-Seq data (Figure 3.6.3-3) suggested the majority of KFBT 

transcripts in the homostyle flowers may undergo cleavage via post-transcriptional 

modification and therefore be non-functional.  Raised KFBT expression may therefore not 

signify increased KFBT functionality.  Failed translation of cleaved KFBT transcripts could 

inhibit a currently unidentified negative feedback system that usually represses KFBT 

expression.  In the event of this malfunctioning feedback mechanism, dysfunctionality of 

KFBT would lead to increased transcript levels, as observed in the homostyles (Figure 4.3).  

On the contrary, no KFBT transcripts were detected in styles of P. oreodoxa (Zhao et al., 

2019), which is a strongly self-compatible species (Yuan et al., 2019).  Transcripts of CCMT 

and PUMT were also absent (Zhao et al., 2019). 

The short homostyle phenotype has previously been connected to a mutation in the GLOT 

transcription factor from the S locus (Li et al., 2016).  This corresponds with a reduction of 

KFBT expression in short homostyle petals (Figure 4.3), which suggests GLOT may indirectly 

cause the short homostyle phenotype by acting through KFBT; the knockdown of which 

could lead to suppressed anther filament length via targeted degradation in a downstream 

pathway.  The substantial increase of KFBT in the gynoecia of long homostyle flowers also 

suggested a link between KFBT and CYPT, mutation of which is believed to be responsible 

for the long homostyle phenotype (Huu et al., 2016).  Although this work revealed a 

reduction of brassinosteroid content following the loss of CYPT function, no direct 

mechanism for this relationship was proposed.  Alternatively, it has been proven that the 

BSU1 Kelch-repeat protein modulates brassinosteroid response in Arabidopsis (Mora-
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García et al., 2004).  It could therefore be KFBT that directly leads to the long homostyle 

phenotype via its relationship with CYPT.  

It is known that some Kelch proteins can bind to several targets and therefore exhibit 

multiple functions (Kim et al., 2013a; Zhang et al., 2013).  It was thus proposed in chapter 

three that the timing and location of KFBT production may be tightly regulated to limit 

exposure of target proteins and restrict spurious degradation activity.  The qPCR assays 

have provided a map regarding the temporal and spatial transcription patterns of KFBT.  

These assays have presented areas of focus for downstream experiments.  However, it is 

unlikely that KFBT could simultaneously carry out all three functions proposed here due to 

their contradictory nature.  For example, interpretations of the data correlate KFBT both 

positively and negatively with cell length.  A yeast-two-hybrid experiment was therefore 

designed to identify interacting partners of KFBT and highlight potential protein targets to 

infer which pathway it modulates (Chapter 6).  Vector constructs were also assembled to 

generate transgenic loss-of-function and gain-of-function mutant lines to elucidate the role 

of KFBT in floral heteromorphy (Chapter 5). 
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Chapter 5 

5 The Function of KFBT 

Bioinformatics had been used to analyse the KFBT sequence (Chapter 3) alongside temporal 

and spatial expression analyses at the transcript and protein levels (Chapter 4).    

Subsequent in vivo misexpression experiments were utilised to investigate the function of 

KFBT.  Two knockdown and two overexpression methods were used to modify KFBT function 

and provide data regarding its role in floral heteromorphy.   

5.1 Comparison of KFBT in Self-Compatible and Self-Incompatible Plants 

The aspects of floral heteromorphy are easily observed by eye or with a light microscope.  

Transgenic KFBT mutants were therefore expected to present distinguishable phenotypes 

that help to elucidate gene function.  However, Primula heterostyly is reinforced by a self-

incompatibility system that makes a plant unreceptive to its own pollen (Darwin, 1877). 

Expression of KFBT had been detected in floral reproductive organs (Figures 4.3, 4.4 & 4.8-

2), which are the dimorphic sites of heterostyly but also the mediators of self-

incompatibility.  If KFBT functions in this self-incompatibility system, mutants may fail to 

present a visually obvious phenotype.  A preliminary PCR screen was therefore used to test 

this hypothesis prior to carrying out the downstream transformation assays. 

Self-compatible mutant lines of P. veris had been identified from a glasshouse population 

that were part of a forward genetics experiment in which seeds were exposed to fast 

neutron bombardment at the International Atomic Energy Agency in Vienna, Austria (Li, 

unpublished).  The radiation caused random mutations throughout the genomes of the 

seeds, which were grown and self-crossed to screen for modifications of the self-

incompatibility phenotype. 

PCR (Chapter 2.9) confirmed there were no size or sequence differences between the KFBT 

amplicons from self-compatible and self-incompatible P. veris plants.  However, this could 

not conclusively eliminate KFBT as a candidate gene in the self-incompatibility system.  An 

assay from Dr Jinhong Li found KFBT transcripts to be almost undetectable in P. veris cDNA 

samples (Li, unpublished).  This gene may have a vital role in self-infertility but another 

gene, either upstream or downstream in the pathway, could instead carry the mutation 
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that resulted in loss of self-incompatibility.  This cannot be confirmed until the network 

that mediates self-incompatibility has been elucidated. 

5.2 A KFBT Constitutive Overexpression Vector  

Overexpressing a gene of interest is a method commonly used in functional analyses to 

observe the mutant phenotypes displayed by exaggerating the effect of a gene in a target 

host (Prelich, 2012).  This may provide strong evidence for the role of that gene within the 

organism.  These assays may cause visible physiological changes to the host that are 

immediately obvious but sometimes the products of pathways and cascades must be 

measured to observe more subtle modulations in gene networks. 

An overexpression vector was therefore made with pBRACT114 (Chapter 2.11.3) using the 

KFBT open reading frame under regulation of a 35S promoter derived from the Cauliflower 

Mosaic Virus (Figure 5.2).  This promoter causes constitutive overexpression of the gene of 

interest throughout the entire transgenic plant.   

 

 

 

 

 

 

  
Figure 5.2:  A pBRACT114 construct was assembled with the 35S promoter for constitutive overexpression of 
the KFBT coding region. 
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5.3 A Vector Containing KFBT and Its Native Promoter 

In addition to using the 35S Cauliflower Mosaic Virus promoter for constitutive 

overexpression, a vector containing KFBT under regulation of its native promoter was also 

assembled (Figure 5.3).  This allows KFBT expression at native levels instead of those from 

a constitutive promoter, which may have a deleterious effect on the host in such high 

quantities.  Use of a native P. vulgaris promoter also removes the potential risk of the 35S 

promoter from a Cauliflower Mosaic Virus being ineffective in Primula.   

The construct was designed for incorporation into the genomes of plants that do not 

naturally possess KFBT, such as Arabidopsis or pin-form Primula species.  This plasmid 

contains a kanamycin resistance gene and has the components required for replication in 

bacteria.  This vector was transformed into Arabidopsis due to the rapid life cycle of this 

species and its well-optimised techniques (Koornneef & Meinke, 2010; Somssich, 2019).  

This tested if KFBT could act in other higher plants or whether it requires a more Primula-

specific gene for transcriptional activation or downstream function. 

 

  

Figure 5.3:  The pBRACT103 vector was used to generate a construct containing KFBT under regulation of its native 
promoter and 5’-UTR regions. 
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5.4 A KFBT RNAi Knockdown Vector 

To complement data from the overexpression studies, an RNAi knockdown vector was 

assembled (Chapter 2.11.4) to investigate the phenotypic effects caused by reducing KFBT 

transcript levels in transgenic plants.  These mutagenesis experiments provide functional 

data to aid elucidation of the KFBT role in floral heteromorphy.  Although a viral method 

(Chapter 5.7) can present data within two weeks (Baulcombe, 1999), the target gene is only 

knocked down in successfully infected tissues.  It does not eliminate the effects of target 

gene activity prior to infection and the genome itself remains unmodified. 

To obtain stable transgenic lines that inherit the mutation through generations, an RNAi 

construct was thus made for KFBT.  This vector contains two inverted duplicate fragments 

from the 3’-end of the KFBT transcript that are joined by a linker in opposing orientations 

(Girin et al., 2010), thereby folding into a double-stranded hairpin loop that triggers the 

RNA interference pathway and leads to the degradation of KFBT transcripts. 

 

 

 

 

 

 

 

 

 

5.5 Screening for Transgenic Primula 

The series of KFBT vectors were transformed into P. vulgaris (Chapter 2.15.1), which 

subsequently underwent selection and tissue culture (Chapter 2.15.2).  Transformed leaf 

sections were monitored for survival on kanamycin and growth of callus tissue.  Successful 

transformants would possess an active kanamycin resistance gene on the destination 

Figure 5.4:  The construct assembled for the knockdown of KFBT via RNA interference.  
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vector.  Cells without this plasmid would turn colourless.  Most leaves turned transparent 

within a week, which was indicative of unsuccessful transformation of those samples.  

Other leaf tissue hardened – displaying early signs of callus formation – but browned slowly 

over time.  Some leaves appeared to retain their colour for up to 6 months but did not form 

callus.  Numerous repeats of this experiment had been carried out across two years.  

Overall, all tissue died, either due to unsuccessful incorporation of the kanamycin 

resistance gene into the Primula genome or because of failed transgenic tissue culture. 

In mid-2019, Dr Sadiye Hayta localised the source of this problem to the use of Phytagel™ 

(unpublished).  Two years previously, Sigma-Aldrich had changed the recipe of this gelling 

agent and the tissue culture method had since been ineffective, both in Primula and in 

Barley (unpublished).  Agarose was trialled instead but this proved inadequate.  A gelling 

agent called Gellan Gum from Alfa Aesar™ is the currently proposed solution to the 

problem.  There was insufficient time remaining in the PhD project to repeat these 

experiments and so it was decided to fully divert focus toward Arabidopsis transformation 

instead.  However, this series of KFBT destination vectors is available to colleagues and will 

be essential in carrying out the future transgenic experiments that are mandatory for 

understanding the mechanisms underpinning floral heteromorphy. 

5.6 Screening for Transgenic Arabidopsis 

The KFBT plasmids containing the overexpression and native promoters were also 

transformed into Arabidopsis (Chapter 2.16).  This allowed faster results and 

circumnavigation of the issues encountered in transforming Primula.  A total of eleven 

Arabidopsis lines overexpressing KFBT via the 35S constitutive promoter (Figure 5.2) were 

investigated.  There were four flowers from three plants that had grown an extra petal and 

sepal (Figure 5.6A).  Eighteen transgenic lines containing KFBT under regulation of its native 

promoter (Figure 5.4) were also investigated, with a further eight third-generation plants 

from one additional line.  One of these plants presented three flowers containing only five 

anthers (Figure 5.6C) and another four flowers from three plants had only four stamens 

(Figure 5.6D); one of which had a fifth with retarded development (Figure 5.6B).  This was 

also observed once in the transgenic GUS plants (Chapter 4.7; not shown), which contain 

only the KFBT promoter region and should not demonstrate any modified function, thereby 

suggesting this was a developmental anomaly and not related to KFBT activity. 
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Specimens with the additional sepal and petal were found only in the constitutive 

overexpression line, however the low number of mutant flowers suggests this is also 

unrelated to KFBT activity.  As every cell should carry the same transgenic genotype, an 

authentic mutant would be expected to occur with more consistency across flowers. 
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Figure 5.6:  Transgenic Arabidopsis flower tissue transformed with KFBT overexpression vectors.  A)  A mutant flower 
displaying an extra sepal and petal.  B)  Two transgenic stamens; one presenting retarded development.  C) A mutant 
flower containing only five stamens.  D) A mutant flower containing only four stamens.  Flowers were dissected for 
clarity and image brightness has been edited to highlight appropriate flower parts. 
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5.7 Virus Induced Gene Silencing of KFBT 

Virus Induced Gene Silencing (VIGS) was used to knockdown KFBT in Primula.  The RNAi 

vector (Chapter 2.11.4) required Agrobacterium-mediated transformation into the Primula 

genome, with subsequent callus formation through tissue culture, further growth and 

selection of second-generation seeds.  Alternatively, VIGS vectors are not incorporated into 

the host genome and only require infection of the virus in order to knockdown transcripts, 

thus yielding results far more rapidly (Baulcombe, 1999).   

This vector was electroporated into Agrobacterium (Chapter 2.14.2), of which cells were 

injected into the stems of Primroses (Chapter 2.17).  The virus then generates short double-

stranded transcripts (Unver & Budak, 2009) from the 3’-end of KFBT that trigger an immune 

response in the plant (Voinnet, 2001) that consequently knock down all KFBT transcripts 

present.  In this way, KFBT is disabled and the effect of minimising expression of this gene 

can be observed and its function deduced.  

 

 

 

 

 

 

 

  

Figure 5.7-1:  The pTRV2 vector was used in combination with pTRV1 for the virus-induced gene silencing of KFBT. 
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Approximately 10 % of treated thrum plants presented at least one flower with an 

abnormal corolla tube (Figure 5.7-2).  These altered corollas were curved and the most 

extreme samples were warped into an S-shaped crinkle.  Pin and thrum samples that 

underwent the negative control treatment did not present any irregularities.   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

Figure 5.7-2:  Abnormal phenotype in thrum corollas following viral induced gene silencing of KFBT.  The 
S-shaped crinkle was not observed in treated pins or plants that underwent injection with a negative 
control treatment. 



172 
 

These abnormal plants could also be identified from the face of their flowers.  The corolla 

mouth is flush with the petal surface in wildtype Primroses (Figure 5.7-3, right).  However, 

in abnormal samples, the petal surface had retracted from the mouth of the flower due to 

the lower flower tube crinkling and resulted in protrusion of the corolla tip housing the 

anthers (Figure 5.7-3, left).  Forty thrum plants underwent treatment in this first VIGS assay 

and five were used as negative controls.  Following observation of the low rate at which 

plants presented altered phenotypes (~10 %), it was decided that a second attempt would 

be carried out utilising near-equal numbers of VIGS-treated and negative control 

specimens. 

  

Figure 5.7-3:  Abnormal flower mouth following viral induced gene silencing 
of KFBT.  Left) Treated thrums presented flowers with protruding corolla 
openings and retracted petal surfaces linked to warping of the corolla tube 
beneath.  Right) The flower mouth of wildtype Primroses is flush with the 
petal surface. 
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A total of twenty thrum plants were used for VIGS analysis with the KFBT construct and 

fifteen were used as negative controls.  Additional flowers with warped corollas were 

obtained from this second VIGS assay.  A novel abnormality was also observed in the fusion 

of the sepal to the corolla along the inner surface of the curved flower tubes (Figure 5.7-4).   

 

 

 

 

 

 

 

 

 

 

 

 

 

A potential relationship between KFBT and the GLOT transcription factor from the Primula 

S locus had been indicated by observing loss of KFBT transcription in petals of short 

homostyles (Figure 4.3) that corresponded with loss of GLOT function (Li et al., 2016).  To 

investigate this further, a construct assembled by Dr Sadiye Hayta to silence GLOT was 

introduced into five thrum plants (2016, unpublished).  These plants also presented the 

warped corolla with fusion between the sepal and petal whorls (Figure 5.7-5).  

Furthermore, the edge of the petal blade had adopted green sepal identity following the 

seam of the petal-sepal fusion (Figure 5.7-5C), indicating loss of B-function floral identity 

(Coen & Meyerowitz, 1991).   

 

 

 

Figure 5.7-4:  Abnormal corolla tube base from a Primula plant treated with a construct to virally induce gene silencing 
of KFBT.  The flower tube shows webbed tissue fusing the sepal (red line) and petal (yellow line) whorls along the inside 
edge of a curved corolla.  A non-fused wildtype sepal is outlined behind (green line). 
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Figure 5.7-5: Irregular flower tissue following viral induce gene silencing of 
GLOT.  A) Fusion between the sepal and petal blade was observed.  B)  
Abnormally curved corollas were fused to the sepal; the webbed tissue has 
here been manually split.  C) The edge of the petal blade adopted green sepal 
identity following the seam of petal-sepal fusion.  
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At this stage, it was noted that some of the negative control flowers also exhibited severely 

bent corollas (Figure 5.7-6).  The Polyanthus had regularly presented twin flowers emerging 

from a single calyx, which was viewed as a horticultural anomaly.  The corollas of these twin 

flowers curved sharply away from each other.  Although the VIGS samples shown were not 

double flowers, it was unclear whether this curving was a milder form of the twin flower 

phenotype or if it was truly caused by KFBT silencing.  The sepal-petal fusion was not 

observed in negative control samples.  It was therefore uncertain whether this fusion could 

be a separate phenotype caused by knockdown of KFBT or another facet of the complex 

phenotype consisting of protruding flower mouths and warped corollas now believed to be 

a product of horticultural breeding.   

 

 

 

 

  

Figure 5.7-6:  Negative control flowers from an experiment to virally induce gene silencing of KFBT presented warped 
corollas (A &B) and recurved flower mouths (C).  The background was removed for clarity and some sepals were 
excised to reveal the crinkled corolla. 
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A third repeat of the VIGS experiment was executed to gain further evidence of the 

abnormal phenotypes and confirm that petal-sepal fusion was linked to KFBT silencing while 

the other phenotypes were caused by variation in the horticultural breed.  This final assay 

also served to assess whether irregularities in the previous negative controls could have 

been caused by accidental cross-contamination of the KFBT viral vector.  However, the 

disfigured corollas were again observed in negative control samples; more so than in the 

treated population. 

The negative controls also displayed fusion between the sepal and petal whorls.  Therefore, 

KFBT activity could not be associated with these phenotypes.  Self-crosses were carried out 

to screen for breakdown of the self-incompatibility system but the Polyanthus appeared to 

be naturally self-fertile anyway.  Pollen grains and styles were also compared between 

treated and non-treated samples (not shown) but no morphological differences were 

identified. 

5.8 Discussion 

To help understand gene function, vectors to induce misexpression of KFBT were 

constructed and transformed into plants.  An RNAi knockdown vector was assembled but 

stable transformation into P. vulgaris failed.  Successful transformation was achieved in 

Arabidopsis with KFBT under regulation of the 35S constitutive promoter in addition to a 

second vector containing its native promoter and 5’-UTR regions.  The virus induced gene 

silencing of KFBT was carried out in Polyanthus plants as a second method of functional 

analysis via gene knockdown.  

Alterations in floral organ number were observed when KFBT was expressed in Arabidopsis 

(Figure 5.6), with the gain of a petal and sepal in some plants and the loss of up to two 

stamens in others.  These organ numbers have been observed when alleles of the 

PERIANTHA (PAN) transcription factor were mutated; 84 % of pan-1 mutants presented five 

sepals by day 45, 70 % had five stamens and 72 % of the first fifteen flowers had five petals 

(Running & Meyerowitz, 1996).  Mutations in another Arabidopsis gene encoding a Kelch 

F-box protein, UNUSUAL FLORAL ORGANS (UFO), led to modified stamen and petal number 

via action with LEAFY to co-regulate APETALA3 and PISTILLATA (Levin & Meyerowitz, 1995). 
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However, the low number of mutant flowers from this KFBT screen (just eleven flowers 

from almost thirty transgenic plants) was consistent with natural variation of floral organ 

number in wildtype Arabidopsis plants.  Although a typical Arabidopsis flower has six 

stamens, the mean number is 5.93 due to the loss of one or two in some wildtype 

inflorescences (Penin & Logacheva, 2011).  Acquisition of an additional petal and sepal is 

also known to occur less frequently – typically in basal flowers – and is caused by increased 

floral meristem size induced by the transition from vegetal to floral growth (Penin & 

Logacheva, 2011).  These correspond to the organ numbers observed in this KFBT screen 

(Figure 5.6). 

Environmental variables are also known to cause these floral organ number modifications, 

such as being moved from non-flowering to flower-inducing conditions (Penin & 

Logacheva, 2011).  Lower temperatures correlate with increased petals and fewer stamens 

in Rosa chinensis (Han et al., 2018).  The reduced stamen from Figure 5.6B was also noted 

in Arabidopsis plants from the GUS reporter assay without transgenic KFBT functionality 

(Chapter 4.8; not shown) and these lines behaved as a negative control to further confirm 

modified KFBT activity was not the source of this variation. 

Use of the 35S constitutive promoter and the previously observed GUS expression in 

transformed Arabidopsis gynoecia (Figure 4.8-2) confirms that the lack of a significant 

mutant phenotype is not due to a lack of KFBT transcription.  Therefore, it may instead be 

suggested that KFBT requires a downstream target protein that is not present in Arabidopsis 

– perhaps even a partner protein from the Primula S locus.  Alternatively, transgenic 

expression may simply commence too late in development for a mutant phenotype to be 

observed (Chapter 4.8).  When Primula transformation issues are resolved and a stable 

protocol has been established, insertion of KFBT into the pin genome will confirm whether 

it is a general housekeeping protein or an S locus member that KFBT requires.  An 

alternative possibility is that KFBT permits pollen-stigma compatibility between Primula 

plants but no difference was observed in Arabidopsis because it is already self-compatible. 

A VIGS assay was carried out on Primula (Chapter 5.7) to knockdown KFBT functionality in 

thrum plants.  It initially appeared that anther filaments had shortened in these flowers.  

As these filaments are fused between the endodermal and epidermal cell layers of the petal 

whorl, their shortening would pull down the corolla and result in the warping that was 

observed here (Figure 5.7-2) – if length of the flower tube itself remained unaffected.  This 

is equivalent to the mechanism believed to cause short homostyle phenotypes, which 



178 
 

present a concertina-like crinkling of the corolla when viewed under a microscope (Li, 

unpublished).  Abnormal phenotypes appeared in ~10 % of treated plants and, likewise, 

only 2 of 22 Primula that underwent VIGS treatment in the Huu (et al., 2016) experiment 

resulted in abnormalities to reveal a function in style length suppression for CYPT. 

Plants that underwent VIGS treatment to silence GLOT activity also demonstrated crinkled 

corolla phenotypes (Li, unpublished).  Short homostyles have previously been linked to 

GLOT mutations (Li et al., 2016).  This appeared to support the potential link between GLOT 

and KFBT that was proposed by qPCR analyses, in which KFBT transcription was lost in the 

petal whorl (Figure 4.3).  This observation suggested that KFBT might be directly  involved 

in mediating heteromorphic anther position in Primula.  One possible conclusion could be 

that GLOT is the transcription factor that activates KFBT expression, which would explain 

there is no KFBT expression in short homostyle petals that have lost GLOT function.  This in 

turn could mean that loss of GLOT indirectly regulates anther height through KFBT.  

A second phenotype linked to the crinkled corollas from VIGS assays was observed.  While 

the flower mouth is flush with the petal surface in wildtype plants, the abnormal VIGS 

flowers presented a corolla opening that protruded from withdrawn petals (Figure 5.7-3).  

This was likely a secondary effect of the retracting corolla beneath, though this has not 

been observed in short homostyles. 

Viral silencing exhibits knockdown of genes proportional to dosage of the pTRV vectors; it 

is not a true knockout.  Tissues with an increased quantity of successfully infected cells 

would thus be expected to demonstrate greater effects.  With respect to the abnormally 

curved corollas, it was therefore predicted that the anther filament along the inside axis of 

the curve must have been exposed to greater KFBT silencing by the VIGS vectors and 

therefore pulled on the corolla with greater tension, thereby causing the flower to be 

curved in that direction. 

Alternatively, a second explanation for this curvature became evident in the second VIGS 

assay (Figure 5.7-4).  Growth of the corolla was restricted by webbed tissue that fused the 

sepal and petal whorls along one side.  In plants treated with VIGS constructs to silence 

GLOT, it was further noted that the petal blade edge had adopted green sepal identity 

following the seam of this fusion (Figure 5.7-5).  However, these malformations also 

appeared in some negative control samples too (Figure 5.7-6). 
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It was therefore impossible to conclusively link KFBT function with these irregular 

phenotypes, which may instead be a result of the extensive inbreeding and hybridisation 

that produce such commercial lines.  The Polyanthus horticultural variety was selected for 

its thick and long flower stalk that is not present in wildtype P. vulgaris but is well-suited to 

the VIGS injection procedure.  The P. veris species presents an umbel of flowers atop a 

significantly longer flower stalk than P. vulgaris but is most likely too thin for adequate VIGS 

injection.  Breakdown of the self-incompatibility system was another difference observed 

in the Polyanthus variety (Chapter 5.7).  Huu ( et al., 2016) successfully utilised P. forbesii 

in a VIGS experiment to investigate style length.   

Though the five S locus genes have been identified, much work remains to elucidate the 

network and pathways that underpin floral heteromorphy.  Although several questions can 

be answered bioinformatically, such as the mechanism responsible for maintaining 

integrity of the hemizygous S locus and uncovering the chronological sequence of events 

that led to the evolution of heteromorphy, an extensive focus on transgenic approaches is 

required.  It has been found that the silencing effect of VIGS treatments can persist for over 

two years and may even be transmitted to seedlings (Senthil-Kumar & Mysore, 2011).  In 

the current absence of a reliable Primula transformation system, VIGS may offer a feasible 

workaround.  This would allow for the treatment of seedlings in advance of their transition 

to reproductive growth, which would increase the quantity of infected cells and mean the 

plant would endure targeted gene silencing across the entirety of flower development.   

Even with a routine transformation protocol, the slow life cycle and annual flowering period 

of Primula would remain a hurdle.  Time could be invested to establish the infrastructure 

and methods that would provide a rapid turnover or continuous supply of P. vulgaris 

flowers, but it would be difficult to glean data from plants subjected to hormonal 

treatments or modified lighting and growth conditions.  While the necessity for transgenic 

Primula cannot be replaced, work can be assisted via the transformation of Arabidopsis. 

  



180 
 

Chapter 6 

The Operation of KFBT 

In addition to deducing the function of KFBT, experiments were also carried out to explore 

how KFBT executes this function.  A yeast two-hybrid assay was used to screen Arabidopsis 

thaliana and Primula vulgaris cDNA expression libraries to identify partner proteins of KFBT.  

As KFBT has predicted involvement in targeted protein degradation, using yeast two-hybrid 

to elucidate the protein it binds to would identify which protein is targeted for degradation.  

Further research on target proteins could highlight the pathway modulated by KFBT and 

offer more information about its operation and function. 

Yeast two-hybrid assays work by using a Saccharomyces cerevisiae yeast cell carrying two 

vectors; a prey construct containing the coding sequence for a transcription activation 

domain fused to cDNA from the tissue to be screened and a second bait construct with the 

coding sequence for a DNA binding domain fused to the cDNA for the protein of interest 

(Chien et al., 1991).  These two protein domains must be expressed in the cell and if they 

can be brought together through a protein-protein interaction between the bait and 

second prey protein, they can activate expression of a histidine biosynthesis gene (or other 

reporter gene) via the upstream activating sequence (Fields & Song, 1989).  The cell cannot 

survive without this essential amino acid and so only those containing successfully 

interacting protein partners grow to form colonies. 

This approach was used to screen cDNA hybrid expression libraries from Primula and 

Arabidopsis (Matchmaker™, 2007).  Transcripts from a cDNA pool were ligated into a prey 

vector with the GAL4 transcription activation domain and transformed into yeast strain 

AH103 (Chapter 2.20.2).  The bait construct (Chapter 2.11.2) containing KFBT ligated in 

frame to the sequence encoding a GAL4 DNA binding domain was transformed into yeast 

strain Y187 (Chapter 2.13).  These two compatible yeast strains were mated to result in 

diploid cells containing both plasmids (Chapters 2.20.2 & 2.20.3).  Mated cells were grown 

on media lacking histidine and only colonies containing plasmids encoding fusion proteins 

that can interact may survive.  The prey plasmid from surviving colonies can then be 

isolated and sequenced to identify the KFBT binding partner.  A P. vulgaris flower cDNA 

library was the primary focus of this experiment but an A. thaliana cDNA library was also 

tested. 
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6.1 Preparation of KFBT Activation Domain and Binding Domain Vectors  

Although only the KFBT bait construct was used to screen the prey vector protein library, 

the KFBT-AD vector was also made for future testing of interactions in both directions.  

These vectors positioned the fusion domain at the 5’-end of the inserted KFBT fragment.  

This is the same terminus as the KFBT F-box domain.  An alternative plasmid, such as 

pGBKCg, would have fused the binding domain to the 3’-end of KFBT instead.  However, it 

was decided to use pGBKT7 because the fused domain could potentially block binding 

activity of the 5’-end F-box.  This was favourable because finding binding targets of the 

Kelch domain was the true experimental aim.  The already well-characterised F-box 

functions in recruitment to the SCF complex, therefore Identifying its binding partners was 

irrelevant and would only have interfered with this assay.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6.1:  Vector maps for KFBT yeast two-hybrid plasmids. Bait and prey constructs were both made with the KFBT 
coding sequence for downstream cDNA library screens and protein-protein interaction tests.  The pGBKT7 bait 
plasmid contains the tryptophan biosynthesis marker for selection and the GAL4 DNA binding domain.  The pGADT7 
plasmid contains the leucine biosynthesis marker and the GAL4 DNA activation domain. These two domains are 
brought together by protein-protein interaction to activate expression of the histidine reporter gene for survival. 
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6.2 Screening for Specific Interaction Between GLOT and KFBT 

The qPCR assays had pointed toward a potential link between loss of GLOT expression and 

loss of KFBT expression (Chapter 4.3).  This was presumed to take place at the transcript 

level – because GLOT is a transcription factor (Kent, 2016) that may regulate activation of 

KFBT expression – but this pair were also tested for interaction at the protein level, which 

would potentially signify a negative feedback loop.  The PvGLO and PvDEF proteins were 

also included as positive controls because they are a known interacting pair. 

 

 

 

 

 

 

 

 

 

 

Cells containing the KFBT bait construct and the GLOT, PvDEF, KFBT or PvGLO prey constructs 

all grew on -WHL dropout media (Figure 6.2-1).  This shows that these proteins interacted 

successfully with KFBT to activate expression of the histidine biosynthesis gene for survival.  

However, interactions in the reverse direction between the bait samples against the KFBT 

prey did not occur.  The positive control interaction between PvGLO and PvDEF functioned 

correctly.  The PvGLO protein does not homodimerize (Causier, unpublished) and the 

PvGLO-PvGLO negative control mating correctly failed to grow on the -WHL dropout media.  

All results were consistent at 10 mM of 3-AT, thereby demonstrating stable affinity at the 

highest level of inhibitor tested.  

Figure 6.2-1: Protein-protein interaction screen between KFBT with GLO, GLOT and DEF.  Growth indicates successful 
protein binding and activation of the histidine reporter gene required for survival.  Homodimerisation of KFBT was 
observed and KFBT from the prey construct bound with all tested proteins.  Known binding partners, PvDEF and 
PvGLO, were used as a positive control.  Homodimerisation of PvGLO is known not to occur and so was here used a 
negative control. 
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Identifying such unidirectional interactions is common in yeast two-hybrid assays and they 

are usually denoted to steric hindrance (Uetz & Dong et al., 2006).  It is unclear why the 

interaction did not work bidirectionally in this case.  The problem cannot simply be linked 

to interference of the fused activation domain from the KFBT prey construct because the 

KFBT self-mating assay demonstrated successful dimerization.  This would suggest that 

interference instead came from the binding domains on the PvGLO, GLOT and DEF 

constructs.  However, these have elsewhere functioned correctly in unpublished 

experiments by Dr Causier.  The complex conformations that arise when KFBT binds to these 

proteins must therefore hinder the activation or binding domains.  

This experiment highlighted potential interaction between KFBT and GLOT, GLO, DEF and 

itself.  The GLOT gene is expressed in the fused petal and anther whorls of P. vulgaris (Kent, 

2016).  It has been observed that loss of GLOT expression in short homostyle mutants 

resulted in loss of KFBT in the petals (Figure 4.4).  If the GLOT transcription factor was 

responsible for activating expression of KFBT, then – in addition to degrading the target 

protein from whichever pathway KFBT modulates – KFBT may also initiate degradation of 

GLOT to cease its own transcription and complete a negative regulatory feedback loop.  

However, GLOT could not be the sole transcription factor with the capacity to regulate KFBT 

expression because KFBT is also significantly expressed in the gynoecium (Figures 4.3 & 4.4), 

where GLOT expression is absent.  Furthermore, GLOT is absent in A. thaliana and transgenic 

Arabidopsis plants containing GUS under transcriptional regulation of the KFBT promoter 

exhibited expression (Figure 4.8-2), demonstrating that the KFBT promoter can be active in 

the absence of GLOT expression. 

The significance of this KFBT-GLOT interaction cannot be determined because KFBT also 

showed binding activity with PvGLO and PvDEF.  Although this may have suggested a lack 

of KFBT target specificity, all three genes are B-function MADS-box genes and PvGLO shares 

73 % sequence similarity with GLOT at the amino acid level (Figure 6.2-2A).  Furthermore, 

PvDEF displayed homology to the N-terminus of GLOT (Figure 6.2-2B).  It is therefore unclear 

whether KFBT possesses promiscuous binding ability or has evolved affinity for closely 

related B-function MADS-box proteins.  Further constructs could have been developed 

using genes unrelated to the S locus, such as PvPlena (Cook, 2002), or non-MADS-box 

proteins to identify non-interacting partners for KFBT but it was decided to fully invest time 

into the protein library screens instead.  
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Figure 6.2-2:  Alignment of GLOT (DQ381428.1) amino acid sequence against those of PvGLO (EF119212.1) and PvDEF 
(DQ381427.1).  A) The PvGLO and GLOT proteins share 73 % identity across their sequences and a further 15 % of 
amino acids had similar properties.  B) The PvDEF and GLOT proteins are particularly homologous at their N-terminus. 



185 
 

6.3 Yeast Two-Hybrid Screen of Arabidopsis and Primula Libraries 

Yeast two-hybrid screens of both the Primula and Arabidopsis cDNA libraries were carried 

out to identify potential KFBT partner proteins.  The Primula library was the most relevant 

and therefore primary focus of these experiments but the Arabidopsis library was 

additionally screened due to its high quality, well-annotated genome and reliability in 

experiments by Dr Causier at the University of Leeds.  Although Arabidopsis is an unrelated 

model system, it could still be informative if KFBT targets a homologous housekeeping 

protein not unique to Primula. 

Positive colonies were grown and underwent miniprep before their library fragment was 

amplified via PCR and sequenced (Chapter 2.20.3).  To overcome silent variation between 

primary nucleotide sequences, BLASTx was used to identify amino acid sequences from the 

yeast two-hybrid positives.  Results with an E-value greater than 0.01 were discarded.  

Seventeen candidate protein partners of KFBT remained (Table 6.3.1).  Only the GTP protein 

and Rubisco were from the Primula screen; all others came from the Arabidopsis library. 

The myo-inositol-1-phosphate synthase gene (Table 6.3.1) emerged four times in one 

screen.  This is involved in the production of all inositol-containing compounds by catalysing 

the conversion of D-glucose 6-phosphate to 1L-myo-inositol-1-phosphate (Geiger & Jin, 

2006).  The IQ-domain 24 protein also appeared twice and has a calmodulin-binding motif 

involved in cell-signalling (Fischer et al., 2013).  Rotamase cyclophilin 5 (Table 6.3.1) also 

has a role in signal transduction (Borderies et al., 2003).  Ribosomal proteins occurred three 

times across two different repeats of the yeast two-hybrid assay.  However, these have 

elsewhere been found to bind so frequently that they hamper yeast two-hybrid 

experiments (Dowd et al., 2000) and were therefore disregarded as false positives. 

Overexpression of a Krueppel-like (Table 6.3.1) zinc finger protein in Medicago truncatula 

resulted in an unusually long style compared to anthers, which were dehydrated in the 

mutant (Frugier et al., 2000).  This led to inefficient pollination and lower production of 

pods that contained fewer seeds.  It could be hypothesised that degradation of this 

Krueppel factor by KFBT in the ubiquitinase pathway would lead to the short style observed 

in wildtype thrum flowers, although degradation of brassinosteroids by CYPT has already 

been connected with style dimorphism in Primula (Huu et al., 2016).    

The heat shock, cold-regulated and chaperonin proteins from Table 6.3.1 are all involved 

in stress response pathways.  The cytochrome P450 family member, CYP76C1, is also 
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preferentially expressed during the hypersensitive response to stress (Boachon et al., 

2015).  The Developmental and Cell Death protein is an asparagine-rich protein that 

promotes cell death (Hoepflinger et al., 2011).  Orotidine 5’-phosphate decarboxylase is 

involved in the biosynthesis of uridine monophosphate (Radzicka & Wolfenden, 1995).  

Deoxy-D-xylulose 5-phosphate synthase is the main rate-determining enzyme in the 

production of plastidial isoprenoids for photosynthesis and development (Wright & Phillips, 

2014).  The Nodulin MtN3 family has a well-characterised role in carbohydrate transport 

and root nodule formation for nitrogen fixation (Gamas et al., 1996). 

 

  

Table 6.3-1: Potential KFBT-interacting proteins identified via yeast two-hybrid screens of Primula and 
Arabidopsis cDNA libraries. 
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6.4 Discussion  

A number of self-incompatibility mechanisms have been characterised and shown to 

involve the influx of reactive oxygen species (ROS) that disrupt the Ca2+ gradient in pollen 

tubes and arrest their growth, sometimes via programmed cell death (Serrano et al., 2015; 

Franklin-Tong et al., 1997; Kenrick et al., 1986).  Self-incompatibility has been associated 

with cytoskeletal modifications too, such as rapid microtubule depolymerisation (Poulter 

et al., 2008).  Actin is also a very early target of self-incompatibility signals in Papaver 

(Staiger & Franklin-Tong, 2003).  An extensive literature review found most candidate 

protein partners for KFBT (Table 6.3.1) were associated with pollination, cytoskeletal 

modifications and stress response pathway components, such as calcium signalling.  This 

uncovered a potential role for KFBT in Primula self-incompatibility.  Although the Primula 

self-incompatibility system is sporophytic (Dowrick, 1956), the underlying machinery is 

currently unknown and could be novel or may even have evolved to be mechanistically 

more similar to characteristics from gametophytic self-incompatibility systems (Lu et al., 

2018).  It was therefore important that information from both classifications were 

researched. 

According to The Arabidopsis Information Resource (TAIR; www.arabidopsis.org), the 

Krueppel-like factor identified from this yeast two-hybrid assay is expressed highly in the 

gynoecium, like KFBT (Figures 4.3, 4.4 & 4.8-2).  Overexpression of this protein resulted in 

unusually long styles compared to the anthers, which were dehydrated and thus led to 

inefficient pollination and fewer seed pods each containing a low number of seeds (Frugier 

et al., 2000).  Although gynoecium dimorphism is a major facet of floral heteromorphy, it 

is unlikely that KFBT is responsible for the short style of thrum plants; CYPT is believed to be 

responsible for this (Huu et al., 2016).  The knockout mutant also exhibited nitrogen 

deficiency and its gene expression was responsive to nodule development (Frugier et al., 

2000).  Although nodulin was another candidate from this yeast two-hybrid assay (Table 

6.3.1), these two proteins are unlikely to be linked. 

The cytochrome P450 protein (CYP76C1; Table 6.3.1) is a major linalool metabolising 

enzyme expressed greatly and almost uniquely in Arabidopsis flower petals (Boachon et al., 

2015).  Linalool compounds have a role in plant defence against insects (Müller et al., 2009).  

This could be interpreted to suggest KFBT temporarily inhibits production of this plant 

defence chemical to allow a window in which essential insects are attracted for cross-

pollination.  Although improbable, this proposition would be a completely novel and 
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previously overlooked role for the Primula S locus.  A simple experiment to test this would 

be to assess whether thrum to pin crosses occur more often than pin to thrum.  

Furthermore, loss of KFBT in short homostyle petal tissue (Figure 4.4) would lead to fewer 

pollinator visits to this mutant.  This could also be tested by qPCR to assay KFBT levels 

between day and night, as Darwin (1862) proposed that Primula are pollinated by moths at 

night. 

The majority of yeast two-hybrid positives here appeared to be largely relevant to self-

incompatibility.  Nodulin was one of two top candidates for the pistil-component of self-

incompatibility in Senecio squalidus and, like Primula, this species has a sporophytic self-

incompatibility system controlled by a single S locus (Allen et al., 2011).  Myo-inositol 

oxygenase was another candidate mediator of self-incompatibility (Allen et al., 2011), 

which is involved in the same pathway as myo-inositol-1-phosphate synthase (Loewus & 

Murthy, 2000) – another potential KFBT partner protein (Table 6.3.1).  The authors also 

identified an F-box protein as the top pollen-component of S. squalidus self-incompatibility 

and KFBT is an F-box protein too.   

The exact mechanism of Nodulin action in self-incompatibility was not defined but it has 

known roles within pollen development of Arabidopsis thaliana (Guan et al., 2008) and 

Oryza sativa (Yang et al., 2006).  Its presence in stigmatic papillae cells infers a likely 

function in pollen recognition on the stigma by regulating traffic during pollen hydration 

and germination (Allen et al., 2011).  A nodulin 26-like intrinsic protein demonstrated 

heightened expression levels after incompatible self-pollination in Fragaria viridis (Du et 

al., 2019).  The KFBT-mediated degradation of Nodulin in Primula may therefore breakdown 

self-incompatibility and permit pollination.  Nodulin also has a role in the hypersensitive 

defence response (Gamas et al., 1996).  Furthermore, a nodulin 24-like gene was identified 

as a HT-family member (Kondo & McClure, 2008).  Self-compatible Solanum lycopersicum 

have mutations in both HT-A and HT-B genes (Kondo et al., 2002).  HT proteins were first 

identified in Nicotiana alata and are responsible for pollen rejection (McClure et al., 1999).  

Antisense suppression of the HT-B pistil-expressed gene caused loss of gametophytic self-

incompatibility in Petunia (Puerta et al., 2009). 

Both the overexpression or suppression of early nodulin-like (ENODL) genes in Arabidopsis 

compromised pollen tube reception (Hou et al., 2016).  This conversely suggests that 

degradation activity by KFBT would therefore cause self-incompatibility instead of 

permitting compatibility, as proposed earlier.  However, KFBT is more similar to Nodulin 
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than ENODL (not shown).  A nodulin-like gene is associated with gametophytic factor 1, 

which is a locus linked to gametophytic self-incompatibility in maize (Bloom, 2011).  

Nodulin has therefore been implicated in both sporophytic and gametophytic self-

incompatibility systems and this supports the earlier statement that Primula investigations 

must be open to both modes of operation. 

The second of the two self-incompatibility candidates from the Senecio investigation by 

Allen (et al., 2011) was a pistil-specific membrane associated protein (MAP).  Splicing factor 

35 (SC35; Table 6.3.1) is also a candidate MAP (Derbyshire et al., 2015), the depletion of 

which led to altered genes related to the transduction of plant hormone signals (Yan et al., 

2017).  A Krueppel factor and orotidine-5’-phosphate decarboxylase emerged as Primula 

matches in the yeast two-hybrid (Table 6.3.2).  These are both also associated with splicing.  

This role could be interesting as GLOT is alternatively spliced in both thrums and long 

homostyles (Li et al., unpublished).  Only exon one of GLOT has been detected in short 

homostyle transcriptomes (Li et al., unpublished). 

The SC35 protein has a role in transcriptional elongation and is associated with 

microtubules (Derbyshire et al., 2015).  Its knockout led to altered phyllotaxy (Yan et al., 

2017), which was also a mutant phenotype associated with the DNA topoisomerase 1 alpha 

candidate from Table 6.3.1 (Takahashi et al., 2002).  This was one of 100 proteins with a 

bioinformatically predicted relation to cell wall synthesis (Zhou et al., 2010).  Liquid 

chromatography-mass spectrometry found it was ubiquitinated (Manzano et al., 2008) and 

this is at least potential evidence of its inclusion in the same pathway as KFBT.    

Two candidate heat shock and chaperonin proteins emerged from the yeast two-hybrid 

assay (Table 6.3.1).  Expression of heat shock and chaperone proteins was shown to double 

during self-incompatible pollination of Papaver rhoeas (Poulter et al., 2011).  The 

manufacture of cytoskeleton-associated proteins also doubled and those involved with 

signal transduction increased by 50 % (Poulter et al., 2011).  Chaperonin 60 (CPN60) was 

specifically highlighted by the KFBT screen (Table 6.3.1) and this protein was uniquely 

present in samples undergoing the self-incompatible reaction (Poulter et al., 2011).  It could 

therefore be interpreted that degradation of CPN60 via KFBT activity would permit self-

compatibility in Primula.  Moreover, chaperonin 10 was downregulated in non-heading 

Chinese cabbage 15 mins after compatible pollination and upregulated in self-incompatible 

plants (Wang et al., 2014).  In Solanum chacoense, both a 68 kDa heat shock protein and a 
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60 kDa chaperonin protein were downregulated during self-incompatibility (Vyetrogon et 

al., 2007). 

The upregulation of heat shock, calcium binding and calmodulin proteins have all been 

observed in response to pollen germination and pollen tube growth (Wang et al., 2008).  

Calcium signalling has also previously been linked to gametophytic self-incompatibility 

(Iwano et al., 2015).  IQ-domain 24 emerged from this yeast two-hybrid screen (Table 6.3.1) 

and is believed to be the site of action for Ca2+/calmodulin units (Petegem et al., 2005).  

Calmodulin is a calcium sensor that regulates voltage-gated calcium channels (Spitzer, 

2008).  Evidence suggests the IQ-domain recruits calmodulin and tethers it to the channel 

for detection of nearby calcium (Bürstenbinder et al., 2017).  Degradation of this protein 

by KFBT could therefore prevent the Ca2+ influx associated with self-incompatibility and 

permit compatibility instead.  Interestingly, an IQ-domain protein (AT3G52870) was one of 

eleven gene candidates – alongside CYPT – that demonstrated differential expression in P. 

vulgaris styles (Huu et al., 2016).  Although this candidate showed raised expression in the 

pin style (Huu et al, 2016), mass differential expression analysis in P. vulgaris (Chapter 3.8) 

proposed that an IQM2-like IQ-domain containing protein could be potentially under-

expressed in pin and short homostyle flowers (Figure 6.6) – which both lack a functional 

GLOT gene (Li et al., 2016).  
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The IQ-domain protein is also linked to dynamic organisation of microtubules 

(Bürstenbinder et al., 2017).  As the microtubule cytoskeleton coordinates direction of cell 

growth and expansion, initial conclusions alternatively linked this with suppression of 

Primula cell shape in the thrum upper corolla tube to support a hypothesis preliminarily 

raised by earlier qPCR experiments (Chapter 4.8).  However, as ROS and actin filaments 

exhibit a known interaction with calmodulin during self-incompatible pollen tube growth 

(Jiang et al., 2014), the self-incompatible hypothesis is favoured.   

Binding of calmodulin to the S locus receptor kinase of Brassica oleraceae has been 

observed (Vanoosthuyse et al., 2003).  The Developmental and Cell Death protein (Table 

6.3.1) was also found to interact with a calcium binding protein that shares sequence 

similarity with calmodulin (Hoepflinger et al., 2011).  Like heat shock proteins and 

Figure 6.6: Differential expression of an IQM2-like gene between thrum, pin and homostyle flowers.  This gene 
encodes an IQ domain-containing protein and emerged from an RNA-Seq screen to identify the most differentially 
expressed genes between morphs.  An IQ domain-containing gene was also found to be upregulated in pin styles 
(Huu et al., 2016) and a different IQ domain-containing candidate was identified in a yeast two-hybrid assay designed 
to investigate KFBT-binding proteins. 
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chaperonins, this protein has characterised involvement in stress pathways responsive to 

touch, ozone and salt (Hoepflinger et al., 2011).  Self-incompatibility has itself been 

considered a form of stress (Poulter et al., 2011).  Experiments with the GUS reporter gene 

suggested KFBT expression could possibly be stress-responsive (Figure 4.8-2).  

SRC2 is another Ca2+-responsive protein upregulated in response to stress, pollen 

germination and pollen tube growth (Wang et al., 2008).  It enhances ROS production 

(Kawarazaki et al., 2013) and therefore inhibition by KFBT may prevent arrest of pollen tube 

growth and permit compatibility.  SRC2 is modulated by nitrous oxide and this is involved 

in ROS production, the hypersensitive response and programmed cell death, which are all 

related to self-incompatibility (Polverari et al., 2003).  It is also regulated by brassinosteroid 

(Tang et al., 2008) and in Primula this hormone is modulated by CYPT from the S locus to 

mediate style height dimorphism (Huu et al., 2016).  

Similarly to SRC2, ribulose bisphosphate carboxylase small chain 1A (Rubisco) is regulated 

by cold temperatures (Kawamura & Uemura, 2003).  It emerged as a positive from the KFBT 

yeast two-hybrid screen and is downregulated in Arabidopsis GAPC-1 mutants that 

demonstrate defective pollen tube germination (Rius et al., 2008).  It was also 

downregulated in response to senescence in both wheat (Wittenbach, 1979) and rice 

(Makino et al., 1984).  ERD1 (Table 6.3.1) responds to senescence too (Montandon et al., 

2019).  This is a member of the heat shock protein family discussed previously.   

A third senescence-associated protein presented by this assay was the pheophytinase 

enzyme involved in chlorophyll breakdown (He et al., 2018).  No significant connection 

could be found with heteromorphy or self-incompatibility, except for senescence-induced 

expression of an S-RNase gene homologue in Antirrinhum (Liang et al., 2002).  S-RNases 

constitute the female self-incompatibility component in some systems (Bredemeijer & 

Blaas, 1981) and a self-incompatibility S1 gene from Corchorus capsularis was found to be 

differentially expressed between P. vulgaris morphs (Figure 3.8-3D).  The GTP binding 

elongation factor Tu family protein candidate (Table 6.3.1) from the KFBT yeast two-hybrid 

screen has been shown to bind with the S-RNase of Solanum chacoense and is accountable 

for the actin cytoskeleton disruption idiosyncratic of self-incompatibility (Soulard et al., 

2014).  GTPases are a large protein family with well-documented roles in pollen tube 

growth and cytoskeletal modifications (McClure & Franklin-Tong, 2006). 
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In addition to nodulin, heat shock, chaperone, signal transduction, SRC2 and cytoskeletal 

proteins, myo-inositol-1-phosphate synthase also exhibited upregulation in response to 

pollen germination (Dai et al., 2007).  This enzyme is integral to the production of all 

inositol-containing compounds (Loewus & Murthy, 2000).  Myo-inositol is taken up readily 

in germinating lily pollen for polysaccharide biosynthesis in the cell wall (Stanley & Loewus, 

1964).  Secondary wall thickening and callose plug formation during self-incompatible 

inhibition of pollination utilises such polysaccharides as pectin, callose and cellulose 

(Linskens, 2975). 

Phytic acid – an inositol polyphosphate – is degraded more rapidly during incompatible 

than compatible pollen germination (Jackson et al., 1983).  This phytase activity was 

measured in Petunia and highest levels were detected in mature pollen (Jackson et al., 

1983).  This could correspond with the significant spike in KFBT transcription detected in 

thrum anthers during the pollen maturation stages of flower development (Figure 4.4).  

High quantities of phytic acid have been found in the pollen of species that require tube 

growth longer than ~4 mm (Jackson et al., 1982).  This may include thrum plants because 

wildtype pin styles are substantially longer than 4 mm. 

Remarkable tolerances to drought, salinity and low temperature have been observed in 

Mesembryanthemum crystallinum, which accumulates high D-pinitol levels through 

methylation of a myo-inositol precursor (Agarie et al., 2007).   Silencing of myo-inositol-1-

phosphate synthase in rice led to increased abscisic acid sensitivity and lower levels of myo-

inositol, which usually protect the cell against reactive oxygen species (Ali et al., 2013).  

Therefore, if KFBT degraded this enzyme, the resultant decreased myo-inositol levels would 

leave cells more vulnerable to stress.  This would potentially lead to cell death and the 

consequential arrest of pollen tube growth.  A role for KFBT in self-incompatibility is thereby 

inferred.  Expression analysis with the GUS reporter gene potentially confirmed KFBT 

transcription in an area expected to contain raised abscisic acid levels within the mature 

gynoecia of Arabidopsis flowers undergoing abscission (Figure 4.8-2). 

Some of the candidate KFBT protein partners (Table 6.3.1) were expected to be false 

positives and not all of them could be strongly linked to floral heteromorphy.  Rotamase 

cyclophilin 5 is a cell-wall bound protein involved in signal transduction and protein 

refolding (Borderies et al., 2003).  No literature relevant to floral heteromorphy could be 

found for this protein or deoxy-D-xylulose 5-phosphate synthase, the latter of which is 

passed to heat shock proteins for either degradation or proper refolding (Pulido et al., 
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2016).  The orotidine 5’-phosphate decarboxylase candidate KFBT partner (Table 6.3.1) has 

the largest rate enhancement of any known enzyme and catalyses the final step of uridine 

monosphosphate biosynthesis (Radzicka & Wolfenden, 1995).  Uridine phosphates span 

extensive roles in plants.  For example, uridine diphosphate sugar pyrophopshorylase has 

a role in the self-incompatibility response of non-heading Chinese cabbage (Wang et al., 

2013a).  It is downregulated in self-incompatible pistils, possibly leading to degradation of 

sucrose (Wang et al., 2013b).  Glucose deficiency is linked to male sterility (Meng et al., 

2009) and loss of function of this enzyme resulted in shrunken and collapsed pollen grains 

in Arabidopsis (Schnurr et al., 2006).  Transcription of a UDP-N-acetylglucosamine 

transferase gene was found to be significantly downregulated in short and long homostyle 

mutants (Figure 3.8-3E).  This RNA-Seq data also presented a UDP-galactose/glucose 

transporter that exhibited no expression in pins or thrums, marginal transcription in short 

homostyles and significant overexpression in long homostyle mutants (Figure 3.8-3L). 

Although numerous yeast two-hybrid candidates were raised in this assay, they may share 

a common KFBT-binding site.  No such site could be identified at the amino acid level 

however one may exist in the final 3-dimensional folded protein structures.  One argument 

for KFBT permitting compatibility in Primula (instead of establishing self-incompatibility) is 

that no phenotype was observed in mutant Arabidopsis flowers and normal seed set 

occurred; these plants are naturally self-compatible. 
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Conclusions 

There are believed to be ~155 Kelch proteins in Primula vulgaris (Figure 3.2-2).  The most 

similar to KFBT shared ~45 % similarity (Table 3.2) and the most homologous non-Primula 

proteins were KMD1 and KMD2 from Arabidopsis, which both shared ~32 % similarity 

(Table 3.4).  The KFBT protein contains 5.5 Kelch repeats and an N-terminal F-box domain 

(Figure 3.1).  A transcription start site has been predicted ~900 bp upstream of the KFBT 

start codon (Figure 3.6.3-3). 

The presence of KFBT has been confirmed in fifteen other Primulaceae species (Figure 

3.3.4).  The Kelch domain is highly conserved between these species, with a variable region 

in between the fourth and fifth Kelch repeats and increasing variation toward the C-

terminus of the F-box domain (Figure 3.3.5-3).  There is further purifying selection across 

the C-terminus of the KFBT protein that does not correspond with an identified Kelch repeat 

(Figure 3.3.5-3), which supports the suggestion elsewhere that a C-terminal structure may 

cap the β-barrel formed by Kelch propellers (Li et al., 2004).  This was also observed when 

KFBT was aligned to 154 P. vulgaris Kelch proteins and the four Arabidopsis KMD 

homologues (Figure 3.5). 

Greatest expression levels of KFBT were detected in the P. vulgaris style via qPCR, with 

increasing transcription in the anthers as the flower approached maturity (Figure 4.4).  

Activity in these reproductive organs inferred a potential role for KFBT in the heteromorphic 

self-incompatibility system.  Gynoecium expression was reinforced by a GUS reporter gene 

assay (Figure 4.8-2).  This self-incompatibility hypothesis was supported by positives from 

a yeast two-hybrid screen, of which almost all of them could be linked to self-

incompatibility.  It is currently unclear whether KFBT acts to permit pollination or instigate 

incompatibility.  No KFBT, CCMT or PUMT transcripts were detected in the self-compatible 

P. oreodoxa (Zhao et al., 2019).  A reduction of KFBT expression within self-compatible short 

homostyle petals was also observed (Figure 4.3), however activity in petals would not be 

expected to effect incompatibility.  Alternatively, KFBT transcription appeared to increase 

in the styles of self-compatible long homostyle flowers (Figure 4.3). 

One possible model is that Primula are natively unreceptive to all pollen and KFBT in thrum 

pollen breaks down this barrier to permit pollination upon crossing to pin.  Similarly, KFBT 

in the thrum style would break the barrier of incompatibility to permit crossing from pin 

pollen.  However, during thrum self-fertilisation, KFBT in the pollen may homodimerize with 
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stylar KFBT.  This homodimerization has been proven by yeast two-hybrid (Figure 6.2-1).  

Such a protein-protein interaction may disable KFBT functionality and maintain the native 

incompatible state of the thrum plant.  However, it is currently unexplained why KFBT 

would not always homodimerize with neighbouring KFBT molecules in the same tissue. 

This model depends on a balance between KFBT in the pollen and style to limit the amount 

of free KFBT to breakdown self-incompatibility and permit fertilisation.  The significantly 

increased quantity of KFBT transcription in long homostyle gynoecia (Figure 4.3) could be 

enough to establish an imbalance that renders sufficient KFBT proteins free to cause the 

self-compatibility phenotype consistently observed in these mutants. 

The gynoecium:anther KFBT ratios in thrum, short homostyle and long homostyle flowers 

are 4.38, 1.36 and 9.66 respectively (Figure 4.3).  This suggests it could be the relative 

increase of KFBT expression in short homostyle anthers that causes their self-compatibility 

phenotype.  However, these figures are taken from pools containing flowers at various 

stages of development and not only at the phase of anthesis, therefore KFBT may be 

overrepresented in the gynoecium.  This is because KFBT transcription begins earlier here 

than anthers but nothing is known regarding the post-translational persistence of KFBT prior 

to undergoing protein turnover. 

The existence of two separate pin and thrum self-incompatibility systems has previously 

been proposed (Lu et al., 2018), though no genomic differences outside of the S locus have 

yet been found (Li et al., 2016; Cocker et al., 2018).  This novel model potentially explains 

how one protein could manage self-incompatibility systems in both thrum and pin plants; 

the latter of which does not possess the S locus (Li et al., 2016).  Targeted knockout of KFBT 

in P. vulgaris by way of CRISPR would be the ideal method for confirming the function of 

this gene in the future.  The KFBT coding sequence and promoter (Figure 5.3) should also 

be transformed into the pin genome, to observe how it behaves in a Primula plant that 

does not natively contain the S locus. 
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Appendix A 

Bespoke scripts written for this project are included here.  Red text indicates code.  Green 

text indicates input files required from the user.  Comments in black text alongside a hash 

symbol are notes provided to aid the user. 

A1 Obtain coding sequences from a genome using a GFF annotation file 

A script was written that obtains all coding sequences from an annotated genome.  The 

genome should be provided in FASTA format and the annotation should be in General 

Feature Format (GFF).  It will produce a single FASTA output file containing each gene ID 

and the corresponding coding sequence.  Sequences that do not begin and end correctly 

with start and stop codons are dismissed. 
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A2 Score Alignments to Calculate Similarity Across Sequences 

A script was written to interpret Clustal alignments for scoring similarity across sequences.  

This was useful for calculating percentage similarity and visualising conserved regions 

across multiple sequence samples via line graphs.  The user must provide a FASTA file 

containing the template sequence and the filename must end in ‘template.fa’.  At least one 

query sequence must also be provided in FASTA format, ending with ‘query.fa’.  Multiple 

query sequences may be provided but they must each be kept in a different file.  Version 

2.1 of the ClustalW software is required (Larkin et al., 2007).  A ‘Percentage_Similarities.txt’ 

file is produced containing the similarity calculation for every query sequence included.  A 

table containing hits alongside their corresponding base or amino acid position is also 

produced, suitable for plotting on a line graph. 
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A3 Generate Consensus Sequence from Multiple Nucleotide Sequences 

A script was written to generate a consensus sequence from multiple nucleotide 

sequences.  This was used for subsequently enumerating synonymous and non-

synonymous substitutions across various species, in an investigation inspired by Ka/Ks 

statistics.  Queries should be provided by the user in separate files as vertical sequences 

occupying a single column, with one base per line.  The ‘fold -w1’ command will convert 

horizontal sequences into the correct format, if any surplus text such as headers are 

removed first.  The script generates a single consensus nucleotide sequence. 
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A4 Count Synonymous and Non-Synonymous Substitutions 

This script was written to detect mutations between query and consensus nucleotide 

sequences and subsequently determine whether they represented synonymous or non-

synonymous substitutions.  The queries should be provided in separate files as vertical 

sequences occupying a single column, with one base per line.  The ‘fold -w1’ command will 

convert horizontal sequences into the correct format, if any surplus text such as headers 

are removed first.  The consensus nucleotide sequence should be provided in a file, with 

no headers or surplus text.  A codon table is also required, containing each nucleotide 

triplet alongside its corresponding single letter amino acid symbol in an adjacent column.  

The script will output a table containing each codon position alongside the number of 

synonymous and non-synonymous substitutions identified therein. 
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A5 Dot Matrix Alignment to Identify Self-Complementary Regions 

This script will accept a user sequence and carry out a dot matrix alignment against its 

reverse complement to identify potentially self-complementary regions within it.  The user 

should provide both forward and reverse complement sequences transformed vertically 

into a single column, so one base occupies one line.  The user can select a kmer size to use 

in the process by editing the top line of the script.  Matching forward and reverse positions 

are printed, suitable for plotting on a scatter graph for analysis. 
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A6 Identify Stem and Loop Structures in a Nucleotide Sequence  

This script was used to identify potential stem and loop structures in the KFBT nucleotide 

sequence.  The input sequence was provided in a file without a header.  Stems of five to 

fourteen with loops between three and twenty nucleotides were screened.  The stem and 

loop structures were printed to screen alongside their lengths. 
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A7 Calculate Average Transcripts Per Million for Every Gene 

This script was written to calculate the average TPM for every Primula vulgaris gene by 

using RNA-Seq data processed by StringTie (Pertea et al., 2016).  The user supplies the 

StringTie output file and a table containing each gene with the start and stop positions, 

which should easily be obtained from a GFF genome annotation file.  The script lists each 

gene with its corresponding average expression level.  
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A8 Find Closest Protein Matches in Primula vulgaris 

This script took nucleotide sequences from yeast two-hybrid positives of an Arabidopsis 

library screen and found their closest match in the P. vulgaris genome.  My CRanslate tool 

from GitHub (github.com/calumraine/cranslate) was used to translate the nucleotide 

sequences and version 2.1 of ClustalW (Larkin et al., 2007) carried out the subsequent 

alignments.  Multiple query sequences are permitted, each in separate FASTA files.  A 

second FASTA file containing all amino acid sequences from P. vulgaris was also required – 

this was obtained via the script in Appendix A1. 
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Appendix B 

A list of reagents used throughout the methods chapter is here included. 
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