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Figure 1: An overview of our method when training. A depth CNN and a pose CNN take a sequence of three consecutive
video frames as input I;_1,I;,I;+1. The depth CNN computes corresponding depth maps D;_1, D;, D;+1 and simultaneously the
pose CNN outputs the rotation R and translation t of the camera. D;, T and R are used to synthesise a new view and a photo-
consistency loss is computed with the input image I; (orange lines). Our main contribution is a velocity constraint loss which
is computed over D;_1, D¢, Dy+1 (blue lines). To mentor training of the networks, a novel supervisory signal is constructed by

combining the photo-consistency and depth constraint loss.

ABSTRACT

We present a new method for self-supervised monocular depth
estimation. Contemporary monocular depth estimation methods
use a triplet of consecutive video frames to estimate the central
depth image. We make the assumption that the ego-centric view
progresses linearly in the scene, based on the kinematic and phys-
ical properties of the camera. During the training phase, we can
exploit this assumption to create a depth estimation for each im-
age in the triplet. We then apply a new geometry constraint that
supports novel synthetic views, thus providing a strong supervi-
sory signal. Our contribution is simple to implement, requires no
additional trainable parameter, and produces competitive results
when compared with other state-of-the-art methods on the popular
KITTI corpus.
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1 INTRODUCTION

Deriving 3D information from 2D images is a long held goal of the
computer vision and machine learning community. Perceptually,
humans find it relatively easy to understand the three dimensional
properties of a scene. Unfortunately, the loss of a dimension in the
2D image makes the estimation of the true 3D geometry difficult; a
so called ill-posed problem. Usually infinitely many different 3D
surfaces may produce the same set of images, even though many of
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those possibilities are implausible. In spite of this difficulty, there is
considerable motivation to solve the problem.

Reconstructing 3D geometry from 2D images has many practical
applications. These include driverless navigation, robotics, aug-
mented reality (AR), computational photography and 3D modelling.
Estimating depth from monocular RGB images is particularly com-
pelling, given the abundant source of real world data, in comparison
to expensive LiDAR sensors on driverless cars, or depth cameras
in state-of-the-art mobile devices. The relative ubiquity of 2D RGB
data is, however, offset by the lack of depth labelling.

Over the past decade, supervised learning using deep Convolu-
tional Neural Networks (CNNs) have addressed many computer
vision problems with great success. Depth estimation has yielded
impressive results using diverse methods from a number of au-
thors [Eigen et al. 2014; Fu et al. 2018; Laina et al. 2016; Li et al.
2015]. Although supervised learning for estimating depth cues has
been shown to be quite possible, the requirement for pixel-wise
labelling limits the amount of data available to train these models.

Self-supervised learning of depth can be divided into two main
categories: stereo input imagery [Garg et al. 2016; Godard et al.
2017] or monocular input images. Using multi-view input images
for self-supervised depth estimation (e.g. [Senoh et al. 2015]) has
been explored. The multi-view approach is usually considered as
a less popular but general case of stereo vision. Some of these
methods aim to reconstruct particular objects of interest in the
scene, rather than identify the depth of every pixel.

Structure from Motion (SfM) requires a set of images captured in
multiple views to reconstruct 3D scenes by computing the relative
positions between each camera. In monocular depth estimation, a
sequence of images captured in a time series can be considered as
different camera views, if we assume the scene is almost rigid [Zhou
et al. 2017]. Our method is a form of SfM, where the monocular
camera is moving within an environment to provide multiple views
of that scene.

We propose a self-supervised method that exploits a consecutive
series of RGB images, without any depth labelling, to produce a
series of depth images and camera positions. Our contributions are:

e We introduce the notion of velocity constancy for monocular
depth estimation.

e We describe an innovative training framework in which a
depth CNN predicts the depth from three consecutive frames
of input. We exploit relative depth across these frames and,
through a simple motion model, we construct a novel geom-
etry constraint as a supplementary supervisory signal.

e Our method yields state-of-the-art monocular depth estima-
tion results on the KITTI Benchmark.

2 RELATED WORK

Self-supervised learning has been applied to both stereo and monoc-
ular depth estimation. In this section, our discussion is thus divided
into two parts.

2.1 Stereo Depth Estimation

Stereo image pairs can provide a relative structure of geometry from
two camera views [Hartley and Zisserman 2003], which further
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implies the use of epipolar geometry [Li et al. 2012]. This hardware
setup simplifies the model for estimating depth from a static capture.

To achieve self-supervised learning from stereo pairs, neural
networks [Garg et al. 2016; Xie et al. 2016] have been trained to
predict per-pixel dense disparities between the pair. [Xie et al. 2016]
proposed a model using discrete depth to predict novel view syn-
thesis. This is a fully automatic 2D-to-3D conversion algorithm
which takes 2D images or video sequences as input and outputs 3D
stereo image pairs. This network is trained directly on stereo pairs
from a dataset of 3D movies to minimise the pixel-wise photomet-
ric reconstruction error of the right view image when given the
left view image. The output stereo images can be viewed with 3D
glasses or head-mounted Augmented Reality (AR) displays. [Garg
et al. 2016] developed a method to predict continuous disparity
values. [Godard et al. 2017] further developed a two-view depth
consistency constraint which produced results superior to other
supervised methods. [Kuznietsov et al. 2018] trained a neural net-
work in a semi-supervised manner, which used the sparse ground
truth generated by some LiDAR sensors as supervisory signal.

Some stereo-based approaches have been extended with genera-
tive adversarial networks [Pilzer et al. 2018]. [Aleotti et al. 2018]
proposed a generator network which learns to infer depth from the
reference-view image and generate a warped target-view image.
At training time, a discriminator network learns to distinguish be-
tween fake images generated by the generator and target frames
acquired by a stereo rig. [Ranjan et al. 2019] proposed an additional
consistency, which combines monocular depth estimation, opti-
cal flow, and segmentation tasks together. In their work, the four
fundamental vision problems are solved simultaneously through
geometric constraints. [Babu et al. 2018; Li et al. 2018; Zhan et al.
2018] adopted temporal information in optimisation. These meth-
ods have all made use of consecutive video frames to train networks
(i.e. they utilise the temporal relation cross different frames). This
work has shown that it is possible to train a depth predictor from
monocular videos explicitly without stereo videos.

2.2 Monocular Depth Estimation

Due to the lack of spatial correspondences in a single frame, there
are fewer constraints available to train a monocular depth model.
To address this systematic problem, one would have to exploit
intra-frame information as the training signal. [Zhou et al. 2017]
proposed the first self-supervised monocular depth learning that
simultaneously learns both depth and camera pose estimators dur-
ing training. The camera pose estimator is used to provide rigid
feature correspondences between frames. The key idea is to con-
struct a photo-consistency reconstruction loss based on warping
nearby views to the target through the depth and ego-motion. The
two networks are coupled by the loss during training but can be
applied independently when testing. In this pipeline, the combined
networks take three consecutive frames as input and only feed the
middle one into a depth prediction network to get the correspond-
ing depth map. The other part of the networks — called ego-motion
mapping network — takes two frames to estimate a 3-D rotation
matrix and a 3-D translation matrix. After obtaining the depth map
and the two matrices, the network uses them and nearby view



Constant Velocity Constraints for Self-Supervised Monocular Depth Estimation

-« —!

Vt—l -t vt —>t+1

i
P
|
1
1
|

’ ( Positionatt - 1
;i AN @ ‘ “ @ : position at t
\ ~»n

Positionatt + 1

‘/\‘ . Camera

Figure 2: Our main contribution follows an assumption of
approximate uniform linear motion:vV;_;_,; and V;_,;41 de-
note the relative distance changes in a short sampling period

frames to synthesise a generated frame which should be very sim-
ilar to the middle frame if the photo-consistency reconstruction
quality is high. Training loss is based on the photo-consistency
error between the original middle frame and the synthesised frame.
This approach is based on the assumption that all objects in the
images are rigid. To cope with non-rigid objects (e.g. pedestrians),
an additional motion explanation mask generated by the pose CNN
(only used in training) was introduced to ignore the regions that
violate the rigid scene assumption. However, this additional motion
explanation mask was abandoned by some later work [Godard et al.
2017] which obtained better performance.

Most self-supervised approaches (including [Zhou et al. 2017])
are based on a slightly strong assumption of brightness constancy.
In practice, common violations of brightness constancy include
occlusions, changes of view, moving objects in the scene, and reflec-
tive materials. To address this problem, [Klodt and Vedaldi. 2018]
proposed a probabilistic learning formulation where the network
predicts distributions over variables rather than specific values.
This offers the important benefit of extracting as much informa-
tion as possible from imperfect supervisory signals. It avoids the
disruptions by outliers and noise. Apart from this, they proposed
traditional SfM methods to generate the depth maps as the supervi-
sory signals. However, their approach is computationally expensive
and the generated depth maps are sparse. Inspired by [Byravan and
Fox 2017], [Vijayanarasimhan et al. 2017] proposed a motion model
by introducing multiple motion masks — but the work was not fully
evaluated, making it difficult to understand the real benefits. [Go-
dard et al. 2019] proposed an auto-masking loss to deal with those
pixels violating the rigid motion and static scene assumptions. They
also developed a minimum re-projection loss to handle occlusions
robustly. [Alhashim and Wonka 2018] proposed a simple transfer
learning network architecture, which uses features extracted from
pre-trained networks. Most methods estimate depth independently
for each video frame. [Patil et al. 2020] introduced a network archi-
tecture that produces a time series of depth maps. This was achieved
by integrating the corresponding networks with a convolutional
LSTM. The addition LSTM module exploits the spatio-temporal
structures across frames. The latest work [Guizilini et al. 2020],
which has similar ideas as ours, proposed a semi-supervised pre-
diction framework. They introduced a velocity signal to mentor
networks training and developed a new feature extractor to yield
better performance.

3 SELF-SUPERVISED FRAMEWORK

In this section we describe the framework of our model and describe
how we provide the supervisory signal during the training of our
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Figure 3: Constructing the depth constraint requires iden-
tifying the common pixels belonging to an object in all
frames. These three frames denote a consecutive training
sample. Red box, blue box, green box represent the same
object captured in different views, therefore having corre-
sponding scales. In this case, our proposed depth constraint
only takes the area of red box into account.

model. Fundamentally, our method is a form of Structure from
Motion (SfM), where the monocular camera is moving within a
rigid environment to provide multiple views of that scene. Our
framework is built upon Monodepth2 [Godard et al. 2019].

Let I, € RHXWX3 ¢ {—1,0,1} be a frame in a monocular video
sequence captured by a moving camera, where ¢ is the frame time
index. Similarly, let D; € R*W denote the depth map correspond-
ing to image I;. The camera pose changes from time 0 to time ¢,
t € {-1,1} is encoded by the 3 x 3 rotation matrix R; and the
translation vector t;. We obtain the 4 X 4 camera transformation

matrix thus:
R t b
0 1 (1

Our aim is to train two CNN networks to simultaneously estimate
the pose of the camera, and the structure of the scene respectively.

M; = Opose(Ir) ()
D; = ®depth(lt) (3)

M; =

3.1 Novel View Synthesis as Supervision

Self-supervised depth prediction reformulates the learning task as a
novel view-synthesis problem. Specifically, during training, we let
the coupled network synthesise the photo-consistency appearance
of a target frame from another viewpoint of the source frame. We
treat the depth map as an intermediate variable to constrain the
network to complete the image synthesis task.

Let (u,v) € R? be the calibrated coordinates of a pixel in image
Iy. In this case, let the origin (0, 0) be the top-left of the image. In
the process of imaging, a 3D point (X,Y,Z) € R> projects onto
(u,v) through a perspective projection operator.

Suppose that the transformation matrix M; encodes the pose
change of the camera from time 0 to time ¢ and Equation 4 is the
perspective projection operator:

X Y
n(X,Y,Z) = (fxz + Cx,fyz + Cy)

= (u,0)

4)

where(fy, fy»cx cy) are the camera intrinsic parameters. Therefore,
given a depth map D(u, v), a 2D image point (u, v) backprojects to
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a 3D point (X, Y, Z) through backprojection operator, Equation 5.

U—cx V—Cy 1)

fr fy (5)

7 Y(u, v, D(u,v)) = D(u, v)(
=(X,Y,2)

then the corresponding pixels in image I; can be computed as:

W', v") = n(Ms ™ (u, v, D(u, v)))

(6)
9(u, v|D(u, v), My)

We project the pixels of an image to form a novel synthetic view
(Equation 6). However, the projected coordinates (u’, v’) are con-
tinuous values. To obtain I*(u, v) we include a differentiable bi-
linear sampling mechanism, as proposed in spatial transformer
networks [Max et al. 2015]. We can now linearly interpolate the
values of the 4-pixel neighbours (top-left, top-right, bottom-left,
bottom-right) of I(u’, v”) to give the RGB intensities as follows:

F(u,v) = Z Z w'?I(u’,v") 7)

where w"? is linearly proportional to the spatial proximity between
(u,v) and (u’,v’), and 3, , w*© = 1.

Classic depth estimation using SfM relies on a number of assump-
tions which can fail in the presence of occlusions, fine structures,
non-rigid movements, complex geometry, or weak texture. To miti-
gate these problems our method builds a strong supervisory signal
by combining a number of individual loss functions.

3.2 Photo-consistency Losses

For monocular depth estimation, an important supervisory signal
to learn geometry from unlabelled video sequences is brightness
constancy, which has been adopted as an invariant constraint [Zhou
et al. 2017]. The constraint is based on the assumption that pixels
in different video frames that correspond to the same scene point
must have the same intensity in general. Existing methods have
shown that a brightness constancy constraint is sufficient (at least
in common cases) to guide the learning of the depth regression
network and the camera pose estimation network.

Due to brightness constancy, the RGB intensities of the two
corresponding pixels, in two different frames Iy(u, v) and Ir(u’, v”),
should match. Therefore, we can write the fundamental photo-
consistency loss as in Equation 8:

loss’ = > D" I(g(w,0Do, M) ~ o, v)|  (8)

te[-1,1] (u,v)eQ

where Q indicates the set of all pixel coordinates in a frame with re-
spect to the defined coordinate origin. Note, we mask the brightness
loss with a stationary mask, described in Section 3.3. All quantities
in Equation 8 are known except for Dy, M; which are estimated by
the two CNN networks. We can denote the brightness constancy

loss function as:

= It|®depth’®pose ©
9
LY = (1, 1)

This basic photo-consistency loss only compares pixel intensity
values. An additional constraint, Structural Similarity, has been
shown to improve robustness for this task [Wang et al. 2004]. Given
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a pair of images a and b, their Structural Similarity SSIM(a, b) €
[0, 1] is given by:

2 b+
SSIM(a, b) = (2papp)(oq €) (10)
(Ha? + pp2)(0q2 + op?) + €
where € is a small constant to avoid zero division, p, = % ;‘:1 aj

is the mean intensity of image a, 0,2 = ﬁ > (ai - 1a)? is its
variance, and o, = ﬁ 2P (ai = pa)(bi — pp) is the intensity
correlation of the two images. Finally, our combined structural
similarity and brightness loss becomes:

lossP? = a(1 — SSIM(L,I®)) + (1 — &)L (1, %) (11)

where the weighting parameter « is set as 0.85 empirically [Godard
et al. 2019]. Rather than the mean of the photo-consistency error
over all source images, we use the minimum, assuming greater
error to be due to stationary violations.

3.3 Stationary Pixel Masking

Important assumptions for training are that the scene is captured
by a moving camera, and the scene is static with respect to a world
origin point. If any of these conditions is violated, the training
performance can be detrimentally affected. Using a simple auto-
masking method [Godard et al. 2019], we can filter the pixels that
do not change appearance from one frame to the next in the video
sequence. This mask allows the depth estimation network to ignore
objects which move at the same velocity as the camera and even
ignore whole frames in a monocular sequence when the camera is
still.

A pixel is defined as moving when the photo-consistency loss be-
tween the target view I; and the synthetic view I} through warping
the source view, is lower than the same error between the target
view and source view Iy. More formally:

mask® = |I; = I}| < |I; — Iy| (12)

The mask is binary, and no additional hyperparameter is required,
as the mask can be computed in the forward pass of the network
training. The pixels with almost unchanged intensities between
consecutive frames often indicate no relative camera movement,
an object that is relatively static to the camera, or a low texture
region such as sky and roads. As such, our training method uses
stationary pixel masking to only consider the photo-consistency
loss contribution from the “moving” pixels.

3.4 Constant Velocity Depth Constraint

In this section, we describe our main contribution, a novel loss term
for training. We allow ourselves the assumption that most training
frames have been captured in a short time interval, during which
the velocity of the moving camera can be considered as constant.
Figure 2 provides an illustration. Maintaining that assumption, in a
set of consecutive video frames, the distance from the camera to
any rigid object in front of the camera, varies only linearly.
Suppose that we denote D; as the depth map at some time step,
we have the following equation hold for the major areas in the
depth maps:
|Dt+1 = Dt| = |Dt — Dy—1| (13)
Individual objects in a scene have a variety of scale. Our idea models
those pixel areas that belong to the same object instance in all three
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Figure 4: Illustration of Depth Constraint Mask: the brighter
regions indicate pixels that are common to objects in all
three frames.

frames. We illustrate the concept in Figure 3. We introduce a new
mask to constrain the depth loss to ensure we only consider the
pixels of an object common to all frames:

mask® = [|I/ 17| < 10 [IIY =17 | < B] (14)

where Y is the mean luminance image and f is a threshold value
empirically set as 10 for 8-bit intensity values. A visualisation of an
exemplar mask is shown in Figure 4. We apply the mask to form
an additional depth loss term as follows:

Joss? = Ap(maskd © (IDt+1 — Dt| — |Dt — Dy—1l)) (15)

where the weighting parameter A is set empirically at 0.001 from
A =1{0.1,0.01,0.001,0.0001}, u refers to the function that computes
the mean of all matrix elements, and ©® is the Hadamard Product.
As a result of this geometry constraint, which models the depth
relation of corresponding pixels on different frames, this penalty
term makes it possible for the network to estimate depth from
frames which contain a lot of moving objects in the scene or even
are captured by a static camera and therefore violate the photo-
consistency assumptions. Finally, we combine the masked photo-
consistency loss and depth constraint loss:

loss ot = JossP + loss? (16)

3.5 Model Topology

Our model trains weights for two discreet networks, a depth es-
timation network, and a pose network. The depth network takes
as input an RGB image, and outputs the corresponding depth esti-
mation map; the pose network takes two RGB images as input to
predict the 6-DoF relative pose.

Our depth network follows the well known U-Net architec-
ture [Mayer et al. 2016], It is a symmetric encoder and decoder
with skip connections on every layer but the input and output. The
range of spatial resolution allows modelling both deep abstract
features and local information. The encoder is ResNet-18 [He et al.
2016] with a total of 11m trainable parameters, initialised with
weights trained on ImageNet [Deng et al. 2009]. Pretraining has
been shown to improve accuracy compared to training from ran-
domly initialised weights [Godard et al. 2019]. Our depth encoder
follows [Godard et al. 2017], with a sigmoid nonlinearality on the
output, and ReLU on the internal layers. However, the convolution
layers use reflection, rather than zero padding, which gives a better
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estimate of source image pixel values when sampling from outside
the border [Godard et al. 2019].

The pose network follows a similar design as the depth network
encoder, however, it requires two frames to infer camera pose. We
modify the ResNet-18 design, so the channel dimension of the input
layer is doubled. Again, like the depth encoder, we pretrain on
ImageNet. The output of the pose network is a 6-DoF relative pose
in an axis-angle and translation representation.

3.6 Training

For monocular self-supervised training we use a sequence length
of three images. To increase training data, we flip each input image
horizontally, and also augment brightness, contrast, saturation and
hue +0.2 randomly. The same augmentation is applied to all three
images in the input. We have implemented the networks using
PyTorch [Paszke et al. 2019], and they were trained using an NVIDIA
Quadro P5000 GPU with 16GB memory. During training all model
weights are updated simultaneosly, by minimising the combined
loss. The model was trained for 20 epochs, 1105 iterations every
epoch using Adam [Kingma and Ba 2015], with a batch size of 12
and an input and output resolution of 640 X 192. We set the initial
learning rate as 10~* for the first 15 epochs and then decremented
to 107> for fine-tuning the remainder.

4 EXPERIMENTS

In this section, we describe the dataset, show the evaluation metrics
we use from [Eigen et al. 2014] in Table 1, and our evaluation results
in comparison with the state-of-the-art methods.

4.1 Dataset

KITTI [Geiger et al. 2013] is a dataset that contains stereo images
and corresponding 3-D laser scans of outdoor scenes captured by
imaging equipment mounted on a moving vehicle [Kingma and Ba
2015]. The RGB images have a resolution of about 1241 x 376 and
the corresponding depth maps are very sparse with a large amount
of missing data. For training, we adopted the same dataset split used
by [Eigen et al. 2014]. After removing the static frames by a pre-
processing step suggested by [Zhou et al. 2017], this results in 39,810
monocular frame triplets for training and 4,424 frame triplets for
validation. To simplify the training processing, the camera intrinsic
matrix are assumed identical for all the frames in different scenes.
To obtain this “universal” intrinsic matrix, we offset the principal
point of the camera to the image centre and reset the focal length
as the average of all the focal lengths in KITTI. This assumption is
only valid when the capturing cameras are similar. Indeed, a more
precise solution would be required to also estimate the individual
intrinsic matrices for different videos sequences.

4.2 Results

In this section, we perform a quantitative evaluation to compare
our proposed method with the other representative algorithms
by using the common metrics discussed above. Table 2 shows
that our method outperforms all other methods on the KITTI
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Table 1: Definitions of Evaluation Metrics. y, is a pixel in the ground-truth depth map y, yl', is a pixel in the estimated depth

map y’, and n is the total number of pixels for each depth image.

Mean Relative Error (Abs Rel) o

Mean Relative Squared Error (Sq Rel) ™

Root Mean Squared Error (RMSE)

1 n Iyp—y;\
R e

1 ©vn (yp—y;,)z
hop

Vi Zpp —yp)?

Root Mean Squared Log Error (RMSE log)
Threshold Accuracy (6;)

V3 Zptlog(yp) - log(yy))?
% ofyp,s.t. max(y—f’, y_p) = §; < threshold;, threshold; = 1.25%,i € 1,2,3
yp Yp

Table 2: Quantitative results on KITTI Benchmark using the Eigen split: T represents the higher the better, and |, lower is

better. The best scores in the table are underlined.

Method AbsRel| [ SqRel| [ RMSE| [ RMSElog| [ 6; <1.257 [ 8, <1.252 7 [ 63 < 1.25° 7
StMlearner [Zhou et al. 2017] 0.183 1.595 6.709 0.27 0.734 0.902 0.959
Yang [Yang et al. 2017] 0.182 1.481 6.501 0.267 0.725 0.906 0.963
GeoNet [Yin and Shi 2018] 0.149 1.060 5.567 0.226 0.796 0.935 0.975
Wang [Wang et al. 2018] 0.151 1.257 5.583 0.228 0.81 0.936 0.974
DF-Net [Zou et al. 2018] 0.150 1.124 5.507 0.223 0.806 0.933 0.973
LEGO [Yang et al. 2018] 0.162 1.352 6.276 0.252 - - -
EPC++ [Newcombe et al. 2011] 0.141 1.029 5.35 0.216 0.816 0.941 0.976
Struct2depth [Casser et al. 2019] 0.141 1.026 5.291 0.215 0.816 0.945 0.979
Monodepth2 [Godard et al. 2019] 0.115 0.903 4.863 0.193 0.877 0.959 0.981
PackNet-SfM [Guizilini et al. 2020] 0.111 0.785 4.601 0.189 0.878 0.960 0.982
Our method 0.112 0.816 | 4.715 0.190 0.880 0.960 0.982

Table 3: Ablation. The first row represents the baseline, and * denotes an implementation option. T represents the higher the
better, and | means the lower the better. The best scores in the table are underlined.

Stationary Mask | Depth Constraint | Pretrained | AbsRel] | SqRel] [ RMSE] [ RMSElog| [ 6; <1.257 [ 62 < 1.252 7 | 83 < 1.25° T
0.16 1.44 5.72 0.262 0.77 0.921 0.969
* 0.14 1.61 5.512 0.223 0.852 0.946 0.973
* 0.135 1.043 5.128 0.211 0.839 0.947 0.977
* * 0.132 1.044 5.142 0.210 0.845 0.948 0.977
* * 0.124 0.936 5.010 0.203 0.865 0.952 0.977
* * . 0112 | 0816 | 4715 0.190 0.880 0.960 0.982

Depth maps Error maps

RGB inputs

Figure 5: Visualisation of depth error maps. Here we show
the error from our predicted depth maps compared to the
ground truth depth maps from the KITTI test set. Note the
error is largely at regions at infinity. The first column con-
tains the input images, the middle column shows the depth
estimation and the right column show the per-pixel depth
error. Hotter colours indicate greater error.

2015 dataset [Geiger et al. 2013]. The exception to this is PackNet-
SfM [Guizilini et al. 2020] which achieves marginally better per-
formance on relative and RMSE errors, and equal or worse perfor-
mance on threshold accuracy.

One of the reasons that our method produces more robust results
given the same training data is that it uses a triplet of frames to
supervise the training process while other approaches, such as
Struct2Depth [Casser et al. 2019], rely on a pair of source and target
images. Of course, this could also mean that the computational cost
of training using our method would also be increased.

Another reason is that in the KITTI dataset [Geiger et al. 2013],
there are many frames that are captured by a static camera that
contain moving objects. These problematic frames are filtered out
by the other existing methods as their training methods cannot
make use of these frames. However, with our novel depth constraint
loss, those frames are made useful for training.
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Figure 6: Visualisation of depth estimation results. The top row contains the input images. The remaining rows show the depth
estimation results from contemporary methods, visualised by false colours. Hotter colours indicate closer objects.

Figure 7: Common failure cases. Road marks have been in-
correctly recognised as closer objects in the left and middle
figures. The tunnel structure has been recognised as infinity
(i.e. similar to Sky) in the middle figure. The sky in the right
figure has been recognised as an object not at infinity. These
failures exist in all contemporary methods, and motivate fu-
ture work that can handle these difficult examples.

It should be noted that our model architecture is the same as that
in Monodepth2 [Godard et al. 2019]. However, training with our
proposed depth constraints has resulted in increased performance
over all evaluation metrics — a clear indication that our constant
velocity assumptions are valid.

Figure 6 shows the depth maps generated by SfMlearner [Zhou
et al. 2017], Monodepth2 [Godard et al. 2019], PackNet [Guizilini
et al. 2020] and our method for some target frames. We observe
that our method predicts fewer artefacts affected by the shadows in
the scene, and more robustly identifies the contours of objects. For
example, in the first column our method more accurately segments
the post in the foreground, and correctly identifies that the furthest
post is obscured by a tree. In the third column it is clear that our
method better captures depth details around the vehicle’s contour.

To better understand the behaviour of our system, we visualized
the per-pixel errors of the depth map, as shown in Figure 5. We
observe that objects that are far from the camera have lower ac-
curacy than those that are closer. Therefore our approach is very
well suited to applications that require precise near-field depth
information.

As common with all contemporary works, our method suffers
occasional failures in difficult scenes. Figure 7 provides some exam-
ples. We remain highly motivated to tackle these problematic areas
in future work.

4.3 Ablation Study

To understand how the components of our CNN network contribute
to the overall performance in monocular depth learning, we per-
form an ablation study by changing variables of our components
as shown in Table 3. We observe that the baseline model (top row)
performs the worst. A significant improvement was made by pre-
training the depth CNN on ImageNet [Deng et al. 2009] (second
row). The fifth row, verifies that the stationary pixel mask (described
in Section 3.3) improved the result compared with no masking. In
the final row, we show the improvement by introducing our novel
depth constraint loss (described in Section 3.4).

5 CONCLUSIONS

In this work, we have presented a novel framework for monocular
depth estimation and achieved state-of-the-art results on a pop-
ular benchmark. As far as we know, no work before exploits the
relationship between depth maps from consecutive video frames.
From a simple real world conception, we introduce and develop an
additional loss item as a supplementary supervisory signal to photo-
consistency loss. Our novel depth loss is based on the assumption
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that the velocity of the camera moving through the scene in con-
secutive video frames is constant. We validate this assumption by
comparing against similar approaches objectively and show depth
visualisations of the competing methods. Our idea is simple to un-
derstand and implement and introduces no additional learn-able
parameters.
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