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Abstract 

 

Phytoplasmas are bacterial plant pathogens vectored by sap-feeding leafhoppers. 

These bacteria induce dramatic changes in plant development, such as witches’ 

brooms and secrete effectors that modulate host plant processes. Aster Yellows 

phytoplasma strain Witches Broom (AY-WB) secretes the effector Secreted AY-WB 

Protein 11 (SAP11), which binds and destabilizes plant TCP (TEOSINTE BRANCHED1, 

CYCLOIDEA, PROLIFERATING CELL FACTORS 1 and 2) transcription factors, particularly 

members of the class II TCPs of the CYCLOIDEA/TEOSINTE BRANCHED 1 (CYC/TB1) 

and CINCINNATA (CIN)-TCP (sub)classes. Stable production of SAP11AYWB in A. 

thaliana and maize leads to the induction of specific developmental phenotypes, 

such as witches’ brooms and altered leaf shapes, consistent with the destabilisation 

of Class II CYC/TB1 and CIN-TCPs. SAP11 effector homologs were found in other 

phytoplasmas, but their binding specificities toward the TCP (sub)classes are unclear. 

This thesis shows that four divergent SAP11 effector homologs from various 

phytoplasma groups differentially bind class II TCP (sub)classes, specifically the helix-

loop-helix motif of the conserved TCP domain. I extended the analysis to include 

SAP11 homologs from divergent phytoplasma groups and investigated their 

phylogeny. I showed that the SAP11 proteins group in five distinct clades. The SAP11 

phylogeny is different from the phytoplasma 16S rDNA phylogeny, suggesting 

horizontal exchange of SAP11 genes among phytoplasmas. Interestingly, the SAP11 

effector homologs within each clade bind TCP members from three TCP (sub)classes, 

including class I TCPs. I elucidated the SAP11 region involved in the binding 

specificities toward class I and class II TCPs. Finally, SAP effectors of AY-WB 

phytoplasma genes that lie on the genetic island of SAP11AYWB also interact with TCP 

(sub)classes, including Class I TCPs, thereby expanding the interaction range of AY-

WB SAPs to all TCP (sub)classes. The work enables predictions of binding specificities 

to TCP (sub)classes of SAP11 effector homologs that may be discovered in the future. 
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1.1 Overview 

Phytoplasmas are bacterial plant pathogens that reside in the plant phloem 

(sap stream that transports nutrient to growing tissues) that are transmitted by sap-

feeding insects, such as leafhoppers, planthoppers and psyllids (Figure 1.1). 

Phytoplasmas are associated with diseases in more than a thousand plant species 

from 98 different plant families (Gasparich, 2010). Phytoplasmas are unique 

pathogens that can perform their invasion and replication in both plants and insects 

(Sugio et al., 2011b). Phytoplasmas reduce plant growth and yield in both 

agriculturally essential crops and wild plants and can induce dramatic symptoms, 

including stunting, yellowing, witches’ brooms (proliferation of branches), phyllody 

(retrograde development of flowers into leaves), virescence (flower tissues that 

remain green) and hairy roots. With the current global warming issue, crop losses 

due to phytoplasma may increase in the future, as the phytoplasma insect vectors 

are expected to expand their geographical ranges. 

 

Figure 1.1. The life cycle of aster yellows phytoplasma strain witches’ broom (AY-WB). The 

phytoplasma life cycle comprises two main hosts, the plant and the leafhopper. A: the sap-



General Introduction 

4 

 

feeding leafhopper acquires the phytoplasma by feeding from the phloem of an infected 

plant. B: The phytoplasma is colonising the insect. The time it takes to colonise the entire 

insect is approximately ten days, also referred to as the latency period. C: When 

phytoplasmas reach the salivary glands, the leafhoppers become infectious and can transmit 

the phytoplasmas to plants when feeding from the phloem. d: Phytoplasmas infect plants 

and can spread systemically throughout the plant via the phloem. Symptoms become 

apparent at about usually ten days after the first day of exposure to phytoplasma-carrier 

insect vectors (Figure taken from Sugio et al., 2011). 

1.2 A brief history 

Since the beginning of the last century, yellows diseases have been reported 

and described for many plant species (Kunkel, 1926). Plant pathologists and 

agricultural companies thought phytoplasmas were viruses for half a century. This 

mistake is due to their small size (they pass through 45-micron sterilisation filters) 

and the inability to cultivate phytoplasma in-vitro. It was only in 1967 that a Japanese 

team found that plants suffering from yellows disease were infected with 

Mycoplasma-like bacteria, which are pleomorphic bacteria lacking rigid cell walls that 

reside exclusively in the phloem  (Doi et al., 1967). Since then, the yellows disease 

agents were referred to as Mycoplasma-Like Organisms (MLOs). MLOs are not 

cultivable; thus subsequent taxonomic classification of MLOs relied mainly on 

symptoms induced in affected plant species and insect vector identification 

(Gasparich, 2010; Errampalli et al., 1991; Wang et al., 2004; Chiykowski, 1990). The 

further detection, identification and classification of MLOs started along with the 

development of molecular techniques (Lee et al., 2000). Using classification based on 

the 16S ribosomal RNA (rRNA) sequence, it became apparent that MLOs are 

numerous and diverse and belong to a monophyletic group within the Mollicutes in 

the phylum Tenericutes. They were renamed as phytoplasmas.  

In 2004, the International Research Programme for Comparative 

Mycoplasmology (IRPCM) officially adopted the name ‘Candidatus phytoplasma’ 

(IRPCM, 2004), due to the impossibility to cultivate the bacterium in-vitro. The 

assignment ‘Candidatus’ was added because phytoplasmas cannot be cultured, thus 
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preventing the fulfilment of the Koch’s postulates, which are four criteria designed 

to establish a causative relationship between a microbe and a disease (reviewed in 

Evans, 1976). 

1.3 Phytoplasma phylogeny 

Phytoplasmas are Gram-positive derived bacteria that belong to the 

Firmicutes clade. Phytoplasmas possess a relative low G + C content, along with the 

rest of the Firmicutes, in comparison with the high G + C content of Gram-positive 

Actinobacteria (Ventura et al., 2007; Hogenhout and Loria, 2008). 

Mollicutes are thought to have diverged from a Clostridium-like ancestor of 

the class Firmicutes (Gram-positive bacteria) via the loss of their outer cell-wall and 

a reduction of genome size (Weisburg et al., 1989). The Mollicute group subdivides 

into two clades: the SEM clade (Spiroplasma, Entomoplasma and Mycoplasma) and 

the AAA clade (Asteroplasma, Anaeroplasma and Acholesplasma). The phytoplasma 

genus belongs to the later and is comprised of a large and monophyletic clade 

paraphyletic to the Acholeplasma genus (Gundersen et al., 1994).  

1.3.1 16S rRNA classification 

The primary marker gene used for phytoplasma phylogeny is the 16S 

ribosomal RNA (16Sr) gene (IRPCM, 2004; Sugio and Hogenhout, 2012). Carl R. Woese 

first took advantage of the properties of 16S rRNA and used it as a tool for 

phylogenetic studies (Woese, 1987). He later argues of the usage of a single marker 

gene to represent an organism and the parameters to follow for such use. These 

marker genes need to be involved in key regulatory functions, preferably in the fabric 

of the cell (Olsen and Woese, 1993). Ribosomes follow such rule as being ubiquitous 

in every self-replicating cell and being essential in the translation machinery (Green 

and Noller, 1997). Bacteria comprise three types of ribosomal RNA (5S, 16S and 30S). 

Phytoplasma genomes contain two rRNA operons which are identical in some 

phytoplasmas (Schneider and Seemüller, 1994). They are mostly organised in the 

genome as rRNA operons as follow:  5’ – 16S rRNA – spacer region – 23S rRNA – 5S 

rRNA – trailer region – 3’ (Johansson et al., 2002). The 16S rRNA genes fulfil the 
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conditions established by Carl Woese and remained highly conserved during 

evolution, making it an excellent tool for phylogenetic analyses. Indeed, the 1500 

nucleotide long 16S rRNA molecule is used for the phytoplasma phylogeny as its small 

size make it easy to sequence and because the presence of universal regions allows 

confident amplification via PCR (Razin et al., 1998; Johansson et al., 2002). The latter 

proves very useful, considering the inability to cultivate phytoplasma reliably. 

The phytoplasma classification via 16S rRNA sequences comprises two main 

approaches: the first method relies on phylogenetic analysis of 16S rRNA gene 

sequences, the second method is based on RFLP analysis of PCR-amplified 16S rRNA 

gene fragments (Alvarez et al., 2014; Gasparich, 2010). The IRPCM team have 

established different rules to define a novel phytoplasma species. A phytoplasma is 

declared as novel species if its 16S rRNA sequence is at least 97.5% different from a 

previously described phytoplasma species (IRPCM, 2004). However, because of the 

high number of isolates, this condition can be hard to fulfil; therefore the use of 

additional molecular markers is necessary to establish the description as a new 

‘Candidatus Phytoplasma’ species (Seemüller and Schneider, 2004; IRPCM, 2004). 

Along with the additional molecular marker genes, that will be detailed further, the 

host range of the phytoplasma strain and the insect species that vector the pathogen 

also needs to be taken into account before establishing a new phytoplasma species 

(Seemüller et al., 2002).  

Based on the 16S rRNA sequences, the ‘Ca. Phytoplasma’ genus is comprised 

of three main clades, with up to nineteen 16Sr-based groups (Figure 1.2) (Chung et 

al., 2013). The first clade (in blue in Figure 1.2) includes the aster yellows (AY) group, 

belonging to the 16SrI phytoplasma subgroup, that includes ‘Ca. P. asteris’ Aster 

Yellow-Witches’ Broom (AYWB) phytoplasma, ‘Ca. P. asteris’ Maize Bushy Stunt 

Phytoplasma (MBSP) (not shown in Figure 1.2) and ‘Ca. P. asteris’ Onion-Yellow mild-

symptom (OY-M) phytoplasma (Lee et al., 2004). The AY group is the largest group of 

the phytoplasmas, with over 100 isolates described. The 16S rRNA sequences are 

highly homologous in this group, with the AY group further subdivided into distinct 

subgroups (16SrIA, 16SrIb and 16SrIC) via RFLP of16S rRNA (Lee et al., 1993, 1998; 

Jomantiene et al., 1998; Lee et al., 2004). 
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 The second clade comprises mainly the apple proliferation group, or 16SrX, 

that includes ‘Ca. P. mali’ which can infect apple trees (Seemüller and Schneider, 

2004). Finally, the third clade is highly diverse, with the likes of the peanut witches’-

broom group (16SrII) (Lee et al., 2000; IRPCM, 2004; Chung et al., 2013). The third 

clade includes ‘Ca. P. aurantifolia’ Witches’ Broom Disease of Lime (WBDL) and Sweet 

Potato Little Leaf phytoplasma (SPLL) (Zreik et al., 1995; Gibb et al., 1995). 

 

Figure 1.2. The Phylogenetic tree of ‘Candidatus phytoplasma’, composed of three main 

clades.  Molecular phylogeny inferred from the 16S ribosomal RNA genes ( Figure taken from 

Chung et al. 2013). 

1.3.2 Other marker genes for classification 

Other marker genes need to be used to fine-tune the classification of ‘Ca. 

Phytoplasma’ genus. It is especially true when it comes to differentiate closely 

related strains within the same 16S-based subgroup, as some phytoplasma strains 

contain two different 16S rRNA sequences within their genome (Liefting et al., 1996; 

Jomantiene et al., 2002; Davis et al., 2003). This heterogeneity between the two rRNA 

operons can be high, thus raising the need to find new molecular markers for the 
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characterisation of the phytoplasma strains (Schneider and Seemüller, 1994; 

Johansson et al., 2002). The additional marker genes are used to better differentiate 

phytoplasma strains within the same sub-group (Mitrovic et al., 2011) and/or can be 

used as comparative phylogenetic analyses via using multiple marker genes 

(Marcone et al., 2000; Martini et al., 2007; Mitrovic et al., 2011).  

For example, ribosomal protein (rp) genes (rpl22 and rpS3) are used to 

differentiate closely related phytoplasma strains as the rp genes mutation rates is 

relatively higher than the one of the 16S rRNA, allowing a better delineation of the 

phytoplasma phylogeny   (Martini et al., 2007). The groEL gene (also known as cpn60) 

encoding for a heat-shock protein and chaperone, is used to differentiate better the 

AY group 16SrI, as the gene displays lower sequence similarities than 16S rRNA within 

the three 16SrI subgroups (Mitrovic et al., 2011). The differentiation of some isolates 

of Maize Bushy Stunt Phytoplasma in Mexico and Brazil has also been achieved via 

the cpn60-based classification (Pérez-López et al., 2016). However, the use of the 

groEL gene is not systematic across the genus as it is sometimes found missing on 

certain phytoplasma groups like the 16SrIII group (Saccardo et al., 2012). More 

variable genes, like secY (Lee et al., 2004, 2006, 2010; Davis et al., 2013) or tuf are 

also used to fine-tune the classification of phytoplasma groups (Marcone et al., 

2000). 

1.4 Phytoplasma genomes and genetic features 

Eight phytoplasma genomes have been sequenced to completion, namely 

‘Ca. P. asteris’ OY-M (Oshima et al., 2004), Ca. P. asteris AY-WB (Bai et al., 2006), ‘Ca. 

P. asteris’ australiense strain PAa (Tran-Nguyen et al., 2008),  ‘Ca. P. mali’ strain AT 

(Kube et al., 2008), ‘Ca. P. asteris’ australiense strain SLY (Andersen et al., 2013), ‘Ca. 

P. asteris’ MBSP (Orlovskis et al., 2017), ‘Ca. P. ziziphi’ or JWB phytoplasma (jwb-nky) 

(Wang et al., 2018a) and ‘Ca. P. solani’ strain SA-1 (Music et al., 2019). Additionally, 

multiple teams were unsuccessful in completing the sequencing of phytoplasma 

genomes, mainly due to the high proportion of multiple-repeat regions. This resulted 

in the publishing of fifteen phytoplasma genome drafts (Saccardo et al., 2012; Chung 

et al., 2013; Chen et al., 2014; Kakizawa et al., 2014; Mitrovic et al., 2014; Chang et 
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al., 2015; Lee et al., 2015; Quaglino et al., 2015; Fischer et al., 2016; Zamorano and 

Fiore, 2016; Zhu et al., 2017; Sparks et al., 2018). Taken together, the complete and 

draft genomes provide useful insights into the genetic features of phytoplasma.  

1.4.1 Phytoplasma sequencing 

Phytoplasma genomes are difficult to sequence for several reasons. First, 

phytoplasmas are often present in low abundance, providing a challenge to obtain 

sufficient phytoplasma DNA (Hogenhout and Music, 2010). When the phytoplasma-

infected samples are sequenced, the read coverage of the phytoplasma genome is 

frequently low, making it expensive to obtain sufficient reads. Moreover, many 

phytoplasma genomes contain large (> 20 kb) repeat-rich regions that are difficult to 

assemble (Bai et al., 2006; Tran-Nguyen et al., 2008; Chung et al., 2013).  

Briefly, the complete sequencing of most of the phytoplasma genomes was 

performed similarly (Oshima et al., 2004; Bai et al., 2006; Kube et al., 2008; Tran-

Nguyen et al., 2008; Hogenhout and Music, 2010). Genomic DNA was extracted from 

infected plants, either from the phloem (Oshima et al., 2004; Bai et al., 2006; Kube 

et al., 2008; Andersen et al., 2013; Orlovskis et al., 2017; Music et al., 2019), from the 

flowers (Tran-Nguyen et al., 2008) or from leafhopper samples (Orlovskis et al., 

2017). 

1.4.2 Phytoplasma genetic features 

First, the phytoplasma genome size is small but considerably varies among 

the strains, ranging from 600 to 1350 kb (Music et al., 2019). The phytoplasma 

genome consists of one chromosome with up to several plasmids for the majority of 

the sequenced phytoplasma (Nishigawa et al., 2002). The phytoplasma genomes 

display a minimal set of genes involved in the metabolism, similarly to mycoplasmas 

(Oshima et al., 2004; Bai et al., 2006; Oshima et al., 2013). For example, both 

mycoplasmas and phytoplasmas have incomplete pathways for the de novo synthesis 

of amino acids and nucleotides and lack genes for synthesis of ATP (ATP synthases) 

(Oshima et al., 2004; Christensen et al., 2005) (Table 1.1). The latter was thought to 

be a strict requirement of genomes, but its absence in phytoplasma genomes 

changed our perception of the minimal genes required for an organism (Mushegian 
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and Koonin, 1996; Oshima et al., 2004). Furthermore, the genome restriction is 

stronger in phytoplasma than in the rest of the Mollicutes, as they lack components 

of the phosphotransferase system and the pentose phosphate pathway, required for 

example for nucleotide synthesis (Table 1.1) (Oshima et al., 2004; Christensen et al., 

2005). 

This restricted number of genes directly involved in the metabolism is 

consistent with the fact that phytoplasmas are obligate parasites; they rely on the 

uptake of the nutrients from the host which is consistent with the presence of 

multiple genes involved in the membrane transport processes, such as ABC 

transporters for the uptake of peptides and nucleotides. Therefore, the reductive 

evolution of the phytoplasma is correlated to their nature as obligate parasites 

(Oshima et al., 2004). 

 

table 1.1. Comparison of the genetic features between different genus belonging to 

Mycoplasma, including phytoplasma, and Escherichia coli ( Figure is taken from Christensen 

et al. 2005).  

Comparative genomics between the two ‘Ca. P. asteris’ genomes OY-M and 

AY-WB reveals that both genomes are rich in repeated regions and have a 

discontinuous GC-skew, which indicates that there is a high degree of recombination 

and genome instability (Oshima et al., 2004; Bai et al., 2006; Chung et al., 2013; Ku 

et al., 2013). This degree of recombination can be attributed mainly in the presence 

of Putative Mobile Units (PMUs) within phytoplasma genomes. 
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1.4.3 Putative Mobile Units 

Among the most striking genetic features in phytoplasma genomes are the 

Putative Mobile Units (PMUs) (Bai et al., 2006). PMUs are repeat-rich regions that 

resemble conjugative replicative transposable elements (Figure 1.3). The PMUs 

exhibit characteristic features and can be complete or partial, depending on the 

presence of their signature genes (Bai et al., 2006; Dickinson, 2010; Toruño et al., 

2010). For example, AY-WB phytoplasma carries four PMUs, but only PMU1 is 

complete because of the flanking of 237-bp inverted repeat regions and the presence 

of key signature genes (Bai et al., 2006; Dickinson, 2010). Some phytoplasma 

genomes display one (Kube et al., 2008) to several PMUs (Bai et al., 2006).  

PMUs and PMU-like elements contain genes involved in transposition (tra5), 

replication (the helicase DnaB, the primase DnaG and tmk genes), and recombination 

(single-stranded DNA binding protein (ssb), DNA-binding protein HU (himA)), 

regulation (sigma factor sigF) and several genes with predicted membrane 

localization (hflB and genes with unknown functions) and putative virulence proteins 

(effector genes; such as SAP11 and SAP54) (Bai et al., 2006) (Figure 1.3).  PMU1 is 

flanked by a 237-bp inverted repeat and is also present as a circular 

extrachromosomal unit (Toruño et al., 2010) (Figure 1.3).  

Evidence suggesting that PMUs are responsible for horizontal gene transfer 

was reported (Chung et al., 2013; Ku et al., 2013; Wang et al., 2018a; Music et al., 

2019). Indeed, the characteristic genes that feature PMUs are mostly involved in the 

replication and the transposition, which prompted the community to hypothesise 

that these elements are involved in horizontal transfer between phytoplasma strains 

(Bai et al., 2006; Hogenhout and Music, 2010) (see Introduction of Chapter 4 for more 

details). 

PMUs and PMU-like elements are often clustered together in specific regions 

of the phytoplasma genomes (Figure 1.4). For example, most of the genomes of ‘Ca. 

P. asteris’ AY-WB and ‘Ca. P. asteris’ OY-M are syntenic, but some regions that include 

PMUs show rearrangements (Sugio and Hogenhout, 2012; Chung et al., 2013).  
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Figure 1.3: Example of PMUs (A) Putative Mobile Units of the phytoplasma strain AY-WB. 

The genome of AY-WB phytoplasma contains four PMUs. Only PMU1 appears fully complete, 

while the other PMUs are smaller and contain many truncated genes. PMU1 exists as a linear 

chromosomal form (L-PMU1) and (B) an external and circular chromosomal form (C-PMU1). 

The black line indicates the chromosome, while the block arrows indicate the open reading 

frame (ORF). Blocks of the same colours indicate paralogous ORFs among the PMUs. The 

names of the ORFs are displayed when their predicted function are known (Bai et al., 2006). 

The stars indicate the ORFs of predicted membrane-targeted proteins. The ORF numbers 

(ORF #) are attributed as based on Bai et al., 2006. (Figure taken from Bai et al., 2006; Toruño 

et al., 2010) 

PMUs are possibly an important factor for generating genome variability and 

as such, could play a role in the adaptation of the phytoplasma to the environment. 

Indeed, the PMUs harbour genes encoding for membrane proteins and virulence 

proteins (effectors). The latter includes SAP11 and SAP54. The majority of AY-WB 

phytoplasma effector genes (41 out of 56) lies within PMUs (Sugio and Hogenhout, 

2012). SAP11 and SAP54 target specific plant processes, as explained further below. 

Other effectors that are part of PMU coding regions are likely to function in insect 
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vectors, for example, SAP36, which is a PMU1 gene, and other PMU1 genes are 

upregulated in phytoplasmas inside insect vectors compared to those inside host 

plants (Toruño et al., 2010).  Phytoplasma genomes also contain several small (4-7 

kb) plasmids. For the case of AYWB, 4 circular plasmids have been characterised, 

containing a total of 22 putative ORFs (Bai et al., 2006).  

 

Figure 1.4: Comparison between the OY-M and AY-WB phytoplasma genomes. The majority 

of the two genomes are syntenic. However, PMU-rich regions show high propensities of 

rearrangements (Figure taken from Sugio and Hogenhout, 2012).  

1.5 The biology of phytoplasma association with their insect vectors 

Members of ‘Candidatus Phytoplasma’ are pathogens of hundreds of 

different plant species (Christensen et al., 2005). The geographical distribution of 

phytoplasmas is determined mainly by the number of insect vector species that can 

transmit these bacteria (Lee et al., 2000). In addition to its insect vector, phytoplasma 

can spread via propagative vegetation, cuttings and rhizomes (Gasparich, 2010).  

In this present literature review, I will mainly focus on reviewing the literature 

on AY-WB and maize bushy stunt phytoplasma (MBSP), because these phytoplasmas 

will be the main subjects of my PhD research among others. AY-WB and MBSP are 

members of the 16SrI ‘Candidatus Phytoplasma asteris’ group (Figure 1.2) (Lee et al., 

2004). Some of my PhD research will also include work on WBDL (Witches’ Broom 

Disease of Lime) and SPLL (Sweet Potato Little Leaf) phytoplasmas that belong to the 

16SrII. The 16SrI and 16SrII groups belong cluster I and II of the phytoplasma 

phylogeny (Figure 1.2) and hence are distantly related to one another.  
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AY-WB phytoplasma has a broad host range of over 350 plant species, 

affecting agronomically important field crops, commonly vegetables as well as 

ornamental plants (Frost et al., 2011). The best examples of host plants are China 

aster (Callistephus chinensis Nees), tomato (Solanum lycopersicum L.), lettuce 

(Lactuca sativa L.), Nicotiana benthamiana, and Arabidopsis thaliana. Twenty four 

leafhopper species can acquire and deliver aster yellows (AY) phytoplasma, including 

perhaps AY-WB phytoplasma (Christensen et al., 2005). In the USA, the main insect 

vector of AY phytoplasmas, including AY-WB, is the aster leafhopper Macrosteles 

quadrilineatus (Forbes). The aster leafhopper is prevalent in Midwest USA (Frost et 

al., 2011). Consistent with the broad host ranges of AY phytoplasmas, M. 

quadrilineatus is a polyphagous insect species that can feed, lay eggs and shelter on 

more than 300 plant species. Thus, M. quadrilineatus uses these plant species as 

feeding and/or reproductive hosts (Frost et al., 2011). AY-WB phytoplasmas can 

replicate and circulate inside M. quadrilineatus, which transmits AY-WB to 

susceptible plants (Bai et al., 2007; Lee et al., 2000). AY-WB infected plants often 

show witches’ brooms, stunting, yellowing and necrosis symptoms (Figure 1.5) 

(Zhang et al., 2004; Sugio et al., 2011b).  

 

Figure 1.5: The different symptoms induced by AYWB phytoplasma strain in Arabidopsis 

thaliana. (a,b) Healthy plants; (c) Zoom in the flower parts of the (b) picture; (d,e) Infected 
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plants showing stunting symptoms, increased stem production from the center of the rosette 

(witches’ broom phenotype, (e,f) leafy flower symptoms, (f) zoom of the flower of the (e) 

picture. Virescence observed on the petals (Figure taken from Sugio, MacLean, et al. 2011) 

In contrast to AY-WB phytoplasma, the host range of MBS phytoplasma is 

restricted to maize (Zea Maize L.). MBSP is also a member of the 16SrI group. MBSP 

was first detected in Mexico in 1955 but is also present throughout south America 

from south USA, Mexico, Colombia, Brazil, to Peru (Pérez-López et al., 2016). 

Although the 16S based phylogeny between the isolates from the three countries 

defines them as Maize Bushy Stunt Phytoplasma (IRPCM, 2004), a recent study has 

shown that they differ based on groEL sequence differences (Pérez-López et al., 

2016; Dumonceaux et al., 2014). 

Symptoms of MBSP-infected maize plants include chlorotic stripes, stunting, 

stem proliferation (generating the bushy appearance) and yellowing of the leaves 

(Pérez-López et al., 2016). The two main insect vectors of MBSP are the corn 

leafhopper Dalbulus maidis and the Mexican corn leafhopper Dalbulus elimatus. D. 

maidis is found exclusively in subtropical and tropical areas of America and is a 

specialist insect pest of maize (Capinera, 2008).  

MBSP, D. maidis and D. elimatus are thought to have co-evolved with maize 

since its domestication from teosinte. MBSP and the insect vectors are also thought 

to have co-evolved, because D. maidis and D. elimatus do not die from MBSP 

infections. In contrast, other members of the Dalbulus genus, such as D. gelbus and 

D. quinquenotatus, which live predominantly on gamagrass and generally do not feed 

from maize (and therefore do not get exposed to MBSP), die from MBSP infection 

(Nault 1980; Pérez-López et al., 2016). 

1.6 Phytoplasma-host interactions 

Phytoplasmas are unique pathogens that can invade and replicate in both 

plants and animals (insects) (Sugio et al., 2011b). Phytoplasmas are directly 

transmitted to plants by phloem-feeding insects such as planthoppers, psyllids and 
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leafhoppers. In this review, I will focus on leafhoppers, which are the main vectors of 

AY-WB and MBSP. 

1.6.1 Phytoplasma in leafhoppers 

Previous studies have shown that phytoplasmas are located in many 

leafhopper organs (see next paragraph). Approaches to study the localization of 

phytoplasmas within leafhopper hosts are (1) fluorescent in-situ hybridization (FISH) 

techniques, using, for example, biotin-labelled oligonucleotide probes that 

hybridized to phytoplasma DNA (Webb et al., 1999); (2) immunofluorescence 

microscopy using a fluorescently labelled antibody to an abundant cell-surface 

membrane protein of the phytoplasma, such as the Antigenic Membrane Protein 

(Amp) (Suzuki et al., 2006). 

The acquisition of the phytoplasma occurs during the feeding of the insect 

from the phloem of an infected plant (see Figure 1.1). M. quadrilineatus can acquire 

AY-WB from infected plants within 4 days of feeding (Sugio et al., 2011a). When 

ingested, phytoplasmas move from the mouthparts (stylets) into the lumen of the 

intestines and attach to the membranes of the midgut epithelial cells and invade this 

organ. Both AY-WB and MBSP can multiply in the midgut epithelial cells, especially in 

the muscle fibres that form the outer layers of the midgut (Suzuki et al., 2006). Then, 

phytoplasmas enter into the haemolymph and make their way to the salivary glands 

(Webb et al., 1999; Hogenhout et al., 2008).  Phytoplasmas colonise the salivary 

glands of the insect and multiply in the cytoplasm of the salivary gland cells 

(Christensen et al., 2005; Hogenhout et al., 2008). From these cells, phytoplasmas 

move into the salivary canals and are delivered into the plant phloem as soon as 

leafhopper stylets reach the phloem sieve cells (Hogenhout et al., 2008). Once the 

leafhopper acquires the phytoplasmas it remains carrier during its lifetime 

(Christensen et al., 2005).  

1.6.2 Phytoplasma in plants 

When infecting the plant, phytoplasmas are mainly located in the phloem 

(Fig. 1.6). When the leafhopper is feeding on the plant host, phytoplasmas are 

inoculated via the saliva of the insect into the pierced sieve element. From the sieve, 
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phytoplasma is spreading in the plant via the sieve tube system and accumulates 

mainly in the phloem elements (mature sieve tubes as well as immature phloem 

cells), in the companion cells and in the phloem parenchyma cells (Fig. 1.6) 

(Zimmermann et al., 2015; Pagliari et al., 2016). Furthermore, AY-WB phytoplasma 

strain can also accumulate in sink areas, like shoots and roots, consistent with the 

characteristic symptom of witche’s broom (Christensen et al., 2005; Hogenhout et 

al., 2008). As phytoplasma lacks genes coding for flagella or cytoskeleton elements, 

it is translocated passively along with the assimilate flow (Oshima et al., 2013).  

 

Figure 1.6: Transmission Electron micrographs showing Candidatus Phytoplasma mali in 

infected Cuscuta odorata plant. (A) Phytoplasma localized in sieve elements (SE), companion 

cells (CC) and phloem parenchyma cells (PPC) separated by a sieve plate. (b) Two sieve 

elements & lateral sieve pores. (c) (Figure taken from Zimmermann et al. 2015).  

Phloem impairment caused by the phytoplasma accumulation leads to 

characteristic symptoms such as leaf yellowing, leaf curling, vein necrosis and growth 

stunting (Lee et al., 2000; Musetti et al., 2013). The phytoplasma-infected phloem 

shows necrosis, plasmolysis or collapse (Zimmermann et al., 2015; Pagliari et al., 

2016). In Arabidopsis thaliana, the phytoplasma infection leads to a general 

alteration in shape and morphology of the phloem components, including phloem 

hyperplasia and an increase in callose deposition in the phloem cells compared to 

healthy vascular tissues (Pagliari et al., 2016). Furthermore, the phytoplasma-

infected sieve elements are altered, with the sieve pores narrowed or obstructed by 

callose deposition or agglutination of phloem-protein, the latter often found to 

envelope phytoplasma cells (Pagliari et al., 2016). 
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These numerous alterations in the vascular tissues are proof of its importance 

as a contact structure between the phytoplasma cells and the plant host. In both 

tomato and Arabidopsis thaliana, phytoplasma forms an “adhesion structure” with 

sieve element components (Buxa et al., 2015; Musetti et al., 2016; Pagliari et al., 

2016). In tomato, phytoplasma can adhere to the sieve-element reticulum and to the 

sieve element plasma membrane (Buxa et al., 2015; Musetti et al., 2016). The 

“adhesion structure” is a 30-40nm wide tubular connection orientated 

perpendicularly to the plasma membrane of the sieve element (Pagliari et al., 2016). 

Upon adhesion to the sieve element plasma membrane, phytoplasma can remobilise 

the host-actin to facilitate the passage of the pathogen through the sieve pores (Buxa 

et al., 2015). This is possible via phytoplasma membrane proteins, such as the 

Immunodominant Membrane Protein (Imp) that can bind to the plant actin (Boonrod 

et al., 2012).  With the lack of phytoplasma genes coding for movement, Pagliari et 

al. and Boonrod et al. have speculated that the phytoplasma binding to host-actin 

helps the pathogen for spreading and colonisation through the plant (Boonrod et al., 

2012; Pagliari et al., 2016).  

The phloem mediates the translocation of metabolites and may, therefore, 

harbour enough nutrients for the phytoplasma. The sieve elements of phytoplasma-

infected phloem are sometimes plugged with callose that is likely a plant defence 

response to limit systematic movement of phytoplasma (Zimmermann et al., 2015; 

Pagliari et al., 2016). 

1.6.3 Phytoplasma migration between plants and insect vectors 

Phytoplasma has a unique relationship with its two hosts. Phytoplasmas often 

have clear negative impacts on the fitness of the host plants, while it can have a 

positive impact on the fitness of the insect vector. Indeed, M. quadrilineatus 

leafhoppers survive longer and have increased fertility rates on phytoplasma-

infected plants (Beanland et al., 2000; Sugio et al., 2011a). Studies have shown that 

phytoplasma genes are differentially expressed depending on the host (MacLean et 

al., 2011; Makarova et al., 2015; Pacifico et al., 2015). For instance, 33% of OY-M 

phytoplasma genes change during the host switching between the plant and the 
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insect (Oshima et al., 2011). Approaches using qRT-PCR can be performed to analyse 

which phytoplasma genes are upregulated or downregulated in the insect vector and 

plant host (Figure 1.7) (Makarova et al., 2015; Pacifico et al., 2015). 

 

  

Figure 1.7: AYWB phytoplasma strain gene regulation depending on the host (plant or 

insect) (Figure taken from Makarova et al., 2015). 

The differential gene expression of phytoplasma upon host switching enable 

adjustments to the extreme environments of insect vectors and plant hosts 

(Makarova et al., 2015).  The environmental conditions trigger a stress-response in 

phytoplasma. Hence, phytoplasma response involves the upregulation of 

cytoplasmic co-chaperones such as GroEL or GroES and proteases. Phytoplasmas also 

modulate processes of plant hosts and insect vectors via the secretion of virulence 

proteins (effectors) and extracellular membrane-associated proteins (also named 

SAMPs). The AY-WB phytoplasma genome encodes 20 SAMP. Among these 20, the 

antigenic AMP protein interacts specifically with proteins of insect vectors, but not 

with those of non-vectors (Suzuki et al., 2006; Galetto et al. 2011). Nonetheless, the 

Amp protein expression level of phytoplasmas is three times higher in plant hosts 

than in insects vectors, suggesting that this protein may also have a role in plants 

(Makarova et al., 2015). Indeed, Amp protein interacts with the α and β subunits of 

ATP synthase and actin of both insect vector and plant hosts (Suzuki et al., 2006; 

Galetto et al., 2011; Makarova et al., 2015).  
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1.7 Phytoplasma effectors 

1.7.1 The Phytoplasma Secretion System 

Bacteria possess different types of secretion systems to deliver their virulence 

proteins into the plant host. In Gram-negative bacteria, the effectors are delivered 

via the type III secretion system (T3SS), a highly conserved apparatus. The type-III 

effectors are injected directly into the cytoplasm (intra-cellular effectors) or the 

extracellular matrix (extra-cellular effectors) via this system (Guttman et al., 2002). 

Phytoplasmas have evolved from a Gram-positive bacterium and therefore 

do not possess type-III secretion systems to inject their virulence proteins in the host. 

Instead, phytoplasmas rely on two secretion pathways: the YidC system for the 

integration of surface-exposed membrane proteins; and the Sec-dependent system 

for the secretion and the delivery of the proteins into the host cell cytoplasm (Oshima 

et al., 2013; Kakizawa et al., 2004). For example, the Amp protein previously 

described is secreted by the Sec-dependent pathway (Kakizawa et al., 2004). 

 

Figure. 1.8: Strategy and main results for the identification of putative phytoplasma 

effectors (Figure taken from Bai et al., 2009). 

1.7.2 Phytoplasma effectors: general description 

Effectors are proteins secreted by pathogens and translocate into cells of the 

host to exert specific functions there (Alfano, 2009). Plant pathogens, such as 

bacteria, fungi, oomycetes and nematodes can use effectors to suppress host 

immune responses, such as PAMP-triggered immunity (PTI) and effector-triggered 

immunity (ETI). Thus, effectors can be considered as pathogen virulence factors, 
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allowing pathogens to multiply, leading to disease symptoms (Munkvold and Martin, 

2009). 

Research on phytoplasma effectors began to bloom as soon as phytoplasma 

genomes became available. Phytoplasmas effectors possess an N-terminal signal 

peptide (SP), which is required for secretion via the Sec-dependent pathway. Mining 

of the AY-WB genome identified 56 encoding proteins with signal peptides (Bai et al., 

2009) (Figure 1.8). These 56 secreted AYWB proteins (SAPs) are candidate virulence 

proteins or effectors and are delivered directly into the cytoplasm of the plant or the 

insect cells (Bai et al., 2009; Hoshi et al., 2009). SAPs do not possess transmembrane 

regions after cleavage of the SP and are predicted to be soluble in the host cellular 

environment. Among these 56 SAP proteins, the majority appear to be encoded 

within PMUs (34 out of 56 SAPs) or on plasmids (7 SAPs) (Bai et al., 2009). Both the 

SAP11 and SAP54 effector genes lie within PMU elements (Bai et al., 2006). 

 

Figure 1.9: Overview of the systemic movement of phytoplasma and effectors in the plant 

and effector delivery in the phloem. SEL indicates the size exclusion limit of plasmodesmatas 

(Figure taken from Sugio et al., 2011). 

Phytoplasma effectors SAP11, SAP54 and Tengu-su target plant 

developmental processes, whereas SAP36 most likely plays a role in the insect vector 

(Sugio and Hogenhout, 2012). Phytoplasma effector genes are differentially 

expressed upon phytoplasma host switching between the insect vector and plant 
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host, indicating that different effectors alter plant and insect processes (MacLean et 

al., 2011; Pacifico et al., 2015; Makarova et al., 2015). Whereas phytoplasmas are 

restricted to the phloem sieve cells, the effectors can migrate from the phloem sieve 

cells into adjacent cells and systemically via the sieve elements (Figure 1.9). 

Tengu-su inducer (TENGU) effector is a small protein (4.5kDa), identified in 

the OY-M phytoplasma strain (Hoshi et al., 2009). TENGU induces developmental 

alterations such as witche’s broom symptoms and dwarfism. Although phytoplasma 

is restricted to the phloem, TENGU can be transported from the phloem to other 

tissues such as apical buds (Hoshi et al., 2009). Another study has shown that the N-

terminal domain of TENGU is responsible for inducing symptoms (Sugawara et al., 

2013). However, a plant target of TENGU has not been identified. 

 

Figure 1.10: SAP54 alters floral development by degrading MADS-box transcription factors. 

(Figure adopted from Zigmunds Orlovskis) 

SAP54 is an effector that modulates flower development and floral organ 

identity in plants ( MacLean et al. 2011). Flowers of SAP54 over-expression lines show 

indeterminate flower phenotypes, leafy sepals and green stamens (Figure 1.10, and 

Figure 1.11) (MacLean et al., 2011). SAP54 degrades specific members of the MADS-

domain transcription factor (MTF) family, which includes key regulators of floral 

development. MTFs have four distinct domains. SAP54 interacts specifically with one 

of these domains, the keratin-like (K) domain of MTFs. MTFs form tetramers and the 

K domain is involved in the specificity of MTF-MTF interactions. Animals also have 

MTFs, but these lack the K domain. Therefore, SAP54 may have evolved to selectively 

target plant MTFs (MacLean et al., 2014). SAP54-mediated degradation of MTFs 
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requires the 26S proteasome shuttle factor RAD23 (Farmer et al., 2010; MacLean et 

al., 2014) (Figure 1.10). Leafhoppers prefer to colonise phytoplasma-infected and 

SAP54 transgenic plants. Moreover, they prefer to colonise phytoplasma-infected 

rad23cd plants that show leaf-like flowers to phytoplasma-infected rad23bcd plants 

that have normal flowers (MacLean et al., 2014). Thus, rad23 also plays a role in 

leafhopper preference. 

Recently, it was found that the stable production of SAP54 in A. thaliana leads 

to an increase in the attraction of M. quadrilineatus, independently of the presence 

of leaf-like flowers (Orlovskis and Hogenhout, 2016). This year, the crystal structure 

of SAP54 has been resolved and consists of two alpha-helices connected by a random 

loop in a coiled-coil manner (Iwabuchi et al., 2019). 

 

 

Figure 1.11: SAP11 and SAP54 symptoms in Arabidopsis thaliana. Plants and insects 

shown at left are healthy and those at right are infected with phytoplasma. SAP11 

induces witches’ brooms and SAP54 leaf-like flowers (phyllody). Both effectors 

promote leafhopper colonisation (Photos taken from Sugio et al, 2011; Maclean et 

al, 2011). 

SAP11 is an effector that induces witches’ brooms symptoms and crinkled 

leaves in A. thaliana (Sugio et al., 2011a) (Figure 1.11). SAP11 destabilises specific 

members of the TEOSINTE BRANCHED1, CYCLOIDEA, PROLIFERATING CELL FACTORS 

1 and 2 (TCP) transcription factor family, particularly CIN-TCPs and CYC/TB1-TCPs 
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(sub)classes, which belong to class II (Sugio et al., 2011a). Before analysing 

SAP11AYWB, an introduction of the plant TCP transcription factors is required. 

1.8 The TCP family 

1.8.1 Overview of the TCP family 

TCP proteins, named after TEOSINTE BRANCHED1 in maize, CYCLOIDEA in 

snapdragon and PROLIFERATING CELL FACTORS 1 and 2 in rice (Cubas et al., 1999) 

are a plant-specific transcription factors (TFs) family. The TCP family is characterized 

and subdivided based on the highly conserved TCP domain. The TCP domain is the 

functional domain of the TCP protein, involved in its dimerisation and the DNA 

binding to the target genes (Kosugi and Ohashi, 1997, 2002; Aggarwal et al., 2010). 

The TCP domain is predicted to form a basic-helix-loop-helix (bhlh) structure, 

however it is not classified as a canonical bhlh TF as it does not bind to the same DNA 

elements (Cubas et al., 1999; Aggarwal et al., 2010). Based on the alignment of the 

TCP domain of multiple species, the TCPs are divided into two classes: the class I PCF-

type (PCF clade) and the class II, the later which is subdivided into class II CINCINNATA 

(CIN clade) and class II CYC/TB1 (known as ECE clade). The main differences between 

the two classes of TCPs lie in the absence of 4 amino acids in the basic motif of the 

TCP domain of the class I and the presence of motifs outside the TCP domain, such 

as the ECE motif and/or the arginine-rich R domain for members of the class II TCPs 

(Howarth and Donoghue, 2005).  
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Figure 1.12: Multiple sequence alignment of the TCP domain of the 24 Arabidopsis thaliana 

TCP proteins. The coloured residues indicate the specific conserved residues for each class. 

The residues highlighted in yellow are specific to class I TCPs. The residues highlighted in red 

are specific to (sub)class II CIN-TCP, while the residues highlighted in green are specific to 

(sub)class II CYC/TB1-TCP. A version of this figure is available in our latest paper (Pecher et 

al., 2019). 

1.8.2 Origins of the TCPs 

The first written record of the role of the TCP gene family, particularly the 

CYC/TB1 TCP subclass, dates back centuries ago, in the book of Carl Linnaeus and 

Daniel Rudberg (Linnaeus and Rudberg, 1744). Carl Linnaeus found a mutant of 

common toadflax (Linaria vulgaris) that did not show the regular zygomorphic floral 

symmetry but instead showed radial symmetry. Two hundred fifty years later, Enrico 

Coen and his team isolated the CYCLOIDEA gene responsible for the regulation of 

zygomorphic flowers (Luo et al., 1996).  
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Figure 1.13: Origins of the TCPs in different plant families. The grey box indicates the 

presence of the TCPs (Navaud et al., 2007). As mentioned in the study, the tree is generated 

using whole-genome data (red), ESTs (black) or CODEHOP (green). Figure taken from Navaud 

et al., 2007.  

Christine Hervé and her colleagues were the first team to establish the origin 

of the TCP gene family. Using the two consensus sequences of both Class I (TCP-P) 

and Class II TCPs (TCP-C), they found that the TCP gene family dates back before the 

divergence of the Zygnemophyta at a period estimated between 650 and 800 million 

Years ago (Navaud et al., 2007; Yoon et al., 2004). The TCP gene family existed before 

the emergence of the land plants, with TCP genes present in freshwater green algae 

(Charophyta) (Navaud et al., 2007).  

The TCP genes are present in many various plant families, both in 

Angiosperms and Gymnosperms. For example, the Arabidopsis thaliana genome 

contains 24 TCP genes, while the Zea mays genome contains 44 TCP genes. In ancient 

plant lineages, the TCP gene family comprises a few members but along the 

evolution, the TCP gene family expanded via a series of duplications (Navaud et al., 

2007). In Arabidopsis thaliana, four TCP genes duplicated early (50Mya) and five TCP 
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genes duplicated around 200 Mya (Blanc et al., 2000, 2003; Bowers et al., 2003; 

Navaud et al., 2007; Paterson et al., 2000; Simillion et al., 2002).  

1.8.3 The role of TCP (sub)classes 

The TCPs are involved in a plethora of key developmental and defence 

processes (Lopez et al., 2015; Nicolas and Cubas, 2015) such as flower and petal 

asymmetry (Luo et al., 1996, 1999), plant architecture (Doebley et al., 1997; Aguilar-

Martinez et al., 2007), leaf morphogenesis (Nath et al., 2003; Palatnik et al., 2003; 

Ori et al., 2007; Sarvepalli and Nath, 2011) senescence (Schommer et al., 2008), seed 

germination (Resentini et al., 2015), embryo growth (Tatematsu et al., 2008), 

hormone regulation (Danisman et al., 2012; Lopez et al., 2015; Wang et al., 2015b). 

The TCP family is at the cross-road of the regulation of the plant, and as such is 

involved in cross-family interaction with other prominent plant transcription factor 

families (see General Discussion) (Dhaka et al., 2017). The TCP family is also at the 

heart of the microbe-plant interaction and are targeted by diverse plant pathogens 

(see General Discussion) (Mukhtar et al., 2011; Weßling et al., 2014). Their role in the 

plant defence (Kim et al., 2014; Lopez et al., 2015; Wang et al., 2015b; Spears et al., 

2019) (see Chapter 5 and General Discussion) contributes significantly to this global 

targeting by multiple effectors. 

Class I TCPs are positive regulators of cell division and are involved in multiple 

development processes such as leaf and flower development, seed germination and 

meristem formation  (Martín-Trillo and Cubas, 2010; Nicolas and Cubas, 2016; Dhaka 

et al., 2017). Class II CIN-TCPs are mainly involved in the leaf and petal morphogenesis 

and maturation (Efroni et al., 2008; Schommer et al., 2008). A. thaliana CIN-TCP 

members are targeted by micro-RNA miRNA319 (AtTCP2, AtTCP3, AtTCP4, AtTCP10 

and TCP24) and are called jaw-TCP genes (JAGGED AND WAVY (JAW-D) mutants)) 

while the rest of the CIN-TCP (sub)class are called TCP5-like TCPs (AtTCP5, AtTCP13, 

AtTCP17) (Palatnik et al., 2003; Ori et al., 2007; Schommer et al., 2008, 2014; Bresso 

et al., 2017). Class II CYC/TB1-TCPs are mainly involved in (i) the negative regulation 

of the axillary branches with the TB1 homologs of Arabidopsis thaliana BRANCHED1 
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(BRC1) and BRC2 (Aguilar-Martinez et al., 2007), and (ii) the control of floral 

symmetry with the CYCLOIDEA TCPs (Luo et al., 1996, 1999).  

Class I TCP and class II CIN-TCPs have antagonistic roles in the plant 

development (Kosugi and Ohashi, 2002; Li et al., 2005; Martín-Trillo and Cubas, 2010; 

Danisman et al., 2012). This antagonism is possible because of the distinct but 

overlapping consensus sequences between the two TCP (sub)classes (Kosugi and 

Ohashi, 2002; Li et al., 2005; Uberti Manassero et al., 2013). For example, class II CIN-

TCPs promote the leaf cell maturation and differentiation, while class I TCPs promote 

leaf cell proliferation. (Efroni et al., 2008; Schommer et al., 2008; Nicolas and Cubas, 

2015). Class I TCPs are genetically redundant, and Arabidopsis thaliana single mutant 

phenotypes do not exhibit substantial changes compared to the wild-type (Aguilar-

Martínez and Sinha, 2013). However, when a class I TCP member is fused with a 

dominant-negative repressor domain EAR, dramatic changes occur in the phenotype 

(Hervé et al., 2009; Viola et al., 2011). As an example, the dominant-negative forms 

of AtTCP7 and AtTCP23 show alterations in lateral organ growth, indicating that class 

I TCPs regulate cell proliferation (Aguilar-Martínez and Sinha, 2013; Hervé et al., 

2009).  

The antagonistic role of class I and class II CIN TCPs is also reflected in the 

regulation of the Jasmonic acid hormone (Lopez et al., 2015; Nicolas and Cubas, 

2016). In addition to promoting the leaf senescence, JA is an essential hormone in 

the plant defence against herbivores and necrotrophic pathogens (Reymond and 

Farmer, 1998; Li et al., 2001). The class II CIN-TCP4 positively regulates the 

biosynthesis of JA via the regulation of the LOX2 gene (Bell et al., 1995; Schommer et 

al., 2008, 2014). On the other hand, class I TCP members TCP9, TCP20 and TCP14 

were shown to bind to the LOX2 promoter, resulting in the downregulation of the JA 

pathway (Danisman et al., 2012; Yang et al., 2017). The production of JA leads to 

senescence, which is consistent with the role of class II CIN-TCPs. Indeed, along with 

the development of the leaf, the abundance of CIN-TCP4 increases over-time, which 

will promote the maturation of the leaf. In parallel, the JA production will increase, 

which will aid the transition from cell proliferation to cell expansion, limiting cell 

proliferation (Palatnik et al., 2003; Li et al., 2005; Efroni et al., 2008; Danisman et al., 
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2012). Following this model, the class I TCP genes are expressed at early stage of the 

leaf development, promoting the cell proliferation and limiting the production of JA 

during the early stage, until the balance tips to the other side, along with the 

maturation of the leaf (Li et al., 2005; Danisman et al., 2012).  

1.9 Analysis of SAP11AYWB 

SAP11AYWB is a 14kDa long protein that possesses a bipartite nuclear 

localization signal (NLS) required for SAP11 targeting of plant cell nuclei (Bai et al., 

2009). Other phytoplasmas possess different SAP11 effector homologs (Figure 1.14) 

(see Chapter 4 for more details). SAP11 sequences have NLS and sequences that were 

previously shown to be involved in TCP-binding (Sugio et al., 2014).  

 

Figure 1.14: Multiple sequence alignment of some SAP11 homologs. SAP11 homologs of 

poinsettia-branch-inducing phytoplasma (PBIP), vaccinium-witches’ broom phytoplasma 

(VWBP), AY-WB, MBSP and peanut-witches’ broom phytoplasma (PnWB).  The Nuclear 

Localisation Signal (NLS) of SAP11AYWB is indicated in red. The TCP-binding domain of 

SAP11AYWB is indicated in blue (see Chapter 4 for more details). This figure can be found in 

Sugio et al., 2014.  

35S::SAP11AYWB A. thaliana lines show: (1) leaf crinkling phenotypes, similarly 

to 35S::miR319a x miR-3TCP A. thaliana lines (miR319a and miR-3TCP negatively 

regulate all 8 CIN-TCPs) (Schommer et al., 2008) and (2) increased stem proliferation, 

similarly to the A. thaliana brc1xbrc2 mutant (BRC1 and BRC2 are CYC/TB1 TCPs) 

(Aguilar-Martinez et al., 2007), confirming that SAP11AYWB is able to destabilize both 

CIN-TCPs and CYC/TB1 TCPs (Figure 1.15) (for more details, see Chapter 3).  
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Figure 1.15: SAP11AYWB induces leaf crinkling and an increase in stem number in 

Arabidopsis. (A) Six-week-old homozygous 35S::SAP11AYWB lines 4, 5 and 7 display crinkled 

leaves compared to Col-0 ecotype. (B) Comparison between ten-week-old Col-0 leaves and 

transgenic leaves. (C) Homozygous ten-week-old 35S::SAP11 lines 4, 5, and 7 display more 

stems compared to Col-0 ecotype. (D) Homozygous ten-week-old 35S::SAP11 lines 4, 5, and 

7 display crinkled siliques compared to Col-0 ecotype. (E) Western blot of protein extracts of 

35S::SAP11 lines 4, 5 and 7 using anti-SAP11. The loading control is the Coomassie-stained 

Ribulose-1,5-bisphosphate carboxylase oxygenase large subunit. Figure and legend taken 

from Sugio et al., 2011. PNAS. 
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1.10 The role of SAP11 in the phytoplasma invasion 

Consistent with the role of CIN-TCPs and CYC/TB1 TCPs and SAP11-mediated 

destabilisation of these TCPs, SAP11AYWB-transgenic plants show crinkled leaves (cells 

do not mature, but still proliferate) and increased stem production (resembling 

witch’s broom symptoms of phytoplasma-infected plants (Figure 1.15)).  

Interestingly, CIN-TCPs also regulate JA signalling via the regulation of the 

LIPOXYGENASE2 (LOX2) gene (Schommer et al., 2008, 2014). LOX2 is a lipoxygenase 

that mediates the first step of the JA synthesis via the conversion of α-linolenic acid 

(α-LeA; 18:3) into 13-hydroperoxy-9,11,15-octadecatrienoic acid (13-HPOT) (Turner 

et al., 2002). LOX2 expression and JA synthesis are downregulated in SAP11 

transgenic and AY-WB - infected A. thaliana. AY-WB phytoplasma insect vectors (M. 

quadrilineatus leafhoppers) lay more eggs on LOX2-knockdown plants and SAP11AYWB 

transgenic lines (Sugio et al., 2011a).   

Based on these data it was proposed that the SAP11-mediated destabilisation 

of CIN-TCPs leads to downregulation of LOX2, and the subsequent decrease in JA 

synthesis, which in turn promotes leafhopper reproduction (Figure 1.16). Insects 

born on phytoplasma-infected plants acquire the phytoplasma and transmit these 

bacteria to other plants (Figure 1.16). Thus, SAP11AYWB is thought to promote 

phytoplasma spread in the environment by leafhoppers. 
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Figure 1.16: SAP11 effector protein is expressed when phytoplasma is delivered in the 

plant phloem. SAP11 destabilises TCP transcription factors, which lead to the 

downregulation of the LOX2 gene, jasmonic acid (JA) synthesis and promotion of leafhopper 

colonisation (Figure taken from Sugio et al., 2011). 

SAP11AYWB has also been found to regulate miRNA implicated in phosphate 

and auxin-signalling in Arabidopsis (Lu et al., 2014). Although it does not change the 

expression of miR319, the stable expression of SAP11AYWB leads to an accumulation 

of miR399 and miR827 which positively regulate the phosphate intake and 

translocation (Lu et al., 2014).  

1.12 Aims, outlines and outcomes of the PhD thesis 

When I started my PhD, preliminary data suggested that SAP11 effector 

homologs from divergent phytoplasmas interact with TCP transcription factors in 

yeast two-hybrid assays. In addition to studies on SAP11 from AYWB, SAP11 from 

MBSP, a maize specialist, was shown to interact with class II CYC/TB1-TCPs, although 

it was not clear if the effector bound the other (sub)classes. The lab also cloned 

SAP11 homologs of WBDL and SPLL and preliminary data showed evidence that these 

may bind TCPs too.  
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Beyond these four SAP11 homologs (SAP11AYWB, SAP11MBSP, SAP11SPLL and 

SAP11WBDL), other SAP11 homologs were not yet characterized in the lab. Hence, it 

was unclear if other SAP11 homologs were similar or different in their TCP 

interactions compared to SAP11AYWB. Considering the diverse roles of TCP 

(sub)classes in the regulation of both plant development and defence, it was deemed 

important to assess how the SAP11 effectors evolved to interact differentially with 

these plant transcription factors. 

In summary, the overall aim of my thesis was to determine the plethora of 

interactions the SAP11 effector homologs may have with the members of the three 

TCP (sub)classes. Based on preliminary data provided to me at the start of my PhD, 

the general hypothesis was that the SAP11 effector homologs have different binding 

specificities for members of the three TCP (sub)classes. If so, this could lead to 

distinct outcomes in how phytoplasmas and their insect vectors perform on plant 

species.  

In Chapter 3, I followed on preliminary data to show the binding specificities 

of the four SAP11 homologs that were already cloned in the lab, i.e. SAP11AYWB, 

SAP11MBSP, SAP11SPLL and SAP11WBDL, for selected members of class II CIN-TCPs and 

TB1/CYC TCPs. I found that all four SAP11 homologs interact with A. thaliana and 

maize TB1/CYC TCPs and that only SAP11AYWB bound CIN-TCPs. I also identified that 

the SAP11s interact with the conserved TCP domain and that within this domain, the 

helix-loop-helix region determined binding specificity for the SAP11s. This work was 

partly included in the Pecher et al., 2019. PLoS Pathogens paper on which I am a co-

author and that was put online on Sep 2019.  

In Chapter 4, I built on the data of Chapter 3, to identify more SAP11 

homologs from divergent clades within the Phytoplasma phylogeny and used them 

to generate phylogenetic analyses. Comparisons of the phylogenies of the 

phytoplasma 16S rDNA and SAP11 protein and nucleotide sequences elucidated that 

different SAP11 effector homologs from various phytoplasmas have a different 

evolutionary history compared to the rest of the genome. Interestingly, alignments 

of the SAP11 protein sequences revealed subregions, including those involved in 
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nuclear targeting and TCP binding, that may have diverged among the SAP11 

homologs. In fact, the SAP11 proteins grouped in distinct clades.  

In Chapter 5, I then used the SAP11 sequence analyses of Chapter 4 to further 

dissect how SAP11 homologs interact with TCPs. I found that the regions within 

SAP11 proteins are involved in mediating differential binding specificities for 

members of Class I and II TCPs. Intriguingly, the SAP11 clades align with TCP binding 

specificity. This was further confirmed by generating chimaeras of the SAP11s and of 

the TCP domains and using these in Y2H assays.  

In Chapter 6, I made the surprising discovery that, in fact, the other candidate 

effectors for which the genes that lie on the SAP11-island in the genome of AYWB 

also interact with TCPs, but unlike SAP11AYWB these other effectors interact also with 

class I TCPs.   

Altogether, I have been able to further dissect SAP11-TCP binding specificities 

and showed that the SAP11 effector family has evolved to bind a diversity of 

members from different TCP (sub)classes. In the general discussion (Chapter 7), I will 

discuss the implications of my findings. This includes, for example, how my research 

can lead to solid predictions of what SAP11 homologs may target.  
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2.1 Molecular Cloning of the genes  

2.1.1 Molecular Cloning of the genes used in Yeast Two-Hybrid 

All the DNA constructs were maintained in Escherichia coli as described in 

Sugio et al., (2014) and Pecher et al., (2019). The cloning of all the TCP genes and 

SAP11 effector homologs SAP11AYWB, SAP11MBSP, SAP11WBDL and SAP11SPLL were 

achieved before the start of my PhD by Dr Akiko Sugio, Dr Pascal Pecher and Dr Ali 

Al-Subhi (Sugio et al., 2014; Pecher et al., 2019). Most of the constructs were already 

available in expression vectors suitable for Y2H assays. For SAP56, SAP66, SAP67 and 

SAP68, the genes were available in pDONR207 (see 2.1.3). 

The TCP domain of A. thaliana class I TCP members AtTCP6, AtTCP8, AtTCP9, 

AtTCP14 and AtTCP15 and the helix-loop-helix motif of A. thaliana AtTCP2 and 

AtTCP18 were amplified by PCR from pGADT7 Y2H expression vector carrying the full-

sequence of the corresponding genes  (see 2.1.3). The amplification of the target 

sequences was performed by PCR using specific primers, which includes full-length 

attB adapter primers (see list of primers in Appendix I – Table 2). The PCR product 

was run on EtBr-stained 1% agarose gel to cut out the expected size band and then 

purified using QIAquick Gel Extraction Kit (QIAGEN). The purified PCR product was 

then cloned into Gateway-compatible donor vectors, pDONR207 via the BP reaction. 

After the BP reaction, the constructs were transformed into thermocompetent 

Escherichia Coli (DH5α) and plated on selective LB agar media. Plasmids from positive 

colonies were purified via the QIAprep Spin Miniprep Kit (QIAGEN) and sequenced.  

After the BP reaction, the constructs were transformed into 

thermocompetent Escherichia coli (DH5α) and plated on selective LB agar media. 

Plasmids from positive colonies were purified via the QIAprep Spin Miniprep Kit 

(QIAGEN) and sequenced.  

2.1.2 Synthesis of the SAP11 and TCP constructs used in yeast two-hybrid 

 The nine TCP chimaeras and the TCP domain of AtTCP2 and AtTCP18 used in 

Chapter 3 (Figure 3.2.7) were synthesised by Genscript (New Jersey, USA) into the 

pMS vector by Dr Cristina Canale, as described in Pecher et al., (2019). The SAP11 
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chimaeras used in Chapter 5 (Figure 5.2.5): “SAP11-Chimaera 1”, “SAP11-Chimaera 

2”, “SAP11-Chimaera 3” and “SAP11-Chimaera 4” were synthesised by Genscript 

(New Jersey, USA) into the pMK vector by Dr Cristina Canale, as described in Pecher 

et al., (2019). The SAP11 effector homologs used in Chapter 5 (Figure 5.2.1), “SAP11-

Chimaera 5”, “SAP11-Chimaera 6” (Figure 5.2.5) and the SAP11 chimaeras “SAP11-

Chimaera A” and “SAP11-Chimaera B” (Figure 5.2.6) were synthesised by General 

Biosystems (North Carolina, USA) into the pUC57 vector.  

The synthesised sequences were flanked with attachment sites attB1 and 

attB2, compatible with the LR reaction. The signal peptide of the SAP11 genes and 

SAP11 chimaera genes were removed. Appendix I – Table 3 displays the sequences 

of each synthesised construct detailed here. 

2.1.3 Cloning into Y2H expression vectors 

The synthesised SAP11 genes (SAP11 effector homologs and SAP11 

chimaeras) (2.1.2), SAP56, SAP66, SAP67 and SAP68 were cloned via the Gateway 

Cloning System® using the LR reaction method (Gateway LR clonase Enzyme Mix, 

Invitrogen, P/N 56484) into pDEST-GBKT7 (binding domain). The synthesised TCP 

genes and the TCP mutant genes in pDONR207 (2.1.1) were cloned similarly into 

pDEST-GADT7 (activation domain) vectors. The SAP11 effector homologs, the SAP 

effectors SAP56, SAP66, SAP67 and SAP68 have been amplified without their 

predicted signal peptide. 

2.1.3 Molecular Cloning of the genes used in the protoplast degradation assays 

The four SAP11 effector homolog genes (SAP11AYWB, SAP11MBSP, SAP11WBDL 

and SAP11SPLL) and TCP genes were cloned from the Gateway compatible entry clones 

into the expression vectors with the Gateway LR Clonase II enzyme mix (Invitrogen) 

before I started my PhD. The cloning was performed as stated in Pecher et al., 2019. 

 Briefly, the full-length ORFs of A.thaliana TCPs were cloned into pUGW15 

(Nakagawa et al., 2009) to produce N‐terminally  HA‐tagged proteins. The codon-

optimised versions of SAP11AYWB and SAP11MBSP and the non-codon-optimized 

versions of SAP11SPLL and SAP11WBDL were cloned into pUBN-GFP-DEST without their 
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signal peptide sequences (Pecher et al., 2019). I also cloned the same four SAP11 

effector homologs into pUGW18 to generate N-terminally 4xMyc-tagged SAP11 

effector proteins (Nakagawa et al., 2009). The cloning was performed as stated in 

Pecher et al., (2019). 

2.2 Yeast two-hybrid analysis 

2.2.1 Yeast transformation 

Saccharomyces cerevisiae yeast strain AH109 (Clontech®), auxotrophic for 

leucine and tryptophan, was streaked out on a 1X YPAD (yeast extract-peptone-

adenine-dextrose) agar media and grown for three days at 28°C. A single yeast colony 

was inoculated in 250 mL of 1X YPAD liquid media and incubated overnight at 28°C. 

On the next day, the concentration of the yeast cells is measured, with an optimal 

concentration of 2 x 107 cells ml-1. Yeast cells were pelleted via centrifugation at 

4000g for 5 minutes. The YPAD media is removed, and the pellet is washed two times 

with sterile water. After the third centrifugation, the pellet is resuspended with a 

sterile solution of 1X TE (1M Tris-HCl and 0.1M EDTA; pH 7.5) and 1X LiOAc (10M 

Lithium Acetate; pH 7.5). Boiled single-strand carrier salmon sperm DNA (Invitrogen) 

is then added in the yeast solution (100mL of Salmon sperm for 1000mL of yeast 

solution). The yeast transformation with the different combinations of 

pDEST_GADT7_TCPx and pDEST_GBKT7_SAP11x is performed in single tubes. Twenty 

microlitres of the yeast solution is mixed with 0.4μg of the two plasmids. One-

hundred and thirty microlitres of PEG solution (50% (w/v) polyethylene 

glycol/1XTE/1XLiOAc) solution is then added and mixed up and down. The tubes are 

then put in incubation 28°C with constant mixing. The yeast solutions are then put in 

42°C for 15 minutes. The tubes are then centrifuged at 8000g for 30 seconds, then 

the resulting pellet is resuspended in 500µL sterile water.  

2.2.2 Screening for yeast transformants 

Each of the yeast solution was plated in single Synthetic Defined (SD) selective 

medium -LW (leucine and tryptophan dropout) plates and incubated at 28°C for 3 

days. SD -LW media stands as the positive control of the yeast two hybrid experiment, 
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as the growth of the yeast depends on the uptake of the two plasmids. The pGADT7 

plasmid will provide the gene involved in the synthesis of leucine while pGBKT7 

provides the gene that synthesises tryptophan amino acid. Two colonies of each co-

transformant are then re-streaked in a fresh SD-LW plate and incubated overnight at 

28°C. A moderate amount of a single yeast streak (around 1mm wide) was used to 

inoculate 3ml of sterile SD-LW liquid media. The culture was incubated overnight at 

28°C.  

2.2.3 Screening for protein-protein interactions via yeast-two hybrid 

The next day, the O.D of each co-transformant culture was measured and set 

up to OD=1 via appropriate dilution with sterile water. This way, each yeast solution 

contains the same quantity of yeast cell, allowing a viable comparison once the 

solutions are plated on the different selective media. Two-hundred microlitres of 

diluted solution of co-transformed yeast is prepared and 5µL is dropped on the 

following selective medium (1) SD-LW media, (2) SD-LWH (leucine, tryptophan and 

histidine dropout), (3) SD-LWH + 5mM 3AT (3-amino-1,2,4-triazol), (4) SD-LWH + 

20mM 3AT, (5) SD-LWAH (leucine, tryptophan, histidine and adenine dropout). The 

pGADT7 plasmid encodes a fusion protein of GAL4 gene activation domain (AD) and 

TCP protein, while pGBKT7 plasmid encodes a fusion protein of GAL4 gene binding 

domain (BD) and SAP11 protein. Upon the interaction between SAP effectors (SAP11, 

SAP11 chimaeras, SAP56, SAP66, SAP67 or SAP68) and TCP (full TCP, TCP domain, TCP 

motifs or TCP chimaeras), the AD and BD will activate the expression of the Histidine 

His3 gene, allowing the yeast to grow in SD-LWH media. 3AT is a competitive inhibitor 

of the His3 gene and will inhibit low levels of His3 expression, thus selecting the 

stronger interactions between SAP11 protein and TCP protein. A stronger interaction 

allows the AD and BD to activate the ADE2 gene, that encodes the AIR-carboxylase, 

which is involved in the purine biosynthetic pathway in yeast (Gedvilaite and 

Sasnauskas, 1994). 
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2.3 Transient expression assays in Arabidopsis thaliana protoplasts 

Isolation and transformation of Arabidopsis protoplasts were performed 

as described by (Yoo et al., 2007). Protoplasts were generated from 5-week-old 

Arabidopsis in controlled environmental conditions with a 14h, 22 C°/ 10h, 20°C light 

/ dark period. Six-hundred microlitres of protoplast-suspensions were transformed 

with the indicated constructs and placed in the dark over-night for gene expression 

(Pecher et al., 2019). The protoplast preparation and transformation was done as 

described in our latest paper (Pecher et al., 2019). For detection of Myc-tagged SAP11 

effector proteins, Monoclonal Anti-c-Myc antibody (produced in mouse, M5546, 

Sigma).  

The next day, the transformation efficiency of the protoplasts was assessed 

via fluorescent microscopy (Leica DM6000 microscope). The proportion of 

transformed fluorescent protoplasts that produce GFP-tagged SAP11 proteins were 

counted and compared to non-fluorescent protoplasts using the GFP channel of the 

DM6000 microscope (Pecher et al., 2019). 

2.4 Phylogenetic trees 

The phylogenetic trees were generated based on either 16SrRNA sequences 

or SAP11 sequences (nucleotide or amino acid sequences) from the genomes of 

phytoplasma isolates that have been found to express SAP11 effector homolog 

genes. The first is a phylogenetic tree based on the SAP11 sequences of 

phytoplasmas. The second is a phylogenetic tree based on the 16S ribosomal DNA 

(rDNA) of the same phytoplasma strains used in the SAP11 tree. 

2.4.1 Generation of the 16S rDNA-based phylogenetic tree 

The 16S rDNA sequences of all the phytoplasma strains that have SAP11 

effector were gathered from the NBCI website, or from collaborators (see Chapter 4 

for more details). Then, the 16S rDNA sequences have been aligned using MUSCLE 

algorithm with default parameters (Edgar, 2004) via the MEGA (Molecular 

Evolutionary Genetics Analysis) software (version 7) (Kumar et al., 2008). The 
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resulting Multiple Sequence Alignment (MSA) was used to generate a phylogenetic 

tree via the Maximum Likelihood algorithm, default parameters (Guindon and 

Gascuel, 2003). Five thousand bootstrap samples were generated to evaluate the 

level of support of each branch of the phylogenetic tree. The resulting tree were 

formatted and annotated in FigTree software v1.4.3 

(www.tree.bio.ed.ac.uk/software/figtree/). Then, I coloured and finalised the 

phylogenetic tree using Inkscape. 

2.4.2 Generation of the SAP11-based phylogenetic trees 

The SAP11 nucleotide sequences and amino acid sequences were aligned 

separately using MUSCLE algorithm with default parameters (Edgar, 2004) via the 

MEGA (Molecular Evolutionary Genetics Analysis) software (version 7) (Kumar et al., 

2008). Then, the resulting Multiple Sequence Alignment (MSA) of either the 

nucleotide sequences or the amino acid sequences were used to generate two 

phylogenetic trees via the Maximum Likelihood algorithm (Guindon and Gascuel, 

2003). One thousand bootstrap samples were generated to evaluate the level of 

support of each branch of the phylogenetic tree. The resulting tree were formatted 

and annotated in FigTree softwarev1.4.3 (www.tree.bio.ed.ac.uk/software/figtree/). 

Then, I coloured and finalised the phylogenetic trees using Inkscape. 

 

http://www.tree.bio.ed.ac.uk/software/figtree/
http://www.tree.bio.ed.ac.uk/software/figtree/
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3.1 Introduction 

Phytoplasmas have evolved from Gram-positive bacteria via loss of outer cell 

wall and genome reductions, and rely on sap-feeding insects, such as leafhoppers, 

planthoppers and psyllids, for transmission (Weintraub and Beanland, 2006). 

Phytoplasmas are considerably diverse, with over 1000 phytoplasma isolates 

identified so far (Gasparich, 2010). When the sap-feeding insects deliver 

phytoplasmas inside the phloem sieve cells of the plant, these bacteria multiply and 

cause dramatic symptoms, such as virescence (flower organs remaining green), 

phyllody (production of leaf-like flowers) and witches’ brooms (increase of the   

axillary branches) (Bertaccini, 2007; Hogenhout et al., 2008; Sugio and Hogenhout, 

2012; Sugio et al., 2011a; MacLean et al., 2014). Phytoplasmas trigger these 

considerable changes in plant development through secreting effector proteins 

directly into the cytoplasm of plant sieve cells in which both the phytoplasma and 

effectors migrate throughout the phloem and the effectors also unload from the 

phloem to adjacent tissues (Bai et al., 2009; Hoshi et al., 2009; MacLean et al., 2011; 

Sugio et al., 2011a; Chang et al., 2018; Pecher et al., 2019).  

Aster Yellows strain Witches’ Broom (AY-WB; a 16S rDNA group IA (16srIA)) 

phytoplasma and assigned to ‘Candidatus (Ca.) Phytoplasma asteris’ (Bai et al., 2006) 

is one of the most investigated phytoplasmas and several effectors named secreted 

AY-WB proteins (SAPs), have been described from this bacterium. AY-WB 

phytoplasma infects a broad range of dicotyledonous plants, including Arabidopsis 

thaliana, and is transmitted mainly by the polyphagous leafhopper species 

Macrosteles quadrilineatus (Hogenhout et al., 2008). Among the AY-WB effectors, 

SAP11AYWB binds and destabilises TCP transcription factors (see Chapter 1 for more 

information) (Sugio et al., 2011a, 2014). Previously, the Hogenhout lab found that 

SAP11AYWB binds and destabilises the class II TCP (sub)classes CIN-TCP and CYC/TB1-

TCPs, leading to changes in leaf shape and stem proliferation, and a decrease of 

jasmonic acid (JA) production; the latter promotes the fertility of M. quadrilineatus 

(Sugio et al., 2011a, 2014; Pecher et al., 2019). Furthermore, we found that 

SAP11AYWB interacts with the TCP domain of class II CIN-TCPs (Sugio et al., 2014). 
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The TCP domain is the conserved and functional domain of TCP transcription 

factors. It is predicted to form a basic-helix-loop-helix (bHLH) structure, similarly to 

the bHLH transcription factors; however TCP and bHLH transcription factors have 

distinct specificities and do not bind to the same DNA elements (Cubas et al., 1999; 

Aggarwal et al., 2010). The TCP domain is required for the dimerisation of TCP 

transcription factors in such a manner that the helix-loop-helix domains from the 

TCP-TCP interaction leading to the exposures of the beta-sheets, which then can bind 

the promoters of target genes (Kosugi and Ohashi, 1997, 2002; Aggarwal et al., 2010). 

Therefore, the basic motif of the TCP domain is responsible for the TCP binding to 

the DNA target (Aggarwal et al., 2010), whereas the helix loop helix motif allows the 

TCP to form homo and heterodimers (Aggarwal et al., 2010).  

The Hogenhout lab recently sequenced the genome of Maize Bushy Stunt 

Phytoplasma (MBSP; a 16S rDNA group 1B (16srIB) phytoplasma and assigned to Ca. 

Phytoplasma asteris (Lee et al., 2004; Orlovskis et al., 2017). Whereas MBSP also 

belongs to Ca. Phytoplasma asteris, like AY-WB, MBSP has a narrow plant host range, 

being a maize specialist and transmitted by the maize-feeding leafhoppers Dalbulus 

maidis and D. elimatus (Nault, 1980). The symptoms of MBSP-infected maize (Z. 

mays. L) include leaf reddening and chlorosis, stunting, the formation of lateral 

branches and loss of ear development (Orlovskis et al., 2017). When I started my PhD, 

there was some evidence that SAP11MBSP also interacts with TCP transcription factors, 

though the specificity of binding was not yet clear. An alignment of the 44 maize TCPs 

shows that the TCP domain is subdivided into the (sub)classes PCF (Class I) and CIN 

and CYC/TB1-TCPs (Class II), similarly to A. thaliana TCP transcription factors (Martín-

Trillo and Cubas, 2010; Pecher et al., 2019). However, some Z. mays TCP transcription 

factor did not clearly belong to either the CIN or CYC/TB1 subclades, as their TCP 

domains harbour residues of both (sub)classes; these maize TCPs are assigned to a 

separate group, the CII-TCPs (Pecher et al., 2019).  

When I arrived in the lab, there were already phenotype data available for A. 

thaliana plants that ectopically express the SAP11AYWB and SAP11MBSP under control 

of the 35S promoter; the 35S:SAP11AYWB and 35S:SAP11MBSP A. thaliana plants display 
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distinct phenotypes (Figure 3.1) (Pecher et al., 2019). Firstly, the 35S:SAP11AYWB A. 

thaliana plants have crinkled leaves, indicating that leaf cells excessively proliferate, 

and phenocopying the phenotype of the 35S::miR319a x 35S::miR3TCP line in which 

the expression of all 8 CIN-TCP genes are knocked down (Efroni et al., 2008; Pecher 

et al., 2019). However, the leaves of 35S:SAP11MBSP A. thaliana plants resemble wild 

type leaves and do not show crinkling (Figure 3.1) (Pecher et al., 2019). Secondly, 

both 35S:SAP11AYWB and 35S:SAP11MBSP A. thaliana display increased stem 

production (resembling witch’s broom symptoms of phytoplasma-infected plants), 

similarly to the brc1-2 brc2-1 (brc1 brc2) (Col-0) A. thaliana line, which is a double 

null mutant for the CYC/TB1 TCP genes AtTCP18 (brc1) and AtTCP12 (brc2) (Aguilar-

Martinez et al., 2007; Pecher et al., 2019). These data suggested that SAP11AYWB 

targets all class II (CYC/TB1 and CIN-TCPs) for destabilisation, whereas SAP11MBSP 

targets only CYC/TB1 TCPs for destabilisation. 

 

Figure 3.1: Comparison between the SAP11AYWB, SAP11MBSP transgenic A. thaliana lines and 

wild type Col-0. Stable expression of SAP11AYWB and SAP11MBSP in Arabidopsis thaliana lines 

show that SAP11AYWB induces lateral shoot branching (witches' broom) and leaf crinkling 

while SAP11MBSP only induces lateral shoot branching. (A-B) 35S::SAP11AYWB stable transgenic 

A. thaliana (Col-0) lines phenocopy both the A. thaliana brc1-2 brc2-1 (brc1 brc2) double 

(Col-0) mutant and 35S::miR319a x 35S::miR3TCP stable transgenic A. thaliana (Col-0) lines 
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and 35S::SAP11MBSP transgenic lines phenocopy only the A. thaliana brc1 brc2 mutant . Figure 

and legends are taken from Pecher et al., 2019. This paper is included in Appendix VI. 

During the first two years of my PhD, postdoctoral researcher Dr Pascal 

Pecher in the Hogenhout lab started to generate and characterise Ubi::FLAG-

SAP11AYWB and Ubi::FLAG-SAP11MBSP transgenic maize lines. He found that Ubi::FLAG-

SAP11AYWB and Ubi::FLAG-SAP11MBSP transgenic maize lines exhibit a multi-branching 

phenotype compared to HIIA wild type, phenocopying the tb1 mutant (Pecher et al., 

2019). However, the alteration of the leaf development is only visible in the stable 

expression line of SAP11AYWB in Z. mays (Ubi::FLAG-SAP11AYWB) but not visible in 

Ubi::FLAG-SAP11MBSP compared to the wild type HiIIA maize plant. The differences in 

the maize phenotype also suggested that SAP11AYWB targets both subgroups of class 

II TCPs and SAP11MBSP only the CYC/TB1 TCPs.  

Therefore, whereas AY-WB and MBSP both belong to Ca. Phytoplasma asteris, 

albeit in subgroups 16SrIA and 16SrIB, respectively, their SAP11 effector proteins 

appear to have different specificities for class II TCP transcription factors. Alignment 

of the two SAP11 proteins show differences in sequences (discussed in the next 

chapter, Chapter 4). In this chapter, I will investigate the domains with TCPs that 

determine SAP11AYWB and SAP11MBSP binding specificities. The hypothesis is that 

SAP11MBSP has a narrower binding range towards the TCP (sub)classes compared to 

SAP11AYWB. Because SAP11AYWB binds the TCP domain of TCP transcription factors 

(Sugio et al., 2014), I hypothesised that SAP11MBSP also interacts with the TCP domain 

and that regions within the TCP domains of CYC-TB1 and CIN-TCPs define binding 

specificities to SAP11MBSP and SAP11AYWB. 

Here I describe yeast-two hybrid data showing interactions of the SAP11 

effector homologs and TCP members from class II CYC/TB1-TCPs and CIN-TCPs. I also 

added in this study two SAP11 effector homologs from two different phytoplasmas; 

these are SAP11WBDL of Witches Broom Disease of Lime (WBDL; 16SrII group) 

phytoplasma that primarily infects lime, and SAP11SPLL, of  Sweet Potato Little Leaf 

(SPLL; 16SrII group) phytoplasma that infects a wide range of dicotyledonous plants. 

The SAP11 proteins of these two phytoplasmas were chosen, because the 
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phytoplasmas are a specialist and a generalist, like AYWB and MBSP, but belong to a 

distinct clade within the Phytoplasma phylogeny.  Given that SAP11MBSP targets a 

narrower set of TCPs than SAP11AYWB does, I hypothesised that SAP11WBDL may also 

target a narrower set of TCPs than SAP11SPLL does.  

Here, I show that SAP11AYWB interacts with both class II CIN and CYC/TB1-TCPs, 

whereas SAP11MBSP only interacts with class II CYC/TB1-TCPs, in agreement with the 

phenotypes of the transgenic A. thaliana and maize plants.  I also found that 

SAP11WBDL and SAP11SPLL interact with CYC/TB1-TCPs, but not CIN-TCPs. Furthermore, 

the SAP11 effector homologs bind to the TCP domain of A. thaliana class II CIN and 

CYC/TB1. Finally, using chimaeras of the basic region and the helix loop helix motifs 

of the TCP domain of both class II CIN and class II CYC/TB1 TCP candidates, I show 

that the SAP11s interact with the full helix-loop-helix motif of TCPs. 

3.2 Results 

3.2.1 Four SAP11 effector homologs interact with Arabidopsis thaliana Class II 

CYC/TB1-TCPs in yeast 

Given previous results demonstrating that both SAP11AYWB and SAP11MBSP 

interact with class II CYC/TB1-TCPs (Pecher et al., 2019), I wished to investigate if 

other SAP11 effector homologs from different phytoplasma groups interacted with 

this TCP (sub)class. 

To do this, I tested the interaction between the four SAP11 effector homologs 

and the A. thaliana class II CYC/TB1-TCPs members AtTCP12 (BRC2) and AtTCP18 

(BRC1) in the Y2H system (Figure 3.2.1). Y2H data show that SAP11AYWB and SAP11MBSP 

interacted with both CYC/TB1-TCP members, as yeast colonies grew on the selective 

synthetic dropout medium lacking leucine, tryptophan, adenine and histidine (SD -

LWAH) for each combination. Additionally, SAP11WBDL and SAP11SPLL also interacted 

with Class II CYC/TB1-TCPs. Yeast colonies that contained the GBKT7 empty vector 

(EV) in the presence of AtTCP12 and AtTCP18 GADT7 plasmids and GADT7 EV in the 

presence of SAP11 GBKT7 plasmids did not grow, indicating that AtTCP12  and 

AtTCP18 and the SAP11 homologs do not have autoactivity in yeast. Hence yeast only 
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grew in the presence of both SAP11s and TCPs, confirming that these proteins 

interact. Interestingly, yeast colonies with SAP11WBDL and A. thaliana TCP12 did not 

grow, whereas those with the other three SAP11 homologs and A. thaliana TCP12  

did, indicating that SAP11WBDL apparently does not interact with A. thaliana TCP12. 

However,  SAP11WBDL does interact with A. thaliana TCP18. To conclude, all SAP11s 

bind CYC/TB1-TCPs, though SAP11WBDL binds only one of the two CYC/TB1-TCPs.  

 

Figure 3.2.1: Four SAP11 effector homologs interact with Arabidopsis thaliana Class II 

CYC/TB1 TCPs in yeast. Yeast two-hybrid analysis of phytoplasma SAP11 effector homologs 

SAP11AYWB, SAP11MBSP, SAP11WBDL and SAP11SPLL and Arabidopsis thaliana Class II CYC/TB1 

TCPs. SAP11 effector proteins and pDEST-GBKT7 empty vector control were fused to the DNA 

binding domain of the GAL4 transcriptional activator (bait) while TCPs and pDEST-GADT7 

empty vector control were fused to the transcription activation domain of GAL4 (prey). Yeast 

colonies co-expressing bait and prey or empty plasmids combinations were grown in 

synthetic dropout (SD) media lacking leucine and tryptophan (-L,-W) (left) with growths of 

colonies indicating the presence of both plasmids, or lacking leucine, tryptophan, adenine 

and histidine (-L, -W, -A, -H) (right) with growths of colonies indicating interactions of bait 

(SAP11 homologs) and prey (TCP homologs). The experiment was repeated three times with 

three different batches of transformed yeasts and these showed identical results as shown. 
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3.2.2 SAP11AYWB interacts with class II CIN-TCPs in yeast two-hybrid experiments, in 

contrast to SAP11MBSP, SAP11WBDL and SAP11SPLL  

Given previous results demonstrating that SAP11AYWB interacts with Class II 

CIN-TCPs, whereas SAP11MBSP does not (Pecher et al., 2019), I wished to investigate 

if SAP11 homologs from WBDL and SPLL phytoplasmas, which belong to a different 

group within the phytoplasma phylogeny compared to AYWB and MBSP, interact 

with these TCPs.  

 

Figure 3.2.2: SAP11AYWB interacts with members of Class II CIN-TCPs in yeast. Yeast two-

hybrid (Y2H) analysis of phytoplasma SAP11 effector homologs SAP11AYWB, SAP11MBSP, 

SAP11WBDL and SAP11SPLL and Arabidopsis thaliana Class II CIN-TCPs. SAP11 effector proteins 

and pDEST-GBKT7 empty vector control were fused to the DNA binding domain of the GAL4 

transcriptional activator (bait) while TCPs and pDEST-GADT7 empty vector control were 

fused to the transcription activation domain of GAL4 (prey). Yeast colonies co-expressing bait 

and prey or empty plasmids combinations were grown in synthetic dropout (SD) media 

lacking leucine and tryptophan (-L,-W) (left) with growths of colonies indicating the presence 

of both plasmids, or lacking leucine, tryptophan, adenine and histidine (-L, -W, -A, -H) (right) 

with growths of colonies indicating interactions of bait (SAP11 homologs) and prey (TCP 

homologs). The experiment was repeated three times with three different batches of 

transformed yeasts and these showed identical results as shown. 
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To do this, I performed yeast-two hybrid (Y2H) analyses and tested the 

interaction of the four SAP11 effector homologs SAP11AYWB, SAP11MBSP, SAP11WBDL 

and SAP11SPLL and TCPs of the Class II CIN-TCP (sub)class. Y2H data show that 

SAP11AYWB interacts with A. thaliana Class II CIN-TCP2 and TCP13 in yeast, as yeast 

colonies grew on the selective synthetic dropout medium lacking Leucine, 

Tryptophan, adenine and Histidine (SD -LWAH), whereas there is no evidence of 

interactions of the other three SAP11 homologs with these TCPs (Figure 3.2.2).  

Consistent with previous results, I confirmed that SAP11MBSP did not show 

interactions with any members of this TCP (sub)class. In addition, SAP11WBDL and 

SAP11SPLL do not appear to interact with any of the Class II CIN-TCP members in yeast 

either. SAP11AYWB destabilises all 8 CIN-TCPs of A. thaliana (Sugio et al., 2011). 

However, in the Y2H assays, the SAP11 effector homologs interacted with CIN-TCP2 

and TCP13, but not with the other 6 CIN-TCPs (TCP3, TCP4, TCP5, TCP10, TCP17 and 

TCP24) of A. thaliana. Given the absence of positive interactions for these six TCPs 

for any SAP11, it is most likely that the 6 TCPs did not work in the Y2H assays. Reasons 

may be that the TCPs did not express in yeast, SAP11-TCP interactions were weak 

and that the GAL4 tag interfered with TCP activity.  For these reasons, only A. thaliana 

TCP2 and A. thaliana TCP13 were selected as candidates to investigate SAP11 

interactions with class II CIN-TCPs by Y2H analyses in future experiments.  

3.2.3 The TCP domain of TCP transcription factors determines the specificity of 

SAP11MBSP and SAP11AYWB effector binding to CYC/TB1 and CIN-TCPs, respectively.  

Preliminary results from our lab showed that SAP11AYWB interacts with the TCP 

domain of CIN-TCP transcription factor (Pecher, personal communication). However, 

it is not clear if the TCP domain is also involved in SAP11-binding specificity for 

CYC/TB1 versus CIN-TCPs. To investigate this, I conducted Y2H assays of SAP11AYWB 

and SAP11MBSP and the TCP domains of CYC/TB1 TCP18 and CIN-TCP2. This showed 

that SAP11AYWB interacted with the TCP domains of A. thaliana class II CIN-TCP2 and 

class II CYC/TB1-TCP18 in yeast, as yeast colonies grew on the selective synthetic 

dropout medium lacking Leucine, tryptophan and histidine supplemented with 

20mM of 3-Amino-1,2,4-triazole (3AT) (SD -LWH) (Figure 3.2.3). However, SAP11MBSP 
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only binds to the TCP domain of A. thaliana TCP18, as no yeast growth was observed 

for the SAP11MBSP and CIN-TCP2 combination (Figure 3.2.3). These results are 

consistent with SAP11 binding to full-length CYC/TB1 and CIN-TCPs (Figure 3.2.1 and 

Figure 3.2.2) and show that the SAP11-binding specificity to TCP transcription factors 

is determined by the TCP domain.  

Taken together, these results showed that the TCP domain alone is sufficient 

for the SAP11 binding in yeast. The fact that two different SAP11 homologs from two 

phytoplasma strains, having two distinct patterns of interaction with TCP 

(sub)classes, showed interaction with the TCP domain suggests that this ability is 

conserved among SAP11 genes from different phytoplasma strains.  

 

Figure 3.2.3: SAP11 binds the TCP domain of TCPs transcription factors in yeast. Yeast two-

hybrid analysis of between SAP11 effector homologs SAP11AYWB, SAP11MBSP and the TCP 

domains of A. thaliana Class II CIN-TCP2 and Class II CYC/TB1-TCP18. SAP11 effector proteins 

and pDEST-GBKT7 empty vector control were fused to the DNA binding domain of the GAL4 

transcriptional activator (bait) while TCP domains and pDEST-GADT7 empty vector control 

were fused to the transcription activation domain of GAL4 (prey). Yeast colonies co-

expressing bait and prey or empty plasmids combinations were grown in synthetic dropout 

(SD) media lacking leucine and tryptophan (-L,-W) (left) with growths of colonies indicating 

the presence of both plasmids, or lacking leucine, tryptophan and histidine with the addition 

of 20 mM 3-Amino-1,2,4-triazole (3AT) (used to suppress auto-activation)  (-L, -W, -H)  (right); 

with growths of colonies indicating interactions of bait (SAP11 homologs) and prey (TCP 
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domain homologs). The experiment was repeated three times with three different batches 

of transformed yeasts and these showed identical results as shown. 

3.2.4 The grouping of TCP domains of TCP transcription factors into distinct clades is 

conserved among divergent plant species 

The previous yeast two-hybrid analysis shows that SAP11MBSP interacts with 

class II CYC/TB1-TCPs. MBSP is a maize pathogen, and its SAP11 protein should bind 

maize TCP transcription factors. As TCPs are part of a plant family of transcription 

factors, they are conserved across the plant species through their TCP domain 

(Martín-Trillo and Cubas, 2010).  

 

Figure 3.2.4: Multiple sequence alignment of the TCP domain of Zea mays TCP transcription 

factors. The red asterisk indicates the TCP targeted by miR319 micro-RNA. 44 TCP genes are 

present in the genome of Zea mays. Plant TCP transcription factors are divided into two main 

classes: class I TCP and class II TCP. Additionally, class II TCPs comprise two sub-clades: the 

CIN clade and the CYC/TB1 clade. Zea mays CII TCPs, cannot be categorised in one of the two 
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sub-clades CIN and CYC/TB1, as they harbour specific residues of both sub-clades. The 

sequences of the maize TCPs were collected from the Grass Regulatory Information Server 

(GRASSIUS) (http://grassius.org/grasstfdb.html) (Yilmaz et al., 2009). This figure can be found 

in our latest paper (Pecher et al., 2019). 

The alignment of the TCP domain of the 44 maize TCPs shows that the 

grouping of TCP domains is conserved in maize (Figure 3.2.4). The maize TCPs are 

divided into class I TCPs and class II TCPs with specific residues that define the two 

classes (yellow residues for the class I TCPs and blue residues for class II TCPs), 

similarly to A. thaliana TCPs (see Chapter 1). However, the maize genome has an 

additional group within the class II TCPs: CII TCP(sub)class. The CII TCP domains have 

amino acids in common with both CYC/TB1 and CIN TCPs (shown in green and red 

respectively in Figure 3.2.4) (Chai et al., 2017; Pecher et al., 2019). 

As the TCP domain is conserved among the species, I hypothesise that 

SAP11AYWB and SAP11MBSP have the same specificities of binding toward both A. 

thaliana and maize CYC/TB1 and CIN-TCPs. However, it is unclear if SAP11MBSP 

interacts with members of the CII TCPs.  

3.2.5 The four SAP11 effector homologs bind maize (Zea mays) Class II CYC/TB1-TCP 

in yeast 

 

http://grassius.org/grasstfdb.html
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Figure 3.2.5: Four SAP11 effector homologs interact with Zea mays Class II CYC/TB1 TCPs 

in yeast. Yeast two-hybrid analysis of phytoplasma SAP11 effector homologs SAP11AYWB, 

SAP11MBSP, SAP11WBDL and SAP11SPLL and Zea mays Class II CYC/TB1 TCPs. SAP11 effector 

proteins and pDEST-GBKT7 empty vector control were fused to the DNA binding domain of 

the GAL4 transcriptional activator (bait) while TCPs and pDEST-GADT7 empty vector control 

were fused to the transcription activation domain of GAL4 (prey). Yeast colonies co-

expressing bait and prey or empty plasmids combinations were grown in synthetic dropout 

(SD) media lacking leucine and tryptophan (-L,-W) (left) with growths of colonies indicating 

the presence of both plasmids, or lacking leucine, tryptophan, adenine and histidine (-L, -W, 

-A, -H) (right) with growths of colonies indicating interactions of bait (SAP11 homologs) and 

prey (TCP homologs). The experiment was repeated three times with three different batches 

of transformed yeasts and these showed identical results as shown. 

Given the conservation of TCP domains among the class II TCP subclasses in 

A. thaliana and Z. mays, I predicted that SAP11MBSP also interacts with solely maize 

CYC-TB1 TCPs and not with maize CIN-TCPs, though SAP11MBSP may interact with the 

CII TCPs. Additionally, as the result of 3.2.1 infers that the four SAP11 effector 

homologs interact with dicotyledon A thaliana  Class II CYC/TB1-TCPs, I wanted to 

confirm that the patterns of interaction were consistent using Class II CYC/TB1-TCPs 

from a monocotyledon genome (Zea mays).  

To do so, I tested the interaction between the four SAP11 effector homologs 

and the Z. mays Class II CYC/TB1-TCPs members ZmTCP02 (TB1) and ZmTCP18 in the 

Yeast-Two Hybrid system (Figure 3.2.5). The Yeast-Two Hybrid results showed that 

the four SAP11 effector homologs interacted with ZmTCP02 (Z. mays TB1) and 

ZmTCP18 (Figure 3.2.5), as yeast colonies grew on the selective synthetic dropout 

medium lacking leucine, tryptophan, adenine and histidine (SD -LWAH). The GBKT7 

Empty Vector control confirmed that ZmTCP02 and ZmTCP18 were not auto-active 

in yeast. Additionally, SAP11WBDL interacts with both members of Class II CYC/TB1-

TCPs from Z. mays, while it interacted with AtTCP12 but not AtTCP18 (Figure 3.2.1).  

Taken together, the Y2H analysis of 3.2.2 and 3.2.3 showed that the patterns 

of interaction between the four SAP11 effector homologs and the CYC/TB1-TCP 

(sub)classes in both A. thaliana (monocotyledon) and Z. mays (dicotyledon) are 
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consistent. These results suggest that the SAP11 effector homologs target conserved 

regions within the TCP protein across various genomes, namely the TCP domain. 

3.2.6 SAP11MBSP do not show interaction with Zea mays CII members while three 

other SAP11 effector homologs do. 

Given that there are TCP members that share both the specific residues for 

CIN and CYC/TB1-TCPs in Z. mays, I wanted to establish the patterns of interaction 

between the four SAP11 homologs and candidates of C II TCPs to gain insights in the 

targeted residues within the TCP domain.  To do so, I performed Yeast-Two Hybrid 

analysis and tested the interaction between the four SAP11 effector homologs and 

Z. mays TCP3, TCP11 and TCP15. 

 

Figure 3.2.6: SAP11MBSP do not show interaction with Zea mays CII TCP members while 

three other SAP11 effector homologs do. Yeast two-hybrid analysis of phytoplasma SAP11 

effector homologs SAP11AYWB, SAP11MBSP, SAP11WBDL and SAP11SPLL and with 3 Zea mays CII-

TCPs. SAP11 effector proteins and pDEST-GBKT7 empty vector control were fused to the DNA 

binding domain of the GAL4 transcriptional activator (bait) while TCPs and pDEST-GADT7 

empty vector control were fused to the transcription activation domain of GAL4 (prey). Yeast 
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colonies co-expressing bait and prey or empty plasmids combinations were grown in 

synthetic dropout (SD) media lacking leucine and tryptophan (-L,-W) (left) with growths of 

colonies indicating the presence of both plasmids, or lacking leucine, tryptophan, adenine 

and histidine (-L, -W, -A, -H) (right) with growths of colonies indicating interactions of bait 

(SAP11 homologs) and prey (TCP homologs). The experiment was repeated three times with 

three different batches of transformed yeasts and these showed identical results as shown.  

Taken together, these results indicate that there are potentially multiple TCP 

domain residues that are differentially targeted by SAP11 effector homologs. 

3.2.7 SAP11 effector homologs interact with the entire helix loop helix motif of 

the TCP domain of a Class II CYC/TB1-TCP  

 

Figure 3.2.7: SAP11 effector homologs interact with the entire helix loop helix motif of 

the TCP domain of a Class II CYC/TB1-TCP. Yeast two-hybrid (Y2H) analysis of phytoplasma 

SAP11AYWB, SAP11MBSP and chimeric versions based on the TCP domain of Arabidopsis thaliana 

TCP18 (Class II CYC/TB1-TCP) and At TCP2 (Class II CIN-TCP). SAP11 effector proteins and 

pDEST-GBKT7 empty vector control were fused to the DNA binding domain of the GAL4 

transcriptional activator (bait) while chimeric TCPs and pDEST-GADT7 empty vector control 

were fused to the transcription activation domain of GAL4 (prey). Yeast colonies co-

expressing bait and prey or empty plasmids combinations were grown in synthetic dropout 
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(SD) media lacking leucine and tryptophan (-L,-W) (left) with growths of colonies indicating 

the presence of both plasmids, or lacking leucine, tryptophan and histidine with the addition 

of 20 mM 3-Amino-1,2,4-triazole (3AT) (used to suppress auto-activation)  (-L, -W, -H)  (right); 

with growths of colonies indicating interactions of bait (SAP11 homologs) and prey (TCP 

chimeric versions). The experiment was repeated three times with three different batches 

of transformed yeasts and these showed identical results as shown. 

Given that SAP11 effector homologs target the TCP domains of both Class II 

TCP (sub)classes, I wanted to establish which region or residues within the TCP 

domain was specifically targeted by the different SAP11 effector homologs. In order 

to determine the region or the residues of the TCP domain that provide the SAP11 

binding specificity, I generated chimeric versions of the TCP domain of AtTCP18 and 

AtTCP2, based on the different motifs within the domain: the basic motif and the 

helix-loop-helix motifs. I tested the interaction using SAP11AYWB, which targets both 

AtTCP18 and AtTCP2 TCP domains and SAP11MBSP, which targets only AtTCP18 TCP 

domain.  

Based on these interaction patterns, I used the yeast-two hybrid system to 

screen for positive interaction between SAP11MBSP and a chimeric version of the TCP 

domain that harbours the AtTCP18 region sufficient for interaction. First, the controls 

confirmed that SAP11AYWB targetted both the TCP domain of AtTCP18 and AtTCP2, 

while SAP11MBSP targetted only AtTCP2 (Figure 3.2.7). SAP11AYWB interacted with all 

the chimaera constructs. However, the results showed that SAP11MBSP binds 

specifically the full helix-loop-helix motif of AtTCP18 (see the stars in Figure 3.2.7). 

Indeed, the third chimaeras construct, consisting of the basic motif of A. thaliana 

TCP2 and the full helix-loop-helix of A. thaliana TCP18, is targeted by SAP11MBSP in 

yeast, confirming that SAP11MBSP interacts specifically with the complete helix-loop-

helix motif of A. thaliana Class II CYC/TB1-TCP18. 

Furthermore, the results show that the basic motif alone is not specifically 

targeted by SAP11, as SAP11MBSP does not show any interaction with the fourth 

chimaera construct that consists in the basic motif of A.thaliana TCP18 and the full 

helix-loop-helix motif of A. thaliana TCP2. Taken together, these results suggest that 
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SAP11 effector is specifically targeting the helix-loop-helix motif, thus possibly 

disrupting the homo/hetero-dimerisation of the TCP proteins. 

3.2.8 The helix-loop-helix motif of the TCP domain interacts with SAP11SPLL 

As the previous Yeast-Two-Hybrid experiment showed, the helix-loop-helix 

motif of the TCP domain of AtTCP18 is targeted specifically by SAP11MBSP. As a follow-

up, I wanted to investigate if the helix-loop-helix motif was sufficient for interaction 

with SAP11.  I thus cloned the helix-loop-helix motif of both A. thaliana TCP18 and A. 

thaliana TCP2 and tested their interaction against the four SAP11 effector homologs 

in yeast. The results suggest that SAP11SPLL interacted weakly with the helix-loop-

helix motif of A. thaliana TCP18 but did not show any interaction with A. thaliana 

TCP2 (Figure 3.2.8). SAP11AYWB, SAP11MBSP and SAP11WBDL did not show any 

interaction with neither of the constructs.  

 

Figure 3.2.8: The helix-loop-helix motif of the TCP domain does not seem to be sufficient 

for interaction against SAP11 effector homologs. Yeast two-hybrid (Y2H) analysis showing 

the interaction between phytoplasma SAP11 effector homologs SAP11AYWB, SAP11MBSP, 

SAP11WBDL and SAP11SPLL and the helix-loop-helix motifs of the Arabidopsis thaliana TCP2 and 

TCP18. SAP11 effector proteins and pDEST-GBKT7 empty vector control were fused to the 

DNA binding domain of the GAL4 transcriptional activator (bait) while TCP motifs and pDEST-

GADT7 empty vector control were fused to the transcription activation domain of GAL4 

(prey). Yeast colonies co-expressing bait and prey or empty plasmids combinations were 

grown in synthetic dropout (SD) media lacking leucine and tryptophan (-L,-W) (left) with 

growths of colonies indicating the presence of both plasmids, or lacking leucine, tryptophan, 

adenine and histidine (-L, -W, -A, -H) (right) with growths of colonies indicating interactions 
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of bait (SAP11 homologs) and prey (TCP homologs). The experiment was repeated three 

times with three different batches of transformed yeasts and these showed identical results 

as shown. 

Taken together, the results suggest that the helix-loop-helix motif is not 

sufficient for interaction with the SAP11 effector homologs. The results need to be 

further confirmed with an additional experiment, such as degradation assays, as 

performed in our latest published work (Pecher et al., 2019) (see next chapter for 

more information). Indeed, it would be interesting to clone the helix-loop-helix motif 

in an expression vector for transient expression in A. thaliana protoplasts and test 

the destabilisation by SAP11 effector homologs. 

3.3 Discussion  

In this chapter, I showed that SAP11 effector homologs from four different 

phytoplasma strains have distinct interaction patterns with TCP (sub)classes, both in 

A. thaliana and Z. mays, indicating that the SAP11 ability to target TCPs is conserved 

among divergent plant species, including a dicot and a monocot. Our lab previously 

showed that SAP11AYWB interacts with class II CIN-TCP and CYC/TB1-TCPs (Sugio et al., 

2011a, 2014). I show here that two SAP11 effector homologs from WBDL and SPLL 

phytoplasma strains also interact with class II CYC/TB1 TCPs while SAP11 effector 

from MBSP, a maize specialist, does not interact with class II CIN-TCPs. Furthermore, 

I show that the four SAP11 effector homologs target the class II CYC/TB1-TCPs. Taken 

together, I can confirm the first hypothesis stated in the introduction of this chapter 

that SAP11 effector homologs have specific interactions with members of Class II 

CYC/TB1 and CIN-TCPs and in maize, this also includes the CII TCPs. 

Furthermore, the SAP11 effector homologs specifically target the TCP 

domain, which is the conserved region within the TCP proteins (Martín-Trillo and 

Cubas, 2010; Sugio et al., 2011b, 2014). Based on this finding, I extended the 

characterisation and found that the full helix-loop-helix motif of the TCP domain is 

required for interaction with the SAP11 effector protein. Therefore, I answered the 

second hypothesis stated in the introduction, confirming that there are specific 



SAP11 effector binding specificity to plant class II TCPs  

62 

 

regions within the TCP protein that are required for the binding-specificity of 

phytoplasma SAP11 effector proteins. 

The four SAP11 effector homologs have distinct patterns of interaction with 

the TCP (sub)classes in yeast. For SAP11AYWB and SAP11MBSP, the interaction with the 

cognate TCP (sub)classes in yeast has been confirmed in A. thaliana protoplasts, 

using degradation assays (Pecher et al., 2019). Indeed, SAP11AYWB binds and 

destabilises class II CIN and CYC/TB1-TCPs, while SAP11MBSP binds and destabilises 

class II CYC/TB1 only, in A. thaliana protoplasts (Pecher et al., 2019) (for more details 

about protoplast degradation assays, see Chapter 5). The patterns of interaction and 

thus destabilisation of SAP11AYWB and SAP11MBSP toward TCP (sub)classes can be 

correlated with the phenotypes of their stable expression in both A. thaliana and Z. 

mays (Pecher et al., 2019; see also in Appendix VI).  

First, the downregulation of the class II CIN-TCPs via the stable expression of 

both miR319 and miR3TCP leads to an alteration of the leaf development (Palatnik 

et al., 2003; Efroni et al., 2008). The leaf alteration of the 35S::miR319a x 

35S::miR3TCP stable transgenic A. thaliana (Col-0) line is phenocopied with the 

phenotype of the stable expression of SAP11AYWB in A. thaliana. However, the 

alteration of leaf development is not visible when SAP11MBSP is stably expressed in A. 

thaliana. These observations are also valid in maize as the alteration of the leaf 

development is visible in the stable expression line of SAP11AYWB in Z. mays 

(Ubi::FLAG-SAP11AYWB) compared to the wild type HiIIA maize plant but not visible in 

Ubi::FLAG-SAP11MBSP. Therefore, the patterns of interaction of the two SAP11 

effector homologs toward Class II CIN-TCPs agrees with the phenotypes SAP11 

expression induces in both A. thaliana and Z. mays. 

Secondly, considering that each stable SAP11 transgenic line displays induced 

axillary branching, phenocopying the A. thaliana brc1-2 brc2-1 (brc1 brc2) double 

(Col-0) mutant line (Aguilar-Martinez et al., 2007), I also confirmed that the patterns 

of interaction of SAP11AYWB and SAP11MBSP toward class II CYC/TB1-TCPs are 

consistent with the cognate phenotypes in A. thaliana. This association is also 

relevant when the two SAP11 effector homologs are stably expressed in maize, as 
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both Ubi::FLAG-SAP11AYWB and Ubi::FLAG-SAP11MBSP transgenic maize lines exhibit a 

multi-branching phenotype compared to HIIA wild type, phenocopying the tb1 

mutant (Pecher et al., 2019). Furthermore, SAP11WBDL and SAP11SPLL interacted also 

with class II CYC/TB1. Although there is no evidence that SAP11WBDL or SAP11SPLL 

induce axillary branching in A. thaliana lines, Chang et al. (2018) showed that the 

stable expression of SAP11PnWB, almost identical to SAP11SPLL, induces witches’ broom 

phenotypes in A. thaliana, phenocopying brc1 brc2 A. thaliana mutant (Chang et al., 

2018). Thus, the patterns of interaction of SAP11AYWB and SAP11MBSP toward the class 

II CYC/TB1-TCPs in yeast are aligned with the cognate phenotypes in A. thaliana and 

Z. mays. There is strong evidence that transgenic plants that produce SAP11SPLL 

phenocopy the brc1 brc2 double mutant A. thaliana line based on the comparison 

with the stable expression of SAP11PnWB (Chang et al., 2018).  

It is essential to underline that only two candidates of class II CIN-TCPs, 

AtTCP2 and AtTCP13 were competent in the Y2H assays, while the rest of the CIN-

TCP candidates did not show any interaction with the SAP11 effector homologs. 

However, previous studies showed that SAP11AYWB interacts in planta with all the 

members of the Class II CIN-TCPs (Sugio et al., 2014). Why do some CIN-TCPs do not 

interact with SAP11AYWB in yeast, but are still destabilised in protoplasts? One 

possibility is that SAP11AYWB does interact directly with all the CIN-TCPs, but some 

CIN-TCPs are not compatible with the Y2H system, either because they are not 

expressed or because the tag interferes. Another reason would be that SAP11AYWB 

does not interact with all CIN-TCPs directly, but only indirectly via some CIN-TCPs. 

Because CIN-TCPs may form heterodimers with each other (Aggarwal et al., 2010; 

Viola et al., 2012; Danisman et al., 2013), SAP11 may degrade all CIN-TCPs through 

direct interactions with some key CIN-TCPs only. 

Nonetheless, I decided to only select AtTCP2 and AtTCP13 for further studies, 

because I wished to screen for positive interactions in Y2H assays. Screening for 

positive interactions is critical as negative interactions, i.e. absence of yeast growth 

in selective media is less informative and does not allow definite conclusions. For 

example, the absence of yeast growth in the Y2H assay testing if the helix-loop-helix 
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motif of the TCP2 and TCP18 is sufficient for interaction with SAP11 effector 

homologs could be due to either (1) absence of interaction due to protein misfolding 

in yeast, (2) inserts in plasmids, preventing the expression of proteins in yeast or (3) 

no interaction. In an ideal situation, one should have positive controls for every 

interaction. Here, I have established the positive controls for the Y2H of the next 

chapters. SAP11AYWB is a precise control for interaction with the Class II CIN-TCPs, as 

Sugio et al., 2011 and Pecher et al., 2019 have shown that it can bind and destabilise 

the class II CIN-TCPs. CYC/TB1-TCP12 and CYC/TB1-TCP18 are also reliable controls 

for testing the interaction against class II CYC/TB1.  

I show here that SAP11 effector homologs interact with TCP proteins from 

two different species, either dicotyledonous or monocotyledonous (Pecher et al., 

2019). This ability is possible because of the targeting of the TCP domain, which is 

conserved across A. thaliana and Z. mays. Additional SAP11 effector homologs could 

target TCPs from other plant species, considering that SAP11 effector homologs seem 

to interact with the conserved TCP domain (see Chapter 5 for more details). The 

alignment of the maize TCPs shows that the TCP domain is subdivided into class I and 

class II (sub)classes CIN and CYC/TB1-TCPs in a similar way as A. thaliana (Martín-

Trillo and Cubas, 2010; Pecher et al., 2019). It also reveals that 15 out of the 44 Zm 

TCPs are called CII TCPs and share conserved residues of both class II CIN and class II 

CYC/TB1 (Chai et al., 2017; Pecher et al., 2019). When I tested the interaction of three 

of these ZmTCP candidates (ZmTCP05 / BAD1, ZmTCP01 and ZmTCP13) against the 

four SAP11 effector homologs, I found that SAP11AYWB, SAP11WBDL and SAP11SPLL 

interact with these members, suggesting that they might not target the same specific 

residues in the TCP domain as SAP11MBSP. Because SAP11WBDL and SAP11SPLL do not 

interact with class II CIN-TCPs in A. thaliana, it is most likely that the two effector 

homologs target the specific residues of the class II CYC/TB1 within the TCP domain 

of the Zm CII-TCPs.  

The main finding of the chapter is that SAP11 effector homologs target a 

specific region within the conserved TCP domain. I showed that SAP11MBSP binds 

specifically to the full helix-loop-helix motif (hlh) of BRC1 AtTCP18. The hlh motif is 
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required for the homo/heterodimerisation of the TCPs (Kosugi and Ohashi, 1997; 

Aggarwal et al., 2010). TCPs can form heterodimers with other TCPs with other TCP 

(sub)classes, however, they show preference with members of their own (sub)class 

(Viola et al., 2012; Danisman et al., 2013). Analyses have shown that the TCP domain 

is highly disordered (Valsecchi et al., 2013), especially the basic motif (Aggarwal et 

al., 2010). The flexibility of the intrinsically disordered regions at the C-terminal 

region of the TCP domain is required for the assembly into dimers (Danisman, 2016) 

and also allows the protein to form multiple partners. Furthermore, the TCPs form 

dimers even before binding to the DNA target (Aggarwal et al., 2010). Therefore, the 

SAP11 ability to target the helix-loop-helix motif is a  viable strategy for phytoplasma, 

as it could prevent the dimerization between TCPs from the same (sub)class on the 

one hand, but also prevents the dimerization between TCPs from different 

(sub)classes, on the other hand, thus reaching additional layers of control over 

transcriptional activity (Danisman, 2016; Spears et al., 2019).  

Further experiments should be aimed at testing if other partners of the TCP 

target are affected upon SAP11 destabilisation. For example, SAP11AYWB destabilises 

class II CIN-TCPs, thus might interfere indirectly with the activity of other partners, 

such as Class I TCPs. I could assess the binding ability of Class I TCPs, that are not 

directly destabilised by SAP11AYWB, once class II CIN TCPs are destabilised. To this end, 

I can use EMSA assays to test the binding ability of class I TCPs to the promoter of 

their target genes upon CIN-TCP destabilisation by SAP11AYWB (Aggarwal et al., 2010; 

Spears et al., 2019). 

We cannot exclude the fact that other SAP11 effector homologs bind 

specifically to other regions of the TCP domain, such as the basic motif. To test this, 

I could extend the TCP chimaeras analysis. For example, because the four SAP11 

effector homologs target class II CYC/TB1-TCPs, I could not use my chimaera 

sequences to find out the specific region responsible for the binding specificity 

toward the class II CIN-TCPs. However, I can assess the binding specificity of the Class 

II CIN TCPs using the Class I TCP as a backbone. Indeed, SAP11AYWB interacts with class 

II CIN-TCPs but not class I TCPs. Therefore, I could use chimaeras versions between 
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class I and class II TCPs and screen for a positive interaction between SAP11AYWB and 

TCP chimaeras that includes a Class I TCP domain backbone.  

The stable expression of SAP11AYWB and SAP11MBSP in maize also triggers 

additional effects compared to their counterparts in A. thaliana. Indeed, we found 

that while Ubi::FLAG-SAP11MBSP  maize plants were similar to the tb1 mutant 

concerning the sex determination of the organs, Ubi::FLAG-SAP11AYWB triggers ear 

formation only instead of tassel (male) and ear (female) (Doebley et al., 1995; 

Hubbard et al., 2002) (Pecher et al., 2019). Several hypotheses could explain this: 

SAP11 could bind to additional plant targets in maize. Alternatively, the maize TCPs 

could have additional functions, as there is more redundancy within the maize 

genome.  

To conclude, I found that the SAP11 effector homologs target the TCP domain 

of A. thaliana class II CIN and CYC/TB1. Finally, using chimaeras of the basic region 

and the helix loop helix motifs of the TCP domain of both class II CIN and class II 

CYC/TB1 TCP candidates, I found that SAP11MBSP interacts specifically with the full 

helix-loop-helix motif of class II CYC/TB1-TCP18. Therefore, this chapter confirms the 

hypothesis stated the introduction: SAP11 have distinct interaction patterns, SAP11 

effectors interact specifically with the hlh motif of the conserved TCP domains of 

the plant TCP transcription factors. 

Based on this result, if there are binding specificities within the TCP protein, 

then the hypothesis is that specific region within the SAP11 protein may be required 

for the binding specificity to the TCPs. Thus, the hypothesis I will address in the next 

chapter is that the SAP11 has/have (a) specific region(s) that provide(s) the binding 

specificity toward the TCP(sub)classes and that SAP11 gene may have evolved to 

target the TCP (sub)classes differentially. 
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4.1 Introduction 

In the previous Chapter I established that the SAP11 effector homologs target 

specific regions within the TCP domain, of TCP transcription factors, and target all 

class II TCPs or only the CYC/TB1 subclass of this class. These results raise the 

hypothesis that SAP11 proteins also have specific regions that enable binding 

specificity to the TCP sub-classes and that SAP11 genes may have evolved to target 

the TCP (sub)classes differentially. To address this hypothesis, it is essential to 

compare SAP11 protein sequences across the phytoplasma phylogeny. Therefore, I 

took a more comprehensive look and extended the analysis of the four SAP11 

effector homologs of the previous chapter to include a broader set of SAP11 effector 

protein sequences. In this chapter I will investigate the SAP11 phylogeny, and in the 

next chapter (Chapter 5) I will use my findings to study which domains within the 

SAP11 proteins determine specificity for binding TCPs. 

The classification of the phytoplasma genus relies on the phylogeny of 

phytoplasma 16S rDNA sequences (Lee et al., 2000; IRPCM, 2004). Based on this 

phylogeny, the ‘Ca. Phytoplasma’ genus is roughly divided into nineteen 16Sr-based 

groups that form three major clades (Figure 4.1.1) (Chung et al., 2013).  The first 

clade (highlighted in blue in Figure 4.1.1) the 16SrI phytoplasma group that includes 

the aster yellows (AY) phytoplasmas some of which were assigned to Candidatus 

(Ca.) Phytoplasma asteris (Lee et al., 2004). This group is further divided into the 

subgroups 16SrIA, 16SrIB and 16SrIC based on the 16S rDNA sequences and 

comprises the two previously studied 16SrIA ’Ca. P. asteris’ AY-WB phytoplasma and 

the 16SrIB Onion Yellows (OY) and MBSP phytoplasmas (Lee et al., 1993, 1998; 

Jomantiene et al., 1998). Sequences of additional genes, such as groEL, are used to 

further differentiate subgroups (Mitrovic et al., 2011; Pérez-López et al., 2016). 

Secondly, phytoplasma WBDL (‘Ca. P. aurantifolia’) and SPLL, which were studied in 

my previous chapter, belong to Clade III in the phytoplasma phylogenetic tree 

(highlighted in yellow in Figure 4.1.1), a clade that contains most of the 16Sr groups 

(Lee et al., 2000; IRPCM, 2004; Chung et al., 2013). Finally, Clade II (highlighted in 

green in Figure 4.1.1) includes the apple proliferation (AP) phytoplasma group, 
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comprising phytoplasma species such as ‘Ca. P mali’ strain AT (Seemüller and 

Schneider, 2004; Kube et al., 2008). 

 

Figure 4.1.1. Phylogenetic tree of ‘Candidatus Phytoplasma’, composed of three main 

clades.  Molecular phylogeny inferred from the 16S ribosomal (16Sr) DNA sequences (Figure 

has been modified from Chung et al. 2013). Phytoplasmas that were found to have a SAP11 

homolog are underlined in red and were further studied in this chapter. For abbreviations, 

see table 4.2.1. 

Genes for SAP11 homologs were found in several phytoplasmas across the 

16S rDNA phylogenetic tree (underlined in Figure 4.1.1.) and shows that 

phytoplasmas in all three clades have SAP11 genes. Furthermore, the list of SAP11 

sequences grew substantially with the help of collaborators that sequenced 

additional phytoplasma genomes and provided 16S rDNA and SAP11 sequences (see 

table 4.2.1).  
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Among the most striking features of phytoplasma genomes are the Putative 

Mobile Units, or PMU (Bai et al., 2009). PMUs are genomic regions that are repeat-

rich and resemble conjugative replicative transposable elements (Bai et al., 2006; 

Toruño et al., 2010) (See General Introduction). Some PMUs appear to be active 

composite transposons; for example, PMU-1 of AY-WB has full-length sequences of 

all key genes and was found to also exist as a circular extrachromosomal plasmid in 

AY-WB, whereas other PMUs appear to carry one or more truncated genes and may 

therefore not be functional transposons or are dependent on other PMUs for activity 

(Bai et al., 2006; Dickinson, 2010; Toruño et al., 2010). Genes characteristic of PMUs 

are involved in DNA recombination and replication (e.g. ssb, dnaB and dnaG) and 

transposition (e.g. tra5) (Bai et al., 2006). PMU1 is also flanked by large inverted 

repeat regions, and the sequences of these repeats are also present in some other 

PMUs though mostly as a single sequence (Bai et al., 2006). Based on these 

characteristics, it was hypothesised that PMUs can replicate, horizontally transfer 

between phytoplasmas and integrate into genomes (Bai et al., 2006, 2009; Dickinson, 

2010; Hogenhout et al., 2008; Hogenhout and Music, 2010).  

Furthermore, PMUs may also have a role in phytoplasma pathogenicity, 

because in the AY-WB genome the majority of candidate effector genes (41 out of 

56) lie on PMUs (Bai et al., 2006, 2009; Dickinson, 2010; Hogenhout and Music, 2010). 

AY-WB PMU1 encodes the candidate effector SAP36, which is upregulated in insects 

(Toruno et al., 2010) and hence may have a role in modulating insect processes 

during phytoplasma infection, whereas AY-WB PMU2 encodes SAP54, which 

modulates plant processes (MacLean et al., 2011; MacLean et al., 2014). Another 

PMU-like region in the AY-WB genome includes SAP11, SAP56, SAP66, SAP67 and 

SAP68 in an operon-like configuration (Bai et al., 2006; Toruño et al., 2010; Sugio and 

Hogenhout, 2012). Additionally, the expression level of PMU genes, as well as the 

ratio between linear and circular forms of AY-WB PMU1, vary in AY-WB-infected 

plants and AY-WB carrier insect vectors. The circular PMU1 is found at higher 

proportions in insects compared to the plant host, suggesting a role of this PMU in 

phytoplasma invasion of insects or that insect host cells may be a good environment 

for horizontal transfer of PMUs or other DNA between phytoplasmas (Dickinson, 
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2010; Toruño et al., 2010; MacLean et al., 2011; Sugio and Hogenhout, 2012). PMUs 

also encode sigma factors, which have a role in regulating gene expression, including 

gene regulations involved in phytoplasma switching between plant and insect hosts 

(Ishii et al., 2013), corroborating a role of PMUs in regulating phytoplasma virulence.   

 Evidence that phytoplasmas horizontally exchange DNA have since been 

reported (Chung et al., 2013; Ku et al., 2013; Wang et al., 2018a; Music et al., 2019). 

Comparative phylogeny of PMU signature genes among divergent phytoplasmas 

revealed that the PMUs of the 16SrII PnWB (peanut witches’ broom) and the 16SrV 

JWB (jujube witches’-broom) phytoplasmas appear to originate from a 16SrI group 

phytoplasma, because the phylogenetic trees of PMU genes group these 

phytoplasmas together (Chung et al., 2013; Ku et al., 2013; Wang et al., 2018a). 

Furthermore, the recent genome sequence of ‘Ca. P. solani’ SA-1 strain also revealed 

that PMU-associated DnaG sequences were most closely related to either ‘Ca. P. 

asteris’ or ‘Ca. P. mali’ depending on the PMU (Music et al., 2019).  

Comparative analyses of phytoplasma genomes also suggest that there is a 

positive correlation between the number of PMU-like sequences and the number of 

plant species infected by phytoplasmas (Sugio and Hogenhout, 2012; Music et al., 

2019). For example, both Ca. P. solani’ SA-1 and ‘Ca. P. asteris’ AY-WB have broad 

host ranges and between 10 and 20% of their genomes consist of PMU-like regions, 

whereas ‘Ca. P. asteris’ MBSP and ‘Ca. P. mali’ strain AT are specialists of maize and 

apple, respectively, and have far fewer PMU sequences (Bai et al., 2006; Kube et al., 

2008; Orlovskis et al., 2017; Music et al., 2019).  

The SAP11 genes of at least three different phytoplasmas lie within PMU-like 

genomic regions (Figure 4.1.2) (Sugio and Hogenhout, 2012). The SAP11 gene lies 

within PMU-like regions in the genomes of ‘Ca. P. asteris’ AY-W, MIaz9 and MBSP 

phytoplasmas, though no PMU-like sequences were found near the SAP11 gene in 

the genome of OY-M phytoplasma, which is also a ‘Ca. P. asteris’ member (Figure 

4.1.2). SAP54 genes also lie within PMU-like regions in the genomes of multiple 

phytoplasmas (Figure 4.1.2) (Sugio and Hogenhout, 2012; Orlovskis et al., 2017). 
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Therefore, SAP11 and SAP54 genes associate with PMU-like elements in the genomes 

of most phytoplasmas. 

 

Figure 4.1.2: SAP11 and SAP54 effector genes lie within PMU-like regions of the genomes 

of ‘Ca. P. asteris’ phytoplasmas. (A) PAM_519,  AYWB_370, MiAz9_6400 correspond to the 

locus tags of the SAP11 gene from ‘Ca. P. asteris’ OY-M, AY-WB and MiAzp, respectively. 

PAM_049,  AYWB_224, MiAz9_6440 correspond to the locus tags of SAP54 gene homologs 

of ‘Ca. P. asteris’ OY-M, AY-WB and MiAzp phytoplasmas, respectively. (B) The SAP11 gene 

of MBSP (MBS_490) also lies in a PMU region in the MBSP chromosome (Sugio and 

Hogenhout, 2012). Figure A was made by Dr. Chih-Horng Kuo. The black line indicates the 

chromosome, while the block arrows indicate the open reading frame (ORF). Blocks of the 

same colours indicate paralogous ORFs among the PMUs. PMU regions that are paraloguous 

between different phytoplasma genomes are indicated with blue (SAP11) and pink boxes 

(SAP54). The names of the ORFs are displayed when their predicted function are known (Bai 

et al., 2006; Chung, personal communication). The stars indicate the ORFs of predicted 

membrane-targeted proteins. Figure B was taken from Sugio et al., 2012. Current Opinion in 

Microbiology. 

Given the locations of SAP11 genes within PMU-like regions, divergent 

phytoplasmas may have acquired SAP11 homologs via horizontal gene transfer. 
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Therefore, phytoplasmas may carry highly similar SAP11 sequences that all target the 

same TCPs. It is also possible that SAP11 sequences have evolved to target different 

TCPs. In any case, it is highly likely that the evolutionary history of SAP11 does not 

match that of the phytoplasma 16S rDNA sequences. In this chapter, I will investigate 

if the SAP11 gene has evolved differently from the rest of the genome. 

As phytoplasma phylogenies are based on 16S rDNA sequences (IRPCM, 

2004), I collected the 16S rDNA sequences of all phytoplasmas that have a SAP11 

homolog and conducted phylogeny analyses with these to assess the evolutionary 

relationships of the phytoplasmas. Subsequently, I performed phylogenetic analyses 

on the SAP11 gene of these phytoplasmas. I found that the SAP11 and 16S rDNA 

phylogenies do not match, suggesting that SAP11 genes were exchanged among 

phytoplasmas via horizontal DNA transfer. Nonetheless, the SAP11 genes cluster into 

distinct clades that suggest that the functions of this effector may have changed. 

4.2 Results 

4.2.1 Characterisation of phytoplasmas that have SAP11 homologs 

To investigate the main hypothesis of this chapter, which is that the SAP11 

gene may have evolved to target the TCP (sub)classes differentially, I wished to 

extend my analysis from the four SAP11 effector homologs studied in chapter 3 to a 

larger set of SAP11 effector homologs. To do so, I collected SAP11 sequences from 

various phytoplasma isolates from the GenBank protein database. Additionally, I 

included SAP11 sequences from isolates collected in Wisconsin (USA) by Prof. Russell 

Groves and collaborators (University of Wisconsin, Madison, USA), the Poznań area 

in Poland collected by Miss Agnieszka Zwolińska and collaborators (National 

Research Institute (NRI), Poznan, Poland) and Dr Chih-Horng Kuo (Academia Sinica, 

Taipei, Taiwan). Moreover, I obtained the 16S rRNA sequences of these 

phytoplasmas from NCBI or collaborators. Table 4.2.1 shows an extended list of the 

phytoplasma isolates used in this study, including the GenBank accessions numbers 

and additional information. Phytoplasmas for which there were no or incomplete 

SAP11 and 16S  rDNA sequences were excluded from this study. 
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Table 4.2.1: List of the phytoplasma isolates used in my PhD. Details of the phytoplasmas 

studied, including their abbreviations as they appear in the thesis, the Genbank accession 

numbers for the 16S rRNA sequences and the SAP11 amino-acid sequences. The geographic 
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origins of the phytoplasma isolates are also indicated if known, as well as the plant host range 

ability for each phytoplasma.  

Based on table 4.2.1, the retrieved sequences are from various phytoplasma 

isolates from different geographical origins. For example, sequenced phytoplasma 

isolates were initially sampled from East-Asia (Ca. P. asteris OY-M strain sampled in 

Japan (Oshima et al., 2001), or Ca. P. asteris Periwinkle-leaf yellowing phytoplasma 

(PLYDY) from Taiwan (Chen et al., 2011)), Middle-East (Ca. P. aurantifolia WBDL from 

Oman (Zreik et al., 1995), Africa (Faba bean phyllody FBP from Sudan (Martini et al., 

2007)), Europe (Ca. P. mali strain AT from Germany (Kube et al., 2008) or Ca. P. solani 

strains from Serbia (Davis and Dally, 2001; Mitrovic et al., 2014)), the American 

continent (Poinsettia branch-inducing phytoplasma strain PoiBI from USA (Saccardo 

et al., 2012)) or the Oceania continent (Sweet Potato Little-Leaf phytoplasma was 

first observed in Northern Australia (Gibb et al., 1995)).  

The phytoplasma isolates were collected from different plant species and 

included specialist phytoplasmas, such as MBSP, or generalists, such as Ca. P. asteris 

AY-WB. For example, ‘Ca. P. aurantifolia’ WBDL primarily infects lime (‘Citrus sp.) and 

is first characterised in Oman but is also found in Iran and other countries of the 

Middle East (Zreik et al., 1995; Faghihi, 2007). The phytoplasmas I included in my 

study are also transmitted by a diverse insect vector species (Weintraub and 

Beanland, 2006); the relationship between phytoplasma and their insect vectors also 

defines the phylogeny of phytoplasma (Seemüller et al., 2002; IRPCM, 2004). For 

example, ‘Ca. Phytoplasma asteris’ MBSP is transmitted by multiple species of the 

genus Dalbulus, though only D. maidis and D. elimatus are deemed viable insect 

vectors (Ebbert et al., 2001).  

The Hogenhout lab sequenced AY-WB-infected plant and leafhopper samples 

from the John Innes Centre insectary. When compared with the published AY-WB 

genome (Bai et al., 2006), the genomes were almost identical, containing a few SNPs. 

More precisely, both the 16S rDNA and the SAP11 sequences were identical; thus, 

these sequences were not included. Samples p42 and p44 were sampled from 

leafhoppers from two different farms in the USA. Both sequenced samples contain 
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phytoplasmas from the 16SrI-A and I-B groups, indicating that the leafhoppers 

samples were mix-infected with phytoplasmas groups. Interestingly, only the SAP11 

sequence of the 16SrI-A was identified, and no other SAP11 homologs were found, 

suggesting that 16SrI-B in Wisconsin, USA may not have a SAP11 gene. Nevertheless, 

for each sample, only one SAP11 gene copy was sequenced and included in this study 

(Table 4.2.1). Although the 16S rRNA sequences are identical between p42, p44 and 

AY-WB, the SAP11 sequences between p42 and p44 are slightly different, thus were 

kept in the analysis. Concerning sample p45, sequenced from a leafhopper in Poland, 

two distinct copies of SAP11 genes were found and included in the analysis. 

To conclude, the phytoplasma isolates gathered for this study have the 

advantage to be diverse, from different geographical origins, plant species and insect 

vectors. 

4.2.2 Phytoplasma belonging to different 16Sr groups have SAP11 effector genes  

 

Figure 4.2.2: Phytoplasmas with SAP11 effector genes belong to diverse phylogenetic 

groups. Phylogenetic tree generated via the MEGA software using the Maximum Likelihood 

algorithm based on the alignment of 16S rDNA sequences. Phytoplasmas and sequence IDs 
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are described in Table 4.2.1. Numbers indicated on top of the branches indicate the 

percentage value of bootstrap support, calculated from 5000 re-samplings. I indicated the 

four phytoplasmas studied in Chapter 3 in bold as points of reference.  

Before studying the phylogeny of SAP11, I first investigated the evolutionary 

relationships of phytoplasmas with SAP11 based on their 16S rDNA sequences. To do 

so, I collected the 16S rDNA sequences from the phytoplasma genomes (Table 4.2.1) 

and generated a Multiple-Sequence Alignment (see Appendix) using the Muscle 

alignment method (default parameters) (Edgar, 2004). Based on this Multiple 

Sequence Alignment, I then generated a phylogenetic tree using the Maximum-

Likelihood method (see Material and Method Chapter for more details). The 16S 

rRNA sequence of Acholeplasma laidlawii, a Mollicute organism closely related to 

phytoplasma (Lim and Sears, 1992; Namba et al., 1993; Oshima and Nishida, 2007), 

was used as an outgroup (Lim and Sears, 1989, 1992).  

The result shows that the species-tree generated via the Multiple-Alignment 

of the 16S rRNA sequences is consistent with published phylogenetic trees (Figure 

4.2.2) (Hogenhout et al., 2008; Chung et al., 2013). For example, AY-WB phytoplasma 

and MBSP both belong to the 16srI group Ca. Phytoplasma asteris (in bold in Figure 

4.2.2). The phylogenetic tree shows that the 16SrI group is subdivided into three 

subgroups, as shown in the phylogenetic tree. Firstly, the subgroup 16SrI-B, which 

includes the well-studied OY-M phytoplasma strain (Oshima et al., 2001, 2004; Tran-

Nguyen et al., 2008), the MiAz9 phytoplasma isolate sampled from Poland 

(Zwolińska, unpublished) and MBSP phytoplasma strain M3, sampled from Brazil 

(Orlovskis et al., 2017).  Secondly, AY-WB and phytoplasma isolates from samples p42 

and p44 collected in Wisconsin belong to the 16S rIA subgroup. Finally, the sample 

p45 from Poland belongs to subgroup 16SrI-C. Additionally, ‘Ca. P. mali’ strain AT 

(ATP)  forms a monophyletic group, consistent with previously established trees 

(Hogenhout et al., 2008; Chung et al., 2013). Finally, WBDL and SPLL, studied in the 

previous chapter, belong to a different phytoplasma group, the 16SrII group (in bold 

in Figure 4.1.1). Therefore, I found SAP11 genes from divergent phytoplasmas.  
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4.2.3 Phylogenetic trees based on SAP11 nucleotide and protein sequences are 

similar  

Next, to follow up with the investigation of the evolution of the SAP11 gene, 

I wished to investigate the phylogeny of the SAP11 genes and compare it with the 

species tree presented earlier. First of all, I needed to have a reliable SAP11 

phylogenetic tree. For this, I decided to compare the phylogenetic trees between the 

SAP11 nucleotide sequences and the amino-acid based SAP11 sequences. This allows 

me to have more confidence in the quality of the SAP11 phylogeny that is important 

for future analyses. 

 

Figure 4.2.3: The SAP11 phylogenetic tree based on the nucleotide sequences is similar to 

the SAP11 protein-based phylogenetic tree. Phylogenetic tree generated via the MEGA 

software using the Maximum Likelihood algorithm. Phylogenetic trees based on Multiple 

Sequence Alignments of either SAP11 nucleotide sequences (A) or SAP11 amino acid 

sequences (B). The different nucleotide and amino-acid SAP11 sequences were included 
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without their Signal Peptide. The numbers indicated on top of the branches indicate the 

percentage value of bootstrap support, calculated from 1000 re-sampling.  

To do so, Multiple Sequence Alignments were generated from SAP11 

nucleotide and protein sequences of all the phytoplasmas studied and used for 

generating phylogenetic trees via the MEGA software (see Figure 4.2.4 that displays 

the Multiple Sequence Alignment of SAP11 proteins). Results showed that the two 

phylogenetic trees were similar. As expected, some sequences were identical in 

protein sequence, but differed in nucleotide sequences, because of the redundancy 

of the genetic code. The SAP11 effector homologs clustered in five different clades. 

The first cluster consists of SAP11PnWB and other 16SrII group phytoplasmas. The 

second clade consists of SAP11OY-M, SAP11PLYDY.2 and SAP11solani (the three effectors 

from the solani strains) SAP11p45.1 SAP11p45.2. The third clade consists of SAP11MBSP 

which forms a monophyletic group. The fourth clade includes SAP11AYWB and 

SAP11p44.1, SAP11PBIP, SAP11PLYDY.1, SAP11VWBP and SAP11MiAz9. Finally, SAP11ATP forms 

a monophyletic clade. 

Given that the SAP11 genes are grouped into several separate clades, it is 

likely that the amino acid sequences of these effectors show profound differences 

that may affect their ability to bind various TCPs. Therefore, I studied the SAP11 

protein alignment further.  

4.2.4 The SAP11 protein sequence alignment  

 

Figure 4.2.4: Analysis of the Multiple Sequence Alignment of the SAP11 effector homolog 

sequences. Multiple Sequence Alignment of SAP11 effector protein homologs generated 

using Muscle (default parameters) algorithm. The Nuclear Localization Signal of SAP11AYWB 

(NLS) is indicated as a black line, the SAP11AYWB region sufficient for binding to the TCP 

protein, in my thesis called "TCP binding domain" is indicated as a blue line (Sugio et al., 
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2014) and the region between the NLS domain and the TCP binding domain, in my thesis 

called "intra-region" is indicated as a red line. The dashed region represents 

Before generating the SAP11 phylogenetic tree based on the amino acid 

sequences, I started with producing the Multiple Sequence Alignment of SAP11 

effector homologs, without the signal peptide. First, the Multiple Sequence 

Alignment of SAP11 shows that the C-terminal sequences are conserved, whereas 

the central region has more sequence variations between the proteins. Within the 

central region, there are two domains.  

First, the ‘KEEGSSSKQPDDSKK’ sequence located at the C-terminus of 

SAP11AYWB did not affect the binding of this protein to TCP when deleted, but the 

deletion of the additional ‘MEILKQKAEEETKNL’, predicted to form a coiled-coil 

structure (dashed line Figure 4.2.4), did (Sugio et al., 2014; Pecher et al., 2019). Thus, 

the region ‘MEILKQKAEEETKNL’ is required for TCP-binding and is called in my thesis 

“TCP binding domain. There are multiple variations within the TCP-binding domain, 

suggesting that this region might also be part of the binding specificity toward TCP 

targets. 

Secondly, the SAP11AYWB NLS sequence is not conserved among other SAP11 

effector homologs (Figure 4.2.4). Indeed, the NLS prediction software NLStradamus 

(Nguyen Ba et al., 2009) predicts that SAP11SPLL,  SAP11MBSP, SAP11PnWB, 

SAP11Faba_bean, SAP11EPWB and SAP11p45.2 exhibit a predicted NLS at the C-terminal 

part of their sequence. For example, ‘KKRKSSKEESSSSKKPDNSKK’ located at the C-

terminus of the SAP11MBSP sequence is highly likely an NLS. This is in contrast to 

SAP11AYWB, in which NLStradamus predict the NLS to be ‘KKRDIPKINKSEEKNKKQ’, 

which lies at the N-terminus of the mature protein, in agreement with experimental 

data that demonstrated that deletion of this sequence affects the SAP11AYWB 

localisation to plant cell nuclei, whereas deletion of the C-terminal 15 amino acid 

does not (Sugio et al., 2014). Therefore, NLSs have most likely evolved independently 

in SAP11AYWB and SAP11MBSP, suggesting that nuclear localisation of SAP11 is 

essential. Some SAP11 sequences, including SAP11WBDL, SAP11OYM have not been 

predicted to have an NLS domain. However, I show in my thesis that SAP11WBDL 
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localises in the cell nuclei of A. thaliana protoplasts and another study also showed 

that SAP11OY-M localises in the nucleus (Chang et al., 2018).  

Within these two domains, the central region between the NLS domain of 

SAP11AYWB and the TCP binding domain is called the intra-region, which is also highly 

diverse within the different SAP11 effector homologs. 

4.2.5 The species-phylogenetic tree of phytoplasma is different from the SAP11-

based phylogenetic tree  

Now that the SAP11-based phylogenetic tree has been established (4.2.3), I 

need to compare it with the phylogenetic species-tree. I thus gathered the 

phylogenetic tree based on the 16S rRNA (Figure 4.2.2) and the protein-based SAP11 

phylogenetic tree (Figure 4.2.3) and I colour-coded the branches of the two trees 

according to the 16S rRNA subgroups. This distinction would allow me to discern any 

difference between the trees and find indications that the SAP11 gene has diverged 

from the rest of the genome, represented here by the conserved 16S rRNA gene.  

As shown in Figure 4.2.5 (A and B), the SAP11-based tree is different from the 

species tree. For example, as we can see in the SAP11-based tree, the SAP11 

sequences belonging to the 16S r-I group (red branches) do not cluster anymore. 

Although the SAP11 sequences of the 16SrI-A phytoplasmas are still clustering 

together, as expected considering the high level of sequence similarity, the SAP11 

sequences from 16SrI-B and 16SrI-C have diverged. Noticeably, SAP11 members of 

the 16SrI-B have diverged from the rest of the genome. For example, SAP11MBSP has 

drastically diverged and do not cluster with any other SAP11 sequence. Other 

members of the 16SrI-B SAP11 sequences, such as SAP11OY-M, now form a clade with 

SAP11 effector homologs belonging to the 16SrXII group (solani strains). SAP11Miaz9 

is clustered with SAP11AYWB, even though the former belongs to the 16SrI-B subgroup 

and the latter belongs to the 16SrI-A subgroup.  
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Figure 4.2.5: The species-phylogenetic tree of phytoplasma is different from the SAP11-

based phylogenetic tree. Comparison between the phylogenetic tree based on the 16S rRNA 
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sequences of the phytoplasmas that express SAP11 and the phylogenetic tree of the 

phytoplasma SAP11 effector proteins based on the multiple sequence alignment of 

phytoplasma SAP11 effector homologs (Figure 4.2.4). Phylogenetic trees generated via the 

MEGA software using the Maximum Likelihood algorithm. A: Phylogenetic tree based on the 

Multiple Sequence Alignment of the 16S rRNA sequences of all the phytoplasma species that 

express SAP11. B: Phylogenetic tree based on the SAP11 homolog genes from different 

phytoplasma isolates. As an example, the AY-WB phytoplasma and MBSP phytoplasma (both 

in bold) belong to the same clade 16SrI (in red) (A) but SAP11AYWB and SAP11MBSP have 

divergent sequences in the SAP11-based phylogenetic tree (B). The numbers indicated on 

top of the branches indicate the percentage value of bootstrap support, calculated from 

5000 re-sampling (A) or 1000 (B).  

The two transcripts SAP11PLYDY.1 and SAP11PLYDY.2 are different, and cluster 

either with SAP11OY-M (SAP11PLYDY.2) or with SAP11Miaz9 (SAP11PLYDY.1). The two 

transcripts SAP11p45.1 and SAP11p45.2, however, cluster in the same clade. This 

suggests that the SAP11 gene underwent duplication for some phytoplasmas or 

horizontal transfer occurred.  

The divergence of the SAP11 sequences can be explained via the Multiple 

Sequence Alignment of the SAP11 protein sequences (Figure 4.2.4). Indeed, if we 

focus solely on the 16SrI phytoplasmas, SAP11AYWB harbours a full NLS domain (black 

line in Figure 4.2.4) while SAP11OY-M and SAP11MBSP lack an NLS domain at the N-

terminal side of their sequence (Nguyen Ba et al., 2009). More precisely, the presence 

of the NLS domain at the N-terminal part of SAP11AYWB, SAP11PBIP, SAP11p42.IA type 

explains the clade delimitation within the tree, as the SAP11AYWB clade and SAP11ATP 

are clustered together based on their predicted N terminal NLS domain while the rest 

of the effector homologs cluster based on their predicted C-terminal NLS domain. 

This suggests that the NLS domain may have evolved independently in the SAP11 

proteins.  

Taken together, these observations suggest that the SAP11 gene has been 

exchanged among phytoplasma via horizontal transfers. 
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4.3 Discussion  

This chapter shows that the SAP11 genes from phytoplasma isolates have a 

different evolutionary history from the rest of the genome because the SAP11 

protein-based phylogenetic tree is distinctly different from the species-tree based on 

the 16S rDNA sequences.  

4.3.1 Details about the phytoplasma isolates of this study 

This conclusion is supported via the extensive list of phytoplasma isolates that 

express SAP11. The fact that the 21 phytoplasma isolates belong to the three main 

clades of phytoplasma is a clear indication that the ability to express SAP11 is widely 

extended across the genus (IRPCM, 2004). Some samples were removed from the 

study, as I did not have reliable 16S rRNA sequences available or reliable SAP11 

sequences. 

 In addition to belonging to each of the phytoplasma clades, the 

phytoplasmas are also very different based on their geographical localisation, host 

range and their affinity with insect vectors. The combination of all these parameters 

strengthens the phylogenetic analyses performed in this chapter and confirms the 

importance of SAP11 in the pathogenicity of phytoplasma. On a technical point of 

view, these parameters can also be used to fine-tune the phylogeny of phytoplasma 

isolates. Indeed, although the 16S ribosomal RNA is an excellent primary marker gene 

for the phytoplasma phylogeny (IRPCM, 2004; Sugio and Hogenhout, 2012), its high 

heterogeneity among phytoplasmas from identical 16S sub-groups proves to be 

problematic to identify confidently different isolates (Liefting et al., 1996; 

Jomantiene et al., 2002; Davis et al., 2003). Additional marker genes such as groEL 

could be used to differentiate further the16SrI phytoplasma group (Mitrovic et al., 

2011; Pérez-López et al., 2016). However, I did not use these additional markers, as 

the 16S rRNA phylogeny is enough to show the incongruency between the species 

phylogeny and the SAP11-based phylogeny. 

With the help of collaborators, the addition of new phytoplasma isolates in 

the study was essential for a robust phylogenetic analysis. The number of SAP11 
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sequences is important to build a reliable phylogenetic tree and establish 

monophyletic clades, such as SAP11MBSP and SAP11ATP. At the start of my PhD, I did 

not have enough SAP11 sequences. Therefore, it was difficult to correlate the 

patterns of interaction of SAP11 effector homologs and the SAP11 phylogeny. Having 

over 20 phytoplasma isolates allowed me to establish reliable hypotheses for future 

work (see 4.3.3 in this section for more details).  

4.3.2 The SAP11 gene resides within PMUs in phytoplasmas 

The evolution of the SAP11 gene could be attributed mainly to the most 

characteristic and singular feature of the phytoplasma genome: Putative Mobile 

Units (Bai et al., 2006; Dickinson, 2010; Toruño et al., 2010). The PMUs encode for 

genes involved in duplication and transposition, thus potentially allowing genetic 

material to be shared within PMU structures and across phytoplasmas. Indeed, 

studies have shown that PMU signature genes are shared within phytoplasma 

isolates, confirming the horizontal gene transfer across isolates (Chung et al., 2013; 

Wang et al., 2018a; Music et al., 2019). As the majority of the AY-WB effectors reside 

in PMU structures, this trend could be similar in other phytoplasmas (Bai et al., 2006, 

2009; Toruño et al., 2010), although some phytoplasmas do not exhibit their SAP11 

genes in PMU structures  (see Introduction of this Chapter). Therefore, SAP11 genes 

are also shared between phytoplasmas as the gene resides in PMU structures across 

most of the phytoplasma isolates. 

The rate of evolution of the PMU-related genes such as SAP11 is likely to be 

faster than the rate of genes that reside outside PMU structures. Pathogens often 

have compartmentalised genomes with different rates of evolution (Croll and 

McDonald, 2012; Dong et al., 2015). For example, bacteria often display genes such 

as toxins and antibiotic resistance factor genes within plasmids, which are 

compartmentalised (Robicsek et al., 2006; Croll and McDonald, 2012). Viruses also 

rely on satellite RNAs for compartmentalisation (Hu et al., 2009). In filamentous 

pathogens, the notion of two-speed genomes has emerged to describe this concept 

(Raffaele et al., 2010; Dong et al., 2014, 2015). Filamentous pathogens such as 

Phytophtora infestans have a significant portion of repeat-rich regions within their 
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genome, similarly to phytoplasma genomes (Raffaele et al., 2010; Dong et al., 2015). 

In their review, the authors elegantly explain that effectors reside in repeat-rich 

regions mobile elements. These repeat regions were found to have a different rate 

of evolution than the rest of the core genome, hence the term “two-speed” genome 

(Dong et al., 2015). The concept of the two-speed genome relies on different 

parameters. First, the genome tends to be large and possess repeated regions. 

Secondly, the pathogens must rely on an extensive repertoire of effectors and thirdly 

these effectors must reside on compartmentalised mobile elements (Croll and 

McDonald, 2012). Aside from the size of the genome, these features are very relevant 

to the genetic features of phytoplasma, thus strongly suggest that SAP11 effector is 

evolving at a faster rate than the core genome.  

The phylogenetic approach that I used here could also be useful to study the 

phylogeny of other SAP effectors, as multiple effectors reside in PMU structures (Bai 

et al., 2006; Chung et al., 2013; Ku et al., 2013) (see General discussion for more 

details). 

4.3.3 The SAP11 gene appears to form distinct clades across the phytoplasma isolates 

based on the interaction patterns with TCP(sub)classes 

If the SAP11 gene has a different evolutionary history from the rest of the 

genome, is it possible that the gene has evolved based on other characteristics? For 

example, does SAP11 evolve based on the host range of the phytoplasma isolate 

and/or based on its ability to interact with plant targets? The first hypothesis is that 

SAP11 gene has evolved based on its host range while the second hypothesis is that 

SAP11 gene has evolved based on its ability to interact with plant targets. 

Alternatively, both hypothesis can be true. 

The first hypothesis is supported by the phylogeny of SAP11MBSP and SAP11ATP 

compared to the rest of the SAP11 phylogeny. Indeed, both effectors form distinct 

monophyletic groups in the SAP11 phylogeny, and they are both expressed from 

strictly specialist of maize or apple respectively (Nault, 1980; Seemüller and 

Schneider, 2004). Both specialists have a lower proportion of repeated regions and 

PMU numbers compared to generalist strains such as ‘Ca. P. asteris’ AY-WB 
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phytoplasma or ‘Ca. P. solani’ (Bai et al., 2006; Kube et al., 2008; Orlovskis et al., 

2017). For example, ‘Ca. P. mali’ strain AT displays incomplete PMUs, with only one 

annotated transposase gene compared to 27 transposase genes in AY-WB (Bai et al., 

2006; Kube et al., 2008). The positive correlation between the number of repeated 

regions or PMU number and the host range capacity of phytoplasmas strongly 

supports this first hypothesis (Sugio and Hogenhout, 2012; Music et al., 2019). This 

correlation makes sense as a phytoplasma isolate displaying a broad array of plant 

hosts is more likely to encounter different phytoplasma isolates within the same 

niches, thus share genetic material through the transposition of mobile elements. 

The likelihood of acquiring new effectors through horizontal transfer is thus high. I 

did not test this hypothesis during my thesis, however, comparative analyses of PMU 

signature genes of the phytoplasma isolates expressing SAP11 could help to confirm 

the positive correlation between the number of repeated regions or PMU number 

within a genome and the host range of the phytoplasma (Sugio and Hogenhout, 2012; 

Music et al., 2019).  

The second hypothesis is that SAP11 gene has evolved based on its ability to 

interact with plant targets. To support this hypothesis, I combined the Y2H results of 

the four SAP11 effector homologs studied in chapter 3 (in bold in Figure 3.2.6) with 

the radial disposition of the amino-acid SAP11-based tree (Figure 3.2.6). For 

example, the patterns of interaction between SAP11AYWB and SAP11MBSP against Class 

II TCP (sub)classes are different, and it is clearly shown as SAP11AYWB belongs to a 

different clade than SAP11MBSP. SAP11WBDL and SAP11SPLL also cluster differentially. 

The difference in binding specificity is an indication that the SAP11 gene forms 

distinct clades across the phytoplasma isolates.  

The current overview suggests that the SAP11 ability to bind to class II 

CYC/TB1-TCPs is generalised across the phytoplasmas. Indeed, the four SAP11 

effector homologs belong to three distinct clades across the SAP11 phylogeny (red 

clade for SAP11AYWB, green clade for SAP11MBSP and light yellow for both SAP11WBDL 

and SAP11SPLL) but all interact with this (sub)class (Figure 4.3.1). Furthermore, a study 

has shown that SAP11ATP, SAP11PnWB and SAP11OY-M bind and destabilise A. thaliana 
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class II CYC/TB1-TCPs (Chang et al., 2018). This suggests that the ancestral state of 

SAP11 was also able to interact with class II CYC/TB1-TCP. 

 

Figure 4.3.1: The SAP11 gene appears to form distinct clades across the different 

phytoplasma isolates. Radial phylogenetic tree based on the Multiple Sequence Alignment 

of the SAP11 effector homolog proteins from different phytoplasma isolates. The 

phylogenetic tree has been generated via the MEGA software using the Maximum Likelihood 

algorithm. The results of the Y2H analysis between SAP11AYWB, SAP11MBSP, SAP11WBDL and 

SAP11SPLL (in bold) and the Class II TCP (sub)classes are indicated in the boxes. Based on the 

Y2H results and the phylogeny, I observe that the SAP11 gene forms different clades 

(coloured circles) across the phytoplasma isolates. 

SAP11AYWB interacted with class II CIN-TCP members in yeast, while the three 

other SAP11 effector homologs did not (Chapter 3). If the SAP11 gene has evolved 

based on its ability to interact with different TCP (sub)classes, then the SAP11 

effector homologs that belong to SAP11AYWB could interact with class II CIN-TCPs. 
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Furthermore, Chang et al. showed that the stable expression of SAP11ATP displays an 

alteration of the leaf development in A. thaliana (Chang et al., 2018). The phenotype 

suggests that SAP11ATP could interact with class II CIN-TCPs. It is important to note 

that the author could not find a clear destabilisation of class II CIN-TCPs by SAP11ATP.  

SAP11ATP behaves as an outgroup in this tree and forms a monophyletic group 

such as SAP11MBSP. In this case, does this mean that his pattern of interaction with 

TCP (sub)classes is unique and different from the other SAP11 clades? Is SAP11ATP 

able to interact with multiple TCP (sub)classes as the transgenic lines suggest or do 

its TCP binding range is reduced like SAP11MBSP? It would be exciting to assess if 

SAP11 binds and destabilises class I TCPs.  No study has shown the interaction nor 

the destabilisation of Class I TCPs by any SAP11 effector homolog. The next chapter 

will address this question.  

PLYDY phytoplasma and sample p45 display two versions of distinct SAP11 

effector homologs. Gene duplication is an important mechanism that leads to the 

functional diversification of an effector (Hahn, 2009). This could indicate that some 

phytoplasma isolates rely on duplicated effector genes. SAP11PLYDY.1 and SAP11PLYDY.2 

are part of two distinct clades in the SAP11 phylogeny. In this case, one version of 

SAP11 could have been acquired via horizontal transfer with another phytoplasma 

strain (see Chapter 7 General Discussion). The next chapter will investigate if the 

patterns of interaction with the TCP (sub)classes between the two SAP11 transcripts 

are distinct. 

The Nuclear Localization Signal of SAP11, located at the N-termini of the 

protein, is not conserved among the SAP11 effector homologs. The NLS prediction 

software NLStradamus (Nguyen Ba et al., 2009) predicted that SAP11SPLL,  SAP11MBSP, 

SAP11PnWB, SAP11Faba_bean, SAP11EPWB and SAP11p45.2 exhibit an NLS at the C-terminal 

part of their sequence. The distinction of the clades observed in the radial 

phylogenetic tree can be explained partly by the NLS sequences of the effector 

homologs as some SAP11 effector homologs including SAP11AYWB display a bipartite 

NLS domain and are part of the same clade.  
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The next step is to investigate if the other SAP11 effector homologs target the 

TCPs similarly to the four previously studied SAP11 effector homologs. If yes, what 

are the patterns of interaction for the other clades? Are the patterns of interaction 

the same within the same clades?  

To conclude, the evolution of SAP11 is indeed different from the core genome 

of phytoplasmas. The radial disposition of the amino-acid SAP11-based (Figure 

4.3.1), at first a practical way to represent the SAP11 phylogeny, is above all a clear 

indication that the SAP11 gene forms distinct clades across the phytoplasma isolates. 

Coupled with the initial results presented in Chapter 3, I establish here the hypothesis 

that the SAP11 gene may have evolved to target the TCP (sub)classes differentially 

and that SAP11 has (a) specific region(s) that provides the binding specificity 

toward the TCP(sub)classes.  

The next chapter will address this hypothesis, with the objective to test if (1) 

other SAP11 effector homologs target TCPs; (2) SAP11 effector homologs have 

different patterns of interaction with the TCP (sub)classes; (3) characterize the 

interaction between SAP11 effector homologs and the TCP proteins, including the 

degradation ability of SAP11 toward TCP targets; (4) SAP11 genes across the 

phytoplasma isolates cluster based on their interaction patterns with its plant target.  
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Parts of this chapter were published in: 

Pecher, P., Moro, G., Canale, M. C., Capdevielle, S., Singh, A., MacLean, A., … 

Hogenhout, S. A. (2019). Phytoplasma SAP11 effector destabilization of TCP 

transcription factors differentially impact development and defence of Arabidopsis 

versus maize. PLoS Pathogens, in press . See Appendix VI.
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5.1 Introduction 

The two previous chapters showed that the SAP11 gene has a different 

evolutionary history and that some SAP11 effector homologs bind to specific regions 

within the TCP protein, leading to distinct binding specificities toward the class II TCP 

(sub)classes. The SAP11 radial phylogenetic tree of Chapter 4 shows that SAP11 

genes from different phytoplasma isolates form clades. When I coupled the Y2H 

analysis of Chapter 3, I observed that the SAP11 genes tend to cluster based on their 

ability to target specific TCP (sub)classes. The differences in the multiple alignments 

of SAP11 protein sequences strongly suggest that (a) specific region(s) within SAP11 

determine(s) the binding specificity to the different TCP (sub)classes. The findings of 

the previous chapters lead to further questions. Can the rest of the SAP11 effector 

homologs from various phytoplasma isolates interact with the TCPs? If yes, do they 

have distinct patterns of interaction, similarly to the four previously tested SAP11 

effector homologs?  

To verify if the SAP11 gene may have evolved to target the TCP (sub)classes 

differentially and that SAP11 has (a) specific region(s) that provides the binding 

specificity toward the TCP(sub)classes, I needed to extend my analysis of the 

interaction between SAP11 effector homologs and TCP (sub)classes candidates.  The 

comparative phylogenetic analyses of the phytoplasmas in Chapter 4 were 

complemented with functional analyses of the SAP11 effector proteins of these 

phytoplasmas. For this, I cloned multiple SAP11 effector homolog candidates from 

each of the clades of the SAP11 radial phylogenetic tree (Figure 4.3.3) and tested 

their interaction with TCP candidates of each (sub)class, including class I TCPs. I first 

used the yeast two-hybrid analysis, which relies on strong Y2H positive controls that 

were established in Chapter 3. Then, the Y2H analysis was complemented by 

degradation assays in A. thaliana protoplasts (Yoo et al., 2007). This assay is critical, 

as it provides in planta insights into the function of the SAP11 effector. 

Transient protoplast assays are commonly used as a cell-based system to 

study signal transduction pathways (He et al., 2007). Mesophyll protoplasts from A. 

thaliana are cell-autonomous and respond to various signals such as light, plant 
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hormones, sugar in a similar way than tissues and whole plant (Lius et al., 1997; 

Gonsalves, 1998; He et al., 2007). It is therefore convenient to induce the protoplasts 

using these signals and assess transcriptional changes over-time (He et al., 2006, 

2007). For example, protoplasts from species such as tobacco exhibit auxin-mediated 

responses (Koshiba et al., 1995; Ulmasov et al., 1997; Worley et al., 2000). They were 

used to assess over-time the degradation of Aux/IAA proteins, which are auxin 

transcriptional repressors (Worley et al., 2000; Dos Santos Maraschin et al., 2009).  

Transient protoplast assays are often used to study the plant immunity, as the 

cells can be transfected with effector genes with a constitutive or inducible promoter 

(He et al., 2007). Protoplast assays gave insights into cell death mechanisms (Asai et 

al., 2000; Wu et al., 2003) or protein degradation upon effector activity (He et al., 

2007; Pecher et al., 2019) as it would occur in natural conditions. For example, the 

recognition mechanisms of the AvrAC effector were elucidated in Arabidopsis 

protoplasts (Wang et al., 2015a). Another study used protoplasts as a cell-based 

genetic screen to study the MAP kinase signalling upon expression of AvrPto and 

AvrPtoB effectors (He et al., 2006). 

In my case, transient protoplast assays were used to test the destabilisation 

of TCPs upon interaction with SAP11 effector homologs. Besides providing 

complementation of the yeast assays, they show the function of the effector in 

planta. Transient protoplast assays are also very useful to investigate indirect 

interactions between SAP11 homologs and TCP candidates. I also used protoplasts to 

observe the subcellular localisation of the effector, that are predicted to localise in 

the nucleus of the plants (Bai et al., 2009; Chang et al., 2018). 

Based on recent studies published during my PhD, additional SAP11 effector 

homologs, such as SAP11ATP or SAP11OYM, bind and destabilise class II TCP (sub)classes 

(Janik et al., 2017; Chang et al., 2018). There is therefore strong evidence that the 

ability to interact with TCP (sub)classes is extended across the phytoplasma isolates. 

It is however unclear what are the patterns of interaction of the different SAP11 

homologs and if different SAP11 clades have distinct binding range toward the TCP 

(sub)classes. It is also unknown if SAP11 binds to class I TCPs. 
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Similarly to Chapter 3, a Y2H chimaera study was performed to elucidate 

regions within proteins that provide binding specificity. In that case, I used chimaera 

versions of three different SAP11 effector homologs with distinct patterns of 

interaction with the three TCP (sub)classes.  

In this chapter, I analysed the patterns of interaction between SAP11 effector 

homologs belonging to the different SAP11 clades and TCP candidates of each 

(sub)class. I found that the ability to target TCPs is conserved across SAP11 from 

different phytoplasma strains. Furthermore, the SAP11 effector homologs have 

distinct patterns of interaction with the plant TCP (sub)classes and some homologs 

bind to class I TCPs. The patterns of interaction of the four SAP11 effector homologs 

tested in chapter 3 were mainly confirmed via degradation assays in A. thaliana 

protoplasts (see discussion part in this chapter). When combining the SAP11 

phylogeny with the patterns of interaction (via both Y2H and degradation assays), I 

confirmed the hypothesis that the SAP11 gene has evolved based on its ability to 

interact distinctly with the TCP(sub)classes. 

Furthermore, some SAP11 effector homologs tend to bind to either class I or 

class II CIN. This led me to characterise the region within SAP11 that provides the 

binding specificity to either class II CIN or class I TCP. Using, SAP11 chimaeras, I found 

that the same region within SAP11 provides the binding specificity to either class I or 

class II CIN-TCP. 

5.2 Results 

5.2.1 SAP11 homologs interact differentially with the TCP (sub)classes 

In order to investigate if additional SAP11 effector homologs interact with 

TCPs and if they can differentially interact with TCP (sub)classes, I tested the 

interaction between SAP11 from different clades against TCP candidates from the 

three (sub)classes (Class I; Class II-CIN and Class II-CYC/TB1) via the Yeast-Two Hybrid 

system. To do so, I synthesised seven SAP11 candidates that belong to each clade 

from Figure 4.3.1 (circles) and tested their interaction with key candidates of TCP 
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(sub)classes. I used the four SAP11 effector homologs studied in Chapter 3 as 

controls. 

 

Figure 5.2.1: SAP11 homologs interact differentially with the TCP (sub)classes. Yeast two-

hybrid analysis of phytoplasma SAP11 effector homologs from different phytoplasmas and 

Arabidopsis thaliana TCP (sub)classes. Two repetitions are displayed here, the first repetition 

(A) and the second (B). The repetitions are identical, albeit some contaminations (growth of 
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SAP11p45.1+AtTCP2 for the first repetition (A)) and growth of SAP11PBIP + AtTCP9 and SAP11PBIP 

+ AtTCP14 for the second repetition (B). TCP candidates were selected from the different 

(sub)classes of TCPs, Class I, Class II CIN and Class II CYC/TB1-TCP. SAP11 effector proteins 

and pDEST-GBKT7 empty vector control were fused to the DNA binding domain of the GAL4 

transcriptional activator (bait) while TCPs and pDEST-GADT7 empty vector control were 

fused to the transcription activation domain of GAL4 (prey). Yeast colonies co-expressing bait 

and prey or empty plasmids combinations were grown in synthetic dropout (SD) media 

lacking leucine and tryptophan (-L,-W) (left) with growths of colonies indicating the presence 

of both plasmids; leucine, tryptophan and histidine with the addition of 20 mM 3-Amino-

1,2,4-triazole (3AT) (used to suppress auto-activation) (-L, -W, -H) (middle) or leucine, 

tryptophan, adenine and histidine (-L, -W, -A, -H) (right) with growths of colonies indicating 

interactions of bait (SAP11 homologs) and prey (TCP homologs). The experiment was 

repeated two times with different batches of transformed yeasts and these showed identical 

results as shown, albeit contaminations. 

The Yeast-Two Hybrid results show that the different SAP11 homologs have 

clear distinctive patterns of interaction with the TCP (sub)classes (Figure 5.2.1). The 

four SAP11 effector homologs tested in Chapter 3 serve as reliable controls. As 

expected, SAP11AYWB interacted with both Class II CIN-TCPs (AtTCP2 and AtTCP13) 

and Class II CYC/TB1 (AtTCP12 and AtTCP18) while SAP11MBSP, SAP11WBDL and 

SAP11SPLL interacted only with the Class II CYC/TB1 TCPs. Neither SAP11AYWB nor 

SAP11MBSP showed interaction with Class I-TCPs, consistent with previous yeast-two 

hybrids and protoplast degradation assays (Pecher et al., 2019).  

All the SAP11 effector homologs interacted with both members of Class II 

CYC/TB1 AtTCP12 and AtTCP18 in yeast (first two columns of Figure 5.2.1), except for 

SAP11WBDL that did not show interaction with AtTCP12. The negative control GBKT7 

showed no interaction with AtTCP12, as colonies did not grow in the selective media 

SD –LWAH. The results presented here showed growth of yeast colonies carrying 

GBKT7 and AtTCP18 in the selective media SD-LWAH. This result is due to technical 

contamination, as I had tested multiple times (well over three times) these 

interactions.  
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SAP11PBIP, closely related to SAP11AYWB and belonging to the same clade (red 

circle Figure 4.3.1) interacted with Class II CIN AtTP2 and AtTCP13, as expected 

considering its high sequence similarity with SAP11AYWB. SAP11ATP from Ca. P. mali, 

behaving as an outgroup in the SAP11 phylogeny also interacted with Class II CIN-

TCPs. The negative control GBKT7 showed no interaction as expected with neither 

AtTCP2 nor AtTCP13. Yeast colonies co-expressing SAP11p45.1 and AtTCP2 grew on 

both selective media SD –LWH (20mM 3AT) and SD –LWAH, due to some technical 

contamination; this was confirmed in the additional Y2H repetition displayed in 

Figure 5.2.1.B. 

The TCP candidates AtTCP6, AtTCP9 and AtTCP14 were selected among the 

Class I TCP members of A. thaliana based on preliminary Y2H assays. The results show 

that, surprisingly, SAP11WBDL and SAP11SPLL interacted with Class I TCPs, which was 

not shown in previous studies. SAP11WBDL interacted with AtTCP6 only, while 

SAP11SPLL interacted with the three class I TCP candidates. The negative control 

ensured that the Class I TCPs did not interact unspecifically with the Gal4 binding 

domain. Along with SAP11WBDL and SAP11SPLL, SAP11Faba bean, SAP11OY-M, SAP11PLYDY.2, 

SAP11STOL11 and SAP11p45.1 interacted with class I TCP members. SAP11STOL11 

interacted with Class I AtTCP6 but interacted weakly with Class I AtTCP9. All the 

SAP11 effector homologs able to interact with Class I TCPs interacted with Class I 

AtTCP6. However, there are SAP11 effector homologs that did not interact with Class 

I TCP and thus serve as reliable controls.  In addition to its interaction with both 

(sub)classes of Class II-TCPs, SAP11ATP also interacted with Class I TCPs. This result 

shows that it is the only SAP11 effector homolog that can interact with all the TCP 

(sub)classes. This feature seemed to be correlated with its particular place in the 

SAP11 phylogeny, as it behaves as an outgroup. 

To conclude, all the SAP11 effector homologs interacted with TCP candidates 

of Class II CYC/TB1. With the exception of SAP11ATP and SAP11MBSP, the SAP11 

homologs either interacted with Class I TCP or with Class II CIN-TCPs.  The SAP11 

phylogeny could explain this trend. Indeed, the SAP11 genes cluster based on their 

pattern of interaction with the TCP targets. SAP11ATP interacted with every member 

of the (sub)classes of TCPs. A recent study showed that SAP11ATP, from Ca. P. mali, 
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strain AT can destabilise Class II CIN-TCPs and Class II CYC/TB1-TCPs but does not 

destabilise the selected Class I candidates (Chang et al., 2018). Additional assays in 

planta are required to confirm the pattern of interaction between SAP11ATP and the 

TCP (sub)classes.  

5.2.2 SAP11SPLL interacts specifically with the TCP domain of Class I TCP6. 

The results in Chapter 3 showed that the TCP domain is involved in the SAP11-

binding specificity for both class II TCP (sub)classes. However, it is unclear if the TCP 

domain of class I TCPs is specifically targeted by Class I interactor SAP11 effector 

homologs.  To test this, I conducted Y2H assays of SAP11SPLL and SAP11WBDL and the 

TCP domains of class I TCP candidates. 

 

Figure 5.2.2: SAP11SPLL can interact specifically with the TCP domain of Class I TCPs. Yeast 

two-hybrid analysis of phytoplasma SAP11 effector homologs SAP11SPLL, SAP11WBDL and the 

TCP domains (TCP dom) of A. thaliana Class I TCP6, TCP8, TCP9, TCP14 and TCP15. SAP11 

effector proteins and pDEST-GBKT7 empty vector control were fused to the DNA binding 

domain of the GAL4 transcriptional activator (bait) while TCPs and pDEST-GADT7 empty 

vector control were fused to the transcription activation domain of GAL4 (prey). Yeast 

colonies co-expressing bait and prey or empty plasmids combinations were grown in 

synthetic dropout (SD) media lacking leucine and tryptophan (-L,-W) (left) with growths of 

colonies indicating the presence of both plasmids; leucine, tryptophan and histidine with the 

addition of 20 mM 3-Amino-1,2,4-triazole (3AT) (used to suppress auto-activation)  (-L, -W, -

H) (middle) or leucine, tryptophan, adenine and histidine (-L, -W, -A, -H) (right) with growths 

of colonies indicating interactions of bait (SAP11 homologs) and prey (TCP homologs). The 
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experiment was repeated three times with three different batches of transformed yeasts 

and these showed identical results as shown. 

The Yeast Two-Hybrid results showed that SAP11WBDL did not show interaction 

with either the TCP domain of AtTCP6, AtTCP8, AtTCP9, AtTCP14 and AtTCP15. 

However, SAP11SPLL interacted with the TCP domain of AtTCP6, AtTCP8, AtTCP14 and 

AtTCP15, as colonies grew in the selective media SD lacking leucine, tryptophan and 

histidine with the addition of 20 mM 3-Amino-1,2,4-triazole (3AT) (used to suppress 

auto-activation). However, yeast colonies producing SAP11SPLL and TCP domain of 

AtTCP15 grew on the selective media SD lacking leucine, tryptophan, adenine and 

histidine. The negative control confirmed that the TCP domain of Class I TCPs did not 

interact unspecifically. 

To conclude, these results show that the TCP domain of class I is also targeted 

by SAP11. Taken together, the interaction between SAP11 effector homologs and 

TCP domain show that the effector bind to the TCP domains of the three (sub)classes 

(Class I, Class II-CIN and Class II-CYC/TB1-TCPs). Thus, the targeting of the TCP domain 

is extended across the phytoplasmas able to express SAP11.   

5.2.3 SAP11 effector homologs are sub-localised in the nucleus of A. thaliana 

protoplasts cells 

Given that the results show that SAP11 effector homologs differentially 

interacted with TCP (sub)classes in yeast, I wished to confirm that the effector 

proteins could interact with TCPs in planta, thereby confirming other results so far. 

Our lab previously established that SAP11AYWB and SAP11MBSP destabilise TCP targets 

in A. thaliana protoplasts (Pecher et al., 2019). However, it was not established that 

SAP11WBDL and SAP11SPLL destabilise plant TCPs. For this, the four SAP11 effector 

homolog genes and TCP genes of the three (sub)classes were cloned into expression 

vectors that transiently express the genes in 4-weeks-old A. thaliana mesophyll 

protoplasts. Each combination of SAP11 effector homolog genes and TCP genes were 

co-expressed in A. thaliana protoplast solutions. I then performed degradation 

assays to confirm that SAP11 effector destabilised TCP proteins in-planta (Pecher et 

al., 2019; Chang et al., 2018). 
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The quality of the protoplast cells is critical for the reliable production of 

SAP11 and TCP proteins (Yoo et al., 2007). The proportion of transformed protoplasts 

that produce GFP-tagged SAP11 effector proteins is assessed via counting protoplast 

cells producing GFP-tagged SAP11 effector proteins using the Leica DM6000 

microscope (Fluorescence channel) (Figure 5.2.3.B). Figure 5.2.3.A showed that GFP-

SAP11 effector homolog genes were indeed expressed in A. thaliana protoplasts. Via 

the GFP channel, the GFP control showed that for each combination, GFP protein is 

produced in the cytoplasm, the membrane and the nucleus of the cell. However, GFP-

tagged SAP11 effectors seemed to be localised in the nucleus of the mesophyll cells 

(Bai et al., 2009). 

Figure 5.2.3.B show that most of the protoplasts produce GFP-SAP11AYWB or 

GFP-SAP11MBSP. However, there was a reduced number of transformed protoplasts 

producing GFP-SAP11WBDL or GFP-SAP11SPLL. This might be because GFP-SAP11AYWB 

and GFP-SAP11MBSP are codon-expressed, while GFP-SAP11WBDL and GFP-SAP11SPLL 

are not. 

To conclude, the microscope data shows that the four SAP11 effector 

homologs seem to localise in the nucleus. I did not include a reliable control for 

nucleus localisation, such as a plasmid expressing a yellow fluorescent protein fused 

with Nuclear Localization Signal, or DAPI staining, as the primary objective here was 

to control the transformation efficiency of the protoplasts, before the degradation 

assay. However, our lab showed that SAP11AYWB is localised in the nucleus (Bai et al., 

2009; Sugio et al., 2014). The significant difference in transformation efficiency 

between SAP11AYWB, SAP11MBSP and SAP11WBDL and SAP11SPLL is essential to assess 

before analysing the western blots of protoplast degradation assays. 
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Figure 5.2.3: the SAP11 effector homologs are sub-localised in the nucleus of A. thaliana 

protoplasts cells. (A) Confocal laser-scanning microscopy images show that SAP11 effector 

homologs were produced in the presence of candidates of TCP (sub)classes in A. thaliana 

mesophyll protoplasts. The fluorescence signal of GFP-tagged SAP11 effector homologs 

SAP11AYWB, SAP11MBSP, SAP11SPLL and SAP11WBDL is assessed via the Fluorescence channel (GFP 

channel) of the Leica DM6000 microscope. (B) The transformation efficiency of the different 

SAP11 effector homologs can be controlled via the measure of the fluorescence of the GFP 

tag. The fluorescence signal of GFP-tagged SAP11 effector homologs SAP11AYWB, SAP11MBSP, 

SAP11SPLL and SAP11WBDL. SAP11SPLL and SAP11WBDL are not codon-optimised; thus, the 

fluorescence is reduced in these samples. 

5.2.4 SAP11 effector homologs differentially destabilise the TCP (sub)classes in A. 

thaliana protoplasts 

After showing that the GFP-tagged SAP11 effector homologs were produced 

in the presence of each TCP candidate, I performed protoplast degradation assays 

using GFP-antibody to detect GFP-SAP11 and HA antibody to detect HA-TCP (see 

Material and Methods). The protoplast degradation assays were used over co-

immunoprecipitation assays to molecularly characterise the effector in-planta and 

assess if additional SAP effectors, especially Class I interactors can also destabilise 

their TCP targets.  

The western blots show that SAP11 effector homologs differentially 

destabilised TCP (sub)classes (Figure 5.2.4). For example, GFP-SAP11AYWB destabilised 

Class II CYC/TB1 AtTCP12, as shown in the anti-HA western blot. Indeed, in the 

presence of GFP-SAP11AYWB, HA-tagged TCP12 was barely visible compared to HA-

TCP12 when in presence with the negative control GFP. GFP-SAP11AYWB was detected 

by western blot with GFP antibodies confirming that GFP-SAP11AYWB is present. The 

band size is expected to be around 38 kDa (9.5kDa for SAP11AYWB + 28kDa of GFP).  

SAP11AYWB and SAP11MBSP destabilised HA-tagged TCP12 (expected size of 

around 41kDa), as shown in the anti-HA western blot, consistent with the previous 

Yeast-Two Hybrid studies. SAP11WBDL and SAP11SPLL also seemed able to destabilise 

HA-TCP12, consistent with the previous yeast results. However, the two GFP-tagged 

SAP11 effector homologs were not detected with the anti-GFP. As shown in the 
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confocal images (Figure 5.2.3), this could be since the two constructs expressing 

SAP11SPLL and SAP11WBDL had not been codon-optimised for A. thaliana, unlike 

SAP11AYWB and SAP11MBSP.  

 

Figure 5.2.4: SAP11 effector homologs differentially destabilise the TCP (sub)classes in A. 

thaliana protoplasts. Western blots of A. thaliana protoplast destabilisation assays. A: SAP11 

effector homolog genes were co-expressed with candidates of TCP (sub)classes Class I, Class 

II CIN and Class II CYC/TB1 genes. SAP11AYWB, SAP11MBSP, SAP11WBDL and SAP11SPLL 

differentially destabilise Class II CYC/TB1-TCP AtTCP12, Class II CIN-TCPs AtTCP2 and AtTCP13 

and Class I AtTCP14. GFP-tagged SAP11 effector homologs or GFP alone were detected using 

anti-GFP antibody while HA-tagged TCPs were detected with a specific anti-HA antibody. 

Loading controls: Amidoblack-stained large RUBISCO subunit. B: 4xMyc-SAP11AYWB, 4xMyc-

SAP11MBSP, 4xMyc-SAP11WBDL and 4xMyc-SAP11SPLL differentially destabilise Class II CIN-TCPs 

HA-AtTCP13. HA-tagged TCPs were detected with a specific anti-HA antibody. I could not 
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detect the four SAP11 effector homologs using a specific antibody against 4xMyc. Loading 

controls: Amidoblack-stained large RUBISCO subunit. 

SAP11AYWB destabilised both HA-tagged CIN-TCP2 and HA-TCP13 while 

SAP11MBSP did not, confirming the patterns of interaction shown in previous yeast-

two hybrid assays. It is important to note that when present with GFP-SAP11MBSP, HA-

TCP13 seemed to be less abundant compared to the negative control. However, 

previous protoplast degradation assays confirmed that SAP11MBSP could not 

destabilise Class II CIN-TCPs and AtTCP13 specifically (Pecher et al., 2019). 

Furthermore, using other constructs over-expressing 4xMyc-tagged SAP11 effector 

homolog genes (Figure 5.2.4.B), SAP11MBSP did not destabilise AtTCP13, consistent 

with the destabilisation assays presented in Figure 5.2.4.A. Surprisingly, SAP11SPLL 

seems to destabilise both HA-TCP2 and HA-TCP13, as shown in the anti-HA western 

blot, whereas SAP11SPLL did not show interaction with the two Class II CIN-TCP 

members in yeast. This result could be either a direct destabilisation of Class II CIN 

TCPs or an indirect destabilisation resulting from the destabilisation of a negative 

regulator of class II CIN-TCPs, such as Class I TCPs. I used other constructs that 

produce 4xMyc-tagged SAP11 effector homologs (Figure 5.2.4.B) and found that 

SAP11SPLL did not destabilise AtTCP13. I need to repeat the protoplast degradation 

assay for SAP11SPLL. On the other hand, SAP11WBDL did not destabilise Class II CIN-

TCP2 nor TCP13, consistent with the previous Yeast-Two Hybrid assays. 

 Finally, the degradation assay shows that SAP11SPLL destabilised Class I TCP14, 

consistent with the Yeast-Two Hybrid assays. However, I was not able to detect 

SAP11SPLL using the anti-GFP antibody. SAP11AYWB, SAP11MBSP did not destabilise 

TCP14. SAP11WBDL appears to destabilise weakly TCP14 compared to the control. In 

yeast, Class I interactor SAP11WBDL interacted with only Class I TCP6 but not Class I 

TCP14. The degradation assay of TCP14 suggests that SAP11WBDL might bind weakly 

Class I TCP14. It would have been interesting to test the degradation of Class I TCP6 

by SAP11WBDL. 

To conclude, the patterns of TCP destabilisation by SAP11AYWB and SAP11MBSP 

are consistent with the patterns of interaction in yeast, confirming my results. 
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SAP11AYWB bind and destabilised both (sub)classes of Class II TCPs but not Class I TCPs, 

while SAP11MBSP bind and destabilised only Class II CYC/TB1 TCP. I cannot strictly 

confirm that SAP11SPLL and SAP11WBDL destabilised TCP proteins at this stage because 

I did not detect the effectors using anti-GFP. However, the destabilisation patterns 

of Class II CYC/TB1-TCP12, and Class I TCP14 are consistent with the Yeast-Two Hybrid 

assays for these two SAP11 effector homologs.  

5.2.5 The intra-region and the TCP binding domain of SAP11AYWB are required for the 

binding specificity to CIN-TCPs 

The interaction and destabilisation assays of SAP11 effector homologs toward 

the TCP proteins suggest that there is a region within SAP11 that provides the binding 

specificity toward the TCP (sub)classes. To determine this SAP11 region, I generated 

SAP11 chimaera constructs based on SAP11AYWB (able to bind to Class II CIN-TCP and 

Class II CYC/TB1-TCPs) and SAP11MBSP (able to bind to Class II CYC/TB1 only) and 

tested their binding to class II CYC/TB1-TCP18 and CIN-TCP2 in yeast. My lab 

previously showed that the ‘KEEGSSSKQPDDSKK’ sequence located at the C-terminus 

of SAP11AYWB did not affect the binding of this protein to TCP when deleted, but the 

deletion of the additional ‘MEILKQKAEEETKNL’, predicted to form coiled-coil 

structure, did (Sugio et al., 2014; Pecher et al., 2019). Thus, the region 

‘MEILKQKAEEETKNL’ is required for TCP-binding and is called here “TCP binding 

domain”.  

The Y2H results of the chimaera constructs show that at least both the intra-

region and the TCP binding domain of SAP11AYWB provided the binding specificity to 

the Class II CIN-TCPs (Figure 5.2.5). First, the control shows that SAP11AYWB interacted 

with both Class II CYC/TB1-TCP18 and CIN-TCP2 while SAP11MBSP interacted only with 

CYC/TB1-TCP18 in yeast, on the selective media SD-LWH (20mM 3AT). The addition 

of the intra-region + TCP binding domain of SAP11AYWB in the backbone of SAP11MBSP 

restored the interaction with Class II CIN-TCP2. However, the addition of the 

SAP11AYWB intra-region alone in the SAP11MBSP backbone did not show interaction 

with Class II CYC/TB1-TCP18 or Class II CIN-TCP2. We cannot exclude the possibility 

that the intra-region only can provide the interaction with the Class II CIN-TCPs as 
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there was no interaction with the positive control Class II CYC/TB1-TCP18. Moreover, 

the addition of the SAP11AYWB TCP binding domain alone in the SAP11MBSP backbone 

did not restore interaction with Class II CIN-TCP2 but did show interaction with Class 

II CYC/TB1-TCP18. The N-terminal and C-terminal region of SAP11AYWB are not 

required for the binding specificity towards Class II CIN-TCP2 (Supplementary data, 

Pecher et al., 2019). 

 

Figure 5.2.5: The intra-region and the TCP binding domain of SAP11AYWB are required for 

the binding specificity to CIN-TCPs. Yeast two-hybrid analysis of phytoplasma SAP11 

chimeric versions based on SAP11AYWB and SAP11MBSP and Arabidopsis thaliana TCPs. TCP 

candidates selected from the Class II TCP (sub)classes, Class II CIN-TCP and Class II CYC/TB1-

TCPs. SAP11 chimeric proteins and pDEST-GBKT7 empty vector control were fused to the 

DNA binding domain of the GAL4 transcriptional activator (bait) while TCPs and pDEST-

GADT7 empty vector control were fused to the transcription activation domain of GAL4 

(prey). Yeast colonies co-expressing bait and prey or empty plasmid (pDEST-GADT7) 

combinations were grown in synthetic dropout (SD) media lacking either leucine and 

tryptophan (-L,-W) (left) with growths of colonies indicating the presence of both plasmids; 

or leucine, tryptophan and histidine with the addition of 20 mM 3-Amino-1,2,4-triazole (3AT) 

(used to suppress auto-activation)  (-L, -W, -H) (right) with growths of colonies indicating 

interactions of bait (SAP11 homologs or SAP11 chimaeras) and prey (TCP homologs). The 

experiment was repeated three times with three different batches of transformed yeasts 

and these showed identical results as shown. 
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Finally, the NLS domain of SAP11AYWB is not responsible for the binding 

specificity to Class II CIN-TCP2, as the construct bearing this domain in the backbone 

of SAP11MBSP did not show interaction with AtTCP2 or AtTCP18 in yeast (Pecher et al., 

2019) (see Appendix IV – Figure 1) 

To conclude, these results show that the intra-region and the TCP binding 

domain are both required for the binding specificity towards Class II CIN-TCPs. I called 

this region the TCP interaction domain. The NLS domain of SAP11AYWB is required for 

the targeting of the nucleus (Figure 5.2.3) but is not responsible for the binding 

specificity.  

5.2.6 The intra-region and the TCP binding domain of SAP11SPLL are required for the 

binding specificity to Class I TCPs. 

As I established the SAP11 region that provides the binding specificity toward 

Class II CIN-TCPs, I wished to investigate if the same region within Class I interactors 

was also responsible for the binding specificity toward Class I TCPs. The Y2H and 

destabilisation assays suggest that there is a tendency to bind to either Class II CIN 

or Class I TCPs. These patterns of interaction suggest that the same region within 

SAP11 could be responsible for binding to either Class II CIN or Class I TCPs. To test 

this, I generated SAP11 chimaeras constructs based on Class I interactor SAP11SPLL 

(able to bind to Class I and Class II CYC/TB1-TCPs) and SAP11MBSP (able to bind to Class 

II CYC/TB1 only) and tested their binding to Class II CYC/TB1-TCP18 and Class I TCP9 

and TCP14 in yeast.   

The Y2H results of the chimaeras constructs show that at least both the intra-

region and the TCP binding domain of SAP11SPLL provides the binding specificity to 

the Class I TCP (Figure 5.2.6). First, the control shows that SAP11AYWB interacted with 

both Class II CYC/TB1-TCP18 and CIN-TCP2, SAP11MBSP interacted only with CYC/TB1-

TCP18 while SAP11SPLL interacted with Class II CYC/TB1 TCP18 and Class I TCP9 and 

TCP14 in yeast, on the selective media SD-LWAH. When adding the intra-region + TCP 

binding domain of SAP11SPLL in the backbone of SAP11MBSP (SAP11 chimaeras B, see 

Appendix IV – Figure 2), the interaction with Class I TCP candidates AtTCP9 and 

AtTCP14 was restored. The addition of the SAP11SPLL intra-region alone in the 
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SAP11MBSP backbone does not show interaction with Class I TCP9 or TCP14 but still 

interacts with Class II CYC/TB1-TCP18.  

 

Figure 5.2.6: The intra-region and the TCP binding domain of SAP11SPLL are required for the 

binding specificity to Class I TCPs. Yeast two-hybrid analysis of phytoplasma SAP11 chimeric 

versions based on SAP11SPLL and SAP11MBSP and Arabidopsis thaliana TCPs. TCP candidates 

selected from the Class II CYC/TB1-TCP (sub)class and the Class I TCP. SAP11 chimeric 

proteins and pDEST-GBKT7 empty vector control were fused to the DNA binding domain of 

the GAL4 transcriptional activator (bait) while TCPs and pDEST-GADT7 empty vector control 

were fused to the transcription activation domain of GAL4 (prey). Yeast colonies co-

expressing bait and prey or empty plasmid (pDEST-GADT7) combinations were grown in 

synthetic dropout (SD) media lacking either leucine and tryptophan (-L,-W) (left) with 

growths of colonies indicating the presence of both plasmids; leucine, tryptophan and 

histidine with the addition of 20 mM 3-Amino-1,2,4-triazole (3AT) (used to suppress auto-

activation)  (-L, -W, -H) (middle) or leucine, tryptophan, adenine and histidine (-L, -W, -A, -H) 

(right) with growths of colonies indicating interactions of bait (SAP11 homologs or SAP11 

chimaeras) and prey (TCP homologs). The experiment was repeated three times with three 

different batches of transformed yeasts and these showed identical results as shown. 

These results show that the same region within SAP11 provides the binding 

specificity to either Class II CIN TCPs or Class I TCPs. This region is also called TCP 

interaction domain. As SAP11 effector homologs all target the Class II CYC/TB1-TCPs, 

it is not possible to determine the binding specificity towards this (sub)class using 
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SAP11 chimaeras. The combined results of the SAP11 chimaeras study (Figure 5.2.5 

and 5.2.6) led me to further investigate the residues responsible for the binding 

specificity of the TCP (sub)classes within the TCP interaction domain.  

5.3 Discussion  

This chapter complements the phylogenetic analysis of Chapter 4 and offered 

essential insights into the function of the different SAP11 effector homologs of the 

phytoplasma isolates. First, I showed that the SAP11 effector homologs from each 

SAP11 clade (see Figure 4.3.1) have distinct patterns of interaction with the TCP 

(sub)classes in yeast. The patterns of interaction were mainly confirmed for four 

SAP11 effector homologs in protoplast degradation assays (see 5.3.1). Coupled with 

the radial phylogenetic tree of the SAP11 phylogeny, I confirmed the hypothesis that 

the SAP11 gene has evolved to target the TCP (sub)classes differentially. Some 

SAP11 effector homologs bind to class I TCPs, which was not previously known. The 

distinct binding ranges of SAP11 effector homologs led to functional characterisation 

of the SAP11 region that binds specifically to either class I or class II CIN-TCPs. 

Therefore, I also confirmed the hypothesis that SAP11 has a specific region that 

provides the binding specificity toward the class II CIN and class I TCP(sub)classes. 

5.3.1: Analysis of the Y2H and degradation assays 

 The main Y2H presented in this chapter shows clearly that the SAP11 effector 

homologs target the TCP (sub)classes differentially (see 5.3.4 for an overview of the 

results). First, the four SAP11 effector homologs used in Chapter 3 are good controls. 

The addition of class I TCPs in the analysis enhances the distinction between the 

patterns of interaction. Indeed, SAP11AYWB interacts with class II CIN-TCPs but does 

not show interaction with any members of class I TCP, while it is the opposite for 

SAP11SPLL and SAP11WBDL.  

These four SAP11 effector homologs are therefore good candidates for 

further analysis via the in planta degradation assays. The destabilisation assay in A. 

thaliana protoplasts globally confirms the interaction patterns of the Y2H assay. First, 

SAP11AYWB destabilises both class II CYC/TB1-TCP12 and class II CIN-TCP2 and TCP13 
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while SAP11MBSP destabilises only class II CYC/TB1-TCP12, consistent with the Y2H 

results and previous degradation assays (Pecher et al., 2019). However, the patterns 

of destabilisation of both SAP11WBDL and SAP11SPLL are more challenging to discern. 

Indeed, I did not detect either SAP11WBDL or SAP11SPLL using the anti-GFP antibody 

(Figure 5.2.4.A). This can be explained by the weaker proportion of transformed 

protoplasts (Figure 5.2.3). Thus, I cannot strictly confirm that the effector homologs 

destabilise the TCP (sub)classes. However, a previous study showed that SAP11PnWB, 

which is almost identical to SAP11SPLL binds and destabilises class II CYC/TB1-TCP 

(Chang et al., 2018). Therefore, this is most likely that both effectors or at least 

SAP11SPLL retain the function to bind and destabilise TCPs, similarly to other SAP11 

effector homologs. 

Nonetheless, using the anti-HA antibody, I showed that TCP candidates 

appear to be destabilised in the presence of SAP11SPLL or SAP11WBDL compared to the 

control. The patterns of destabilisation are consistent with Y2H assays concerning 

class II CYC/TB1 and class I TCPs. For example, class II CYC/TB1-TCP12 appears to be 

destabilised by SAP11SPLL and SAP11WBDL. This is also true for class I TCP14, which 

appears to be destabilised by SAP11SPLL but not SAP11WBDL, consistent with the Y2H 

assay. 

Surprisingly, class II CIN-TCP2 and class II CIN-TCP13 appear to be destabilised 

in the presence of SAP11SPLL (Figure 5.2.4.A), which was not shown in yeast. However, 

using a different construct, I did not find that SAP11SPLL destabilises class II CIN-TCP13 

(Figure 5.2.4.B). The next step should aim at repeating the transient protoplast 

degradation assays for SAP11SPLL and SAP11WBDL or perform co-expression assays in 

Nicotiana benthamiana leaves. Nevertheless, the apparent destabilisation of Class II 

CIN-TCP members in the presence of SAP11SPLL could be due to direct or indirect 

interaction. Class I and class II CIN-TCPs have antagonistic roles in plant development 

and plant defence through the regulation of the JA pathway (Kosugi and Ohashi, 

2002; Li et al., 2005; Martín-Trillo and Cubas, 2010; Danisman et al., 2012; Lopez et 

al., 2015) (see Discussion point 5.3.3). Although, there is no evidence that class I form 

heterodimers with class II CIN-TCPs (Kosugi and Ohashi, 2002; Danisman et al., 2012), 
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the apparent destabilisation of class I TCPs could be indirect and due to the 

destabilisation of class II CIN-TCPs or other targets. 

Finally, I opted for the destabilisation assay in Arabidopsis thaliana 

protoplasts over transient expression in Nicotiana benthamiana leaves as it allows 

me to correlate the findings with insect assays (no insect assays are shown in this 

thesis but some were performed during my PhD), that are also performed in 

Arabidopsis thaliana (Sugio et al., 2011a; Pecher et al., 2019). Furthermore, my lab 

generated transgenic lines that stably express SAP11AYWB and SAP11MBSP, as well as 

mutant lines of brc1 x brc2 or 35S::miR319a x 35S::miR3TCP transgenic A. thaliana 

(Col-0) line that leads to a downregulation of CIN-TCPs (Pecher et al., 2019). These 

lines could be used for transient protoplast assays. For example, I could use the 

35S::miR319a x 35S::miR3TCP stable transgenic A. thaliana (Col-0) line and assess if 

SAP11SPLL retains its ability to destabilise class I TCPs.  

5.3.2: The Ancestral Sequence Reconstruction as another approach to determine the 

key residues involved in the binding specificity toward the TCP (sub)classes 

I used the Ancestral Sequence Reconstruction (ASR) method as another 

approach in my PhD but did not include them. The ASR analyses modern sequences 

that constitute a phylogenetic tree in order to resurrect the ancestral gene at 

particular nodes of that given tree (Thornton, 2004). The resurrection of an ancestral 

gene relies on various steps ( Figure 5.1.1; Thornton, 2004). First, a well supported 

phylogenetic tree is inferred from a Multiple Sequence Alignment (MSA) of either 

protein or DNA sequences. Most of the time, the inferred tree is based on protein 

sequences (Thornton, 2004). Secondly, an ancient protein of a node in the tree is 

reconstructed in-silico via an algorithm that establishes the most probable residue at 

each position of the ancient protein sequence, based on the MSA and the 

phylogenetic tree. Thirdly, the ancient gene is “resurrected” de novo via gene 

synthesis, and then cloned into the appropriate vector for further molecular studies 

(Thornton, 2004). 

I used the ASR to generate in-silico the most probable SAP11 sequences at 

each node of the SAP11 tree and test their interaction against TCP candidates in 
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yeast. I initially used the ASR approach based on a SAP11-tree generated via a smaller 

pool of eight SAP11 sequences, before I gained additional SAP11 sequences from 

collaborators. Back then, the initial objective was to determine the interaction ability 

of the ancestral SAP11 toward its TCP targets. Based on the observation that the four 

SAP11 effector homologs of Chapter 3 (SAP11AYWB, SAP11MBSP, SAP11WBDL and 

SAP11SPLL) interact with Class II CYC/TB1 TCPs, the hypothesis was that the ancestral 

SAP11 effector protein could interact with Class II CYC/TB1 TCPs. Furthermore, the 

approach would allow investigating if SAP11AYWB acquired the ability to target A. 

thaliana Class II CIN-TCPs, an ability that the three other SAP11 effector homologs do 

not have. I would then synthesise the ancestral sequence located at the node 

between SAP11AYWB and SAP11MBSP and test the interaction with TCP (sub)classes 

using the Y2H system.  

 

Figure 5.3.1: the steps for the Ancestral Sequence Reconstruction. See the review of 

Thornton et al., 2004. Nature Reviews Genetics. for more details. Figure taken from this 

review. 

Finally, this would allow me to gain insights into the key residues or the region 

within SAP11 that provides the binding specificity towards TCP (sub)classes, as the 

SAP11 ancestral sequences are generated by computing the most probable residue 

at each position of the sequence, based on the inferred SAP11 Multiple Sequence 

Alignment and SAP11 phylogenetic tree. For example, Dong et al. (2014) used the 

ASR to resurrect the ancestral EPIC1 gene and test its interaction patterns with the 

target along the evolution of the effector. The ASR was also used to reconstruct the 
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predicted ancestral sequence of Tin2 effector and determine the functional evolution 

of the effector (Zess et al., 2019; Tanaka et al., 2019). 

The ASR is a reliable approach; however, it presents some drawbacks. The 

major issue is that most of the time, the algorithms used for the resurrection might 

not take into account the biological relevance (Randall et al., 2016). The ASR 

approach did not yield much success in my case, as we do not know the SAP11 gene 

that behaves as an outgroup. It is therefore hard to determine confidently ancestral 

sequences.  

5.3.3:  The potential role of degradation of class I TCPs by SAP11 effector homologs 

One of the novel findings of this chapter is that SAP11 effector from some 

phytoplasma isolates can bind to class I TCPs. This result is exciting considering the 

extensive role of class I TCPs in both plant development and plant immunity (see 

Chapter 1 General Introduction). The antagonistic regulation between class II and 

class I TCPs over the bioproduction of JA and the positive regulation of SA by class I 

TCPs provide a prime opportunity for a pathogen to target TCPs as it leads to a 

disruption of the hormonal cross-talk (Lopez et al., 2015; Garner et al., 2016; Nicolas 

and Cubas, 2016).  

Class I TCPs were found to positively regulate the salicylic acid  as at least TCP8 

and TCP9 regulate the ISOCHORIS- MATE SYNTHASE 1  (ICS1) gene involved in the 

biosynthesis of SA (Pieterse et al., 2012; Wang et al., 2015b). 

JA production confers resistance to necrotrophic pathogens while the SA 

production enhances the resistance against biotrophic pathogens (Kazan and Lyons, 

2014). The activation of the JA pathway attenuates the SA pathway and vice-versa. 

On the one hand, a biotrophic pathogen will manipulate the plant to activate JA in 

order to negatively regulate cell death and extend the life cycle and/or negatively 

regulate SA for the same purpose. On the other hand, a necrotrophic pathogen will 

aim at increasing the production of SA to promote the cell death and aim at limiting 

JA (Kazan and Manners, 2012; Xin and He, 2013; Kazan and Lyons, 2014).  
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In the case of phytoplasma, as a biotrophic pathogen, the stable expression 

of SAP11AYWB in A. thaliana increases the fertility of M. quadrilineatus nymphs when 

the leafhoppers are feeding on SAP11 transgenic lines (Sugio et al., 2011a). The 

increase of the leafhopper-fertility is due to the destabilisation of Class II CIN-TCPs, 

leading to the downregulation of the LOX2 gene and therefore the jasmonic acid 

synthesis (Bell et al., 1995; Schommer et al., 2008). The downregulation of Class I 

TCPs by SAP11SPLL might lead to an increase of the JA, leading to disruption in the 

hormone cross-talk of the plant (Kazan and Lyons, 2014; Yang et al., 2017), which 

could increase the phytoplasma or insect vectors virulence.  

This strategy would be similar to the strategy employed by P. syringae. 

Indeed, HopBB1 effector interacts with TCP14 and JAZ3, two repressors of JA 

signalling, glues them together and are then degraded, leading to a fine-tuned 

activation of specific subsets of JA response, increasing the bacterial virulence (Yang 

et al., 2017). To test if SAP11SPLL or SAP11WBDL effectors activate subsets of JA 

response via destabilisation of Class I TCPs, I could compare the expression of marker 

genes in the JA pathway between 35S::SAP11SPLL A. thaliana lines and Col-0 ecotype. 

I can also assess if SA-specific marker genes are down-regulated in response to the 

activation of JA.  

We also know that class I TCP members are involved in the plant defence 

(Mukhtar et al., 2011; Kim et al., 2014; Wang et al., 2015b). TCP8, TCP14 and TCP15 

are positive regulators of ETI through transcription regulation of defence genes. 

Indeed, triple mutants tcp8, tcp14, tcp15 have a decreased ETI mediated by 

resistance genes RPS2, RPS4, RPS6 and RPM1 (Kim et al., 2014). Class I TCPs are also 

positive regulators of PTI components, through the regulation of the EFR pattern 

recognition receptor (Spears et al., 2019).  

Targeting TCP13, TCP14, TCP15, TCP19, and TCP21 through effectors is a 

common strategy for very diverse pathogens. An interactome study showed that 

effector repertoires from P. syringae (Psy; eubacteria), H. arabidopsidis (Hpa; 

oomycete), and Golovinomyces orontii (Go; ascomycete)—converge specifically onto 
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TCP14 (Dreze et al., 2011; Mukhtar et al., 2011; Weßling et al., 2014) (see General 

Discussion).   

Future work could aim at assessing if phytoplasma or insect vectors would 

see an increase of fitness in the presence of Class I interactors and test if ETI or PTI 

components are affected upon stable expression of SAP11SPLL or SAP11WBDL. First, I 

could assess if phytoplasma is more virulent when infecting A. thaliana lines that 

stably produce SAP11SPLL or SAP11WBDL. For this, I could measure the phytoplasma 

titer of infected 35S::SAP11SPLL A. thaliana lines, infected 35S::SAP11WBDL A. thaliana 

lines, infected Class I tcp mutant lines and compare it with infected Col-0 Wild Type 

control. I could measure the relative expression of EFR gene to assess if the PTI is 

hindered. I could also measure the RNA levels of defence genes related to ETI that 

are known to be regulated by Class I TCPs (Kim et al., 2014). 

Secondly, I could assess if the insect vector sees an increase of its fertility 

when feeding and laying its eggs on 35S::SAP11SPLL or 35S::SAP11WBDL A. thaliana 

lines. I could perform fertility insect assays using A. thaliana lines that stably produce 

Class I interactors and test the fertility of M. quadrilineatus.  As M. quadrilineatus 

produce more progeny when the level of JA is down upon production of SAP11AYWB 

and as SAP11SPLL destabilises Class I TCPs, I am expecting M. quadrilineatus to have 

no increase of fertility, on the contrary to SAP11AYWB (see the general discussion for 

details about different strategies of phytoplasma).  

Finally, more experiments are needed to determine if the TCP destabilisation 

by SAP11 is dependent on the proteasome. A study showed that SAP11 effector 

homolog from wheat blue dwarf phytoplasma, SWP1, interacts with class II CYC/TB1 

through a proteasome system but not through proteases (Wang et al., 2018b). To 

test if the destabilisation is proteasome-dependent, I could add a proteosome 

inhibitor in protoplast degradation assays. Additionally, does SAP11 require plant 

helper for the destabilisation of TCPs? Future global Y2H assays could indicate 

potential plant partners of SAP11. As an example, it was found that SAP54, an 

additional SAP effector of AY-WB phytoplasma, interacts with RAD23 (Farmer et al., 

2010; MacLean et al., 2014). 
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SAP11 specifically binds the hlh motif of the TCP domain, which is involved in 

the homo/heterodimerisation of the TCPs  (Chapter 3) (Aggarwal et al., 2010; Viola 

et al., 2012; Danisman et al., 2013). TCPs are stable in dimers and not stable in 

monomers (Aggarwal et al., 2010). The instability of the TCP monomers could lead to 

their degradation. Therefore, it is possible that SAP11 does not require to interact 

with proteasome components.  

5.3.5: The same region within SAP11 provides binding specificity to either class II CIN-

TCPs and Class I TCPs 

 

Figure 5.3.2: The TCP interaction domain of SAP11. Yeast two-hybrid analysis of 

phytoplasma SAP11 chimeric versions based on SAP11AYWB, SAP11SPLL, SAP11MBSP different 

SAP11 effector homologs and Arabidopsis thaliana TCPs. Yeast-Two-Hybrid showing the 

interaction between SAP11 chimeric versions based on SAP11AYWB, SAP11SPLL, SAP11MBSP. TCP 

candidates selected from the different (sub)classes of TCPs, Class I, Class II CIN and Class II 

CYC/TB1. SAP11 chimeric proteins and pDEST-GBKT7 empty vector control were fused to the 

DNA binding domain of the GAL4 transcriptional activator (bait) while TCPs and pDEST-

GADT7 empty vector control were fused to the transcription activation domain of GAL4 
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(prey). Yeast colonies co-expressing bait and prey or empty plasmid (pDEST-GADT7) 

combinations were grown in synthetic dropout (SD) media lacking either leucine and 

tryptophan (-L,-W) (left) with growths of colonies indicating the presence of both plasmids; 

or leucine, tryptophan and histidine with the addition of 20 mM 3-Amino-1,2,4-triazole (3AT) 

(used to suppress auto-activation)  (-L, -W, -H) (top right for SAP11 chimaeras analysis using 

SAP11AYWB and SAP11MBSP or bottom middle right for SAP11 chimaeras analysis using 

SAP11SPLL and SAP11MBSP) or leucine, tryptophan, adenine and histidine (-L, -W, -A, -H) 

(bottom right) with growths of colonies indicating interactions of bait (SAP11 homologs or 

SAP11 chimaeras) and prey (TCP homologs). The experiment was repeated three times with 

three different batches of transformed yeasts and these showed identical results as shown. 

The Figure 5.3.2 summarises the SAP11 chimaera results. The same region 

within SAP11 provides binding specificity to Class II CIN TCPs and Class I TCPs. This is 

consistent with the analysis of the SAP11-based radial tree (Figure 5.3.3) that suggest 

that, based on the SAP11 clades and their interaction patterns, the same region is 

responsible for the binding specificity of the two (sub)classes. The “TCP interaction” 

domain does not include the NLS domain, present at the N terminal part of the Class 

II CIN-interactors such as SAP11AYWB or at the C terminal part of the Class I interactors 

such as SAP11SPLL. The position of the NLS domain within SAP11 does not impact the 

nuclear localisation of the SAP11 effector. Indeed, my results suggest that SAP11AYWB, 

SAP11MBSP, SAP11WBDL and SAP11SPLL localise in the nucleus of Arabidopsis protoplasts 

(Figure 5.2.3). Although I did not include a specific nucleus marker, my results are 

consistent with previous studies that showed the nuclear localisation of different 

SAP11 effector homologs from three distinct SAP11 clades; SAP11AYWB (Bai et al., 

2009), SAP11OY-M and SAP11ATP (Chang et al., 2018). 

I initially hypothesised that the intra-region of SAP11AYWB could provide the 

binding specificity toward class II CIN-TCPs, as the region is more diverse than the 

TCP binding domain (see Multiple Sequence Alignment of SAP11 effector homologs 

in Chapter 4) (Sugio et al., 2014). However, I could not detect yeast growth in the 

selective media when yeast co-expresses class II TCP2 and a SAP11 chimeric version 

based on the backbone of SAP11MBSP and harbouring SAP11AYWB intra-region (see 

Appendix IV – Figure 1). The absence of yeast growth suggests that there are 
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structural requirements between the intra-region and the TCP binding domain and 

both need to be present for the binding specificity. Alternatively, misfolding of the 

chimeric SAP11 in yeast could be possible.  

Given the results of the SAP11 chimaera Y2H assays of Figure 5.2.5, I decided 

to determine further the residues involved in the binding specificity toward the TCP 

(sub)classes within the TCP interaction domain. To do this, I designed new SAP11 

chimaera constructs based on the sequence variation between Class I interactors and 

SAP11 sequences that are not found to bind to Class I TCPs (see Appendix IV – Figure 

2). The block A is part of the TCP interaction domain and is conserved among SAP11 

sequences of Class I interactors (in blue) and SAP11 sequences of Class II CIN 

interactors (in red), suggesting that this region might be the region that binds 

specifically to either class.  

The predicted NLS domain of SAP11SPLL is “KSKKKGSSSKKPDDSKK” (65th 

residue to 81st residue), located at the C-terminal part of the SAP11 sequence, 

similarly to SAP11MBSP. Thus, this allowed me to test if the C-terminal NLS domain of 

SAP11 effector homologs could be responsible for the binding specificity toward a 

TCP (sub)class. However, I have not found any positive interaction between SAP11 

chimaera constructs and the TCP candidates, except for the SAP11 construct 

exhibiting the SAP11SPLL intra-region in the backbone of SAP11MBSP and the construct 

carrying the intra-region and the TCP binding domain of SAP11SPLL in the SAP11MBSP 

backbone (figure presented in Appendix IV – Figure 2).  

For future work, I could add the TCP interaction domain of SAP11AYWB in the 

SAP11MBSP backbone and perform co-immunoprecipitation to see if there is 

interaction in planta. Alternatively, I could perform protoplast degradation assay to 

assess if the TCP interaction domain is sufficient for the destabilisation of cognate 

TCP (sub)classes. 

5.3.5: SAP11 homolog genes cluster based on their patterns of interaction with the 

different TCP (sub)classes 

I combined the results of the SAP11 phylogeny (chapter 4), the Y2H and 

degradation assays (chapter 5) and the phenotypes (predicted or established) of the 
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stable expression of the SAP11 effector homolog genes as indicated in the 

phylogenetic tree.  Globally, the Y2H results, the protoplast assays (Chang et al., 

2018; Pecher et al., 2019) the phenotypes of the cognate SAP11 over-expression lines 

(Sugio et al., 2011a; Chang et al., 2018)  and the phylogeny are consistent and confirm 

that the SAP11 effector homolog genes cluster based on their patterns of 

interaction with the different TCP (sub)classes.  

 

Figure 5.3.3: SAP11 homolog genes cluster based on their patterns of interaction with the 

different TCP (sub)classes. Radial phylogenetic tree based on the SAP11 homolog proteins 

from different phytoplasma isolates. The phylogenetic tree has been generated via the 

MEGA software using the Maximum Likelihood algorithm. The boxes indicate Y2H results. 

Based on the Y2H results, the protoplast assays, the phenotypes of the cognate SAP11 over-

expression lines (Chang et al. 2018) and the phylogeny, different clades were established. 

The blue clade includes the SAP11 homologs that can interact with Class I TCPs, the red clade 

includes the SAP11 homologs that can interact with Class II CIN TCPs. Additionally, SAP11MBSP 

interacts only with CYC/TB1 (green circle) while SAP11ATP interacts with both Class I and Class 

II CIN (yellow). The pictures of Arabidopsis thaliana stable transgenic lines of the cognate 

SAP11 effector homologs as indicated in the phylogenetic tree are displayed for each clade. 

For example, SAP11AYWB stable expression in Arabidopsis lines lead to crinkled leaves and 

witches’ broom symptoms  
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The clades established in Chapter 4 are now indicating the TCP range for each 

SAP11 subgroup. First of all, the SAP11 clades share the ability to interact with class 

II CYC/TB1-TCPs. The four SAP11 effector homologs SAP11AYWB, SAP11MBSP, SAP11WBDL 

and SAP11SPLL from three distinct SAP11 clades interact and destabilise members of 

class II CYC/TB1-TCPs. The stable expression of SAP11AYWB and SAP11MBSP in A. 

thaliana lines is consistent with this, as the increased stem is similar to the brc1 brc2 

double (Col-0) mutant line (Aguilar-Martinez et al., 2007; Pecher et al., 2019). 

The red clade comprises closely related SAP11 effector homologs and 

SAP11AYWB. The members of this clade share the ability to interact with class II CIN 

TCPs and class II CYC/TB1; however, they do not target class I TCPs. This was proved 

by Y2H and later complemented by protoplast degradation assays using SAP11AYWB 

as a candidate (Chapter 5). These patterns of interaction and destabilisation are 

reflected by the phenotype of the transgenic line that stably produces SAP11AYWB 

which shows crinkled leaves, phenocopying the phenotype of the 35S::miR319a x 

35S::miR3TCP line where CIN-TCPs are knocked down (Efroni et al., 2008; Sugio et al., 

2011a; Pecher et al., 2019) and increased stem production (Aguilar-Martinez et al., 

2007; Pecher et al., 2019).  

The clade of the Class I interactors (blue) includes closely related SAP11 

effector homologs that specifically interact with both Class II CYC/TB1 and Class I 

TCPs but not with Class II CIN TCPs. I predicted two distinct clades in Chapter 4 (Figure 

4.3.1), but the two SAP11 clades are combined into one through their ability to bind 

to class I TCPs in yeast. The protoplast degradation assays indicate but did not 

confirm that Class I interactors destabilise class I TCPs. I also showed that SAP11SPLL 

interacts specifically with the TCP domain of class I TCP members (Figure 5.2.2), 

which confirms that the SAP11 effector specifically interacts with the conserved TCP 

domain for all three (sub)classes. Although there are no transgenic lines that stably 

express SAP11SPLL or SAP11WBDL, the phenotypes of the Arabidopsis lines that produce 

SAP11OYM or SAP11PnWB display increased stem production (Chang et al., 2018). There 

is little evidence that the A. thaliana transgenic lines that produce class I interactors 

such as SAP11PnWB and SAP11OY-M show symptoms that phenocopy the mutants of 

class I TCPs in A. thaliana, as class I TCPs are genetically redundant (Aguilar-Martínez 
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and Sinha, 2013). Clear phenotypes of class I TCP mutants require multiple knock-

downs (Aguilar-Martínez and Sinha, 2013).  

The clade of the Class II interactors (red) includes closely related SAP11 gene 

homologs that can interact specifically with both Class II CYC/TB1 and Class II CIN 

TCPs but not with Class I TCPs. The interaction with either class II CIN or class I TCP is 

explained by the SAP11 chimaera study. The same SAP11 region provides the binding 

specificity toward either class I or class II CIN-TCP (see Discussion point 5.3.5). 

The SAP11MBSP and SAP11ATP genes form two distinct monophyletic groups 

and have unique abilities to interact with the TCP (sub)classes. Y2H analysis and 

protoplast degradation assays showed that SAP11MBSP binds and destabilises class II 

CYC/TB1 only but not interact class I or class II CIN-TCPs. This indicates that the 

sequence of SAP11MBSP lacks the specific residues/region necessary for the binding to 

class I and class II CIN.  

Surprisingly, SAP11ATP is the only SAP11 effector homolog that interacts with 

the three TCP(sub)classes in yeast. It would be important to test the destabilisation 

patterns of SAP11ATP toward the different TCP (sub)classes in A. thaliana mesophyll 

protoplasts. Another study showed that SAP11ATP did not destabilise class I TCP14 or 

TCP20 in Arabidopsis protoplasts, although the other class I TCP members have not 

been studied (Chang et al., 2018). Nonetheless, the paper found that SAP11ATP 

partially destabilised class II CIN-TCPs and also found that the stable expression of 

this effector homolog in A. thaliana triggers crinkled leaves, consistent with its ability 

to interact with class II CIN-TCPs (Chang et al., 2018). Additionally, a study found that 

SAP11ATP binds to class II CIN-TCP homologs MdTCP25 (AtTCP4 homolog) and 

MdTCP24 (AtTCP13 homolog) (Janik et al., 2017).  

I initially hypothesised that SAP11PLYDY.1 and SAP11PLYDY.2 could be either 

duplicated genes or two versions that resulted from genetic transfer from another 

strain. I show here that SAP11PLYDY.2 belongs to the same clade as SAP11SPLL and 

interacts with both class II CYC/TB1 and class I TCPs. SAP11PLYDY.1 is almost identical 

to SAP11AYWB and therefore could interact with class II CIN and class II CYC/TB1, 

although I did not test it. It is highly probable that the two SAP11 effector homologs 
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have clear distinct patterns of interaction. On the other hand, sample p45 provides 

an example of gene duplication that results in two copies of SAP11 that are very 

similar (see General Discussion about the evolution of SAP effectors).  

To summarise, the hypothesis is confirmed, SAP11 effector homologs have 

evolved to bind and destabilise the TCP (sub)classes differentially. The analysis of the 

phylogenetic trees and the interaction assays establish the hypothesis that there is a 

SAP11 region that is responsible for the binding specificity to either Class I TCPs or 

Class II CIN-TCPs. This TCP interaction domain has been defined via chimaera studies 

and is comprised of both the intra-region and the TCP binding domain. The results 

presented in the last two chapters establish that some SAP11 effector homologs 

interact with Class I TCPs but SAP11AYWB cannot interact with Class I TCPs. This brings 

the hypothesis that AYWB phytoplasma may have additional effectors that interact 

with class I TCPs, extending the range of interaction with each TCP (sub)classes. The 

next chapter will address this hypothesis. 
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6.1: Introduction  

 The two previous chapters show that SAP11 effectors have evolved to 

interact with plant TCP (sub)classes differentially. The previous chapter shows that 

SAP11 effector homologs target all the three TCP (sub)classes: class I TCP, class II CIN-

TCP and class II CYC/TB1-TCP. SAP11 effector homolog from AY-WB phytoplasma 

strain binds and destabilises class II CIN and class II CYC/TB1 leading to characteristic 

symptoms (Chapter 3 and Chapter 5) (Sugio et al., 2011a, 2014; Pecher et al., 2019). 

However, SAP11AWYB does not interact with class I TCPs, while other effector 

homologs such as SAP11SPLL do so. The two previous chapters suggest that the SAP11 

ability to interact with the plant TCP family seems to be extended across the 

phytoplasma isolates. Considering the importance of the TCP in the plant 

development and plant defence and the phytoplasma ability to display its effector 

genes in PMU structures, allowing for potential horizontal gene transfer, it would be 

fair to presume that other SAP effectors could also target the TCP family.  

 The AY-WB phytoplasma genome was sequenced to completion in 2006 with 

56 candidate effectors identified (Bai et al., 2006). The AY-WB genome contains four 

PMUs with SAP54AYWB and SAP11AYWB residing in PMU2 (Bai et al., 2006; Sugio and 

Hogenhout, 2012) (see also Chapter I General Introduction and Chapter 4 

introduction). Aside from the characteristic genes that comprise PMU elements, 

multiple genes encoding for secreted proteins also reside in the four PMUs, including 

41 out of the 56 predicted effectors (Bai et al., 2006, 2009). Interestingly, four genes 

encoding for secreted candidate effectors reside next to SAP11 in PMU2 (Bai et al., 

2006, 2009; Sugio and Hogenhout, 2012) (Figure 6.1.1). They were initially selected 

as candidate effectors because of the presence of signal peptide and the absence of 

additional transmembrane domain for each candidate (Bai et al., 2009). They are 

designated as SAP56, SAP66, SAP67 and SAP68. 

 A study from our lab showed that most SAP effectors are differentially 

expressed in either A. thaliana plant host or M. quadrilineatus insect host (MacLean 

et al., 2011). Along with SAP11, the four neighbouring effectors SAP56, SAP66, 

SAP67, SAP68 are up-regulated in A. thaliana compared to M. quadrilineatus at a 
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similar transcription level as they are in an operon-like region (MacLean et al., 2011). 

Based on this, the assumption would be that the four SAP candidate effectors are 

expressed inside the plant host and have a role in targeting plant components.  

 AY-WB phytoplasma infection modulates the insect-vector fitness when 

feeding to the plant host (Sugio et al., 2011b). Infected plants become more 

attractive to M. quadrilineatus, which is the main insect vector of the strain but also 

allow non-host insect vectors such as D. maidis to feed, reproduce and survive longer 

(Purcell, 1988; Kingdom and Hogenhout, 2007; Sugio et al., 2011b). Indeed, D. maidis, 

as a maize specialist, does not lay eggs on dicot plant species and usually die within 

a few days (Sugio et al., 2011b). The stable expression of SAP11AYWB in A. thaliana 

lines leads to dramatic changes in both the plant development via the characteristic 

symptoms and plant defence upon destabilisation of class II CIN-TCP members, 

resulting in the down-regulation of the LOX2 gene and thus the JA synthesis 

(Schommer et al., 2008; Sugio et al., 2011a; Pecher et al., 2019a). The down-

regulation of JA leads to the increase of fertility of M. quadrilineatus (Sugio et al., 

2011a) but does not induce an increase in the survivability of D. maidis, suggesting 

that other SAP effectors could do so (Sugio et al., 2011b). 

 

Figure 6.1.1: The PMU1 and PMU2 of the AY-WB phytoplasma strain. The black line 

indicates the AY-WB chromosome. ORFs are indicated with the coloured boxes and 

paralogous genes have the same colours. Grey boxes indicate unique genes. Within PMU2, 

SAP54 and SAP11 are indicated with black arrows and label. The letter S indicates candidate 

protein effectors, which latter were described as SAP56, SAP66, SAP67 and SAP68. The rest 

of the label describes the characteristic genes that feature PMUs (see General Introduction 

and introduction Chapter 4). Figure adapted from Sugio et al., 2012. Current Opinion in 

Microbiology. 
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 A former PhD student of my lab previously studied SAP56, SAP66, SAP67 and 

SAP68 effectors to determine their potential role in leafhopper-Arabidopsis 

interactions (Kingdom, 2012). First, there is no visible change of phenotype when 

either of the four SAP effectors is stably expressed in A. thaliana lines compared to 

the wild-type. Nonetheless, she tested if the SAP effectors could induce a fertility 

boost in M. quadrilineatus or help D.maidis to survive longer in a non-host plant such 

as A. thaliana. As she noticed more variation in her insect assays compared to 

previous experiments, she included additional conditions, such as changes in 

temperature (Kingdom, 2012). She found that the stable expression of SAP67 or 

SAP68 in Arabidopsis thaliana lines induced the increase of M. quadrilineatus nymph 

production in cold conditions, but did not increase the survivability of D.maidis in A. 

thaliana. 

On the other hand, the stable expression of SAP56 or SAP66 in Arabidopsis 

thaliana lines merely increased the fecundity of M. quadrilineatus but did increase 

strongly (34 and 37% respectively) the survivability of D. maidis. Although there is 

some variability in the increase of the fertility of M. quadrilineatus, her results 

confidently show that at least SAP56 and SAP66 increased the survivability of a non-

host insect vector when overexpressed in A. thaliana. This result suggests that some 

of these SAP effectors target key plant components and modulate the plant host to 

the advantage of either the pathogen or insect vectors. 

 In parallel, our collaborator Dr Richard Imminck and his lab assessed if the 

phytoplasma effectors could target specific families of plant transcription factors in 

A. thaliana using a large-scale yeast-two hybrid screening (Correa Marrero and 

Capdevielle, unpublished). They screened 21 phytoplasma effectors, including SAP54 

and SAP11 which were already found to interact with MADS-box transcription factors 

and TCP transcription factors respectively (MacLean et al., 2011; Sugio et al., 2011a, 

2014; Pecher et al., 2019), and a library of A. thaliana transcription factors and 

transcription regulators (Pruneda-Paz et al., 2014). They found that the four effectors 

SAP56, SAP66, SAP67 and SAP68 interacted with members of plant TCPs. 
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 Based on this, important questions arise. Do the SAP effectors from the same 

genetic island interact with plant TCPs using my yeast-two hybrid system? If yes, do 

they have distinct patterns of destabilisation with the TCP (sub)classes compared to 

SAP11AYWB? Do the SAP effectors target the TCP domain in a similar fashion as SAP11 

effector homologs? 

The previous results establish the hypothesis that SAP effectors from the 

same genetic island interact with plant TCPs and that they have a different 

interaction pattern than SAP11AYWB, leading to new effects on the fitness of non-

host insect vector D.maidis.  

  I decided to test the interaction between the four SAP effectors and members 

of the TCP (sub)classes in yeast, using my established controls SAP11AYWB, SAP11MBSP, 

SAP11WBDL and SAP11SPLL. I found that SAP56, SAP66 and SAP68 interacted with plant 

TCP (sub)classes, thus confirming the global yeast-two hybrid screening of our 

collaborators. Most importantly, I found that SAP56, SAP66 and SAP68 target class I 

TCPs in yeast. Then, I tested if the SAP effectors could target the TCP domain 

specifically, in a similar fashion than SAP11 effector homologs. Using TCP domain 

constructs of class I TCP members, I did not find a positive interaction between any 

of the SAP effectors and the TCP domain, suggesting that the SAP effectors target a 

different region of the TCP protein. I did not have time to test which TCP region is 

targeted by these SAP effectors during my PhD. 

6.2: Results 

6.2.1 SAP effectors from SAP11AYWB genetic island can interact with TCP, including 

Class I TCPs 

Given the ability of SAP11 effector homologs to interact with TCP (sub)classes 

and based on the importance of the TCP family as a target of different effectors from 

different pathogens (Sugio et al., 2011a; Janik et al., 2017; Yang et al., 2017; Pecher 

et al., 2019), I wanted to extend my analysis and test if other phytoplasma effectors 

target the TCP family. The best candidates are four effectors from the model AY-WB 

phytoplasma strain. AY-WB SAP effector SAP56, SAP66, SAP67 and SAP68 belong to 
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the same genetic island as SAP11AYWB, i.e., in the AY-WB Putative Mobile Unit PMU2 

(Figure 6.2.1 A).  

 

Figure 6.2.1: SAP effectors from SAP11AYWB genetic island can interact with TCP, including 

Class I TCPs. Yeast two-hybrid analysis of AY-WB phytoplasma SAP effectors SAP56, SAP66, 

SAP67 and SAP68, belonging to the genetic island of SAP11AYWB and Arabidopsis thaliana 

Class I, Class II CIN and Class II CYC/TB1-TCPs. SAP effector proteins and pDEST-GBKT7 empty 

vector control were fused to the DNA binding domain of the GAL4 transcriptional activator 

(bait) while TCP domains and pDEST-GADT7 empty vector control were fused to the 

transcription activation domain of GAL4 (prey). Phytoplasma SAP11 effector homologs 

SAP11AYWB, SAP11MBSP, SAP11WBDL and SAP11SPLL were used as positive control for interaction 

with the different TCP (sub)classes. Yeast colonies co-expressing bait and prey or empty 

plasmids combinations were grown in synthetic dropout (SD) media lacking either leucine 

and tryptophan (-L,-W) (left) with growths of colonies indicating the presence of both 

plasmids; or leucine, tryptophan, adenine and histidine (-L, -W, -A, -H) (right) with growths 

of colonies indicating interactions of bait (SA homologs) and prey (TCP homologs). The 

experiment was repeated three times with three different batches of transformed yeasts 

and these showed identical results as shown. 
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The Y2H result shows that SAP56, SAP66 and SAP68 interacted with TCP 

proteins while SAP67 did not show interaction with any TCP candidate (Figure 6.2.1 

B). First, the four SAP11 effector homologs bind TCP (sub)classes under the selective 

media SD-LWAH, according to their established interaction patterns (see previous 

Experimental Chapters). It is important to note that the yeast growth of the colonies 

overexpressing SAP56 effector and Class II CYC/TB1-TCP18 in the selective media SD-

LWAH are due to contamination, as shown in another repetition in Appendix V- 

figure 2. The same is true for colonies expressing SAP56 and class II CIN-TCP2. SAP66 

and SAP68 did show interaction with Class II CIN-TCP13. 

Most interestingly, the three effectors SAP56, SAP66 and SAP68 interacted 

with Class I TCP6, TCP9 and TCP14. This result is interesting, as SAP11AYWB does not 

interact with Class I TCP members, but additional SAP effectors from the same 

genetic island can.  

To conclude, additional SAP effectors also interacted with TCP members. 

Surprisingly, three SAP effector genes, SAP56, SAP66 and SAP68, located in the 

genetic island of AY-WB phytoplasma SAP11 gene, encode SAP effector proteins that 

bind to Class I TCPs, while SAP11AYWB cannot. This result suggests that the AY-WB 

phytoplasma strain can extend the binding range of SAP11AYWB toward the TCP 

(sub)classes via the secretion of additional SAP effectors that interact with Class I 

TCPs. The next step is to test if SAP56, SAP66 and SAP68 also target the TCP domain, 

similarly to SAP11AYWB.  

6.2.2 SAP effectors from SAP11AYWB genetic island cannot interact with the TCP 

domain of Class I TCPs, while SAP11SPLL can 

Based on the previous result that shows that additional SAP effectors target 

the TCP family, I wished to investigate if they can also target the TCP domain, similarly 

to SAP11 homologs. This would indicate that the ability to target the TCP domain is a 

global strategy among phytoplasma isolates via the expression of multiple SAP 

effectors. 
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To do so, I used both Class I interactors SAP11WBDL and SAP11SPLL and the four 

SAP effectors SA56, SAP66, SAP67 and SAP68 and tested their interaction against the 

TCP domains of A. thaliana Class I TCP6, TCP8, TCP9, TCP14 and TCP15. The Yeast 

Two-Hybrid results show that SAP11SPLL targetted the TCP domain of Class I TCP6, 

consistent with the previous Yeast-Two Hybrid experiment (Figure 6.2.2). None of 

the four SAP effectors tested interacted with the TCP domain of Class I TCPs. 

 

Figure 6.2.2: SAP effectors from SAP11AYWB genetic island does not interact with the TCP 

domain of Class I TCPs, while SAP11SPLL can. Yeast two-hybrid analysis of AY-WB 

phytoplasma SAP effectors SAP56, SAP66, SAP67 and SAP68, belonging to the genetic island 

of SAP11AYWB and the TCP domains of Arabidopsis thaliana Class I TCP6, TCP8, TCP9, TCP14 

and TCP15. SAP effector proteins and pDEST-GBKT7 empty vector control were fused to the 

DNA binding domain of the GAL4 transcriptional activator (bait) while TCP domains and 

pDEST-GADT7 empty vector control were fused to the transcription activation domain of 

GAL4 (prey). Yeast colonies co-expressing bait and prey or empty plasmid (pDEST-GADT7) 

combinations were grown in synthetic dropout (SD) media lacking either leucine and 

tryptophan (-L,-W) (left) with growths of colonies indicating the presence of both plasmids; 

or leucine, tryptophan and histidine with the addition of 20 mM 3-Amino-1,2,4-triazole (3AT) 

(used to suppress auto-activation)  (-L, -W, -H) (middle) or leucine, tryptophan, adenine and 

histidine (-L, -W, -A, -H) (right) with growths of colonies indicating interactions of bait (SAP11 

homologs and other SAP effectors) and prey (TCP domains of TCP homologs). The experiment 
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was repeated three times with three different batches of transformed yeasts and these 

showed identical results as shown. 

Taken together, these results suggest that SAP56, SAP66, SAP68 cannot bind 

to the TCP domain, unlike SAP11AYWB. Additional experiments, such as co-

immunoprecipitation between SAP effectors and the TCP domain of Class I TCPs 

would confirm the Yeast-Two Hybrid result. Future experiments need to be 

performed to investigate which TCP region is targeted by SAP56, SAP66 and SAP68. 

6.3: Discussion 

The results of this chapter show that three out of four effectors, SAP56, SAP66 

and SAP68 from the same genetic island of SAP11AYWB do interact with TCP plant 

family in yeast. This result confirms the global yeast-two hybrid screening performed 

by collaborators. Furthermore, the three SAP effectors were found to interact 

specifically with class I TCP while SAP11AYWB does not. Furthermore, SAP66 and SAP68 

interacted with class II CIN-TCP members. Based on this result, I hypothesised that 

the SAP effectors could interact with the TCP domain, in a similar manner than SAP11 

effector homologs. When I tested this in Y2H, I found that none of the SAP effectors 

could interact with the TCP domain, suggesting that the effectors target other regions 

within TCP.  

The Y2H results of this chapter refine the global yeast-two hybrid screening 

performed by our collaborators. Indeed, our collaborators also found that SAP56, 

SAP66, SAP67 and SAP68 interacted with the different TCP (subclasses). In my case, 

the Y2H system established in this thesis relies on strong positive and negative 

controls. Indeed, the four SAP11 effector homologs have distinct interactions and at 

least one effector homolog interacts with one different TCP (sub)classes. As such, the 

positive interactions between class I TCPs and SAP effectors are unlikely to be the 

result of unspecificity. However, these results are a good start but it is undeniable 

that additional experiments need to be performed to characterise the interaction 

more thoroughly. For example, transient protoplast degradation assays could be 

performed to test if the SAP effectors destabilise the TCPs in the same way as SAP11. 

I did not have time to test it.   
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Based on the initial Y2H presented in Figure 6.2.1, I wished to determine the 

specific region that is targeted by these effectors. As they reside in the same genetic 

island as SAP11 and ca interact with TCP targets, an intuitive guess would be that 

they target the TCP domain. This would indicate that the ability to interact with the 

TCP domain, the conserved region of TCP proteins, is a global strategy of AY-WB 

phytoplasma strain. Under this premise, the AY-WB strain would use an array of 

effectors to specifically target the TCP domain, leading to dramatic changes in the 

plant development and defence. However, I did not find an interaction between any 

of the four SAP effectors and the TCP domain of class I TCP (sub)classes. Further 

experiments need to be completed to determine the TCP region that is targeted by 

SAP56, SAP66 and SAP68. The TCP domain is usually located at the N-terminal part 

of the TCP proteins of the three (sub)classes (Martín-Trillo and Cubas, 2010). 

Considering this, I started to generate TCP mutants that either lack the N-terminal 

part with or without the TCP domain, and the C-terminal part with or without the 

TCP domain and test the interaction with the three SAP effectors in Y2H (not shown).  

Nonetheless, the preliminary functional analysis of these SAP effectors, 

coupled with the insect assays generated previously (Kingdom, 2012), shed some 

light on the possible mechanisms behind the role of these effectors. We know that 

SAP11 destabilises CIN-TCPs, leading to a down-regulation of JA and therefore the 

increase of M. quadrilineatus. Some SAP effectors such as SAP68 also lead to an 

increase of fertility of M.quadrilineatus and also target class II CIN-TCPs. Following 

the same logic, could the increase of survivability of D. maidis be attributed to the 

targeting of class I TCPs by SAP effectors? Based on the review of the different roles 

of class I TCPs in the plant development and plant immunity (see Chapter 5 discussion 

and General Introduction), I hypothesised that the downregulation of class I TCPs 

could lead to a decrease in the ETI or PTI of the plant host. This downregulation could 

help non-host insect vectors such as D.maidis to perform better on A. thaliana when 

the SAP effectors are stably expressed. To answer this hypothesis, the initial insect 

assays using the 35S::SAP56, 35S::SAP66, 35S::SAP67, 35S::SAP68 A. thaliana lines 

need to be repeated. Indeed, it is hard to correlate the patterns of interaction of the 

SAP effectors with either class II CIN or class I and their ability to induce either M. 
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quadrilineatus fertility or D. maidis survivability. Nonetheless, I would need class I 

TCP mutant lines, such as tcp 8,14,15, triple mutants to assess if D. maidis survives 

longer when exposed to this TCP mutant line. This could confirm the role of the class 

I TCPs in the plant defence on the one hand, and the role in the insect non-host 

resistance on the other hand. 
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7.1 Summary and implication of the key findings 

The SAP11 effector homolog from AY-WB phytoplasma strain binds and 

destabilises the class II TCP(sub)classes, leading to dramatic changes in both the plant 

development and the plant defence (Sugio et al., 2011a; Sugio and Hogenhout, 2012; 

Sugio et al., 2014; Pecher et al., 2019). Concerning the plant development, the 

destabilisation of the class II CIN TCPs leads to the characteristic crinkled leaves 

(Efroni et al., 2008; Schommer et al., 2008), while the destabilisation of class II 

CYC/TB1 leads to the witches’ broom phenotype (Aguilar-Martinez et al., 2007; 

Pecher et al., 2019). Concerning the plant defence, the class II CIN-TCPs 

destabilisation leads to a downregulation of the LOX2 gene, involved in the early 

steps of the synthesis of JA, an important plant hormone that confers resistance 

against necrotrophic pathogens and herbivores (Reymond and Farmer, 1998; Li et al., 

2001; Howe and Jander, 2008; Browse, 2009). 

First, using Y2H, I confirmed that SAP11AYWB and SAP11MBSP have distinct but 

overlapping patterns of interaction with both A. thaliana and Z. mays class II TCP 

(sub)classes. I extended the analysis using two SAP11 effector homologs from 

distantly related phytoplasma strains (Chung et al., 2013). Testing four SAP11 

effector homologs from distantly related phytoplasma strains allowed me to identify 

trends in the function of the effector across phytoplasma strains. As such, I also found 

that SAP11WBDL and SAP11SPLL have distinct patterns of interaction with the TCP 

(sub)classes. SAP11WBDL and SAP11SPLL interacted with A. thaliana and Z. mays class II 

CYC/TB1-TCPs but not class II CIN-TCPs. Additionally, SAP11AYWB, SAP11WBDL and 

SAP11SPLL interacted with CII-TCPs, a maize-specific (sub)class.  

I then determined the specific region within TCP that was targeted by SAP11 

and found that the four SAP11 effector homologs target the TCP domain of their 

cognate TCP protein partners. This indicates that the ability to target the conserved 

TCP domain could be extended among the phytoplasma strains, allowing them to 

target the TCP proteins across dicots and monocot plant (Cubas et al., 1999). Using 

chimaera constructs, I found that SAP11AYWB and SAP11MBSP bind the helix-loop-helix 

region of the TCP domain. This region is required for the homo/hetero-dimerisation 
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of the TCP proteins and configuration of the TCP domain beta-sheets allowing the 

TCP dimers to bind to the promoter of the target gene (Aggarwal et al., 2010; Pecher 

et al., 2019).  

Based on these findings, I performed an enlarged phylogenetic and functional 

analysis of the SAP11 effector homologs from various phytoplasma isolates. I found 

that the SAP11 gene has a different evolutionary history from the core genome, 

represented here by the 16S rDNA sequences that are used to define phytoplasma 

species (IRPCM, 2004). The phylogenetic analyses and further functional analyses 

showed that SAP11 gene has evolved based on its ability to interact with the different 

TCP (sub)classes of the phytoplasma isolates. Furthermore, some SAP11 effector 

homologs interact with the class I TCPs, which was not established before. I 

correlated the TCP interaction patterns of four distinct SAP11 homologs with their 

TCP destabilisation patterns using protoplast degradation assays, although more 

repetition needs to be done for class I TCP degradation. I further characterised the 

region within SAP11 that provides the binding specificity toward class II CIN-TCP and 

class I TCP. I found that the NLS domain is not required for the binding specificity.  

Finally, I found that other AY-WB effectors from the same genetic island as 

SAP11AYWB also interacted with TCP (sub)classes, highlighting the importance of 

targeting this plant family. This indicates that some phytoplasma isolates rely on a 

set of effectors to extend their binding range toward different classes of plant 

targets.  

Altogether, I have generated a body of evidence that phytoplasma SAP11 

effectors have diverged to target members of different TCP subclasses. This work 

highlights how experimental analyses of an effector can complement phylogenetic 

analyses. Moreover, this work can serve as a platform for future studies about SAP11 

effector homologs. Indeed, the model exposed in Figure 5.3.3 could serve as a 

predictive model for future studies. The binding range of newly sequenced SAP11 

effector homologs could be determined via implementation in the phylogenetic tree.  

We still have much to learn about the genetic features that phytoplasma 

genome display, especially the PMUs. We still do not know about the origins and 



Chapter 7 

143 

 

dynamics of the PMUs (Chung et al., 2013; Ku et al., 2013; Music et al., 2019). For 

this, we would need to sequence more phytoplasma genomes and perform 

comparative genome analyses. The findings of this thesis would be improved if more 

knowledge was available on PMU structures of each SAP11 gene across the 

phytoplasma isolates. Concerning the interaction between SAP11 and the TCP 

targets, the results generated via the chimaeras approach uncovered the regions that 

are involved in the binding specificity for both actors. However, crystal structures of 

the SAP11-TCP complex would help uncover the key residues involved in the 

interaction. Finally, as discussed, future studies to determine the mechanisms behind 

the destabilisation of TCPs by SAP11 are required. 

 In this section, I will first summarise and discuss the evolution of the SAP 

effectors across the phytoplasma isolates. Secondly, based on this, I will discuss the 

strategies that different phytoplasma isolates use to promote the bacterial virulence 

and/or the fitness of the leafhopper insect vectors.  

7.2 Technical Discussion 

7.2.1 Technical Discussion about Y2H 

As I previously discussed, the Y2H experiments of this thesis relied on strong 

positive controls. For example,  AtTCP2 and AtTCP13 were selected as positive 

controls for a screening of the interaction between SAP effectors and class II CIN-

TCPs. Nonetheless, it is important to underline that the rest of the CIN-TCPs could 

still interact with the SAP effectors. As previously discussed, the absence of 

interaction could be due to either (1) absence of interaction due to protein misfolding 

in yeast, (2) inserts in plasmids, preventing the expression of proteins in yeast or (3) 

no interaction (see Discussion Chapter 3).  

Some results indicate the limitations of the Y2H system. For example, the Y2H 

result of figure 6.2.1 suggests that SAP67 does not show interaction with any of the 

TCP proteins tested. One reason could be that the construct is not functional in yeast. 

In that case, additional experiments such as protoplast assays are required to confirm 

the interaction patterns observed via Y2H. Future experiments should be aimed at 
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repeating protoplast degradation assays between SAP67 and the TCP candidates. The 

results of figure 3.2.1 show that SAP11WBDL interacts with AtTCP12 but not AtTCP18. 

This was later proved by the protoplast degradation assays (Chapter 5). This indicates 

sub-specificities within the TCP domain, suggesting that multiple residues within the 

TCP domain might be involved in the interaction with SAP11.  

The differences in the Y2H results between the TCP proteins from A. thaliana 

and Z. mays (figure 3.2.6) suggest that the interaction patterns between SAP 

effectors and TCP proteins might differ between the hosts. This raises the question 

of how generalized the Y2H results are across the plant species? The TCP family is 

conserved across the plant species. The results presented here show that different 

SAP11 effector homologs interact with TCP proteins from monocotyledon and 

dicotyledon species. Furthermore, the SAP11 effector homologs specifically interact 

with the TCP domain, which defines the TCP family across the plant species. This 

indicates that the results can be generalized to a certain extent across the plant 

species (More information on this on General Discussion 7.4).  

7.3 The evolution of phytoplasma effectors 

The evolution of SAP11 within the phytoplasma genomes is fascinating and 

could be explained in part by the PMUs that feature phytoplasma genomes genes 

(Bai et al., 2006; Dickinson, 2010; Toruño et al., 2010). As mentioned, I cannot 

confirm that the SAP11 genes of the 21 phytoplasma isolates are all expressed from 

PMU structures. However, at least ‘Ca. P. asteris’ AY-WB strain, MBSP strain and 

Miaz9 isolate are found to express SAP11 in PMUs (Bai et al., 2006; Sugio and 

Hogenhout, 2012; Orlovskis et al., 2017). Some SAP11 genes of phytoplasma isolates 

could also be present in PMU-like clusters, which are degenerate versions of PMUs 

(Bai et al., 2006; Hogenhout and Loria, 2008).  

In bacteria, the functionalisation of effectors from the same family relies on 

either gene duplication or horizontal gene transfer (Lerat et al., 2005; Treangen and 

Rocha, 2011; Remigi et al., 2011). The horizontal gene transfer allows the pathogen 

to acquire novel virulence genes, which for phytoplasma could be due to PMUs (Bai 
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et al., 2006; Dickinson, 2010; Chung et al., 2013; Ku et al., 2013). There are three 

outcomes in a gene duplication event that shapes the gene function: neo-

functionalization, sub-functionalization or gene conservation (redundancy or 

dosage) (Ohno, 1970; Hahn, 2009). For example, the type III GALA effector family 

from Ralstonia solanacearum underwent functional diversification via the 

neofunctionalization of a member of the family (Remigi et al., 2011). Phytoplasma 

effectors have evolved and could follow these outcomes. 

As discussed previously, the rate of evolution of PMU-related genes such as 

SAP11 is likely to be faster than the rate of genes that reside outside PMU structures. 

This compartmentalisation resembles the “two-speed genome” model of 

filamentous pathogens (Croll and McDonald, 2012; Dong et al., 2015). Both 

Phytophthora infestans and phytoplasmas have a significant portion of repeat-rich 

regions within their genome and display their effector genes in mobile elements 

(Raffaele et al., 2010; Dickinson, 2010; Chung et al., 2013; Ku et al., 2013; Dong et al., 

2015). This strategy allows several evolutionary advantages to phytoplasma (Croll 

and McDonald, 2012). For example, compartmentalised PMUs allow co-existing 

phytoplasma isolates to acquire new effector genes, thus expanding the function of 

the effector. Secondly, the higher rate of evolution within PMU structures could 

allow for a higher rate of substitution. In that case, the newly acquired effector gene 

could be beneficial for phytoplasma, allowing to expand its host range. On the other 

hand, a gene that does not benefit to phytoplasma in certain plant hosts might be 

negatively selected and its frequency drop in the population (Croll and McDonald, 

2012). 

As described in the review of Dong et al., 2015, several filamentous plant 

pathogens have evolved by jumping from one host to the next (Roy, 2001; Dong et 

al., 2015). The host jump is expected to impact the functional evolution of the 

effectors as they function inside the plant cell (Dong et al., 2015). For example, in P. 

infestans, some effector genes have adapted to the new plant host and either 

improved or expanded their activity (Raffaele et al., 2010; Dong et al., 2014, 2015). 
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Consistent with the two-speed genome, genome compartments underwent 

accelerated gene evolution after a host-jump (Raffaele et al., 2010).  In the case of 

phytoplasma, the horizontal transfer of SAP effectors via PMUs between two 

phytoplasmas could facilitate host jump. One generalist strain could acquire a 

specialised effector from a second generalist strain that could expand the host range 

of the first strain.  

7.3.1 The evolution of SAP11 effector homologs 

A SAP11 effector homolog that can target another (sub)class in addition to 

class II CYC/TB1-TCPs is likely to be beneficial for the pathogen and therefore be 

positively selected over a SAP11 gene that expresses an effector that destabilises 

class II CYC/TB1-TCPs only.  

SAP11p45.1 and SAP11p45.2 are an example of gene duplication of an effector 

gene that results in redundancy. Indeed, both effectors are almost identical and are 

expressed from the same phytoplasma isolate. SAP11PLYDY.1 and SAP11PLYDY.2 could be 

duplicated gene that resulted in the neofunctionalization of the duplicated gene, 

allowing it to target a new (sub)class of TCP. However, this is unlikely considering 

how similar SAP11PLYDY.2 is to SAP11OY-M, which belong to the same SAP11 clade. This 

example underlines the possible horizontal transfer of SAP11 from two generalist 

strains (Oshima et al., 2001; Chen et al., 2011). OY-M phytoplasma strain and PLYDY 

phytoplasma are likely to share a plant host.  

Some phytoplasma isolates rely on other strategies, depending on their host 

range, the plant host and their insect vectors. For example, MBSP is a maize 

specialist, and therefore could be less likely to have been in contact with other 

phytoplasma strains and acquire a SAP11 effector homolog able to target other 

(sub)classes. SAP11MBSP has a narrower binding range toward the plant TCP (Pecher 

et al., 2019). However, sequencing of the genomes of MBSP isolates in various 

locations of Brazil showed that SAP11MBSP remains conserved (Orlovskis et al., 2017). 

We recently showed that the stable production of SAP11MBSP does not downregulate 

the JA pathway and does not significantly increase the fertility of D. maidis or M. 

quadrilineatus in maize (Pecher et al., 2019). This work suggests that the gene 
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underwent purifying selection via other means than the increase of the fertility of D. 

maidis (Pecher et al., 2019). So how does SAP11MBSP promote the fitness of MBSP 

phytoplasma strain or D. maidis? A few hypotheses emerge from this. First, D. maidis 

co-evolved with MBSP since the domestication of maize (Nault, 1980). Therefore, the 

leafhopper might not benefit from downregulation of JA in maize. Secondly, targeting 

class II maize CYC/TB1-TCPs leads to additional effects compared to A. thaliana 

CYC/TB1-TCPs, such as inhibition of female flower production (Pecher et al., 2019). 

Alternatively, the maize TCPs might have additional roles than A.thaliana TCPs, 

suggesting that downregulating class II CIN-TCP and CII-TCPs is not viable for the 

fitness of MBSP (Pecher et al., 2019).   

SAP11 effector homolog from ‘Ca. P.mali’ strain AT provides yet another 

insight into the functional diversification of the SAP11 gene. SAP11ATP is also 

expressed from a specialist phytoplasma strain but differs from SAP11MBSP by its 

ability to interact with all the TCP (sub)classes. The strategy could be to have a multi-

purpose SAP11 effector that has an extensive spectrum of interaction with the 

TCP(sub)classes  (Janik et al., 2017). As discussed, ‘Ca. P.mali’ has a few repeated 

regions, only one PMU (Ku et al., 2013) and no plasmid in its genome (Kube et al., 

2008). 

Finally, the evolution of the NLS domain of SAP11 effector homologs (see 

Chapter 4) suggests that the NLS domain got re-shuffled in between the N-terminal 

and the C-terminal part. The SAP11 effector homologs tend to cluster based on the 

localisation of their NLS domain. Since the NLS domain is essential for the function of 

the effector, it would be interesting to know if the ancestral SAP11 effector has its 

NLS domain at the N-terminal, C-terminal or both. Can the position of the NLS explain 

the difference in the function of the effector? We could test if the position of the NLS 

domain correlates different functionality. To test this, we could produce in planta 

SAP11 chimaeras where the N-terminal NLS has been replaced by the C-terminal NLS 

of a homolog and test for difference of phenotype. Most of the SAP11 effector 

homologs that display their NLS domain at the C terminal part can interact with Class 

I TCPs. Therefore, we could produce Class I interactors such as SAP11SPLL in planta and 

test for difference of phenotype. However, a recent study shows that the stable 
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expression of SAP11PnWB, which is predicted to display its NLS domain at the C-

termini, in Arabidopsis does not lead to characteristic phenotypes of the 

destabilisation of Class I TCPs (Chang et al., 2018). As discussed, this is probably due 

to the redundancy of the Class I TCPs. Therefore, such studies would be challenging. 

Nonetheless, the two clades of proteins that differ mainly in the location of their 

essential NLS may provide an interesting lead to study functional diversification of 

effector proteins.  

7.3.2 The evolution of SAP56/66/68 in AY-WB phytoplasma 

Chapter 6 showed that in AY-WB phytoplasma, multiple SAP effectors from 

the genetic island of SAP11 interact with TCP (sub)classes. This could be an example 

of another feature of phytoplasma genomes. As the TCP plant family is at the cross-

road of the plant interactome, some phytoplasma effectors might have been selected 

to target these proteins (Dreze et al., 2011; Mukhtar et al., 2011; Weßling et al., 

2014). Moreover, the sequences of the five SAP effectors are dissimilar (see 

Appendix V – figure 1), and preliminary data suggest that they do not interact with 

the same region within TCPs, suggesting that they have independently evolved to 

interact with different regions of TCP (sub)classes. 

7.3.3 The evolution of SAP05 effector homologs 

The SAP05 effector is another example of phytoplasma effector that has 

evolved based on its interaction pattern with the plant targets. Indeed, Dr Weijie 

Huang from our lab has found that SAP05 interacts with two zinc-finger plant 

transcription factors families: GATA and SQUAMOSA promoter-binding protein-like 

(SPL) (Huang, personal communication). Briefly, he found that SAP05AYWB degrades 

SPL and GATA transcription factors, leading to a disturbance of plant phase 

transitions, reproduction and branching. He extended the analysis using SAP05 

effector homologs from multiple phytoplasma isolates, including phytoplasmas that 

I studied in my PhD. He found that the SAP05 effector homologs differentially 

interacted with the plant SPL and GATA transcription factor families. Some SAP05 



Chapter 7 

149 

 

effector homologs target only SPLs or only GATAs, in a similar fashion than SAP11 

effector homologs with TCP (sub)classes.  

The multiple sequence alignment indicates that SAP05 are more homologous 

than SAP11. Furthermore, some phytoplasma isolates display two copies of SAP05 

that have distinct patterns of interaction with the two plant transcription factor 

families. This suggests that SAP05 effector homologs underwent functional 

diversification, with potential gene duplication, leading to neo-functionalization or 

sub-functionalization of the new copy. As an example, the WBDL phytoplasma strain 

expresses two copies of SAP05. One of them interacts with the GATA family while the 

other one targets the SPL family. This suggests a neofunctionalization of the new 

copy of SAP05 in WBDL phytoplasma strain. In the case of VWBP phytoplasma, the 

two SAP05 copies interact with both GATA and SPL, suggesting redundancy in the 

function of the gene. 

Alternatively, horizontal transfer of SAP05 genes could also occur in specific 

phytoplasma isolates. For example, AY-WB phytoplasma SAP05 gene resides in a 

PMU-like structure (Bai et al., 2006). 

7.4 The role of the phytoplasma effectors in the promotion of the bacterial 

virulence and insect vector fitness 

 In order to promote their fitness, plant pathogens must either avoid the plant 

host defence mechanisms or suppress these defence responses. In addition, plant 

pathogens that rely on insect vectors may increase the fitness of their insect 

vector(s), thus favouring pathogen spread. Diverse strategies are used, from 

modulating the plant immunity (Boller and He, 2012) to altering the plant 

development (Mescher, 2012). Phytoplasma relies on its arsenal of SAP effectors to 

put in place their strategies. Based on the wide variety of symptoms caused by 

phytoplasmas, these strategies are likely to be extremely varied. Symptoms of most 

phytoplasmas indicate a preference to a more biotrophic lifestyle (witches broom 

symptoms). However, some phytoplasmas cause symptoms more associated to a 

necrotrophic lifestyle (Palm wilt, lethal yellowing). To elucidate how these different 
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strategies are implemented by the pathogen we need clear case studies for several 

of phytoplasma isolates. In my thesis, I focussed on those phytoplasma isolates with 

a more biotrophic lifestyle. Therefore, caution should taken when extrapolating the 

results in this thesis to those type of infections that appear to favour a radically 

different lifestyle, most notably a necrotrophic symptomology.   I will summarise here 

the role of SAP effectors to increase the virulence of phytoplasma with different 

symptomology and the insect vector and see how the different strategies fulfil these 

goals. As this thesis underlines, the phytoplasma isolates use distinct means to 

modulate the plant development and defence.  I will, therefore, elaborate case 

studies of different phytoplasma isolates for each strategy.   

7.4.1 Phytoplasma targets transcription factor families to target additional layers of 

regulation  

This thesis shows that different SAP effectors from multiple phytoplasmas 

target the three (sub)classes of the plant TCP family. This underlines how important 

this family of transcription factors is for the correct development and defence of the 

plants (Martín-Trillo and Cubas, 2010; Lopez et al., 2015; Nicolas and Cubas, 2016). 

Indeed, TCPs are highly connected in the plant interactome and are the target of a 

wide range of pathogens (Dreze et al., 2011; Mukhtar et al., 2011; Weßling et al., 

2014). As discussed in this thesis, TCPs are involved in multiple key processes, from 

hormonal biosynthesis and signalling, transport, immunity, regulation of circadian 

clock, floral development, shoot branching (Lopez et al., 2015; Nicolas and Cubas, 

2015, 2016; Bemer et al., 2017; Dhaka et al., 2017). 

TCPs interact with multiple transcription factor families; thereby, 

phytoplasma effectors might indirectly affect additional pathways upon targeting 

TCPs (Nicolas and Cubas, 2016; Dhaka et al., 2017). Multiple studies have shown the 

cross-family interaction between TCP and other essential transcription factors 

families. For example, class II CIN TCP4, TCP10 and TCP24 interact with ASYMETRIC 

LEAVES2 (AS2) in order to repress KNOX genes and regulate the shoot apical 

meristem (Li et al., 2012). Class I TCP14 interacts with GA-regulated DELLA proteins 

and is involved in  GA-mediated plant height regulation (Davière et al., 2014). TCP8 
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also interacts with WRKY28, which is implicated in the plant pathogen responses 

(Wang et al., 2015b; Bemer et al., 2017). 

Furthermore, SAP effectors target other plant transcription factor families. 

SAP54 targets the MADS-box transcription factor family, which are involved in flower 

development (MacLean et al., 2014). TCP proteins are known to regulate MADS-box 

transcription factors, with OsMADS57 positively regulated by OsTB1, leading to rice 

tillering (Guo et al., 2013). Maize TB1-TCP indirectly regulates MADS-box 

transcription factors via TGA1 (Studer et al., 2017). As discussed, our lab found that 

SAP05 targets two plant transcription factor families SPL and GATA (Huang, personal 

communication).  

 

Figure 7.1: TCP (sub)classes form interaction with multiple transcription factor families. 

The TCP interactions with key transcription factor families lead to distinct regulations of the 

plant development and defence. Figure pasted from Dhaka et al., 2017. Frontiers in Plant 

Science. 
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7.4.2 Phytoplasma alters the plant development via a set of SAP effectors 

7.4.2.1 Phytoplasma promotes the plant stem proliferation to increase its niche 

Phytoplasma isolates from diverse phytoplasma groups express SAP11. Based 

on this thesis, all SAP11 effector homologs interact with class II CYC/TB1-TCPs in 

yeast. Furthermore, different SAP11 effector homologs destabilise these TCPs, 

suggesting that the ability to destabilise class II CYC/TB1-TCPs is conserved across the 

phytoplasma groups (see Chapter 5) (Sugio et al., 2011a, 2014; Chang et al., 2018; 

Pecher et al., 2019). A. thaliana BRC1 and BRC2 and Z. mays TB1 are suppressors of 

axillary bud growth (Finlayson, 2007; Dong et al., 2017; Gonzalez-Grandio et al., 

2017). As discussed, the destabilisation of class II CYC/TB1-TCP is consistent with the 

phenotype showing an increase in the stem branching (see Chapter 3) (Sugio et al., 

2011a; Chang et al., 2018; Pecher et al., 2019).  

These findings strongly suggest that the increase in stem branching is a 

common strategy across phytoplasmas. Lateral branching is a critical process in 

determining the shoot architecture of plants (Uberti Manassero et al., 2013). One 

goal behind this strategy would be to increase the niche of phytoplasma within the 

infected plant. This would increase the habitat of phytoplasma, with more stems, 

therefore more sieve elements.  

 

Figure 7.2: Phytoplasma promotes plant stem proliferation to increase its niche. 

Phytoplasma express SAP11 effector to bind and destabilise class II CYC/TB1-TCPs, leading to 

an increase in the stem number. On the left, the stable expression of SAP11MBSP leads to an 

increase in stem branching (see Chapter 3). On the right, a model of the regulation of bud 

outgrowth. When a plant is not infected by phytoplasma, the bud outgrowth is inhibited by 
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the activity of TB1 (class II CYC/TB1-TCP) and GT1. When the plant is infected by 

phytoplasma, phytoplasma secrete SAP11, which will translocate to the axillary buds and 

destabilise TB1-TCPs. The destabilisation of TB1-TCPs results in an outgrowth of the buds, 

leading to an increase in the number of axillary stems. Model modified from Kebrom et al., 

2013. Trends Plant Sci. 

7.4.2.2 The zombie plant strategy to extend the lifespan of phytoplasmas in plant host 

 Many phytoplasma isolates have a biotrophic lifestyle that requires a living 

host to survive. Therefore, those phytoplasma needs to delay cell death by keeping 

the plant alive longer (Sugio et al., 2011b). Increasing the lifespan of the plant host 

could also help for the phytoplasma acquisition by insect vectors. Many of the 

shytoplasma isolates studied to date rely on SAP11, SAP54, TENGU effectors to 

achieve this goal.  

The AY-WB phytoplasma strain case study 

 In the case of AY-WB phytoplasma strain, SAP54 induces the phyllody 

symptoms, where flowers turn into leaf-like tissue (MacLean et al., 2011, 2014). The 

phyllody symptoms are due to the degradation of MADS-box transcription factors, 

which are involved in floral development (MacLean et al., 2011, 2014) (see Chapter 

1 General Introduction). The alteration of the structure of the flower often lead to 

sterility. Therefore, the plant becomes a host that only propagates for the benefit of 

phytoplasma, hence the term “zombie” plant (MacLean et al., 2014). 

AY-WB phytoplasma strain also relies on SAP11AYWB, which binds and destabilises 

class II CIN-TCPs. As discussed in Chapter 3 and Chapter 5, class II CIN-TCPs are 

involved in the promotion of leaf maturation (Efroni et al., 2008; Danisman et al., 

2012). Therefore, one of the effects of the destabilisation of class II CIN-TCPs by 

SAP11AYWB would be to extend the vegetative phase by delaying senescence.  

The MBSP phytoplasma strain case study 

Our lab sequenced the genome of diverse MBSP isolates in Brazil (Orlovskis 

et al., 2017). They found that the MBSP genome has 36 candidate effector genes, but 

SAP54 effector gene is not present (Orlovskis et al., 2017). In order to extend the 

lifespan of the plant host, MBSP could rely on the SAP11 effector. Indeed, the 
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destabilisation of maize class II CYC/TB1-TCPs leads to additional effects compared 

to A. thaliana CYC/TB1-TCPs, such as inhibition of female flower production (Pecher 

et al., 2019). This is because TB1 TCP regulates the flowering development in maize 

via regulation of MADS-box transcription factors (Studer et al., 2017). Alternatively, 

the maize TCPs might have other roles than A.thaliana TCPs, suggesting that 

downregulating class II CIN-TCP and CII-TCPs is not viable for the fitness of MBSP 

(Pecher et al., 2019).   

7.4.3 Phytoplasma increases the fitness of leafhopper insect vectors via a set of SAP 

effectors 

7.4.3.1 Phytoplasma attracts and increase the fertility of leafhoppers 

 Phytoplasma requires insect vectors for spreading before the plant host dies 

(Weintraub and Beanland, 2006). For this, the obligate parasite uses its set of 

effectors for at least two known goals: (1) increase the insect fertility and (2) increase 

the leafhopper attraction to infected plants. As previously discussed, the first goal is 

effective via SAP11AYWB that induces an increase in the fertility of M. quadrilineatus 

in A. thaliana (Sugio et al., 2011a) (see General Introduction).  

The second goal is achieved with SAP54 that induces the attraction of 

leafhoppers (Orlovskis and Hogenhout, 2016). Indeed, our lab found that the stable 

production of SAP54 in A. thaliana attracts M. quadrilineatus compared to wild-type 

(Orlovskis and Hogenhout, 2016). Furthermore, we have evidence that the witches’ 

broom phenotype of infected lime trees, coupled with yellowing of leaves in 

symptomatic parts of the plant, increase the attraction of leafhopper insect vectors 

(Hogenhout, personal communication). This could indicate that the destabilisation of 

CYC/TB1-TCPs could be involved in part in the attraction of leafhoppers. 
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Figure 7.3: Phytoplasma increases the fitness of leafhopper insect vectors via a set of SAP 

effectors. AY-WB phytoplasma strain expresses SAP11 and SAP54 effectors to increase the 

fitness of M. quadrilineatus. SAP11AYWB promotes the fecundity of M. quadrilineatus, while 

SAP54 increases the attraction of M. quadrilineatus. Both effects lead to an increase in the 

spreading of phytoplasma. Adapted from Tomkins et al., 2018. Curr. Opin. Plant Biol. 

7.4.3.2 Phytoplasma could increase the non-host insect fitness 

Phytoplasma could also increase the fitness of non-host insect vectors. 

AYWB-infected A. thaliana plants increase the survivability and reproduction of D. 

maidis (Purcell, 1988; Sugio et al., 2011b). D. maidis lays eggs on AY-WB infected 

Arabidopsis plants and nymphs emerge two weeks later, suggesting that the plant is 

a feeding host (Sugio et al., 2011b). The stable production of SAP11AYWB does not 

promote the survivability and reproduction of D. maidis in A. thaliana. However, as 

discussed in Chapter 6, some AY-WB effectors from the SAP11 genetic island increase 

the survivability of non-host D. maidis in A. thaliana. This result could be due to the 

targeting of class I TCPs (see Chapter 6).  

Class I TCPs are involved in the plant immunity, in both PTI and ETI (Kim et al., 

2014; Spears et al., 2019). Targeting this (sub)class could lead to a reduction in the 

plant defence against insects. Therefore, non-host insect vectors could perform 
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better on class I TCP defective plants. This would increase the chances of non-host 

leafhoppers to acquire phytoplasma when feeding on the infected plant. Although D. 

maidis does not vector AY-WB phytoplasma (Sugio et al., 2011b), other non-host 

leafhoppers could acquire a phytoplasma isolate and transmit it to new plant hosts.  

Targeting class I TCPs could allow phytoplasma to indirectly expand its range 

of insect vectors. Consequently, phytoplasma could expand its host range through 

insect vectors. Most of the generalist phytoplasmas studied in this thesis seem to 

destabilise class I TCPs, either via SAP11 in the case of SPLL, OY-M, PLYDY, the solani 

isolates or via other SAP effectors in the case of AY-WB phytoplasma (chapter 6). One 

of the reasons behind their ability to interact with multiple hosts could be through 

destabilisation of class I TCPs. The destabilisation of this TCP class could lead to an 

increased number of potential new non-host insect vectors. The targeting of class I 

could increase the chances of phytoplasma to be shared between plant hosts, and 

also increase the chances of horizontal transfer of effector genes between the 

strains. 
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Appendix I – Supplemental Tables for Chapter 2 

Appendix I table 1: Sequence IDs of TCPs from Zea mays (Zm), Arabidopsis thaliana (At). 

This table can be seen in our latest paper (Pecher et al., 2019). 
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Appendix I table 2: Oligonucleotide sequences (5´ > 3´) for cloning. the green sequences 

indicate the start codon while the red sequence indicates the stop codon. The underlined 

sequences indicate the gene-specific region of the primer. The sequences before the start 

codon (forward primers) or the stop codon (reverse primer) are the attB1 or attB2 

sequences. 

Oligonucleotide Sequence (5 -> 3) 

attB1 GGGACAAGTTTGTACAAAAAAGCAGGCTTC 

attB2 GGGGACCACTTTGTACAAGAAAGCTGGGTC 

TCP domain of 
AtTCP6 forward 

GGGACAAGTTTGTACAAAAAAGCAGGCTTCATGAAAGATCGTCA
CCTTAAAGTTG 

TCP domain of 
AtTCP6 reverse 

GGGGACCACTTTGTACAAGAAAGCTGGGTCCTAAGTAGCAGAG
AGTATCGATGGC 

TCP domain of 
AtTCP8 forward 

GGGACAAGTTTGTACAAAAAAGCAGGCTTCATGAAAGACCGTCA
CACGAAAGTCG 

TCP domain of 
AtTCP8 reverse 

GGGGACCACTTTGTACAAGAAAGCTGGGTCCTATGTAGCAGCAA
CAATAGCTGG 

TCP domain of 
AtTCP9 forward 

GGGACAAGTTTGTACAAAAAAGCAGGCTTCATGAAAGACCGTCA
CACGAAGGTTG 

TCP domain of 
AtTCP9 reverse 

GGGGACCACTTTGTACAAGAAAGCTGGGTCCTACGTGGCGGCTA
TAATCGC 

TCP domain of 
AtTCP14 forward 

GGGACAAGTTTGTACAAAAAAGCAGGCTTCATGAAAGACCGACA
CACGAAAGTAG 

TCP domain of 
AtTCP14 reverse 

GGGGACCACTTTGTACAAGAAAGCTGGGTCCTAGGTGGCGGCG
ATTACAGAT 

TCP domain of 
AtTCP15 forward 

GGGACAAGTTTGTACAAAAAAGCAGGCTTCATGAAAGACCGTCA
CACGAAAGTCG 

TCP domain of 
AtTCP15 reverse 

GGGGACCACTTTGTACAAGAAAGCTGGGTCCTATGTAGCGGCTA
TAACCGCTG 

TCP hlh motif of 
AtTCP2 forward 

GGGACAAGTTTGTACAAAAAAGCAGGCTTCATGGCTCTTCAATTC
TATGATCTTC 

TCP hlh motif of 
AtTCP2 reverse 

GGGGACCACTTTGTACAAGAAAGCTGGGTCCTATTCAGCAGCTT
TGATTAACC 

TCP hlh motif of 
AtTCP18 forward 

GGGACAAGTTTGTACAAAAAAGCAGGCTTCATGGCCAAAGAGTT
GTTTGGCTTAC 

TCP hlh motif of 
AtTCP18 reverse 

GGGGACCACTTTGTACAAGAAAGCTGGGTCCTATTTTGCTTGTGT
AAGCAACC 
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Appendix I table 3: Synthesised CDS (underlined) flanked by gateway compatible attL1 and 

attL2 sites. Nucleotide sequences for gene syntheses of SAP11 chimaeras, TCP chimaeras, 

TCP domains and SAP11 effector homologs for expression in yeast. The figure number of the 

thesis is also indicated. 

Name of the construct: 

Thesis 

Figure #  

SAP11-Chimaera 1: chimeric SAP11MBSP with SAP11AYWB TCP binding domain used 

in Y2H analysis. Same sequence as (2) of appendix. 

5.2.5 

GCCCCAAATAATGATTTTATTTTGACTGATAGTGACCTGTTCGTTGCAACAAATTGATGA

GCAATGCTTTTTTATAATGCCAACTTTGTACAAAAAAGCAGGCTCCGGTACCGCCTCAC

CTAAAAAAGAAGATCGCGGAAAAAATGTTGCAACTTCAAAAGAAAAAGAAACACTAAC

TAAAGAAGAAGTGAAACGTTTTTTTGAATACCATAAAACATTTGAAACATATTCTGATG

AAGACAAAATTAAAATTATTGAAAAAATTACCGACCCAGAAGTAATGGAAATATTAAA

ACAAAAAGCCGAAGAGGAAACGAAAAATTTAAAGGAAGAAAGTTCTTCTAGCAAAAA

ACCTGATAATTCAAAAAAATAAGGCAAGCTTGACCCAGCTTTCTTGTACAAAGTTGGCA

TTATAAAAAATAATTGCTCATCAATTTGTTGCAACGAACAGGTCACTATCAGTCAAAAT

AAAATCATTATTTGCCATC 

 

SAP11-Chimaera 2: chimeric SAP11AYWB with SAP11MBSP NLS domain used in Y2H 

analysis. Same sequence as (3) of appendix. 

5.2.5 

GCCCCAAATAATGATTTTATTTTGACTGATAGTGACCTGTTCGTTGCAACAAA

TTGATGAGCAATGCTTTTTTATAATGCCAACTTTGTACAAAAAAGCAGGCTCCGGTACC

GCCTCACCTAAAAAAGAATCTAGTGATAAAAATGTTGCAACTTCAAAAGAAAAAGAAA

CACTAACTAAAGAAGATATAAAAAGATTTTATACAATACATAAAGAATTTAAAGAATAT

TCAATTGAAAAAAATAATGAAATTATAAAAATTTTAGAAAACCCTGAATTAATGGAAAT

ATTAAAACAAAAAGCCGAAGAGGAAACGAAAAATTTAAAAGAAGAAGGTTCTTCTTCA

AAACAACCTGATGATTCTAAAAAATAAGGCAAGCTTGACCCAGCTTTCTTGTACAAAGT

TGGCATTATAAAAAATAATTGCTCATCAATTTGTTGCAACGAACAGGTCACTATCAGTC

AAAATAAAATCATTATTTGCCATC 

 

SAP11-Chimaera 3: chimeric SAP11AYWB with SAP11MBSP NLS domain and 

SAP11MBSP intra region 3 used in Y2H analysis. Same sequence as (7) of appendix. 

5.2.5 

GCCCCAAATAATGATTTTATTTTGACTGATAGTGACCTGTTCGTTGCAACAAA

TTGATGAGCAATGCTTTTTTATAATGCCAACTTTGTACAAAAAAGCAGGCTCCGGTACC

GCCTCACCTAAAAAAGAATCTAGTGATAAAAATGTTGCAACTTCAAAAGAAAAAGAAA

CACTAACTAAAGAAGATATAAAAAGATTTTATACAATACATAAAGAATTTAAAGAATAT

TCAATTGAAAAAAATAATGAAATTATAAAAATTTTAGAAAACCCTGAATTAATGGAAAT

ATTAAAACAAAAAGCCGAAGAGGAAACGAAAAATTTAAAGGAAGAAAGTTCTTCTAGC

AAAAAACCTGATAATTCAAAAAAATAAGGCAAGCTTGACCCAGCTTTCTTGTACAAAGT

TGGCATTATAAAAAATAATTGCTCATCAATTTGTTGCAACGAACAGGTCACTATCAGTC

AAAATAAAATCATTATTTGCCATC 
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SAP11-Chimaera 4: chimeric SAP11AYWB with SAP11MBSP NLS domain and 

SAP11MBSP intra region 2 used in Y2H analysis. Same sequence as (8) of appendix. 

5.2.5 

GCCCCAAATAATGATTTTATTTTGACTGATAGTGACCTGTTCGTTGCAACAAATTGATGA

GCAATGCTTTTTTATAATGCCAACTTTGTACAAAAAAGCAGGCTCCGGTACCGCCTCAC

CTAAAAAAGAATCTAGTGATAAAAATGTTGCAACTTCAAAAGAAAAAGAAACACTAAC

TAAAGAAGAAGTGAAACGTTTTTTTGAATACCATAAAACATTTGAAACATATTCTGATG

AAGACAAAATTAAAATTATTGAAAAAATTACCGACCCAGAAGTAATGGAAATATTAAA

ACAAAAAGCCGAAGAGGAAACGAAAAATTTAAAAGAAGAAGGTTCTTCTTCAAAACAA

CCTGATGATTCTAAAAAATAAGGCAAGCTTGACCCAGCTTTCTTGTACAAAGTTGGCAT

TATAAAAAATAATTGCTCATCAATTTGTTGCAACGAACAGGTCACTATCAGTCAAAATA

AAATCATTATTTGCCATC 

 

SAP11-Chimaera 5: chimeric SAP11AYWB with SAP11MBSP intra region 2 used in Y2H 

analysis. Same sequence as (9) of appendix. 

5.2.5 

GCCCCAAATAATGATTTTATTTTGACTGATAGTGACCTGTTCGTTGCAACAAATTGATGA

GCAATGCTTTTTTATAATGCCAACTTTGTACAAAAAAGCAGGCTCCGGTACCGCCTCAC

CTAAAAAAGAATCTAGTGATAAAAAAAGAGATATTCCGAAAATTAATAAATCAGAAGA

AAAAAACAAAAAACAAAAAGAAGAAGTGAAACGTTTTTTTGAATACCATAAAACATTT

GAAACATATTCTGATGAAGACAAAATTAAAATTATTGAAAAAATTACCGACCCAGAAGT

AATGGAAATATTAAAACAAAAAGCCGAAGAGGAAACGAAAAATTTAAAAGAAGAAGG

TTCTTCTTCAAAACAACCTGATGATTCTAAAAAATAAGGCAAGCTTGACCCAGCTTTCTT

GTACAAAGTTGGCATTATAAAAAATAATTGCTCATCAATTTGTTGCAACGAACAGGTCA

CTATCAGTCAAAATAAAATCATTATTTGCCATC 

 

SAP11-Chimaera 6: chimeric SAP11MBSP with SAP11AYWB TCP binding domain and 

SAP11AYWB intra region 2 used in Y2H analysis. Same sequence as (11) of 

appendix. 

5.2.5 

GCCCCAAATAATGATTTTATTTTGACTGATAGTGACCTGTTCGTTGCAACAAATTGATGA

GCAATGCTTTTTTATAATGCCAACTTTGTACAAAAAAGCAGGCTCCGGTACCGCCTCAC

CTAAAAAAGAAGATCGCGGAAAAAATGTTGCAACTTCAAAAGAAAAAGAAACACTAAC

TAAAGAAGATATAAAAAGATTTTATACAATACATAAAGAATTTAAAGAATATTCAATTG

AAAAAAATAATGAAATTATAAAAATTTTAGAAAACCCTGAATTAATGGAAATATTAAAA

CAAAAAGCCGAAGAGGAAACGAAAAATTTAAAGGAAGAAAGTTCTTCTAGCAAAAAA

CCTGATAATTCAAAAAAATAAGGCAAGCTTGACCCAGCTTTCTTGTACAAAGTTGGCAT

TATAAAAAATAATTGCTCATCAATTTGTTGCAACGAACAGGTCACTATCAGTCAAAATA

AAATCATTATTTGCCATC 

 

SAP11-Chimaera A: chimeric SAP11MBSP with SAP11SPLL TCP intra-region 2 used in 

Y2H analysis. 

5.2.6 

GCCCCAAATAATGATTTTATTTTGACTGATAGTGACCTGTTCGTTGCAACAAATTGATGA

GCAATGCTTTTTTATAATGCCAACTTTGTACAAAAAAGCAGGCTCCGGTACCGCCATGT

CCCCGAAAAAAGAGGATAGGGGCAAAAACGTAGCCACAAGCAAGGAGAAAGAGACC

TTGACGAAGAAGGACATCAGTCAGTATTATGAACTATATAATACTTTAGAAAACTATTC

CGAGGAAGACCGAAATAAGATTATACAGATGCTGAGTGACTCTCAGACGAGTAAACTA

TTGGATGAGTATAATGAAAAGAAAAGAAAGTCATCCAAGGAGGAGAGCAGCTCTTCA

 



Appendices 

162 

 

AAGAAACCAGACAACTCCAAGAAATAAGGCAAGCTTGACCCAGCTTTCTTGTACAAAG

TTGGCATTATAAAAAATAATTGCTCATCAATTTGTTGCAACGAACAGGTCACTATCAGT

CAAAATAAAATCATTATTTGCCATC 

SAP11-Chimaera B: chimeric SAP11MBSP with SAP11SPLL TCP intra-region 2 and 

SAP11SPLL TCP binding domain used in Y2H analysis. 

5.2.6 

GCCCCAAATAATGATTTTATTTTGACTGATAGTGACCTGTTCGTTGCAACAAATTGATGA

GCAATGCTTTTTTATAATGCCAACTTTGTACAAAAAAGCAGGCTCCGGTACCGCCATGA

GCCCGAAGAAAGAGGATAGAGGGAAGAACGTCGCCACGTCTAAGGAAAAAGAAACG

CTAACTAAGAAAGACATTAGCCAATACTATGAATTATACAATACTTTAGAAAATTATTCT

GAAGAGGACCGTAATAAGATAATACAAATGCTAAGCGATAGTCAGACACTAAAGATCC

TCCAGGAGGAAGCCCTGAAGAGCAAGGAGGAAAGTTCATCATCAAAAAAGCCGGATA

ATTCCAAGAAGTAAGGCAAGCTTGACCCAGCTTTCTTGTACAAAGTTGGCATTATAAAA

AATAATTGCTCATCAATTTGTTGCAACGAACAGGTCACTATCAGTCAAAATAAAATCAT

TATTTGCCATC 

 

Sequence of TCP domain AtTCP2 used in Y2H analysis 3.2.7 

GCCCCAAATAATGATTTTATTTTGACTGATAGTGACCTGTTCGTTGCAACAAATTGATGA

GCAATGCTTTTTTATAATGCCAACTTTGTACAAAAAAGCAGGCTCCGGTACCGCCAAAG

ATAGACATTCTAAAGTTTTGACTTCCAAGGGTCCAAGAGATAGAAGAGTTAGATTGTCT

GTTTCTACCGCCTTGCAATTTTACGACTTGCAAGATAGATTGGGTTACGACCAACCATCT

AAAGCTGTTGAATGGTTGATTAAGGCTGCCGAAGATTCCATTTCTGAATTGCCATAAGG

CAAGCTTGACCCAGCTTTCTTGTACAAAGTTGGCATTATAAAAAATAATTGCTCATCAAT

TTGTTGCAACGAACAGGTCACTATCAGTCAAAATAAAATCATTATTTGCCATC 

 

Sequence of TCP domain of AtTCP18 used in Y2H analysis 3.2.7 

GCCCCAAATAATGATTTTATTTTGACTGATAGTGACCTGTTCGTTGCAACAAATTGATGA

GCAATGCTTTTTTATAATGCCAACTTTGTACAAAAAAGCAGGCTCCGGTACCGCCACTG

ATAGACATTCTAAAATCAAAACTGCCAAGGGTACTAGAGATAGAAGAATGAGATTGTC

CTTGGATGTCGCCAAAGAATTATTCGGTTTACAAGACATGTTGGGTTTCGATAAGGCTT

CTAAAACTGTCGAATGGTTGTTGACTCAAGCCAAGCCAGAAATTATCAAGATTGCCTGA

GGCAAGCTTGACCCAGCTTTCTTGTACAAAGTTGGCATTATAAAAAATAATTGCTCATC

AATTTGTTGCAACGAACAGGTCACTATCAGTCAAAATAAAATCATTATTTGCCATC 

 

TCP-Chimaera 1: chimeric TCP domain of AtTCP2 and AtTCP18 used in Y2H 

analysis 

3.2.7 

GCCCCAAATAATGATTTTATTTTGACTGATAGTGACCTGTTCGTTGCAACAAATTGATGA

GCAATGCTTTTTTATAATGCCAACTTTGTACAAAAAAGCAGGCTCCGGTACCGCCACTG

ATAGACATTCTAAAATCAAAACTGCCAAGGGTACTAGAGATAGAAGAATGAGATTGTC

CGTTTCTACCGCCAAAGAATTATTCGGTTTACAAGACATGTTGGGTTTCGATAAGGCTT

CTAAAACTGTCGAATGGTTGTTGACTCAAGCCAAGGATTCCATTTCTGAATTGCCATAA

GGCAAGCTTGACCCAGCTTTCTTGTACAAAGTTGGCATTATAAAAAATAATTGCTCATC

AATTTGTTGCAACGAACAGGTCACTATCAGTCAAAATAAAATCATTATTTGCCATC 
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TCP-Chimaera 2: chimeric TCP domain of AtTCP2 and AtTCP18 used in Y2H 

analysis 

3.2.7 

GCCCCAAATAATGATTTTATTTTGACTGATAGTGACCTGTTCGTTGCAACAAATTGATGA

GCAATGCTTTTTTATAATGCCAACTTTGTACAAAAAAGCAGGCTCCGGTACCGCCAAAG

ATAGACATTCTAAAGTTTTGACTTCCAAGGGTCCAAGAGATAGAAGAGTTAGATTGTCT

GTTTCTACCGCCAAAGAATTATTCGGTTTACAAGACATGTTGGGTTTCGATAAGGCTTC

TAAAACTGTCGAATGGTTGTTGACTCAAGCCAAGGATTCCATTTCTGAATTGCCATAAG

GCAAGCTTGACCCAGCTTTCTTGTACAAAGTTGGCATTATAAAAAATAATTGCTCATCA

ATTTGTTGCAACGAACAGGTCACTATCAGTCAAAATAAAATCATTATTTGCCAT 

 

TCP-Chimaera 3: chimeric TCP domain of AtTCP2 and AtTCP18 used in Y2H 

analysis 

3.2.7 

GCCCCAAATAATGATTTTATTTTGACTGATAGTGACCTGTTCGTTGCAACAAATTGATGA

GCAATGCTTTTTTATAATGCCAACTTTGTACAAAAAAGCAGGCTCCGGTACCGCCACTG

ATAGACATTCTAAAATCAAAACTGCCAAGGGTACTAGAGATAGAAGAATGAGATTGTC

TGTTTCTACCGCCTTGCAATTTTACGACTTGCAAGATAGATTGGGTTACGACCAACCATC

TAAAGCTGTTGAATGGTTGATTAAGGCTGCCGAAGATTCCATTTCTGAATTGCCATAAG

GCAAGCTTGACCCAGCTTTCTTGTACAAAGTTGGCATTATAAAAAATAATTGCTCATCA

ATTTGTTGCAACGAACAGGTCACTATCAGTCAAAATAAAATCATTATTTGCCATC 

 

TCP-Chimaera 4: chimeric TCP domain of AtTCP2 and AtTCP18 used in Y2H 

analysis 

3.2.7 

GCCCCAAATAATGATTTTATTTTGACTGATAGTGACCTGTTCGTTGCAACAAATTGATGA

GCAATGCTTTTTTATAATGCCAACTTTGTACAAAAAAGCAGGCTCCGGTACCGCCAAAG

ATAGACATTCTAAAGTTTTGACTTCCAAGGGTCCAAGAGATAGAAGAGTTAGATTGTCT

GTTTCCACCGCTAAAGAATTATTCGGTTTACAAGACATGTTGGGTTACGACCAACCATC

TAAAGCTGTTGAATGGTTGATTAAGGCTGCCGAAGATTCCATTTCTGAATTGCCATAAG

GCAAGCTTGACCCAGCTTTCTTGTACAAAGTTGGCATTATAAAAAATAATTGCTCATCA

ATTTGTTGCAACGAACAGGTCACTATCAGTCAAAATAAAATCATTATTTGCCATC 

 

TCP-Chimaera 5: chimeric TCP domain of AtTCP2 and AtTCP18 used in Y2H 

analysis 

3.2.7 

GCCCCAAATAATGATTTTATTTTGACTGATAGTGACCTGTTCGTTGCAACAAATTGATGA

GCAATGCTTTTTTATAATGCCAACTTTGTACAAAAAAGCAGGCTCCGGTACCGCCAAAG

ATAGACATTCTAAAGTTTTGACTTCCAAGGGTCCAAGAGATAGAAGAGTTAGATTGTCT

GTTTCTACCGCCTTGCAATTTTACGACTTGCAAGATAGATTGGGTTTCGATAAGGCTTCT

AAAGCTGTTGAATGGTTGATTAAGGCTGCCGAAGATTCCATTTCTGAATTGCCATAAGG

CAAGCTTGACCCAGCTTTCTTGTACAAAGTTGGCATTATAAAAAATAATTGCTCATCAAT

TTGTTGCAACGAACAGGTCACTATCAGTCAAAATAAAATCATTATTTGCCATC 

 

TCP-Chimaera 6: chimeric TCP domain of AtTCP2 and AtTCP18 used in Y2H 

analysis 

3.2.7 

GCCCCAAATAATGATTTTATTTTGACTGATAGTGACCTGTTCGTTGCAACAAATTGATGA

GCAATGCTTTTTTATAATGCCAACTTTGTACAAAAAAGCAGGCTCCGGTACCGCCAAAG
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ATAGACATTCTAAAGTTTTGACTTCCAAGGGTCCAAGAGATAGAAGAGTTAGATTGTCT

GTTTCTACCGCCTTGCAATTTTACGACTTGCAAGATAGATTGGGTTACGACCAACCATCT

AAAGTTGAATGGTTGTTGACTCAAGCCAAGGACTCTATTTCTGAATTGCCATGAGGCAA

GCTTGACCCAGCTTTCTTGTACAAAGTTGGCATTATAAAAAATAATTGCTCATCAATTTG

TTGCAACGAACAGGTCACTATCAGTCAAAATAAAATCATTATTTGCCATC 

TCP-Chimaera 7: chimeric TCP domain of AtTCP2 and AtTCP18 used in Y2H 

analysis 

3.2.7 

GCCCCAAATAATGATTTTATTTTGACTGATAGTGACCTGTTCGTTGCAACAAATTGATGA

GCAATGCTTTTTTATAATGCCAACTTTGTACAAAAAAGCAGGCTCCGGTACCGCCAAAG

ATAGACATTCTAAAGTTTTGACTTCCAAGGGTCCAAGAGATAGAAGAGTTAGATTGTCT

GTTTCTACCGCCTTGCAATTTTACGACTTGCAAGATAGATTGGGTTTCGATAAGGCTTCT

AAAACTGTCGAATGGTTGTTGACTCAAGCCAAGGATTCCATTTCTGAATTGCCATAAGG

CAAGCTTGACCCAGCTTTCTTGTACAAAGTTGGCATTATAAAAAATAATTGCTCATCAAT

TTGTTGCAACGAACAGGTCACTATCAGTCAAAATAAAATCATTATTTGCCATC 

 

TCP-Chimaera 8: chimeric TCP domain of AtTCP2 and AtTCP18 used in Y2H 

analysis 

3.2.7 

GCCCCAAATAATGATTTTATTTTGACTGATAGTGACCTGTTCGTTGCAACAAATTGATGA

GCAATGCTTTTTTATAATGCCAACTTTGTACAAAAAAGCAGGCTCCGGTACCGCCAAAG

ATAGACATTCTAAAGTTTTGACTTCCAAGGGTCCAAGAGATAGAAGAGTTAGATTGTCT

GTTTCTACCGCCAAAGAATTATTCGGTTTACAAGACATGTTGGGTTTCGATAAGGCTTC

TAAAGCTGTTGAATGGTTGATTAAGGCTGCCGAAGATTCCATTTCTGAATTGCCATAAG

GCAAGCTTGACCCAGCTTTCTTGTACAAAGTTGGCATTATAAAAAATAATTGCTCATCA

ATTTGTTGCAACGAACAGGTCACTATCAGTCAAAATAAAATCATTATTTGCCATC 

 

TCP-Chimaera 9: chimeric TCP domain of AtTCP2 and AtTCP18 used in Y2H 

analysis 

3.2.7 

GCCCCAAATAATGATTTTATTTTGACTGATAGTGACCTGTTCGTTGCAACAAATTGATGA

GCAATGCTTTTTTATAATGCCAACTTTGTACAAAAAAGCAGGCTCCGGTACCGCCACTG

ATAGACATTCTAAAATCAAAACTGCCAAGGGTACTAGAGATAGAAGAATGAGATTGTC

CGTTTCTACCGCCAAAGAATTATTCGGTTTACAAGACATGTTGGGTTACGACCAACCAT

CTAAAACTGTCGAATGGTTGTTGACTCAAGCCAAGGATTCCATTTCTGAATTGCCATAA

GGCAAGCTTGACCCAGCTTTCTTGTACAAAGTTGGCATTATAAAAAATAATTGCTCATC

AATTTGTTGCAACGAACAGGTCACTATCAGTCAAAATAAAATCATTATTTGCCATC 

 

SAP11ATP: codon optimised version of SAP11 effector homolog from Ca. P. mali 

strain AT used in Y2H analysis. 

5.2.1 

GCCCCAAATAATGATTTTATTTTGACTGATAGTGACCTGTTCGTTGCAACAAATTGATGA

GCAATGCTTTTTTATAATGCCAACTTTGTACAAAAAAGCAGGCTCCGGTACCGCCATGT

CACCACCTAAGAAAGATAGTAATAAAGGTAAGTCCATAGACAAGAGTGTCTCCTCCAA

ACGTGAAACTGTGTCAATACGAGAATACCGAGAATTAGAGATGGCCTTGAACCAGCTC

CCAGAGGAGGAGAGGAACACCATTATGGAAACATTAAACAACCCGGAGAAGATGGAG

GTACTGTTAAAGAAAGCTCAAGACGAGGCAAATAAAAAACGAGGTGGTTCTAGCAGT

AGCCAGCACGACGACAATAATAAGGACAAAGGTAAGAAGTAAGGCAAGCTTGACCCA
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GCTTTCTTGTACAAAGTTGGCATTATAAAAAATAATTGCTCATCAATTTGTTGCAACGAA

CAGGTCACTATCAGTCAAAATAAAATCATTATTTGCCATC 

SAP11PBIP: codon optimised version of SAP11 effector homolog from Poinsettia 

branch-inducing phytoplasma (PBIP) strain PoiBI used in Y2H analysis. 

5.2.1 

GCCCCAAATAATGATTTTATTTTGACTGATAGTGACCTGTTCGTTGCAACAAATTGATGA

GCAATGCTTTTTTATAATGCCAACTTTGTACAAAAAAGCAGGCTCCGGTACCGCCATGT

CACCTAAGAAGGAATCAAGTGACAAAAAGAGAGACATTTCTAAGATCAATAAGAGCG

AAGAAAAGAACAAAAAACAGAAGGAGGATATTAAGAGGTTCTACACAATACATAAAG

AGTTTAAAGAGTATAGCATAGAAAAGAATAATGAGATAATTAAGATACTAGAGAATCC

CGAACTGATGAAAATCCTAAAGCAGAAAGCTGAGGAAGAAACAAAAAACTTAAAGGA

GGAGGGGTCCAGTAGCAAGCAGAGTGACGATTCTAAGAAGTAAGGCAAGCTTGACCC

AGCTTTCTTGTACAAAGTTGGCATTATAAAAAATAATTGCTCATCAATTTGTTGCAACGA

ACAGGTCACTATCAGTCAAAATAAAATCATTATTTGCCATC 

 

SAP11solani: codon optimised version of SAP11 effector homolog from Ca. P. 

solani strain STOLBUR (AF) used in Y2H analysis. 

5.2.1 

GCCCCAAATAATGATTTTATTTTGACTGATAGTGACCTGTTCGTTGCAACAAATTGATGA

GCAATGCTTTTTTATAATGCCAACTTTGTACAAAAAAGCAGGCTCCGGTACCGCCATGA

CCCCCAAGAAGAATCACGGCAAGGACATAATTAGTAGCAAGGAGGAAGCAAAGAAAG

ATGTCAAGAATTTCTACGAGCTGTATAACACGTTAGAAAACTATAGTGAGGAGGACCG

TTCTAAGATCATCCAGATGCTCTCCAACCCAGAGATAATTAAAAAGCTGAAGGAGAAA

ATTGAGGAGGAGAAAAAACAAGAGAAAGGGTCTTCTAGTCGTCAACCGGACAATTGT

CATAAATAAGGCAAGCTTGACCCAGCTTTCTTGTACAAAGTTGGCATTATAAAAAATAA

TTGCTCATCAATTTGTTGCAACGAACAGGTCACTATCAGTCAAAATAAAATCATTATTTG

CCATC 

 

SAP11PLYDY.2: codon optimised version of SAP11 effector homolog from Ca. P. 

asteris Periwinkle-leaf yellowing phytoplasma (PLYDY) used in Y2H analysis. 

5.2.1 

GCCCCAAATAATGATTTTATTTTGACTGATAGTGACCTGTTCGTTGCAACAAATTGATGA

GCAATGCTTTTTTATAATGCCAACTTTGTACAAAAAAGCAGGCTCCGGTACCGCCATGG

CTCCGAAAAAGCATGGTAAGGACATAATTTCTTCTAAGGAGGAGGTCAAGGACAACGT

CAAAAAGTACTACGAACTGTACAATACACTGGAGAATTATTCTGAGAAAGAAAGAAAC

AAGATTATCCAGATGCTGAGTGACCCTGCTATCATCAAGACCTTAGAAGAGAAGATAA

AAGAAACCAAAACACACGAGAAGGGCTCTTCTTATAAGAAACCCGATAATCTTAAGAA

GTAAGGCAAGCTTGACCCAGCTTTCTTGTACAAAGTTGGCATTATAAAAAATAATTGCT

CATCAATTTGTTGCAACGAACAGGTCACTATCAGTCAAAATAAAATCATTATTTGCCATC 

 

SAP11p45: codon optimised version of SAP11 effector homolog from Ca. P. asteris 

sample p45.IC used in Y2H analysis. 

5.2.1 

GCCCCAAATAATGATTTTATTTTGACTGATAGTGACCTGTTCGTTGCAACAAATTGATGA

GCAATGCTTTTTTATAATGCCAACTTTGTACAAAAAAGCAGGCTCCGGTACCGCCATGG

CGTCAAAAAAGGACCACGAGAAAAACATTATATCCTTGAAGGAGGAAGATAAGAAGG

ACGTAAAGAATTACTATGAACTGTACAACACGCTGGAGAACTACAGTGAAGAAGACAG

AAACAAAATTATCCAAATGCTTAGCAATCCCGAGATAATAAAGATCCTAGGGGAGAAG
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GTTAAAGAGGCTCAAAATCAAAAGAAAGGGTCCAGTAGCAAAAAGCCGGATGACCTA

TAAGGCAAGCTTGACCCAGCTTTCTTGTACAAAGTTGGCATTATAAAAAATAATTGCTC

ATCAATTTGTTGCAACGAACAGGTCACTATCAGTCAAAATAAAATCATTATTTGCCATC 

SAP11OYM: codon optimised version of SAP11 effector homolog from Ca. P. 

asteris Onion Yellows mild-symptom (OY-M) phytoplasma used in Y2H analysis. 

5.2.1 

GCCCCAAATAATGATTTTATTTTGACTGATAGTGACCTGTTCGTTGCAACAAATTGATGA

GCAATGCTTTTTTATAATGCCAACTTTGTACAAAAAAGCAGGCTCCGGTACCGCCATGG

CTCCAAAAAAACACGGGAAAGACATCATTTCTTCAAAAGAGGAGGTCAAAGATAACGT

GAAAAAATACTATGAACTCTACAATACACTAGAGAACTACTCAGAGGAAGAGAGGAAC

AAGATTATACAGATGCTGAGCGATCCCGCAATTATAAAGACACTTGAAGAGAAGATCA

AAGAAACGAAAACACACGAGAAGGGTAGTAGCTATAAAAAACCAGACAATCTAAAAA

AGTAAGGCAAGCTTGACCCAGCTTTCTTGTACAAAGTTGGCATTATAAAAAATAATTGC

TCATCAATTTGTTGCAACGAACAGGTCACTATCAGTCAAAATAAAATCATTATTTGCCAT

C 

 

SAP11OYM: codon optimised version of SAP11 effector homolog from Faba bean 

phyllody (FBP) (Faba bean) used in Y2H analysis. 

5.2.1 

GCCCCAAATAATGATTTTATTTTGACTGATAGTGACCTGTTCGTTGCAACAAATTGATGA

GCAATGCTTTTTTATAATGCCAACTTTGTACAAAAAAGCAGGCTCCGGTACCGCCATGG

CGCCGGAAAAGAACGATAAGGGCAAAAAGATCGCCTCTAGCCAAAAAAAAGAAAAGA

CCACGAAGAAGGACATCAGCCAGTACTACGAACTGTATAATACTCTGGAGAACTACTC

AGAGGAGAACAGGAACAAGATCATTAAGATGTTGAGCGACCCGAAGACTTTAAAGAC

TTTACAGGAAAAGGCGCTCAAGTCTAAGAAAAAGGGCTCAAGCTCCAAGAAACCTGAT

GACAGCAAGAAATAAGGCAAGCTTGACCCAGCTTTCTTGTACAAAGTTGGCATTATAA

AAAATAATTGCTCATCAATTTGTTGCAACGAACAGGTCACTATCAGTCAAAATAAAATC

ATTATTTGCCATC 
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Appendix II – Supplemental Figure for Chapter 3 

Appendix II figure 1: Yeast two-hybrid analysis of phytoplasma SAP11AYWB, SAP11MBSP and 

Arabidopsis thaliana TCP chimaeras of the TCP domain of AtTCP2 and AtTCP18. (Pecher et 

al., 2019) 
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Appendix III – Supplemental Figure for Chapter 4 

Appendix III figure 1: The phylogenetic tree based on the TCP interaction domains of SAP11 

effector homologs is consistent with the SAP11-based phylogenetic tree. Phylogenetic tree 

generated via the MEGA software using the Maximum Likelihood algorithm. (A) Phylogenetic 

tree based on the intra-region and the TCP binding domain of SAP11 proteins from different 

phytoplasma groups. (B) Multiple Alignment of the intra-region and the TCP binding domain 

of SAP11 proteins from different phytoplasma groups. 

 

 

AYWB+p44.IA        1 KEDIKRFYTIHKEFKEYSIEKNNEIIKILENPELMEILKQKAEEETKNL 

p42.IA             1 KEDIKRFYTIHKEFKEYSIEKNNEIIKILENPELMEILKQKAEEETKNL 

PBIP               1 KEDIKRFYTIHKEFKEYSIEKNNEIIKILENPELMKILKQKAEEETKNL 

VWBP               1 KEDIKRFYTIHKEFKEYSIEKNNEIIKILENPELMEILKQKAEEETKNL 

PLYDY_5340+Miaz    1 KEDIKRFYTIHKEFKEYSIEKNNEIIKILENPELMEILKQKAEEETKNL 

P.mali_AT          1 -VSIREYRELEMALNQLPEEERNTIMETLNNPEKMEVLLKKAQDEANK- 

MBSPM3             1 KEEVKRFFEYHKTFETYSDEDKIKIIEKITDPEVSKLLDEYNEKKRKSS 

PNWB               1 KKDISQYYELYNTLENYSEEDRNKIIQMLSDSQTLKILQEEALKSKKK- 

EPWB               1 KKDISQYYELYNTLENYSEEDRNKIIQMLSDSQTLKILQEEALKSKKK- 

SPLL               1 KKDISQYYELYNTLENYSEEDRNKIIQMLSDSQTLKILQEEALKSKKK- 

Faba_bean          1 KKDISQYYELYNTLENYSEENRNKIIKMLSDPKTLKTLQEKALKSKKK- 

WBDL               1 KKDISQYYELYNTLKDYSEEDQNKIIQILSDPEISKLLQEQKLKSQKT- 

OYM                1 KDNVKKYYELYNTLENYSEEERNKIIQMLSDPAIIKTLEEKIKETKTH- 

PLYDY_5880         1 KDNVKKYYELYNTLENYSEKERNKIIQMLSDPAIIKTLEEKIKETKTH- 

P.solani+S231+S    1 KKDVKNFYELYNTLENYSEEDRSKIIQMLSNPEIIKKLKEKIEEEKKQ- 

p45.1              1 KKDVKNYYELYNTLENYSEEDRNKIIQMLSNPEIIKILGEKVKEAQNQ- 

p45.2              1 KKDIKNFYELYNTLENYSEEERNKIIQMLSNPEITKILEEKTKEIKNQ- 
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Appendix IV – Supplemental Figures for Chapter 5 

Appendix IV figure 1: Yeast two-hybrid analysis of phytoplasma SAP11 chimeric versions 

based on SAP11AYWB and SAP11MBSP and Arabidopsis thaliana TCPs.  

 

Legend of Appendix IV figure 1:  The details of the assay are identical to Figure 5.2.5. The 

SAP11 chimaeras are based from AYWB phytoplasma SAP11 effector (SAP11AYWB) and MBSP 

phytoplasma SAP11 effector (SAP11MBSP). The signal peptide is removed from the sequences. 

(A) Multiple Sequence Alignment using Clustal 2.1 program of AYWB and MBSP phytoplasma 
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SAP11 amino acid sequences, without the signal peptide. The nuclear localisation signal of 

SAP11AYWB (NLS) is highlighted in red, the coiled-coil domain with a dashed line, and part of 

the coiled-coil structure required for binding TCP in blue. *, Fully conserved residues, :, 

conservation of residues with strongly similar properties and ., conservation of residues with 

weakly similar properties. (B) Schematic representation of the eleven chimeric constructs 

used for the Y2H assay. As an example, ”SAP11 with SMP11 TCP bd” indicates the chimeric 

construct #1, which is the backbone of SAP11AYWB and the addition of the TCP binding domain 

of SAP11MBSP. SAP11= SAP11AYWB; SMP11= SAP11MBSP; TCP bd= TCP binding domain (Sugio et 

al., 2014); NLS dom= NLS domain; ir2=intra-region 2; ir3= intra-region 3 (C) Original pictures 

of the Y2H assay of the SAP11 chimaeras based on SAP11AYWB and SAP11MBSP (Figure 5.2.5). 

In bold are the constructs displayed in Figure 5.2.5. The rest of the constructs are not in the 

result chapters as no yeast growth was visible in the selective media SD -LWH (20mM 3AT). 

The figure C can be found in our latest paper (Pecher et al., 2019).
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Appendix IV figure 2: Further characterisation of the binding specificity region of Class I 

interactor SAP11SPLL. 

 

Legend of Appendix IV figure 2: (A) Based on the previous results of the SAP11 chimaera Y2H 

assays (Figure 5.2.5), I designed the chimeric constructs depending on block A, block B and 

block C, with block A further subdivided into block a1 and block a2. (B) Yeast-Two-Hybrid 

analysis showing the interaction between SAP11 chimeric versions based on SAP11AYWB, 

SAP11SPLL and SAP11MBSP and Arabidopsis thaliana TCPs. TCP candidates selected from the 

Class II CYC/TB1-TCP (sub)class and the Class I TCP. SAP11 chimeric versions are based on the 

Multiple Sequence Alignment of SAP11 effector homologs. SAP11 chimeric proteins and 

pDEST-GBKT7 empty vector control were fused to the DNA binding domain of the GAL4 

transcriptional activator (bait) while TCPs and pDEST-GADT7 empty vector control were 

fused to the transcription activation domain of GAL4 (prey). Yeast colonies co-expressing bait 

and prey or empty plasmid (pDEST-GADT7) combinations were grown in synthetic dropout 

(SD) media lacking either leucine and tryptophan (-L,-W) (left); leucine, tryptophan and 

histidine with the addition of 20 mM 3-Amino-1,2,4-triazole (3AT) (used to suppress auto-

activation)  (-L, -W, -H) (middle) or leucine, tryptophan, adenine and histidine (-L, -W, -A, -H) 
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(right); the former indicating the presence of both plasmids and the two later indicating 

interactions of bait and prey. The experiment has been repeated three times with three 

different batches of transformed yeasts. 
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Appendix V – Supplemental Figures for Chapter 6 

Appendix V figure 1: Multiple Sequence Alignment of AY-WB effectors SAP11, SAP56, 

SAP66, SAP67 and SAP68. The AY-WB sequences of SAP11, SAP56, SAP66, SAP67 and SAP68 

were obtained from NCBI. The signal peptides of the protein sequences were removed. The 

Genbank accession numbers are ABC65484.1 (SAP56), ABC65483.1 (SAP66), ABC65485.1 

(SAP67) and ABC65486.1 (SAP68). Then, I aligned the protein sequences using T coffee, 

default parameters (http://tcoffee.crg.cat/apps/tcoffee/do:regular). I then used Boxshade 

(http://www.ch.embnet.org/software/BOX_form.html) to produce the alignment displayed 

here.  

 

 

SAP11_AYWB    1 SPKKESS-DKKRDIPK--IN-------------KSEEKNKKQKEDIKRFYTIHKEFKEYS 

SAP56_AYWB    1 KIRLEERKNE-L---------------------------------KSQEIVLSQEP--RN 

SAP66_AYWB    1 MNNDNN--NNEIRNE------------------IREINNRIL-ELALEK----KQL--SN 

SAP67_AYWB    1 MGNKNSN-NNEISNDEEYALYVQAEFSIQNELTNFKFNNEKKSELLYKQTCITKAIQKYN 

SAP68_AYWB    1 MHNGNATPNNGHHNT------------------NFETQARILQEMNREQAIIVQQI--FN 

 

 

SAP11_AYWB   45 IEKNNEIIK-ILEN-PELMEILKQKAEEETKNLKEE------------------GSSSKQ 

SAP56_AYWB   25 NVNIERLCH--VRT--EIV-KINMEIYMIMQQIQMRD-II---Q---------------- 

SAP66_AYWB   34 QMSLNPIRS--FAN-LELN-IRNRAIYLELNNLYDRLRII---G--------QQPINPNQ 

SAP67_AYWB   60 KRKNNHQLSTPYDNRPESFQNNLHSLTENNNNLSGDLQYINLTKNNSNIYSVDKPES-YK 

SAP68_AYWB   41 ARNNNASKE--IIN--NLV-RQNIQLSQRI---SNQQ-II---LH----NAMPHENNRNQ 

 

 

SAP11_AYWB   85 PDDSKK------- 

SAP56_AYWB      ------------- 

SAP66_AYWB   79 PNNPLN--R---- 

SAP67_AYWB  119 KNDSKNKGVIIND 

SAP68_AYWB   85 LNNSNNRRR---- 

http://tcoffee.crg.cat/apps/tcoffee/do:regular
http://www.ch.embnet.org/software/BOX_form.html
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Appendix V figure 2: SAP effectors from SAP11AYWB genetic island can interact with TCP, 

including Class I TCPs. Yeast two-hybrid analysis of AY-WB phytoplasma SAP effectors SAP56, 

SAP66, SAP67 and SAP68, belonging to the genetic island of SAP11AYWB and Arabidopsis 

thaliana Class I, Class II CIN and Class II CYC/TB1-TCPs. SAP effector proteins and pDEST-

GBKT7 empty vector control were fused to the DNA binding domain of the GAL4 

transcriptional activator (bait) while TCP domains and pDEST-GADT7 empty vector control 

were fused to the transcription activation domain of GAL4 (prey). Phytoplasma SAP11 

effector homologs SAP11AYWB, SAP11MBSP, SAP11WBDL and SAP11SPLL were used as positive 

control for interaction with the different TCP (sub)classes. Yeast colonies co-expressing bait 

and prey or empty plasmids combinations were grown in synthetic dropout (SD) media 

lacking either leucine and tryptophan (-L,-W) (left) with growths of colonies indicating the 

presence of both plasmids; or leucine, tryptophan, adenine and histidine (-L, -W, -A, -H) 

(right) with growths of colonies indicating interactions of bait (SAP11 homologs) and prey 

(TCP homologs). The experiment was repeated three times with three different batches of 

transformed yeasts and these showed identical results as shown. This repetition does not 

include GBKT7 combinations so is kept as an appendix. 
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Appendix VI – Published work  

Pecher, P., Moro, G., Canale, M. C., Capdevielle, S., Singh, A., MacLean, A., … 

Hogenhout, S. A. (2019). Phytoplasma SAP11 effector destabilization of TCP 

transcription factors differentially impact development and defence of Arabidopsis 

versus maize. PLoS Pathogens, in press . See Appendix VI. 

 

 

Abstract: 

Phytoplasmas are insect-transmitted bacterial pathogens that colonize a wide range 

of plant species, including vegetable and cereal crops, and herbaceous and woody 

ornamentals. Phytoplasma-infected plants often show dramatic symptoms, including 

proliferation of shoots (witch’s brooms), changes in leaf shapes and production of 

green sterile flowers (phyllody). Aster Yellows phytoplasma Witches’ Broom (AY-WB) 

infects dicots and its effector, secreted AYWB protein 11 (SAP11), was shown to be 

responsible for the induction of shoot proliferation and leaf shape changes of plants. 

SAP11 acts by destabilizing TEOSINTE BRANCHED 1-CYCLOIDEA-PROLIFERATING CELL 

FACTOR (TCP) transcription factors, particularly the class II TCPs of the 

CYCLOIDEA/TEOSINTE BRANCHED 1 (CYC/TB1) and CINCINNATA (CIN)-TCP clades. 

SAP11 homologs are also present in phytoplasmas that cause economic yield losses 

in monocot crops, such as maize, wheat and coconut. Here we show that a SAP11 

homolog of Maize Bushy Stunt Phytoplasma (MBSP), which has a range primarily 

restricted to maize, destabilizes only TB1/CYC TCPs. SAP11MBSP and SAP11AYWB both 

induce axillary branching and SAP11AYWB also alters leaf development of Arabidopsis 

thaliana and maize. However, only in maize, SAP11MBSP prevents female 

inflorescence development, phenocopying maize tb1 lines, whereas SAP11AYWB 

prevents male inflorescence development and induces feminization of tassels. 

SAP11AYWB promotes fecundity of the AY-WB leafhopper vector on A. thaliana and 

modulates the expression of A. thaliana leaf defence response genes that are induced 

by this leafhopper, in contrast to SAP11MBSP. Neither of the SAP11 effectors promote 

fecundity of AY-WB and MBSP leafhopper vectors on maize. These data provide 

evidence that class II TCPs have overlapping but also distinct roles in regulating 

development and defence in a dicot and a monocot plant species that is likely to 

shape SAP11 effector evolution depending on the phytoplasma host range. 
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