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Abstract 

Brown rust, also known as leaf rust, is caused by the obligate biotroph basidiomycete Puccinia 

triticina and is the most common rust disease of wheat worldwide. Whilst the genetic diversity 

of P. triticina has been monitored across the world through the use of Simple Sequence Repeat 

(SSR) and Random Amplified Polymorphism DNA (RAPD) markers, genomic data has only 

recently become available, opening up new avenues of research. A novel pathogen surveillance 

technique, termed ‘field pathogenomics’, has been developed for the closely related plant 

pathogen Puccinia striiformis, which allows rapid detection of pathogen variants directly from 

infected wheat samples taken from the field through transcriptomic sequencing of infected 

material. In this study, a genomic approach was used in combination with the field 

pathogenomics technique to characterise the European brown rust population and genetic 

diversity. This involved genomic sequencing of 32 UK brown rust isolates from the years 2006-

2015 to characterise the UK brown rust population in the years prior to this project, 

accompanied by transcriptomic sequencing using the field pathogenomics technique of 73 

European field isolates from the 2017 and 2018 growing seasons. Phylogenetic and population 

genetic analysis of 105 brown rust isolates illustrated that they are all closely related with very 

little genetic diversity. This study does not find separate populations of P. triticina, as have been 

previously categorised through the use of SSR markers, but demonstrates that the genetic 

information used to assign samples to population groups must be considered when looking at 

population genetics of a clonal, highly genetically similar, organism. 
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Introduction 
 

Wheat is a huge contributor to global food security 

An increasing population, demand for a better diet, and the prospect of global warming means 

that food security is a great challenge the world is facing in the years to come (Godfray et al., 

2010).  

Wheat is the third most produced global cereal and grown on more land area than any other 

commercial crop in the world (O’Driscoll et al., 2014). This crop considered the most important 

cereal crop in the Northern Hemisphere, Australia and New Zealand, and is grown on all 

continents (Oerke and Dehne, 2004).  

Worldwide, around 215 million hectares of land annually produce over 8700 million tons of 

wheat, and by 2050 we will need to grow 60% more wheat than today to meet growing 

consumer demands (Randhawa et al., 2019). Wheat production is also particularly important in 

the UK, with 16.4 million tonnes of wheat harvested from plants grown across 1.8 million 

hectares in 2015, giving a provisional economic output of £2.8 million, which is higher than any 

other cereal crop (DEFRA, 2015).  

 

Wheat rusts threaten global food security 

Pre-harvest pests result in significant crop losses, with a global average of 35% of crop yields 

lost, and up to 70% in some developing countries (Popp and Hantos, 2011). The total potential 

global loss due to pests has been estimated at up to 50% for wheat (Oerke, 2006), with a  loss 

potential of 16% estimated for fungal and bacterial pathogens alone (Oerke and Dehne, 2004). 

As wheat crop productivity increases, the occurrence and impact of pathogenic microorganisms 

increases, meaning their relative importance increases with higher productivity (Oerke and 

Dehne, 2004). This means that pathogenic microorganisms remain of particular importance to 

crops here in the UK, as the UK is the 5th highest country for reported wheat yield in recent 

years (Figure 1). 

 

 
Figure 1 – Top 20 wheat yielding countries in 2017. Figure reproduced from factfish.com. 
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Crop protection strategies can help to reduce the overall loss potential, with a reduction of 

total potential losses from 50% down to 29%, and a reduction from a 16% loss due to 

pathogens down to 10% (Oerke and Dehne, 2004), however the more we understand these 

pathogens, the more we can aim to reduce losses to a minimum. 

 

 The wheat rusts, comprising of the species Puccinia triticina, P. striiformis f.sp. tritici and P. 

graminis f.sp. tritici, pose a significant constraint to increased wheat production (McIntosh et 

al., 1995) and are considered among the most important economically damaging diseases of 

cereal crops (Hodson, 2011). The impact of these crop pathogens has been highlighted by the 

development of the Borlaug Global Rust Initiative (BGRI). This consortium was set up in 2008 to 

co-ordinate efforts to combat these rust pathogens following the outbreak of the Ug99 race of 

stem rust in Uganda in 1999 (McIntosh and Pretorius, 2011).  

Additionally, in 2012 these three plant pathogens were voted third place in a ‘Top 10’ list of 

fungal pathogens in molecular plant pathology, with plant mycologists particularly accentuates 

the importance of the emergence of the stem rust race Ug99, and epidemics of stripe rust 

attributed to new, more aggressive races adapted to warmer temperatures (Dean et al., 2012).  

The main methods of wheat rust control are through the use of fungicides, and through 

breeding wheat varieties with durable resistance genes (McIntosh et al., 1995). Wheat rusts can 

be difficult to culture in the lab due to their obligate biotroph nature (Cuomo et al., 2011), 

requiring time-consuming culturing methods on the host plant. This has slowed research 

progress that aim to apply genomic technologies to surveillance and diagnostic techniques. 

 

Brown rust – An economically important pathogen 

Brown Rust, also known as Leaf Rust (Puccinia triticina, abbreviated to PTT) is the most 

common rust disease of wheat (Huerta-Espino et al., 2011) and is present in all wheat 

production areas in the world (Aoun et al., 2019).  This biotrophic basidiomycete pathogen 

results in about 10% annual losses globally (Dean et al., 2012), although losses can be more 

severe (30% or more), particularly when the flag leaf is infected before anthesis (Roelfs, 1992). 

This pathogen generally infects crops late in the season, causing losses in yield due to lower 

kernel weights and a decrease in the number of kernels per head (Huerta-Espino et al., 2011). 

This can result in economic losses of over £20 million in epidemic years (Bolton et al., 2008). 

Severity of brown rust is mostly reported in wheat-growing areas with warmer and hot climates 

such as the steppes of Central Asia and the Great Plains in North America, as well as warm and 

humid climates such as South America, the coastlines of North America and the Mediterranean 

(Liu et al., 2014). In the UK, warmer summers have led to the presence of brown rust later in 

the season, which can be serious on susceptible wheat varieties (Hubbard et al., 2015b). This 

means that the threat of brown rust in the UK could increase in future with the impact of global 

warming. Predicting and combatting the spread of brown rust is a prospective target to 

ameliorate crop losses to pre-harvest pests. 
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Life History of a Cereal Killer 

Brown rust is an obligate biotroph of hexaploid common wheat (Triticum aestivum L.,), 

tetraploid durum wheat (T. turgidum L.), and wild emmer wheat (T. dicoccoides L.), 

characterised by brown uredinia seen on susceptible leaf surfaces, and chlorosis on more 

resistant wheat varieties (Bolton et al., 2008). Like other rust species, it has a heteroecious life 

cycle, with two taxonomically unrelated hosts. The life cycle of PTT is macrocyclic, with five 

distinct stages of teliospores, basidiospores and urediniospores on the wheat host, and 

pycniospores and aeciospores on the alternate host (Figure 2) (Bolton et al., 2008, Huerta-

Espino et al., 2011). Sexual pycniospores are spread by insects attracted by nectar surrounding 

the pyncium, (Kolmer, 2013) and asexual urediniospores can be spread thousands of kilometres 

by wind (Brown and Hovmoller, 2002). Wheat is the asexual host, upon which dikaryotic 

urediniospores can reproduce clonally and cycle continuously. Brown rust has two known 

alternate hosts, required for completion of the sexual cycle. In contrast to the other two wheat 

rust species, which share common berberry (Berberis vulgaris) as an alternate host (Jin et al., 

2010, Fetch and McCallum, 2014), the sexual cycle has of brown rust has been reported on two 

Ranunculaceae alternate hosts . Thalictrum speciosissimum is found in southern Europe and 

southwest Asia, (although other Thalictrum species can be found worldwide and many have 

been introduced to new areas outside their natural range) and Isopyrum fumaroides, can be 

found in East Asia and the Russian Far East  (Bolton et al., 2008, Hassler, 2017). The centre of 

origin for brown rust is thought to be in the Fertile Crescent region of the middle east, where 

the natural range of primary and alternative hosts coincide (Bolton et al., 2008). 

While sexual reproduction of PTT has been reported on Thalictrum spp. in Spain, Portugal, Italy 

and the US (Liu et al., 2014), and on Isopyrum fumaroides in Siberia (Chester 1946), overall 

there is little evidence of sexual recombination in populations worldwide.  Clonal reproduction 

via dikaryotic urediniospores is predominant, based on data from molecular markers in several 

population genetic studies (Goyeau et al., 2007, Kolmer and Ordoñez, 2007, Kolmer et al., 2011, 

Ordoñez and Kolmer, 2009b) and the lack of susceptible alternate hosts in many areas of the 

world (Aoun et al.,2019).  

 

Despite the lack of sexual recombination, P. triticina populations continue to evolve asexually 

and have a high diversity for virulence to leaf rust resistance (Lr) genes in wheat (Kolmer 2013; 

McCallum et al. 2007; Roelfs et al. 1992). 

Mutation has generally thought to be the major cause of the emergence of new races of PTT 

(Ordoñez and Kolmer 2007a).  In addition, evidence of hybridisation has been observed in 

brown rust (Park et al., 1999) and could play a role in generation of new genotypes. 

Furthermore, parasexual recombination, via anastomosis of germ tubes, has been reported in 

Australia (Park et al., 1999)  which could also contribute to the advent of new virulence 

phenotypes arising from clonal lineages of Puccinia species (Kolmer, 1996). Genetic drift of 

large clonal populations, migration and host selection also contribute to the genetic diversity of 

P. triticina populations (Aoun et al., 2019). 
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Figure 2 – Life cycle of Puccinia triticina, feature the asexual clonal cycle on wheat, and the 
sexual cycle on the alternate host Thalictrum. Figure from Huerta-Espino et al., 2011. 

 

Pathogen Resistance is Genetically Controlled 

Currently, the most effective and economical method of controlling brown rust is through the 

deployment of resistant wheat cultivars. To date, there are 77 named and characterised leaf 

rust resistance genes (Lr genes) (Randhawa et al., 2019). Wheat pathogen resistance genes are 

found in two forms. 

With major resistance genes, also known as R genes, race specific or seedling resistance, races 

can be easily be determined and there is an obvious differential reaction (Dubin and Brennan, 

2009). Major gene resistance works by a gene-for-gene interaction, comprising of effectors 

released from the pathogen, and plant cell receptors recognising certain effectors (known as 

Avr genes) to trigger a defence response, often in the form of cell death of the infected cell to 

prevent pathogen spread (McDonald and Linde, 2002).  Most major resistance genes code for 

intracellular immune receptor proteins of the nucleotide-binding leucine-rich-repeat  (NB-LRR) 

class of proteins (Dodds and Rathjen, 2010). This form of protection is only effective against 

members of the pathogen population that have the recognised effector (Burdon et al., 2014).  

Partial resistance can take the form of adult plant resistant genes, minor resistance genes, or 

partially expressed R genes. Incompletely expressed R genes are still race-specific, but adult 

plant resistance genes and minor resistance genes are not race specific (Burdon et al., 2014). 

Partial resistance tends to have a smaller effect and may not provide strong resistance alone, 

and can allow some rust sporulation, although it takes more inoculum, a longer time and more 
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favourable conditions for rust to develop (Dubin and Brennan, 2009). These genes of small, 

additive effects can be built up to higher levels of resistance and can remain effective decades 

after initial deployment (Pasam et al., 2017) although they can be difficult to detect (Dubin and 

Brennan, 2009) and need to be used in combination with other major resistance genes or at 

least 3-4 partial resistance genes to retain acceptable levels of crop protection (Pasam et al., 

2017). Partial resistance has been seen as ‘durable’, primarily as it does not exhibit the ‘boom 

and bust’ cycles of specific resistance genes, and it applies different selection pressures than 

specific resistance genes, however there is evidence for increased aggressiveness and 

adaptation by pathogens to partially resistant hosts (Burdon et al., 2014), highlighting the need 

for pyramiding multiple genes into new varieties to maintain durable resistance to disease.  

 

These control measures place strong selection pressures on crop pathogens, which often result 

in ‘boom and bust’ cycles of repeated losses of effective control measures as these are 

overcome by the pathogen (Burdon et al., 2016, McDonald and Linde, 2002). This is due to the 

fact that avirulence genes in P. triticina and the corresponding resistance genes in wheat 

interact in a gene-for-gene relationship (Samborski and Dyck, 1976). Therefore, when a single 

major resistance gene becomes widespread across an area, (the ‘boom’ part of the cycle), then 

the resultant selection pressure on the pathogen encourages it to overcome the resistance 

gene (causing the ‘bust’).  This has been demonstrated to occur to large scales in recent years in 

closely related rust species, including the emergence of the yellow rust ‘Warrior’ race in the UK 

2011 (Hubbard et al., 2015a) and the stem rust Ug99 race in Uganda in 1998 (Singh et al., 

2011). This has the potential to result in large economic losses - annual losses of $3 billion have 

been predicted if the Ug99 race and its derivatives become established in North Africa, the 

Middle East and South Asia (Dubin and Brennan, 2009).  

In the case of brown wheat rust, the use of cultivars with single resistance genes to P. triticina 

in Australia between 1938-1964 was followed by higher incidences of pathotypes with 

corresponding virulence (Park et al., 2001), and here in the UK use of brown rust resistance 

genes in the wheat variety Glasgow led to the emergence of the ‘Glasgow’ race of brown rust in 

2005 which carried virulence for that resistance gene (Hubbard et al., 2018).  

One of the main ways to deploy gene resistances to alter the selection processes on pathogen 

populations is to pyramid several resistance genes in one cultivar so that any pathogens would 

have to undergo a series of mutations to overcome the multiple resistance genes, rather than 

just one (McDonald and Linde, 2002). This has proved successful on experimental lines of rice 

against the rice blast pathogen , Mangaporthe oryzae, using four minor resistance genes 

(Fukuoka et al., 2015).  

However, mechanisms still remain for pathogens to overcome even multiple pyramided 

resistance genes. Multiple virulence could arise through a series of independent mutations 

including deletion mutations (Timmis et al., 1990), loss of Avr-genes particularly those 

recognised by several R genes (Petit-Houdenot and Fudal, 2017), somatic recombination, 

transposable elements and suppressor genes able to affect multiple virulence loci (Mundt, 

2018). Additionally, many major resistance genes can allow for low levels of pathogen 
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reproduction,  offering the possibility for a pathogen to sequentially develop virulence instead 

of via independent simultaneous mutations  (Brown, 2015) 

Therefore, it is imperative that plant pathogens are closely monitored to ensure we have 

current knowledge on their virulence profiles and can reliably inform food producers on 

suitable wheat varieties to grow.  

 

Surveillance of Wheat Rust 

The fact that novel pathogens and pathotypes can diversify and spread so expeditiously in agro-

ecosystems means a rapid, simple diagnostic technique can be highly useful to identify and 

track new outbreaks.  

Wheat rusts have grown in concern in recent years as new races have evolved to overcome 

host resistance. Stem rust (Puccinia graminis f. sp. tritici) has had a particular focus due to the 

devastating outbreaks in Africa of the stem rust race Ug99 (Dubin and Brennan, 2009), and has 

also been noted to have the potential for re-emergence in the UK following a series of recent 

outbreaks in Europe and the identification of a single stem rust isolate in the UK for the first 

time in nearly 60 years (Lewis et al., 2018). Yellow rust (Puccinia striiformis) has also become an 

increasing concern in recent years, due to new races emerging that are adapted to warmer 

temperatures, are more aggressive and with virulence to more resistance genes than previously 

 

  
 

 Table 1 – Notable Puccinia triticina changes seen by the UKCPVS since the survey started in 

1967. From Hubbard et al., 2018. 
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characterised races (Hovmøller et al., 2010). Despite documented breakdowns of genetic 

resistance to leaf rust (Bariana et al., 2007, Hubbard et al., 2018, Table 1)  PTT remains 

understudied compared to the other wheat rusts, with race surveys relying on phenotypic and 

genetic marker data.  

 

Traditional surveillance methods are pathology based. This involves infecting wheat plants with 

collected isolates, which is time-consuming, can only process low numbers of isolates (<25 per 

year), and phenotypic information is reported up to a year after samples are taken. This means 

that new pathotypes arising through mutation, recombination and exotic incursions may not be 

detected soon after they have arisen, allowing them time to spread across susceptible host 

varieties (Hubbard et al., 2015a). Several organisations around the world monitor wheat rust 

populations, including the United States Department of Agriculture Research Service, the 

Australian Cereal Rust Survey at the Plant Breeding Institute, and the Global Rust Reference 

Centre. Here in the UK, the United Kingdom Cereal Pathogen Virulence Survey (UKCPVS) was 

established in 1967 following an unexpected breakdown of resistance in the variety Rothwell 

Perdix and continues to monitor the status of brown wheat rust in the UK (Hubbard et al., 

2015b). Therefore, it provides a good resource for materials for this project. 

 

Molecular markers have been used for the past 20 years to assess genetic diversity of P. 

triticina populations (Aoun et al., 2019). The first markers to be used to genotype brown rust 

populations were random amplified polymorphism DNA (RAPD) markers (Kolmer and Liu 2000; 

Park et al. 2000), followed by Amplified Fragment Length Polymorphism (AFLP) markers 

(Kolmer 2001). In addition, Simple Sequence Repeat (SSR) markers have been used to 

characterise populations around the world. The use of a set of 23 SSRs has resulted in the 

observation of a moderate correlation between virulence phenotype and SSR genotype (Kolmer 

2015; Kolmer and Acevedo 2016; Kolmer et al. 2011, 2013; Ordoñez et al. 2010; Ordoñez and 

Kolmer 2007b, 2009). This correlation between phenotype and genotype has also been seen in 

multilocus genotypes of P. triticina isolates from across the world, and through SNP markers 

obtained by Restriction-Associated DNA Genotyping-by-Sequencing (RAD-GBS) (Kolmer et al., 

2019, Aoun et al., 2019).  

 

Advances in Genetic Sequencing Offer Genomic Resources for Rust Research 
With the advent of more affordable genome sequencing in recent years, the genomes of the 

three cereal rusts have been sequenced, allowing estimation of genome sizes and revealing 

genomic features such as the annotation of proteins and prediction of candidate effector 

proteins, and opening new avenues of research, such as comparative studies. In 2011 the P. 

graminis genome was sequenced, revealing genomic features including effector-like small 

secreted proteins, lineage-specific gene families, and expanded families of amino acid and 

oligopeptide membrane transporters, all relating to the obligate biotrophic nature of P. 

graminis (Duplessis et al., 2011). Shortly afterward in the same year the first P. striiformis 
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genome was released and compared to the stem rust genome. This revealed a relatively high 

degree of identity between annotated proteins between these two species and extended 

regions of micro-synteny between the genomes, allowing identification of orthologous genes 

and early comparisons between two different wheat rust species. In addition, a draft genome of 

brown rust was completed using 454 sequencing by the Broad Institute, revealing the large size 

of the genome in line with other rust species, and a large number of repetitive elements (Kiran 

et al., 2016). 

 Following this, a comparative study between the genomes of all three wheat rusts highlighted 

the fact that all three genomes were highly heterozygous, and had expanded gene families 

associated with a biotrophic lifestyle (Cuomo et al., 2017).  

 

Having a sequenced and assembled genome can then offer avenues for further research useful 

to understanding the molecular basis of the plant-pathogen interactions, which are imperative 

to assist development of more effecting resistance breeding strategies to achieve long-term 

resistance to crop pathogen. Effector proteins are useful research targets, as understanding 

their function and the evolutionary processes acting upon them would greatly aid our 

understanding of the evolution of rust fungi and their pathogenicity mechanisms. Work has 

been done to understand the wheat-PTT pathosystem at the molecular level, including the 

production of a haustorial cDNA library (Xu et al., 2011), the secretome prediction of six races 

of PTT (Bruce et al., 2014) and subsequent infection of these races on the host plant to 

investigate host expression (Neugebaeur eta l., 2018), investigation of small RNAs that may 

interfere with host  processes (Dubey et al., 2019), and two proteins have been identified that 

induce a reduction in ß-glucoronidase expression in wheat lines with corresponding resistance 

genes (Segovia et al., 2016). However, we are yet to formally validate any predicted PTT 

effectors (Segovia et al., 2016). 

 

In crop pathogens, the field pathogenomics technique has proved successful as a rapid 

diagnostic and surveillance method, using a transcriptomics approach to categorise field-

collected isolates into genetic groups, helping to guide crop protection and breeding strategies. 

The transcriptomic data produced also has the potential to be used in further studies.  This 

technique was pioneered in yellow rust and unveiled a shift in the UK and European population 

of P. striiformis due to multiple exotic incursions (Hubbard et al., 2015a). It also proved useful in 

monitoring a new disease outbreak of wheat blast in Bangladesh, sourcing this outbreak to a 

wheat-infecting South American lineage of the blast fungus Magnaporthe oryzae (Islam et al., 

2016), and elucidating the population structure and differential gene expression of candidate 

pathogenesis-related genes of Fusarium graminearum in Illinois (Fall et al., 2019). The field 

pathogenomics technique has also been further expanded upon through the development of 

the ‘PenSeq’ (Pathogen Enrichment Sequencing) method by using complexity reduction 

methods to sequence Albugo candida isolates, previously very difficult to sequence due to the 

obstacle in obtaining sufficient DNA of the pathogen compared to the host plant due to its 

biotrophic nature, and the fact it cannot be cultured axenically (Jouet et al., 2019).  
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 The field pathogenomics technique has been proven to allow rapid identification of new 

populations, allowing timely disease prevention measures that can be applied to fungal 

pathogens (Hubbard et al., 2015a, Islam et al., 2016, Fall et al., 2019). Therefore, it represents a 

technique readily applicable for a project that aims to both characterise and monitor 

populations of brown wheat rust. 

Project Aims 
 

Basis for Project 
The basis for this project is the successful application of the field pathogenomics technique to 

several plant pathogens, including yellow rust and powdery mildew (Hubbard et al., 2015a, 

Islam et al., 2016, Fall et al., 2019, Jouet et al., 2019). Brown rust presents a major threat to 

wheat crops worldwide and the field pathogenomics technique could be a useful tool in the 

surveillance and population analysis of this plant pathogen. Through a collaboration with the 

UK Cereal Pathogen Virulence Survey and the company BASF, we have access to brown rust 

samples from the years prior to this project and the growing seasons throughout the duration 

of this project. This allows the genotyping of multiple samples representing different growing 

seasons, and from different geographic locations, allowing the investigation of UK and 

European brown rust populations both spatially and temporally.  

 
Aims and Objectives 
The long-term objective of this research project is to explore the diversity and population 

structure of brown rust in the UK and Europe. Using DNA extracted from samples collected in 

the years prior to this project, and RNA extracted from isolates collected during the growing 

seasons of the course of the PhD using the field pathogenomics technique, we can compare 

genetic data of isolates within and between each other to elucidate evolutionary similarities 

and differences. Ultimately the aim is to investigate the past and current population structure 

of UK and European brown rust, if the changes seen in the virulence profiles of isolates 

collected in the UK by the UKCPVS in the years 2006-16 represent a shift in the genotypes of 

brown rust, and if so, if we are able to identify these potential genotypes.  

Methods 

Historical Isolates 
45 isolates from across the UK were chosen from samples originally collected in the field in the 

years 2006-2015 for the UKCPVS. Infected wheat leaves were received from wheat growers, 

agronomists and trials operators for the wheat Recommended List trials. The majority of 

samples are from Cambridgeshire (17 samples) and Lincolnshire (7 samples) (Figure 3, 

Supplemental Table 1). Samples originate from 26 different host varieties, plus two samples 

with hosts of an unknown wheat variety. 
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Obtaining Spore Material of Historical Brown Rust Isolates 
The 45 historical isolates were received from NIAB as dried spore samples stored at -80C. It 

was unknown whether they consist of a single genotype, so it was necessary to obtain single 

pustule isolates in order to be sure that a single genotype is sequenced. Subsequently isolates 

then needed to be multiplied until sufficient spore quantities were available for DNA extraction 

(~1000mg). Spores stored at -80C were heat shocked at by placing sealed Eppendorfs 

containing the spores used for inoculation in a water bath at 40C for five minutes.  

Infection was achieved by suspending a quantity of spores (~0.5mg spores per isolate) in a small 

amount of Novec 7100 (Sigma-Aldrich) and applying the spore suspension to the plant using a 

hobby airbrush and air compressor. Newly inoculated plants were placed in a dark room in seal 

zip-tied autoclave bags with 100% humidity at 10-12C for 48 hours. After incubation, plants 

were isolated by enclosing the plant pot with cellulose bags that allow gas exchange. Plants 

were then grown in glasshouse conditions at the John Innes Centre, Norwich, UK. To obtain a 

single genotype of rust, at first pustule emergence 5-8 days after inoculation, one single 

infection lesion was cut from the leaf and physically rubbed onto the leaves of an 

Figure 3 – Map showing counties the historical 
isolates originated from. 2 isolates are not listed as 
they are of unknown providence. 



15 

 

approximately two-week old wheat seedling  (variety Armada). This is to maximise the amount 

of inoculum, as typically there were low amounts of spores from single early pustules. The plant 

was then incubated in a dark room at 100% humidity at 8-10C as above. Following single 

pustule isolation, spores were multiplied by collecting fresh spores from previous infections 

(approximately 2-4 weeks after inoculation) and then sprayed onto armada variety wheat 

seedlings using a suspension of Novec 7100 and spores as above. When sporulation occurs, 

cellulose bags were folded over to ensure that when spores drop off from lesions they are 

collected at the bottom of the bag. After 2-4 weeks after inoculation, spores were harvested by 

using gravity to funnel them into a corner of the bag, which is then cut off using scissors and 

spores were collected in a 1.8ml Eppendorf tube. Fresh spores for inoculation of new plants 

were stored for up to five days at 4C. Spores not used for new inoculations were dried by 

placing in a desiccator filled with silica gel beads for 48 hours, then stored at -80C (Figure 4). 

 
Figure 4 – Schematic showing the process of multiplying a historical brown rust isolate from 
stock spores. 
 
Overall, a total of 32 isolates were genome sequenced.  One isolate (08-09) was bulked and 

DNA extracted, but failed to yield high quality sequences. Two isolates (06-094 and 08-015) 

were inoculated twice but failed to grow and are assumed to be unviable, and so were excluded 

from the study. The remaining 10 isolates were not multiplied to a sufficient spore quantity for 

extraction in the time course of this study, but single pustule isolates have been obtained and 

can be used for future studies.  

 

Whole-Genome Sequencing of Historical Brown Rust Isolates 

DNA was extracted from the 32 isolates with sufficient spore material using a modified CTAB 

method as described by (Chen et al., 1993), and quality checked and quantified on the Qubit 2.0 

fluorometer (Thermo Fisher Scientific, Paisley, UK). DNA was then sent to Genewiz (South 

Plainfield, New Jersey, US) for sequencing, using their standard library preparation (Illumina 

TruSeq DNA kit) and subsequently sequenced on the Illumina Hiseq (Illumina, San Diego, 

California, US). 
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Transcriptome Sequencing of Brown-Rust Infected UK and European Field 

Isolates 

Brown-rust infected samples were collected by the UKCPVS and the partner company BASF 

during the growing seasons of 2017 and 2018. In 2018, 57 samples were received from eight 

countries (UK, France, Belgium, Germany, Poland, Denmark, Switzerland, Netherlands). 37 of 

these were RNA sequenced, representing all countries sampled. In addition to this, the isolate 

17-028, which failed to result in good sequencing reads in 2017, was re-extracted and 

sequenced in 2018. Supplemental Table 3 contains a full list of all isolates sequenced. 

All isolates consisted of leaf samples of brown rust infected wheat, collected in the field and 

stored in the nucleic acid stabilisation solution RNA-later® (Thermo Fisher Scientific, Paisley, 

UK), transported at room temperature and stored at 4°C on reaching the lab at the John Innes 

Centre in the UK.  

RNA was extracted from all samples using the Qiagen RNeasy plant mini kit (Qiagen, 

Manchester, UK) according the manufacturer’s protocol and assessed on the Agilent 2100 

Biolanalyzer (Agilent Technologies, CA, USA) to examine the quantity and quality of RNA 

extracted. Extracted RNA was sent to Genewiz (South Plainfield, New Jersey, US) for 

sequencing, where complementary DNA libraries were prepared with polyA selection using the 

Illumina TruSeq RNA Sample Preparation Kit (Illumina, CA, USA) and subsequently sequenced 

on the Illumina Hiseq 2500 (Illumina, CA, USA).  

 

Turkish Samples 

In addition to this, 12 samples from Turkey were received. As the alternate host of brown rust 

has been reported in Turkey (Kolmer et al., 2011), it was important to include these in order to 

check if we could detect any signs of sexual reproduction. These samples were sent as dried 

leaves in paper envelopes and transferred to storage in RNA-later at 4°C on arrival at the John 

Innes Centre in the UK. Samples had RNA extracted and nine were sequenced according to the 

method stated above (Table 2). These nine were chosen as they had the best quality RNA out of 

the samples extracted as assessed on the Agilent 2100 Bioanalyzer (Agilent Technologies, CA, 

USA).  

 

New Zealand Samples 
 After initial analyses indicated high levels of genetic similarity in the European population of 

brown rust, we obtained 12 samples from New Zealand as spores in order to explore the 

genetic diversity of brown rusts outside of Europe (Table 3). These samples were inoculated 

onto the susceptible wheat variety Armada. Two samples failed to grow, but the other 10 

successfully grew to sporulation. Samples were collected from these 10 and stored in RNA-later 

solution as for the UK and European field isolates. These 10 were subject to RNA extraction 

using the same method as the UK and European field isolates. Of these, four were RNA-

sequenced to the same methods as the UK and European field isolates, chosen as they had the 

best quality RNA out of the 10 samples processed as measured on the Agilent 2100 Bioanalyzer 

(Agilent Technologies, CA, USA.  
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Isolate Infective on: Location Province Sequenced? 

SN:1 Lr8 Foça Izmir Yes 

SN:2 Lr28 Bergama Izmir Yes 

SN:3 Lr58 Biga Çanakkale Yes 

SN:4 Lr62 Manyas Balikesir Yes 

SN:5 Lr64 Manyas Balikesir No 

SN:6 Lr67 Gönen Balikesir Yes 

SN:7 Lr69 Biga Çanakkale No 

SN:8 Lr70 Gŏnen Balikesir Yes 

SN:9 Lr73 Bigadiç Balikesir Yes 

SN:10 Lr77 Biga Çanakkale Yes 

SN:11 Lr81 Honaz Denizli No 

SN:12 Lr83 Honaz Honaz No 

SN:13 Lr85 Menderes Izmir Yes 

SN:14 ?  Izmir Yes 

 
Table 2 – Table showing list of Turkish isolates in this study, the Lr gene they are able to infect 
(pers. Comm), and the location and province they were collected from where known. All were 
collected in 2018.  
 

Isolate Pathotype Year of first record Sequenced? 

00/1A 104-1, 3, 4, 6, 7, 10, 12 

+ Lr37 

2000 Yes 

14/17A  53-1, (6), (7), 9, 10, 12 2015 Yes 

14/18A  76-1, 3, 5, 7, 9, 10, 12, 

13 +Lr37 

2014 Yes 

14/27A ??-3, 4, 7, 9, 10, 12 2014 Yes 

00/2A  ??-7, 10 2000 No 

12/01A (Mackellar 

type) 

10-1, 3, (6), (7), 9, 10, 

11, 12 

2012 No 

12/01B (Mackellar 

standard) 

10-1, 3, (7), 9, 10, 11, 

12 

2012 No 

12/01C  104-1, 3, 4, 6, 7, 9, 10, 

12 +Lr37 

2012 No 

14/13 ??-1, 3, (7), 9, 10, 12 2014 No 

14/41A  76-3, 5, 7, 9, 10, 12, 13 

+Lr37 

2014 No 

WLR-2 76-1, 3, 10, 12 1986 Failed to grow 

14/12 104-1, 3, 4, 6, 7, 8, 9, 

10, 12 +Lr37 

2014 Failed to grow 

 

Table 3 – Table showing pathotype and year of first record for 12 isolates obtained from 

collaborators in New Zealand. 
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Australasian Samples 

We further expanded our set of isolates by including publicly available isolates from 

Australasian from Wu et al., 2017 (Table 4).  These are useful to include as they were originally 

collected in years prior to this study (ranging from 1974-1991) and can represent an older, 

more geographically distant dataset compared to the UK and European isolates sequenced in 

this study.  

 

Sequencing 
No 

Isolate 
No 

no of Bases 
(G) 

Size (Gb) Date Location Territory 

SRR4254441 760285 5.2 3.5 1976 Coorangy Queensland 

SRR4254442 630846 7.1 4.7 1980 Gurley Fairall 

SRR4254443 750299 7.3 4.9 1976 Wandoan Queensland 

SRR4254444 700201 7.1 4.7 1974 QWRI Queensland 

SRR4254445 740408 7.6 5 1975 Biloela Queensland 

SRR4254446 740606 7.5 5 1975 Narrabi New South 
Wales 

SRR4254447 700575 6 4 1974 Wellington New Zealand 

SRR4254448 QWRI 6.3 4.2 1990 QWRI Queensland 

SRR4254449 900084 5.4 3.6 1991 PBI Cobbitty Lansdowne 

SRR4254450 89-L-1 7 4.7 1989 Castle Hill Glasshouse 

SRR4254451 890155 6.9 4.6 1990 Tamworth  

SRR4254452 900273 6.6 4.4 1991 Mt Ridley  

SRR4254453 790197 7.2 4.8 1979 Bookpurnong South Australia 

SRR4254454 670028 7.2 4.8 1980 Takaka New Zealand 

SRR4254455 730003 7.5 5 1974 University of New 
England 

New South 
Wales 

SRR4254456 66-L-3 7 4.6 1974 Castle Hill Glasshouse 

SRR4254457 60-L-2 4.8 3.2 1978 Castle Hill Glasshouse 

SRR4254458 64-L-3 8.9 5.9 1976 Castle Hill Glasshouse 

SRR4254459 630550 6.8 4.5 1974 Ravensworth New South 
Wales 

SRR4254460 BCL 75 6.2 4.1 1974 University of Sydney 

 
Table 4 – Table showing Size, no of Bases, date collected and location collected of the 

Australasian isolates included in this study from Wu et al, (2017). 
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Quality Checking Data 

Both RNA and DNA data was quality checked using the fastqc package (Andrews, 2010). The 

ILLUMINACLIP option of the programme Trimmomatic (Bolger et al., 2014) was used to trim 

adapter and barcode sequences from all reads, and low quality base scores were filtered using 

a LEADING and TRAILING option of 5, SLIDINGWINDOW with a threshold value of 4 per 10 

bases, and a minimum length of 40bp. Paired-end reads were then aligned to the Race 1-1 P. 

triticina genome generated by the Broad Institute (Cuomo et al., 2011) using bowtie2 (version 

2-2.2.1) with default parameters (Langmead and Salzberg, 2012) for RNA data, and BWA with 

default parameters (Li and Durbin, 2009) for DNA data. 

 

Calling Single Nucleotide Polymorphisms 

Pileup from SAMtools was used to sort and index BAM files, and to identify SNPs using raw 

allele counts for each site (Li et al., 2009). For genomic data, a minimum depth of coverage of 

10x was necessary for a site to be recorded, and for RNA_seq data, a minimum coverage of 20x. 

Sites with allelic frequencies below 0.2 or above 0.8 were counted as homokaryotic, those with 

allelic frequencies between 0.2 – 0.8 were classified as heterokaryotic. Allele frequencies for 

biallelic heterokaryotic SNP sites were calculated and then plotted using the ggplot2 package in 

R, which could then be used to determine whether the sample consisted of a single brown rust 

genotype. As brown rust is a dikaryon with two haploid nuclei per cell, the mean read counts at 

heterokaryotic sites should have a mode at 0.5, with each haploid nuclei being represented by 

one of two alternative alleles (Hubbard et al., 2015a). Proportions of reads per SNP different to 

this could be explained by either polyploidy or by mixed infections. In this study, shifted read 

proportions are assumed to be indicative of mixed infections due to the fact that samples are 

originally collected in the field, and therefore have the potential to comprise of multiple 

infections on a single leaf sample. Therefore, field isolates that displayed a heterokaryotic site 

SNP profile without a peak at 0.5 were excluded from the study. Heterokaryotic and 

homokaryotic SNP sites that resulted in synonymous and non-synonymous substitutions were 

determined using version 3.6 of SnpEff (Cingolani et al., 2012).  

 

Phylogenetic Analysis 

Phylogenetic analysis on 105 PTT isolates (comprising of all successfully sequenced genomic 

isolates RNA-sequenced isolates determined to be single-sourced from this study, and 20 

Australian phenotype paired isolates from Wu et al., (2017) using the third-codon position of 

9449 genes with ≥60% breadth of coverage was performed using a maximum likelihood model. 

For both DNA and RNA sequenced isolates, nucleotides residues different to the Race 1-1 BBBD 

reference genome were identified and recorded if they had a minimum of 10x depth of 

coverage for DNA isolates, and 20x depth of coverage for RNA isolates. Sites identical to the 

reference genome were recorded if they had a minimum of 2x depth of coverage. These sites 

were used to create a synthetic gene set for each individual isolate. Genes with a minimum of 

≥60% breadth of coverage were selected, and the third codon position of these genes was used 
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to build the maximum likelihood tree using RaxML 8.0.2 (Stamatakis et al., 2014). Phylogenetic 

trees were visualised in Dendroscrope (Huson and Scornavacca, 2012) 

 

Population Structure Analysis  
Genetic variation of the single-sourced P. triticina field isolates, all successfully sequenced 

historical isolates and the 20 phenotype-paired isolates from Wu et al (2017) were assessed 

using the multivariate DAPC contained within the adegenet R package (Jombart, 2008). 51001 

bialleleic SNP sites that result in a synonymous change in at least one isolate were identified, 

and used to summarise genetic variation within the isolates through principal component 

analysis. The lowest Bayesian Information Criterion (BIC) is used to divide isolates into 

population clusters. On this subset of data, 9-10 or 12-13 population groups were suggested 

(Fig 5). Due to the genetic similarity of brown rust seen in the phylogenetic analysis, DAPC was 

performed cautiously in case of overfitting data, and ran several times on differing numbers of 

population groups. DAPC was ran 12 times, separating the isolates into 2 to 13 population 

groups and assigning them to each potential population group. 

 
Figure 5 - Plot showing Bayesian Information Criterion value (BIC) fitted against different 
potential population clusters.  

 
 

Assessing Diversity Between and Within Potential Population Clusters 

To assess genetic diversity within all isolates, all homokaryotic and heterokaryotic SNPs 

determined from the above individual alignment of each isolate to the Race 1-1 BBBD reference 

genome were combined into a synthetic gene set for that isolate. During the DAPC analysis, it 

seemed that three population clusters were most logical with the resultant data (see results), 

and so these synthetic genes were combined for all PTT isolates within each of these three 
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potential population groups. Genes with ≥80% breadth of coverage for all isolates were 

selected, and used to calculate the nucleotide diversity between isolates within a single 

potential genetic group using the software EggLib, version 2.1.2 (De Mita et al., 2012).  

To investigate genetic variance attributable to differences between populations, Wright’s FST 

statistic, the net pairwise genetic distance between groups (DA distance, Nei et al., 1983), and 

the absolute divergence (DXY; Nei and Kumar 2000) was calculated using the synthetic gene sets 

produced above for each population group, using the software EggLib, version 2.1.2 (De Mita et 

al., 2012). The excess of heterozygotes, FIS, was calculated using Genepop (Rousset, 2008) in 

order to assess the level of inbreeding in the overall PTT population.  

 

Exploring the Effector Complement of P. triticina 

The effector complement of P. triticina was investigated by obtaining the effector complement 

of the race 1-1 BBBD reference genome. The proteome was downloaded from Genbank, then 

secreted proteins were predicted using SignalP2 with default parameters (Nielsen et al., 1997). 

Proteins predicted to be secreted were further filtered by discarding proteins with a length of 

<50 amino acids, and inputting them to the programme TargetP (Emanuelsson et al., 2000), 

where proteins predicted to localise to the mitochondria were removed from the dataset. 

Proteins containing transmembrane domains were identified using the programme TMHMM 

(Krogh et al., 2001) and discarded from the dataset. The number of secreted proteins was also 

calculated in this way for a draft genome of Puccinia graminis (race SCCL, (Duplessis et al., 

2011)) and Puccinia striiformis (Race 130, (Cantu et al., 2011)) to facilitate comparisons in the 

number of secreted proteins. Further exploration of the P. triticina putative effector 

complement was conducted, with cysteine content calculated as a %age from the amino acid 

sequence of each remaining predicted proteins (a total of 1039 proteins). Known effector 

motifs were also searched for in the amino acid sequence of the whole proteome using pattern 

matching in an in-house perl script. A list of the motifs searched for and examples of these 

motifs are presented in Table 5. 
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Results 
 
RNA-Seq of Field Collected Infected Wheat Samples 
In order to characterise the genotypic diversity of UK and European brown rust in the field, we 

collected a total of 132 samples of P. triticina-infected wheat from 9 countries. This included 75 

samples collected during the Spring/Summer growing season of 2017, and 57 collected during 

the growing season in 2018 (Supplemental Table 1).  

From these, 93 samples had total RNA extracted and were subject to RNA-seq analysis using the 

field pathogenomics method (Supplemental Table 2). 13 isolates were discounted from further 

analysis due to low read alignments to the race 1-1 BBBD reference genome (<8%). The 

remaining isolates had an average mapping percentage of 18.2%, with a standard deviation of 

8.1% (Supplemental Table 2). This is a lower percentage of mapped reads than that found for 

the closely related plant pathogen yellow rust, which had an average of 36.87% (standard 

deviation 19.73%) of reads align to the PST-130 reference genome (Hubbard et al., 2015a). 

However, it is a higher percentage of mapped reads for the wheat blast fungus Magnaporthe 

oryzae, which ranged from 0.5-18.5% of the total reads. This proved sufficient for analyses 

revealing the origin of an outbreak of wheat blast in Bangladesh, including phylogenomic and 

population analyses (Islam et al., 2016), meaning the overall number of transcripts recovered in 

this study should be sufficient for sample analysis.  

To ensure that each sample remaining was composed of a single PTT genotype without bias in 

allele-specific expression between the two haploid nuclei, the distribution of read counts of 

biallelec single nucleotide polymorphisms was calculated based on alignment to the race 1-1 

BBBD reference genome. As brown rust is dikaryotic, the mean of read counts at heterokaryotic 

sites is expected to have a mode of 0.5, with each of the two haploid nuclei represented by two 

alternative alleles, with little bias in allele expression (Hubbard et al., 2015a). 10 RNA-

sequenced isolates did not present a single peak at 0.5, so were excluded from further analysis 

on the assumption that these represent samples containing more than one genotype 

(Supplemental Figure 1, Supplemental Table 2).  

 

Genomic sequencing of UK PTT isolates 

In order to determine the genetic relationships between the field collected isolates from 

2017/18 and any earlier PTT populations, the genomes of 34 UK isolates collected in the years 

prior to this study (2006-2015) were sequenced using an Illumina whole-genome shotgun 

approach. One isolate (15-014, the only isolate sequenced from the year 2015) was not 

sequenced to sufficient standard (mean read depth of 0.37, breadth of coverage of 18.71) and 

so was excluded from further analysis. To ensure that the genomic sequenced isolates were 

composed of a single genotype, the distribution of read counts at biallelec SNP sties was 

plotted, as above (Supplemental Figure 2). Following filtering, reads were independently 

aligned to the Race 1-1 BBBD reference genome (Supplemental Table 3). 
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PTT Isolates are Highly Related 

To elucidate relationships between all PTT isolates included in this study, phylogenetic analysis 

was conducted using the third codon positions of 9449 genes (1846765 sites) with ≥60% 

breadth of coverage for all isolates using a maximum likelihood approach.  

 

The most notable aspect of the phylogenetic tree produced from the maximum likelihood 

analysis is that the scale is very small (Figure 6), meaning that all isolates are very closely 

related. Brown rust is not known to undergo the sexual stage in the UK (Huerta-Espino et al., 

2011), and has been shown to have high levels of heterozygosity, indicating clonal reproduction 

(Kolmer et al., 2017). The very low genetic diversity of the isolates indicates that these isolates 

are likely asexual, agreeing with the current hypothesis that brown rust largely consists of 

clonal populations. 

The 8 samples from Turkey were obtained and sequenced after early analysis of the 2017 field 

isolates revealed these close genetic relationships between sequenced isolates. P. triticina is 

thought to have a centre of origin around the Fertile Crescent, and its alternate host has been 

reported in Turkey (Kolmer et al., 2011)  so we obtained some isolates from that region to see if 

we could find some isolates with a higher genetic diversity, with the possibility of this being due 

to sexual recombination. The phylogenetic analysis reveals that the Turkish isolates sampled 

are also highly related to the other sequenced isolates, and so also imply a lack of sexual 

reproduction. 

 

Isolates do seem to loosely group based around geographic location, for example, all the 

Australian isolates are found largely across one clade. The RNA-sequenced European isolates 

are found grouped together along with the Turkey isolates, which were sampled at a similar 

timepoint in 2018. The three sequenced New Zealand isolates are also found grouped with the 

European isolates, indicating a closer relationship to those isolates than those found 

geographically closer in Australia. The New Zealand isolates were collected in 2000, 2014 and 

2015. The presence of the isolate collected in the year 2000 indicates that this might not be an 

overall shift in the genetic structure over time however, otherwise it would be expected to be 

found situated more closely to the historical UK and Australian isolates. The reference genome 

is found grouped with the 2017/18 field isolates, which is interesting as this sample is from 

America and originally collected in 1954 (Cuomo et al., 2017), and is therefore temporally and 

geographically distinct compared to the other isolates it is grouped closely alongside. The 

historical UK isolates are all found separate to the 2017/18 field isolates and New Zealand 

samples, grouping more closely to the Australian samples. Overall, the phylogenetic tree shows 

very close genetic relationships in the data obtained from expressed genes shared between all 

isolates.  



24 

 

 
 
 
 
 
  

Figure 6 – Maximum Likelihood Phylogenetic Tree constructed using the third codon positions of 9449 genes (1846765 sites) with 
≥60% breadth of coverage for 105 Puccinia triticina isolates from Europe, New Zealand, and Australia. 
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a) 

b) 

Figure 7 – DAPC results of an analysis on 105 Puccinia triticina isolates. 51001 bialleleic SNP sites were used to define population 
subdivisions at a range of K values (2-13) using multivariate discriminant analysis of principal components (DAPC). a) K values graph – bars 
represent estimated membership fractions for each individual. b) Scatterplots showing the first two principal components (X  axis and Y 
axis respectively) of 105 isolates using 51001 SNP sites. Each plot shows isolates grouped into different numbers of potential population 
clusters. Principal component analysis shows three potential separated populations at k=3, however at other values population structure is 
not clearly defined. 
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Figure 8 – Maximum Likelihood Phylogenetic Tree constructed using the third codon positions of 9449 genes (1846765 sites) with 
≥60% breadth of coverage for 105 Puccinia triticina isolates from Europe, New Zealand, and Australia, with colours overlapped 
corresponding to which potential population group an isolate is assigned to when k=3. 
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PTT Populations are Genetically Similar 

To investigate the population structure across all PTT isolates included in this study, a list of 

51001 bialleleic SNP sites was produced and used in a multivariate discriminant analysis of 

principal components (DAPC) to define the population structure. The Bayesian Information 

Criterion (BIC) indicated the division of the PTT isolates into 9-10 or 12-13 population groups as 

the optimum clustering solution (Figure 5) However, to avoid overfitting data, DAPC was ran 12 

times, on 2-13 potential population groups. When the population clustering was visualised in 

both scatterplot and bar form, however, it revealed that three population clusters were most 

clearly defined (Figure 8). These genetic groups were formed of: 1) a large group consisting of 

all 2017/2018 field isolates, plus the race 1-1 BBBD reference genome and 7 historical isolates 

from 2007, 2009 and 2011, 2) a group consisting of 17 out of 20 of the Australian phenotype-

paired isolates from Wu et al., (2017), and 3) a group containing the remaining three 

phenotypic-paired Australian isolates, and 22 historical isolates from 2006-2014. 

 

Population Statistics Support the Genetic Similarity of Brown Rust  

To determine the level of heterozygosity in the PTT isolates examined in this study, the FIS value 

for the whole PTT population was calculated, resulting in a value of -0.1817 (Table 5). A 

negative value of FIS indicates an excess of heterozygotes compared to what is expected under 

hardy-weinberg equilibrium, which has been associated with asexuality and clonal reproduction 

(Balloux et al., 2003). The nucleotide diversity was calculated for each potential population 

group, and the population as a whole to assess genetic similarity of these groups (Table 5). The 

overall nucleotide diversity was very low, with a value of 5.22E-05. Similarly, the value for the 

green putative population group was 4.56E-05. Both of these calculations relied on a low 

number of genes used to calculate the statistic (Table 5), and so these values are likely to be 

unreliable. However, the values obtained for the orange and purple potential population 

groups are more in line with what is expected for this organism, with values comparable to that 

seen in worlwide populations of PTT, which have ranged from 0.002 to -0.0567, (Table 5, 

Kolmer and Ordoñez, 2007b, Kolmer et al., 2019).  

 

Potential Population 
Group 

No of Isolates in 
Population 

Nucleotide Diversity No of 
Genes 

FIS 

Green 63 4.56E-05 273  

Orange 17 0.00326 14347  

Purple 25 0.00995 13288  

All Isolates 105 5.22E-05 352 -0.1817 

Table 5 - Nucleotide Diversity for three potential population groups of Puccinia triticina, and for 

all 105 isolates included in this study. 

 

To understand the differences between the potential population groups, the net pairwise 

genetic distance (DA), FSt and absolute divergence (DXY) were calculated (Table 6).  The low DA  

value indicates small differences between these populations since they theoretically split, and a 
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low DXY suggests that there is a small average number of pairwise differences between the 

sequences from these populations (Cruickshank and Hahn, 2014) . These population statistics 

therefore indicate these potential populations are highly related with little variation between 

them. This backs up the genetic similarity of PTT isolates seen in the phylogenetic tree (Figure 

7), and lends credence to the possibility that the three potential population groups are 

potentially artefacts of over-fitting data. However, values including the green potential 

population are less likely to be reliable, due to the low number of genes available to conduct 

the pairwise comparisons (Table 5). This lower number of genes is likely to be due to the fact 

that the green potential population is the only one that includes the transcriptomic sequenced 

field isolates, limiting the genetic information available to expressed genes only, whereas the 

other two potential populations are comprised of genomic sequenced isolates, and therefore 

have genetic information from non-coding regions in addition to expressed genes. Overall, the 

differences in genetic information available for transcriptomic data vs genomic data likely has 

an impact on the observed variation between these potential population groups, reducing the 

reliability of these results. 

 

Fst  Green  DA  Green  Dxy  Green 
 Orange 0.2469   Orange 0.009461   Orange 0.02942 
Purple 0.1442 0.2352  Purple 0.000349 0.008938  Purple 0.005567 0.03246 

 

Table 6  - Table showing interpopulation statistics for the three potential population groups:  

FSt, net pairwise genetic distance (DA), and absolute divergence (DXY). These pairwise 

comparisons indicate that all potential groups are highly related. 

 

Phenotype Data of UK 2017 Isolates  

60 samples were collected by the UKCPVS in the Spring/Summer of 2018, of which 33 which 

were pathotyped as part of the cereal pathogen virulence survey. However, RNA extracted 

from these samples proved too poor for sequencing. The PTT isolates we have with phenotypic 

data and genotypic data include 17 isolates collected by the UKCPVS in 2016 (Figure 9, 

Supplemental Tables 5, 6) and the sequenced historical isolates. However, the 2017 field 

isolates were tested on a different differential set, as the UKCPVS updated their differential set 

in 2017 to be more in line with other virulence surveys used around the world (Hubbard et al., 

2017). Therefore, we cannot easily compare virulence profiles between the historical isolates 

and 2017 field isolates, so the virulence profiles of these two datasets have been plotted 

separately. 

Overall, many of the 2017 UK field isolates show a very similar virulence profile, with little 

variation between overall virulence phenotypes on the UKCPVS differential set (Figure 9). These 

variations consist of isolate 17-018 being infective on the wheat variety Sappo, 17-016 being 

able to infect the wheat variety Stigg and being borderline infective on the variety Warrior 

(postulated to carry the Lr28 wheat resistance gene), and 17-026 being virulent on 

wheat lines carrying the Lr26 resistance gene.
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 Figure 9 – Cladogram of 2017 transcriptomic sequenced UK Puccinia triticina isolates from the 
UK Cereal Pathogen Virulence Survey, showing Average Infection Scores on 30 wheat 
differential lines. AIC scores from Hubbard et al., 2018.  
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 Analysis of the P. triticina Effector Complement Identifies Small Secreted 

Proteins 

 To identify candidate effectors of PTT, the effector pipeline shown in Figure 5 and based on the 

pipeline of (Saunders et al., 2012) was used. Effectors are known to be highly evolutionary 

diverse and are often dissimilar to characterised proteins (Rep, 2005), so this pipeline uses 

multiple features to identify and classify potential effector proteins, including the presence of a 

signal peptide, lack of a transmembrane domain, and cysteine content. 

1039 secreted proteins were predicted from the proteome of the reference genome, type 1-1 

BBBD isolate. This totals 6.6% of the pathogen’s proteome. This is a similar proportion of the 

proteome to that of the other two wheat rusts, P. striiformis and P. graminis, which had 1187 

predicted secreted proteins (6.6% of the proteome) and 1310 predicted secreted proteins (7.2% 

of the proteome) respectively. 

As most identified rust effectors are small, cysteine rich secreted proteins (Catanzariti et al., 

2006, Ramachandran et al., 2016),  the cysteine content of all PTT predicted secreted proteins 

was calculated. Cysteine content of the 1039 predicted secreted proteins varied from 0% - 

10.7%, with 283 containing a cysteine content of >3%, and 133 proteins having a cysteine 

content of >3% and with a length of <150 amino acids.  

 

Effector Motifs Can Assist In The Search For Putative Effector Proteins 
Putative motifs in the amino acid sequence of effector genes have been identified for several 

plant pathogens. The P. triticina proteome was searched for known effector motifs in order to 

identify putative effector genes (Table 7). Of these known motifs, 6 had no matches to the 

predicted effector proteins of the Race 1-1 brown rust. The motif KRLTG has been seen in the 

predicted effector ps87 in the closely related plant pathogen P. striiformis (Gu et al., 2011), yet 

is not seen in any of the predicted secreted proteins in this study. Overall however, this is not 

unexpected, as effectors are known to be very diverse and are only rarely similar to 

characterised proteins (Rep, 2005). Two motifs were found in a single predicted protein, each 

as the only motif found in that predicted protein – KECxD, which is known from a PcF toxin 

family found in Phytophthora spp., (Nicastro et al., 2009), and RkcxxCx12H, a motif known from 

AVR genes in Magnaporthe oryzae (Yoshida et al., 2009). Both putative proteins containing just 

the KECxD motif (OAV96473.1) and RKCxxCx12H motif (OAV95351.1) have a higher length (435 

and 308 amino acids respectively) and a lower cysteine content (0.9% and 0.6%) than expected 

for a cysteine-rich secreted protein, which indicates that they are unlikely to be an effector that 

remains in the extracellular matrix between the host and plant or is host-translocated as they 

are less likely to contain intramolecular disulphide bridges theorised to help stabilise tertiary 

structure in the plant apoplast (Saunders et al., 2012). Both of these proteins were predicted to 

be secreted however, so it is possible that they may be effectors that do not enter the apoplast.  

The effector motif YxSL[RK] appeared in 7 proteins. All these proteins have a length of higher 

than 150 amino acids, and two have a cysteine content of >3%. 32 proteins contain the motif 

G[I/F/Y][A/L/S/T]R. Only two of these had a cysteine content of >3%, however these two both 

had a protein length of <150 amino acids, and so could be good candidates for small cysteine-
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rich effectors. 32 proteins contain the motif RXLR, a common motif in oomycetes shown to 

present in Avr genes of Phytophthora infestans (Whisson et al., 2007). 7 of these contain a 

cysteine content of >3%, however only one of these also has a length of <150 amino acids. The 

[Li]xAR  motif was seen in 65 candidates, and is also shown to be on Avr genes, this time in 

Magnaporthe oryzae (Yoshida et al., 2009). The motif found in the most proteins is [Y/F/W]XC, 

seen in putative effectors in both Blumeria graminis and Melampsora larici-populina (Yoshida et 

al., 2009),  found in 318 proteins in this study. These final three motifs are relatively short and 

with more variation, and therefore also have a higher chance of finding spurious matches due 

to the short length and variability. For these, it might be prudent to prioritise certain candidate 

effectors over others, as in Saunders et al., (2012), to identify candidates that are more likely to 

be effectors for further testing.   
 

 
Motif Reference Examples No of 

Proteins 

 [Y/F/W]XC (Godfrey et al., 
2010, Hacquard et 
al., 2012) 

Y/F/WxC-protein candidates, Blumeria 
graminis; putative effectors, Melampsora 
larici-populina 

318 

[LI]xAR (Yoshida et al., 2009, 
Li et al., 2009b) 

AVR-Piaa (PEX33), AVR-pi, AVR-Pik/km/kp, 
AVR-piz-t, Magnaporthe Oryzae 

158 

RXLR (Whisson et al., 
2007) 

Avr3a, Phytophthera infestans 65 

G[I/F/Y][A/L/S/T]R (Catanzariti et al., 
2006) 

AvrL567, AvrM, AvrP4, AvrP123, 
Melampsora lini 

32 

YxSL[RK] (Lévesque et al., 
2010) 

YxSL[RK] candidate effectors, Phytophthera 
ultimum 

7 

RkcxxCx12H (Yoshida et al., 2009) AVR-Piaa (PEX33), Magnaporthe oyrzae 1 

KECxD (Nicastro et al., 
2009) 

PcF toxin family, Phytophthera spp. 1 

RQHHKRx9HRRHK (Kemen et al., 2005) Uf-Rtp1p, Uromyces fabae 0 

[R/K]VY[L/I]R (Ridout et al., 2006) AVRk1 family, Blumeria graminis f. sp. 
hordei 

0 

LXLFLAK (Cheung et al., 2008) CRN-like proteins, Phytophthera spp., 
Pythium ultimum 

0 

RQHHKRx9HRRHK (Kemen et al., 2005) Uf-Rtp1p, Uromyces fabae 0 

CX3-7CX4-6CX0-5CX1-
4CX4-10C 

(Van der Merwe et 
al., 2009) 

Toxins and inhibitors of receptors or 
proteases, Melampsora spp..  Spacing is 
typical of cysteine-knotted peptides. 

0 

KRLTG (Gu et al., 2011) ps87, Puccinia striiformis 0 

Table 7 – List of effector motifs searched for in this study, and number of Race 1-1 BBBD proteins 
containing the assessed motifs found. 
 



32 

 

 Discussion  
 

Genetic Data and Population Data of UK, European and Australasian Isolates 

Show High Levels of Relatedness 

In this study, we have found PTT isolates to be highly related with low differentiation between 

isolates through the use of phylogenetic analysis (Figure 7), population statistic analyses (Tables 

5, 6 ) and DAPC analysis (Figure 8),  . This was found to be true even across continents when the 

Australian and New Zealand isolates are taken into account, both found grouping with 

European isolates in both the phylogenetic tree (Figure 7) and the DAPC analysis (Figure 8).  

 

Studies based around the use of SSR markers have successfully found separate population 

groups (Kolmer 2015; Kolmer and Acevedo 2016; Kolmer et al. 2011, 2013; Ordoñez et al. 2010; 

Ordoñez and Kolmer 2007b) including a recent worldwide analysis of 23 SSR loci that revealed 

regional clonal populations and signs of long-distance dispersal in the form of a wide 

geographic distribution of identical and highly related multilocus genotypes   (Kolmer at al., 

2019). 

However, a recent study based on 6745 SNPs produced by genotype-by-sequencing could not 

separate a worldwide collection of PTT isolates into distinct groups via DAPC, with the BIC value 

declining continuously, resulting in no clear optimum number of population clusters (Kolmer et 

al., 2019b).  This agrees with the high levels of genetic relatedness seen in this study. The 

tentative separation of the isolates in this study into three population groups is potentially not 

reliable, as the BIC suggested a maximum clustering number of 9-10 or 12-13 populations, yet 

when this is visualised, the potential population structure breaks down (Figure 8). The high 

clustering number suggested by the BIC value also results in groups containing very low 

numbers of isolates – again, an impression of over-fitting the data. It could be that adding more 

samples to this dataset would also produce a failure of the BIC to separate the population into 

groups, as it did in the study of Kolmer et al., (2019).  

 

PTT is known to have a higher repeat content across the genome when compared to other 

wheat rusts. Effector genes are known to be preferentially located in repeat-rich, gene-poor 

genomic regions (Raffaele and Kamoun, 2012), and some small RNAs produced by PTT have 

been computationally predicted to be targeted to repetitive (Dubey et al., 2019). Expressed 

genes should be captured in the transcriptomic sequencing of this project, however expanded 

repeat elements have been theorised to affect the expression of nearby genes and hence 

contribute to phenotypic differences of closely related isolates (Cuomo et al., 2017). If repeat 

regions affecting gene expression are indeed a major source of PTT diversity that result in the 

varied virulence phenotypes reported across the world (Kolmer et al., 2019, Ordoñez and 

Kolmer 2007b), then this source of diversity could be missed in this study. In addition, the SSR 

studies that have found separate population groups might be able to pick up the level of 

diversity necessary to distinguish between potential populations due to the fact that they rely 
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on repeat elements in order to distinguish between isolates (Kolmer et al., 2019). It could be 

possible that some of the SSR markers used in these SSR-based studies could be responsible for 

some phenotypic differences, therefore contributing to the virulence-molecular genotype 

association seen in several molecular marker-based studies in North America (Kolmer 2001, 

Kolmer et al., 1995, Kolmer and Liu 2000).  

 

It is notable that there are two historical isolates that were sequenced before and after bulking, 

09-024 and 11-098. Both of these fell into different potential population groups before and 

after bulking, with 09-024 moving from the green population group to the purple after 

sequencing, and 11-098 moving from purple to green. 

Based on the allele frequency plots (Supplemental Figure 2) these two isolates may consist of 

mixed spore genotypes. It is possible that the predominant genotype in the stock spores before 

bulking was different to that after the bulking process. Difficulties in the bulking process have 

been seen before – possible mixed isolates have been postulated to confound field trials at the 

UKCPVS for a number of years (Hubbard et al., 2017, 2018). If this is the case, it is still notable 

that spores from two different potential population groups were collected on the same plant at 

the same time.  

 
The population statistic analysis supports the genetic relatedness of PTT isolates in this study 

(Table 6), and agrees with close genetic relationships seen in literature (Kolmer et al., 2019). 

However, it must be noted that the overall statistics for all populations in this study, including 

the Fis value, and inter-population statistics involving the green potential population group 

suffer from a low number of sites used to calculate the statistics (Table 6). This is likely due to 

the transcriptomic data limiting the number of sites shared between isolates as it contains only 

expressed genes. The nature of the genetic markers used is likely to affect the observed 

variability between population groups seen in this study. Conducting population analyses using 

one type of genetic marker to avoid differences in genetic regions or expression limiting usable 

information could increase the robustness of these population analyses. The addition of further 

samples, or further filtering of samples with lower coverage, could also help add reliability to 

these calculations in future. 

 

Phenotype Data of UK 2017 Isolates Shows Phenotypic Similarity  

Overall, many of the 2017 UK field isolates show a very similar virulence profile (Figure 10). 

These isolates were all collected from the UK in 2017. Therefore, they would be under similar 

selection pressures due to the fact that they all faced resistance genes carried by wheat 

varieties grown in the UK in that year.   

Previous research has revealed some correlation between genotype and phenotype in P. 

triticina, for example, Kolmer et al (2017) used 23 SSR makers to find 27 SSR genotypes, which 

had significant correlation with virulence phenotype and high levels of observed heterozygosity, 

indicating clonal reproduction. Brown rust is not known to undergo the sexual stage in the UK 

(Huerta-Espino et al., 2011), and this study shows high levels of genetic relatedness between all 
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assessed isolates, particularly the field isolates (Figure  7), and so it is possible that they are 

from a clonal lineage and have similar virulence profiles as they have not diversified enough to 

overcome more resistance genes.  

 

The Life History of Puccinia triticina Could Allow for Highly Similar Genotypes to 

Persist 

The life history of PTT has a potential to allow the highly genetically related isolates seen in this 

study to persist.  PTT is able to spread rapidly in a suitable environment thanks to its clonal 

reproduction of urediniospores (Brown and Hovmoller, 2002). Therefore, any isolate able to 

persist has the potential to spread throughout a suitable host population rapidly. This, coupled 

with the fact that PTT predominantly reproduces via the clonal, asexual cycle (Huerta-Espino et 

al., 2011), and the urediniospores are wind-dispersed with a high potential for long-distance 

dispersal (Brown and Hovmoller, 2002), results in large clonal populations, which can be seen in 

SSR marker analysis (Kolmer et al., 2019a). 

 

In a landscape of genetically similar hosts, such as that seen in the wheat-PTT pathosystem, 

there is a strong selection pressure for only isolates able to successfully reproduce to persist. 

These isolates could be genetically similar in addition to the host, as there is little to no 

selection pressure for them to diversify. Furthermore, if a plant pathogen race evolved to 

overcome resistance conferred by two or more genes in a gene-for-gene system, if it went onto 

to sexually reproduce with another race, allele combinations specifically adapted to that host 

genotype could be broken up, and therefore the progeny could have a lower fitness compared 

to the parent on the resistant host genotype. In this case, if there is a monoculture of resistant 

host genotypes as can be found in many agricultural landscapes, there will be a selection 

pressure to be asexual as long as there is a stable host population. (Jouet et al., 2019). 

Furthermore, in clonal populations, this can result in what is known as ‘frozen heterozygosity’ 

(Schwarz, 2017), where a polymorphism at a genetic loci can become fixed in a clonal, asexual 

lineage, enabling it to avoid eroding effects associated with genetic drift (Jouet et al., 2019). 

The Fis value found in this study, -0.1817, indicates higher than expected heterozygosity, and so 

clonal reproduction. The Fis value calculated in this study may not be wholly reliable due to the 

low number of sites available to calculate the Fis statistic in this study, although it is not far 

misaligned with Fis values calculated for P. triticina populations using microsatellite (Kolmer and 

Ordoñez, 2007b) and genotype-by-sequencing (Komer et al., 2019) data (Table 8). Balloux et al., 

(2003) state that expected values of heterozygosity can be found even with very low rates of 

sexual recombination, so the fact that the Fis statistic is not closer to -1 could indicate very low 

levels of sexual recombination, however isolating the effects of limited sexual recombination in 

largely clonal organisms is known to be very difficult (Balloux et al, 2003).  
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Species Population Fis Reference 

Puccinia triticina Europe, Australasia -0.1817 This study 

Puccinia triticina Caucausus -0.371 Kolmer and Ordoñez, 
2007b 

Puccinia triticina North Kazakhstan -0.157 Kolmer and Ordoñez, 
2007b 

Puccinia triticina South Kazakhstan -0.07 Kolmer and Ordoñez, 
2007b 

Puccinia triticina Tajikistan + Kyrgystan -0.563 Kolmer and Ordoñez, 
2007b 

Puccinia triticina Uzbekistan -0.507 Kolmer and Ordoñez, 
2007b 

Puccinia triticina North America -0.516 Kolmer and Ordoñez, 
2007b 

Puccinia triticina Central Asia -0.103 Kolmer et al., 2019 

Puccinia triticina China −0.087 Kolmer et al., 2019 

Puccinia triticina East Africa 0.002 Kolmer et al., 2019 

Puccinia triticina Europe −0.028 Kolmer et al., 2019 

Puccinia triticina Middle East −0.104 Kolmer et al., 2019 

Puccinia triticina North America −0.101 Kolmer et al., 2019 

Puccinia triticina New Zealand −0.288 Kolmer et al., 2019 

Puccinia triticina Pakistan -0.129 Kolmer et al., 2019 

Puccinia triticina Russia −0.092 Kolmer et al., 2019 

Puccinia triticina South America −0.070 Kolmer et al., 2019 

Puccinia triticina South Africa −0.306 Kolmer et al., 2019 

 
Table 8 - Fis values for populations of Puccinia triticina from this study and two others. 
 
The host-pathogen association of the PTT-wheat pathosystem also allows potential for 

genetically similar isolates to persist. As much of wheat pathogen resistance is gene-for-gene 

(McDonald and Linde, 2002), there is a potential for only one or a few mutations to be 

necessary to overcome novel host resistances. When there are large populations with rapid 

reproductive rate, such as with rust species, the adaptive potential can  allow for this to occur 

(Brown and Hovmoller 2002), which could explain how PTT has been able to overcome new 

resistance gene combinations such as those recorded by the UKCPVS (Hubbard et al., 2018, 

Table 1). 

  

 

Effector Gene Prediction of the Puccinia triticina Race 1-1 BBBD Reference 
Genome 
In-silico effector gene prediction based on the pipeline of Saunders et al., 2012 estimated a 

total of 1039 proteins to be secreted, through the identification of a predicted signal peptide, 
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no mitochondria-targeted motif, and no transmembrane domain. This represents 6.6% of the 

PTT proteome, which is in line with the percentage of predicted secreted proteins for Puccinia 

graminis (6.6%) and Puccinia striiformis (7.2%).  

Obligate biotrophs are also known to be rich in small secreted proteins (Lo Presti et al., 2015), 

and most identified rust effector genes to date are small, cysteine rich secreted proteins 

(Catanzariti et al., 2006, Ramachandran et al., 2016). Known small cysteine-rich effectors are 

typically found to be <150 amino acids in length and have a cysteine content of >3% (Saunders 

et al., 2012).  For this reason, the cysteine content of the predicted secreted proteins was 

investigated, resulting in the identification of 133 proteins with a cysteine content of >3% and 

with a length of <150 amino acids, demonstrating similarity to existing small cysteine-rich 

effectors. However, some known avirulence effectors are also cysteine-poor, including AcrL567 

and AvrM from Melampora lini (Catanzariti et al., 2006), and so a low cysteine content does not 

necessarily exclude a potential secreted protein from being an effector. 

The 1039 predicted secreted proteins were also searched for similarity to known effector 

motifs. Whilst known effector motifs could indicate a higher potential that a protein behaves as 

an effector, there is currently no known protein motif that characterises effectors of rust fungi 

(Nemri et al., 2014). However, this knowledge might be pertinent if any of these proteins are 

used in future experiments. 

The predicted secreted proteins could be further refined to only candidates with a higher 

chance of possessing effector functions. The presence of a nuclear localisation signal could be 

an indicator that they are translocated to the host cell (Nemri et al., 2014). Furthermore, the 

PTT expressed sequence tag database (Xu et al., 2011) could be used to further check that a 

predicted secreted protein is found in the infection structure. BLAST searches may also be 

conducted to search for similarity to existing known rust effectors, giving further credence to 

these proteins having functional similarity to known effectors. 

Some potential effector genes are likely to have been missed in this pipeline. Two bean rust 

candidate effector genes are very small (PIG11 and PIG13, 24 and 31 amino acids in length 

respectively, Hahn and Mendgen, 1997), and would be missed in the 50 amino acid cut-off 

prediction. In addition, some effector genes such as the barley powdery mildew (Blumeria 

graminis f. sp. hordei) genes  AVRk1 and AVRa10 do not have a conventional eukaryotic secretion 

signal (Ridout et al., 2006), and so would be overlooked in this set of predicted effector 

proteins.  

 Transcriptomic sequencing has been used to predict P. triticina effector genes, with one study 

using RNA-sequencing of wheat leaves infected with six different rust races. This resulted in 543 

predicted secreted proteins, taken at time points where PTT is actively in the infection process 

(Bruce et al., 2014). The transcriptomic data produced in this study could provide a useful 

dataset for investigating further potential secreted proteins, particularly if they are correlated 

with differential virulence on wheat races, although it must be taken into account that these 

samples were sequenced after storage in RNA-later, and so may have differing quantities of 

transcripts related to the infection process.  
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Use of Transcriptomic Sequencing for Population Surveillance and Analysis of 

Puccinia triticina 

Constant monitoring of plant pathogens can be highly useful to pinpoint and treat outbreaks as 

they happen to mitigate crop losses and pathogen spread. New emerging technologies 

including next generation sequencing have been demonstrated to be useful in plant pathogen 

monitoring and tracking of outbreaks, particularly in plant pathogens that cannot easily be 

cultured in the lab (Hubbard et al., 2015a, Islam et al., 2016, Fall et al., 2019, Jouet et al., 2019). 

Large-scale analysis of fungal plant pathogen populations have also been hampered by the 

lengthy processes of purification and multiplication of isolates sufficient for next generation 

sequencing, which have been encountered in the course of this project. Using a transcriptomics 

approach that directly sequences from field samples of infected material has been useful for 

both characterising populations of plant pathogens (Hubbard et al., 2015a) and for sourcing 

emerging outbreaks (Islam et al., 2016).  

 

Whilst sufficient pathogen sequences have been recovered for analysis in the samples assessed 

in this study, it also demonstrated strong similarities between UK and European isolates of PTT. 

This results in difficulties categorising isolates into population groups and hence distinguishing 

between isolates with specific properties, including virulence phenotype in field populations. 

This limits the ability to inform disease management approaches, and so application of the field 

pathogenomics technology on PTT.  In future, the use of targeted sequencing could potentially 

be used to overcome some of the difficulties seen in this project, and would also overcome 

limitations and costs due to the size of fungal genomes. Targeted sequencing has been 

successfully applied to the closely related pathogen P. striiformis, (Radhakrishnan et al., 2019). 

However this method relies on the ability to distinguish between individuals with specific 

properties, such as virulence profile or fungicide resistance. SSR markers have demonstrated a 

phenotype-genotype correlations (Kolmer and Acevedo 2016; Kolmer 2015; Kolmer et al. 2011, 

2013; Ordoñez et al. 2010; Ordoñez and Kolmer 2007b, 2009) and so it is possible that in the 

future sequencing technologies could be applied to PTT isolates in this way, or that this data 

could be analysed using the populations established through SSR markers, as done in Kolmer et 

al., (2019). The next step to facilitate this would be identifying regions associated with 

phenotypic differences. Comparative genomics has already been proven useful for this in PTT, 

with a study identifying candidate genes associated with Lr20 resistance (Wu et al., 2017), and 

has also been successfully alongside gene ontology searches in P. striiformis to identify variable 

genes between different populations to facilitate targeted sequencing (Radhakrishnan et al., 

2019).  

Further work examining putative effectors and other phenotype-associated genes could open 

the doors for diagnostic sequencing of brown rust, and could even be applied to real-time field 

sequencing using portable devices such as the Oxford Nanopore Technologies MinION 

sequencer, which has been applied in another rust species (Radhakrishnan et al., 2019). 
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Conclusions 

Population genetic analyses of 105 European and Australasian isolates in this study have 

revealed high levels of genetic relatedness between isolates. A recent study based on 

genotype-by-sequencing of a worldwide population of P. triticina also found high degree of 

genetic similarity in their Discriminate Analysis of Principal Components (DAPC) analysis 

(Kolmer et al., 2019). However this study failed to distinguish between the different 

populations seen through SSR-marker based studies (Kolmer and Acevedo 2016; Kolmer 2015; 

Kolmer et al. 2011, 2013; Ordoñez et al. 2010; Ordoñez and Kolmer 2007b, 2009). This 

demonstrates that the particular genetic markers used in analysis of PTT are important to 

consider when exploring the diversity of P. triticina, and this particular use of the field 

pathogenomics technique is not suitable for the surveillance of new P. triticina pathotypes due 

to the difficulty in assigning isolates to phenotype-shared populations. However, it supplies a 

useful dataset of genomic and transcriptomic-sequenced P. triticina isolates that can be used in 

future studies to further explore the genetic diversity of brown rust, and also informs future 

genetic-based surveillance studies that may occur.  
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Collection ID Isolate Name Country Location Host Variety 

BR17.001  UK Somerset KWS Kielder 

BR17.002  UK Cambridgeshire Unknown 

BR17.003  UK Cambridgeshire Savello 

BR17.004  UK Devon Bennington 

BR17.005  UK Devon LG Generation 

BR17.006  UK West Sussex Crusoe 

BR17.007  UK West Sussex Crusoe 

BR17.008  UK West Sussex Crusoe 

BR17.009  UK Lincolnshire Crusoe 

BR17.010  UK Kent Solstice 

BR17.011  UK Oxfordshire Buster 

BR17.012  UK Lincolnshire Freiston 

BR17.013  UK Lincolnshire Elation 

BR17.014  UK Lincolnshire KWS Santiago 

BR17.015  UK Lincolnshire KWS Crispin 

BR17.016  UK Lincolnshire Shabras 

BR17.017  UK Berkshire 
ORC Wakelyns 

Population 

BR17.018  UK Dorset Crusoe 

BR17.019 BR17.019 UK Lincolnshire Cougar 

BR17.020  UK Kent KWS Santiago 

BR17.021  UK Kent Solstice 

BR17.022  UK Unknown Stigg 

BR17.023  UK Unknown Crusoe 

BR17.024  UK Norfolk Costello 

BR17.025  UK Cambridgeshire Spyder 

BR17.026  UK Cambridgeshire Evolution 

BR17.027  UK Cambridgeshire Hardwicke 

BR17.028 BR17.028 UK Cambridgeshire KWS Silverstone 

BR17.029  UK Cambridgeshire KWS Trinity 

BR17.030  UK Cambridgeshire RGT Illustrious 

BR17.031  UK Cambridgeshire KWS Siskin 

BR17.032  UK Cambridgeshire KWS Lili 

BR17.033  UK Cambridgeshire KWS Zyatt 

BR17.034  UK Cambridgeshire KWS Barrel 

BR17.035  UK Cambridgeshire Zulu 

BR17.036  UK Cambridgeshire KWS Basset 

BR17.037  UK Cambridgeshire Revolution 

BR17.038  UK Cambridgeshire Leeds 
BR17.039  UK Hereford Graham 
BR17.040  UK Hereford Shamrock 
BR17.041  UK Hereford KWS Siskin 
BR17.042  UK Hereford KWS Santiago 
BR17.043  UK Kent Solstice 

BR17.0501  UK Cambridgeshire Dunston 
BR17.0502  UK Cambridgeshire Maris Huntsman 
BR17.0503  UK Cambridgeshire Buster 
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Collection ID Isolate Name Country Location Host Variety 

BR17.0504  UK Cambridgeshire RGT Universe 
BR17.0505  UK Cambridgeshire LG Generation 
BR17.056 BR17.0001 UK Buxhall, Suffolk Crusoe 

BR17.057 BR17.0002 UK Buxhall, Suffolk Crusoe 

BR17.058 BR17.0003 UK Buxhall, Suffolk Crusoe 

BR17.059 BR17.0004 UK Mickfield, Suffolk  

BR17.060 BR17.0005 UK Rougham, Suffolk  

BR17.061 BR17.0006 France Marchelepot Dinosor 

BR17.062 BR17.0007 France Marchelepot Beauregard 

BR17.063 BR17.0008 France Marchelepot Glascow 

BR17.064 BR17.0009 Poland Chrzelive Unknown 

BR17.065 BR17.0010 Poland Pagow Princeps 

BR17.066 BR17.0011 Poland Guvcz Kepler 

BR17.067 BR17.0012 Poland Gova-Jciow Skagen 

BR17.068 BR17.0013 Poland Jaroseawiec Astoria 

BR17.069 BR17.0014 Germany Gommershoven Reform 

BR17.070 BR17.0015 Germany Gommershoven Tobak 

BR17.071 BR17.0016 Germany Gommershoven Tobak 

BR17.072 BR17.0017 Germany Altenberge Laer 

BR17.073 BR17.0018 Germany Iserlohn Tobak 

BR17.074 BR17.0019 Belgium Mignault Tobak/Ceriax 

BR17.075 BR17.0020 Belgium Mignault Benchmark 

BR17.076 BR17.0021 Belgium Mignault Tobak 

BR17.077 BR17.0022 Belgium Mignault Henrik 

BR17.078 BR17.0023 Poland Janvszeno Hyvento 

BR17.079 BR17.0024 France 
Fresne 

L'Archeveque 
Fructidor 

BR17.080 BR17.0025 France Ecouis Terroir 

BR17.081 BR17.0026 France Beauval Encaux Trapez 

BR17.082 BR17.0027 France Le Gios Thiel Alixau 

18-Fr-01 BR18.0015 France 
76890 Beauval en 

Caux 
Chevron 

18-Fr-02 BR18.0016 France 
27370 Le Thuit 

Signol 
Bermude 

18-Fr-03  France Néant sur Yvel Bermude 

18-Fr-04  France Campeneac RGT Tekno 

18-Fr-05 BR18.019 France Allouagne 62157 Dinosor 

18-Fr-06 BR18.020 France 
Neuville-saint-
Vaast 62580 

Dinosor 

18-Fr-07 BR18.021 France Lihons Dinosor 

18-Fr-08 BR18.022 France Marchélepot Kilimanjaro 

18-Fr-09 BR18.023 France Marchélepot Dinosor 

18-Fr-10  France Marchélepot Creek 

18-Fr-11 BR18.025 France 
Marquette-en-

Ostervant 
Dakota 

18-Fr-12  France Achiet-le-grand Chevron 

18-Fr-13 BR18.027 France Frévin-Capelle Chevron 

18-NL-01 BR18.028 Netherlands Nieuw Beerta Henrik 

18-NL-02 BR18.029 Netherlands Dronten Henrik 
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Collection ID Isolate Name Country Location Host Variety 

18-Be-01 BR18.035 Belgium 
Corroy-le-
Château 

Unknown 

18-Be-02 BR18.036 Belgium Mignault Tobak 

18-Be-03 BR18.0110 Belgium Sombreffre Unknown 

18-Pl-01  Poland Szwarcenowo Natula 

18-Pl-02 BR18.038 Poland Pągów Princeps 

18-Pl-03 BR18.039 Poland Pągów Turnia 

18-Pl-04 BR18.040 Poland Rolewice Linus 

18-Pl-05  Poland Jabłonka Julius 

18-Ch-01 BR18.030 Switzerland Vufflens-la-Ville Neice 

18-Ch-02 BR18.031 Switzerland Windisch Claro 

18-UK-01 BR18.046 UK Suffolk Crusoe 

18-UK-02  UK Suffolk Crusoe 

18-UK-03  UK Suffolk Gator 

18-UK-04  UK Cambridgeshire Santiago 

18-UK-05  UK Gloucester Crusoe 

18-UK-06  UK Gloucester Crusoe 

18-UK-07  UK   

18-UK-08  UK   

UKCPVS 17-019 
(re-sequenced) 

BR18-0127 UK   

UKCPVS 17-028 
(re-sequenced) 

BR18-0128 UK   

BR 18.0061 BR18-009 UK   

BR 18.0064 BR18-012 UK   

BR 18.0067 BR18-015 UK   

BR 18.0071 BR18-019 UK   

BR 18.0073 BR18-021 UK   

BR 18.0074 BR18-022 UK   

BR 18.0078 BR18-026 UK   

BR 18.0080 BR18-028 UK   

BR 18.0088 BR18-036 UK   

BR 18.0093 BR18-041 UK   

BR 18.0097 BR18-045 UK   

BR 18.0098 BR18-046 UK   

BR 18.0102 BR18-051 UK   

18-Dm01 BR18.032 Denmark Dorthealyst KWS Lily 

18-Dm02  Denmark Christensen Torp 

18-Dm03 BR18.034 Denmark Dyrehavegaard Torp 

18De-01 BR18.0111 Germany 
Gronae 

Rödersheim 
Ritmo 

18De-02 BR18.0112 Germany Boehl Iggelheim Ritmo 

18De-03  Germany Hans Disse Bosporks 

18De-04  Germany Hans Daisk Kamerad 

18De-05  Germany Lippetal 59510 Kashmir 

18De-06 BR18.0116 Germany Lippetal 59510 Tobak 

18De-07  Germany 27318 Tobak 

18De-08  Germany 27318 Aflceus 

18/001  UK Warwickshire KWS Siskin 
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Collection ID Isolate Name Country Location Host Variety 

18/002  UK Cambridgeshire Jaidor 

18/003  UK Norfolk KWS Siskin 

18/004  UK Hertfordshire Unknwon 

18/005  UK Lincolnshire Santiago 

18/006  UK Lincolnshire KWS Siskin 

18/007  UK Lincolnshire Dunston 

18/008  UK Lincolnshire Barrel 

18/009  UK Lincolnshire Moulton 

18/010  UK Lincolnshire Graham 

18/011  UK Cambridgeshire Graham 

18/012  UK Cambridgeshire Cougar 

18/013  UK Cambridgeshire KWS Siskin 

18/014  UK Cambridgeshire LG Firefly 

18/015  UK Cambridgeshire Freiston 

18/016  UK Cambridgeshire KWS Kerrin 

18/017  UK Cambridgeshire Moulton 

18/018  UK Cambridgeshire Revelation 

18/019  UK Cambridgeshire KWS Trinity 

18/020  UK Cambridgeshire LG Motown 

18/021  UK Cambridgeshire Spyder 

18/022  UK Cambridgeshire RGT Illustrious 

18/023  UK Cambridgeshire Evolution 

18/024  UK Cambridgeshire Crusoe 

18/025  UK Cambridgeshire KWS Lili 

18/026  UK Cambridgeshire Bennington 

18/027  UK Cambridgeshire KWS Siskin 

18/028  UK Cambridgeshire SY Medea 

18/029  UK Cambridgeshire Elicit 

18/030  UK Lincolnshire Buster 

18/031  UK Northamptonshire RGT Universe 

18/032  UK Northamptonshire Dunston 

18/033  UK Essex KWS Lili 

18/034  UK Hampshire LG Sundance 

18/035  UK Hampshire Skyfall 

18/036  UK Hampshire KWS Barrel 

18/037  UK Hampshire Crusoe 

18/038  UK Kent Zyatt 

18/039  UK Hampshire Revelation 

18/040  UK Hampshire Crusoe 

18/041  UK Hampshire Santiago 

18/042  UK Cambridgeshire Robigus 

18/043  UK Cambridgeshire Robigus 

18/044  UK Lincolnshire KWS Trinity 

18/045  UK Lincolnshire LG Motown 

18/046  UK Lincolnshire Evolution 

18/047  UK Roxburghshire Myriad 

18/048  UK Gloucestershire KWS Firefly 

18/049  UK Norfolk Costello 

18/050  UK Norfolk KWS Siskin 
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Collection ID Isolate Name Country Location Host Variety 

18/051  UK Norfolk Crusoe 

18/052  UK Cambridgeshire KWS Lili 

18/053  UK Lincolnshire KWS Siskin 

18/054  UK Cambridgeshire Unknown 

18/055  UK Scottish Borders Hereford 

18/501  UK Cambridgeshire Sappo 

18/502  UK Cambridgeshire Buster 

18/503  UK Cambridgeshire KWS Siskin 

18/504  UK Cambridgeshire KWS Basset 

18/505  UK Cambridgeshire Sappo 

SN:1 BR 18.0001 Turkey Izmir Lr8 

SN:2 BR 18.0002 Turkey Izmir Lr28 

SN:3 BR 18.0003 Turkey Çanakkale Lr58 

SN:4 BR 18.0004 Turkey Balikesir Lr62 

SN:5  Turkey Balikesir Lr64 

SN:6 BR 18.0006 Turkey Balikesir Lr67 

SN:7  Turkey Çanakkale Lr69 

SN:8 BR 18.0008 Turkey Balikesir Lr70 

SN:9  Turkey Balikesir Lr73 

SN:10 BR 18.0010 Turkey Çanakkale Lr77 

SN:11  Turkey Denizli Lr81 

SN:12  Turkey Honaz Lr83 

SN:13 BR 18.0013 Turkey Izmir Lr85 

SN:14 BR 18.0014 Turkey Izmir ? 

00/1A BR 18.0119 New Zealand   

14/17A BR 18.0043 New Zealand   

14/18A BR 18.0044 New Zealand   

14/27A BR 18.0045 New Zealand   

00/2A  New Zealand   

12/01A  New Zealand   

12/01B  New Zealand   

12/01C  New Zealand   

14/13  New Zealand   

14/41A  New Zealand   

WLR-2  New Zealand   

14/12  New Zealand   

 
Supplemental Table 1 – List of all field isolates collected during the course of this study, 
location, and where known, host wheat variety it was collected from. Green shaded cells 
denote that these samples were sequenced.  
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Sample 
Name Country 

Overall read 
mapping 

rate 

Multiple 
Alignments 

Aligned pairs 
Aligned 

Discordant 
Pairs 

Concordant 
pair alignment 

rate 

BR 18.0001 Turkey 27.8% 2.5% 3940985 0.1% 25.2% 

BR 18.0002 Turkey 24.7% 2.3% 3176866 0.2% 22.5% 

BR 18.0003 Turkey 31.0% 2.5% 3694169 0.1% 28.2% 

BR 18.0004 Turkey 23.3% 2.3% 2930897 0.2% 21.1% 

BR 18.0006 Turkey 31.1% 2.3% 3614671 0.1% 28.1% 

BR 18.0008 Turkey 18.8% 2.7% 1991155 0.1% 17.0% 

BR 18.0010 Turkey 20.7% 2.4% 3103728 0.2% 18.8% 

BR 18.0013 Turkey 33.5% 2.4% 4924284 0.1% 30.6% 

BR 18.0014 Turkey 31.1% 2.4% 4480515 0.2% 28.0% 

BR 18.0015 France 27.3% 2.5% 3845684 0.2% 24.8% 

BR 18.0016 France 10.4% 2.1% 1662434 0.1% 9.5% 

BR 18.0019 France 5.1% 1.9% 658465 0.3% 4.5% 

BR 18.0020 France 8.9% 2.1% 1129258 0.3% 7.9% 

BR 18.0021 France 22.9% 2.1% 3532761 0.2% 20.8% 

BR 18.0022 France 10.1% 2.3% 1128242 0.2% 9.0% 

BR 18.0023 France 17.1% 2.5% 2193343 0.3% 15.4% 

BR 18.0025 France 9.4% 2.0% 991752 0.2% 8.4% 

BR 18.0027 France 21.0% 2.3% 2361527 0.2% 19.0% 

BR 18.0028 Netherlands 13.5% 2.0% 1896295 0.2% 12.3% 
BR 18.0029 Netherlands 7.4% 2.0% 819781 0.3% 6.5% 
BR 18.0030 Switzerland 14.5% 2.2% 2365194 0.3% 13.0% 

BR 18.0031 Switzerland 8.3% 2.1% 1077341 0.3% 7.3% 

BR 18.0032 Denmark 2.6% 1.4% 190644 0.3% 2.0% 

BR 18.0034 Denmark 5.8% 2.1% 706776 0.5% 4.9% 

BR 18.0035 Belgium 16.8% 2.0% 2114782 0.2% 15.2% 

BR 18.0036 Belgium 14.3% 2.0% 1947203 0.3% 12.7% 

BR 18.0038 Poland 11.2% 2.1% 1502064 0.2% 10.0% 

BR 18.0039 Poland 5.2% 1.9% 798054 0.3% 4.5% 

BR 18.0040 Poland 4.3% 1.9% 545937 0.3% 3.8% 

BR 18.0043 
New 

Zealand 
7.1% 2.2% 941746 0.3% 6.3% 

BR 18.0044 
New 

Zealand 
10.3% 2.0% 1353454 0.2% 9.3% 

BR 18.0045 
New 

Zealand 
10.5% 2.1% 1409756 0.2% 9.5% 

BR 18.0046 UK 9.6% 1.8% 1444210 0.1% 8.8% 

BR 18.0061 UK 7.7% 3.4% 1090741 0.0% 6.3% 

BR 18.0064 UK 4.3% 3.2% 447504 0.0% 3.6% 

BR 18.0067 UK 18.4% 7.2% 2343977 0.1% 15.9% 

BR 18.0071 UK 17.0% 5.8% 1874345 0.0% 14.6% 

BR 18.0073 UK 17.6% 3.8% 2413284 0.1% 15.5% 
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Sample 
Name 

Country 
Overall read 

mapping 
rate 

Multiple 
Alignments 

Aligned pairs 
Aligned 

Discordant 
Pairs 

Concordant 
pair alignment 

rate 

BR 18.0074 UK 20.5% 6.6% 2854351 0.1% 17.9% 

BR 18.0078 UK 7.9% 3.5% 901597 0.0% 6.7% 

BR 18.0080 UK 45.0% 4.9% 6010387 0.1% 40.6% 

BR 18.0088 UK 37.9% 4.9% 5463760 0.1% 33.9% 

BR 18.0093 UK 23.2% 9.7% 2819188 0.1% 20.6% 

BR 18.0097 UK 12.4% 5.1% 1732060 0.1% 10.7% 

BR 18.0098 UK 12.1% 6.0% 1499607 0.0% 10.4% 

BR 18.0102 UK 7.8% 7.9% 740470 0.0% 6.9% 

BR 18.0110 Belgium 13.0% 2.0% 1662267 0.2% 11.7% 

BR 18.0111 Denmark 9.8% 2.3% 1503002 0.3% 8.8% 

BR 18.0112 Denmark 18.5% 2.6% 2906067 0.2% 16.8% 

BR 18.0116 Denmark 6.9% 2.2% 824430 0.4% 5.9% 

BR 18.0119 
New 

Zealand 
6.1% 2.0% 629345 0.4% 5.3% 

BR 18.0127 UK      

BR 18.0128 UK 23.1% 1.9% 2902792 0.2% 20.9% 

BR17.006 UK 9.1% 1.9% 776648 0.1% 8.1% 

BR17.010 UK 3.6% 2.2% 372051 0.1% 3.2% 

BR17.016 UK 10.2% 2.8% 1394799 0.1% 9.0% 

BR17.017 UK 4.2% 2.7% 508355 0.1% 3.7% 

BR17.018 UK 9.7% 2.3% 1353994 0.1% 8.6% 

BR17.025 UK 22.7% 2.5% 2571719 0.1% 20.2% 

BR17.026 UK 22.7% 2.3% 2370216 0.2% 20.0% 

BR17.027 UK 25.5% 2.4% 2422226 0.2% 22.4% 

BR17.028 UK 1.4% 1.9% 68238 0.1% 1.0% 

BR17.029 UK 4.4% 2.1% 475513 0.2% 3.8% 

BR17.030 UK 24.5% 2.3% 2624416 0.2% 21.7% 

BR17.032 UK 19.6% 1.9% 1943737 0.2% 17.4% 

BR17.033 UK 20.2% 2.2% 2145057 0.2% 17.8% 

BR17.034 UK 22.4% 2.4% 2400710 0.2% 19.7% 

BR17.036 UK 19.1% 2.0% 1540286 0.2% 16.9% 

BR17.037 UK 18.4% 2.1% 2250341 0.2% 16.3% 

BR17.039 UK 5.7% 2.3% 610112 0.1% 5.1% 

BR17.040 UK 13.5% 1.9% 1594388 0.1% 12.0% 

BR17.061 France 27.3% 2.3% 2330343 0.2% 24.0% 

BR17.062 France 22.8% 2.0% 2458390 0.2% 19.9% 

BR17.063 France 2.7% 2.0% 1988631 0.3% 19.2% 

BR17.064 Poland 4.8% 1.7% 629645 0.3% 4.0% 

BR17.065 Poland 9.4% 2.2% 1511073 0.4% 8.1% 

BR17.066 Poland 8.7% 2.1% 1363309 0.4% 7.5% 

BR17.067 Poland 9.7% 1.8% 1437950 0.3% 8.4% 

BR17.068 Poland 6.7% 2.0% 860132 0.4% 5.8% 
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Sample 
Name Country 

Overall read 
mapping 

rate 

Multiple 
Alignments 

Aligned pairs 
Aligned 

Discordant 
Pairs 

Concordant 
pair alignment 

rate 

BR17.069 Germany 27.1% 2.2% 2770794 0.2% 23.8% 

BR17.070 Germany 24.7% 2.4% 2150765 0.1% 21.4% 

BR17.071 Germany 4.4% 1.8% 679562 0.3% 3.7% 

BR17.072 Germany 8.2% 2.1% 1416636 0.3% 6.9% 

BR17.073 Germany 23.3% 2.2% 4253988 0.2% 20.3% 

BR17.074 Belgium 17.8% 1.8% 2924218 0.2% 15.7% 

BR17.075 Belgium 20.1% 2.0% 2348062 0.3% 17.7% 

BR17.076 Belgium 25.1% 2.0% 2853854 0.2% 22.1% 

BR17.077 Belgium 15.6% 2.1% 2674436 0.3% 13.7% 

BR17.078 Poland 20.0% 2.0% 2474559 0.2% 17.9% 

BR17.079 France 26.6% 1.9% 3012941 0.2% 23.7% 

BR17.080 France 11.0% 2.0% 1389948 0.2% 9.5% 

BR17.081 France 27.7% 2.3% 4860166 0.2% 24.8% 

BR17.082 France 16.4% 2.1% 2542649 0.1% 14.6% 

Supplemental Table 2 – Mapping statistics of all isolates RNA-sequenced in this study. Red 
highlighted cells with white text indicate samples that would not sequenced to sufficient 
coverage (<7% overall read mapping rate), and so were excluded from this study. Blue 
highlighted cells with black text indicate isolates that may consist of mixed isolates, based on 
allele frequency at heterokaryotic SNP sites, and so were excluded from the study. 
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Isolate  Mean Read Depth Breadth of Coverage % mapped 

06/031 19.3798 76.8967 83.42 

06/098 18.9038 77.2056 93.38 

07_020 11.6763 73.7458 49.23 

07/010 9.68948 77.4542 42.91 

07/032 24.9984 78.1584 89.43 

07/049 17.2013 77.3473 90.03 

07/071 14.4995 77.6331 81.36 

08/09 17.6284 77.8703 94.68 

08/012 19.3394 77.1028 57.34 

08/023 19.5844 77.126 51.47 

09/020 20.2366 77.7201 92.06 

09/024 20.9672 77.6401 81.83 

09/024_2 12.7394 76.8464 58.26 

10/001 17.6878 77.0169 58.74 

10/002 6.80072 68.5347 54.67 

10/009 15.4058 76.8635 63.66 

11/015 21.0161 77.3128 66.23 

11/098 16.2368 77.2464 84.13 

11/098_2 13.6281 77.5811 50.42 

12/007 32.6525 77.4508 79.41 

12/008 32.8412 78.0107 73.9 

12/009 26.8992 77.6049 91.78 

12/010 31.1998 77.6572 72.73 

12/502 38.2778 77.2823 85.33 

13/003 38.009 77.2667 80.36 

13/010 34.6899 77.2517 84.84 

14/001 31.4372 77.19 90.38 

14/019 25.6544 77.0787 81.97 

14/022 29.7059 77.1392 86.22 

07/005 7.59087 76.5752 39.87 

07/019 6.08853 75.4995 32.56 

11/110 1.37356 24.1271 14.05 

14/013 11.0098 73.4139 36.76 

15/014 0.372211 18.7133 92.99 

 
Supplemental Table 3 – Depth of coverage, breadth of coverage, and % mapped to the Race 1-
1 BBBD Reference Genome  for the genomic sequenced isolates in this study. Red highlighted 
cells include isolates that mapped poorly or were not sequenced to sufficient depth, and so 
were excluded from the analysis. 
  



56 

 

 

Year collected Library name Data type Country 

2018 BR180061 Transcriptomic UK 

2018 BR180064 Transcriptomic UK 

2018 BR180067 Transcriptomic UK 

2018 BR180071 Transcriptomic UK 

2018 BR180073 Transcriptomic UK 

2018 BR180074 Transcriptomic UK 

2018 BR180078 Transcriptomic UK 

2018 BR180080 Transcriptomic UK 

2018 BR180088 Transcriptomic UK 

2018 BR180093 Transcriptomic UK 

2018 BR180097 Transcriptomic UK 

2018 BR180098 Transcriptomic UK 

2018 BR180102 Transcriptomic UK 

2018 BR18-0001 Transcriptomic Turkey 

2018 BR18-0002 Transcriptomic Turkey 

2018 BR18-0003 Transcriptomic Turkey 

2018 BR18-0004 Transcriptomic Turkey 

2018 BR18-0006 Transcriptomic Turkey 

2018 BR18-0008 Transcriptomic Turkey 

2018 BR18-0010 Transcriptomic Turkey 

2018 BR18-0013 Transcriptomic Turkey 

2018 BR18-0014 Transcriptomic Turkey 

2018 BR18-0015 Transcriptomic France 

2018 BR18-0016 Transcriptomic France 

2018 BR18-0019 Transcriptomic France 

2018 BR18-0020 Transcriptomic France 

2018 BR18-0021 Transcriptomic France 

2018 BR18-0022 Transcriptomic France 

2018 BR18-0023 Transcriptomic France 

2018 BR18-0025 Transcriptomic France 

2018 BR18-0027 Transcriptomic France 

2018 BR18-0028 Transcriptomic Netherlands 

2018 BR18-0029 Transcriptomic Netherlands 

2018 BR18-0030 Transcriptomic Switzerland 

2018 BR18-0031 Transcriptomic Switzerland 

2018 BR18-0032 Transcriptomic Denmark 

2018 BR18-0034 Transcriptomic Denmark 

2018 BR18-0035 Transcriptomic Belgium 

2018 BR18-0036 Transcriptomic Belgium 

2018 BR18-0038 Transcriptomic Poland 

2018 BR18-0039 Transcriptomic Poland 
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Year collected Library name Data type Country 

2018 BR18-0040 Transcriptomic Poland 

2018 BR18-0043 Transcriptomic New Zealand 

2018 BR18-0044 Transcriptomic New Zealand 

2018 BR18-0045 Transcriptomic New Zealand 

2018 BR18-0046 Transcriptomic UK 

2018 BR18-0110 Transcriptomic Belgium 

2018 BR18-0111 Transcriptomic Germany 

2018 BR18-0112 Transcriptomic Germany 

2018 BR18-0116 Transcriptomic Germany 

2018 BR18-0119 Transcriptomic New Zealand 

2018 BR18-0127 Transcriptomic UK 

2018 BR18-0128 Transcriptomic UK 

2017 BR17-006 Transcriptomic UK 

2017 BR17-010 Transcriptomic UK 

2017 BR17-016 Transcriptomic UK 

2017 BR17-017 Transcriptomic UK 

2017 BR17-018 Transcriptomic UK 

2017 BR17-025 Transcriptomic UK 

2017 BR17-026 Transcriptomic UK 

2017 BR17-027 Transcriptomic UK 

2017 BR17-028 Transcriptomic UK 

2017 BR17-029 Transcriptomic UK 

2017 BR17-030 Transcriptomic UK 

2017 BR17-032 Transcriptomic UK 

2017 BR17-033 Transcriptomic UK 

2017 BR17-034 Transcriptomic UK 

2017 BR17-036 Transcriptomic UK 

2017 BR17-037 Transcriptomic UK 

2017 BR17-039 Transcriptomic UK 

2017 BR17-040 Transcriptomic UK 

2017 BR17-061 Transcriptomic France 

2017 BR17-062 Transcriptomic France 

2017 BR17-063 Transcriptomic France 

2017 BR17-064 Transcriptomic Poland 

2017 BR17-065 Transcriptomic Poland 

2017 BR17-066 Transcriptomic Poland 

2017 BR17-067 Transcriptomic Poland 

2017 BR17-068 Transcriptomic Poland 

2017 BR17-069 Transcriptomic Germany 

2017 BR17-070 Transcriptomic Germany 

2017 BR17-071 Transcriptomic Germany 
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Year collected Library name Data type Country 

2017 BR17-072 Transcriptomic Germany 

2017 BR17-073 Transcriptomic Germany 

2017 BR17-074 Transcriptomic Belgium 

2017 BR17-075 Transcriptomic Belgium 

2017 BR17-076 Transcriptomic Belgium 

2017 BR17-077 Transcriptomic Belgium 

2017 BR17-078 Transcriptomic Poland 

2017 BR17-079 Transcriptomic France 

2017 BR17-080 Transcriptomic France 

2017 BR17-081 Transcriptomic France 

2017 BR17-082 Transcriptomic France 

2006 06/31 Genomic UK 

2006 06/98 Genomic UK 

2007 07/05 Genomic UK 

2007 07/10 Genomic UK 

2007 07/19 Genomic UK 

2007 07/71 Genomic UK 

2008 08/09 Genomic UK 

2008 08/023 Genomic UK 

2009 09/020 Genomic UK 

2009 09/024 Genomic UK 

2009 09/024-2 Genomic UK 

2011 11/015 Genomic UK 

2011 11/098 Genomic UK 

2017 17/056 Genomic UK 

2007 07/032 Genomic UK 

2007 07/049 Genomic UK 

2006 06/94 Genomic UK 

2007 07-020 Genomic UK 

2008 08-120 Genomic UK 

2010 10-001 Genomic UK 

2010 10-002 Genomic UK 

2010 10-009 Genomic UK 

2011 11-098 Genomic UK 

2011 11-098-2 Genomic UK 

2011 11-110 Genomic UK 

2012 12-007 Genomic UK 

2012 12-008 Genomic UK 

2012 12-009 Genomic UK 

2012 12-010 Genomic UK 

2012 12-502 Genomic UK 
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Year collected Library name Data type Country 

2013 13-003 Genomic UK 

2013 13-010 Genomic UK 

2014 14-001 Genomic UK 

2014 14-013 Genomic UK 

2014 14-019 Genomic UK 

2012 12-022 Genomic UK 

2015 15-014 Genomic UK 

Supplemental Table 4 – List of all isolates sequenced during this study, including date of 
collection, type of sequencing, and country of origin. Red highlighted cells with white text 
indicate samples that would not sequenced to sufficient coverage, and so were excluded from 
this study. Blue highlighted cells with black text indicate isolates that may consist of mixed 
isolates, based on allele frequency at heterokaryotic SNP sites. 
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Supplemental Figure 1 – Distribution of bialleleic read counts for transcriptomic sequenced 
Puccinia triticina isolates. 
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Supplemental Figure 1 – Distribution of bialleleic read counts for transcriptomic sequenced 
Puccinia triticina isolates, cont.
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Supplemental Figure 1 – Distribution of bialleleic read counts for transcriptomic sequenced 
Puccinia triticina isolates, cont.



63 

 

 
Supplemental Figure 1 – Distribution of bialleleic read counts for transcriptomic sequenced 
Puccinia triticina isolates, cont. 
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Supplemental Figure 2 – Distribution of bialleleic read counts for genomic sequenced UK 
Puccinia triticina isolates
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Isolate  Lr1 Glasgow Sterna 

Maris 
Fundin Lr10 Sappo 

Maris 
Halberd Lr24 Stigg Warrior Clement Lr26 Robigus 

06/023 3.3 3.0 3.0 3.2 3.5      3.3 3.0 0.1 

06/029 4.0 3.1 3.8 3.7 4.0      3.5 4.0 0.1 

06/031 3.5 3.5 4.0 3.5 3.0      3.5 3.0 0.1 

06/094 3.0 0.2 3.0 3.0 3.2      0.5 3.0 3.7 

06/098 2.1 0.3 3.0 3.2 3.5      0.8 0.7 3.5 

07/002 0.1 0.4 2.0 3.0 2.2 1.3 0.2    0.9 0.0 0.0 

07/005 1.9 1.4 1.8 4.0 4.0 1.2 1.1    2.7 2.3 4.0 

07/010 0.0 0.1 2.0 3.5 3.0 1.0 1.0    0.4 0.1 2.1 

07/019 2.0 2.0 1.9 4.0 2.0 4.0 4.0    4.0 2.2 0.2 

07/032 2.0 2.0 2.3 3.0 3.0 2.0 2.0    2.3 2.0 0.0 

07/049 0.0 0.1 0.0 4.0 3.0 0.0 0.0    0.0 0.0 0.0 

07/071 0.0 0.1 1.0 3.0 4.0 0.2 1.0    0.0 0.0 3.8 

08/009 4.0 3.0 4.0 3.0  3.0 2.0    3.8 4.0 1.0 

08/012 3.0 4.0 2.0 3.0  1.0 1.0    2.0 1.1 0.0 

08/015 1.0 1.0 1.0 3.0  0.0 0.0    1.0 1.0 3.0 

08/023 0.0 0.0 3.0 4.0  0.0 0.0    0.4 0.0 3.0 

09/020 1.0 0.0 0.0 4.0  0.0 0.0    0.0 0.2 4.0 

09/024 3.0 3.0 0.0 2.0  0.0 0.0    0.4 0.0 0.0 

10/001 0.0 0.0 1.9 2.1  0.0 0.0   0.2 1.9 0.8 0.1 

10/002 0.0 0.0 3.0 3.0  0.8 1.0   1.3 3.0 2.0 0.6 

10/009 0.0 0.2 2.9 2.9  0.2 0.2   0.0 3.0 2.5 0.1 

11/015 0.0 0.0 0.0 3.0  0.0 0.0  3.0 0.9 0.0 0.9 0.0 

11/098 0.0 0.0 0.0 4.0  1.5 2.0  0.0 0.2 0.0 0.0 4.0 

11/110 0.0 0.0 0.5 4.0  0.4 1.1  0.3 0.1 0.0 0.0 3.0 

11/126 0.0 0.0 0.0 0.5  0.0 0.0  2.6 1.0 0.2 0.0 0.0 

12/007 0.2 0.0 0.0 3.0  0.0 0.0 3.0 3.0 3.0 0.0 0.3 0.4 

12/008 3.0 3.0 3.0 3.0  1.0 3.0 0.0 0.0 0.1 3.0 3.0 0.3 

 
 
 
 

 
 
 
 

 
 
 
 

 
 
 
 

 
 
 
 

 
 
 
 

 
 
 
 

 
 
 
 

 
 
 
 

 
 
 
 

 
 
 
 

 
 
 
 

 
 
 
 

 
 
 
 

Supplemental Table 5 – Average Infection Type (AIT) scores for the historical isolates on different wheat varieties. A score of 0 – 2.3 corresponds to an avirulent 
reactions, 2.4-2.6 indicates a borderline reaction, and scores of 2.7-4 indicate a compatible reaction and that the isolates is virulent on that differential wheat variety. 
Yellow shading shows a compatible reaction, indicating the isolate is virulent against a particular resistance gene or variety. Orange shading indicates a borderline 
reaction, which must be cautiously interpreted as it is uncertain whether the reaction is one of virulence or avirulence.   
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Isolate   Lr1 Glasgow Sterna Maris 
Fundin 

Lr10 Sappo Maris 
Halberd 

Lr24 Stigg Warrior Clement Lr26 Robigus 

12/010 0.1 0.0 0.2 3.0  1.0 1.0 0.5 0.8 0.7 1.0 1.0 3.0 

 12/014 0.0 0.0 0.0 3.0  3.0 3.0 3.0 3.0 3.0 0.0 0.3 3.0 

12/502              

12/507              

13/003 0.0  2.5 3.0  0.1 0.0 1.0 0.4 1.0 3.0 3.0 0.0 

13/010 0.0 0.0 0.0 3.0  3.0 2.0 0.0 0.0 0.0 0.1 0.0 3.0 

13/034 2.5 3.0 1.0 3.0  1.0 1.0 3.0 3.0 3.0 3.0 2.0 i 

14/001 0.0 0.0 3.0 3.0  3.0 3.0 0.0 0.0 0.0 3.0 3.0 0.0 

14/011 0.3 0.3 2.8 3.0  3.0 3.0 0.0 0.0 0.0 3.0 3.0 3.0 

14/013 3.0 3.0 3.0 3.0  3.0 3.0 0.0 0.0 0.0 3.0 3.0 3.0 

14/019 3.0 3.0 3.0 3.0  3.0 3.0 0.0 0.0 0.0 3.0 3.0 0.0 

14/022 3.0 3.0 3.0 3.0  3.0 3.0 3.0 3.0 3.0 3.0 3.0 0.0 

15/014 0.0 0.5 3.0 2.8  3.0 3.0 0.0 0.0 0.0 2.8 2.8 0.0 

15/017 3.0 3.0 2.8 2.8  2.5 3.0 0.0 0.0 0.0 2.8 2.8 3.0 

15/019 3.0  3.0 3.0  3.0 3.0 3.0 3.0 3.0 2.8 3.0 3.0 

15/025 3.0 3.0 3.0 3.0  3.0 3.0 1.0 1.0 0.5 3.0 3.0 0.0 

15/035 3.0 3.0 3.0 3.0  2.8 2.8 0.0 0.0 1.0 3.0 3.0 1.0 

Supplemental Table 5 – Continued, showing AIC results on more brown rust isolates. 
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Isolate  Scout Horatio  Leeds Lr37 Alchemy Cocoon  Tuxedo  
KWS 

Sterling Crusoe   Cougar Dickens Revelation  Chronicle  Armada 

06/023    3.0 3.3         3.5 

06/029    3.6 3.3         3.8 

06/031    3.2 3.3         3.5 

06/094    3.0 3.1         3.5 

06/098    3.3 3.5         3.8 

07/002    1.3 3.0         3.0 

07/005    3.0 2.0         4.0 

07/010    2.1 2.3         2.9 

07/019    2.0 2.0         2.8 

07/032    3.0 4.0         2.8 

07/049    2.0 2.8         3.0 

07/071    3.0 4.0         3.0 

08/009 2.0   3.0 3.0         4.0 

08/012 0.0   3.0 4.0         3.0 

08/015 3.0   3.0 3.0         3.0 

08/023 4.0   4.0 3.0         4.0 

09/020 3.0   3.0 4.0         4.0 

09/024 0.3   2.0 3.0         3.0 

10/001 0.0   3.0 3.0         3.0 

10/002 0.3   2.8 3.5         4.0 

10/009 0.3   2.7 2.9         3.0 

11/015 0.0 0.0  2.5 3.0         3.0 

11/098 3.0 2.6  4.0 4.0         3.0 

11/110 2.6 2.4  3.0 3.5         3.0 

11/126 0.0 0.1  3.6 3.0         2.6 

12/007 0.6  0.4 3.0 3.0 3.0 3.0 3.3 3.0 0.7 3.3 3.0 3.3 3.0 

12/008 0.2  0.4 3.0 3.0 3.0 3.0 3.0 3.0 0.2 3.0 3.0 3.0 3.0 

12/009 4.0  3.0 3.0 4.0 4.0 3.0 3.0 4.0 3.0 3.0 4.0 4.0 4.0 

Supplemental Table 5 – Continued, showing AIC results on more differential varieties. 
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Isolate  Scout Horatio  Leeds Lr37 Alchemy Cocoon  Tuxedo  
KWS 

Sterling Crusoe   Cougar Dickens Revelation  Chronicle  Armada 

12/010 3.0  3.0 3.0 3.0 3.0 3.0 1.0 3.0 3.0 3.0 3.0 3.0 3.0 

12/502               

12/507               

13/003 i  i 3.0 3.0 3.0 2.0 3.0 3.0 0.0 3.0 3.0 3.0 3.0 

13/010 3.0  2.0 3.0 3.0 2.0 2.5 2.0 2.0 2.0 2.0 2.5 3.0 3.0 

13/034 0.0  0.0 2.0 2.0 2.5 2.0 2.0 2.0 0.0 2.5 2.5 2.5 2.0 

14/001 0.0 0.0 0.0 3.0 3.0 3.0 3.0 3.0 3.0 0.0 3.0 3.0 3.0 3.0 

14/011 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 

14/013 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 

14/019 0.0 0.0 0.0 3.0 3.0 3.0 3.0 3.0 3.0 0.0 3.0 3.0 3.0 3.0 

14/022 3.0 3.0 2.5 3.0 3.0 3.0 3.0 3.0 3.0 2.5 3.0 3.0 3.0 3.0 

15/014 0.0   2.8 2.8   2.8 2.8 0.0 2.8 2.8  2.8 

15/017 3.0   2.8 2.8   2.8 2.8 2.8 2.8 2.8  2.8 

15/019 3.0   3.0 3.0   2.8 2.8 1.0 2.8 2.8  3.0 

15/025 0.0   3.0 3.0   3.0 3.0 0.0 3.0 3.0  3.0 

15/035 3.0   3.0 3.0   3.0 3.0 2.8 3.0 3.0  3.0 

Supplemental Table 5 – Continued, showing AIC results on more Puccinia triticina isolates. 
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17/018 Crusoe 
1,3a,3bg,10,13,14a,15,16,17,

17b,20,26 
1.0 1.0 2.0 2.0 3.0 3.0 2.0 3.0 3.0 3.0 3.0 3.0 3.0 2.0 2.0 0.6 2.0 0.0 2.0 3.0 3.0 3.0 0.0 3.0 3.0 3.0 3.0 3.0 0.0 0.0 

17/036 
KWS 

Bassett 
1,3a,3ka,10,13,14a,15,16,17,

17b,20,23,26,37 
2.0 1.0 2.0 2.0 3.0 2.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 0.2 2.0 0.0 3.0 3.0 3.0 3.0 0.0 3.0 3.0 3.0 0.0 3.0 0.0 0.0 

17/016 Shabras  
1,2c,3a,3bg,3ka,10,14a,15,16

,17,20,24,37 
2.0 2.0 2.0 3.0 3.0 3.0 3.0 3.0 2.0 3.0 3.0 3.0 3.0 3.0 2.0 3.0 2.0 2.0 3.0 3.0 2.0 2.0 0.1 0.6 3.0 2.7 2.0 3.0 3.0 2.0 

17/010 Solstice 
1,2b,2c,3a,3bg,3ka,10,13,14a

,15,16,17,17b,20,26,37 
3.0 1.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 2.0 1.0 2.0 1.0 3.0 3.0 3.0 3.0 0.0 3.0 3.0 3.0 * 3.0 0.0 0.0 

17/029 
KWS 

Trinity 
1,3a,3bg,10,13,14a,15,17,20,

37 
2.0 2.0 2.0 2.0 3.0 3.0 2.0 3.0 3.0 3.0 3.0 2.0 3.0 3.0 2.0 1.3 2.0 1.0 3.0 3.0 3.0 2.0 0.5 0.0 3.0 2.8 2.0 3.0 0.0 0.0 

17/006 Crusoe 
2c,3a,3bg,3ka,10,13,14a,15,1

7,20,26,37 
2.0 1.0 2.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 2.0 3.0 3.0 2.0 1.4 2.0 0.0 3.0 3.0 3.0 1.2 0.0 3.0 1.0 3.0 * 3.0 0.0 0.0 

17/040 Shamrock 
1,3a,3bg,3ka,10,13,14a,15,16

,17,17b,20,23,26,37 
2.0 2.0 2.0 2.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 1.2 2.0 1.0 3.0 3.0 3.0 3.0 0.0 3.0 3.0 3.0 2.0 3.0 0.0 0.0 

17/030 
RGT 

Illustrious 
1,3a,3bg,3ka,10,13,14a,15,16

,17,20,26 
2.0 2.0 2.0 2.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 2.0 2.0 0.2 2.0 0.0 2.0 3.0 2.6 1.5 0.0 3.0 3.0 3.0 * 3.0 0.0 0.0 

17/037 Revelation 
1,3a,3bg,3ka,10,13,14a,15,16

,17,17b,20,23,37 
2.0 1.0 2.0 2.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 0.1 2.0 2.0 3.0 3.0 3.0 2.8 2.0 0.0 3.0 2.0 2.0 3.0 0.0 0.0 

17/034 KWS Barrel 
1,3a,10,13,14a,15,16,17,17b,

20,37 
3.0 2.0 2.0 2.0 3.0 2.0 2.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 2.0 1.0 2.0 1.0 3.0 3.0 3.0 3.0 0.0 0.0 3.0 3.0 2.0 3.0 0.0 0.0 

17/027 Hardwicke 
1,2c,3a,3bg,3ka,10,13,14a,15

,17,17b,20,26,37 
3.0 1.0 2.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 2.0 3.0 3.0 2.0 0.0 2.0 1.0 3.0 3.0 3.0 3.0 0.0 3.0 3.0 3.0 * 3.0 0.0 0.0 

17/026 Evolution 
1,2b,2c,3a,3bg,3ka,10,13,14a

,15,16,17,17b,20,23,26,37 
3.0 1.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 0.6 3.0 0.0 3.0 3.0 3.0 3.0 0.0 3.0 3.0 3.0 0.0 3.0 0.0 0.2 

17/032 KWS Lili 
1,2c,3a,3bg,3ka,10,13,14a,15

,16,17,17b,20,26 
2.0 2.0 2.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 2.0 2.0 0.6 2.0 0.0 2.0 3.0 3.0 3.0 0.0 3.0 3.0 3.0 0.0 3.0 0.0 0.0 

17/033 KWS Zyatt 
1,2c,3a,3bg,3ka,10,13,14a,15

,16,17,17b,20,26,37 
3.0 2.0 2.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 2.0 1.0 2.0 0.0 3.0 3.0 3.0 3.0 0.0 3.0 3.0 3.0 * 3.0 0.0 0.0 

17/039 Graham 
1,2c,3a,3bg,3ka,10,13,14a,15

,16,17,17b,20,23,26,37 
3.0 1.0 2.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 0.3 2.0 1.0 3.0 3.0 3.0 3.0 0.0 3.0 3.0 3.0 * 3.0 1.0 0.0 

17/025 Spyder 
1,2c,3a,3bg,3ka,10,13,14a,15

,17,20,23,26,37 
3.0 1.0 2.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 2.0 3.0 3.0 3.0 0.2 2.0 0.1 3.0 3.0 3.0 1.0 0.0 3.0 3.0 3.0 0.0 3.0 0.0 0.0 

17/017 

Breeding/R
esearch 

Line 
1,3a,3bg,3ka,10,13,14a,15,16

,17,20,23,37 

2.0 2.0 2.0 2.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 1.2 2.0 1.0 3.0 3.0 3.0 2.0 0.0 0.1 2.7 3.0 2.0 3.0 0.1 0.0 

 Supplemental Table 6 – Average Infection Types (AIT) of 2017 field isolates, as pathotyped by the UKCPVS on the 2017 differential set 
(Hubbard et al., 2018). 


