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ABSTRACT

Based on C-LSAT2.0, using high- and low-frequency components reconstruction methods, combined with observation
constraint masking, a reconstructed C-LSAT2.0 with 756 ensemble members from the 1850s to 2018 has been developed.
These ensemble versions have been merged with the ERSSTv5 ensemble dataset, and an upgraded version of the CMST-
Interim  dataset  with  5°  ×  5°  resolution  has  been  developed.  The  CMST-Interim  dataset  has  significantly  improved  the
coverage rate of global surface temperature data. After reconstruction, the data coverage before 1950 increased from 78%−
81% of the original CMST to 81%−89%. The total coverage after 1955 reached about 93%, including more than 98% in the
Northern Hemisphere and 81%−89% in the Southern Hemisphere. Through the reconstruction ensemble experiments with
different  parameters,  a  good  basis  is  provided  for  more  systematic  uncertainty  assessment  of  C-LSAT2.0  and  CMST-
Interim.  In  comparison  with  the  original  CMST,  the  global  mean  surface  temperatures  are  estimated  to  be  cooler  in  the
second  half  of  19th  century  and  warmer  during  the  21st  century,  which  shows  that  the  global  warming  trend  is  further
amplified. The global warming trends are updated from 0.085 ± 0.004°C (10 yr)–1 and 0.128 ± 0.006°C (10 yr)–1 to 0.089 ±
0.004°C (10 yr)–1 and 0.137 ± 0.007°C (10 yr)–1, respectively, since the start and the second half of 20th century.
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1.    Introduction

C-LSAT  (China-Land  Surface  Air  Temperature)  and
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Dataset profile

Dataset title China-Land Surface Air Temperature 2.0 China Merged Surface Temperature-Interim
Time range Monthly land surface temperature from 1850−2018 Monthly global surface temperature from

1854−2018
Geographic scope Land only global

Data format “.nc” “.nc”
Data volume 19.5 MB 20.0 MB

Data service system http://atmos.sysu.edu.cn/ResearchDownload
Sources of funding Natural Science Foundation of China (Grant: 41975105) and the National Key R&D Program of China

(Grant: 2018YFC1507705; 2017YFC1502301)
Dataset composition The dataset contains the LSAT file named “Recon-

structed C-LSAT2.0.nc”
The  dataset  contains  the  ST  file  named

“CMST-Interim.nc”
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CMST  (China  Merged  Surface  Temperature)  are  newly
released Land Surface Air Temperature (LSAT) and global
Surface  Temperature  (ST)  datasets  developed  since  2018
(Xu et  al.,  2018; Yun et  al.,  2019).  Previous  studies  (Li  et
al., 2020; 2021) have shown that the CMST dataset has sim-
ilar trends and uncertainties of global ST when compared to
other datasets [including HadCRUT4 (Morice et al.,  2012),
GISS  (Hansen  et  al.,  2010),  NOAAGlobalTemp  (Vose  et
al.,  2012),  and  Berkeley  Earth  (BE)  (Rohde  et  al.,  2013)].
The  significant  ST  trends  during  the “hiatus” period
(1998−2012),  which  have  been  discussed  in  recent  years,
are  identified  by  multiple  datasets  including  CMST,  Had-
CRUTem4-Hybrid (infilled by the polar surface air temperat-
ure) (Cowtan and Way, 2014), and ERA-5 (Simmons et al.,
2017). There are three reasons for the strong ST trend in the
CMST dataset. First, ERSST of NOAA/NCEI is adopted in
accordance with the CMST, NOAAGlobalTemp, and GISS
datasets, which is different from the HadCRUTem4 and BE
datasets, and the global sea surface temperature (SST) trend
of ERSSTv5 from 1900 to 2018 is slightly higher than that
of HadSST4 (Yun et al., 2019). Second, more station data col-
lected  by  the  International  Surface  Temperature  Initiative
(ISTI)  (Thorne  et  al.,  2011)  have  been  added  into  C-
LSAT2.0  ((Li  et  al.,  2021).  And third,  the  homogenization
scheme for air temperature series adopted by CMA-LSAT dif-
fers  from  GHCNv4  (Xu  et  al.,  2018).  This  indicates  that
both the C-LSAT2.0 and CMST datasets have some unique
features  in  describing  the  recent  global  LSAT  and  ST
changes.  Nevertheless,  C-LSAT2.0 and CMST are still  not
global “complete coverage” datasets, though ERSSTv5 integ-
rated by CMST is a global “complete coverage” SST data-
set.

The importance of a global “complete coverage” data-
set  is  emphasized  in  recent  studies  of  the  “hiatus ”  period
(1998−2012)  (Cowtan  and  Way,  2014; Karl  et  al.,  2015;
Lewandowsky et al., 2016; Huang et al., 2017b; Medhaug et
al., 2017; Simmons et al., 2017), especially for the observa-
tion of high-latitude regions such as the Arctic. There have
been several attempts to develop a global “complete cover-
age ”  dataset,  incorporating  satellite  observations  (Cowtan
and  Way,  2014),  reanalysis  (Simmons  et  al.,  2017),  Arctic
buoy observations (Huang et al., 2017b), the Deep Neural Net-
work (DNN) algorithm (Kadow et al., 2020), and reconstruc-
tions by other  statistical  methods (Li  and Tu,  2000; Cheng
et al., 2020; Huang et al., 2020; Morice et al., 2020). These
methods  increase  the  potential  coverage  rate  of  global  ST
anomalies,  but  there  are  still  some  insufficiencies.  For
example, extending to the period before 1979 is difficult for
satellite  and  reanalysis  data,  the  air  temperature  data  from
buoys  are  different  from traditional  SST data  merged  with
LSAT, and DNNs cannot reflect the changes of sea ice area
in  the  Arctic  along  with  global  warming.  The  results  of
global  ST  trends  from  before  and  after  reconstruction  in
Kadow et  al.  (2020) cannot replicate statistical  differences.
In  other  words,  the  difference  in  long-term  trends  before
and  after  reconstruction  does  not  exceed  its  uncertainty  at
the  95% confidence  level,  and  the  trends  of  the  two  could

be considered similar. Therefore, there is still a need to find
methods  for  how  to  extend  the  benchmark  data  of  limited
regional  coverage  to  global  coverage  and  to  quantify  the
uncertainties  (Jones,  2016).  Recently,  all  datasets  men-
tioned above have been updated to the latest version (Rohde
et  al.,  2013; Lenssen  et  al.,  2019; Huang  et  al.,  2020;
Morice et al., 2020). The most significant change is that the
coverage  rate  of  the  datasets  used  by  IPCC AR5  has  been
greatly improved.

Considering  the  uncertainty  of  systematic  bias  in
CRUTEM4, Morice  et  al.  (2012) generated  a  100-member
ensemble  dataset  using  different  systematic  bias  correction
settings, then combined the 100-member SST ensemble data-
set  with  the  HadSST3 dataset  from Kennedy et  al.  (2011a,
b) to form the HadCRUT4 global ST ensemble dataset and
estimate its  uncertainty.  However, Morice et  al.  (2012) did
not reconstruct some regions suffering from a lack of observa-
tions.  More  recently,  based  on  the  upgraded  CRUTEM5
(Osborn et  al.,  2020), Morice  et  al.  (2020) have developed
two variants of the HadCRUT5 dataset. The first are the tradi-
tional  gridded  ST anomaly  data  where  in  situ  observations
are available,  and the second extends temperature anomaly
estimates  into  regions  where  the  underlying  measurements
are  informative  using  a  Gaussian  process-based  statistical
method.

The previous version of the ERSSTv3 dataset (Smith et
al., 2008) divided the super-observations of SST anomalies
into  low-  and  high-frequency  components  and  reconstruc-
ted them using spatial  smoothing and empirical  orthogonal
teleconnections (EOTs, van den Dool et al., 2000), respect-
ively. Therefore, the SST anomaly data have “complete cover-
age ”  for  the  global  oceans.  Based  on  this, Huang  et  al.
(2015, 2017a) generated  SST  ensemble  datasets  ERSSTv4
and ERSSTv5 using different bias correction and reconstruc-
tion  parameters  and  thus  evaluated  its  uncertainty  level.
Huang et al. (2020) applied this method to the GHCNm4 data-
set,  merged  it  with  the  ERSSTv5  dataset  to  form  a  new
NOAAGlobalTemp5  dataset,  and  evaluated  its  uncertainty
level.  Their  results  showed that  the  difference  between the
global  ST dataset  based  on  NOAAGlobalTemp5 and  other
datasets  is  within  an  uncertainty  of  95%  confidence  level,
which is consistent with Li et al. (2020).

Different methods have been used to interpolate contin-
ental and hemispheric variations to regions without observa-
tions  (Li  and  Tu,  2000; Hansen  et  al.,  2010; Cowtan  and
Way, 2014; Cheng et al., 2020; Huang et al., 2020; Kadow
et al., 2020; Morice et al., 2020). This study uses EOT meth-
ods  to  reconstruct  the  C-LSAT2.0  dataset.  We  establish  a
“near-complete coverage” reconstruction  of  the  LSAT
ensemble dataset, then merge with the ERSSTv5 dataset to
develop the reconstructed CMST-Interim dataset and evalu-
ated its uncertainties.

Section 2 introduces the input datasets and the methodo-
logy of the reconstruction of the C-LSAT2.0 dataset and the
uncertainty evaluation. Section 3 shows the process and res-
ults of the reconstruction of the C-LSAT 2.0 ensembles and
the  development  of  the  CMST-Interim  datasets.  Section  4
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introduces  the  reconstructed  GMST  series  and  its  uncer-
tainty  based  on  the  new  CMST-Interim  dataset.  Section  5
gives  a  short  summary,  discussion,  and  suggests  potential
improvement for the future.

2.    Data and methods

2.1.    Dataset inputs

CMST uses C-LSAT (formerly named CMA-LSAT) as
the LSAT component (Xu et al., 2018; Yun et al., 2019; Li
et  al.,  2020).  The  current  version  is  C-LSAT  2.0,  with
monthly  LSAT  anomalies  on  a  5°  ×  5°  grid  from  1850−
2018. The C-LSAT2.0 dataset has certain advantages when
compared  to  other  datasets,  such  as  GHCN4  and
CRUTEM4, based on the number of observations (Xu et al.,
2018; Yun  et  al.,  2019).  Because  of  these  advantages,  we
are able to perform high- and low-frequency statistical recon-
struction (see section 2.2; Smith et al., 2008) and develop an
ensemble  dataset  for  C-LSAT2.0,  which  further  improves
the  spatial  coverage  rate  of  the  dataset  to  a  certain  extent.
The  ocean  component  of  CMST  still  uses  NOAA/NCEI's
ERSSTv5 (Huang et al.,  2015), which uses statistical mod-
els to reconstruct the ocean surface temperature (except sea
ice surface) data and develops an ensemble dataset. The uncer-
tainty  of  global  SST  observations  was  systematically
assessed.  In  addition,  the  ERA5  dataset  (Hersbach  et  al.,
2020) was used to train the EOT modes in the C-LSAT2.0
reconstruction,  considering  that  its  representativeness  of
global  LSAT  since  1979  is  significantly  better  than  other
reanalysis  datasets  on  global  and  regional  scales  (Chao  et
al., 2020).

2.2.    Methods

2.2.1.    Reconstruction of the LSAT

Similar to Smith et al. (2008) and Huang et al. (2015),
the  reconstruction  of  LSAT  and  C-LSAT2.0  adopts  the
method of reconstructing high- and low-frequency compon-
ents separately. The low-frequency component mainly relies
on  the  temporal  and  spatial  moving  average  processing  of
the existing data, while the high-frequency component uses
the EOTs reconstruction method. Then the high- and low-fre-
quency  components  are  synthesized  into  the  reconstructed
dataset.  The  reconstructed  data  are  masked  (section  3.4)
through certain regular observation constraints to ensure the
representativeness  of  the  reconstructed  temperature  anom-
aly data.

First,  we  processed  the  low-frequency  component  of
the  original  data,  which  represents  large-scale  changes  of
the anomaly of LSAT, in terms of both time and space. To
separate  low-frequency components,  the original  data  were
averaged to a 25° × 25° spatial running average. Second, we
calculated the annual mean anomalies for LSAT, using a min-
imum number of two months of valid data in a year. Then,
the  annual  anomaly  LSAT  was  filtered  with  a  15-year
median  filter.  After  that,  we  used  a  15°  ×  25°  spatial  run-
ning  average,  in  latitude  and  longitude  respectively,  a  9-

point  binomial  filter  in  space,  and a  3-point  binomial  filter
in time to fill the missing data. Finally, a 15° × 25° spatial run-
ning average was used to smooth the spatial distribution of
annual anomaly LSAT.

The  high-frequency  component  of  LSAT  was  defined
as  the  difference  of  the  original  data  with  the  low-fre-
quency  component.  We  then  fit  the  difference  to  a  max-
imum  of  100  modes  of  EOTs  trained  by  the  ERA5  reana-
lysis  from 1979−2018.  The selection of  modes is  based on
the variance ratio according to observational coverage, and
therefore the maximum number of modes is not sensitive to
the  final  result.  Before  fitting,  we  localized  EOT  modes
within  a  specified  space.  The  localization  in  the  longitud-
inal  direction  was  to  maintain  EOT  modes  within  the  dis-
tance of 500 km from the base point, set it to zero when the
distances are larger than 2500 km from the base point, and lin-
early decrease to zero in the range of 500 km and 2500 km
from the base point. The localization in the latitudinal direc-
tion is similar to that for latitude, with the exception of vary-
ing damping distances. It linearly decreased in the range of
2000 km and 4000 km from the base point in the low-latit-
ude  region  (22.5°N−22.5°S),  in  the  range  of  1000  km and
3000  km  in  the  mid-latitude  region  (22.5°−57.5°N/S),  and
in  the  range  of  500  km  and  1500  km  in  the  high-latitude
(57.5°−90°N/S)  region,  while  setting  to  zero  when  dis-
tances  exceeded  the  maximum  range  in  the  three  latitude
zones and keeping the original EOT modes when distances
were less than the minimum range. The method of fitting to
EOT modes is: 

R (x) =
∑

i
fiΨi (x) , (1)

Ψi (x)
fi

where R(x)  is  reconstructed  data,  is ith  EOTs  mode,
and  is the fitting coefficient, which is calculated by solv-
ing linear equations using the lower upper (LU) decomposi-
tion method (Press et al., 1992).

To avoid the influence of EOTs in sparse regions with
low reliability, for the reconstruction, the EOT modes were
accepted  only  if  supported  by  sufficient  observations,
defined by Eq. (2): 

ri =

∑
x
Ψ2

i (x)δxcosφx∑
x
Ψ2

i (x)cosφx

, (2)

ri δx

cosφx

where  is the variance ratio of ith EOTs mode,  is 0 with
missing  grid  boxes,  otherwise  equal  to  1,  and  is  the
cosine of latitude.

2.2.2.    Merging of the CMST-Interim dataset and assessing
uncertainties

The merging method and related steps of the CMST data-
set follow Yun et al. (2019) and Li et al. (2020). The LSAT
dataset use the above-mentioned C-LSAT2.0 dataset (1850−
2018),  and  the  SST  data  still  use  the  ERSSTv5  dataset
(1854−2018),  so  the  temporal  coverage  of  the  CMST-
Interim dataset  after  merging  is  still  from January  1854  to
December 2018.
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εp

For the C-LSAT2.0 component, through the above-men-
tioned  EOTs  reconstruction  based  on  different  parameters,
C-LSAT2.0 has generated 756 ensemble members (3 × 3 ×
3  ×  7  ×  4, Table  2).  The  parameter  uncertainty  estimation
method is similar to that of the NOAAGloalTemp5 dataset
(Huang et  al.,  2020).  As  the  missing  data  after  reconstruc-
tion are greatly reduced, to a certain extent, the reconstruc-
tion  uncertainty  can  be  significantly  reduced,  particularly
for the globally averaged temperature. Therefore, this study
only considers its parameter uncertainty. For the ERSSTv5
component,  both  types  of  uncertainties  are  considered  like
Huang  et  al.  (2020),  and  the  uncertainties  for  the  final
merged  CMST-Interim  dataset  have  been  evaluated  using
the  NOAAGloalTemp5  method  (Huang  et  al.,  2020; Li  et
al., 2020). According to Huang et al. (2020), the parameter
uncertainty  ( )  is  the  area-averaged  LSAT uncertainty,  as
in Eq. (3) and Eq. (4): 

ε2
p (t) =

1
M

∑M

m=1
[( Ag)m (t)−Ag (t)]

2
, (3)

 

Ag =
1
M

∑M

m=1
(Ag)m (t) , (4)

(Ag)m
Ag

where M is the number of ensemble members (for this study
M=756),  represents  global  LSAT  of m-member
ensemble,  is the average of all ensembles, and t repres-
ents temporal variations.

The annual uncertainty of GMST is composed of uncer-
tainties from the land and marine components (Huang et al.,
2020; Li et al., 2020). The annual uncertainty of the land com-
ponent (GLSAT series) (UL) is based on C-LSAT2.0. Accord-
ingly,  the  uncertainty  of  C-LSAT2.0,  assessed  by  the
5%−95%  uncertainty  levels,  results  from  an  ensemble
approach of the parametric uncertainties. The estimation of
the 5%−95% annual uncertainty range for the marine compon-
ent (GSST series) (US) (based on ERSSTv5) (Huang et al.,
2020)  uses  an  ensemble  approach  of  combining  the  recon-
struction  and  parametric  uncertainties  together.  We  finally
synthesized  the  total  global  annual  uncertainty  of  the
GLSAT series (UG) (based on CMST-Interim) by using Eq. (5): 

U2
G = (0.29×UL)2+ (0.71×US)2 , (5)

where  0.29  and  0.71  are  the  proportion  of  land  and  ocean
areas to global area, respectively.

3.    The  reconstruction  of  C-LSAT2.0  and  the
merging of CMST-Interim

Considering that the ERSSTv5 is already a reconstruc-
ted ensemble dataset, we only reconstruct the LSAT dataset
in this study. In order to show the effectiveness and reliabil-
ity of reconstruction, this section gives a comparison of recon-
struction  results  for  several  selected  months:  January  1850
(representing  a  period  with  very  little  data),  January  1900
(representing a period with slightly more data), and January

1960  (represents  a  period  with  much  more  data).  The  spe-
cific process and results are explained in Section 3.1.

3.1.    Low-frequency component reconstruction

Figure  1 shows  the  spatial  distribution  of  the  low-fre-
quency component of the global LSAT dataset for the selec-
ted  three  months  mentioned  above  (Figs.  1a−c)  and  the
global average annual series (Fig. 1d). From Figs. 1a−c, it is
obvious that for the first two selected months (January 1850
and January 1900), when there are fewer observational data,
the  low-frequency  component  reflects  the  more  spatially
smoothed results at large scales, and therefore, the spatial dis-
tribution  difference  is  small.  From Fig.  1c (January  1960),
the low-frequency component reflects more regional/local dif-
ferences. The global average annual change series of low-fre-
quency  components  (Fig.  1d)  basically  reflects  the  long-
term change characteristics of global average LSAT during
the period of 1850−2018 (Li et al., 2020). The cooling trend
lasted for nearly 10 years in the late 1870s, which was fol-
lowed  by  a  significant  warming  period  from  the  1890s  to
the 1940s. The mid-to-late 1940s−1970s experienced a cool-
ing  period  of  nearly  30  years.  The  LSAT  entered  a  rapid
warming period of more than 50 years after the late 1970s,
and  there  is  no  more  sign  of  "hiatus"  or  "cooling"  trends
since then.

3.2.    High-frequency component reconstruction

The  high-frequency  component  reconstruction  uses  an
EOTs  reconstruction  method  similar  to  ERSSTv4  (Section
2.1). Since C-LSAT2.0 is missing observations at many grid
points, it is not conducive to the training of EOTs. We used
the  ERA5  reanalysis  data  (Hersbach  et  al.,  2020)  to  con-
duct EOT modes training. Since EOTs do not require two dir-
ections to be orthogonal like EOFs (EOTs only require one
direction  to  be  orthogonal),  EOT  is  less  restrictive  than
EOF.  From  this  point  of  view,  EOTs  are  more  like  Rota-
tional  Empirical  Orthogonal  Function  (REOFs, Li  and  Tu,
2002), but it should be noted that the calculation of EOTs is
completed  in  one  step,  with  no  need  to  rotate  the  spatial
modes,  and  there  is  no  need  to  consider  whether  principal
components are truncated in the calculation. Therefore, it is
a  very  convenient  and useful  method (van den Dool  et  al.,
2000). Figures 2a−p show the spatial  modal distribution of
the first 16 EOT modes trained with ERA5 reanalysis data.
Obviously,  these modes each indicate a  representative spa-
tial correlation distribution of global LSAT changes. Figure
2q shows  the  area  covered  by  the  first  100  EOTs.  It  also
shows  that  the  first  100  EOTs  mentioned  above  have
already  completely  covered  the  entire  land  area  of  the
world,  which  corresponds  with  the  reconstruction  needs  of
this paper.

3.3.    Combination  of  high-  and  low-frequency  compon-
ents

The  C-LSAT2.0  anomaly  fields  from January  1850  to
December  2018 were  reconstructed  according to  the  meth-
ods and process described in section 2.2. Figures 3a−c show
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the  comparison  examples  between  the  reconstruction  and
the  original  observation  results  for  the  three  aforemen-
tioned  months  (January  1850,  January  1900,  and  January
1960). The cold and warm distribution of the reconstructed
data  and  the  magnitude  of  the  high  and  low  value  centers
are  basically  same  as  the  original  data,  but  the  reconstruc-
ted  data  for  years  and  regions  with  scarce  data  (such  as  in
1850s  and  in  Antarctica)  are  mainly  low-frequency  data,
which only reflects the long-term scale change characterist-
ics. Obviously, the reconstruction can better reflect the anom-
aly  distribution  of  observation  information,  and  the  grid
boxes with the missing values are infilled and reconstructed,
which has high reliability. Figure 3d shows the average devi-
ation  between  the  observational  data  and  the  reconstructed
data (reduced to the grid boxes with observations) from Janu-
ary  1850  to  December  2018.  Obviously,  as  the  coverage
rate  of  data  is  further  improved,  this  deviation  is  reduced.
From  the  perspective  of  long-term  changes,  this  deviation
mainly  reflects  the  fluctuations  and  oscillations  near  the
zero  value,  and  there  is  no  obvious  upward  or  downward
trend.  This  also  shows  that  the  reconstruction  described  in
this study has small  changes in the long-term change trend
of the global LSAT series, which further shows that the recon-
struction is reasonable.

3.4.    Observation  constraint  masking  of  reconstructed
data

The  analysis  of  the  reconstruction  process  discussed
above shows that the reconstruction and integration of high-
and low-frequency components to reconstruct the current C-
LSAT 2.0 better reflects the global LSAT trend and anom-
aly  distribution.  However,  it  also  shows  that  the  fewer  the

observational data values, the lower the accuracy of the recon-
structed  data.  Therefore,  how  to  determine  the  extent  to
which the density of observation sites can be retained as reli-
able  data  for  reconstruction  will  also  be  a  very  important
issue.

Here,  we  present  the  designed  principles  to  tailor
(mask) the reconstructed data of C-LSAT2.0. When the correl-
ation coefficient (explaining variance) between the observa-
tions and the reconstructed grid boxes series reaches a cer-
tain  level,  the  reconstruction  is  considered  reliable.  Other-
wise,  the  reconstruction  is  considered  unreliable  and
masked out. HadCRUT5 adopts a parameter threshold mask-
ing method (Morice et al., 2020), but this study adopts a sim-
pler method using a benchmark period from 1960 to 2018.
It  is  generally  believed  that  the  observation  stations  are
dense during this period and the reconstruction data are relat-
ively reliable (Fig. 3d). We calculate the maximum value of
the shortest distance between two grid boxes without miss-
ing  observations  during  this  period  and  use  it  as  the  mask
threshold. Similar to Li et al. (2010), the corresponding rela-
tionship  between  the  average  distance  between  the  grid
boxes and the correlation coefficient is calculated. The com-
parison  found  that,  except  for  individual  grid  points  [the
islands in Pacific (17.5°N, 157.5°W)] and the grid boxes in
the Antarctic region, the maximum length between the grid
boxes  without  missing  observations  is  less  than  1200  km.
On average, this distance roughly corresponds to the correla-
tion coefficient r = 0.5, and the explained variance between
the  two  grid  points  series  reaches  25%,  which  is  a  useful
value.  Based  on  this,  in  this  study,  the  average  distance
when d = 1200 km (r = 0.5) is used as the threshold of the
observation  constraint  masking  of  the  reconstructed  data.

 

 

Fig.  1.  The  low-frequency  component  distribution  of  global  LSAT  anomalies  at  several  typical  times
(1850.1, 1900.1 and 1960.1) and the global average low-frequency component series from 1850 to 2018.
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Figure  4 also  uses  the  above  three  months  as  examples  to
show  comparison  of  the  anomaly  distribution  of  LSAT
between before and after  masking.  Comparing Figs.  4a, 4b
and 4c, it  is clear that the observation constraint masks the
anomaly data that only depends on the reconstruction of the
low-frequency smooth  component,  while  retaining the  grid
data reconstructed by both of the low- and the high-frequency
components,  which  is  more  reasonable.  It  is  worth  noting
that  this  kind  of  observation-constrained  masking  will
hardly affect the establishment of global or regional temperat-
ure change series and long-term trend detection results.

Based on the reconstructed dataset after observation con-
straint  masking,  the 1850−2018 annual  LSAT series  of  the
eight regions in Xu et al. (2018) after reconstruction were cal-
culated  and  compared  with  those  before  reconstruction
(Fig. 5). Obviously, the long-term trend of the two are sim-
ilar  in  all  regions.  However,  the  interannual  variations  in
reconstructed  series  are  significantly  reduced  before  the
1900s  and  in  the  Antarctic  region,  which  is  mainly  due  to
the sparse observations. Figure 5 also shows that the above

process still has certain problems with the reconstruction of
the LSAT series in the Antarctic region. The main reason is
that the observations in the Antarctic region are remarkably
scarce. Even in the more completely data-covered period of
January 1960, it  is still  relatively limited after the observa-
tion-constraint  masking,  and  it  was  almost  impossible  to
reconstruct reliable gridded data before that.

3.5.    LSAT ensemble dataset and uncertainty assessment

When C-LSAT2.0 is reconstructed, the selection of differ-
ent  parameters  will  lead  to  specific  uncertainties. Table  1
shows  the  different  parameter  settings  during  reconstruc-
tion,  with a  total  of  756 ensemble members.  Among them,
the operational options use the intermediate values of vari-
ous parameters (so-called “optimal” parameters). The data-
set reconstructed with the operational optimal parameters is
the basis for our daily product evaluation and scientific applic-
ations.

It can be seen from Fig. 6 that the differences in all 756
ensemble  members  obtained  by  the  different  parameters

 

 

Fig. 2. The spatial modes (upper panel, 1−16) of the first 16 EOTs and the superimposed diagrams of all 100 EOTs (lower
panel, 1−16).
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given in Table 1 are still  mainly concentrated before 1950,
and  the  amplitude  before  the  1880s  is  the  largest  (from
greater  than  0.5°C  to  about  0.1°C),  followed  by  1880−
1950s  (from  about  0.1°C  to  0.05°C),  and  again  after  1950
(below  0.025°C).  It  is  worth  mentioning  that  after  the
2010s,  the  difference  between  ensemble  members  has
slightly expanded (up to about 0.1°C). This is mainly due to

the  decrease  in  the  number  of  data  locations  (or  collection
lag) in recent years. The uncertainty of the temperature anom-
alies  in  the  last  10  years  or  so  has  increased,  which  partly
explains why some studies have produced obviously differ-
ent  results  in  detection  of  the  global  ST  trends  during  the
"hiatus"  period  based  on  different  datasets  (Cowtan  and
Way,  2014; Karl  et  al.,  2015; Lewandowsky  et  al.,  2016;

 

 

Fig.  3.  (a)−(c)  Comparison  of  global  LSAT anomalies  (units:  °C)  in  the  selected  months  and  (d)  monthly
deviation reduced to the grids with observations before and after reconstruction.
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Huang et al., 2017b; Simmons et al., 2017; Li et al., 2021).
Similar to Li et al. (2020) and Huang et al. (2020), the

uncertainty  of  LSAT  is  estimated  (Fig.  7).  Obviously,  the
parameter uncertainty is slightly lower than previous estim-
ates  (Li  et  al.,  2020)  (especially  after  the  1920s),  but  the
inter-annual  fluctuations  have  increased  significantly  more
than  the  previous  evaluation  (Li  et  al.,  2021).  Overall,  the
uncertainty changes estimated in this study can better reflect
inter-annual  differences.  It  is  worth  pointing  out  that  our
uncertainty  evaluation  is  slightly  lower  than  that  in Huang
et al.  (2020) while using a similar method, which is due to
the lack of the reconstruction uncertainty evaluation for C-
LSAT2.0 at this stage.

3.6.    The merge of CMST-Interim

According to the practice of Yun et al. (2019), the recon-
structed  C-LSAT2.0  ensemble  dataset  and  the  ERSSTv5
ensemble  dataset  (provided  by  NCEI/NOAA)  are  merged
together to obtain the reconstructed CMST-Interim dataset.
Figure  8 shows  a  comparison  of  global  data  coverage  rate
before  and  after  reconstruction  (with  the  observation-con-
straint  masking  and  sea-ice  surface  temperature  included).
Obviously,  the  reconstruction  dataset  greatly  improves  the
global and regional data coverage rate, thereby increasing con-
fidence  in  the  data  analysis. Figure  8a indicates  the  global

data coverage rate has changed from 78% in 1854 to about
93% in 1960 and has kept a coverage rate of more than 90%
since then. The coverage rate for the reconstruction data of
the  Northern  Hemisphere  (including  high  and  middle  latit-
udes), low latitudes (30°N−30°S), and even the middle and
high  latitudes  of  the  Southern  Hemisphere  (30°−60°S)  has
been close to 100% since the start of the second half of the
20th century. Some recent studies have used ice surface air
temperature  data  instead  of  SST data,  which  has  increased
the coverage of global ST data to some extent (Rohde et al.,
2013; Morice  et  al.,  2020).  However,  since  the  area  of  sea
ice often changes with time and is difficult to diagnose, it is
hard to conclude whether using the ice-surface air temperat-
ure or the ice-surface temperature is more suitable. So, there
is still a certain degree of uncertainty. Therefore, this study
still adopts the most traditional method, and the ice-surface
temperature is represented by a fixed value of –1.8°C.

4.    The  reconstructed  GMST  series  and  its
uncertainty

4.1.    The differences between CMST and CMST-Interim

Figure  9 shows  the  global  and  Southern  and  Northern

 

 

Fig.  4.  The  distribution  of  global  LSAT anomalies (units:  °C)  before  and  after  reconstruction  for  different
periods (1850.1, 1900.1 and 1960.1) (same as Fig. 3a, the difference is that the reconstructed data are masked
by using observation data constraints).
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Hemisphere  average  ST  series  and  their  comparison  based
on  the  reconstructed  CMST-Interim  and  original  CMST.
From the global average series (Fig.  9a),  the ST anomalies
after  reconstruction  before  the  19th  century  are  slightly
lower than those before reconstruction, while the ST anom-
alies  after  reconstruction from the 21st  century are slightly

higher  than  those  of  the  unreconstructed  CMST.  In  this
way,  the  reconstructed  global  warming  trend  of  the  ST
series  is  higher  than  that  before  reconstruction.  This  is
mainly  due  to  the  fact  that  there  are  fewer  grids  of  LSAT
observations before reconstruction, leading to an increase in
the  proportion  of  sea  temperature  in  the  calculation  of  the

 

 

Fig. 5. Comparison of the regional LSAT series before and after reconstruction.

Table 1.   Parameter settings used for reconstruction scenarios and the operational option.

Parameter Operational options Alternative options

Minimum  number  of  months  for
annual average

2 months 1, 2, 3 months

LF filter periods 15 years 10, 15, 20 years
Min number of years for LF filter 2 years 1, 2, 3 years

EOTs training periods and spatial scales 1979−2018, Lx=4000, 3000, 2500,
Ly=2500

1979−2018, Lx=3000, 2000, 1500, Ly=1500;
1979−2018, Lx=5000, 4000, 3500, Ly=3500;
Lx=4000, 3000, 2500, Ly=2500;
1979−2008, Lx=4000, 3000, 2500, Ly=2500;
1989−2018, Lx=4000, 3000, 2500, Ly=2500;
even year, Lx=4000, 3000, 2500, Ly=2500;
odd year, Lx=4000, 3000, 2500, Ly=2500;

EOTs acceptance criterion 0.2 0.10, 0.15, 0.20, 0.25
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global average ST series in the 19th century. The trends of
CMST-Interim and original CMST become similar after the
land  and  sea  area  proportion  has  been  correctly  used.  For
the  Northern  Hemisphere  series  (Fig.  9b),  the  two  series
show  similar  characteristics,  that  is,  the  reconstructed  ST
anomalies  before  the  19th  century  slightly  decreased  and
then slightly increased since the 21st century. For the South-
ern Hemisphere series (Fig. 9c), the series of ST anomalies
before and after reconstruction is basically unchanged. That
is  to  say,  the  reconstruction  mainly  changes  the  global  ST
anomalies by changing the average ST anomalies in the North-

 

Fig.  6.  (a)  Spread  for  different  reconstruction  parameters
(black:  operational  option;  shadow:  difference  range  of
different  parameters)  and  (b)  range  of  difference  between  all
series.

 

Fig. 7. Comparison of the 95% uncertainty evaluation between
the  reconstruction  and  original  C-LSAT  during  the  period  of
1850−2018.

 

 

Fig.  8.  Comparison  of  data  coverage  of  global,  hemisphere,  and  latitude  zones  before  and  after  reconstruction  in
CMST-Interim.
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ern Hemisphere.
In the ST series of each latitude zone (Fig. 10), the con-

clusions based on the original CMST and the reconstructed
CMST-Interim also show quite  good agreement.  The same
difference  is  shown  in  the  Northern  Hemisphere  mid-latit-
udes (30°−60°N) and high latitudes (60°−90°N). That is, the
ST anomalies decreased before 1900 and increased slightly
after  2000.  For  low  latitudes  (30°S−30°N)  and  southern
mid-latitudes  (30°−60°S),  there  is  almost  no  difference
between the two. But,  in the high latitudes of the Southern
Hemisphere  (60°−90°S),  the  CMST-Interim  series  starts
from  1854  (the  unreconstructed  series  can  only  start  from
1950  due  to  lack  of  observation  data).  However,  from  the
overlap  period  (1950−2018),  the  ST  anomaly  changes  are
more consistent.

4.2.    The GMST trends and its uncertainties

The  overall  annual  uncertainty  of  GMST is  composed
of  uncertainties  from  the  land  and  marine  components
(Huang et al., 2020; Li et al., 2020). The annual uncertainty
of the land component (GLSAT series) (UL) is based on C-
LSAT2.0.  According  to  section  3.6,  the  5%−95%  uncer-
tainty  levels  are  assessed  using  an  ensemble  approach  for
the parametric uncertainties (Fig. 7). Figure 11 is the GMST
series based on the CMST-Interim from 1854 to 2018 along

with their uncertainty ranges at the 5%−95% level.
The differences of the warming trends between CMST

and other global ST datasets have been comprehensively com-
pared in Li et al (2021). Table 2 shows the warming trends
for  global  and  hemispheric  ST  change  based  on  CMST-
Interim from different time scales and the comparison with
original  CMST.  For  the  global  average  ST  change  since
1854,  the  CMST-Interim  gives  linear  trends  of  0.048  ±
0.003,  0.070 ± 0.003,  0.089 ± 0.004,  and 0.137 ± 0.007°C
(10  yr)–1,  respectively,  for  the  periods  1854−2018,
1880−2018, 1900−2018, and 1950−2018. Those are slightly
higher  than  the  CMST evaluation  [0.042  ±  0.003,  0.064  ±
0.004, 0.085 ± 0.004, and 0.128 ± 0.006°C (10 yr)–1, respect-
ively,  for  the  corresponding  periods].  Similarly,  the  hemi-
spheric mean ST trends also have varying degrees of enlarge-
ment.  This shows that  through the reconstruction of the C-
LSAT2.0 dataset, the data of high latitudes and some high-alti-
tude  areas  have  been  filled,  and  the  coverage  rate  of  the
CMST-Interim  has  been  greatly  improved.  Therefore,  the
global warming trend estimation has been amplified to a cer-
tain extent. According to Huang et al. (2020), the trends for
period of  1880−2016 are 0.066,  0.070,  0.071,  and 0.071°C
(10 yr)–1 for HadCRUT4, BE, GISTEMP, and NOAAGlobal-
Tempv5 operational, respectively. Those are quite similar to
our new evaluation in Table 2 (0.070 for CMST-Interim).

5.    Summary

The method based on high- and low-frequency compon-
ents reconstruction has effectively improved the coverage of
the global LSAT dataset (C-LSAT2.0). Through the observa-
tion-constraint  masking  scheme,  the  reconstruction  of  C-
LSAT2.0  is  more  in-line  with  the  actual  observations  at
both global and regional scales.

The  comparison  shows  that  the  coverage  rate  of  the
data  before  1950  after  reconstruction  (CMST-Interim)
increased  to  81%−89%  from  78%−81%  of  the  original
CMST, and it reached about 93% after 1955. The coverage
was  greater  than  98%  in  the  Northern  Hemisphere  and
between 81%−89% in the Southern Hemisphere. The lower
coverage in the Southern Hemisphere is mainly due to insuffi-
cient observation coverage in the high latitudes.

The reconstructed dataset more accurately describes the
characteristics of multi-scale changes in global and regional
ST. Before the 19th century, the reconstructed global aver-
age  ST  anomalies  based  on  CMST-Interim  were  slightly
lower  than  the  original  CMST  average  anomalies.  In  con-
trast, during the early 21st century, the reconstructed global
average ST anomalies were slightly higher than the original
CMST average anomalies. This difference is mainly reflec-
ted in the reconstruction in the Northern Hemisphere, while
the series of average ST anomalies before and after the recon-
struction in the Southern Hemisphere is almost unchanged.

Through  the  reconstruction  experiments  with  different
parameters, a good foundation is provided for more system-
atic  uncertainty  evaluation  of  C-LSAT2.0  and  CMST-

 

Fig. 9. Comparison of the global (a), Northern Hemisphere (b),
and Southern Hemisphere (c) surface temperature series.
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Interim (and future CMST2.0). Estimates show that the uncer-
tainty of the ensemble reconstruction dataset  for the global
LSAT series is quite similar to previous estimations by com-
bination of the observational, sampling, bias errors, and insuf-
ficient  coverage  (Brohan et  al.,  2006; Li  et  al.,  2021).  The

uncertainty  of  the  global  and  regional  average  ST  series
based on the reconstructed CMST-Interim is similar to previ-
ous estimates (Li et al., 2020).

It is also worth mentioning that there are still some defi-
ciencies existing in the current studies: (1) For some regions
such  as  Antarctica,  due  to  the  scarcity  of  actual  observa-
tional data, reconstruction mainly relies on the influence of
low-frequency  components.  This  results  in  a  certain  devi-
ation  in  the  anomaly  changes  for  the  reconstruction  data.
Therefore,  this  study restricts  the masking results  based on
the  actual  observation  data,  and  only  retains  the  grid  data
with both reasonable high- and low-frequency components.
(2) This study has not considered the reconstruction uncer-
tainty after observation constraints and masking, which may
lead to  a  slightly  lower  level  of  uncertainty.  (3)  Since sea-
ice  area  changes  over  time  cannot  be  quantitatively
described, in the current study the traditional fixed value of
the sea-ice surface temperatures is used.

 

 

Fig.  10.  The  average  ST  series  of  different  latitude  zones  before  and  after  reconstruction  (black:  the
unreconstructed CMST, red: reconstructed CMST-Interim).

 

Fig. 11.  the GMST based on CMST-Interim and its 5%−95%
uncertainty range during the period of 1854−2019.

Table 2.   Trends evaluation in global and hemispheric ST change from different scales [°C (10 yr)–1].

Global/region Datasets 1854−2018 1880−2018 1900−2018 1950−2018

Global
Original 0.042±0.003 0.064±0.004 0.085±0.004 0.128±0.006

Reconstruction 0.048±0.003 0.070±0.003 0.089±0.004 0.137±0.007

North Hemisphere
Original 0.046±0.004 0.071±0.004 0.091±0.005 0.147±0.010

Reconstruction 0.058±0.004 0.082±0.004 0.098±0.005 0.160±0.011

South Hemisphere
Original 0.037±0.003 0.057±0.003 0.078±0.003 0.108±0.005

Reconstruction 0.038±0.003 0.058±0.003 0.079±0.003 0.113±0.005
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