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Abstract -- This paper investigates the performance of a 
newly developed particle filter (PF) algorithm for sensorless 
control of the Brushless DC (BLDC) machines. A number of 
modifications have also been incorporated to the proposed PF 
algorithm in order to improve its performance with respect to 
resampling process and robust operation when unpredicted 
disturbances are occurred. The disturbances investigated in this 
paper include the presence of unconventional Non-Gaussian 
noises, changes in machine’s parameters, and occurrence of 
inter-turn short circuit fault. In addition, the paper proposes 
several measures in order to improve the estimation accuracy of 
the filter and enhance the filter robustness against system 
uncertainties. In order to evaluate the performance of the PF 
algorithm, the sensorless control system of a 1.5 kW BLDC 
machine is simulated in MATLAB/Simulink environment. 
Simulation results show that the introduced techniques 
considerably improve the performance of the PF algorithm as 
state estimator.   

 
Index Terms -- Brushless DC (BLDC) Machine, Inter-turn 

Short Circuit Fault, Particle Filter, Resampling Process, 
Sensorless Drives.  

 
NOMENCLATURE 

i Stator current 
V Terminal voltage 
ωm Mechanical angular speed 
θm Mechanical position 
Rs Stator phase resistance 
Ls Synchronized stator phase inductance 
P Number of poles 
λ Magnet flux linkage 
J Moment of inertia 
B Friction factor 
TL Load torque 
f (θm) Shape of stator phase back emf with the amplitude of ±1 
ε(n) Added noise 
N Number of particles 
k Step indicator 
Q (m) Cumulative sum of the first m normalized weight 
x Posterior particle 
x ̂ Resampled particle 
p( y | x ) Condition probability of distribution function (pdf) 
K Scaler tuning parameter 

I. INTRODUCTION 
OWADAYS, brushless DC (BLDC) motors are widely 
used in various applications. Unlike the brushed motors, 

BLDC motors can continuously operate at their maximum 
torque, while generating low amount of audible noise [1]. In 
addition, BLDC motors have simple structure as well as 
lighter and more compact than traditional motors [2]. Because 
of the special distribution of the stator winding, only rotor 
position information of every 60 degrees is required for 
control of the machine’s operation. However, for a more 
sophisticated control and to obtain full machine’s 
performance, vector control method is used [3]. In this 
method, continues rotor position information is required. The 
rotor position can be sensed by employing optical encoders 
and resolvers, nevertheless, these are prone to failure and 
hence the overall machine’s reliability is affected. 

Sensorless control methods use voltage and current 
measurements for determining the  rotational speed and 
position of the rotor, hence eliminating the use of mechanical 
sensors. Therefore, sensorless control methods have lower 
maintenance cost, optimised system size, and they are suitable 
to be used in harsh environment applications. However, one 
of the main drawbacks associated to sensorless control is its 
computationally expensive process. Other drawbacks include 
high sensitivity to environmental noise, system uncertainties, 
and low accuracy at low rotor speeds [4], [5].  

A general strategy in sensorless control is the use of the 
stator winding’s back emf [6]. The back emf technique can 
further divided into terminal voltage sensing [2], back emf 
integration [7], flux linkage [8], and freewheeling diode 
conduction [5], [9]. The major drawback to the back emf 
technique is that it is not capable of determining rotor position 
at low speeds since the back emf has small amplitude. In order 
to overcome this issue, auxiliary parameters are identified, 
which are independent of speed [1], [10]. Although, this 
method is independent of speed, high level of parameter 
sensitivity is still a major obstacle to its recognition. 

To deal with those issues, advanced sensorless methods are 
proposed. These new closed-loop algorithms are based on 
nonlinear control methods, for instance, sliding-mode 
observer (SMO) [11], [12], and stochastic filters. Stochastic 
filters are powerful tools for the system control in the presence 
of system uncertainties and external noise signals. A well-
known stochastic filter being widely used in nonlinear control 
methods is the Kalman Filter (KF). In [13] a vector control for 
the BLDC motor is presented, where the back emf is estimated 
using  a KF and the speed control is achieved, nevertheless, an 
everlasting error is existed for rotor position estimation. Nair 
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et. al. [14] also adopted a KF approach for sensorless direct 
torque control of a BLDC machine. However, a high level of 
error is observed in the estimated torque, as it is perceived that 
the conventional KF leads to accurate response only in linear 
systems. Therefore, other types of KF control, i.e. Extended 
Kalman Filter (EKF) [3, 15], Unscented Kalman Filter (UKF) 
[4], and Cubature Kalman Filter (CKF) [16], are introduced. 

Particle Filter (PF) is an effective modern stochastic filter 
suitable for highly nonlinear systems, where the estimation 
error converges to zero in theory. The performance of the PF 
for position and speed estimation of the BLDC motor has been 
investigated by the authors and reported in [17]. This paper 
aims to analyse and modify the performance of the PF 
sensorless control proposed in [17]. 

In this paper the performance of a newly developed particle 
filter (PF) algorithm by the author for sensorless control of the 
BLDC machines is investigated. A number of modifications 
have also been incorporated to the proposed PF algorithm in 
order to improve its performance with respect to resampling 
process and robust operation when unpredicted disturbances 
are presented. The disturbances investigated in this paper 
include the presence of unconventional non-Gaussian noises, 
changes in machine’s parameters, and occurrence of inter-turn 
short circuit fault. In addition, the paper proposes several 
measures in order to improve the estimation accuracy of the 
filter and enhance the filter robustness against system 
uncertainties. In order to evaluate the performance of the PF 
algorithm, the sensorless control system of a 1.5 kW BLDC 
machine is developed in Matlab/Simulink. The simulation 
results show that the introduced techniques considerably 
improve the performance of the PF algorithm as state 
estimator. 

II. PERFORMANCE ANALYSIS OF THE PARTICLE FILTER 
ALGORITHM  

 A schematic of the sensorless drive system structure is 
shown in Fig. 1. As can be seen, the PF algorithm estimates 
the position and speed of the machine by using terminal 
current and voltage values. In such a drive system, only the 
machine’s currents are measured, and the values of the line 
voltages are calculated using the state of operation of the 
converter and applied gate signals by the current reference 

generator. The estimated speed is then fed to the speed 
controller and the control unit produces gate signals 
accordingly using the estimated position and the generated 
reference currents. The mathematical matrix equation of the 
electrical and mechanical parameters of the BLDC machine 
are presented in (1). Fig. 2 illustrate the PF algorithm 
flowchart. A detailed analysis of the PF model development 
for the BLDC machine and its associated algorithm is 
presented in [17].  

In this section, the performance of the proposed sensorless 
controller for BLDC machines is analysed with respect to the 
presence of Non-Gaussian noises and system parameters 
variations. The sensorless control system of the BLDC 
machine that utilises PF algorithm as state estimator is 
developed in Matlab/Simulink software. The specifications of 
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Fig. 1.  The structure of sensorless control of a BLDC machine [17] 
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TABLE I  
SPECIFICATIONS OF THE BLDC MACHINE CONSIDERED IN THIS STUDY 

Parameter Value 

DC Link Voltage 400 V 

Power 1.5 kW 

Stator Phase Inductance (Ls) 8.5 mH 

Stator Phase Resistance (Rs) 2.88 Ω 

Number of Poles (p) 8 

Magnet Flux Linkage (𝝀) 0.175 Wb 

Moment of Inertia (J) 0.0008 Kg.m2 

Friction Factor (B) 0.001 Nm/Rad/Sec 

Speed 150 Rad/Sec 
 

 

Fig. 2. The flowchart of the proposed PF algorithm. The colored marks 
illustrate the related section of the paper  
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the BLDC machine considered in this study is presented in 
Table I. 
A.   Performance of PF Algorithm in the Presence of non-
Gaussian Noise 

As mentioned earlier, different types of Kalman filters 
(KF) including EKF and UKF estimate the states of non-linear 
systems based on the assumption that the distribution of 
measurement noises and system uncertainties are Gaussian.  

Although in most cases this assumption is valid for 
stochastic process, in some other, due to the variations in the 
behavior of the states and external circumstances, the 
assumption may become invalid [18], [19]. The variation in 
noise distribution can directly affect signal to noise ratio 
(SNR) of the PF input signal and hence if the filter has been 
tuned only for a specific range of SNR, the instability can 
occur in filter operation. This is particularly an issue for 
Kalman filter types e.g. EKF that utilise mean and variance of 
states throughout the estimation process. Nonetheless, the 
performance of the PF algorithm in the presence of non-
Gaussian noise is accurate and stable. This is because the PF 
performs a propagation of a set of particles in the system 
model to estimate the states, which is independent of the type 
of the noise presented in the system. 

In order to evaluate the performance of PF algorithm in the 
presence of non-Gaussian noise, such a noise should be added 
to the machine current signals. Based on the Wiener 
approximation theorem every non-Gaussian noise can be 
stated as a finite sum of several Gaussian noises [18]-[20]. In 

other words, a non-Gaussian noise can be considered as a 
Gaussian noise with a random variable variance. Adding this 
noise to the measured current signals results in the SNR of the 
input signals varies during the PF operation. Therefore, a 
measured value can be considered as: 

 (2) 

where u(n) is the measurement values that are fed into the PF 
algorithm, u'(n) is the real measured signal, and (n) is the 
added noise with the non-Gaussian distribution. Applying (2) 
to the PF model, the simulation results are shown in Fig. 3. 
Fig. 3(a) and 3(b) compares the performance of PF algorithm 
in the presence of Gaussian and non-Gaussian noises as well 
as the case where no noise to the current signal is considered. 
Figs. 3(c) and 3(d) compare the speed estimation error and 
position estimation error in the presence of Gaussian and non-
Gaussian noises, respectively. As can be seen, although the 
estimation error at the presence of non-Gaussian noise 
increased, PF algorithm is still sufficiently accurate and stable.  

B. Robustness to System Uncertanities 
One of the most important features for a state estimator is 

its resilience to the system parameter variations and 
uncertainties. In other words, a proper state estimator should 
be able to remain accurate and stable when system parameters 
deviate from their original values. In general, stochastic filters 
are more robust than other types of state estimators against 
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Fig. 3. The performance of PF algorithm in the presence of non-Gaussian noise: (a) speed estimation (b) position estimation (c) speed estimation error 
(d) position estimation error. 



variations of system parameters and uncertainties due to their 
stochastic nature. 

For the case of a machine’s drive system, the stator 
winding resistances experience the most frequent variation 
due to the temperature rise during the machine’s operation. In 
order to evaluate such an effect in the performance of the PF 
algorithm, a 10% increase in the values of the stator winding 
resistances is considered, while other parameters remained 
unchanged and the results are shown in Fig. 4. It is assumed 
that the actual value of the stator winding resistance is 
increased from the beginning of the simulation while the PF 
algorithm use the old value of the stator winding resistance for 
calculation. As can be clearly seen, the mean error value is 
increased, but the accuracy of the estimation remains at 
acceptable level. 

III. MODIFYING PARTICLE FILTER 
 The capability of the PF algorithm in state estimation of 

the BLDC machine has been discussed in [17]. In this section, 
additional measures that can be taken to modify the proposed 
PF algorithm with respect to accuracy and reliability 
improvement and computational burden reduction is 
presented. 

A. Resampling Process Modification 
Resampling process is a critical step in the operation of the 

PF algorithm. In this step, particles that have lower value of 
likelihoods are replaced by those having higher values. In 
other words, through resampling process particles which are 
more probable to be the final estimation are kept, while those 
which are less likely to be the answer are removed. Therefore, 
appropriate resampling strategy plays a significant role in the 
accuracy and the quality of the final estimation of the PF 
algorithm. However, such a strategy suffers from long 
computational time in every iteration that filter algorithm runs. 
In [21]-[24] various types of resampling strategies have been 
presented. Multinomial, Stratified, and Systematic are of the 
most effective resampling methods that have been employed 
in PF algorithm for state estimation of relatively simple non-
linear systems with low number of states [21].   

In the Multinomial method, at each iteration, N random 
numbers between (0,1], i.e. ut(n), correspond to N particles 
that are generated. Next, each of the random numbers is 
compared with the cumulative sum of the normalised weights 
and the mth element, which satisfies (3) is determined. Then, 
the nth particle for the next iteration is selected with respect to 
(4). This resampling strategy fulfils the unbiasedness 
conditions [20]. 

 
         (a) 

 
         (b) 

Fig. 4. Performance assessment of PF algorithm when 10% increase in resistance value is considered: (a) speed estimation (b) position estimation  

 

TABLE II  
COMPARISON OF PF ALGORITHMS PERFORMANCE WITH DIFFERENT RESAMPLING STRATEGIES 

Resampling 
Strategy 

Mean of 
Speed Estimation 

Error 
(rad/s) 

Maximum of 
Speed Estimation 

Error 
(rad/s) 

Mean of 
Position 

Estimation Error 
(rad) 

Maximum of 
Position 

Estimation Error 
(rad) 

Required Random 
Number 

Average 
Computational 

Time 
(ms) 

Multinomial 1.3210 23.0250 0.0092 0.1641 N 0.2812 

Stratified 1.1789 12.2220 0.0105 0.0734 1 0.1875 

Systematic 1.1280 9.2654 0.0103 0.0577 1 0.1875 

 



 (3) 

 (4) 

 The Stratified and Systematic resampling methods are 
both based on a shared principle of dividing the particles into 
sub-populations known as strata [20]. In Stratified strategy, a 
new random number is created for each strata by (5). 

 (5) 

However, in the Systematic resampling strategy only one 
random number for the interval of (0,1/N], i.e. u0, is generated 
and the required random number for other intervals are 
calculated by the following expression:  

 (6) 

Then, the same approach as in Multinomial strategy will be 
carried out and the particles for the next iteration are selected 
with respect to the random numbers, following (3) and (4). In 
summary, the Systematic and Stratified strategies are less 
computationally demanding in comparison with Multinomial 
method.  

 As mentioned earlier, resampling strategy directly affects 
the performance of PF algorithm. In order to evaluate and 
compare the impacts of the mentioned resampling strategies 
on the performance of the proposed PF algorithm for a BLDC 

motor, the strategies are incorporated in three different PF 
models used for driving the BLDC machine, while the 
machine’s parameters and other simulation variables are 
remained unchanged. Fig. 5 demonstrates the simulation 
results. As can be seen, the Multinomial method has the 
largest speed estimation error. In addition, there is no much 
difference between the performance of the Stratified and 
Systematic methods with respect to speed and position errors.  

Table II also compares the estimation errors and 
computational time for the above strategies. The mean values 
of both the speed error and position error in Systematic 
method are lower than the Stratified approach, while no 
significant difference is noted between these strategies with 
respect to the computational time. It should be noted that the 
computational time is measured on the assumption that the 
number of the particles are equal to 100000 in order to make 
the processing time tangible.  

B. Enhancement of Filter Robustness to Parameter 
Variations. 

One of the most important issues in implementation of a 
stochastic filter is the reliability. In this study, the reliability 
refers to the ability of a filter to work under circumstances that 
the system deviates from its original status. In other words, 
how robust a stochastic filter operates when it faces variations 
in system parameters and environmental situations. Lack of 
robustness to such disturbances can lead the control algorithm 
to diverge causing significant negative impacts on the overall 
performance of sensorless drive system [25].  
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Fig. 5. Speed and position estimation obtained from sensorless control of the BLDC machine: (a) using a PF algorithm with Multinomial Resampling 
Strategy (b) using a PF algorithm with Stratified Resampling Strategy (c) using PF algorithm with Systematical Resampling Strategy. 

 



 Due to modeling errors, unwarranted assumptions, and 
parameter variations, the actual system characteristics may be 
different with what is considered in system model. In the case 
of PF algorithm, the system model that is utilised to propagate 
particles and estimate parameters is not completely match 
with machine’s parameters in practice. Therefore, the 
measurements are not consistent with the model being 
processed, and then the conditional probability distribution 
function (pdf) of 𝑥# and 𝑦#, denoted by  does not 

match with the pdf . This essentially means 

that if the whole population of priori particles that are 
distributed according to is resampled with 

respect to the computed pdf , only a few number 

of particles will be resampled to constitute posteriori particles. 
The main reason is that just a few numbers of the priori 
particles will be in a region of state space where the computed 
pdf  has a considerable value. Therefore, the 
resampling process will select only a few distinct priori 
particles to constitute posteriori particles. Finally, whole 
population of particles will converge to the same value. This 
phenomenon technically called sample impoverishment [25]. 
Many researches have been carried out to address this issue. 
For instance, a brute-force approach is proposed in [25] to 
increase the number of particles N, but this can inevitably lead 
to unreasonable computational time, and often delays the 
inevitable sample impoverishment.  

One of the most effective approaches to tackle this problem 
is roughening method [25], [26]. In this method, a random 
noise is added to each particle after the resampling process. 
This is similar to adding artificial noise to Kalman filter. In the 
roughening approach, posteriori particles that are essentially 
the output of the resampling step are modified as (7): 

 (7) 

where:  

 (8) 

and is a zero-mean random variable, usually with 
Gaussian distribution, K is a scalar tuning parameter, N is the 
number of particles, n is the dimension of the state space, and 

M is a vector representing the values of the maximum 
differences between the particle elements before roughening. 
The mth element of the M vector is given by:  

  (9) 

where k is the time step, and i and j are particle numbers. The 
parameter k is a tuning parameter that specifies the amount of 
artificial variations that is added to each particle.  

In order to evaluate the practicality of using roughening 
approach in PF algorithm, the approach is implemented in the 
simulation model to assess the control system performance in 
the presence of a parameter changes in the machine.  As 
mentioned in section II, changing stator winding resistance 
values due to temperature rise is one of the most frequent 
parameter variations in electrical machines. The stator 
winding faults such as inter-turn fault can also lead to 
variations in stator winding resistance values. The inter-turn 
fault mostly occurs due to insulation failure in windings 
leading to short circuit between two or more turns in a 
machine winding coil leading to reduction in stator resistance 
values. The resistance reduction can be considerable or 
negligible depending on the fault severity.   

Fig. 6 shows the performance of the proposed PF algorithm 
while a severe inter-turn fault occurs in one phase of the stator 
winding of the BLDC machine. It is assumed that the 
resistance value of the phase is decreased by 25% due to the 
fault occurrence. As can be seen, in the presence of inter-turn 
fault and when the roughening method is incorporated to the 
PF algorithm, the control system can estimate the position 
similar to normal operation of the machine with acceptable 
accuracy. However, the same PF algorithm that does not 
utilise roughening approach is entirely diverged due to the 
mismatch between the machine’s new and original resistance 
values. Therefore, by implementation of the roughening 
approach the control system robustness to the system 
parameter variation is increased.  

IV. CONCLUSION 
This paper analysed the performance of a proposed PF 

algorithm as state estimator of a sensorless control of the 
BLDC machines. The performance of the PF algorithm when 
non-Gaussian noise is applied to the current signals is 
assessed. The simulation results have demonstrated that 
despite EKF algorithm, PF algorithm is capable of estimating 
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Fig. 6. The position state obtained from the simulation of PF algorithm in three different conditions. Condition 1: normal condition; Condition 2: when 
an inter-turn short circuit fault is applied with no change to the PF algorithm; Condition 3: when an inter-turn short circuit fault is applied, and roughening 
approach is used. 

 



the states of the system at the presence of non-Gaussian noises 
with acceptable accuracy. The effects of system parameter 
variations in the performance of the proposed filter has been 
analysed and the estimation accuracy has been investigated. 
Based on the results, the PF algorithm has shown to be capable 
of working appropriately machine’s parameter variations. In 
addition, in order to improve the filter robustness when it is 
subjected to severe variations, roughening technique has been 
proposed. It has been shown that by incorporating the 
roughening approach, considerable improvement can be 
achieved in filter robustness by avoiding divergence in filter 
response when a large disturbance is presented. Moreover, 
three well-known resampling strategies have been 
incorporated to the PF algorithm of the BLDC machine and 
their performance with respect to computational time and 
estimation error have been compared concluding that the 
Stratified and Systematic resampling strategies are two 
effective and accurate methods and hence can be beneficial for 
sensorless control of the BLDC machines. In the future study, 
the experimental tests will conducted and the performance of 
the modified PF algorithm will be further investigated. 
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