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Abstract 12 

Coastal salt marshes and their provided ecosystem services are threatened by rising sea levels 13 

all over the world. In the Northern Wadden Sea region, a sea-level rise of 4 mm y-1 was 14 

recorded for recent years. Identifying and understanding factors that affect sediment 15 

deposition and determine vertical accretion of salt marshes is crucial for the management of 16 

these ecosystems. Even though major processes contributing to sedimentation and accretion 17 

have already been identified, the influence of reduced canopy heights due to livestock grazing 18 

is still debated. On a highly anthropogenically altered marsh island in the Wadden Sea, 19 

sediment deposition, accretion and suspended sediment concentration was analyzed on grazed 20 

and adjacent ungrazed plots both at the marsh edge and at the marsh interior. Due to a low 21 

seawall (a so-called ‘summer dike’), flooding frequency on the island is reduced and flooding 22 

mainly takes place during storm surges. After five flooding events within a year, mean 23 

sediment deposition and accretion were found to be up to seven times higher on ungrazed 24 
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plots compared to grazed plots, but only at the marsh edges. This result was not explained by 25 

the overmarsh suspended sediment concentration (SSC), which was found to be twice as high 26 

on grazed plots compared to ungrazed plots. It is concluded that grazing has a negative effect 27 

on sediment deposition and accretion on Wadden Sea marsh islands and areas with similar 28 

conditions (e.g. presence of a summer dike) by reducing the sediment trapping capacity of 29 

those marshes. Overall, vertical marsh accretion ranged from 0.11 ± 0.09 mm y-1 on a grazed 30 

plot at the marsh edge to 1.12 ± 0.71 mm y-1 on an ungrazed plot at the marsh edge. By 31 

increasing the discrepancy between accretion and sea-level rise, livestock grazing can lead to 32 

higher inundation levels and in turn to increased hydrodynamic forces acting on these 33 

anthropogenically altered marshes. 34 

  35 
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1. Introduction 36 

Coastal salt marshes are vegetated ecosystems which form a transition zone between the sea 37 

and the land (Bakker, 2014). They serve as habitats for specific plant and animal species 38 

adapted to salt stress and regular flooding. Furthermore, they provide several important 39 

ecosystem services such as climate regulation (Mcleod et al., 2011; Mueller et al., 2019) and 40 

coastal protection (Spalding et al., 2014; Temmerman et al., 2013). However, the persistence 41 

of salt marshes around the world is threatened by global warming and associated sea-level rise 42 

(Crosby et al., 2016). Global-scale assessments of sea-level rise within recent years show 43 

average rates of approx. 3 mm yr-1 (Chen at al., 2017; IPCC 2019). Nevertheless, varying 44 

regional conditions can lead to noticeable deviations from the global mean (Vermeersen et al., 45 

2018). For northern parts of the Wadden Sea, Europe’s largest area of salt marshes and 46 

mudflats, even higher sea-level-rise rates of up to 4 mm yr-1 are described for recent years 47 

(Wahl et al., 2013). Thus far, mainland salt marshes in the Wadden Sea were able to keep 48 

pace with sea-level rise as sediment deposition and accretion are sufficient (Butzeck et al., 49 

2014; Nolte et al., 2013a; Suchrow et al., 2012). However, places with limited inundations 50 

and sediment load, such as the Wadden sea marsh islands, are more vulnerable due to an 51 

increasing imbalance of accretion rates and rising sea level (Schindler et al., 2014). 52 

Sediment deposition on marsh surfaces (usually specified as g m-² yr-1) takes place during 53 

inundations and describes the process of sediments settling from the floodwater onto the soil 54 

surface (Nolte et al., 2013b). This process leads to a rise of elevation which then also affects 55 

plant colonization and vegetation succession (Olff et al., 1997). Established plants reduce 56 

hydrodynamic forces and flow velocity (Neumeier and Amos 2006; Peralta et al., 2008; 57 

Temmerman et al., 2012), leading to increased sediment deposition and consequently higher 58 

accretion rates (Van Hulzen et al., 2007). Accretion, describing vertical growth of the marsh 59 

platform by allochthonous sediment input and autochthonous organic production, also 60 
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considers auto-compaction, compaction through trampling and erosion (Nolte et al., 2013b). 61 

When sediment deposition and long-term accretion rates cannot keep pace with sea-level rise, 62 

coastal wetlands, including salt marshes, will be in danger of being submerged permanently 63 

(Crosby et al., 2016; Spencer et al., 2016). Therefore, to predict the stability and persistence 64 

of salt marshes and to possibly adapt coastal management activities, knowledge on the 65 

influence of site-specific management and characteristics on sediment deposition accretion is 66 

crucial.  The local elevation of the salt-marsh platform relative to the sea level determines the 67 

inundation parameters. Usually, higher inundation frequencies, flooding durations and water 68 

levels in low marshes compared to high marshes are related to higher sedimentation in low 69 

marshes (Temmerman et al., 2003). Higher elevations and decreased flooding frequencies or 70 

lower water levels in turn lead to lower sedimentation rates in high marshes. Additionally, 71 

with increasing distance to a certain sediment source, such as the marsh edge or a creek, 72 

sedimentation rates were found to decrease as sediment is removed from the water 73 

continuously (Temmerman et al., 2005a; Moskalski and Summerfield 2012). The overmarsh 74 

SSC is another major factor influencing sediment deposition and accretion as it determines the 75 

mass of sediment which can be deposited on the marsh platform (Nolte 2013b). Butzeck et al., 76 

(2015) found overmarsh SSC to be the main predictor for sediment deposition rates in 77 

freshwater marshes, brackish marshes and Wadden Sea mainland marshes. Thus, the question 78 

whether sediment deposition and accretion rates are sufficient in outpacing the rising sea 79 

level, largely depends on those local characteristics of the respective marshes. 80 

Additionally, biophysical properties of marsh vegetation differ spatially (Schulze et al., 2019) 81 

and could thus affect flow velocity, wave energy and sediment parameters such as SSC and 82 

sediment deposition. For example, high stem densities, stiff canopies and high aboveground 83 

biomass (Fagherazzi et al., 2012; Peralta et al., 2008) were found to increase gravity-related 84 

sediment deposition on the marsh surface by slowing down flow velocities. Furthermore, 85 
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suspended sediment particles can be intercepted by a dense vegetation and are likely to be 86 

deposited directly on parts of the canopy thus leading to potentially lower SSC over ungrazed 87 

sites compared to grazed sites. This direct trapping effect of vegetation on sediment has been 88 

described before and depends, similar to sediment deposition processes, on biomass, stem 89 

density, surface roughness of the vegetation type and surface area of the whole foliage system 90 

(Fagherazzi et al., 2012; Kakeh et al., 2016; Li and Yang, 2009; Schuerch et al., 2014; Yang 91 

et al., 2008). 92 

The vegetation structure in many salt marshes, however, is largely affected by anthropogenic 93 

influences such as livestock grazing for agricultural and nature conservation purposes. 94 

Livestock grazing results in reduced aboveground biomass and shorter canopies (Esselink et 95 

al., 2000; Nolte et al., 2013a; 2015). Furthermore, livestock grazing can increase soil bulk 96 

density by trampling (Nolte et al., 2015) and thus potentially reduce accretion. Therefore, 97 

sedimentation and accretion rates are expected to be lower in grazed marshes. However, field 98 

studies on the effects of grazing and vegetation on sediment deposition and accretion rates are 99 

still scarce and show contradicting results with positive correlations between the presence of 100 

vegetation and sediment deposition on the one hand (e.g. Morris et al., 2002) and negative 101 

correlations (e.g. Silva et al., 2009) on the other hand. In Wadden Sea mainland salt marshes, 102 

Andresen et al., (1990) and Neuhaus et al., (1999) found sedimentation rates to be higher on 103 

ungrazed sites compared to grazed sites. More recently, Elschot et al., (2013) and Nolte et al., 104 

(2013a) did not find differences in accretion between grazed and ungrazed areas, albeit they 105 

found a trampling-driven higher soil bulk density in grazed marshes. However, these marshes 106 

show comparatively high sediment deposition, and it is unknown whether a grazing effect 107 

may potentially be more pronounced at sites with low rates of sediment deposition due to e.g. 108 

artificially reduced flooding frequencies.  109 
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Marshes with limited sediment input can be found on the so called ‘Hallig’ islands, which are 110 

remnants of the former mainland marshes of the Northern German Wadden Sea. The islands 111 

are largely consisting of salt marshes which have been used for livestock grazing for a long 112 

time. Further human modifications, such as a ‘summer dike’ (comparatively low seawalls 113 

preventing marsh surfaces to be flooded during spring tides), ‘stone revetments’ of island 114 

margins (serving as erosion protection) and straightening of creeks for drainage, have turned 115 

the Hallig islands into highly anthropogenically altered marshes. Particularly due to the 116 

summer dike, which is still common in some parts of the North Sea area (Ahlhorn and Kunz, 117 

2002), inundation does only occur during storm surges when the summer dike is overtopped. 118 

Therefore, the reduced inundation frequencies ranging between zero and 28 events per year 119 

have in turn led to low accretion rates (Schindler et al., 2014). Vulnerability of the specific 120 

Hallig marsh type results from the increasing discrepancy between sea-level rise and overall 121 

accretion rates, which over time results in higher inundation height and in turn go along with 122 

increased hydrodynamic forces to the marsh surfaces (Schindler et al., 2014). 123 

However, it is unknown how these already low sediment deposition and accretion rates are 124 

affected by livestock grazing and how this will affect their capability to keep up with sea-level 125 

rise in the long term. In this study, it was therefore aimed to investigate the effects of 126 

livestock grazing on sediment deposition and accretion rates on a marsh island in the Wadden 127 

Sea with a reduced flooding frequency and a reduced sediment input. It was hypothesized (I) 128 

that sediment deposition and accretion rates are  higher on ungrazed plots than on grazed plots 129 

because of flow velocity reductions due to changes in vegetation structure. It was also 130 

hypothesized (II) that SSC is lower over ungrazed marshes than over grazed marshes as 131 

suspended sediment is prone to be filtered out of the water by a dense vegetation canopy. 132 

Regarding the spatial distribution of sediment, it was hypothesized (III) that the total sediment 133 
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deposition and accretion rates are higher at the edge of the marsh island compared to inner 134 

parts.  135 

2. Methods 136 

2.1 Study area 137 

The study was conducted on the marsh island ‘Langeness’ in the Northern German Wadden 138 

Sea region. It is the largest island of the Hallig marsh-island group (9.2 km²) and is located off 139 

the mainland coast of the state of Schleswig-Holstein (Fig.1 A). All marsh islands in this area 140 

are remnants of the former mainland marshes and were separated by a severe storm surge 141 

event in 1634 (Ahrendt, 2007). Today, they are part of the biosphere reserve ‘Schleswig-142 

Holsteinisches Wattenmeer’. At the beginning of the 20th century, Langeness was 143 

encompassed by a stone revetment to prevent erosion of the island margins and by a summer 144 

dike with an average height of 1 m above mean high tide. In this way, flooding is mostly 145 

prevented from April to October when a large proportion of the marsh is used for cattle 146 

grazing by the permanent inhabitants of the island. The summer dike contains several tide 147 

gates connecting the marsh creeks to the Wadden Sea. These gates, however, automatically 148 

close during rising tides and prevent flooding of the island via the creeks. Tidal flooding thus 149 

only occurs as a sheet flow coming from the marsh edge and is induced by strong westerly 150 

winds and spring tides. The marsh topography is characterized by an elevational gradient 151 

from the higher elevated areas at the edges behind the summer dike towards the lower 152 

elevated inner parts of the marsh. Averagely, the marsh platform is elevated 0.17 m above 153 

mean high water (Schindler et al. 2014). Generally, the Hallig marshes mostly represent high 154 

marsh vegetation (Kleyer et al., 2006; Esselink et al., 2017).  155 

2.2 Study sites and study design 156 

To investigate the influence of livestock grazing (factor ‘treatment’) on sediment deposition, 157 

accretion and overmarsh SSC, two sites were chosen at the island marsh edge and two sites 158 
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further inwards (factor ‘position’). Each site included a grazed and an ungrazed plot adjacent 159 

to each other, resulting in a total number of eight different plots (Fig. 1 B). To test whether the 160 

expected treatment and position effects are consistent over the entire island, one pair of sites 161 

was positioned (inner, edge) in the east and one pair in the west, reflecting the longitudinal 162 

shape of the island. On the grazed plots, the livestock grazing (i.e. cattle) takes place during 163 

the summer season. Grazing resulted in a vegetation which mainly consists of the Festuca 164 

rubra vegetation type (see also Kleyer et al., 2006). The ungrazed plots consist of 165 

monospecific dense stands of the Elymus athericus type and have not been exposed to either 166 

grazing or mowing for several years. In each of the eight plots, eight sampling points were 167 

randomly chosen using a random point tool of QGIS 2.10 Pisa (QGIS Development Team 168 

2015). At these points, sediment deposition was recorded during every inundation between 169 

October 2015 and March 2016. In this period, five inundation events occurred, which is only 170 

half of the average number of inundation events between 2001 and 2010 with ten events per 171 

year (Schindler and Willim, 2014).  172 

 173 
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 175 

Figure 1: A Location of the marsh island Langeness in the Northern Wadden Sea region. B Satellite image of 176 
Langeness with the respective four study sites and the differently treated plots. Grazed plots are shown as white 177 
hatched whereas ungrazed plots are shown as dark grey hatched. 178 

 179 

2.3 Measurements of sediment deposition and suspended sediment concentration 180 

At each of the 64 sampling points, which had a minimum distance of three meters to each 181 

other, circular plastic plates (internal diameter: 19 cm; rim: 2.5 cm) were placed on the soil 182 

surface to trap the deposited sediment during inundations. The plates were attached to the 183 

ground with a plastic stick (1.5 m) and with metal wires. To prevent a washout of sediment by 184 

rain, every sediment trap was equipped with a floatable lid (Butzeck et al., 2014; Nolte et al., 185 

2019; Temmerman et al., 2003). After each inundation, the collected sediment was rinsed 186 

with freshwater, transferred to plastic bags and further processed in the laboratory. Samples 187 

were sieved (mesh size: 500 µm), washed with deionized water and oven dried at 100 °C until 188 

constant weight. The dry weight provided information on the sediment deposition (g m -2) for 189 

each flooding event. To convert the sediment deposition into accretion rates, soil bulk density 190 
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was determined by taking a soil sample using a 100 cm-3 steel cylinder next to each sampling 191 

point from the uppermost (0-6 cm) soil layer. Bulk density was calculated by dividing the 192 

mass of the oven dried soil sample by the core volume. Accretion rates are based on five 193 

flooding events in the storm surge season from the beginning of autumn 2015 to the end of 194 

spring 2016 and were calculated as follows: 195 

Accretion (cm yr−1) = Sediment deposition (g cm−2 yr−1) / Bulk density (g cm−3)           [1] 196 

Additionally, floodwater was collected to determine the suspended sediment concentration at 197 

each sampling point. For this purpose, plastic bottles (580 ml) with a 3 cm water inlet and a 198 

longer air outlet made of plastic tubes were buried at each sampling point. These bottles 199 

allowed a controlled water inflow 3 cm above the marsh surface (Butzeck et al., 2014). The 200 

filled bottles were replaced after each inundation event. To determine the suspended sediment 201 

concentration (g l-1), water samples were resuspended and vacuum filtrated with cellulose 202 

nitrate filters (0.45 µm). Subsequently, samples were oven dried at 60 °C until constant 203 

weight. 204 

2.4 Inundation and vegetation parameters 205 

Elevation of each sampling point was measured in relation to the respective water gauges 206 

using a Trimble LL500 precision laser and a Trimble HL 700 receiver (2.0 mm accuracy). 207 

There was no significant difference in relative elevation between each of the corresponding 208 

plots. Information about inundation height, frequency and duration was obtained by installing 209 

a water gauge between the grazed and ungrazed plot at each of the four study sites, which 210 

allowed to determine absolute inundation levels above the plots. A slitted plastic pipe 211 

containing a water pressure sensor (Schlumberger Cera diver, accuracy of measuring water 212 

level: ± 1 cm), with a temporal resolution of five minutes, was inserted into the soil. An 213 

atmospheric pressure sensor (Baro Diver) was attached on one of the dwelling mounts on the 214 

island to compensate the water pressure measurements for the atmospheric pressure. The 215 
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average canopy height for each plot was determined in late November by measuring the 216 

distance from the soil surface to a Styrofoam drop-disc (30 cm) at four points around each 217 

sediment trap.  218 

2.5 Statistical analysis 219 

Three-factorial analysis of variance (e.g. sediment deposition ~ treatment*position*location) 220 

was used to test whether each of sediment deposition, accretion and suspended sediment 221 

concentration were affected by treatment (grazed, ungrazed), position (inner, edge) and 222 

geographical location (east, west). To determine differences between the groups, Tukey’s 223 

HSD tests were applied when the ANOVA revealed a significant effect (p < 0.05). If 224 

necessary, data were log transformed to meet normality assumptions and to improve 225 

homogeneity of variances (applied on sediment deposition, accretion and SSC). Equal sample 226 

sizes in the study design assured robustness of parametric testing (McGuinness 2002). 227 

Following the protocol by Zuur et al., (2009), no spatial autocorrelation of either raw data 228 

within plots or of residuals across all sampling points was detected, and therefore it is 229 

concluded that the assumption of independence is met. For each site, differences in inundation 230 

level, vegetation height and soil bulk density between grazed and ungrazed plots were 231 

analyzed with Bonferroni corrected t-tests for multiple testing. All analyses were performed 232 

using R version 3.5.3 (R Core Team, 2019; base package).  233 

  234 
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3. Results 235 

Overall, five complete inundations of the island were recorded between early October 2015 236 

and late March 2016. The mean maximum inundation height was slightly, but not 237 

significantly, higher on the ungrazed plot at site 1 (west, edge; t-test, p > 0.017, Table 1). At 238 

site 2 (west, inner, minimal distance to marsh edge: 350 m), 3 (east, edge) and 4 (east, inner, 239 

minimal distance to marsh edge: 250 m), the inundation was slightly, but not significantly, 240 

higher over the grazed plot (t-test, p > 0.017, Table 1). Mean maximum inundation height 241 

ranged from 86.36 cm (site 3, east, edge, ungrazed) to 164.1 cm (site 1, west, edge, ungrazed). 242 

At each site, vegetation height was significantly higher in ungrazed compared to grazed plots 243 

(p < 0.017, t-test for every site, Table 1). Soil bulk density did not differ between grazed and 244 

ungrazed plots, neither at the edges nor in the inner parts both in the east and west (t-test, p > 245 

0.017, Table 1). 246 

 247 

Table 1: Relative elevation, max. inundation heights and vegetation heights of the grazed and 248 
ungrazed plots at the islands marsh edges and the marsh interior in the east and west. After Bonferroni 249 

corrections for multiple testing, statistical significance was determined as p < 0.017. Different letters 250 
indicate significant differences among the treatments. 251 

 252 

Site Location Position Treatment Mean max. 

inundation [cm] 

Vegetation 

height [cm] 

Soil bulk density 

[g/cm³] 

1 West 

 

Edge Grazed 

 

Ungrazed 

137.62 ± 16.68  

a 

164.12 ± 21.93 

a 

5.69 ± 1.56  

a 

12.56 ± 2.17 

 b 

0.66 ± 0.09 

 a 

0.75 ± 0.07  

a 

2 West 

 

Interior Grazed 

 

Ungrazed 

142.19 ± 4.85  

a 

141.64 ± 6.33 

 a 

6.63 ± 0.61 

 a 

11.97 ± 1.08  

b 

0.55 ± 0.09  

a 

0.57 ±  0.08 

 a 

3 East 

 

Edge Grazed 

 

Ungrazed 

87.86 ± 7.16  

a 

86.36 ± 13.12 

 a 

4.81 ± 0.94 

  a 

12.56 ± 1.87  

b 

0.82 ± 0.07 

 a 

0.83 ± 0.11 

 a 

4 East 

 

Interior Grazed 

 

Ungrazed 

147.33 ± 6.94  
a 

137.06 ± 13.38  

a 

4.72 ±  0.79  

a 

9.88 ± 1.73  

b 

0.58 ± 0.08 

 a 

0.46 ± 0.11 

 a 

Jo
urn

al 
Pre-

pro
of



13 

 

 253 

Highest mean sediment deposition occurred on the ungrazed plot at site 3 (east, edge; 189.35 254 

g m-² yr-1) while the lowest mean sediment deposition occurred at the grazed plot of site 1 255 

(west, edge; 13.75 g m-² yr-1, Fig. 2). A significant interaction between the treatment and the 256 

position indicated that differences in sediment deposition between ungrazed and grazed plots 257 

were more pronounced at the island marsh edges (Fig 2; Table 2). At the marsh edges, 258 

sediment deposition was roughly 7 times (site 1, west, edge) and 5 times (site 3, east, edge) 259 

higher on the ungrazed plot compared to the grazed plot. The effect of the treatment and the 260 

position on sediment deposition was found both in the eastern and the western part of the 261 

island. Overall, sediment deposition was twice as high in the east as in the west and 60% 262 

higher at the marsh edge compared to the sites located further inwards. The mean accretion 263 

showed similar results as the sediment deposition rates with a significant interaction between 264 

treatment and position revealing that accretion was higher on ungrazed compared to grazed 265 

plots at the island marsh edges (Fig.3, Table 2). Overall, accretion was twice as high in the 266 

east as in the west. Furthermore, sediment deposition and accretion on at the edge positioned 267 

ungrazed plots was found to be slightly higher than on interior positioned ungrazed plots and 268 

vice versa for grazed plots (Figure 2, Figure 3, Supplementary Table 1).  269 

  270 
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 271 

Figure 2 272 

Mean sediment deposition on grazed and ungrazed plots at the marsh edges and marsh interior in the 273 

east and west of the island after five inundation events. Every bar represents the average of eight 274 

sampling points. Given are the mean and the standard deviation. For comparisons between sites, the 275 

grazed and ungrazed plot were combined. The difference between the eastern and western location 276 

was determined by comparing total sediment deposition in the east and in the west. Significant 277 

differences between treatments, sites and geographic locations are indicated as resulting from post-hoc 278 

tests following ANOVA (*** p < 0.001, ** p < 0.01, * p < 0.05). 279 

280 
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 281 

Figure 3 282 

Mean annual accretion on grazed and ungrazed plots at the marsh edges and marsh interior in the east 283 

and west of the island. Every bar represents the average of eight sampling points. Given is the mean 284 

and the standard deviation. For comparisons between sites, the grazed and ungrazed plot were 285 

combined. The difference between the eastern and western location was determined by comparing 286 

total accretion in the east and in the west. Significant differences between plots, sites and geographic 287 

locations are indicated as resulting from post-hoc tests following ANOVA (*** p < 0.001, ** p < 0.01, 288 

* p < 0.05). 289 

SSC in the floodwater showed an opposite pattern with higher concentrations over the grazed 290 

plots compared to the ungrazed plots. Highest SSC occurred over the grazed plot at site 3 291 

(east, edge; 0.81 g liter-1 yr-1, Fig. 4) while lowest SSC occurred over the ungrazed plot at site 292 

2 (west, inner; 0.15 g liter-1 yr-1, Fig. 4). SSC was found to be significantly affected by the 293 

interaction between treatment and location and between location and position (Table 2). The 294 

treatment effect was less pronounced in the west than in the east as at site 1 (west, edge), 295 

where SSC was only slightly, but not significantly, higher over the grazed than over the 296 
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ungrazed plots. At site 2 (west, inner), 3 (east, edge) and 4 (east, inner), SSC was approx. 297 

twice as high on the grazed compared to the ungrazed plots. Differences in SSC between the 298 

island marsh edge and the marsh interior were more pronounced in the east than in the west 299 

with SSC being approx. 90% higher at the marsh edge compared to the marsh interior in the 300 

east. In the west, SSC was 40% higher at the marsh edge compared to the marsh interior. SSC 301 

was approx. 60 % higher in the east than in the west (Fig. 4).  302 

 303 

Figure 4 304 

Mean suspended sediment concentration on grazed and ungrazed plots at the marsh edges and marsh 305 

interior in the east and west of the island after five inundation events. Every bar represents the average 306 

of eight sampling points. Given is the mean and the standard deviation. For comparisons between 307 

sites, the grazed and ungrazed plot were combined. The difference between the eastern and western 308 

location was determined by comparing the total SSC in the east and in the west. Significant 309 

differences between treatments, sites and geographic locations are indicated as resulting from post-hoc 310 

tests following ANOVA (*** p < 0.001, ** p < 0.01, * p < 0.05). 311 
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 312 

Table 2: ANOVA table of the effects of treatment (grazed, ungrazed), position (marsh edge, marsh 313 

interior), location (east, west) and the respective interactions on sediment deposition, accretion rates 314 
and SSC rates. Given are F-values and p-values. Significant effects are symbolized as the following: 315 

*** p < 0.001, ** p < 0.01, * p < 0.05. 316 

 317 

 318 

 319 

4. Discussion 320 

The results show a significant negative effect of livestock grazing on sediment deposition and 321 

accretion at the marsh edge with reduced sediment deposition and accretion on grazed plots 322 

compared to ungrazed plots, which is therefore in concordance with the first hypothesis. The 323 

same general, but non-significant, trend was found at the marsh interior. The suspended 324 

sediment concentration showed a contrasting pattern with lower SSC over ungrazed plots and 325 

thus the results confirm the second hypothesis of high-marsh vegetation reducing overmarsh 326 

SSC. Furthermore, total sediment deposition and accretion rates were expected to be higher at 327 

the marsh edges compared to inner parts of the marsh but the results did not support this third 328 

hypothesis. The effects of grazing on sediment deposition, accretion and SSC were similar in 329 

Sediment deposition SSC Accretion 

F p F p F p 

Treatment 

 

60.75 *** 106.01 *** 54.83 *** 

Position 

 

0.17 n.s. 78.13 *** 4.22 * 

Location 

 

42.69 *** 46.28 *** 31.04 *** 

Treatment x Position 

 

26.82 *** 12.26 *** 17.92 *** 

Position x Location 

 

0.25 n.s. 3.65 n.s. 0.13 n.s. 

Treatment x Location 

 

1.05 n.s. 6.41 * 0.92 n.s. 

Treatment x Position x Location 

 

0.93 n.s. 4.22 * 0.22 n.s. 
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the east and in the west of the island. Furthermore, the results confirm findings of Schindler et 330 

al., (2014) indicating low accretion on Langeness leading to an increasing discrepancy 331 

between sea-level rise and accretion, which over time likely results in higher inundations and 332 

in turn increased hydrodynamic forces acting on the marsh surfaces. High hydrodynamic 333 

forces were found to cause high folding and breakage rates for Elymus canopies (Möller et al., 334 

2014; Rupprecht et al,. 2017). As a consequence, losses in biomass and surface elevation 335 

might threat the Elymus dominated ungrazed areas of the island. 336 

Higher sedimentation and accretion rates on ungrazed plots at the island marsh edge, as found 337 

in this study, most likely indicate an interaction effect of vegetation and flow velocity. 338 

Vegetation characteristics such as high biomass, high stem densities and tall canopies of 339 

marsh vegetation have long been known to reduce flow velocity (Leonard and Croft, 2006; 340 

Widdows et al., 2008) and to potentially increase sediment deposition and accretion on the 341 

marsh platform (Boorman et al., 1998; Morris et al., 2002). The findings of the study 342 

presented are supported by observations of Suchrow et al., (2012) who, probably as a result of 343 

lower sediment deposition, found a decreased surface-elevation change on grazed areas 344 

compared to ungrazed areas in high marshes of the Wadden Sea. Contrastingly, other studies 345 

on the influence of reduced canopy height (e.g. by grazing) on sediment deposition and 346 

accretion show no difference between non-manipulated areas and areas with decreased 347 

canopy height and biomass (Elschlot et al., 2013; Nolte et al., 2013a). Furthermore, Reef et 348 

al., (2018) found no effect of an experimentally reduced canopy height on the sediment 349 

budget in a southeastern British salt marsh and assume that the missing effect could have been 350 

caused by calm hydrodynamic conditions with inundation depths between 0.14 m and 0.54 m. 351 

A vegetation-mediated sediment deposition thus may not become effective when flow 352 

velocities are low. This assumption is supported by Nolte et al., (2015) who only found an 353 

effect of vegetation structure on accretion in a study period with increased storminess (see 354 
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also Schuerch et al., 2012). Neumeier and Ciavola (2004) even described a negative 355 

correlation between the presence and density of vegetation and sediment deposition rates 356 

during fair weather conditions which was explained by a smaller water volume and therefore 357 

lower sediment load above vegetated areas. On the contrary, Elschot et al., (2013) and 358 

Temmerman et al., (2005b) expect vegetation structure to have no or only limited impact on 359 

sediment deposition when vegetation is overtopped by water. Under storm conditions and 360 

during high tides, sediment deposition can indeed be higher on unvegetated areas compared to 361 

fully vegetated areas as found by Silva et al., (2009). If the flow is relocated above the canopy 362 

as skimming flow, sediment deposition might be reduced (Neumeier and Amos, 2006; Peralta 363 

et al., 2008). As average inundation levels in our study ranged between 0.86 m and 1.64 m 364 

and thus overtopped the canopy (Table 1), evidence for a positive effect of vegetation and 365 

accordingly a negative effect of grazing on sediment deposition and accretion under these 366 

conditions is provided. 367 

Focusing on the investigation of different canopy heights (short, long) as a result of grazing 368 

and their impact on SSC, it was hypothesized that SSC was lower over ungrazed plots 369 

compared to grazed plots. Indeed, SSC data show a significant trend of lower SSC over 370 

ungrazed plots compared to grazed plots. This result could be explained by a direct trapping 371 

effect of the Elymus vegetation on ungrazed plots as Elymus shows relatively high winter and 372 

spring biomass stocks of approx. 1 kg/m² (dry biomass) and high stem densities (>1000 373 

stems/m²) in the Wadden Sea (Schulze et al., 2019). Additionally, resuspension of deposited 374 

sediment may be reduced on ungrazed plots, therefore leading to lower SSC in the water 375 

column over ungrazed plots (Yang et al., 2008). These observations are supported by 376 

Coulombier et al., (2012) who found SSC to be the highest when vegetation was minimal. A 377 

similar pattern was also found for a brackish marsh in Georgia, USA (Coleman and Kirwan, 378 

2019). As the amount of suspended sediment in the floodwater as well as the amount that 379 
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deposits, largely depends on the biophysical plant properties (Fagherazzi et al., 2012; 380 

Schuerch et al., 2014), these properties and their spatio-temporal variability should therefore 381 

be considered in studies investigating sedimentation patterns in salt marshes.  382 

Contradicting the third hypothesis, total sediment deposition and accretion at the edges and 383 

the inner parts of the marsh did not differ significantly but still showed slightly higher rates at 384 

the edges. While sediment deposition and accretion on ungrazed plots was slightly higher at 385 

the edges than at the inner sites, which supports this hypothesis, the contrary was found for 386 

grazed plots. A similar pattern was found in a mowing experiment in the Scheldt Estuary 387 

(Schepers et al., 2019). In their study, fully vegetated plots close to the sediment source 388 

showed a higher sediment deposition compared to the interior located vegetated plots. In 389 

contrast, unvegetated plots nearby the sediment source showed less sediment deposition 390 

compared to interior located unvegetated plots. It was shown that sediment deposition not 391 

only depends on the treatment of the vegetation (e.g. grazed/ungrazed, mown/unmown) but 392 

also on the relative position of the plot to the source of the sediment and on respective flow 393 

velocities (see also Temmerman et., 2012). At the Langeness study site, tide gates prevent 394 

flooding of the creeks resulting in water coming from the island edge being the only source 395 

for sediment. Already a small vegetation patch near the marsh edge can reduce flow velocities 396 

(Schepers et al., 2019) and therefore favor sediment deposition. Allowing for higher flow 397 

velocities, grazed areas at the marsh edge might thus lead to higher sediment transport rates to 398 

the inner parts where sediment can deposit.  399 

Conclusion 400 

The pattern of overmarsh SSC and sediment deposition rates observed in this study reveals 401 

the general complexity of sedimentation in salt marshes on the one hand, and the significant 402 

importance of vegetation for overmarsh SSC and sedimentation rates on the other hand. In 403 

contrast to the literature, sediment deposition in this study does not mainly depend on the SSC 404 
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recorded close to the sediment traps but rather on the management and characteristics of the 405 

plots and on the position of plots relative to the sediment source. Based on the data presented, 406 

it is shown that overall mean accretion of 0.5 mm yr-1 (based on five inundations) is not 407 

sufficient to keep pace with sea-level rise. This result is supported by Schindler et al., (2014) 408 

who found similar accretion rates and suggest the removal of summer dikes to increase the 409 

number of flooding events and therefore accretion rates on this marsh island. Adding to this 410 

suggestion, this study moreover shows that non-grazing favors sediment deposition and 411 

accretion in salt marshes with low flooding frequencies. Comparing grazed and ungrazed 412 

plots of the marsh island, the results show an up to seven times higher sediment deposition 413 

and accretion on the ungrazed plots with accretion rates of up to 1.1 mm yr-1. Therefore, a 414 

reduction or abandonment of grazing can increase accretion rates considerably and should be 415 

incorporated into future management plans for the studied island and for other similar areas in 416 

the Wadden Sea or elsewhere. Additionally, occasional mowing of the marsh edges could 417 

increase accretion rates in inner parts of the island by allowing higher suspended sediment 418 

concentrations in the floodwater reaching inner parts of the island. 419 
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Highlights:  

1. Accretion rates on a Wadden Sea marsh island cannot keep pace with rising sea level 

2. Ungrazed plots showed significantly higher sediment deposition and accretion rates 

3. Suspended sediment concentration was higher under grazing treatment 

4. Natural marsh vegetation is thought to have a considerable sediment trapping effect 

5. Accretion rates can be improved by abandonment of grazing 
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