
Angewandte
International Edition

A Journal of the Gesellschaft Deutscher Chemiker

www.angewandte.org
Chemie

Accepted Article

Title: Complementary Syntheses Giving Access to a Full Suite of
Differentially Substituted Phthalocyanine-Porphyrin Hybrids**

Authors: Andrew Neil Cammidge, Faeza Alkorbi, Alejandro Díaz-
Moscoso, Jacob Gretton, Isabelle Chambrier, Graham J.
Tizzard, Simon J. Coles, and David L. Hughes

This manuscript has been accepted after peer review and appears as an
Accepted Article online prior to editing, proofing, and formal publication
of the final Version of Record (VoR). This work is currently citable by
using the Digital Object Identifier (DOI) given below. The VoR will be
published online in Early View as soon as possible and may be different
to this Accepted Article as a result of editing. Readers should obtain
the VoR from the journal website shown below when it is published
to ensure accuracy of information. The authors are responsible for the
content of this Accepted Article.

To be cited as: Angew. Chem. Int. Ed. 10.1002/anie.202016596

Link to VoR: https://doi.org/10.1002/anie.202016596

http://crossmark.crossref.org/dialog/?doi=10.1002%2Fanie.202016596&domain=pdf&date_stamp=2021-01-11


 1 

ABBA 
Phthalocyanine 
Hybrids 

DOI: 10.1002/anie.200((will be filled in by the editorial staff)) 

Complementary Syntheses Giving Access to a Full Suite of 
Differentially Substituted Phthalocyanine-Porphyrin Hybrids** 

Faeza Alkorbi, Alejandro Díaz-Moscoso*, Jacob Gretton, Isabelle Chambrier, Graham J. Tizzard, Simon 
J. Coles, David L. Hughes and Andrew N. Cammidge* 

Abstract: Phthalocyanines and porphyrins are often the scaffolds of 

choice for use in widespread applications. Synthetic advances allow 

bespoke derivatives to be made, tailoring their properties. The selective 

synthesis of unsymmetrical systems, particularly phthalocyanines, has 

remained a significant unmet challenge. Porphyrin-phthalocyanine 

hybrids offer the potential to combine the favorable features of both 

parent structures, but again synthetic strategies are poorly developed. 

Here we demonstrate strategies that give straightforward, controlled 

access to differentially substituted meso-aryl-

tetrabenzotriazaporphyrins by reaction between an aryl-

aminoisoindolene (A) initiator and a complementary phthalonitrile (B). 

The choice of precursors and reaction conditions allows selective 

preparation of 1:3 Ar-ABBB and, uniquely, 2:2 Ar-ABBA 

functionalised hybrids. 

 

Phthalocyanines (Pc) and porphyrins are among the most widely 

studied functional organic materials. Porphyrin derivatives are 

widespread in nature and perform crucial life-sustaining functions. 

Synthetic porphyrins and phthalocyanines are diversely used across 

chemical, biological and other advanced technology fields. Their 

popularity stems from a combination of general molecular properties 

such as light absorption and stability (a direct consequence of their 

extended aromaticity), and the ability to tune their physico-chemical 

properties through a number of complementary strategies such as 

metal ion incorporation, perturbation of the core, and/or introduction of 

appropriate substituents.[1]  

Hybrid structures, intermediate between Pc and porphyrins 

(Figure 1), were recognized as important scaffolds during the birth of 

Pc chemistry, and were discussed in Linstead’s and Dent’s original 

seminal series of papers in the 1930s.[2] The hybrids possess 

complementary and superior characteristics to their parents, bridging 

the Pc and porphyrin systems and allowing precise tuning of their 

properties for specific applications.[3] However, scarce synthetic 

availability of hybrid materials has limited the study of their scope. 

Synthetic procedures are mostly derived from the original methods 

from the 1930s, employing a carbon-based nucleophile to initiate 

reaction with a phthalonitrile (Pn) co-reactant.[3] These strategies 

generally have poor yields and selectivity, leading most investigations 

to focus on hybrid structures bearing only simple or no substituents on 

the macrocycle or the meso-carbon position. Interest in functional 

hybrids has been growing recently. We[4] and others[5] have refined C-

nucleophile procedures, extending studies to include substituents at 

the Pn and meso-sites, and controlling product distribution through 

stoichiometry and reaction conditions. Access to the full range of 

(separable and processable) hybrids has further revealed their 

enhanced behavior as device components.[6] More innovative synthetic 

inventions have recently started to redefine the field, charting the first 

steps towards controlled synthesis of di-[7] and tri-aza[8] hybrids. 

 

Figure 1. Molecular structures of phthalocyanine (Pc), porphyrin and their hybrids. 

 

Our synthesis of meso-aryl tetrabenzotriazaporphyrins (TBTAPs) 

provided, for the first time, scalable access to these hybrid structures 

functionalized at the meso position.[8]  Based on the proposed 

mechanism, we recognized that our synthetic protocol had the potential 

to introduce different benzo fragments (A and B) around the 

macrocycle in a regiospecific manner, in addition to the meso 

functionality (Scheme 1). Such structural control has been long 

pursued in normal Pc chemistry with only limited advances.[9] In the 

hybrid series, success would deliver materials that are unavailable in 

general Pc chemistry, but also offer the opportunity to further exploit 

the possibilities provided by the meso-substituent. 
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Scheme 1. The synthesis of meso-aryl TBTAPs from reaction between 
aminoisoindolene initiator[10] (providing the A ring) and phthalonitrile (providing 
the B ring).[8] 

 

Our first attempts to investigate the potential to introduce 

substituents onto TBTAP hybrids employed commercially available 4-

tert-butylphthalonitrile,[11] a widely used precursor in Pc chemistry that 

imparts good solubility to the final macrocycles. According to our 

proposed mechanism for this reaction, we expected to obtain a 1:3 

peripheral substitution pattern (Scheme 1). However, reaction with our 

aminoisoindolene co-reactant under the conditions optimized for 

TBTAP synthesis produced a complex mixture of products. Therefore, 

we shifted our strategy to symmetrically disubstituted Pns in order to 

simplify characterization and analysis. Several examples leading to 

peripheral substitution were chosen, avoiding steric clashes with 

substituents on the new meso-carbon.[4,8] Initial investigations used the 

Pn derivative 4, derived from tetramethyl tetralin, synthesized from 

benzene by Friedel-Crafts alkylation,[12] bromination,[12,13] and 

cyanation.[13b,14] An intial test reaction was performed using Pn 4 alone 

under the reaction conditions (MgBr2 in diglyme at reflux) to ensure that 

Pc formation did not occur directly at a competitive rate, as already 

shown for the unsubstrituted phthalonitrile.[8] TBTAP hybrid formation 

was then attempted following the previously optimized procedure, 

essentially by slowly adding aminoisoindolene “initiator” 6 to a mixture 

of Pn 4 (3-5 eqiv.) and MgBr2 in refluxing diglyme (Scheme 2). 

Macrocycle formation proceeded smoothly but two distinct hybrid 

products were isolated. The first product was characterized as the 

expected Ar-ABBB (1:3) TBTAP hybrid 7 that likely results from the 

proposed sequential addition of aminoisoindolene to 3 Pn units, 

followed by cyclization and aromatization (Scheme 1). However, this 

component was the minor product. The dominant product was 

identified as the unique Ar-ABBA (2:2) TBTAP hybrid 8, produced as a 

single regioisomer. It is theoretically possible that this unexpected 

product is an artifact produced from the Ar-ABBB hybrid 7 by a retro-

Friedel Crafts (de)alkylation under the reaction conditions. Although 

unlikely, this possibility was eliminated in a test experiment whereby 

Ar-ABBB hybrid 7 was isolated and subjected to the reaction conditions 

(MgBr2 in refluxing diglyme). No reaction took place and it was 

therefore clear that the Ar-ABBA hybrid 8 results from an alternative, 

dominant reaction sequence. 

The most likely mechanism leading to hybrid 8 is shown in 

Scheme 3. It has the same first step as the mechanism proposed in 

Scheme 1, involving the initial addition of aminoisoindolene to Pn 

rendering an AB subunit (like all intermediates in Schemes 1 and 3, this 

is expected to be complexed to magnesium ion that is omitted for 

clarity), but the pathways then diverge. Addition of this intermediate to 

a second Pn eventually leads to the 1:3 ABBB hybrid but this appears 

to be a slow step. Self-condensation of two AB intermediates (through 

loss of NH3) likely dominates, leading then to cyclization and 

aromatization via loss of a benzyl fragment. Of course, both pathways 

lead to the same product if unsubstituted Pn is employed as co-reactant. 

Further support for this proposed sequence was provided by the results 

observed from changing the reaction stoichiometry and protocol. 

Switching to 2:2 aminoisoindolene:Pn stoichiometry and/or increasing 

the rate of addition (including reactions where all starting materials are 

mixed prior to heating) increased the relative proportion of Ar-ABBA 2:2 

TBTAP hybrid in the isolated macrocyclic product mixture. However, in 

such reactions the overall yield of both hybrids is reduced because self-

condensation of aminoisoindolene starts to compete with addition to Pn. 

 

 
Scheme 2. Hybrid synthesis from a substituted phthalonitrile, uncovering an 
alternative pathway leading to Ar-ABBA TBTAP hybrid (Ar = 4-methoxyphenyl-); 
crystal structures of hybrids 7 and 8 (solvent molecules omitted for clarity).  

 

The reaction, therefore, offers potential to produce two separate 

classes of TBTAP hybrids, both largely unprecedented. Two further 

series of experiments were carried out to demonstrate the scope. 

Firstly, alternative Pn derivatives were employed. 2,3-Naphthalonitrile 

9 is commercially available and underwent macrocyclization with 

aminoisoindolene 6 (Scheme 4). Naphthalonitrile 9 appears to be more 

reactive than Pn 4 and the reaction is complicated by competing 

formation of naphthalocyanine (MgNPc). Nevertheless, Ar-ABBA 

TBTAP hybrid 10 was formed and isolated as the dominant hybrid once 
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again. As expected, -extended mixed hybrid (C2v symmetry) shows a 

split, red-shifted Q-band absorption at 709 and 681 nm. 

 
Scheme 3. Proposed mechanistic pathway leading to Ar-ABBA TBTAP hybrids. 

 

Scheme 4. The synthesis of naphthyl (10, top) and tetraalkoxy/phenoxy (14, 

bottom) Ar-ABBA TBTAP hybrids. 

 

The second class of Pn selected were the 4,5-dialkoxy 

derivatives 12. In Pc chemistry these Pns are widely employed.[15] They 

are known to be relatively easy to prepare at scale, and within the Pc 

series the alkoxy substituents modify the electronic, solubility and self-

assembly properties. The synthesis of the Pns and hybrids is shown in 

Scheme 4. Cyanation[14] of dibromobenzene precursors 11 was 

carefully controlled to prevent excessive Pc formation under the 

reaction conditions. Stopping the reaction before completion resulted 

in a mixture of mono- (13) and di-nitriles (12), but was a desirable 

outcome because we required the bromobenzonitrile derivatives for 

subsequent experiments (vide infra). 

Dialkoxyphthalonitriles 12a-c were first shown not to react to form 

MgPcs in refluxing diglyme in the presence of MgBr2, allowing our 

standard reaction conditions to be employed for hybrid synthesis. 

Reaction of dimethoxyPn 12a with aminoisoindolene, however, failed 

to produce significant quantities of macrocycle (hybrid or Pc) and 

instead yielded significant quantities of condensation product 15 (plus 

unreacted Pn), presumably due to solubility issues. Longer chain 

dihexyloxy- and didecyloxy-Pn (12b and 12c, and diphenoxy-Pn (12d, 

prepared from 4,5-dichlorophthalonitrile), reacted smoothly, however, 

using the single-operation procedure whereby a mixture of 

aminoisoindolene, Pn and MgBr2 were heated directly in diglyme. Once 

again, the dominant macrocyclic product isolated from these reactions 

was the Ar-ABBA TBTAP. Separation proved to be challenging, but the 

pure Ar-ABBA hybrids 14b-d could be isolated and characterized.  

In all experiments described so far, an identical 

aminoisoindolene reactant was employed. Aminoisoindolene 6 has no 

substituents on the indolene fragment so delivers unsubstituted rings 

(“A”) into the Ar-ABBA hybrids. Alternative substitution patterns 

become available if the indolene fragment is itself functionalized, and 

in such cases the syntheses will deliver hybrids with substituents on 

the rings adjacent to the meso-Ar. This complementary sequence has 

been demonstrated using the precursor bromobenzonitriles prepared 

as part of the earlier Pn synthesis, and is indeed a powerful approach 

(Scheme 5).  

Scheme 5. Complementary synthesis of TBTAP hybrids to 

introduce substituents adjacent to the meso-carbon. 
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Bromobenzonitriles 13a-c were converted to the corresponding 

amidine hydrochloride salts (16a-c) by treatment with LiHDMS followed 

by HCl workup.[16] The amidines were converted to aminoisoindolenes 

(17a-c) by reaction with 4-methoxyphenyl acetylene under palladium 

catalysis.[17] In accordance with our previous results, reaction of these 

substituted aminoisoindolenes with phthalonitrile in a single operation 

led to formation of the complementary (meso-adjacent) Ar-ABBA 

TBTAP hybrids 18a-c as the dominant macrocyclic products, alongside 

traces of the 1:3 Ar-ABBB TBTAP and phthalocyanine (identified by 

MALDI-MS). Ar-ABBA hybrids 18a-c were isolated pure by 

chromatography and recrystallization. In the case of the methoxy-

substituted TBTAP 18a, crystals suitable for X-ray diffraction were 

obtained and the crystal structure is also shown in Scheme 5. 

Unlike the dialkoxy derivatives, aminoisoindolene 19 (prepared 

from bromobenzonitrile 5 by the same reaction sequence described for 

17) is freely soluble in diglyme enabling the reaction to be performed 

by slow addition (syringe pump) to phthalonitrile and therefore allowing 

the sequential addition mechanism to compete more effectively. Under 

these conditions the 1:3 TBTAP hybrid 21 could indeed also be 

isolated, although it remains a minor component compared to the Ar-

ABBA 2:2 hybrid 20. This effectively completes the series and 

demonstrates that the full suite of hybrid structures can be accessed at 

will (Figure 2). 

In conclusion, two pathways are proposed for the synthesis of an 

important class of functionalized phthalocyanine-porphyrin hybrids 

(TBTAPs). The materials are novel in their own right, but more 

importantly, the syntheses offer control and variation over structural 

and substitutent modifications, a goal not yet achieved even within the 

extensively investigated chemistry of the parent phthalocyanines. 

Differential substitution can be controlled leading to a full range of 

complementary functionality, at the meso-carbon itself (ideal for 

attachment of these functional antennae[18] molecules) and at one or 

both of the adjacent or opposite benzo sites to the meso-carbon 

(controlling molecular electronic character but also permitting design of 

super- and supramolecular functional assemblies[19]). 

 

Figure 2. Suite of TBTAP hybrids that can now be synthesized controlling the 

meso-aryl, adjacent, and opposite benzo-substituents. 
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