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Abstract

Background: Seminal studies of vertebrate protein evolution speculated that gene
regulatory changes can drive anatomical innovations. However, very little is known
about gene regulatory network (GRN) evolution associated with phenotypic effect
across ecologically diverse species. Here we use a novel approach for comparative
GRN analysis in vertebrate species to study GRN evolution in representative species
of the most striking examples of adaptive radiations, the East African cichlids. We
previously demonstrated how the explosive phenotypic diversification of East African
cichlids can be attributed to diverse molecular mechanisms, including accelerated
regulatory sequence evolution and gene expression divergence.

Results: To investigate these mechanisms across species at a genome-wide scale,
we develop a novel computational pipeline that predicts regulators for co-extant
and ancestral co-expression modules along a phylogeny, and candidate regulatory
regions associated with traits under selection in cichlids. As a case study, we apply
our approach to a well-studied adaptive trait—the visual system—for which we
report striking cases of network rewiring for visual opsin genes, identify discrete
regulatory variants, and investigate their association with cichlid visual system
evolution. In regulatory regions of visual opsin genes, in vitro assays confirm that
transcription factor binding site mutations disrupt regulatory edges across species
and segregate according to lake species phylogeny and ecology, suggesting GRN
rewiring in radiating cichlids.

Conclusions: Our approach reveals numerous novel potential candidate regulators
and regulatory regions across cichlid genomes, including some novel and some
previously reported associations to known adaptive evolutionary traits.

Keywords: Gene regulatory network, Co-expression, Cichlid, Opsin, Molecular
evolution

Background
Seminal studies by King and Wilson [1] analyzing protein evolution in vertebrates

speculated the importance of evolutionary changes in “regulatory processes” for mor-

phological diversity [2, 3]. These ideas were soon expanded on by François Jacob [4],
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who suggested that the molecular “tinkering” of pre-existing systems is a hallmark of

evolution where, for example, regulatory processes can either be transformed or com-

bined for functional gain [4]. These theories underlie many studies on the divergence

of regulatory processes associated with morphological evolution, and broadly focus on

changes in gene regulatory networks (GRNs) that determine the expression patterns of

genes [5, 6]. Such changes can be mutations within transcription factor binding sites

(TFBSs) located in cis-regulatory elements (promoters and enhancers) of genes or trans

regulatory changes that are due to changes in the level of a regulator [6]. Alterations of

GRNs can lead to phenotypic divergence [7], and these GRN changes between species,

irrespective of direct and indirect functional consequence, are defined as GRN “rewir-

ing” events. This is characterized by regulatory interactions present in one or more spe-

cies but absent in another species, and potentially replaced by a new interaction

between the orthologous TF and a target gene. Several comparative studies of GRNs

underlying mechanisms of adaptation and evolution have been carried out in unicellu-

lar prokaryotes, E. coli [8] and several non-vertebrate eukaryotes, including yeast [9,

10], plants [11], fruit fly [12], and echinoderms [12, 13]. While there are efforts to col-

late and integrate several genomic datasets for vertebrates, including human and mouse

[14], comparative analysis of regulatory networks from these data alone remains a

major computational challenge and very little is known about the phenotypic effect of

genome-wide regulatory network rewiring events in non-model vertebrates [15].

In vertebrates, ray-finned fishes are the largest radiation of any group, and the East

African cichlids represent arguably the most speciose modern examples of adaptive ra-

diations. In the great lakes of East Africa (Tanganyika, Victoria, and Malawi) and within

the last few million years [16, 17], one or a few ancestral lineages of cichlid fish have in-

dependently radiated to collectively give rise to over 1500 species. These species occupy

a large diversity of ecological niches and differ dramatically in phenotypic traits, includ-

ing skeletal morphology, dentition, color patterning, and a range of behavioral traits.

We have previously demonstrated that a number of molecular mechanisms have

shaped East African cichlid genomes, e.g., rapid evolution of regulatory elements and

gene expression divergence [18], and the “evolutionary tinkering” of these systems [19]

has provided the necessary substrate for diversification [18]. This, coupled with the re-

cent origin of cichlid species and ongoing gene flow [20], suggests that evolutionary

regulatory changes have an important functional role in controlling gene expression

and, ultimately, phenotypic variation. However, very little is known about the genome-

wide evolution of regulatory networks that may underlie several traits of cichlid pheno-

typic diversity. Here we developed a novel computational framework to characterize

the evolution of regulatory networks and analyze the plausibility of whether the “tinker-

ing” of regulatory systems could contribute towards phenotypic diversity in closely re-

lated cichlids.

Results
Gene co-expression is tissue-specific and highlights functional evolutionary trajectories

We applied the Arboretum [9] algorithm to RNA-seq data of six tissues in five species

and identified 10 modules of 12,051–14,735 co-expressed genes (1205–1474 genes per

module per species) represented across 18,799 orthogroups (Fig. 1a). Modules of co-
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Fig. 1 Evolution of gene expression in five cichlids. a Ten (0–9, heatmaps) co-expression modules identified by
Arboretum [9] in six tissues of five cichlid species. Color bar denotes log expression ratio across each tissue, relative to
the mean expression across all tissues—(red) activated, (green) repressed and (black) no change. Each heatmap shows
the expression profile of genes assigned to that module in a given species and height is proportional to number of
genes in the module (on bottom). b Number of state changes in module assignment of 1-to-1 orthologous genes
along the five cichlid phylogeny [18]. Blue numbers: ancestral node genes assigned to modules; green numbers: state
changes compared to the deepest common ancestor (Anc4); red numbers: state changes from last common ancestor
(LCA); purple numbers: state changes in the one “focal” species compared to all other species; orange numbers:
convergent state changes in each of the “focal” species and any of the other species
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expressed genes across the five species show varying expression levels in specific tis-

sues, e.g., module 1 is eye specific, while module 3 is heart, kidney, and muscle specific

(Fig. 1a). Consistent with the phylogeny and divergence times, there are more (13,171/

18,799) orthologous genes that are conserved in module assignment (orthologous mod-

ules) in the three closely related haplochromines (Pundamilia nyererei, Maylandia

zebra, and Astatotilapia burtoni) and Neolamprologus brichardi, than with Oreochromis

niloticus (11,212/18,799 orthologous genes). Examples of modules where orthologs are

not conserved in module assignment (non-orthologous modules) include modules 2, 4,

and 6 (Additional file 1: Fig. S1a, blue off-diagonal elements) and are representative of

gene expression divergence across the species. Between the haplochromines alone,

4179/18,799 orthologous genes are distributed in either one of two modules, e.g., 0 or 8

(Additional file 1: Fig. S1a, blue off-diagonal elements in haplochromines), indicative of

gene expression divergence along the phylogeny.

The assignment of co-expressed gene modules by Arboretum [9] is inferred using a

probabilistic framework starting from the last common ancestor (LCA) in the phyl-

ogeny. This allows us to model the evolutionary trajectory of orthologous genes and

their co-expression along the species tree [9]. Orthologous genes of each species can be

assigned to non-orthologous modules (Fig. S-R1a), indicative of co-expression diver-

gence and potential transcriptional rewiring from the LCA; this is referred to as “state

changes” in module assignment. In total, 7587/18,799 (40%) orthologous genes exhibit

state changes in module assignment across branches. To ensure orthologous genes of

all branches are included in subsequent analysis, we focused on state changes of 6844

1-to-1 orthologous genes to assess convergent and unique state changes along the phyl-

ogeny (Fig. 1b). We identified convergent state changes of 732 genes along all ancestral

nodes versus Anc4 (Additional file 1: Fig. S2). This is made up of 772 genes in Anc3

and Anc2, 734 genes in Anc3 and Anc1, and 996 genes in Anc2 and Anc1 (Add-

itional file 1: Fig. S2), including a few TFs (46 TFs—Anc3-2-1; 49 TFs—Anc3-2; 46

TFs—Anc3-1; 66 TFs—Anc2-1) such as tbx20, nkx3-1, and hoxd10. We identified

unique state changes and expression divergence of 655 genes along ancestral nodes

(Fig. 1b), including several cellular and developmental TFs (51 TFs—Anc4/3; 20 TFs—

Anc3/2; 34 TFs—Anc2/1) such as foxo1, hoxa11 and lbx1. Several of these state chan-

ged regulatory TFs are also enriched (fold enrichment 1.1–1.7; false discovery rate,

FDR < 0.05) in gene promoters of relevant tissue-specific modules; for example, pro-

moters of module 1 genes (eye-specific expression) are significantly enriched (fold en-

richment 1.1–1.6; FDR < 0.05) for TF motifs involved in retina- and lens-related

development/functions, e.g., CRX, PITX3, and OTX1 [21] (Additional file 1: Fig. S3,

Additional file 2: Fig. S2). Further examination identifies that there are differences in

the levels of TF motif enrichment across species genes, including that of retina/lens-re-

lated TFs, e.g., RARα/β/γ and RXRα/β/γ [22] of module 1 gene promoters in all species

except N. brichardi (Additional file 1: Fig. S3, Additional file 2: Fig. S2). Such differ-

ences in motif enrichment could be associated with changes in the level of TF expres-

sion, where state changes (Fig. 1b) reflect shifted domains of tissue expression and

imply differential regulatory control of target genes across tissues and along the phyl-

ogeny. We tested this by taking (1) the log expression ratio (as used for Arboretum in-

put), for all 337 expressed TFs in each species tissue; (2) the corresponding 2064 TF

motif enrichment scores (−log q-value, FDR < 0.05) calculated across 12,051–14,735
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promoters regions of all species genes in the 10 modules; and (3) calculating the cross-

species Pearson correlation coefficient (r) between the motif enrichment score and ex-

pression value of each TF and in each tissue (Additional file 2: Fig. S3-S8) using the

n = 5 species. We note different patterns of correlation between cross-species TF motif

enrichment and tissue-specific expression; in total, 102–119/337 TFs had no correl-

ation (0 ≤ r ≤ 0.01, n = 5) and included many TFs that had large shifts in motif enrich-

ment and/or expression in several species, representative of several phylogenetic state

changes, e.g., Kidney-Module2-FOXO1 (r = 0.01, n = 5) (Extended Data S-R1F). On the

other hand, there is positive correlation ranging from small (0.1 ≤ r ≤ 0.3, n = 5) for

161–197 TFs, medium (0.3 < r ≤ 0.5) for 161–186 TFs, and large values (0.5 < r ≤ 1) for

226–262 TFs. The largely correlated TFs (0.5 < r ≤ 1) includes cases where there is com-

parable motif enrichment scores across species, as calculated by the variance distribu-

tion (see “Methods”), and either no shifts (no TF state changes), e.g., Brain-Module9-

FOXA2 (r = 0.97, n = 5, p value < 0.05) or focused shifts (TF state change in one or sub-

sets of species), e.g., Eye-Module2-CDX1 (r = 0.98, n = 5, p value < 0.05) in TF tissue

expression (Additional file 1: Fig. S5, Additional file 2: Fig. S3-S8). Such patterns of fo-

cused shifts in expression are also observed in TFs of selected modules like, for ex-

ample, module 1 which contains eye-expressed genes. We find that retinal TFs that are

known to modulate opsin expression, e.g., CRX [23], have variable motif enrichment

(fold enrichment 1.2–1.4) in eye-expressed genes, and are associated (r = 0.85, n = 5, p

value < 0.1) with a concurrent change (increase in four species or decrease in N. bri-

chardi) in TF eye expression along the phylogeny (Additional file 1: Fig. S6; see Add-

itional file 1 text). For most TFs (226–262/337 TFs) and tissues, motif enrichment is

largely correlated (0.5 < r ≤ 1) with TF expression. After calculating the variance of each

TF motif enrichment and categorizing the tails into either similar or dissimilar levels of

TF motif enrichment (see “Methods”), we note that similar motif enrichment (across

species) is associated with either expression conservation (across all species) or subtle

expression changes (in one or subsets of species) and is more stable (in expression dif-

ferences) than TFs with dissimilar/variable motif enrichment along the phylogeny

(Additional file 2: Fig. S3-S8). Gene co-expression differences and convergence between

species could therefore be driven by differences in TF motif levels in gene promoter

regions.

Fine scale nucleotide variation at TF binding sites drives regulatory divergence in cichlids

through GRN rewiring

Cis-regulatory elements, including promoters and enhancers, are central to gene ex-

pression regulation, largely acting through the binding of TFs to multiple transcription

factor binding sites (TFBSs). Therefore, mutations within TFBSs can alter target gene

transcription without affecting the expression pattern of other genes co-regulated by

the same TF, thus driving GRN evolution. In the five cichlid genomes however, there is

no significant increase in evolutionary rate at promoter regions compared to fourfold

degenerate sites (Additional file 1: Fig. S7). However, we identify a few outlier genes

with significantly higher evolutionary rate at promoter regions at ancestral nodes (12–

351 genes, Additional file 1: Fig. S7b) and within species (29–352 genes, Additional file 1:

Fig. S7d), indicative of small-scale changes in promoter regions (see Additional file 1
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text). Concurrently, of all the identified pairwise species variation (8 to 32 million vari-

ants), a large proportion (13–28%) overlap predicted TFBSs in promoter regions, and

this is higher than (8–9%) of variants that are present in flanking gene promoter re-

gions of the same length (Additional file 1: Table S2, Additional file 1: Fig. S8). GO en-

richment analysis of co-expressed genes with variation in their regulatory regions,

against a background of all genes in each genome, highlights associations with key mo-

lecular processes, e.g., signal transduction-promoter TFBSs (Additional file 1: Fig. S9).

To further investigate patterns of divergent regulatory programs that could be associ-

ated with discrete nucleotide variation at regulatory binding sites, we developed and ap-

plied a computational framework (see “Methods,” Additional file 1: Fig. S20) to

comparatively study regulatory interactions/relationships across the five cichlids. This

involved the reconstruction of species-specific GRNs through the integration of differ-

ent genomic datasets (Additional file 1: Table S3). We focused on regulatory interac-

tions/relationships of trans-acting factors (TFs) and DNA (gene promoter regions); this

involved integrating an expression-based network with in silico predictions of TF bind-

ing to target gene (TG) promoters using our cichlid-specific and vertebrate-wide TF

motif scanning pipeline (see “Methods,” Additional file 1: Fig. S20). We first used spe-

cies- and module-specific gene expression levels to infer an expression-based network

[24] (see “Methods,” Additional file 1: Fig. S20), generating 3180–4099 transcription

factor-target gene (TF-TG) edges across the five species (FDR < 0.05, Additional file 1:

Table S3). Next, based on our in silico TFBS motif prediction pipeline, we predicted

TFBS motifs up to 20 kb upstream of a gene transcription start site (TSS), and using

sliding window analysis of 100 nucleotides (nt), we retained TF motifs in the gene pro-

moter region, defined as up to 5 kb upstream of a gene TSS (see “Methods,” Add-

itional file 1: Fig. S22). Each statistically significant TFBS motif (FDR < 0.05) was

associated to its proximal target gene (TG) and represented as two nodes and one TF-

TG edge. Based on the integrated approach (see “Methods,” Additional file 1: Fig. S20),

we predicted a total of 3,295,212–5,900,174 TF-TG edges (FDR < 0.05) across the five

species that could be encoded into a matrix of 1,131,812 predicted TF-TG edges

(FDR < 0.05), where each edge is present in at least two species. To ensure accurate

analysis of GRN rewiring and to retain relevant TF-TG interactions, all collated edges

were then further pruned to a total of 843,168 TF-TG edges (FDR < 0.05) where (1) the

edge is present in at least two species; (2) edges are not absent in any species due to

node loss or mis-annotation; and (3) edges are based on the presence of nodes in mod-

ules of co-expression genes (see “Methods”).

We used three metrics to study large-scale TF-TG network rewiring between species

that included: (1) state changes in module assignment; (2) DyNet [25] network rewiring

scores; and (3) TF rate of edge gain and loss in networks. The first metric compares

TF-TG edges of a single “focal” species versus the other species in the context of gene

co-expression, while the second and third metric compute a likelihood score for the

overall extent of edge changes (across all species) associated with single nodes of inter-

est. We first focused on 6844 1-to-1 orthologous genes represented in 215,810 TF-TG

interactions, termed “TF-TG 1-to-1 edges,” along the five cichlid tree. Using a back-

ground set of all module genes (18,799 orthogroups), the TF-TG 1-to-1 edges are asso-

ciated with morphogenesis and cichlid traits under selection, e.g., eye and brain

development (FDR < 0.05, Additional file 1: Fig. S10a). There are 379 TFs represented

Mehta et al. Genome Biology           (2021) 22:25 Page 6 of 28



in the TF-TG 1-to-1 edges, and we focus on their interactions/relationships to deter-

mine whether TFs with (state) changes in module assignment have altered regulatory

edges. In the first metric, rewiring is characterized as a unique TF-TG edge present in

only one “focal” species, where the TF node is (1) state changed in module assignment

and (2) present as a node in different TF-TG edges in any/all of the other species.

Using this metric, 50–70 out of the 379 TFs (13–18%) are rewired (spanning 4060–

9423/215,810 edges, FDR < 0.05, Fig. 2a; see Additional file 1 text) and change module

Fig. 2 Network rewiring between species including TFs state changing co-expression module assignment
and their targets (TGs). a Rewiring events linked to module assignment state changes of TFs in 215,810 TF-
TG 1-to-1 edges (FDR < 0.05) of each species in the cichlid phylogeny compared to the other four species
(see Additional file 1 for other FDR thresholds). b GO term enrichment of the 50–70 TFs that are rewired
and state changed, and their associated TGs in one “focal” species vs the other four species (4060-9423/
215,810 TF-TG 1-to-1 edges, a) against a background of all module genes, shown as grid heatmap of log10
fold enrichment (legend on right, FDR < 0.05). c Violin plots of DyNet (Dn) rewiring score (degree-corrected)
from 6844 1-to-1 orthologs in 215,810 TF-TG network edges (green, left violin) and 14,590 1-to-1 and many-
to-many orthologs in 843,168 TF-TG network edges (blue, right violin). Mean rewiring score shown within
each plot (white diamond). Degree-corrected rewiring score shown for non-candidate genes (black dots
through center) and candidate morphogenetic trait genes (orange dots) with rewiring scores higher than
the mean, and selected candidate examples are demarcated within. d Rewiring events linked to module
assignment state changes of TFs in 843,168 TF-TG all edges of each species in the cichlid phylogeny against
the other four species. e GO term enrichment of 100–140 rewired and state changed TFs and their
associated TGs in each focal species vs the other 4 species (20,716-37,590/843,168 edges TF-TG all edges, d)
against a background of all module genes, shown as grid heatmap of log10 fold enrichment (legend on
right, FDR < 0.05)
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assignment across the five species (in one focal vs all four other species). The gene

nodes connected by the rewired edges are associated with signalling pathways and pro-

cesses such as cell differentiation and embryonic development (FDR < 0.05, background

of all module genes, Fig. 2b). Further examination of rewiring rates in the networks of

6844 1-to-1 orthologous genes (in 215,810 TF-TG interactions) using the DyNet [25]

degree-corrected rewiring (Dn) score (Fig. 2c, Additional file 3: Table S1) identifies

rewired networks of nine teleost and cichlid trait genes associated with morphogenesis

from previous studies (Fig. 2c, Additional file 3: Table S2). These genes have a few

standard deviations higher degree-corrected rewiring (Dn) score than the mean (0.17 ±

0.03 SD), and their rewiring scores are comparatively higher (Kolmogorov–Smirnov

KS-test p value = 6 × 10− 4) than all 1-to-1 orthologs (Fig. 2c, left violin plot, orange

dots; Additional file 3: Table S3; see Additional file 1 text). Examples of these rewired

1-to-1 genes include gdf10b associated with axonal outgrowth and fast evolving in cich-

lids [18] and the visual opsin gene, rh2 (Fig. 2c, left violin plot; Additional file 3: Table

S3 S-R3C). To enable a genome-wide study of network rewiring, we extend our ana-

lyses beyond the 6844 1-to-1 orthologs only, by including an additional 7746 many-to-

many orthogroups (see “Methods”) resulting in a set of 843,168 “TF-TG all edges”

across the five species. Using a background set of all module genes (18,799

orthogroups), the gene nodes in the 843,168 TF-TG all edges are associated with mor-

phogenesis, e.g., retina development (FDR < 0.05, Fig. SR3aB). These edges include in-

teractions of 783 TFs of which 13–18% (100–140 TFs) are predicted to be rewired (in

20,716-37,590/843,168 edges, FDR < 0.05, Fig. 2d) and change module assignment

across the five species (in one focal vs all four other species), indicating their associated

transcriptional programs (FDR < 0.05, background of all module genes) are also altered

(Fig. 2e). By examining the network rewiring rates of 14,590 orthogroups (in 843,168

TF-TG interactions, Additional file 3: Table S4) using DyNet [25], we identify 60 candi-

date teleost and cichlid trait genes associated with phenotypic diversity from previous

studies (Fig. 2c, right violin plot; Additional file 3: Table S5). These genes have a few

standard deviations higher degree-corrected rewiring (Dn) score than the mean (0.23 ±

0.007 SD) of all orthologs, and their rewiring score is comparatively higher (KS-test p

value = 6 × 10− 14) (Fig. 2c, right violin plot, orange dots; Additional file 3: Table S4).

These genes include those associated with craniofacial development, e.g., dlx1a and

nkx2-5 [21], telencephalon diversity, e.g., foxg1 [26], tooth morphogenesis, e.g., notch1

[27], and strikingly, most visual opsins, e.g., rho, sws2, and sws1, as well as genes associ-

ated with photoreceptor cell differentiation, actr1b [28], and eye development, pax6a

[21] (Fig. 2c, right violin plot; Additional file 3: Table S5). We then focus on the gain

and loss rates of 186/783 TFs with > 25 TF-TG edges along the five cichlid tree (see

“Methods”). Out of the 186 TFs, 133 (72%) are predicted to have a higher rate of edge

gain than loss, e.g., DLX5 and NEUROD2, possibly acting as recruited regulators of

gene expression in each branch from their last common ancestor (LCA) (Additional

file 3: Table S6), whereas 53/186 TFs (28%) have a higher loss of edges than gains, e.g.,

OLIG2 and NR2C2, implying loss of gene expression regulatory activity from their

LCA (Additional file 3: Table S6). In general, TFs and their binding sites are evolving

towards gaining, rather than losing regulatory edges from their LCA.

To further characterize the role of the observed changes in cis-regulatory elements

and their potential association with cichlid traits, we extended our analyses to include
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several radiating cichlid species. We screened all predicted TFBS (see “Methods”) vari-

ants between M. zebra (a Lake Malawi species) and the other four cichlids, with their

corresponding positions in 73 phenotypically distinct Lake Malawi species [20], to iden-

tify between-species variation at regulatory sites along the phylogeny (Additional file 1:

Fig. S11). As expected, the majority of variation at regulatory sites is identified between

M. zebra and distantly related Lake Malawi species clades, e.g., NKX2.1 TFBS in sws1

gene promoter, whereas shared ancestral sites are found with mainly same/closely re-

lated Lake Malawi clades, e.g., EGR2 TFBS in cntn4 gene promoter. Genes that are as-

sociated with traits under selection, e.g., visual systems [29] (sws1) and morphogenesis

[18] (cntn4), harbor between species regulatory variants that segregate according to

phylogeny and ecology of radiating lake species.

Cis-regulatory changes lead to GRN alterations that segregate according to phylogeny

and ecology of radiating cichlids

Through our comparative approach, we can examine the regulatory network top-

ology of several genes that are important for cichlid diversification [30, 31] and

represented by our six tissues. As a case study, we focus on the cichlid visual sys-

tem; the evolution of cichlid GRNs and diverse palettes of co-expressed opsins can

induce large shifts in adaptive spectral sensitivity of adult cichlids [29], and thus,

we hypothesize that opsin expression diversity is the result of rapid adaptive GRN

evolution in cichlids. Indeed, by focusing on species utilizing the same wavelength

visual palette and opsin genes, we note that several visual opsin genes (rh2b, sws1,

sws2a, and rho) have considerably rewired regulatory networks (Additional file 3:

Table S6). Across the predicted transcriptional networks of cichlid visual opsins,

there are several visual-system-associated regulators (TFs) of opsin genes (sws2a,

rh2b, and rho) that are either common, e.g., STAT1A, CRX, and GATA2, or

unique to each species, e.g., IRF1, MAFA, and GATA2A (Additional file 1: Fig.

S12–14). These patterns of TF regulatory divergence could therefore contribute to

differential opsin expression.

Sws1 (ultraviolet) opsin is utilized as part of the short-wavelength sensitive palette in N.

brichardi and M. zebra. While there are common regulators associated with retinal gan-

glion cell patterning in both species networks, e.g., SATB1 [32], there are also several

unique regulators associated with nuclear receptor signalling, e.g., RXRB and NR2C2 [33],

and retinal neuron synaptic activity, e.g., ATRX [34] (Fig. 3a). Overall, using a significance

threshold of FDR < 0.05 for predicted TF-TG edges, there are more predicted unique TF

regulators of sws1 in M. zebra (38 TFs) as compared to N. brichardi (6 TFs) (Fig. 3a, bot-

tom right). Furthermore, we identify that a candidate regulatory variant has likely broken

the M. zebra NR2C2/RXRB shared motif that is otherwise predicted 2 kb upstream of the

N. brichardi sws1 TSS (Fig. 3b). Functional validation via EMSA confirms that NR2C2

and not RXRB binds to the predicted motif in the N. brichardi sws1 promoter, forming a

complex, and the variant has likely disrupted binding, and possibly regulation of M. zebra

sws1 (Fig. 3c, d). This is further supported by correlating expression values of these regu-

lators and sws1, where NR2C2 is better associated with sws1 than RXRB, particularly

when focusing on eye tissue (Additional file 1: Fig. S16a on right; Additional file 1: Fig.

S16b; see Additional file 1 text).
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Fig. 3 Evolution of the sws1 opsin regulatory networks in N. brichardi and M. zebra. a Reconstructed
regulatory networks of sws1 opsin shown for N. brichardi (left) and M. zebra (right): circular layout nodes are
common regulators (unless missing); grid layout nodes are unique regulators in M. zebra. Node shape,
annotation and edge color denoted in legend to left bottom. Violin plot of significance (FDR < 0.05) of
unique TF-sws1 edges in N. brichardi (green violin) and M. zebra (blue violin) to bottom right—mean edge
significance score shown within each plot (white diamond); edges more than the mean (less significant) are
shown as gray dots, and edges less than the mean (more significant) are shown as orange dots; selected
example TFs are demarcated within. b On the left, NR2C2 and RXRB motif logos and motif prediction in
negative orientation N. brichardi sws1 gene promoter (red box) and variant in M. zebra sws1 gene promoter
(red arrow). On the right, NR2C2 and RXRB partial protein alignment showing DNA-binding domain (DBD)
annotation in human, mouse, M. zebra and N. brichardi. c EMSA validation of NR2C2 and RXRB DBD binding
to N. brichardi and M. zebra sws1 gene promoter. Table denotes combinations of DNA probe and expressed
DBD in EMSA reactions that include negative controls (lanes 1 to 4); N. brichardi protein: DNA-binding assay
(lanes 5 and 6); M. zebra protein: DNA-binding assay (lanes 7 and 8); kit negative (lane 9) and binding
positive control (lane 10). Protein:DNA complexes, dye front and free DNA are indicated by arrowhead and
bracket within. d EMSA validation of increasing NR2C2 DBD concentrations and binding to predicted TFBS
in N. brichardi sws1 gene promoter
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In another example, rhodopsin (rho), associated with dim-light vision, is predicted to

be regulated by GATA2 in O. niloticus, A. burtoni, and M. zebra but not its duplicate

gene, GATA2A only in M. zebra (Additional file 1: Fig. S14). We identify a candidate

variant (red arrow, Fig. 4a) that has likely broken the M. zebra GATA2A motif that is

otherwise predicted 1.8 kb and 1.9 kb upstream of the O. niloticus and A. burtoni rho

TSS (Fig. 4a). Functional validation via EMSA confirms that GATA2A binds to the pre-

dicted motif in the O. niloticus and A. burtoni rho promoter, and the variant is likely to

have disrupted binding, and possibly regulation of M. zebra rho (Fig. 4b). Species-

specific expression correlations with the rho target gene are supportive of GATA2’s

possible conserved role in all three species (O. niloticus r = 0.89; A. burtoni r = 0.39; M.

zebra r = 0.28, n = 6 Additional file 1: Fig. S17c), while a more divergent role of

GATA2A (O. niloticus r = 0.79 and A. burtoni r = 0.21, n = 6) and negative correlation

in M. zebra (r = − 0.18, n = 6) is supportive (Additional file 1: Fig. S17c) of the EMSA

validation (Fig. 4). This further supports the notion that discrete point mutations in

TFBSs could be driving GRN evolution and rewiring events in traits that are under se-

lection in radiating cichlids.

Finally, we studied GRN rewiring as a result of between species TFBS variation in the

context of phylogeny and ecology of lake species. Owing to the variability and import-

ance of spectral tuning of visual systems to the foraging habits of all cichlid species, we

focused on variants at regulatory sites of rewired visual opsin genes in the Lake Malawi

species, M. zebra, as a reference to compare GRN rewiring (through TFBS variation)

Fig. 4 Evolution of the rhodopsin regulatory networks in O. niloticus, A. burtoni and M. zebra. a On the left,
GATA2A motif prediction in reverse orientated O. niloticus and A. burtoni rhodopsin gene promoter (red
box) and substitution demarcated in M. zebra rhodopsin gene promoter (red arrow). On the right, GATA2A
partial protein alignment showing DNA-binding domain (DBD) annotation in human, mouse, O. niloticus, A.
burtoni and M. zebra. b EMSA validation of GATA2A DBD binding to O. niloticus and A. burtoni rhodopsin
gene promoter. Table denotes combinations of DNA probe and expressed DBD in EMSA reactions that
include negative controls (lanes 1 to 5); O. niloticus (lane 6), A. burtoni (lane 7) and M. zebra (lane 8) protein:
DNA-binding assays. GATA2A:rho complex formed in O. niloticus (lane 6) and A. burtoni (lane 7) as
confirmed by band shift (red box) and no complex formed in M. zebra (lane 8)
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that could be associated with the ecology of sequenced Lake Malawi species [20]. If in-

deed the TFBSs are likely functional, we hypothesize that radiating species with similar

foraging habits would share conserved regulatory genotypes, to possibly regulate and

tune similar spectral sensitivities, whereas distally related species with dissimilar for-

aging habits would segregate at the corresponding regulatory site. For this, we started

with 157,232 sites that (1) have identified variation between the five cichlid species and

(2) are located in TFBSs of M. zebra candidate gene promoters. We identified 5710/

157,232 sites with between species variation across 73 Lake Malawi species (Add-

itional file 1: Fig. S11) that also exhibited flanking sequence conservation, representative

of shared ancestral variation. The homozygous variant (T|T) that breaks binding of

NR2C2 to M. zebra sws1 promoter (Fig. 3 and Fig. 5 blue arrow) is (1) conserved with

the fellow algae eater, Tropheops tropheops, that also utilizes the same short-

wavelength palette; (2) heterozygous segregating (Petrotilapia genalutea—C|T and

Iodotropheus sprengerae—T|C) in closely related Mbuna species; and (3) homozygous

segregated (C|C) in distantly related Mbuna species (Cynotilapia afra, Corydoras axel-

rodi, and Genyochromis mento) and most other Lake Malawi species of which some

utilize the same short-wavelength palette and are algae eaters, e.g., Hemitilapia oxy-

rhynchus (Fig. 5). This suggests that in species closely related to M. zebra, and with a

similar diet and more importantly, habitat, sws1 may not be regulated by NR2C2,

whereas in other species it could be, similar to N. brichardi (Fig. 3 and Fig. 5 red

arrow). In another example, regulation of rho by GATA2, and not its duplicate,

GATA2A (Fig. 4), could be sufficient for regulating dim-light vision response in rock

dweller species (M. zebra and possibly Petrotilapia genulatea, Tropheops tropheops and

Iodotropheus sprengerae), but both gata2 copies could be required to regulate rho in

many other Lake Malawi species (79% with C|C genotype that otherwise predicts the

GATA2A TFBS in rho gene promoter), as well as A. burtoni and O. niloticus (Add-

itional file 1: Fig. S14–15). This highlights the potential differential usage of a duplicate

TF in dim-light vision regulation. Phylogenetic independent contrast analysis [37] of

the NR2C2-sws1 (Additional file 1: Fig. S18a-f) and GATA2A-rho (Additional file 1:

Fig. S19a-f) genotypes against visual traits and ecology of each of the 73 Lake Malawi

species highlights very little change in correlation once the phylogeny is taken into ac-

count and a regression model fitted. Based on these examples of TFBS variants that

segregate according to phylogeny and ecology of lake species, GRN rewiring through

TFBS variation could be a key contributing mechanism of evolutionary innovation, es-

pecially visual systems, in East African cichlid radiations.

Discussion
The evolutionary “tinkering” of regulatory systems through GRN divergence can facili-

tate the evolution of phenotypic diversity and rapid adaptation [19]. Various mecha-

nisms underlie these events, including horizontal gene transfer and regulatory

reorganization in bacteria [38]; gene duplication in fungi [39]; cis-regulatory expression

divergence in flies [40]; variable gene co-expression in worms [41]; dynamic rewiring of

TFs in plant leaf shape [11]; coding and non-coding evolution in stickleback fish [42];

alternative splicing [43], and differential rate of gene expression evolution shaped by

various selective pressures [44, 45] in mammals. However, since very little is known

about the combined effect of some of these mechanisms; in-depth analyses of
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regulatory network evolution can shed light on the key contributing mechanisms asso-

ciated with phenotypic effect across ecologically diverse species in a phylogeny.

The three great lakes of East Africa (Tanganyika, Victoria, and Malawi) have inde-

pendently experienced rapid radiations and explosive diversification of well over 1500

cichlid species. Alongside ecological opportunity [17], East African cichlid diversifica-

tion has been shaped by complex evolutionary and genomic forces, including divergent

selection acting upon regulatory regions [18] that is largely based on a canvas of low

genetic diversity between species [20]. All of these findings imply the rapid evolution of

Fig. 5 SNP genotypes overlapping NR2C2 TFBS in M. zebra sws1 promoter and other Lake Malawi species.
Lake Malawi phylogeny reproduced from published least controversial and all included species ASTRAL
phylogeny [20], including N. brichardi as an outgroup. Phylogenetic branches labelled with species sample
name (including M. zebra with blue arrow and N. brichardi with red arrow) and clade according to legends
(right): a species foraging/diet habit (color) [35] and phased SNP genotype (shape) [20]; b adult opsin
wavelength palette utilized [35] and c species habitat [35, 36]
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regulatory networks underlying traits under selection; however, little is known about

the genome-wide evolution of regulatory networks that may underlie several traits of

cichlid phenotypic diversity [46]. Here we developed a novel approach to identify and

compare gene regulatory modules and networks across six tissues of five East African

cichlid species.

Along the phylogeny, our analyses identified gene co-expression modules with tissue-

specific patterns and differential trajectories across six tissues of five cichlids. Between

the haplochromine species alone, nearly a quarter of all orthologous genes are distrib-

uted in either one of two modules. Considering the smaller divergence time of the three

haplochromines (~ 6 MYA) and the three haplochromines vs O. niloticus (~ 19 MYA)

[47], this indicates gene expression divergence over different evolutionary timescales

and co-expression of different clusters of genes across species. Given that the volumes

and, hence, representation of region-specific cell types of selected organ, e.g., brain re-

gions can be different, even between closely related cichlids [48], it is plausible that the

observed expression differences between species are driven by changes in cell type

abundances. However, given that expression data was generated from the organs of

multiple similarly sized adult individuals and the identification of conserved tissue-

specific patterns across all tissues and species, e.g., module 1 is eye specific (Fig. 1a), we

suspect that the majority of observed co-expression differences are connected to gene

regulatory differences. Indeed, these genes are predicted to be regulated by divergent

suites of regulators, including TFs that are state changed in co-expression module as-

signment. This suggests that gene co-expression differences and convergence between

species could be driven by differences in TF motif levels in gene promoter regions and

could be associated with gene regulatory changes underpinning traits under selection

in cichlids, such as the visual system [29]. In the five cichlids, transcriptional rewiring

events and differential gene expression could therefore contribute to phenotypic diver-

sity of the six studied tissues.

Cis-regulatory elements (including promoters and enhancers) are central to cichlid

gene expression regulation [18], and in this study, we show that discrete nucleotide

variation at binding sites drives regulatory edge divergence through GRN rewiring

events. Comparative analysis of GRNs across species identifies that TFs and their bind-

ing sites are evolving towards gaining, rather than losing regulatory edges, and possibly

regulatory activity of genes from their LCA. Comparative GRN analysis also identified

striking cases of rapid network rewiring for genes known to be involved in traits under

natural and/or sexual selection, such as the visual system, possibly shaping cichlid

adaptation to a variety of ecological niches. While there are common regulators of the

sws1 visual opsin in two species (N. brichardi and M. zebra) sharing the same short-

wavelength palette, the sws1 networks of these two species have substantially diverged.

Such tight TF-based regulation of N. brichardi sws1 could induce rapid shifts in expres-

sion and spectral shift sensitivities between a larger peak ƛmax of 417 nm in N. brichardi

single cones [49] compared to 368 nm of M. zebra SWS1 [50]. Also, diverse regulation in

M. zebra can increase sws1 expression and, in turn, increase spectral sensitivity to UV

light and the ability for M. zebra to detect/feed on UV-absorbing phytoplankton and algae,

as previously shown for Lake Malawi cichlids [35]. In regulatory regions of sws1, in vitro

assays confirm that variations in TFBSs (NR2C2) have driven network structure rewiring

between the two species (N. brichardi and M. zebra) sharing the same visual palette.
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Since the modulation of cichlid visual sensitivity occurs through heterochronic shifts in

opsin expression [51], our results are consistent with recent findings that visual tuning dif-

ferences between cichlid species require regulatory mutations that are constrained by muta-

tional dynamics [52].

Gene duplications have also been implicated in cichlid evolutionary divergence, in-

cluding differences in duplicate TF gene expression [18]. However, due to incomplete

lineage sorting (ILS) and variability in duplicates identified by three separate methods

(gene trees, read-depth analyses and array comparative genomic hybridization) [18], we

instead focus on particular examples of gene duplication associated with network rewir-

ing of visual system genes. We predict that the dim-light vision gene, rho, is regulated

by GATA2 and potentially common to regulating dim-light vision in M. zebra, A. bur-

toni, and O. niloticus but a duplicate TF, GATA2A, is predicted to be a unique regula-

tor of rho in A. burtoni and O. niloticus only, owing to a variant in the GATA2A TFBS

of the M. zebra rho gene promoter. Furthermore, M. zebra variants overlapping TFBSs

in gene promoter regions, e.g., sws1 (NR2C2) and rho (GATA2A) segregate according

to phylogeny and ecology of Lake Malawi species [20], suggesting ecotype-associated

network rewiring events could be linked to traits under selection in East African cichlid

radiations. This is consistent with the adaptive potential of visual system evolution in

cichlid species, where changes in spectral tuning of visual signals are likely to lead to

dramatic species evolution and possibly speciation events [53]. Given that single regula-

tory mutations of Tbx2a can cause heterochronic shifts in opsin expression and visual

tuning diversity between two distinct cichlid species [52], it is likely that the regulatory

variation at opsin gene promoter TFBSs that we have predicted and experimentally val-

idated, is a contributing mechanism of evolutionary innovation across many cichlid

species. Furthermore, the identification (in predicted TFBSs) of segregating sites across

several Lake Malawi species, with conservation of flanking regions, is indicative of

shared ancestral variation and functional evolutionary constraint. The differences we

identify at opsin gene promoter TFBSs and their implications in visual tuning could

correspond to species variation of habitat choice, foraging habits, diet, and male nuptial

coloration. Phylogenetic independent contrast analysis [37] shows that fitting the Lake

Malawi phylogeny has little effect on the correlation between regulatory genotypes, vis-

ual traits, and ecology, suggesting possible covariance between these genotypes and

traits. However, given the weak correlation (low adjusted r2 and p values), the impact

of ecotype-associated network rewiring events requires further testing. This analysis

would further benefit from (1) the addition of any missing data (wavelength palette,

habitat, and/or foraging habit/diet) in the phylogeny; (2) the addition of further vari-

ables, e.g., average water depth measurements; (3) additional species data from lowly

represented clades, e.g., Mbuna; and (4) further experimental testing, particularly in

phenotypically divergent species pairs. Beyond the visual systems, we also identify net-

work rewiring of genes associated with several cichlid adaptive traits like, for example,

runx2 associated with jaw morphology [54]; ednrb1 in pigmentation and egg spots [18,

55]; and egr1 implicated in behavioral phenotypes [56]. These also represent case stud-

ies that can be validated in species pairs that diverge for the trait of interest.

The regulatory networks generated here represent a rich scientific resource for the

community, powering further molecular analysis of adaptive evolutionary traits in cich-

lids. As an example, further examination of the vast regulatory factors that we have
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predicted for the visual systems that could both up- and downregulate opsin expression

diversity and could further shed light on preliminary studies of SWS1 [57], LWS, and

RH2 [52] in other cichlid species. This could involve further functional validation to de-

fine a definitive link to trait variation by (1) high-throughput protein-DNA assays to

confirm binding of hundreds of sites; (2) reporter and/or cell-based TF-perturbation as-

says to show that the regulatory variants indeed affect transcription; and (3) genome

editing, e.g., CRISPR mutations of TFBS variants followed by phenotyping to observe

trait effect. Nonetheless, this study is the first genome-wide exploration of GRN evolu-

tion in cichlids, and the computational framework (Additional file 1: Fig. S20) is largely

applicable to other phylogenies to study the evolution of GRNs. In this study, we largely

focus on cis-regulatory mechanisms of GRN rewiring. However, given the potential im-

pact of other genetic mechanisms (protein coding changes, small RNAs, and posttrans-

lational modifications) towards cichlid phenotypic diversity [18, 46], our framework can

be extended by the inclusion of relevant datasets to allow for studies on the regulatory

effect of other mechanisms, e.g., miRNAs, enhancers, and gene duplications on network

topology during cichlid evolution. While many of the predicted TF-TG interactions/re-

lationships could be false positives, our integrative approach ensured that we could

apply rigorous filtering at each step, including stringent statistical significance mea-

sures, co-expression-based pruning, and all while accounting for gene node loss and

mis-annotations in selected species (see “Methods”).

While it appears that cichlids utilize an array of regulatory mechanisms that are also

shown to drive phenotypic diversity in other organisms [11, 39–42, 58], we provide ex-

perimental support of selected TF-TG rewiring events in regulatory regions of genes asso-

ciated with adaptive traits in cichlids [18]. This is further supported by large-scale

genotyping studies of the predicted sites in radiating cichlid species [20]. This potential

link between GRN evolution and genes associated with adaptive trait variation in cichlids

requires additional experimental verification and support by further studies on cichlid

species that largely focus on large-scale genotyping [20]; whole-genome analysis and

transgenesis assays [18]; behavioral and transcriptomic assays [59]; population studies and

CRISPR mutant assays [60]; and transcriptomic/cis-regulatory assays [35, 49, 52, 57].

Conclusions
We present a novel computational framework to study the evolution of regulatory net-

works in representative species of the rapid adaptive radiations of East African cichlids.

Using six tissues from five species, our approach identified tissue-specific gene expression

divergence between the five cichlid species that is likely associated with gene regulatory

changes. As a case study, we focus on a well-studied trait—the visual system—for which

we identified regulatory variation at TFBSs and demonstrate how the functional disrup-

tion of TFBSs abrogates binding of key regulators and, thus, can drive GRN evolution.

Our approach revealed hundreds of novel potential regulatory regions and regulators of

the five cichlid genomes, many of which have been previously associated with evolutionary

traits. In conclusion, we show that regulatory network evolution can be driven by discrete

changes at regulatory binding sites, and network rewiring events are likely to be a contrib-

uting source to evolutionary innovations in radiating cichlid species. This approach, with

further functional validations, has the potential to identify novel genes linked to other evo-

lutionary traits in cichlids and other evolutionary systems.
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Methods
A comparative framework to study the evolution of tissue-specific regulatory networks in

cichlids

We developed a comparative framework (Additional file 1: Fig. S20) to infer gene regu-

latory networks across five representative East African cichlid species—O. niloticus

(On), N. brichardi (Nb), A. burtoni (Ab), P. nyererei (Pn), and M. zebra (Mz). Our

framework comprises (1) identifying modules of co-expressed genes from multi-tissue/

multi-species and single-tissue/multi-species data; (2) integrating several datasets (gene

expression and cis regulatory regions) to reconstruct gene regulatory networks (GRNs)

to find fine-grained tissue-specific network modules; (3) examining factors driving evo-

lutionary innovation in cichlids, i.e. nucleotide divergence within regulatory binding

sites and determining their mechanistic roles towards regulatory network and module

divergence; and (4) using an integration of the reconstructed networks, co-expression

modules, and enrichment of curated biological processes to interpret GRN evolution of

genes in the context of cichlid adaptive traits.

Inference of multi- and single-tissue transcriptional modules in five cichlids

We ran Arboretum [9], an algorithm for identifying modules of co-expressed genes on

gene expression values of six tissues (brain, eye, heart, kidney, muscle, testis) from five

cichlid species—O. niloticus (On), N. brichardi (Nb), A. burtoni (Ab), P. nyererei (Pn), and

M. zebra (Mz) [18]. Tissues were isolated and RNA extracted from several adult individ-

uals as described previously [18] and summarized here: O. niloticus tissues were isolated

from Swansea stock individuals in the laboratory of Dr. Gideon Hulata (Volcani Center,

Bet Dagan, Israel) and RNA extracted in the lab of Dr. Micha Ron (Volcani Center, Bet

Dagan, Israel) using the mirVana™ miRNA Isolation Kit (Ambion); N. brichardi tissues

were isolated from individuals inbred for ~ 10 generations in the laboratory of Prof. Wal-

ter Salzburger (University of Basel, Basel, Switzerland) and RNA extracted using TRIzol®

(Invitrogen, USA); A. burtoni tissues were isolated from individuals inbred for ~ 60 gener-

ations in the laboratory of Dr. Hans Hoffman (University of Texas, Austin, TX, USA) and

RNA extracted using TRIzol® (Invitrogen, USA); P. nyererei tissues were isolated from in-

dividuals inbred for ~ 5 generations in the lab of Prof. Ole Seehausen and RNA extracted

using the QIAGEN RNeasy Plus Universal mini kit; M. zebra tissues were isolated from

wild individuals in the laboratory of Dr. Karen Carleton (University of Maryland, College

Park, MD, USA) and RNA extracted using the QIAGEN RNeasy Kit. In brief, the gene ex-

pression values used here were obtained from [18], and as described previously, this in-

cluded (1) confirming RNA integrity on Agilent 2100 Bioanalyzer; (2) construction of

RNA-seq libraries using a strand-specific dUTP protocol; (3) sequencing of RNA-seq li-

braries on HiSeq2000 (Illumina), yielding > 35 million 76 bp paired-end reads per tissue;

(4) de novo transcriptome assembly using Trinity [61] and splice junction database from

PASA gene models; (5) read alignment with TopHat2 [62]; and (6) calculating gene ex-

pression values (FPKM) with Cufflinks [63] using the protein-coding gene annotation as

reference [18]. To ensure equality in n-fold change of expression, the gene expression

values were log-transformed as: log(x + 1), where x is the raw expression value [18], and

“log” is the natural logarithm, and then expression was normalized across each gene to

have mean zero to be used as input for Arboretum [9]. The log expression ratio shown
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across modules is each gene expression relative to the mean expression across all tissues.

Selection of the six tissues allowed us to study tissue-specific associated traits under nat-

ural and/or sexual selection in cichlids: brain (development, behavior and social inter-

action); eye (adaptive water depth/turbidity vision); heart (blood circulation and stress

response); kidney (hematopoiesis and osmoregulation associated with water adaptation);

muscle (size, shape, and movement associated with dimorphism and agility); and testis

(sexual systems associated with behavior and dimorphism).

In total, 18,799 orthogroups, including 69,989 genes, and 34,220 1-to-1 orthologous

genes (see “Cichlid gene trees”), and their associated expression data and gene tree in-

formation were inputted into Arboretum [9]. In total, this represents 59–68% of all

protein-coding genes in the five cichlid genomes [18]. Certain annotated cichlid genes

could not be included for a few reasons: (1) lack of tissue expression data for all five

species; (2) no mapped reads for selected tissues; (3) Lack of co-expression with other

genes; and (4) use of single development stage (adult). We selected the number of mod-

ules using a combination of strategies. First, we tried to identify the optimal number of

multi-tissue modules (k) automatically from the data by scoring the Arboretum learned

model based on the penalized log likelihood and silhouette index for k = 7–14 modules

in increments of 1 (Additional file 1: Fig. S21a). This gave us k = 10 and 12 as the set-

tings were local maxima for silhouette index. Second, we manually inspected the mod-

ules to see if increases of k yield patterns of expression that we have not seen before or

generate recurring patterns (k = 12 is shown in Additional file 1: Fig. S21b). Based on

our strategy, we found k = 10 modules to be optimal. Finally, we devised a metric for

the top three random initializations, based on a silhouette index, orthology overlap, and

cross-species cluster mean dissimilarity, selecting the optimal k stable to the

initialization. Using a similar approach, this time for single tissues clustering, we found

k = 5 modules to be optimal. The single-tissue modules were only initially used to as-

sess tissue-specific gene expression divergence.

Handling ILS in arboretum

The Arboretum algorithm internally tries to reconcile a tree that is not obeying the

species tree by adding additional duplication and loss events. An alternate approach is

to use a different species trees each representing the different ILS types and estimating

the parameters of each such tree. However, there are many different cases of ILS, as

identified previously [18], and the number of gene trees in each category varied signifi-

cantly. Estimating the conditional distributions for each branch in each ILS type would

not be feasible as there are not enough example trees.

Cichlid gene trees

By considering the gene tree of 18,799 orthologous groups (orthogroups), Arboretum

[9] is able to generate module assignments reflecting many-to-many relationships be-

tween orthologs resulting from gene duplication and loss. To construct gene trees with

different levels of duplication, we obtained the protein sequences of the longest tran-

scripts from five cichlids as well as stickleback, spotted gar, and zebrafish as outgroups.

Spotted gar was added as it predates the teleost-specific genome duplication event (3R)

and zebrafish, as a model teleost to leverage known molecular interactions as an initial
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prediction of functional relationships in cichlids based on orthology. We applied

OrthoMCL-1.4.0 [64] followed by TreeFix-1.1.10 [65] to learn the reconciled gene trees.

We noticed that several of the trees exhibited incomplete lineage sorting (ILS) for the

cichlid-specific subtree but disappeared once the tree was relearned using the cichlid

only species. We therefore relearned gene trees for the cichlid only species—in total,

we reconstructed 17,858 gene families of which 108 had gene duplication events. A

fraction of these (29 gene families) also exhibited ILS. We also observed ILS for gene

groups without gene duplications: of the 17,756 gene families that had no duplication,

810 exhibited ILS.

Functional and transcription factor binding site (TFBS) enrichment in modules

We use the false discovery rate (FDR) corrected hypergeometric p value (q-value) test

to assess enrichment of Gene Ontology (GO) terms and TFBSs (motifs) in a given gene

set. In all cases, enrichment is tested using a set-based approach where a set of candi-

date genes is compared to a background (control set) of either all genes in species mod-

ules (18,799 orthogroups) or each genome (stated within figure legend for each test).

We summarize the enrichment of terms/motifs with q < 0.05 statistical significance and

conservation in all extant and ancestral species. GO terms for the five cichlids were

from those published previously [18]. To study cis-regulatory elements likely driving

tissue-specific expression patterns, we defined promoter regions for all genes in each of

the five genomes. For this, we used the following published assemblies and associated

gene annotations [18] for each species: P. nyererei—PunNye1.0, NCBI BioProject:

PRJNA60367; BROADPN2 annotation; M. zebra—MetZeb1.1, NCBI BioProject:

PRJNA60369; BROADMZ2 annotation; A. burtoni—AstBur1.0, NCBI BioProject:

PRJNA60363; BROADAB2 annotation; N. brichardi—NeoBri1.0, NCBI BioProject:

PRJNA60365; BROADNB2 annotation; O. niloticus—Orenil1.1 (NCBI BioProject:

PRJNA59571; BROADON2 annotation. Gene promoter regions were defined as up to

5 kb upstream of the transcription start site (TSS) of each gene. This gene promoter re-

gion is based on analyzing the distribution of motifs in 100-nt window regions up to

20 kb upstream of each gene TSS, and observing a plateau of motifs (and distribution

of CNEs) after ~ 5 kb in each species (Additional file 1: Fig. S22). Motif enrichment in

cis-regulatory regions was carried out using TFBSs obtained by the method below, with

a background (control set) of all motifs (FDR < 0.05) predicted within module gene

promoters.

Transcription factor (TF) motif scanning

TFBSs of known vertebrate transcription factors (TFs) were obtained from the JASPAR

vertebrate core motif (2018 release) [66]. Binding peak information from ChIP-seq ex-

periments of various human and mouse TFs were retrieved from GTRD v17.04 [14]

and associated to protein-coding genes within a vicinity of 10 kb. Using core motif se-

quences available from JASPAR [66] or alternative databases like UniPROBE [67] and

HOCOMOCO [68], sequences matching these motifs were identified within the TF

binding peaks. In cases where the core motifs were not available for specific TFs with

ChIP-seq data, they were predicted de novo from the sequences under peaks them-

selves using MEME [69] with default settings. The aforementioned steps provided a list
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of transcription factor-target gene (TF-TG) interactions with the exact coordinates of

the corresponding binding site(s). Cichlid sites were extrapolated based on (1) gene-

level orthology; (based on gene trees above), (2) minimum 70% sequence similarity [70,

71] between the vertebrate motif sequence and a sequence within the cichlid promoter,

and (3) functional domain overlap as derived using Interpro scan 5 [72] to both source

organisms (human, mouse). Extrapolated sites from the promoters of each cichlid spe-

cies were used to construct cichlid species-specific (CS) Position Specific Scoring

Matrices (PSSMs) for each TF using the info-gibbs script from the RSAT tool suite

[73]. In cases where the number of extrapolated sites per species was less than three,

we aggregated the sites to construct generic cichlid-wide (CW) PSSMs. Using the

PSSMs for each TF, we scanned up to 20 kb upstream of a genes TSS and conserved

non-coding elements (CNEs) with FIMO [74] using either (1) an optimal calculated p

value for each TF PSSM, calculated using the matrix quality script from the RSAT tool

suite [73], with 1000 matrix permutations, or (2) FIMO [74] default p value (1e−4) for

JASPAR [66] PSSMs and PSSMs for which an optimal p value could not be determined.

Based on the distribution of motifs in 100-nt windows of up to 20 kb upstream of gene

TSSs (Additional file 1: Fig. S22), we only retained motifs up to 5 kb upstream of a gene

TSS as the gene promoter region (Additional file 1: Fig. S22). Statistically significant

motifs were called using a q-value (FDR) < 0.05 and grouped in confidence levels and

scores of (1a) overlap of mouse and human to cichlid extrapolated—0.3; (1b) mouse to

cichlid extrapolated—0.2; (1c) human to cichlid extrapolated—0.15; (2a) FIMO [74]

scans using extrapolated CS matrices—0.125; (2b) FIMO [74] scans using extrapolated

CW matrices—0.110; and (2c) FIMO [74] scans using JASPAR [66] matrices—0.115.

To assess whether motifs are predicted by chance, we also scanned randomized pro-

moter sequences using the same PSSMs.

Calculating tissue specificity index (tau)

As a measure for tissue specificity of gene expression, we calculated τ (Tau) [75]

using log-transformed and normalized gene expression data (as inputted to run

Arboretum):

τ ¼
Pn

i¼1 1 − bxið Þ
n − 1

; bxi ¼ xi
max
1≤ i≤n

xið Þ

Here, n is the number of tissues and xi is the expression profile component normal-

ized by the maximal component value [75]. The values of tau vary from 0 to 1: ubiqui-

tous or broad expr (τ ≤ 0.5); intermediate expr (0.5 < τ < 0.9); and tissue-specific or

narrow expr (τ ≥ 0.9) [75]. Amongst existing methods, τ has been shown to be a reliable

method for calculating tissue specificity [76]. Testes normally express far more genes

than any other tissue, generally displaying a tissue-specific pattern of expression. As tau

was used to assess genome-wide expression levels across all tissues, but between spe-

cies, testis expression data was included for each species to obtain a true representation

of variation in transcriptional programs.
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Variation and evolutionary rate at coding and non-coding regions

We noticed several anomalous start site annotations of genes in M. zebra, P. nyererei,

A. burtoni, and N. brichardi when compared to O. niloticus. Owing to these anomalies,

we re-defined gene start sites to extract putative promoter regions. For each gene, we

used the 1st exon (± 100 bp) of the longest protein-coding sequence in O. niloticus to

identify, via BLAT-35 [77], corresponding orthologous start sites in the other four cich-

lid genomes. We filtered the output based on coherent overlap with original annota-

tions [18] and orthogroups in cichlid gene trees. We re-annotated gene start sites (M.

zebra—10,654/21,673; P. nyererei—10,030/20,611; A. burtoni—10,050/23,436; N. bri-

chardi—8464/20119) based on BLAT orthology and end sites based on original annota-

tions [18], which was otherwise used for annotating the remaining genes. Based on new

annotations, for all 1:1 orthologs where gene expression data is available and there is

no overlap of gene bodies, we extracted putative promoter regions, taken as up to 5 kb

upstream of the transcription start site (TSS) as per methods above. Using mafft-7.271

[78], we aligned 1:1 orthologous promoter, cds and protein sequences based on ortho-

grouping in gene trees (see “Cichlid gene trees”). We estimated the number of nonsy-

nonymous substitutions per nonsynonymous site (dN) and synonymous substitutions

per synonymous site (dS) in the 1:1 protein alignments using the codeml program in

the PAML-4.9 package [79] for each branch and ancestral node in the species tree.

Otherwise, we estimated evolutionary rate for each branch and ancestral node in the

species tree at promoter regions and fourfold degenerate sites, using 1:1 promoter and

cds alignments in baseml and codeml programs in the PAML-4.9 package [79], requir-

ing that at least 10% of the alignment contains nucleotides and that at least 100 nucleo-

tides are present for each species.

By using the published “cichlid-5way.maf” [18], we categorized pairwise substitutions

for all species and intersected with annotated genomics regions (see Additional file 1:

Table S2) using bedtools-2.25.0 intersect [80].

Reconstructing regulatory networks

To infer essential drivers of tissue-specific expression in cichlids, we constructed regulatory

and functional interaction/association networks through the integration of several datasets

and approaches (Additional file 1: Fig. S20). This approach was largely centered on the inte-

gration of expression-based and in silico TFBS motif prediction-based networks.

We first used species- and module-specific gene expression levels to infer an

expression-based network. For this, we merged the cichlid gene expression data into a

single 30 (five species, six tissues) dimensional dataset to learn cichlid-specific tran-

scription factor (TF)-target gene (TG) interactions using the Per Gene Greedy (PGG)

approach, a prior expression-based network inference method [24]. We projected the

network into species-specific networks by considering edges that would not be present

due to gene loss. We then integrated in silico-predicted TF-TG edges (see “Transcrip-

tion factor (TF) motif scanning”) based on TFBS predictions in gene promoter regions.

To ensure accurate analysis of GRN rewiring through an integrative approach, all col-

lated edges were then pruned to ensure edges were (1) not absent in at least one spe-

cies due to gene loss/poor annotation and (2) based on the presence of genes in co-

expression modules.

Mehta et al. Genome Biology           (2021) 22:25 Page 21 of 28



To maintain a structured and connected network approach, we analyzed network

topology using two methods; firstly, and to ensure suitable integration of co-expression

data with all TF-TG predicted edges, one set of all gene nodes and their edges were

constrained by Arboretum module assignments to correlate to their respective patterns

of tissue-specific expression and co-expression module analysis. Secondly, since all in-

cluded genes will not necessarily exhibit tissue-specific co-expression (and cluster ac-

cordingly) due to (1) differences in cell type abundance, (2) cell heterogeneity; and (3)

small development stage differences, and as well as despite not being co-expressed, the

fact that TFs are trans-acting factors able to regulate any gene, we also analyzed all net-

work edges for selected candidate genes without constraining based on module assign-

ment (co-expression). Accordingly, for candidate genes with rewired networks, we also

analyzed network topology without constraining edges based on same module assign-

ment (co-expression) and, instead, analyzed the Pearson correlation coefficient (r) be-

tween cross-species significant TF motif enrichment (FDR < 0.05), taken as −log(q-

value), in all module genes and expression (zero-mean log expression ratio) in each tis-

sue. Similar or dissimilar levels of TF motif enrichment were determined by calculating

the variance over each TF motif enrichment, taken as −log(q-value) across the five spe-

cies, and then by plotting the density distribution of the variance, categorizing TFs in

each of the tails into similar or dissimilar fold enrichment (FE).

Functional landscape of reconstructed regulatory networks

We use the FDR-corrected hypergeometric p value to assess enrichment of GO terms

for genes in reconstructed networks. We used GO terms for the published five cichlids

[18] and carried out enrichment analysis as previously done for Arboretum module

genes (see “Methods” above).

Regulatory rewiring analysis of gene sets

Regulatory rewiring of TF-TG interactions is based on predictions derived from TFBS

scanning and TF-TG co-expression relationships inferred by the PGG method [24]. To

ensure rewiring of TFs are correctly compared between species, and not based on gene

loss/poor annotation, we only included edges for analysis where the TF had a 1-to-1

orthologous relationship in species where the TF-TG relationship or non-directed rela-

tionship exists. Also, we filtered out any TGs and their TF interaction/relationships if,

based on orthologous gene tblastx [81], whether the gene was present in the genome but

not annotated. Of the 18,799 orthogroups used for generating modules of co-expressed

genes and network interactions, 4209 orthogroups had many-to-many genes actually

present in the genome of at least one of the five species. These 4209 orthogroups were fil-

tered out, retaining 843,168/1,131,812 predicted TF-TG edges across the five species; in

summary, these represent edges that are (1) present in at least two species, (2) not absent

in any species due to node loss or mis-annotation; and (3) based on the presence of nodes

in modules of co-expression genes. The 843,168/1,131,812 predicted TF-TG edges across

the five species were then used for network rewiring analysis.

Three metrics were used to study large-scale TF-TG network rewiring between spe-

cies that included (1) state changes in module assignment, (2) DyNet [25] network re-

wiring scores and (3) TF rate of edge gain and loss in networks.
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State changes in module assignment

In this metric, a rewired edge is where a unique TF-TG edge is present in only one

“focal” species, but the TF ortholog is state changed in module assignment and is a

node in other TF-TG edges in any of the other species.

DyNet network rewiring scores

The DyNet-2.0 package [25], implemented in Cytoscape-3.7.1 [82], was used for net-

work visualization and calculation of a degree-corrected rewiring (Dn) score of TF-TG

interactions in each orthogroup. The Dn score for each orthogroup was ordered and

the mean calculated; the significance of difference of each orthogroups rewiring score

against all orthogroups was compared by calculating differences in the standard devi-

ation and applying the non-parametric Kolmogorov–Smirnov test (KS-test).

TF rate of edge gain and loss in networks

Gain and loss rate analyses were similar to that performed previously [10]. This ap-

proach uses a continuous-time Markov process parameterized by TF-TG edge gain and

loss rates and uses an expectation-maximization (EM)-based algorithm to estimate

rates [83, 84]. The input network comprised target genes of 783 individual regulator

genes mapped across the five cichlid species based on gene orthology. Each species

regulator required a minimum of 25 edges as < 25 edges greatly hinder statistical ana-

lysis in this context. This resulted in a total of 345 regulators with 25 to 23,935 edges,

with an average of 2609. Gain and loss rate was estimated for each regulator using the

EM-based algorithm on the edge gain and loss pattern across the five cichlid phylogeny.

Rates were inferred using published five cichlid branch lengths [18] that described neu-

tral sequence evolution across the species. Stability analysis of rate estimations were

carried out as follows: (1) gain and loss rate input values were scanned from 0 to 400

in intervals of 5 for each regulator matrix, and (2) from each scan, rates with the great-

est likelihood were chosen as the recommended gain and loss rate (< 100), defining a

final set of inferred rates for 186/345 regulators.

Identification of segregating sites in TFBSs

Species pairwise variation was identified based on an M. zebra v1.1 assembly centered

8-way teleost multiz alignment [18]. Pairwise (single-nucleotide) variants were then

overlapped with TFBS positions as determined by TF motif scanning using bedtools-

2.25.0 intersect [80]. Pairwise variants of M. zebra were overlapped with single-

nucleotide polymorphisms (SNPs) in Lake Malawi species [20] using bedtools-2.25.0

intersect [80]. Both sets of pairwise variants overlapping motifs and lake species SNPs

were then filtered based on the presence of the same pairwise variant in orthologous

promoter alignments. This ensured concordance of whole-genome alignment-derived

variants with variation in orthologous promoter alignments and predicted motifs. At

each step, reference and alternative allele complementation was accounted for to en-

sure correct overlap. This analysis was not to distinguish population differentiation due

to genetic structure, but to instead map regulatory variants onto a number of radiating

cichlid species to link to phylogenetic and ecological traits.
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Phylogenetic independent contrasts

Phylogenetic independent contrasts (PICs) were carried out to statistically test the ef-

fect of fitting the least controversial and all included 73 Lake Malawi species phylogeny

[20] on the covariance of segregating TFBSs, visual (wavelength palette) and ecological

traits (habitat and foraging habit/diet). This involved (1) categorically coding segregat-

ing TFBS genotypes (of NR2C2 > sws1 and GATA2A > rho), visual trait and ecological

measurements for each of the 73 Lake Malawi species (119 individuals), and (2) using

the ape package (v5.4.1) in R (v4.0.2) to apply the PICs test [37] on all correlations with

the TFBS genotypes (genotype vs wavelength palette, genotype vs habitat, and genotype

vs foraging habit/diet). PICs assume a linear relationship and process of Brownian mo-

tion between traits, and thus, for each combination of data, a scatterplot was first gen-

erated. To test any change in the correlation (due to phylogenetic signal), the

regression model was compared between relationships excluding and including the

published Lake Malawi phylogeny [20].

Expression of protein DNA-binding domains (DBDs)

DNA-binding domains (DBDs) of cichlid proteins (NR2C2 and RXRB) were predicted based

on alignment and conservation to annotated human and mouse orthologs. M. zebra and N.

brichardi individuals were sacrificed according to schedule 1 killing using overdose of MS-222

(tricaine) at The University of Hull, UK and University of Basel, Switzerland. Tissues were

stored in RNA later using a 1:5 ratio. RNA was extracted from brain, liver, and testis tissues of

adult M. zebra and N. brichardi using the RNeasy Plus Mini Kit (Qiagen), achieving RNA in-

tegrity (RIN) in the range of 8–10 (Agilent Bioanalyzer Total RNA Pico Assay). First-strand

cDNA synthesis of DBD-specific regions was carried out using RevertAid H Minus Reverse

Transcriptase (Thermo Scientific) and DBDs amplified (2-step RT-PCR) using Platinum Taq

DNA Polymerase (Invitrogen) and the primers listed in Additional file 1: Table S1. Resulting

cDNA was concentrated using Minelute PCR purification (Qiagen) and 700 ng used for

in vitro transcription/translation using TnT T7 Quick for PCR DNA (Promega) and the

Fluorotect GreenLys tRNA (Promega) labelling system. DBD expression was resolved by SDS-

PAGE and detection using the fluorescein filter in the ChemiDoc Touch (Bio-Rad) system.

Electrophoretic mobility shift assay (EMSA) validation of predicted TF-TG interactions

EMSA was carried out using double-stranded Cy5 fluorophore 5′-modified (IDT) DNA

probes, in vitro expressed DBDs (see above) and the Gel Shift Assay Core System (Promega).

Double-stranded DNA probes were generated by annealing sense and antisense oligonucleo-

tides (see Additional file 1: Table S1) in annealing buffer (10mM Tris pH 7.5, 1mM EDTA,

50mM NaCl) for 3 min at 96 °C, 1min at 90 °C, 1min at 85 °C, 3 min at 72 °C, 1min at

65 °C, 1min at 57 °C, 1min at 50 °C, 3 min at 42 °C, and 3 min at 25 °C in a PCR thermocy-

cler. Binding reactions were carried out in a final volume of 9 μl composed of Gel Shift Bind-

ing 5x Buffer (20% glycerol, 5mM MgCl2, 2.5mM EDTA, 2.5mM DTT, 250mM NaCl, 50

mM Tris-HCl (pH 7.5), 0.25mg/ml poly (dI-dC)•poly (dI-dC)); 0.01 μM of Cy5-dsDNA probe

covering the motif and flanking region (28 nt); and either 23 ng (RXRB, 10.42 kDa) or 27 ng

(NR2C2, 10.73 kDa) of expressed DBD. For EMSA validation with increasing Nr2c2 DBD

concentrations, 1× = 27 ng. For kit controls, 0.01 μM of human SP1 DNA probe was com-

bined with 10,000 ng HeLa nuclear extract. Binding reactions were incubated at room
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temperature for 20 min. Protein-DNA complexes were resolved on 1mm NuPAGE 4–12%

Bis-Tris polyacrylamide gels (Invitrogen) in 0.5× TBE at 100V for 60 min. Protein-DNA com-

plexes were detected using the Cy5 filter on the ChemiDoc MP (Bio-Rad) system. Exposure

settings were adjusted in Image Lab v6.0.1_build34 (Bio-Rad) with same high (5608), low

(1152) and gamma (1.0) values set for all associated images.
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