
FRENCH ET AL.: SEMI-SUPERVISED SEMANTIC SEGMENTATION 1

Semi-supervised semantic segmentation
needs strong, varied perturbations

Geoff French1

g.french@uea.ac.uk

Samuli Laine2

slaine@nvidia.com

Timo Aila2

taila@nvidia.com

Michal Mackiewicz1

m.mackiewicz@uea.ac.uk

Graham aFinalyson1

g.finlayson@uea.ac.uk

1 School of Computing Sciences
University of East Anglia
Norwich, UK

2 NVIDIA
Helsinki, Finland

Abstract

Consistency regularization describes a class of approaches that have yielded ground
breaking results in semi-supervised classification problems. Prior work has established
the cluster assumption — under which the data distribution consists of uniform class clus-
ters of samples separated by low density regions — as important to its success. We ana-
lyze the problem of semantic segmentation and find that its’ distribution does not exhibit
low density regions separating classes and offer this as an explanation for why semi-
supervised segmentation is a challenging problem, with only a few reports of success.
We then identify choice of augmentation as key to obtaining reliable performance with-
out such low-density regions. We find that adapted variants of the recently proposed
CutOut and CutMix augmentation techniques yield state-of-the-art semi-supervised se-
mantic segmentation results in standard datasets. Furthermore, given its challenging
nature we propose that semantic segmentation acts as an effective acid test for eval-
uating semi-supervised regularizers. Implementation at: https://github.com/
Britefury/cutmix-semisup-seg.

1 Introduction
Semi-supervised learning offers the tantalizing promise of training a machine learning model
using datasets that have labels for only a fraction of their samples. These situations often
arise in practical computer vision problems where large quantities of images are readily
available and ground truth annotation acts as a bottleneck due to the cost and labour required.

Consistency regularization [23, 29, 30, 36] describes a class of semi-supervised learning
algorithms that have yielded state-of-the-art results in semi-supervised classification, while
being conceptually simple and often easy to implement. The key idea is to encourage the
network to give consistent predictions for unlabeled inputs that are perturbed in various ways.
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The effectiveness of consistency regularization is often attributed to the smoothness as-
sumption [27] or cluster assumption [6, 35, 37, 42]. The smoothness assumption states that
samples close to each other are likely to have the same label. The cluster assumption — a
special case of the smoothness assumption — states that decision surfaces should lie in low
density regions of the data distribution. This typically holds in classification tasks, where
most successes of consistency regularization have been reported so far.

At a high level, semantic segmentation is classification, where each pixel is classified
based on its neighbourhood. It is therefore intriguing that there are only two reports of con-
sistency regularization being successfully applied to segmentation from the medical imaging
community [25, 32] and none for natural photographic images. We make the observation
that the L2 pixel content distance between patches centered on neighbouring pixels varies
smoothly even when the class of the center pixel changes, and thus there are no low-density
regions along class boundaries. This alarming observation leads us to investigate the condi-
tions that can allow consistency regularization to operate in these circumstances.

We find mask-based augmentation strategies to be effective for semi-supervised semantic
segmentation, with an adapted variant of CutMix [45] realizing significant gains.

The key contributions of our paper are our analysis of the data distribution of semantic
segmentation and the simplicity of our approach. We utilize tried and tested semi-supervised
learning approaches, and adapt CutMix – an augmentation technique for supervised classifi-
cation – for semi-supervised learning and for segmentation, achieving state of the art results.

2 Background
Our work relates to prior art in three areas: recent regularization techniques for classifica-
tion, semi-supervised classification with a focus on consistency regularization, and semantic
segmentation.

2.1 MixUp, Cutout, and CutMix
The MixUp regularizer of Zhang et al. [46] improves the performance of supervised image,
speech and tabular data classifiers by using interpolated samples during training. The inputs
and target labels of two randomly chosen examples are blended using a randomly chosen
factor.

The Cutout regularizer of Devries et al. [13] augments an image by masking a rectangular
region to zero. The recently proposed CutMix regularizer of Yun et al. [45] combines aspects
of MixUp and CutOut, cutting a rectangular region from image B and pasting it over image
A. MixUp, Cutout, and CutMix improve supervised classification performance, with CutMix
outperforming the other two.

2.2 Semi-supervised classification
A wide variety of consistency regularization based semi-supervised classification approaches
have been proposed in the literature. They normally combine a standard supervised loss
term (e.g. cross-entropy loss) with an unsupervised consistency loss term that encourages
consistent predictions in response to perturbations applied to unsupervised samples.

The Π-model of Laine et al. [23] passes each unlabeled sample through a classifier twice,
applying two realizations of a stochastic augmentation process, and minimizes the squared
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difference between the resulting class probability predictions. Their temporal model and the
model of Sajjadi et al. [36] encourage consistency between the current and historical pre-
dictions. Miyato et al. [29] replaced the stochastic augmentation with adversarial directions,
thus aiming perturbations toward the decision boundary.

The mean teacher model of Tarvainen et al. [41] encourages consistency between predic-
tions of a student network and a teacher network whose weights are an exponential moving
average [33] of those of the student. Mean teacher was used for domain adaptation in [15].

The Unsupervised data augmentation (UDA) model [44] and the state of the art FixMatch
model [38] demonstrate the benefit of rich data augmentation as both combine CutOut [13]
with RandAugment [12] (UDA) or CTAugment [3] (FixMatch). RandAugment and CTAug-
ment draw from a repertoire of 14 image augmentations.

Interpolation consistency training (ICT) of Verma et al. [42] and MixMatch [4] both
combine MixUp [46] with consistency regularization. ICT uses the mean teacher model
and applies MixUp to unsupervised samples, blending input images along with teacher class
predictions to produce a blended input and target to train the student.

2.3 Semantic segmentation
Most semantic segmentation networks transform an image classifier into a fully convolu-
tional network that produces a dense set of predictions for overlapping input windows, seg-
menting input images of arbitrary size [26]. The DeepLab v3 [8] architecture increases local-
ization accuracy by combining atrous convolutions with spatial pyramid pooling. Encoder-
decoder networks [2, 24, 34] use skip connections to connect an image classifier like encoder
to a decoder. The encoder downsamples the input progressively, while the decoder upsam-
ples, producing an output whose resolution natively matches the input.

A number of approaches for semi-supervised semantic segmentation use additional data.
Kalluri et al. [19] use data from two datasets from different domains, maximizing the simi-
larity between per-class embeddings from each dataset. Stekovic et al. [39] use depth images
and enforced geometric constraints between multiple views of a 3D scene.

Relatively few approaches operate in a strictly semi-supervised setting. Hung et al. [18]
and Mittal et al. [28] employ GAN-based adversarial learning, using a discriminator network
that distinguishes real from predicted segmentation maps to guide learning.

The only successful applications of consistency regularisation to segmentation that we
are aware of come from the medical imaging community; Perone et al. [32] and Li et al. [25]
apply consistency regularization to an MRI volume dataset and to skin lesions respectively.
Both approaches use standard augmentation to provide perturbation.

3 Consistency regularization for semantic segmentation
Consistency regularization adds a consistency loss term Lcons to the loss that is minimized
during training [30]. In a classification task, Lcons measures a distance d(·, ·) between the
predictions resulting from applying a neural network fθ to an unsupervised sample x and a
perturbed version x̂ of the same sample, i.e., Lcons = d( fθ (x), fθ (x̂)). The perturbation used
to generate x̂ depends on the variant of consistency regularization used. A variety of distance
measures d(·, ·) have been used, e.g., squared distance [23] or cross-entropy [29].

The benefit of the cluster assumption is supported by the formal analysis of Athiwaratkun
et al. [1]. They analyze a simplified Π-model [23] that uses additive isotropic Gaussian noise
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(a) Example image (b) Avg. distance to neighbour, (c) Avg. distance to neighbour,
patch size 15×15 patch size 225×225

Figure 1: In a segmentation task, low-density regions rarely correspond to class boundaries.
(a) An image crop from the CITYSCAPES dataset. (b) Average L2 distance between raw pixel
contents of a patch centered at pixel p and four overlapping patches centred on the immediate
neighbours of p, using 15×15 pixel patches. (c) Same for a more realistic receptive field size
of 225×225 pixels. A darker colour indicates larger inter-patch distance and therefore a low
density region. Red lines indicate segmentation ground truth boundaries.

for perturbation (x̂ = x+εN (0,1)) and find that the expected value of Lcons is approximately
proportional to the squared magnitude of the Jacobian J fθ (x) of the networks outputs with
respect to its inputs. Minimizing Lcons therefore flattens the decision function in the vicinity
of unsupervised samples, moving the decision boundary — and its surrounding region of
high gradient — into regions of low sample density.

3.1 Why semi-supervised semantic segmentation is challenging
We view semantic segmentation as sliding window patch classification with the goal of iden-
tifying the class of the patch’s central pixel. Given that prior works [23, 29, 38] apply pertur-
bations to the raw pixel (input) space our analysis of the data distribution focuses on the raw
pixel content of image patches, rather than higher level features from within the network.

We attribute the infrequent success of consistency regularization in natural image seman-
tic segmentation problems to the observations that low density regions in input data do not
align well with class boundaries. The presence of such low density regions would manifest
as locally larger than average L2 distances between patches centred on neighbouring pixels
that lie either side of a class boundary. In Figure 1 we visualise the L2 distances between
neighbouring patches. When using a reasonable receptive field as in Figure 1 (c) we can
see that the cluster assumption is clearly violated: how much the raw pixel content of the
receptive field of one pixel differs from the contents of the receptive field of a neighbouring
pixel has little correlation with whether the patches’ center pixels belong to the same class.

The lack of variation in the patchwise distances is easy to explain from a signal pro-
cessing perspective. With patch of size H×W , the distance map of L2 distances between the
pixel content of overlapping patches centered on all pairs of horizontally neighbouring pixels
can be written as

√
(∆xI)◦2 ∗1H×W , where ∗ denotes convolution and ∆xI is the horizontal

gradient of the input image I. The element-wise squared gradient image is thus low-pass
filtered by a H×W box filter1, which suppresses the fine details found in the high frequency
components of the image, leading to smoothly varying sample density across the image.

Our analysis of the CITYSCAPES dataset quantifies the challenges involved in placing a
decision boundary between two neighbouring pixels that should belong to different classes,

1We explain our derivation in our supplemental material
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Figure 2: Left: histogram of the ratio |Ni−Ai|2/|Pi−Ai|2 of the L2 pixel content inter-class dis-
tance between patches Ai and Ni centred on neighbouring pixels either side of class boundary
to the intra-class distance between nearest neighbour patches Ai and Pi coming from different
images. Right: conceptual illustration of semantic segmentation sample distribution. The
chain of samples (circles) below represents a row of patches from an image changing class
(colour) half-way through. The lighter chain above represents an unlabelled image. The
dashed green line represents a learned decision boundary. The samples within an image are
at a distance of ∼ d from one another and ∼ 3d from those in another image.

while generalizing to other images. We find that the L2 distance between patches centred on
pixels on either side of a class boundary is ∼ 1/3 of the distance to the closest patch of the
same class found in a different image (see Figure 2). This suggests that precise positioning
and orientation of the decision boundary are essential for good performance. We discuss our
analysis in further detail in our supplemental material.

3.2 Consistency regularization without the cluster assumption
When considered in the context of our analysis above, the few reports of the successful
application of consistency regularization to semantic segmentation – in particular the work
of Li et al. [25] – lead us to conclude that the presence of low density regions separating
classes is highly beneficial, but not essential. We therefore suggest an alternative mechanism:
that of using non-isotropic natural perturbations such as image augmentation to constrain the
orientation of the decision boundary to lie parallel to the directions of perturbation (see the
appendix of Athiwaratkun et al. [1]). We will now explore this using a 2D toy example.

Figure 3a illustrates the benefit of the cluster assumption with a simple 2D toy mean
teacher experiment, in which the cluster assumption holds due to the presence of a gap seper-
ating the unsupervised samples that belong to two different classes. The perturbation used
for Lcons is an isotropic Gaussian nudge to both coordinates, and as expected, the learned
decision boundary settles neatly between the two clusters. In Figure 3b the unsupervised
samples are uniformly distributed and the cluster assumption is violated. In this case, the
consistency loss does more harm than good; even though it successfully flattens the neigh-
bourhood of the decision function, it does so also across the true class boundary.

In Figure 3c, we plot the contours of the distance to the true class boundary. If we
constrain the perturbation applied to a sample x such that the perturbed x̂ lies on or very
close to the distance contour passing through x, the resulting learned decision boundary
aligns well with the true class boundary, as seen in Figure 3d. When low density regions are
not present the perturbations must be carefully chosen such that the probability of crossing
the class boundary is minimised.

We propose that reliable semi-supervised segmentation is achievable provided that the
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Isotropic perturbation Constrained perturbation

(a) Low density region (b) No low density (c) Distance map (d) Constrain to dist.
separating classes region and contours map contours

Figure 3: Toy 2D semi-supervised classification experiments. Blue and red circles indicate
supervised samples from class 0 and 1 respectively. The field of small black dots indicate un-
supervised samples. The learned decision function is visualized by rendering the probability
of class 1 in green. (a, b) Semi-supervised learning with and without a low density region
separating the classes. The dotted orange line in (a) shows the decision boundary obtained
with plain supervised learning. (c) Rendering of the distance to the true class boundary with
distance map contours. Strong colours indicate greater distance to class boundary. (d) De-
cision boundary learned when samples are perturbed along distance contours in (c). The
magenta line indicates the true class boundary.

augmentation/perturbation mechanism observes the following guidelines: 1) the perturba-
tions must be varied and high-dimensional in order to sufficiently constrain the orientation
of the decision boundary in the high-dimensional space of natural imagery, 2) the probabil-
ity of a perturbation crossing the true class boundary must be very small compared to the
amount of exploration in other dimensions, and 3) the perturbed inputs should be plausible;
they should not be grossly outside the manifold of real inputs.

Classic augmentation based perturbations such as cropping, scaling, rotation and colour
changes have a low chance of confusing the output class and have proved to be effective
in classifying natural images [23, 41]. Given that this approach has positive results in some
medical image segmentation problems [25, 32], it is surprising that it is ineffective for natural
imagery. This motivates us to search for stronger and more varied augmentations for semi-
supervised semantic segmentation.

3.3 CutOut and CutMix for semantic segmentation
Cutout [13] yielded strong results in semi-supervised classification in UDA [44] and Fix-
Match [38]. The UDA ablation study shows Cutout contributing the lions share of the semi-
supervised performance, while the FixMatch ablation shows that CutOut can match the effect
of the combination of 14 image operations used by CTAugment. DeVries et al. [13] estab-
lished that Cutout encourages the network to utilise a wider variety of features in order to
overcome the varying combinations of parts of an image being present or masked out. This
variety introduced by Cutout suggests that it is a promising candidate for segmentation.

As stated in Section 2.1, CutMix combines Cutout with MixUp, using a rectangular mask
to blend input images. Given that MixUp has been successfully used in semi-supervised
classification in ICT [42] and MixMatch [4], we propose using CutMix to blend unsupervised
samples and corresponding predictions in a similar fashion.

Preliminary experiments comparing the Π-model [23] and the mean teacher model [41]
indicate that using mean teacher is essential for good performance in semantic segmentation,
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therefore all the experiments in this paper use the mean teacher framework. We denote the
student network as fθ and the teacher network as gφ .

Cutout. As in [13] we initialize a mask M with the value 1 and set the pixels inside
a randomly chosen rectangle to 0. To apply Cutout in a semantic segmentation task, we
mask the input pixels with M and disregard the consistency loss for pixels masked to 0 by
M. FixMatch [38] uses a weak augmentation scheme consisting of crops and flips to predict
pseudo-labels used as targets for samples augmented using the strong CTAugment scheme.
Similarly, we consider Cutout to be a form of strong augmentation, so we apply the teacher
network gφ to the original image to generate pseudo-targets that are used to train the student
fθ . Using square distance as the metric, we have Lcons = ||M�( fθ (M�x)−gφ (x))||2, where
� denotes an elementwise product.

CutMix. CutMix requires two input images that we shall denote xa and xb that we mix
with the mask M. Following ICT ([42]) we mix the teacher predictions for the input images
gφ (xa),gφ (xb) producing a pseudo target for the student prediction of the mixed image. To
simplify the notation, let us define function mix(a,b,M) = (1−M)�a+M�b that selects
the output pixel based on mask M. We can now write the consistency loss as:

Lcons =
∣∣∣∣mix

(
gφ (xa),gφ (xb),M

)
− fθ

(
mix(xa,xb,M)

)∣∣∣∣2. (1)

The original formulation of Cutout [13] for classification used a rectangle of a fixed size
and aspect ratio whose centre was positioned randomly, allowing part of the rectangle to lie
outside the bounds of the image. CutMix [45] randomly varied the size, but used a fixed
aspect ratio. For segmentation we obtained better performance with CutOut by randomly
choosing the size and aspect ratio and positioning the rectangle so it lies entirely within the
image. In contrast, CutMix performance was maximized by fixing the area of the rectangle
to half that of the image, while varying the aspect ratio and position.

While the augmentations applied by Cutout and CutMix do not appear in real-life im-
agery, they are reasonable from a visual standpoint. Segmentation networks are frequently
trained using image crops rather than full images, so blocking out a section of the image with
Cutout can be seen as the inverse operation. Applying CutMix in effect pastes a rectangular
region from one image onto another, similarly resulting in a reasonable segmentation task.

Cutout and CutMix based consistency loss are illustrated in our supplemental material.

4 Experiments

We will now describe our experiments and main results. We will start by describing the
training setup, followed by results on the PASCAL VOC 2012, CITYSCAPES and ISIC 2017
datasets. We compare various perturbation methods in the context of semi-supervised se-
mantic segmentation on PASCAL and ISIC.

4.1 Training setup

We use two segmentation networks in our experiments: 1) DeepLab v2 network [7] based
on ImageNet pre-trained ResNet-101 as used in [28] and 2) Dense U-net [24] based on
DensetNet-161 [17] as used in [25]. We also evaluate using DeepLab v3+ [9] and PSPNet
[47] in our supplemental material.
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We use cross-entropy for the supervised loss Lsup and compute the consistency loss Lcons
using the Mean teacher algorithm [41]. Summing Lcons over the class dimension and av-
eraging over others allows us to minimize Lsup and Lcons with equal weighting. Further
details and hyper-parameter settings are provided in supplemental material. We replace the
sigmoidal ramp-up that modulates Lcons in [23, 41] with the average of the thresholded con-
fidence of the teacher network, which increases as the training progresses [15, 20, 38].

4.2 Results on Cityscapes and Augmented Pascal VOC
Here we present our results on two natural image datasets and contrast them against the
state-of-the-art in semi-supervised semantic segmentation, which is currently the adversarial
training approach of Mittal et al. [28]. We use two natural image datasets in our experiments.
CITYSCAPES consists of urban scenery and has 2975 images in its training set. PASCAL
VOC 2012[14] is more varied, but includes only 1464 training images, and thus we follow
the lead of Hung et al. [18] and augment it using SEMANTIC BOUNDARIES[16], resulting in
10582 training images. We adopted the same cropping and augmentation schemes as [28].

In addition to an ImageNet pre-trained DeepLab v2, Hung [18] and Mittal et al. [28] also
used a DeepLabv2 network pre-trained for semantic segmentation on the COCO dataset,
whose natural image content is similar to that of PASCAL. Their results confirm the benefits
of task-specific pre-training. Starting from a pre-trained ImageNet classifier is representative
of practical problems for which a similar segmentation dataset is unavailable for pre-training,
so we opted to use these more challenging conditions only.

Our CITYSCAPES results are presented in Table 1 as mean intersection-over-union (mIoU)
percentages, where higher is better. Our supervised baseline results for CITYSCAPES are
similar to those of [28]. We attribute the small differences to training regime choices such
as the choice of optimizer. Both the Cutout and CutMix realize improvements over the su-
pervised baseline, with CutMix taking the lead and improving on the adversarial[18] and
s4GAN[28] approaches. We note that CutMix performance is slightly impaired when full
size image crops are used getting an mIoU score of 58.75%±0.75 for 372 labelled images.
Using a mixing mask consisting of three smaller boxes – see supplemental material – whose
scale better matches the image content alleviates this, obtaining 60.41%±1.12.

Our PASCAL results are presented in Table 2. Our baselines are considerably weaker
than those of [28]; we acknowledge that we were unable to match them. Cutout and CutMix
yield improvements over our baseline and CutMix – in spite of the weak baseline – takes
the lead, ahead of the adversarial and s4GAN results. Virtual adversarial training [29] yields
a noticable improvement, but is unable to match competing approaches. The improvement
obtained from ICT [42] is just noticable, while standard augmentation makes barely any
difference. Please see our supplemental material for results using DeepLab v3+ [9] and
PSPNet [47] networks.

4.3 Results on ISIC 2017
The ISIC skin lesion segmentation dataset [11] consists of dermoscopy images focused on
lesions set against skin. It has 2000 images in its training set and is a two-class (skin and
lesion) segmentation problem, featuring far less variation than CITYSCAPES and PASCAL.

We follow the pre-processing and augmentation schemes of Li et al. [25]; all images
were scaled to 248×248 and our augmentation scheme consists of random 224×224 crops,
flips, rotations and uniform scaling in the range 0.9 to 1.1.
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Labeled samples ∼1/30 (100) 1/8 (372) 1/4 (744) All (2975)
Results from [18, 28] with ImageNet pretrained DeepLab v2

Baseline — 56.2% 60.2% 66.0%
Adversarial [18] — 57.1% 60.5% 66.2%
s4GAN [28] — 59.3% 61.9% 65.8%

Our results: Same ImageNet pretrained DeepLab v2 network
Baseline 44.41%± 1.11 55.25%± 0.66 60.57%± 1.13 67.53%± 0.35

Cutout 47.21%± 1.74 57.72%± 0.83 61.96%± 0.99 67.47%± 0.68

CutMix 51.20%± 2.29 60.34%± 1.24 63.87%± 0.71 67.68%± 0.37

Table 1: Performance (mIoU) on CITYSCAPES validation set, presented as mean ± std-dev
computed from 5 runs. The results for [18] and [28] are taken from [28].

Labeled samples 1/100 1/50 1/20 1/8 All (10582)
Results from [18, 28] with ImageNet pretrained DeepLab v2

Baseline – 48.3% 56.8% 62.0% 70.7%
Adversarial [18] – 49.2% 59.1% 64.3% 71.4%
s4GAN+MLMT [28] – 60.4% 62.9% 67.3% 73.2%

Our results: Same ImageNet pretrained DeepLab v2 network
Baseline 33.09% 43.15% 52.05% 60.56% 72.59%
Std. augmentation 32.40% 42.81% 53.37% 60.66% 72.24%
VAT 38.81% 48.55% 58.50% 62.93% 72.18%
ICT 35.82% 46.28% 53.17% 59.63% 71.50%
CutOut 48.73% 58.26% 64.37% 66.79% 72.03%
CutMix 53.79% 64.81% 66.48% 67.60% 72.54%

Table 2: Performance (mIoU) on augmented PASCAL VOC validation set, using same splits
as Mittal et al. [28]. The results for [18] and [28] are taken from [28].

We present our results in Table 3. We must first note that our supervised baseline results
are noticably worse that those of Li et al. [25]. Given this limitation, we use our results
to contrast the effects of the different augmentation schemes used. Our strongest semi-
supervised result was obtained using CutMix, followed by standard augmentation, then VAT
and CutOut. We found CutMix to be the most reliable, as the other approaches required more
hyper-parameter tuning effort to obtain positive resutlts. We were unable to obtain reliable
performance from ICT, hence its result is worse than that of the baseline.

We propose that the good performance of standard augmentation – in contrast to PAS-
CAL where it makes barely any difference – is due to the lack of variation in the dataset.
An augmented variant of an unsupervised sample is sufficient similar to other samples in
the dataset to successfully propagate labels, in spite of the limited varation introduced by
standard augmentation.

4.4 Discussion
We initially hypothesized that the strong performance of CutMix on the CITYSCAPES and
PASCAL datasets was due to the augmentation in effect ‘simulating occlusion’, exposing the
network to a wider variety of occlusions, thereby improving performance on natural images.
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Baseline Std. aug. VAT ICT Cutout CutMix Fully sup.
Results from [25] with ImageNet pretrained DenseUNet-161

72.85% 75.31% – – – – 79.60%
Our results: ImageNet pretrained DenseUNet-161

67.64% 71.40% 69.09% 65.45% 68.76% 74.57% 78.61%
± 1.83 ± 2.34 ± 1.38 ± 3.50 ± 4.30 ± 1.03 ± 0.36

Table 3: Performance on ISIC 2017 skin lesion segmentation validation set, measured using
the Jaccard index (IoU for lesion class). Presented as mean± std-dev computed from 5 runs.
All baseline and semi-supervised results use 50 supervised samples. The fully supervised
result (’Fully sup.’) uses all 2000.

This was our motivation for using the ISIC 2017 dataset; its’ images do not feature occlusions
and soft edges dilineate lesions from skin[31]. The strong performance of CutMix indicates
that the presence of occlusions is not a requirement.

The success of virtual adversarial training demonstrates that exploring the space of ad-
versarial examples provides sufficient variation to act as an effective semi-supervised regu-
larizer in the challenging conditions posed by semantic segmentation. In contrast the small
improvements obtained from ICT and the barely noticable difference made by standard aug-
mentation on the PASCAL dataset indicates that these approaches are not suitable for this
domain; we recommend using a more varied source or perturbation, such as CutMix.

5 Conclusions
We have demonstrated that consistency regularization is a viable solution for semi-supervised
semantic segmentation, provided that an appropriate source of augmentation is used. Its
data distribution lacks low-density regions between classes, hampering the effectiveness of
augmentation schemes such as affine transformations and ICT. We demonstrated that richer
approaches can be successful, and presented an adapted CutMix regularizer that provides
sufficiently varied perturbation to enable state-of-the-art results and work reliably on natural
image datasets. Our approach is considerably easier to implement and use than the previous
methods based on GAN-style training.

We hypothesize that other problem domains that involve segmenting continuous signals
given sliding-window input – such as audio processing – are likely to have similarly chal-
lenging distributions. This suggests mask-based regularization as a potential avenue.

Finally, we propose that the challenging nature of the data distribution present in se-
mantic segmentation indicates that it is an effective acid test for evaluating future semi-
supervised regularizers.
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SUPPLEMENTAL MATERIAL

A Pascal VOC 2012 performance across network
architectures

We demonstrate the effectiveness of our approach using a variety of architectures on the
PASCAL dataset in Table 4. Using an ImageNet pre-trained DeepLab v3+ our baseline and
semi-supervised results are stronger than those of [28].
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Prop. Labels 1/100 1/50 1/20 1/8 Full (10582)
Results from [18, 28] with ImageNet pretrained DeepLab v2

Baseline – 48.3% 56.8% 62.0% 70.7%
Adversarial [18] – 49.2% 59.1% 64.3% 71.4%
s4GAN+MLMT [28] – 60.4% 62.9% 67.3% 73.2%

Our results: Same ImageNet pretrained DeepLab v2 network
Baseline 33.09% 43.15% 52.05% 60.56% 72.59%
CutMix 53.79% 64.81% 66.48% 67.60% 72.54%

Results from [28] with ImageNet pretrained DeepLab v3+
Baseline – unstable unstable 63.5% 74.6%
s4GAN+MLMT [28] – 62.6% 66.6% 70.4% 74.7%

Our results: ImageNet pretrained DeepLab v3+ network
Baseline 37.95% 48.35% 59.19% 66.58% 76.70%
CutMix 59.52% 67.05% 69.57% 72.45% 76.73%

Our results: ImageNet pretrained DenseNet-161 based Dense U-net
Baseline 29.22% 39.92% 50.31% 60.65% 72.30%
CutMix 54.19% 63.81% 66.57% 66.78% 72.02%

Our results: ImageNet pretrained ResNet-101 based PSPNet
Baseline 36.69% 46.96% 59.02% 66.67% 77.59%
CutMix 67.20% 68.80% 73.33% 74.11% 77.42%

Table 4: Performance (mIoU) on augmented PASCAL VOC validation set across a variety of
architectures, using same splits as Mittal et al. [28]. The results for [18] and [28] are taken
from [28].

B Smoothly varying sample density in semantic
segmentation

B.1 Derivation of signal processing explanation

In this section we explain the derivation of our signal-processing based explanation of the
lack of low-density regions in semantic segmentation problems.

To analyse the smoothness of the distribution of patches over an image we need to com-
pute the L2 pixel content distance between patches centred on neighbouring pixels. Let us
start with two patches A and B – see Figure 4(a,b) – extracted from an image I, centred on
horizontally neighbouring pixels, with A one pixel to the left of B. The L2 distance is |B−A|.
Given that each pixel in B−A is the difference between horizontally neighbouring pixels,
B−A is therefore a patch extracted from the horizontal gradient image ∆xI (see Figure 4(c)).
The squared distance is the sum of the element-wise squares of B−A; it is the sum of the
elements in a patch extracted from (∆xI)◦2. Computing the sums of all patches of size H×W
in a sliding window fashion across (∆xI)◦2 is equivalent to convolving it with a box kernel
1H×W , thus the distance between all horizontally neighbouring patches can be computed us-
ing

√
(∆xI)◦2 ∗1H×W . A box filter – or closely related uniform filter – is a low-pass filter

that will suppress high-frequency details, resulting in a smooth output. This is implemented
in a Jupyter notebook [22] that is distributed with our code.
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(a) Patch A (b) Patch B (c) Patch from ∆xI

Figure 4: (a, b) Two patches centred on horizontally neighbouring pixels, extracted from
the Cityscapes Image in Figure 1(a). The ground truth vegetation class is overlayed in green.
The red dot indicates the central pixel. (c) The same patch extracted from the horizontal
gradient image.

B.2 Analysis of patch-to-patch distances within Cityscapes

Our analysis of the CITYSCAPES indicates that semantic segmentation problems exhibit high
intra-class variance and low inter-class variance. We chose 1000 image patch triplets each
consisting of an anchor patch Ai and positive Pi and negative Ni patches with the same and
different ground truth classes as Ai respectively. We used the L2 pixel content intra-class
distance |Pi−Ai|2 and inter-class distance |Ni−Ai|2 as proxies for variance. Given that a
segmentation model must place a decision boundary between neighbouring pixels of differ-
ent classes within an image we chose Ai and Ni to be immediate neighbours on either side
of a class boundary. As the model must also generalise from a labelled images to unlabelled
images we searched all images except that containing Ai for the Pi belonging to the same
class that minimises |Pi−Ai|2. Minimising the distance chooses the best case intra-class
distance over which the model must generalise. The inter-class to intra-class distance ratio
histogram on the left of Figure 2 underlies the illustration to the right in which the blue intra-
class distance is approximately 3× that of the red inter-class distance. The model must learn
to place the decision boundary between the patches centred on neighbouring pixels, while
orienting it sufficiently accurately that it intersects other images at the correct points.

C Setup: 2D toy experimnents

The neural networks used in our 2D toy experiments are simple classifiers in which samples
are 2D x,y points ranging from -1 to 1. Our networks are multi-layer perceptrons consisting
of 3 hidden layers of 512 units, each followed by a ReLU non-linearity. The final layer is a
2-unit classification layer. We use the mean teacher [41] semi-supervised learning algorithm
with binary cross-entropy as the consistency loss function, a consistency loss weight of 10
and confidence thresholding [15] with a threshold of 0.97.

The ground truth decision boundary was derived from a hand-drawn 512×512 pixel im-
age. The distance map shown in Figure 3(c) was computed using the scipy.ndimage.
morphology.distance_transform_edt function from SciPy [43], with distances
negated for regions assigned to class 0. Each pixel in the distance map therefore has a signed
distance to the ground truth class boundary. This distance map was used to generate the
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countours seen as lines in Figure 3(c) and used to support the constrained consistency regu-
larization experiment illustrated in Figure 3(d).

The constrained consistency regularization experiment described in Section 3.2 required
that a sample x should be perturbed to x̂ such that they are at the same — or similar —
distance to the ground truth decision boundary. This was achieved by drawing isotropic
perturbations from a normal distrubtion x̂ = x+h where h∼N (0,0.117) (0.117≈ 30 pixels
in the source image), determining the distances m(x) and m(x̂) from x and x̂ to the ground
truth boundary (using a pre-computed distance map) and discarding the perturbation – by
masking consistency loss for x to 0 – if |m(x̂)−m(x)| > 0.016 (0.016 ≈ 4 pixels in the
source image).

D Semantic segmentation experiment setup

D.1 Adapting semi-supervised classification algorithms for
segmentation

In the main paper we explain how we adapted Cutout [13] and CutMix [45] for segmentation.
Here we will discuss our approach to adapting standard augmentation, Interpolation Consis-
tency Training (ICT) and Virtual Adversarial Training (VAT). We note that implementations
of all of these approaches are supplied with our source code.

D.1.1 Standard augmentation

Our standard augmentation based consistency loss uses affine transformations to modify un-
supervised images. Applying different affine transformations within the teacher and student
paths results in predictions that not aligned. An appropriate affine transformation must be
used to bring them into alignment. To this end, we follow the approch used by Perone et
al. [32] and Li et al. [25]; the original unaugmented image x is passed to the teacher network
gφ producting predictions gφ (x), aligned with the original image. The image is augmented
with an affine transformation a(·): x̂ = a(x), which is passed to the student network fθ pro-
ducting predictions fθ (a(x)). The same transformation is applied to the teacher prediction:
a(gφ (x)). The two predictions are now geometrically aligned, allowing consistency loss to
be computed.

At this point we would like to note some of the challenges involved in the implementa-
tion. A natural approach would be to use a single system for applying affine transformations,
e.g. the affine grid functionality provided by PyTorch [10]; that way both the input images
and the predictions can be augmented using the same transformation matrices. We how-
ever wishe to exactly match the augmentation system used by Hung et al. [18] and Mittal
et al. [28], both of which use functions provided by OpenCV [5]. This required gathering
a precise understanding of how the relevant functions in OpenCV generate and apply affine
transformation matrices in order to match them using PyTorch’s affine grid functionality, that
must be used to transform predictions.

D.1.2 Interpolation consistency training

ICT was the simplest approach to adapt. We follow the procedure in [42], except that our
networks generate pixel-wise class probability vectors. These are blended and loss is com-
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Figure 5: Illustration of mixing regularization for semi-supervised semantic segmentation
with the mean teacher framework. fθ and gφ denote the student and teacher networks, re-
spectively. The arbitrary mask M is omitted from the argument list of function mix for
legibility.

puted from them in the same fashion as [42]; the only different is that the arrays/tensors have
additional dimensions.

D.1.3 Virtual Adversarial Training

Following the notation of Oliver et al. [30], in a classification scenario VAT computes the
adversarial perturbation radv as:

r ∼N (0,
ξ√

dim(x)
I)

g = ∇rd( fθ (x), fθ (x+ r))

radv = ε
g
||g||

We adopt exactly the same approach, computing the adversarial perturbation that max-
imises the mean of the change in class prediction for all pixels of the output.

We scale the adversarial radius ε adaptively on a per-image basis by multiplying it by
the magnitude of the gradient of the input image. We find that a scale of 1 works well and
used this in our experiments. We also tried using a fixed value for ε – as normally used
in VAT – and found that doing so caused a slight but statistically insignificant reduction in
performance. We therefore recommend the adaptive radius on the basis of ease of use. It is
implemented in our source code.

D.2 Illustration of computation of CutMix and Cutout
We illustrate the computation of CutMix based consistency loss Lcons in Figure 5 and Cutout
consistency loss in Figure 6.
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Figure 6: Illustration of Cutout regularization for semi-supervised semantic segmentation
with the mean teacher framework. Note that we include additional detail in final steps of
the computation of Lcons in comparison to Figure 5 in order to illustrate the masking of the
consistency loss.

D.3 CutMix with full-sized crops on CITYSCAPES

As stated in our main text, when using the CITYSCAPES dataset, using full size image crops
– 1024×512 rather than the usual 512×256 – impairs the performance of semi-supervised
learning using CutMix regularization, reducing the mIoU score from 60.34%± 1.24 to
58.75%±0.75. We believe that optimal performance is obtained when the scale of the ele-
ments in the mixing mask are appropriately matched to the scale of the image content. We
can alleviate this reduction in perofmrnace by constructing our mixing mask by randomly
choosing three smaller boxes whose area is 1/3 of that used for one box (the normal case).
Given that a CutMix mask consisting of a single box uses a box that covers 50% of the image
area (but with random aspect ratio and position), the three boxes each cover 1/6 of the image
area. The masks for the three boxes are combined using an xor operation. Figure 7 contrast
mixing with one-box and three-box masks.

D.4 Training details

D.4.1 Using ImageNet pre-trained DeepLab v2 architecture for Cityscapes and
Pascal VOC 2012

We use the Adam [21] optimization algorithm with a learning rate of 3× 10−5. As per
the mean teacher algorithm [41], after each iteration the weights wt of the teacher network
are updated to be the exponential moving average of the weights ws of the student: wt =
αtwt +(1−αt)ws, where αt = 0.99.

The CITYSCAPES images were downsampled to half resolution (1024× 512) prior to
use, as in [18]. We extracted 512× 256 random crops, applied random horizontal flipping
and used a batch size of 4, in keeping with [28].

For the PASCAL VOC experiments, we extracted 321× 321 random crops, applied a
random scale between 0.5 and 1.5 rounded to the nearest 0.1 and applyed random horzontal
flipping. We used a batch size of 10, in keeping with [18].

We used a confidence threshold of 0.97 for all experiments. We used a consistency loss
weight of 1 for both CutOut and CutMix, 0.003 for standard augmentation, 0.01 for ICT and
0.1 for VAT.
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Image A Image B

Mask with one box Mask with three boxes combined using xor

Mix of A and B using one box Mix of A and B using three boxes

Figure 7: CutMix using a one-box mask vs a three-box mask when using full image size
crops from Cityscapes.

Hyper-parameter tuning was performed by evaluating performance on a hold-out valida-
tion set whose samples were drawn from the PASCAL training set.

We trained for 40,000 iterations for both datasets. We also found that identical hyper-
parameters worked well for both using DeepLab v2.

D.4.2 Using ImageNet pre-trained DenseUNet for ISIC 2017

All images were scaled to 248×248 using area interpolation as a pre-process step. Our aug-
mentation scheme consists of random 224× 224 crops, flips, rotations and uniform scaling
in the range 0.9 to 1.1.

In contrast to [25] our standard augmentation based experiments allow the samples pass-
ing through the teacher and student paths to be arbitrarily rotated and scaled with respect
to one another (within the ranges specified above), where as [25] use rotations of integer
multiples of 90 degrees and flips.

All of our ISIC 2017 experiments use SGD with Nesterov momentum [40] (momentum
value of 0.9) with a learning rate of 0.05 and weight decay of 5× 10−4. For Cutout and
CutMix we used a consistency weight of 1, for standard augmentation 0.1 and for VAT 0.1.

We would like to note that scaling the shortest dimension of each image to 248 pix-
els while preserving aspect ratio reduced performance; the non-uniform scale in the pre-
processing step acts as a form of data augmentation.
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Architecture Learning rate
DeepLab v2 3×10−5

DeepLab v3+ 1×10−5

DenseNet-161 based Dense U-net 3×10−4

ResNet-101 based PSPNet 1×10−4

Table 5: Learning rates used for different architectures, for the Pascal VOC 2012 dataset.
All networks used pretrained weights for ImageNet classification.

D.4.3 Different architectures for augmented Pascal VOC 2012

We found that different network architectures gave the best performance using different
learning rates, presented in Table 5.

We used the MIT CSAIL implementation2 of ResNet-101 based PSPNet [47]. We had
to modify3 their code in order to use our loss functions. We note that we did not use the
auxiliary loss from [47], known as the deep supervision trick in the MIT CSAIL GitHUb
repository.

D.4.4 Confidence thresholding

[15] apply confidence thresholding, in which they mask consistency loss to 0 for samples
whose confidence as predicted by the teacher network is below a threshold of 0.968. In
the context of segmentation, we found that this masks pixels close to class boundaries as
they usually have a low confidence. These regions are often large enough to encompass
small objects, preventing learning and degrading performance. Instead we modulate the
consistency loss with the proportion of pixels whose confidence is above the threshold. This
values grows throughout training, taking the place of the sigmoidal ramp-up used in [23, 41].

D.4.5 Consistency loss with squared error

Most implementations of consistency loss that use squared error (e.g. [41]) compute the
mean of the squared error over all dimensions. In contrast we sum over the class probability
dimension and computing the mean over the spatial and batch dimensions. This is more
in keeping with the definition of other loss functions use with probability vectors such as
cross-entropy and KL-divergence. We also found that this reduces the necessity of scaling
the consistency weight with the number of classes; as is required then taking the mean over
the class probability dimension [41].

2Available at https://github.com/CSAILVision/semantic-segmentation-pytorch.
3Our modified version can be found in the logits-from-models branch of https://github.com/

Britefury/semantic-segmentation-pytorch.
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