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Abstract

Background: Transposable elements are significant components of most organism’s genomes, yet the reasons why
their abundances vary significantly among species is poorly understood. A recent study has suggested that even in
the absence of traditional molecular evolutionary explanations, transposon proliferation may occur through a process
known as ‘transposon engineering’. However, their model used a fixed beneficial transposon insertion frequency of
20%, which we believe to be unrealistically high.

Results: Reducing this beneficial insertion frequency, while keeping all other parameters identical, prevented
transposon proliferation.

Conclusions: We conclude that the author’s original findings are better explained through the action of positive
selection rather than ‘transposon engineering’, with beneficial insertion effects remaining important during
transposon proliferation events.
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Background
Transposable elements (TEs) are short regions of non-
coding DNA (100-10,000 bp) which can proliferate
throughout a genome, and are significant genomic com-
ponents of a taxonomically diverse range of species
[1–3]. Understanding the processes which drive TE vari-
ation across different species is an important goal in
answering the so-called ‘C-value’ paradox (the observed
lack of relationship between genome size and organismal
complexity) [4]. TEs are thought to accumulate within
a population through a number of evolutionary mecha-
nisms which include (i) positive selection, (ii) genetic drift,
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(iii) co-evolution with the host, (iv) sexual recombination
or (v) horizontal transfer. Kremer et al. [5] investigated
the fate of TE populations where none of these popula-
tion genetic scenarios were possible [5]. Using in-silico
modelling, the authors established an asexual population
where (i) TE insertions had serious negative effects on
host fitness, (ii) TEs could not evolve insertion site prefer-
ences (i.e. no co-evolution with the host) and (iii) TEs were
not able to be horizontally transferred. Surprisingly, even
in the absence of these evolutionary forces, TEs accumu-
lated in a limited number (3%) of scenarios. The authors
concluded that these rare accumulation events may be
explained through ‘TE engineering’; a process in which
the activity of TEs significantly alters the landscape of a
genome to facilitate further proliferation. Specifically, they
suggest that the cycle of TE proliferation and degradation
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may provide new non-coding regions in which future
TEs can insert with little or no consequence on host fit-
ness. Changes in TE abundance which occur through their
interactions with either the host genome or other trans-
posons comprise a poorly studied field known as ‘TE
ecology’ [6, 7]. Consequently, Kremer et al. [5] appears to
have identified a novel mechanism for TE proliferation,
with important implications regarding our understanding
of TE dynamics.
Here, we highlight some potential issues which ques-

tion the key findings of Kremer et al’s study. They claim
that their simulations model TE insertions which do not
have any beneficial effects on host fitness; crucially ruling
out positive selection as an explanation for TE accumula-
tion. However, there was a lack of clarity on the precise
meaning of ‘no beneficial effects’, with three explanations
on the effects of TE insertions given in their paper. These
were: (i) ‘TEs had a net deleterious effect on host fitness’,
(ii) TEs had ‘serious negative effects on host fitness’ or,
(iii) ‘violated the assumption that TE insertions are bene-
ficial’. A model in which TE activity had a net deleterious
effect could mean that only a very small majority of TE
insertions reduce host fitness. Such a model would violate
the author’s own assumption that TE insertions cannot
be beneficial, with fitness increases still occurring during
a significant number of insertions. Greater clarity on this
issue would have been beneficial in order to help validate
the legitimacy of Kremer et al’s conclusions.
The final model used in Kremer et al. [5] included a

fixed parameter which simulates amildly beneficial fitness
effect (Insertion_effect) during 20% of all TE insertions.
Crucially, setting an insertion benefit at this level is not
consistent with the author’s own conclusion that positive
selection is not responsible for driving the TE accumula-
tion events observed. Theoretically, the level of beneficial
TE insertions may not have to be very high for their
gradual accumulation. The fact that original TE copies
are frequently retained in the genome (i.e. progeny dis-
tribution >1) can provide a buffer to their abundance,
even if the majority of new insertions are deleterious.
This has been demonstrated in other simple TE dynamic
models, whereby increasing the adaptive insertion prob-
ability to 0.05% is sufficient to permit TE domestication
through positive selection [8]. In this study, we repeated
Kremer et al’s [5] simulations, but explicitly defined ’no
beneficial insertion effect’ to mean there was no scenario
in which TE insertions could generate an increase in host
fitness, thus definitely ruling out positive selection as a
potential mechanism for TE proliferation.

Methods
To test whether removing the positive TE insertion effect
altered their ability to accumulate, we reanalysed the six
parameter scenarios from Kremer et al. [5] where in the

majority of cases TEs persisted for the 1,500 genera-
tion cut off set by the authors (Table 1). We did not
change the percentage of TE insertions which led to
lethal deleterious (20%) or mildly deleterious (30%) fit-
ness effects. Instead we increased the probability that a
TE insertion was neutral (i.e generating no change in
host fitness) from 30% to 50%. All other model param-
eters remained identical. Following Kremer et al., we
then repeated each simulation three times independently,
which were plotted using the ‘ggplot2’ package in R v3.5.1
[9].

Results
In our reanalysis, we found that across each of the six
parameter scenarios, TEs were better able to accumulate
when the model included a beneficial TE insertion effect
(Fig. 1). Indeed, in the 18 iterations we ran, TEs only accu-
mulated in a single instance when the beneficial insertion
effects were removed (Run 3 of LLLH-LHHL). We also
investigated the frequency of beneficial TE insertions that
would be required for TE accumulation. To do this, we
chose a parameter scenario in which Kremer et al. found
TEs to accumulate in every run (namely LLLH-LLHH).
When the beneficial TE insertion effect was reduced to 0
(from 20%), the TE population did not proliferate, becom-
ing extinct in under 400 generations in every iteration.We
also ran simulations where TE insertions increased host
fitness 1%, 5%, 10% and 15% of the time. While this led
to incremental increases in TE accumulation, none of the
simulations lasted 1,500 generations (Fig. 2). We therefore
conclude that under this TE dynamic model, a significant
positive insertion effect is required for TE accumulation
in almost all cases.

Discussion
Overall, our findings suggest that Kremer et al’s [5] key
conclusion of TE accumulation in a significant number
of cases can largely be explained by the high benefi-
cial insertion frequency used by the authors. When we
removed this effect, TEs did not persist in the overwhelm-
ing majority of scenarios. We therefore suggest that the
author’s original finding of TE accumulation would have
been better explained by the action of positive selection
instead of a ‘TE engineering’ process. The 20% beneficial
insertion effect set by the authors is likely to be a sig-
nificant overestimate compared to what may be observed
in reality. Whilst estimating the frequency of beneficial
insertion effects remains difficult, a recent genome-wide
scan of 14,384 human TE polymorphisms concluded that
just 1.13% (163) were under positive selection [10]. The
true frequency of beneficial TE insertions is likely to
be even lower, as many highly deleterious or neutral
TEs will lie undetected as they are removed from the
genome. Interestingly, we did identify a single combina-
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Table 1 The parameter scenarios where Kremer et al. [5] reported TE accumulation in the majority of cases

TE Properties Host Properties Parameter Scenario

TE
Progeny

TE Excision
Rate

TE Death
Rate

Insertion
Bias

Corrected
Mutation
Rate

Non-Coding
DNA

Mutation
Effect

Carrying
Capacity

High Low Low Low Low High Low High HLLL - LHLH

Low Low High High Low High High High LLHH - LHHH

Low Low Low High Low High High Low LLLH - LHHL

Low Low Low High Low Low High High LLLH - LLHH

Low Low Low Low Low High High High LLLL - LHHH

Low Low Low Low Low Low High Low LLLL - LLHL

tion of parameters in which TEs did accumulate without
exhibiting any beneficial fitness effect; namely when TE
progeny and excision rate is low, TEs display high inser-
tion bias, and the degree of non-coding regions in the
genome are high. This may provide an interesting avenue
for understanding genomic characteristics where TEsmay
accumulate in the absence of positive selection. Many TEs
display both an insertion site bias [11, 12] and variable TE

activity rates (a product of both TE excision and progeny
rates) within the lifetime of a cell [13]. Finally, we wish
to emphasise that we are not suggesting that TE ecology
explanations should be ruled out when trying to under-
stand the reasons for TE accumulation. On the contrary,
when exploring potential hypotheses for TE prolifera-
tion it is important to realise that both evolutionary and
ecology processes are likely to occur concurrently.

Fig. 1 TE population dynamics for each of the six parameters where Kremer et al. [5] reported TE accumulation in the majority of cases. Beneficial TE
insertions were set at either 0% or 20%. When beneficial insertion effects were excluded from the model, TEs failed to proliferate in all but one case
(Run 3 of LLLH-LHHL)
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Fig. 2 TE population dynamics when the beneficial insertion frequency were set at 0%, 1%, 5%, 10%, 15% and 20% respectively. TEs were only able
to accumulate for 1,500 generations when the positive insertion frequency was set at 20%. In all other scenarios TE extinction occurred before the
simulation ran to completion. The parameter setting for this iteration was LLLH-LLHH
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