Improving automated sonar video analysis to notify about jellyfish blooms

Gorpincenko, Artjoms, French, Geoffrey, Knight, Peter, Challis, Mike and Mackiewicz, Michal ORCID: (2021) Improving automated sonar video analysis to notify about jellyfish blooms. IEEE Sensors Journal, 21 (4). pp. 4981-4988. ISSN 1558-1748

Full text not available from this repository. (Request a copy)


Human enterprise often suffers from direct negative effects caused by jellyfish blooms. The investigation of a prior jellyfish monitoring system showed that it was unable to reliably perform in a cross validation setting, i.e. in new underwater environments. In this paper, a number of enhancements are proposed to the part of the system that is responsible for object classification. First, the training set is augmented by adding synthetic data, making the deep learning classifier able to generalise better. Then, the framework is enhanced by employing a new second stage model, which analyzes the outputs of the first network to make the final prediction. Finally, weighted loss and confidence threshold are added to balance out true and false positives. With all the upgrades in place, the system can correctly classify 30.16% (comparing to the initial 11.52%) of all spotted jellyfish, keep the amount of false positives as low as 0.91% (comparing to the initial 2.26%) and operate in real-time within the computational constraints of an autonomous embedded platform.

Item Type: Article
Uncontrolled Keywords: deep learning,jellyfish quantification,object classification,sonar imagery,underwater monitoring,instrumentation,electrical and electronic engineering ,/dk/atira/pure/subjectarea/asjc/3100/3105
Faculty \ School: Faculty of Science > School of Computing Sciences
UEA Research Groups: Faculty of Science > Research Groups > Colour and Imaging Lab
Faculty of Science > Research Groups > Collaborative Centre for Sustainable Use of the Seas
Related URLs:
Depositing User: LivePure Connector
Date Deposited: 12 Jan 2021 00:54
Last Modified: 20 Jul 2024 06:31
DOI: 10.1109/JSEN.2020.3032031

Actions (login required)

View Item View Item