
1. Introduction
Observational evidence plays an essential role in our understanding of the climate, the causes of the ob-
served changes and distance traveled along predicted future trajectories. Compilations of near-surface tem-
perature measurements, as traditionally measured over land in shielded enclosures and at sea by ships and 
buoys, as well as multidecadal temperature records derived from these compilations, are a core reposito-
ry of information underpinning our understanding of a changing climate. Here we present an update to 
one such assessment, the Met Office Hadley Centre/Climatic Research Unit (HadCRUT) data set (version 
HadCRUT.5.0.0.0, referred to hereafter as HadCRUT5), incorporating additional measurements, improved 

Abstract We present a new version of the Met Office Hadley Centre/Climatic Research Unit global 
surface temperature data set, HadCRUT5. HadCRUT5 presents monthly average near-surface temperature 
anomalies, relative to the 1961–1990 period, on a regular 5° latitude by 5° longitude grid from 1850 to 
2018. HadCRUT5 is a combination of sea-surface temperature (SST) measurements over the ocean from 
ships and buoys and near-surface air temperature measurements from weather stations over the land 
surface. These data have been sourced from updated compilations and the adjustments applied to mitigate 
the impact of changes in SST measurement methods have been revised. Two variants of HadCRUT5 have 
been produced for use in different applications. The first represents temperature anomaly data on a grid 
for locations where measurement data are available. The second, more spatially complete, variant uses 
a Gaussian process based statistical method to make better use of the available observations, extending 
temperature anomaly estimates into regions for which the underlying measurements are informative. 
Each is provided as a 200-member ensemble accompanied by additional uncertainty information. The 
combination of revised input data sets and statistical analysis results in greater warming of the global 
average over the course of the whole record. In recent years, increased warming results from an improved 
representation of Arctic warming and a better understanding of evolving biases in SST measurements 
from ships. These updates result in greater consistency with other independent global surface temperature 
data sets, despite their different approaches to data set construction, and further increase confidence in 
our understanding of changes seen.

Plain Language Summary We have produced a new version of a data set that measures 
changes of near-surface temperature across the globe from 1850 to 2018, called HadCRUT5. We have 
included an improved data set of sea-surface temperature, which better accounts for the effects of 
changes through time in how measurement were made from ships and buoys at sea. We have also 
included an expanded compilation of measurements made at weather stations on land. There are two 
variations of HadCRUT5, produced for different uses. The first, the “HadCRUT5 noninfilled data set,” 
maps temperature changes on a grid for locations close to where we have measurements. The second, 
the “HadCRUT5 analysis,” extends our estimates to locations further from the available measurements 
using a statistical technique that makes use of the spatial connectedness of temperature patterns. This 
improves the representation of less well observed regions in estimates of global, hemispheric and regional 
temperature change. Together, these updates and improvements reveal a slightly greater rise in near-
surface temperature since the nineteenth century, especially in the Northern Hemisphere, which is more 
consistent with other data sets. This increases our confidence in our understanding of global surface 
temperature changes since the mid-19th century.
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understanding of nonclimatic effects associated with an ever-changing measurement network, and updated 
gridding methods.

Global near-surface temperature analyses, based on a combination of air temperature observations over 
land with sea-surface temperature (SST) observations, are among the longest instrumental records of cli-
mate change and variability. They are routinely used in assessments of the state of the climate (e.g., Blunden 
& Arndt, 2019). They underpin our understanding of multidecadal to centennial changes and the causes of 
those changes (e.g., Hartmann et al., 2013) and are a key metric against which climate change policy deci-
sions are made and progress against international agreements is measured (e.g., Allen et al., 2018).

Analyses of multidecadal temperature changes based on instrumental evidence are subject to uncertainty. 
Assessments of uncertainty and the influence of nonclimatic factors on observations are necessary to un-
derstand the evolution of near-surface temperature throughout the instrumental period. Known sources 
of uncertainty include spatial and temporal sampling of the globe (Brohan et al., 2006; Jones et al., 1997), 
changes in measurement practice and instrumentation (Kent et al., 2017; Parker 1994), siting of observing 
stations and the effects of changes in their nearby environment (Menne et al., 2018; Parker 2006), and basic 
measurement error.

Since the release of the predecessor of the data set presented here, HadCRUT4 (Morice et al., 2012), new 
analyses of near-surface temperature have been undertaken, and with them understanding has improved 
of deficiencies in the observing network and in analysis methods. This has led to updates to analyses with 
long pedigrees (Lenssen et al., 2019; Zhang et al., 2019), the arrival of new and independent analyses (Ro-
hde & Hausfather, 2020; Rohde, Muller, Jacobsen, Muller, et al., 2013; Rohde, Muller, Jacobsen, Perlmutter, 
et al., 2013; Yun et al., 2019), and related studies (Benestad et al., 2019; Ilyas et al., 2017; Kadow et al., 2020).

Efforts to consolidate archives of instrumental air temperature series under the auspices of the Internation-
al Surface Temperature Initiative (ISTI; Rennie et al., 2014) have greatly increased the availability of mete-
orological station series. The resulting ISTI databank underpins the updated GHCNv4 air temperature data 
set (Menne et al., 2018) and regional subsets of station series from the ISTI databank have been selectively 
included in updates to the CRUTEM4 and CRUTEM5 data sets (Jones et al., 2012; Osborn et al., 2021). 
These improved data holdings have increased observational coverage of regions that were previously poorly 
represented, including the rapidly warming high northern latitudes.

Rohde, Muller, Jacobsen, Muller, et al. (2013) and Rohde, Muller, Jacobsen, Perlmutter, et al. (2013) intro-
duced a new land air temperature analysis developed independently of preexisting studies. This analysis 
included a new method for bias-adjusting station records, a process that is commonly known as homoge-
nization, and combined estimation of homogenization adjustments with an independently developed spa-
tial analysis method. The study has since been extended to include analysis of HadSST3 SSTs (Kennedy 
et al., 2011a, 2011b) to produce a merged land-sea data product (Rohde & Hausfather, 2020).

A key uncertainty for estimating long-term change is that associated with corrections for systematic errors 
in SST measurements. Comparisons of long historical SST data sets (Kent et al., 2017) showed that there 
were differences between SST data sets which were larger than the estimated uncertainties. A compari-
son to modern “instrumentally homogeneous” data sets by Hausfather et al. (2017), found that HadSST3 
(Kennedy et al., 2011a, 2011b) and COBE-SST-2 (Hirahara et al., 2014) underestimated recent warming. 
Cowtan et al. (2018) compared SST products to coastal weather stations highlighting discrepancies between 
temperature trends in land and ocean data sets. Carella et al. (2018) used characteristic daily cycles in SST 
measurements to infer how the measurements were made and showed that previous assumptions underes-
timated the prevalence of engine-room measurements.

Freeman et al. (2017) compiled release 3.0 of the International Comprehensive Ocean Atmosphere Data 
Set (ICOADS) including newly digitized data. Two long-term historical SST analyses, HadSST and ERSST, 
which are based on ICOADS, have been updated using this new release. ERSST has gone through two up-
dates—version 4 (Huang et al., 2016) and 5 (Huang et al., 2017)—which extended bias adjustments to the 
whole SST record, implemented improvements to the analysis, and quantified uncertainty. HadSST.4.0.0.0 
(Kennedy et al., 2019) revisited the bias adjustments applied to the data, using oceanographic measure-
ments to understand and reduce some of the key uncertainties in HadSST3.
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Recent updates to instrumental near-surface temperature data products have brought improvements in 
their assessment of uncertainty, and in provision of uncertainty information for use in onward analy-
ses. Ensemble uncertainty assessments have become commonplace in air temperature data sets (Menne 
et al., 2018; Morice et al., 2012) and SST data sets (Huang et al., 2016, 2019; Kennedy et al., 2011b, 2019).

The NOAAGlobalTemp version 5 analysis (Huang et al., 2019; Zhang et al., 2019) updates previous NOAA 
analyses (Smith et al., 2008) by bringing together updates to underpinning data holdings over land (Menne 
et al., 2018) and merges the expanded land data holdings of GHCNv4 with the updated ERSSTv5 data set. 
An ensemble uncertainty assessment is included (Huang et al., 2019), sampling the uncertainty in para-
metric choices in the SST adjustments procedure, the station series homogenization algorithm (Menne 
et al., 2018) and the spatial analysis method used.

The NASA Goddard Institute for Space Studies GISTEMPv4 analysis (Lenssen et al., 2019) introduces an 
updated uncertainty assessment, applying the GISTEMP spatial analysis methods to the 100-member GH-
CNv4 ensemble of homogenized station series and basing SST uncertainty assessments on the ERSSTv4 en-
semble. Additional uncertainty associated with the production of spatial analyses from incomplete station 
data is assessed by subsampling reanalysis fields from a selection of modern reanalyzes.

The coverage of instrumental records of near-surface temperature changes is characterized by often sparse 
and nonuniform sampling of the globe. Assessments of uncertainty in global and regional average tem-
perature changes have found that sparse data coverage is the most prominent source of uncertainty over 
monthly to decadal timescales (Brohan et al., 2006; Morice et al., 2012), outweighing uncertainty arising 
from changes in observing methods. Recent studies have also shown that poor representation of some re-
gions, notably the rapidly warming high northern latitudes, may have contributed to an underestimation of 
globally averaged temperature changes in recent years (Cowtan & Way, 2014; Karl et al., 2015).

While efforts have been made to increase data coverage in the CRUTEM4 and now CRUTEM5 data sets 
through inclusion of additional meteorological station data in less well-observed regions (Jones et al., 2012; 
Osborn et al., 2021) and marine data holdings have been expanded to include recently digitized marine 
reports (Freeman et al., 2017), statistical analysis methods were not used in HadCRUT4 or its underpinning 
land and marine data sets to infer temperature changes in regions where measurements are not available. 
An independent application of local statistical interpolation methods to HadCRUT4, in a study by Cowtan 
and Way (2014), found that statistically infilled reconstructions showed recent warming over high latitude 
regions that is not proportionately represented in global mean temperatures calculated from the noninfilled 
HadCRUT4 data set. The study also included an analysis that used satellite-based upper air temperature 
estimates as a proxy for near-surface temperature variability in the gaps in data coverage in HadCRUT4, 
which also showed warming in these high latitude regions. This high-latitude signal contributed to an in-
crease in the assessed rate of change of global average temperatures since the beginning of the 21st century.

Unlike HadCRUT4, other existing near-surface temperature data sets utilize statistical analysis methods 
to infer spatial fields from scattered observations. Analysis methods based on spatial covariance structure, 
known variously as optimal interpolation (e.g., as used in Reynolds & Smith, 1994), kriging (e.g., as used 
in Cowtan & Way, 2014), Gaussian process regression (Rasmussen & Williams, 2006) and variants thereof, 
have a long history of use, particularly in analyses of SSTs (Donlon et al., 2012; Reynolds et al., 2002; Reyn-
olds & Smith, 1994). These methods use knowledge of the covariance structure of spatial fields to infer field 
values as weighted averages of observations in locations with strong covariation. Typically, weighting is 
based on a statistical model in which nearby locations are expected to covary strongly and distant locations 
weakly. Methods of this form are a core part of the Rohde & Hausfather (2020) analysis and of the analysis 
of Cowtan and Way (2014). The GISTEMP data set also uses a distance-weighted average that, while similar-
ly applying a weighted average of local observations, does not make use of a covariance model and so does 
not classify as a kriging type analysis.

A second form of spatial analysis methods that are commonly applied in instrumental climate analyses, 
reduced space methods, decompose spatial temperature variability into a finite, typically orthogonal, set of 
spatial patterns of variability (Kaplan et al., 1997). These patterns are generally, but not necessarily, glob-
al in extent. Spatial reconstructions are then formed as a weighted sum of these patterns. The Empirical 
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Orthogonal Teleconnection (Smith et al., 2008) method employed within the NOAAGlobalTemp v5 analysis 
falls within this category of reduced space algorithms, employing a finite set of locally defined spatial pat-
terns that are fit to the available data.

A recent assessment of the use of neural networks to estimate missing values in the HadCRUT4 data 
set (Kadow et  al.,  2020) expands the ensemble of methods used to reconstruct global temperatures. 
Derived global temperature series show good agreement with prior studies using more traditional 
methods.

Traditionally, surface temperature data sets have combined air temperatures over land with SSTs over the 
ocean, rather than the more natural choice of air temperatures over the ocean. SST measurements are cur-
rently far more numerous than marine air temperature (MAT) measurements because SST can be readily 
measured by automatic sensors on drifting buoys as well as being retrieved from satellite measurements of 
radiances, while observational sampling of MAT has been in recent decline (Berry & Kent., 2017). There are 
significant biases in daytime marine air temperature observations (Berry et al., 2004). Night-time measure-
ments have therefore been used to develop observational records of marine air temperature changes (Kent 
et al., 2013), with up-to-date independent assessments of historical night-time MAT becoming available 
only recently (Cornes et al., 2020; Junod & Christy, 2020). Anomalies in MAT and SST have been expected 
to be similar over long space and time scales due to the strong physical link between the two. However, 
Cowtan et al. (2015) showed that MAT and SST changes simulated in coupled climate models differ, with 
MAT warming slightly faster than SST, affecting comparisons of observed and modeled global temperature 
change if care is not taken to ensure an “apples to apples” comparison. They also found that decisions 
about how to handle marginal sea-ice areas could affect the estimated changes, depending on the use of 
SST or MAT. Therefore, while there is good motivation for the use of MAT (Cowtan et al., 2015; Richardson 
et al., 2016), there are currently challenges relating to the MAT observational network (Berry & Kent, 2017) 
that provide an observational rationale for the continued use of SST in monitoring global surface tempera-
ture variability and change until these challenges are addressed.

Recent developments in satellite retrievals of surface skin temperatures present a new possibility for 
near-surface temperature monitoring, bringing the potential for detailed spatial information with sustained 
measurement over a time frame that is now of sufficient length for climate studies. Recent work (Rayner 
et al., 2020) has explored the potential of combining air temperature information inferred from satellite 
skin temperatures with traditional in situ observations, expanding on the understanding of relationships 
between satellite-derived skin temperatures and traditional near-surface air temperature observations, and 
on the stability of these relationships over time that is required to construct merged data products. Alter-
natively, dynamical reanalyzes, that combine numerical weather prediction models with a range of var-
ied observational data sources, are increasingly being used to monitor the climate (e.g., ERA5, Hersbach 
et al., 2020; JRA-55, Kobayashi et al., 2015; and MERRA-2, Gelaro et al., 2017). These alternative sources 
of near-surface temperature data provide useful information in locations that are not well represented in 
traditional near-surface temperature data sets. However, in all cases, understanding of nonclimatic effects 
affecting observations and arising from analysis methods is required when combining observations from 
multiple sources.

Here, two ensemble surface temperature data sets are presented. The first, the “HadCRUT5 noninfilled data 
set,” adopts the gridding and ensemble generation methods of HadCRUT4 (Morice et al., 2012). The sec-
ond, the “HadCRUT5 analysis,” uses a statistical infilling method to improve the representation of sparsely 
observed regions. Through application of the statistical infilling method to the HadCRUT5 noninfilled en-
semble, the HadCRUT5 analysis ensemble samples the uncertainty in the gridded near-surface temperature 
data that arises from residual biases in observational data after correction, for example associated with 
uncertainty in changes in instrumentation and measurement practices at meteorological stations (Brohan 
et al., 2006; Morice et al., 2012) and changes in SST measurement methods (Kennedy et al., 2019). It also 
samples the effects of basic measurement uncertainty, uncertainty arising from estimation of gridded tem-
perature fields from a finite number of observations and residual uncertainties associated with individual 
marine measurement platforms, where information identifying individual platforms is available (Kenne-
dy et al., 2019). Statistical reconstruction uncertainty is also encoded in the HadCRUT5 analysis ensem-
ble, producing an ensemble that samples a greater range of sources of uncertainty than was possible in 
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HadCRUT4. Thus, the new ensemble analysis communicates the major known sources of uncertainty in an 
easily accessible way.

The remaining sections of this paper are structured as follows. Section 2 describes the data sets used as 
inputs and for comparison. Section 3 provides an overview of the methods used to construct HadCRUT5. 
Results are presented in Section 4 with conclusions and discussion in Section 5.

2. Input Data Sets
2.1. HadSST.4.0.0.0

Version 4 of the Met Office Hadley Centre SST data set, HadSST.4.0.0.0 (Kennedy et al., 2019), is based 
on in situ measurements of SST from ships and buoys. The ship and buoy measurements are taken from 
ICOADS release 3.0 (Freeman et al., 2017) from 1850 to 2014 and release 3.0.1 from 2015 to 2018. From 
2016 onwards, measurements from drifting buoys are taken from the Copernicus Marine Environment 
Monitoring Service, as buoy data in ICOADS were incomplete following a change in data-transmission 
codes in late 2016. Early measurements made using buckets are adjusted using a physically based model 
of heat lost from water-sampling buckets (Folland & Parker, 1995; Rayner et al., 2006). From the 1940s 
onwards, ship measurements are adjusted based first on comparisons with near-surface oceanographic 
measurements (Atkinson et al., 2014) and then, from the early 1990s onwards, on comparisons with buoy 
measurements. The resulting HadSST.4.0.0.0 data set is presented as anomalies relative to 1961–1990 on 
a 5° latitude by 5° longitude grid and is representative of SST as measured by drifting buoys at an approx-
imate depth of 20 cm.

Overall, the global SST change estimated from HadSST.4.0.0.0 is larger than that estimated from 
HadSST.3.1.1.0 (and earlier versions). This is due to two factors. First, new estimates of biases associated 
with measurements made in ships' engine rooms show that these biases have declined since the 1950/1960s, 
artificially reducing the long-term change represented in the underlying data and in earlier versions of 
HadSST. Second, a greater proportion of measurements during the 1961–1990 period were estimated to 
have been made in ships' engine rooms. Other changes include: using buoys as a reference data set; produc-
ing ensemble members with step changes in the time evolution of the proportions of canvas and wooden 
buckets in the early 20th century alongside ensemble members which assume a linear transition; estimating 
the fraction of incorrect metadata using comparisons with oceanographic measurements; and using com-
parisons with oceanographic measurements to narrow the range of plausible transition dates from canvas 
buckets to modern rubber buckets (see Kennedy et al., 2019 for a detailed discussion).

Uncertainty in HadSST.4.0.0.0 is split into three main components associated with: pervasive systematic 
errors; systematic errors from individual ships or buoys; and uncorrelated errors from individual measure-
ments and incomplete grid-box sampling. The pervasive systematic errors, which have complex temporal 
and spatial correlations, are represented using a 200-member ensemble generated by varying uncertain 
parameters and choices in the bias adjustment scheme. The systematic errors are represented using co-
variance matrices that encode the error covariances between grid cells that arise from ships making meas-
urements in multiple grid cells in a month. Finally, uncertainties from uncorrelated errors are provided 
as gridded fields. Note that these uncertainty components do not span the full range of uncertainty. In 
particular, structural uncertainty remains (Thorne et al., 2011) and there may be an underestimate in the 
systematic error component because it does not currently deal explicitly with errors that correlate at the 
level of national shipping fleets (Chan & Huybers, 2019) or with marine reports that lack ship call signs or 
other identifying information (Carella et al., 2017).

2.2. CRUTEM.5.0.0.0

Monthly averages of near-surface air temperature measured at weather stations over the land surface for 
1850–2018 are obtained from CRUTEM.5.0.0.0 (Osborn et al., 2021, referred to hereafter as CRUTEM5). 
The CRUTEM station database is a collection of station series obtained from National Meteorological 
and Hydrological Services (NMHSs) and large collections such as the European Climate Assessment and 
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Data set (Klein Tank et al., 2002). CRUTEM incorporates corrections that NMHSs apply to their own data 
to minimize the impact of changes in weather station instrumentation or location on the measurement 
series. The monthly average temperatures from stations are subjected to quality control, converted to 
anomalies (differences from their 1961–1990 means) and then averaged into 5° latitude by 5° longitude 
grid boxes.

CRUTEM5 has improved quality control checks that: (i) improve the flagging of incorrect data during 
1941–1990; (ii) reduce the trend toward increased flagging of suspect data outside of the 1941–1990 pe-
riod; and (iii) reduce the number of genuine extreme values that are erroneously flagged as incorrect, 
for example, during coherent extreme events such as summer 2003 in Europe (see Osborn et al., 2021 
for details). The station database has been expanded such that the number of those stations with suf-
ficient data to estimate temperature anomalies has grown from 4,842 in CRUTEM.4.0.0.0 (as used in 
Morice et al., 2012) to 7,983 in CRUTEM5 (Osborn et al., 2021). Most of the new data acquisitions are in 
already-sampled regions, so the number of grid-box values is only moderately expanded (by 9%) relative 
to CRUTEM.4.0.0.0.

The changes in temperature seen in hemispheric or global averages since 1850 are not sensitive to these up-
dates, but some regional differences are apparent. Osborn et al. (2021) describes the effects of updates since 
CRUTEM.4.0.0.0, and of updates since the more recent CRUTEM.4.6.0.0 (as used in HadCRUT.4.6.0.0), in 
detail.

An alternative gridding method was explored in Osborn et al. (2021) for CRUTEM5 to address the underrep-
resentation of high latitude stations in the standard gridding. This alternative method allows each station 
to contribute to more than one neighboring 5° latitude by 5° longitude grid box on the same latitude, where 
the number of grid boxes to which each station can contribute is determined by an inverse cosine latitude 
weighting. In the current study, the alternative gridding method is not used because (a) the uncertainty 
model for the CRUTEM5 grids, as documented in Brohan et al. (2006), only applies to the standard gridding 
approach (where each station contributes to only one grid box); and (b) the issue of high-latitude sampling 
is dealt with here by statistical infilling.

HadCRUT5 uses an ensemble version of the CRUTEM5 uncertainty model. The HadCRUT5 noninfilled 
ensemble grids and accompanying uncertainty grids are produced from the CRUTEM5 station temperature 
anomaly series, following the methods of Morice et al. (2012), as described in Section 3.2.

2.3. HadISST.2.2.0.0

We use sea ice concentration from the Met Office Hadley Centre sea-Ice and Sea Surface Temperature 
data set, HadISST.2.2.0.0 (an update to Titchner and Rayner (2014)), on a 1° latitude by 1° longitude grid 
to determine the presence or absence of sea ice in any individual ocean grid box in each month from 1850 
to 2018.

HadISST.2.2.0.0 is updated relative to version 2.1.0.0 in the following ways: (i) reinstatement of a small 
number of erroneously removed sea-ice-filled grid boxes after 1978; (ii) an alteration to the adjustments 
applied to the National Ice Center charts (used to determine the ice edge between 1972 and 1978) cor-
recting a low-bias in the HadISST.2.1.0.0 fields in the Arctic then; and (iii) an improvement in the inter-
polation applied between two atlas-derived climatologies used to determine ice extents in the Antarctic 
to produce a smoother transition between them and between 1962 and the start of monthly observations 
in 1972.

2.4. ERA5

We have used monthly ERA5 analysis 2 m air temperature data from 1979 to 2018 (Hersbach et al., 2020) for 
coverage uncertainty estimation and for comparison of global and regional diagnostics. ERA5 was produced 
using 4D-Var data assimilation in the European Centre for Medium-range Weather Forecasts' (ECMWF) 
Integrated Forecast System. We used the (31 km) high resolution realization.
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2.5. Other Comparison Data

Four comparison data sets are used here: NOAAGlobalTemp version 5 (Huang et  al.,  2019; Zhang 
et al., 2019), GISTEMP version 4 (Hansen et al., 2010; Lenssen et al., 2019), Berkeley Earth (Rohde & Haus-
father, 2020) and (Cowtan & Way, 2014).

NOAAGlobalTemp version 5 is based on the Global Historical Climatology Network (GHCN) version 4 land 
station data set (Menne et al., 2018) and the Extended Reconstruction Sea Surface Temperature (ERSST) 
data set version 5 (Huang et al., 2017). Station records in GHCN v4 are homogenized using an automated al-
gorithm. SSTs are adjusted using comparisons with marine air temperature and latterly drifting buoys. The 
data are interpolated using Empirical Orthogonal Teleconnections, providing improved coverage, although 
coverage does not extend fully into the polar regions.

GISTEMP version 4, like NOAAGlobalTemp v5, is based on a combination of GHCN v4 and ERSST v5. The 
SST data are interpolated as in NOAAGlobalTemp. Land surface air temperatures are interpolated from 
station data within a 1,200 km radius. Extrapolated land surface air temperatures are used over the oceans 
in sea-ice covered areas. Coverage of the GISTEMP data set is quasiglobal in the past 20 years, with good 
coverage of the poles and other data-sparse regions from interpolated station data.

The Berkeley Earth data set (Rohde & Hausfather, 2020) uses a kriging-based technique to interpolate and 
homogenize station data. A kriging based technique is also applied to SSTs from the HadSST3 data set to 
provide coverage over the whole globe. The version of the data set that uses extrapolated land-surface air 
temperatures over the oceans in sea-ice covered areas is used here.

Cowtan and Way (2014) is based on the HadCRUT4 data set. The land and ocean data are interpolated using 
kriging. Grid cells that contain data in HadCRUT4 are not modified during interpolation (in contrast to the 
kriging of HadSST3 data in the Berkeley Earth data set). As with GISTEMP and Berkeley Earth, extrapolat-
ed land-surface air temperatures are used over the oceans in sea-ice covered areas.

The Berkeley Earth (1° latitude by 1° longitude resolution) and ERA5 (0.25° latitude by 0.25° longitude 
resolution) analyses were regridded to 5° latitude by 5° resolution using an area-weighted average of all grid 
cells falling within a HadCRUT5 5° grid cell. Cowtan and Way and NOAAGlobalTemp were obtained on a 
5° grid. The GISTEMP data, which were obtained on a 2° grid, were not regridded.

3. Methods
Two gridded data sets are provided as part of HadCRUT5. The first version of the data set is produced 
without statistical infilling, referred to here as the “HadCRUT5 noninfilled data set,” following the 
methods of Morice et al.  (2012), and is intended for use in applications where statistical infilling is 
not desired. This is accompanied by a second version of the data set, hereafter referred to as the “Had-
CRUT5 analysis,” that is produced using a statistical method to estimate more-complete temperature 
anomaly fields.

The HadCRUT5 noninfilled data set and the HadCRUT5 analysis are produced in the following steps. First, 
an ensemble land-surface air temperature data set, with accompanying additional uncertainty information, 
is generated from the CRUTEM5 station data (Section 3.2). The land data set is then merged with SST anom-
aly information from HadSST4 through a weighting method based on the land area fraction (Section 3.4) 
to produce the noninfilled data set. Next, monthly fields are estimated separately for the land surface air 
temperature data set and for HadSST4 using a statistical method to create an ensemble analysis for each 
(Section 3.3). The separate land and ocean analyses are then merged into a combined land and ocean en-
semble analysis using a land-sea weighting scheme that also accounts for sea ice coverage (Section 3.4). 
Global and regional time series are then computed from the two merged data sets, following the methods 
of Morice et al. (2012) with updates to the method used to estimate uncertainty associated with incomplete 
observational coverage described in Section 3.5. Error models for each data set are described in Section 3.1. 
Full details of uncertainty propagation for land and ocean merging and global and regional time series are 
provided in the Supporting Information.
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3.1. The HadCRUT5 Error Models

This section outlines the terms of the error model for grids and time series of the HadCRUT5 noninfilled 
data set and the HadCRUT5 analysis. Further details are given in the Supporting Information.

The error models are split into components according to the way that uncertainty information is presented 
in HadCRUT5. The sources of uncertainty modeled in HadCRUT5 are grouped according to their correla-
tion structure to allow uncertainties to be propagated appropriately into derived diagnostics such as region-
al average time series.

3.1.1. The HadCRUT5 Noninfilled Data Set

The error model for the noninfilled data set describes the estimate of temperature anomaly  ˆ ,T s t  at 
spatial location s and time t as a sum of the true temperature anomaly T(s, t) and three error terms: a 
bias term εb(s,t) representing biases with large-scale spatial and temporal structure; a partially correlated 
error term εp(s,t) for errors with typically local structure; and an uncorrelated error term εu(s,t) describing 
errors that are independent between spatial and temporal locations. The full error model for noninfilled 
fields is given by:

         ,ˆ , , , ,b p uT s t T s t s t s t s t      (1)

This error model for the merged data set matches the structure of the error model for the land data 
set and for HadSST4. For the land data set, the contributions to the bias term are the land station 
homogenization error, urbanization and biases from nonstandard measurement enclosures. There is 
no contribution to the partially correlated term and the uncorrelated term models the within grid box 
measurement and sampling uncertainties (Morice et al., 2012). For HadSST4, the bias term models the 
effects of residual errors in the adjustments applied to account for changes in measurement methods, 
the partially correlated term models the effects of residual biases associated with individual observing 
platforms, and the uncorrelated term models the within grid cell measurement and sampling uncer-
tainties (Kennedy et al., 2019).

The HadCRUT5 noninfilled ensemble samples the uncertainties for the combination    , ,bT s t s t . The 
uncertainties for partially correlated and uncorrelated errors are not encoded into the noninfilled ensemble. 
Instead, uncertainty information for partially correlated errors εp(s,t) is provided in spatial error covariance 
matrices and uncertainties for uncorrelated errors εu(s,t) are provided for each observed grid cell.

The error model for estimates of spatial average time series  T̂ t  derived from the gridded data is given as a 
sum of the true temperature anomaly time series T(t) and four error terms:

           ˆ
b p u cT t T t t t t t        (2)

here εb(t) is the effect of the bias term propagated into the spatial average, εp(t) is the effect of the partially 
correlated term, εu(t) the effect of the uncorrelated error term. The fourth error term, εc(t), is the error in 
estimating the spatial average from incomplete spatial coverage, with missing grid cells resulting from limi-
tations in the spatial sampling provided by the observation network. Full details of uncertainty propagation 
for each of these terms are given in the Supporting Information.

3.1.2. The HadCRUT5 Analysis

An overview of the HadCRUT5 analysis is provided in Section 3.4 and a detailed description of methods is 
provided in Appendix A. The HadCRUT5 analysis error model has fewer terms than that of the noninfilled 
data set as the analysis methods combine multiple sources of error into a single analysis error term. The 
error model for the HadCRUT5 analysis defines the temperature anomaly estimate as the sum of the true 
temperature T(s, t) and the analysis error εa(s,t):

     ,ˆ , ,aT s t T s t s t  (3)
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The analysis error term combines all errors that are modeled in the Gaussian process analysis, both spatial 
reconstruction errors and observational errors, as described in Appendix A. The analysis ensemble samples 
the analysis uncertainty such that each ensemble member is a sample of T(s,t) + εa(s,t).

For the HadCRUT5 analysis, errors in global and regional average time series are derived as a combination 
of the propagated analysis error and εa(t) and an additional coverage error term εc(t) that represents the error 
in estimating the spatial average from incomplete analysis grids, noting that this coverage error term differs 
from that of the noninfilled data set due to the different spatial coverage of the analysis.

       ˆ
a cT t T t t t    (4)

The propagation of uncertainty associated with these errors is described in the Supporting Information.

3.2. Ensemble Land Air Temperature Data Set

As in the previous versions of HadCRUT, near-surface air temperature information over land is derived 
from the CRUTEM data set. As in Morice et al. (2012), an ensemble air temperature data set is produced by 
sampling from the distributions of known uncertainty in station temperature records. The station data on 
which the ensemble grids are based have been updated to now use the CRUTEM.5.0.0.0 data set (Osborn 
et al., 2021).

A detailed description of the land air temperature ensemble sampling method can be found in Morice 
et al. (2012). The sampling approach is designed so that the effects of known sources of residual systematic 
error in station anomaly series can be quantified for regional statistics and time series. The ensemble size 
has been increased to 200 members for HadCRUT5 to match the 200-member HadSST4 ensemble.

The sampling method is as follows. Samples are drawn from the distributions of known uncertainties dur-
ing the station gridding process. Residual homogenization error and uncertainty in climatology normal 
information are sampled from distributions described in Brohan et al. (2006) and encoded into realizations 
of individual station series prior to gridding. The systematic effects of residual urbanization errors (Bro-
han et al., 2006; Parker, 2010) and nonstandard sensor enclosures (Folland et al., 2001; Parker, 1994) are 
sampled and encoded into the gridded ensemble at a regional level, again following the method of Morice 
et al. (2012).

Additional uncertainty information for errors that are uncorrelated between grid cells (e.g., from meas-
urement error or incomplete sampling of a grid cell) is not encoded into the land ensemble. Instead, these 
measurement and sampling-related uncertainties are provided as additional uncertainty information out-
side of the ensemble, as in Morice et al. (2012).

3.3. Spatial Analysis of Temperature Anomaly Fields

HadCRUT5 now includes an ensemble spatial analysis that reconstructs more spatially extensive anomaly 
fields from the available observational coverage. The purpose of this analysis is to: (1) reduce uncertainty 
and bias associated with estimation of global and regional climate diagnostics from incomplete and uneven 
observational sampling of the globe; (2) provide improved estimates of temperature fields in all regions; and 
(3) provide a method to quantify uncertainty in anomaly patterns.

We adopt a Gaussian process based method for spatial analysis that is closely related to the ordinary kriging 
approach (Rasmussen & Williams, 2006), and apply the method independently to land air temperature and 
SST observations before merging the two to produce a global analysis. The method models monthly temper-
ature anomaly fields as realizations of a Gaussian processes with a simple covariance structure, defined as a 
function of the distance between locations, and an a priori unknown mean, and accounts for observational 
uncertainty. A detailed description of the analysis method is presented in Appendix A.

The Gaussian process method is applied to the 5° latitude by 5° longitude gridded anomaly fields of the 
land ensemble and the HadSST4 ensemble. The additional observational uncertainty terms that accompany 
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these input ensembles are provided to the Gaussian process estimation as monthly error covariance ma-
trices. The spatial reconstructions are based upon a model of the covariance structure of the 5° latitude by 
5° longitude anomaly fields. This covariance structure is modeled using a Matérn covariance function, for 
which the covariance decays as a function of Euclidian distance between locations. The parameters of the 
Matérn covariance function are fitted separately for land air temperature and SST anomalies (see Appen-
dix A.2), representing typical variability in each domain.

As a Bayesian method, the approach provides a framework for assessing analysis uncertainties and provides 
the capability to draw samples from the posterior distribution of the analysis. We generate an ensemble of 
field estimates through application of the analysis method to each input ensemble member and then draw-
ing samples from the posterior distributions of the Gaussian process estimates. The land and ocean analysis 
ensembles combine all sources of uncertainty represented in the input gridded data sets while respecting 
the estimated covariance structure of the temperature anomaly field so that each ensemble member is a 
plausible spatial analysis of the temperature anomaly field.

The analysis has limited capability to reconstruct temperatures at long distances from available observa-
tions, as the field estimates are based on a model of local covariance structure. We therefore introduce 
criteria for excluding regions where there is not a strong observational constraint on the analysis (see Ap-
pendix A.4). The masked land air temperature and SST anomaly ensembles are then merged, as described 
in Section 3.4.

3.4. Blending Land Air Temperatures with Sea-Surface Temperature Data

The 200-member ensemble land air temperature data set based on CRUTEM5 and the 200-member 
HadSST4 are merged as a weighted average of the 5° latitude by 5° longitude land and marine fields. Two 
versions of the data set are provided: one that uses the spatial analysis method presented in Section 3.2 and 
one that does not.

3.4.1. Merging Noninfilled Data Sets

For the noninfilled data set, the land air temperature ensemble and HadSST4 ensemble members are 
merged following the methods of Morice et al. (2012). The temperature anomaly T(s, t) at location s and 
time t is defined as the weighted average of the air temperature anomaly TL(s, t) and sea surface temperature 
anomaly TM(s, t), with weights f(s, t):

          , , , 1 , ,L MT s t f s t T s t f s t T s t   (5)

The weighted average is based on the areal fraction of land and sea in a 5° latitude by 5° longitude grid cell 
using the same land fraction data set as HadCRUT4, originally derived from the Operational Sea Surface 
Temperature and Sea Ice Analysis (OSTIA; Donlon et al., 2012) 0.05° land mask information. As in Had-
CRUT4, land air temperature information receives a minimum weighting of 25% to prevent island stations 
from receiving near-zero weighting. Where only one of the land air temperature or SST data sets are availa-
ble, the available data source receives 100% weighting.

Methods for merging the uncertainty fields and measurement error covariance information for land and 
marine data sets are unchanged from those described in Morice et al. (2012) and are detailed in the Sup-
porting Information.

3.4.2. Merging Land and Ocean Analyses

The land-sea weighting scheme is modified for the HadCRUT5 analysis. Areas of sea ice are treated as if 
they were land in the weighting (consistent with the approach used by Cowtan and Way (2014)), so that 
temperature anomalies over sea ice are reconstructed as part of the air temperature analysis rather than the 
SST analysis.

Sea ice concentrations are obtained from the HadISST.2.2.0.0 data set. Where the ice concentration on the 
native 1° latitude by 1° longitude HadISST.2.2.0.0 grid exceeds 15%, the threshold value used to define the 
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ice edge in Titchner and Rayner (2014), the area is considered to be ice covered for the purpose of deriving 
weights. Ice concentrations below 15% are treated as open water. For each HadISST.2.2.0.0 grid cell, a value 
of one is set if the sea-ice concentration is greater than 15% and zero otherwise. On the 5° latitude by 5° lon-
gitude HadCRUT5 grid, the fractional area of water covered by sea ice is then obtained through area-weight-
ed averages of the nonland 1° grid cells of ones and zeroes. This area of ice-covered water is treated as land 
when deriving weights for land and ocean analyses.

The 25% minimum weighting for land air temperature is retained for any 5° latitude by 5° longitude grid 
cells that are observed in the noninfilled land air temperature data set so that information from island sta-
tions is not lost in the averaging. This minimum weighting is not applied in grid cells that are not directly 
observed. Reconstructed land air temperatures are not used over 100% sea regions where there are no land 
stations or sea ice and, similarly, interpolated SST is not used over 100% land regions. This prevents extrap-
olation of land air temperature far into ocean regions and prevents inland extrapolation of SSTs.

3.5. Estimating Uncertainty Arising from Incomplete Coverage

Spatial fields of temperature anomalies in the noninfilled HadCRUT5 data set and the HadCRUT5 analysis 
are not globally complete. Variability in regions of the world that are not represented in the spatial fields 
gives rise to uncertainty in global and regional time series. For the noninfilled HadCRUT5, the coverage 
uncertainty accounts for regions of the globe where insufficient observations are available to compute grid 
cell average anomalies in the underlying air temperature and SST data sets. For the HadCRUT5 analysis, 
the coverage uncertainty accounts for the masked regions of the analysis that are not well constrained by 
observations.

Coverage uncertainty is assessed by subsampling globally complete reanalysis fields to the coverage of Had-
CRUT5 using the method presented in Brohan et al. (2006) and Morice et al. (2012), which is described 
in detail in the Supporting Information. The approach is updated here to use the recently released ERA5 
reanalysis (Hersbach et al., 2020) as the globally complete reference data set, in place of the previously used 
NCEP/NCAR reanalysis (Kalnay et al., 1996). Temperature anomalies are computed for the ERA5 monthly 
2 m air temperature grids, referenced to the period of ERA5 that overlaps with our climatology period: 
1979–1990. Anomalies are then averaged to the 5° latitude by 5° longitude grid used in HadCRUT5 to pro-
duce the reference fields for the coverage uncertainty calculations.

4. Results
4.1. Effects of Updated Data and Methods in HadCRUT5

Differences in global and hemispheric mean time series between HadCRUT4 (version HadCRUT.4.6.0.0) 
and the HadCRUT5 noninfilled data set and HadCRUT5 analysis are shown in Figure 1. The differences 
between the noninfilled HadCRUT5 and HadCRUT4 primarily arise from updates to the SST observational 
bias assessment in HadSST4. The updated bias corrections result in slightly cooler anomalies globally and 
in each hemisphere from the 1880s to 1970s. Anomalies are warmer from the 1980s onwards.

The most obvious difference is the relative warming of HadCRUT5 between around 1970 and 1980. This 
arises from improved estimates of biases in measurements made in ship engine rooms at that time. Engine 
room measurements were biased warm in the 1960s with the warm bias dropping over time, first between 
1970 and 1980 and then again between the early 2000s and present. There are also changes around the Sec-
ond World War, where changes to the assumptions made in HadSST4 about how measurements were taken 
shifted the mean and broadened the uncertainty range, reflecting the lack of knowledge of biases during 
this difficult period (Kennedy et al., 2019).

Northern hemisphere uncertainty estimates for the noninfilled HadCRUT5 are slightly wider that those 
of Morice et al. (2012). This results from a combination of the changes in the SST bias adjustment model 
and the adoption of ERA5 as the reference data set for coverage uncertainty calculations (Section  3.5). 
This change of reference data set typically gives wider uncertainty estimates in the northern hemisphere 
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for similar observational coverage. The reverse is true in the southern hemisphere, with similar or slightly 
smaller coverage uncertainty estimates for the noninfilled HadCRUT5. This reflects differences in regional 
variability in sparsely observed regions between reanalysis products.

Further differences from HadCRUT4 can be seen in the HadCRUT5 analysis. Temperatures in the latter 
decades of the 19th century are on average cooler than in the noninfilled HadCRUT5 data set in the global 
and northern hemisphere series. Temperatures in the 21st century are on average warmer than those in the 
noninfilled HadCRUT5, primarily due to estimation of additional areas of warm anomalies in high latitude 
regions in the northern hemisphere, including use of air temperature anomalies over sea ice inferred from 
land stations. Rebalancing the representation of land and marine regions also affects average tempera-
tures throughout the record. This is consistent with previous studies that adopt local interpolation methods 
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Figure 1. Annual average difference between HadCRUT.5.0.0.0 and HadCRUT.4.6.0.0 (°C), 1850–2018. (a) Globe, (b) 
Northern Hemisphere and (c) Southern Hemisphere. Orange: noninfilled HadCRUT5. Blue: HadCRUT5 analysis. Solid 
lines: ensemble mean (HadCRUT.5.0.0.0) or median (HadCRUT.4.6.0.0). Orange/blue shading: 95% confidence interval 
determined by the ensemble spread and coverage uncertainty (the blue shading for the HadCRUT5 analysis lies mostly 
within the orange shading, where it appears as a darker gray due to the overlap). Light gray shading: 95% confidence 
interval on HadCRUT.4.6.0.0. Global means have been calculated by averaging hemispheric anomaly series for northern 
and southern hemispheres with equal weighting given to each hemisphere.

(a)

(b)

(c)
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(Cowtan & Way, 2014; Karl et al., 2015; Lenssen et al., 2019). Together these features result in greater warm-
ing throughout the 20th and 21st centuries in the HadCRUT5 analysis than is indicated by the noninfilled 
data set. However, for any given year, the effect of the reconstruction may be to produce either a warmer 
or cooler annual average and is dependent on variability in reconstructed regions that were not well repre-
sented in HadCRUT4 (see also Figures 5b and 5d). Global and northern hemisphere HadCRUT5 analysis 
series fall outside the upper 95% uncertainty limit of HadCRUT4 in the 21st century but rarely depart from 
the uncertainty range of the HadCRUT5 noninfilled data set, which includes the updated HadSST4 bias 
adjustments and has wider northern hemisphere coverage uncertainty ranges.

The uncertainty range for the HadCRUT5 analysis is narrower than that for the noninfilled data set, as 
the infilling effectively reduces the coverage uncertainty by filling gaps in the data and accounting for the 
nonuniform distribution of observations. The effect of this can be clearly seen in the Southern Hemisphere 
(Figure 1) where the narrowing of the uncertainty range before the 1950s is much less than after the 1950s, 
when routine monitoring on the Antarctic continent started, and coverage of the HadCRUT5 analysis there-
after approaches 100%.

As discussed in Section 3.1, the error model structure for the noninfilled HadCRUT5 data set is the same 
as in Morice et al. (2012), with observational bias adjustment uncertainties encoded into the ensemble and 
separate measurement and sampling uncertainty information provided and propagated into the uncertainty 
ranges on the hemispheric and global averages shown in Figure  1. The approach adopted for the Had-
CRUT5 analysis differs in including the effects of measurement and sampling uncertainties in the ensem-
ble while also sampling from the spatial analysis uncertainty. Examples of HadCRUT5 analysis ensemble 
members are shown in Figure 2.

There is little change in the HadCRUT5 analysis ensemble spread for global or hemispheric averages from 
the 1970s onwards, reflecting the spread in the underlying SST ensemble and the relatively stable spatial 
sampling during this period. The ensemble spread in the global average in the 1940s is similar to that prior 
to the 1870s, though in the 1940s, this spread arises predominantly from uncertainty in the SST biases, 
whereas prior to the 1870s, the spread is largely due to uncertainty in the spatial field estimates due to lim-
ited observational sampling of the globe.

There is coherent spatial structure in the deviations of ensemble member fields from the ensemble mean. 
This results from uncertainty in the spatial analysis and its estimation from uncertain observations. Some 
ensemble members may be cool while others are warm in regions where uncertainty is high (e.g., see differ-
ences between ensemble members in Antarctica in Figure 2). The additional coverage uncertainty arising 
from masked regions is a relatively smaller component of the total uncertainty as a result of the increased 
coverage in the HadCRUT5 analysis fields and the inclusion of reconstruction uncertainty within the en-
semble. On multiannual timescales, the uncertainty in observational bias adjustments becomes prominent. 
This is reflected in persistently warm or cool departures from the ensemble mean in global and regional di-
agnostics over many years for individual ensemble members (for example see ensemble series in Figure 2).

Noninfilled HadCRUT5 ensemble members are shown in Figure 3, matching those shown for the Had-
CRUT5 analysis in Figure 2. HadCRUT5 analysis fields have greater spatial extent than the noninfilled data 
set and are also smoother as a result of measurement and sampling uncertainties being taken into account 
within the analysis framework. In regions of few, scattered observations, infilled analysis fields have much 
greater extent but also show diversity in reconstructed anomaly patterns, reflecting uncertainty in the re-
construction in these sparsely observed regions.

Uncertainty ranges for the global average temperature series in Figure 3 show the ensemble spread in rela-
tion to the full uncertainty range, accounting for all quantified sources of uncertainty. While the HadCRUT5 
analysis and noninfilled data set quantify uncertainty from the same error sources, the HadCRUT5 analysis 
encodes a greater portion of the uncertainty into the ensemble, whereas the noninfilled ensemble only sam-
ples uncertainties that are most important over multidecadal time scales. The ensemble for the noninfilled 
HadCRUT5 data set samples the uncertainty associated with observational bias adjustments, with structure 
that is relevant to multidecadal climate assessments. Unlike the HadCRUT5 analysis, measurement and 
sampling uncertainties that are relevant at shorter time scales are not encoded into the ensemble and are 
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instead provided as auxiliary information. Uncertainty from incomplete global coverage of the observing 
network is a greater portion of the total uncertainty for the noninfilled data set. In contrast, for the Had-
CRUT5 analysis, the uncertainty from incomplete global coverage is divided between the analysis ensemble 
spread in reconstructed regions and a smaller coverage uncertainty term relating to regions that are masked.

4.2. Global, Hemispheric and Regional Series

Annual global and hemispheric average temperature anomaly series for HadCRUT5 are shown in Figure 4, 
along with the fraction of regional data coverage represented in the noninfilled data set and the HadCRUT5 
analysis.

Areal data coverage in the HadCRUT5 analysis grids first reaches 90% in the 1900s, with two subsequent 
drops in coverage in the late 1910s and early 1940s associated with the two world wars. Northern hemi-
sphere coverage exceeds 99% in the early 1920s and reaches 100% in the mid-1950s. Uncertainty in south-
ern hemisphere temperatures is greatest in the period prior to the establishment of a sustained Antarctic 
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Figure 2. HadCRUT5 analysis ensemble members. Upper panel: annual average temperature anomaly (°C, relative to 1961–90) for 1877, 1942, 1958, and 2016 
in four example ensemble members. Lower panel: ensemble spread in global mean (°C), 1850–2018. The difference between each ensemble member and the 
ensemble mean is shown by the gray lines, with the first four ensemble members (corresponding to the maps above) highlighted in red. Gray shading: 95% 
confidence interval determined by the ensemble spread. Orange: full uncertainty range adding the additional coverage uncertainty term. Global means have 
been calculated by averaging anomalies for northern and southern hemispheres for each ensemble member. Maps require six months of data within a year for a 
grid cell average to be plotted.
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monitoring network in the 1950s (see also Figure 5a), after which global coverage exceeds 97% in the 1960s. 
The spatial extent of the observing network in the southern hemisphere is also a prominent contribution to 
uncertainty in global average series prior to the 1950s. Global coverage of the analysis fields is typically not 
complete even in modern years due to an absence of sustained observation in the southern South Pacific, 
and the nearby Southern Ocean and Antarctic.

Southern Hemisphere anomalies are cooler in the HadCRUT5 analysis in the 1990s from around 1992, par-
ticularly in 30–60S (Figure 5b). The observing network is less dense in these regions, with regular shipping 
covering only the equatorward half of the latitude band, leading to differences between noninfilled Had-
CRUT5 and the HadCRUT5 analysis. Variability in the regional time series (Figure 5) is smaller in the early 
record in the HadCRUT5 analysis than the noninfilled data set, particularly in the high latitude regions as 
a result of reduced uncertainty from spatial sampling in the HadCRUT5 analysis.

In regions where data are sparse, and hence uncertainty in surface temperature analyses is largest, data 
that might be used to validate the analyses is also highly limited. Here we have used the ratio of posterior to 
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Figure 3. As Figure 2, but for the HadCRUT5 noninfilled data set. Upper panel: annual average temperature anomaly (°C, relative to 1961–1990) for 1877, 
1942, 1958, and 2016 in four example ensemble members. Lower panel: ensemble spread in global mean (°C), 1850–2018. The difference between each 
ensemble member and the ensemble mean is shown by the gray lines, with the first four ensemble members (corresponding to the maps above) highlighted in 
red. Gray shading: 95% confidence interval determined by the noninfilled ensemble spread. Orange: full uncertainty range including additional measurement 
and sampling uncertainty terms, that are not sampled by the noninfilled ensemble, and the coverage uncertainty term. Global means have been calculated by 
averaging anomalies for northern and southern hemispheres for each ensemble member. Maps require six months of data within a year for a grid cell average to 
be plotted.
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prior variances to remove regions with weak observational constraint (see Appendix A for details). Despite 
restricting the reconstruction to regions that are locally constrained, there is a marked increase in the area 
of the globe represented by the HadCRUT5 analysis in comparison to the noninfilled data set (see coverage 
timeseries in Figure 5 and example monthly fields in Figures S10–S13 of the Supporting Information).

Figure 6 reveals the patterns of change in successive 30-year periods and the most recent 19 years of the 
HadCRUT5 analysis. Even in these longer-term averages, there are regions that are particularly warm or 
cool relative to the global mean. The final panel for 2000–2018 illustrates the greater warming at high north-
ern latitudes and over the land compared to the ocean. The surface waters of the Southern Ocean, in con-
trast, have warmed more slowly than many other areas. We also see one area of long-term cooling, to the 
south of Greenland and Iceland (Parker et al., 1994). 1880–1909 was a particularly cool period, with centers 
of low average anomalies in the South Atlantic, Canada, and Central Russia.
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Figure 4. Comparison between the HadCRUT5 analysis and noninfilled data set. (a) Globe, (b) Northern Hemisphere 
and (c) Southern Hemisphere. Upper panel in each pair: annual average temperature anomaly (°C, relative to 
1961–1990), 1850–2018. Lower panel in each pair: percentage of area covered by data in each annual average. Orange: 
noninfilled HadCRUT5 data set. Blue: HadCRUT5 analysis. Solid lines: ensemble mean. Orange/blue shading: 
95% confidence interval. Global means have been calculated by averaging anomalies for northern and southern 
hemispheres.
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4.3. Comparisons with Other Analyses

Average temperature changes over the whole period of record in 30° latitude bands for a range of analyses 
are shown in Figure 7. These analyses include NOAAGlobalTemp v5 (Huang et al., 2019), NASA GISTEMP 
v4 (Hansen et al., 2010; Lenssen et al., 2019), the Cowtan & Way analysis (Cowtan & Way, 2014), and the 
Berkeley Earth analysis (Rohde & Hausfather, 2020). The HadCRUT.5.0.0.0 analysis is also shown.

All of the analyses shown use spatial infilling. Cowtan & Way and Berkeley Earth use interpolation meth-
ods based on a statistical model of local covariance structure (although within a more complex statistical 
model of global temperature variation in the Berkeley Earth analysis). NOAAGlobalTemp uses a model of 
spatially varying local patterns of temperature variability. GISTEMP employs a distance-weighted inter-
polation for land based meteorological station data and uses the same large-scale analysis of SSTs used in 
NOAAGlobalTemp. GISTEMP, Cowtan & Way, and Berkeley are each close to globally complete since the 
1950s while the NOAAGlobalTemp data set does not extend into data-sparse polar regions.

The analyses are most similar in regions with the densest observational coverage, such as in the northern 
mid-latitudes (Figure 7e). Where observational coverage is lowest, the analyses become sensitive to assump-
tions underpinning reconstruction methods. For example, NOAAGlobalTemp reconstructs fields through 
low-frequency smoothing and a model of dominant spatial patterns of variability, while methods based on 
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Figure 5. Comparison between the HadCRUT5 analysis and noninfilled data set. (a) 90°S–60°S, (b) 60°S–30°S, (c) 30°S–0°N, (d) 60°N–90°N, (e) 30°N–60°N 
and (f) 0°N–30°N. Upper panel in each pair: annual average temperature anomaly (°C, relative to 1961–1990), 1850–2018. Lower panel in each pair: percentage 
of area covered by data in each annual average. Orange: noninfilled HadCRUT5 data set. Blue: HadCRUT5 analysis. Solid lines: ensemble mean. Orange/blue 
shading: 95% confidence interval.

(a) (d)

(b) (e)

(c) (f)
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local covariance structure may tend toward a field mean in the case of Cowtan & Way, Berkeley, or the Had-
CRUT5 analysis ensemble mean, or toward the anomalies observed at nearby locations for the GISTEMP 
land analysis method. The analyses also differ in how regions that are distant from observed locations are 
included or are masked.

The HadCRUT5 analysis method is closely related to the method used in Cowtan & Way but differs in three 
key aspects. First, it accounts for the spatial variation in data uncertainty as well as the estimated measure-
ment and sampling error covariances. This is particularly important for the oceans, where less-reliable ship 
data are combined with more accurate data from drifting and moored buoys. Second, the spatial analysis 
method is used to make improved temperature estimates at all locations, not just grid cells without data. 
Third, by using a full covariance model for both the temperature field and the observational uncertainty 
within a Bayesian analysis framework, it is possible to sample from the posterior of the distribution to gen-
erate a consistent ensemble data set that combines all known sources of uncertainty while respecting the 
estimated covariance structure of the temperature anomaly field.

The differences between the HadCRUT5 analysis ensemble mean and Cowtan & Way in the post 1950 
period, are largely due to changes in the estimated SST biases. As Berkeley Earth shows similar dif-
ferences and uses the same SST data set as Cowtan & Way, we can infer that changes in the estimated 
SST biases are the key difference here as well. The changes in SST bias estimates are larger in the 
more sparsely observed regions—the tropics and southern hemisphere—where there are fewer ships, 
so changes in assumptions about observing practice of a few countries can have a proportionately 
larger effect.

Differences between HadCRUT5 and the ERSST-based data sets, GISTEMP and NOAAGlobalTemp are also 
largely due to differences in estimated SST biases. In particular, ERSST tends to be cooler than HadSST4 
from the early 20th century to the start of the Second World War and from the end of the war to around 1955; 
this difference is associated with uncertainty in the estimated biases associated with bucket measurements, 
particularly in the Southern Hemisphere and the tropics. From the 1960s, agreement between HadSST4 and 
ERSST is better, though there is a notable cooling of ERSST relative to HadSST4 in the early 1990s associat-
ed with a relative cooling of marine air temperature compared to SST (see Kennedy et al., 2019). From the 
late 1990s onwards, both ERSSTv5 and HadSST4 show good relative stability compared to instrumentally 
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Figure 6. Long-term average temperature anomaly (°C, relative to 1961–1990). (a) 1850–1879, (b) 1880–1909, (c) 1910–1939, (d) 1940–1969, (e) 1970–1999 and 
(f) 2000–2018. Averages require at least one month per quarter, three-quarters per year, and 50% of years per multiyear period.
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homogeneous data sets (Hausfather et al., 2017; Kennedy et al., 2019). Notable structural uncertainty re-
mains in early SST records.

Differences can be seen in the first half of the 20th century between GISTEMP/NOAAGlobalTemp and 
Cowtan & Way/HadCRUT5 over the latitude band 0°N–30°S with GISTEMP/NOAAGlobalTemp cooler 
(Figure 7c). Regional differences over land partly result from differences in homogenization and the un-
derlying station data sets. HadCRUT5 uses homogenized station data (from CRUTEM5), as provided by 
national meteorological services or research projects. Other data sets include automated homogenization 
algorithms (Huang et al., 2019; Menne et al., 2018; Rohde, Muller, Jacobsen, Perlmutter, et al., 2013). This 
may result in regional differences between data sets, particularly where the measurement network is less 
dense and, as a consequence, there is greater uncertainty in homogenization.

Temperature changes relative to the average over the late 19th century are shown in Figure 8. The 51-year 
period 1850–1900 is often considered for practical purposes to be representative of preindustrial conditions. 
This approximation of preindustrial temperatures is consistent with that adopted in IPCC AR5 (Hartmann 
et al., 2013) and IPCC SR1.5 (Allen et al., 2018), noting that any choice of period is a compromise, with 
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Figure 7. Comparison between long-term near-surface temperature data sets. Annual average temperature anomaly (°C, relative to 1961–1990), 1850–2018. 
(a) 90°S-60°S, (b) 60°S-30°S, (c) 30°S-0°N, (d) 60°N-90°N, (e) 30°N-60°N and (f) 0°N-30°N. Black: HadCRUT5 analysis ensemble mean. Pink: ERA5. Red: 
GISTEMP. Orange: NOAAGlobalTemp. Green: Berkeley Earth. Blue: Cowtan & Way. Gray shading: 95% confidence interval on the HadCRUT.5.0.0.0 analysis 
determined by the ensemble spread and coverage uncertainty.
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(b) (e)
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natural variability and forcing playing a role (Hawkins et al., 2017). For analyses that do not extend back to 
1850 (NOAAGlobalTemp and GISTEMP), 1880 to 1900 is used as the reference period here. By referencing 
the time series to this early period, the spread of temperature anomalies later in the series is increased. This 
increased spread reflects uncertainty in temperatures in the early reference period and not uncertainty in 
recent temperature changes. On the global mean, the analyses are remarkably consistent with one another 
despite the differences in their construction.

5. Conclusions
An updated data set of global near-surface temperature change, HadCRUT5, is presented. Updates in the 
CRUTEM5 data set have expanded the underlying land station series and provided additional data quality 
checks. Updates in HadSST4 have brought improved understanding of the evolution of the marine observ-
ing network, contributing improved bias adjustments and uncertainty estimates. These are combined both 
in a noninfilled data set and in a new ensemble statistical analysis that provides a more spatially complete 
assessment of global and regional changes and uncertainty therein.

The new HadCRUT5 analysis ensemble samples a greater range of the quantified uncertainties than our previ-
ous assessment (Morice et al., 2012). Uncertainties arising from systematic errors associated with observational 
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Figure 8. Comparison of annual global average temperature anomaly series (°C) relative to two baselines: (a) 1961–1990 and (b) 1850–1900, taken as 
representative of preindustrial conditions. Black: HadCRUT5 analysis ensemble mean. Pink: ERA5. Red: GISTEMP. Orange: NOAAGlobalTemp. Green: 
Berkeley Earth. Blue: Cowtan and Way. Gray shading: 95% confidence interval on the HadCRUT5 analysis determined by the ensemble spread only. Global 
means have been calculated for each data set by averaging anomalies for northern and southern hemispheres. For all data sets except for ERA5, anomaly series 
are computed by adjusting monthly time series to the appropriate baseline using data available in the anomaly reference period before averaging to annual 
series. ERA5 timeseries are shifted to match the 1981–2010 average for the HadCRUT5 analysis series, due to insufficient data in the climatology periods 
to compute anomalies. Anomaly series and uncertainties provided by the data set producers using each data set's native methods are shown in Supporting 
Information Figure S9.

(a)

(b)
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methods, measurement and sampling errors and spatial analysis uncertainty are all encoded into the expanded 
200-member ensemble, communicating the major known sources of uncertainty in an easily accessible way.

Time series of globally averaged temperature anomalies show greater 21st century warming for the Had-
CRUT5 analysis than for the HadCRUT5 noninfilled data set. The increased warming is predominantly 
associated with improved representation of the rapidly warming but sparsely observed high latitudes of the 
northern hemisphere. This finding is consistent with other independently produced statistical analyses of 
global temperature changes and is also consistent with temperature changes observed in reanalysis data 
sets that assimilate observational data into a numerical weather prediction model (Blunden & Arndt, 2019; 
Gelaro et al., 2017; Hersbach et al., 2020; Kobayashi et al., 2015).

The HadCRUT5 analysis indicates that globally averaged temperatures in the second half of the 19th cen-
tury were on average cooler than estimates based on noninfilled HadCRUT5. This is also consistent with 
assessments based on other independently produced statistically infilled analyses. Combined with the ev-
idence of increased warming in recent years, the infilled analyses indicate that warming since the 19th 
century is likely greater than is indicated by HadCRUT4 as a result both of observational sampling in the 
noninfilled data set and of updates to our understanding of biases in SST measurements resulting from 
changes in the make-up of the marine observing network.

There is, however, uncertainty in our understanding of 19th century temperatures resulting from limita-
tions in observational sampling, particularly in the southern hemisphere, and uncertainty associated with 
residual observational biases. Uncertainty remains in the early instrumental record in locations for which 
observational data are not available to inform the analysis. This is most evident in the Antarctic, the Arctic, 
and regions of the southern hemisphere land, prior to the establishment of permanent observing sites.

Methodological choices in representation of data sparse regions in different data sets lead to differences 
between global and regional average temperature time series. The impacts of these choices are most evident 
in regions and at times in which the observational data required to constrain the analysis is limited or una-
vailable, particularly in regions of the southern hemisphere in the early record. The spread of 19th century 
temperature analyses produced by different monitoring centers in part reflects the sensitivity to differences 
in methods used. These methods assume different statistical models for the data; therefore, the differences 
between analyses are not necessarily captured by the uncertainty estimates of any single method.

The updated analysis methods assist in mitigation of the impacts of low availability of observational data 
in data sparse regions. We anticipate that an extension, in potential future work, of the analysis covariance 
model to describe regional variation in variability would further improve the analysis temperature fields and 
uncertainty estimates. However, digitization of as yet unavailable observations and submission of these to 
open archives continues to be invaluable to improve regional data coverage and reduce uncertainty further.

The use of marine air temperature observations has recently been proposed to reconcile differences between 
data sets produced as a blend of SST and air temperature observations and model-based studies using near-sur-
face air temperatures over ocean (Cowtan et al., 2015; Richardson et al., 2016). However, uncertainties in ob-
served long-term changes in marine air temperature and their differences from observed SSTs are important to 
understand (Chan et al., 2019; Chan & Huybers, 2019; Kennedy et al., 2019), and the marine air temperature 
observing network is less robust than that for SST and is in long-term decline (Berry & Kent, 2017). Challenges 
also remain in monitoring near-surface temperature changes in the cryosphere, given sparse observational 
coverage and changes in sea-ice extent, with impacts on downstream assessments (Richardson et al., 2018).

Relative biases in SST measurements arise from differences in measurement methods and instrumentation. Such 
biases change regionally and over time with gradual as well as abrupt changes in the composition of the observ-
ing network or underlying databases. The characteristics of different bias adjustment schemes can be seen in 
the differences between analyses, broadly grouping data sets into those (GISTEMP, Lenssen et al. (2019) and 
NOAAGlobalTemp, Huang et al. (2019)) that adopt the ERSST v5 data set (Huang et al., 2017), those (Cowtan & 
Way (2014) and Berkeley Earth, Rohde & Hausfather (2020)) that adopt HadSST3 (Kennedy et al., 2011a, 2011b), 
and that which uses the improved HadSST4 data set (Kennedy et al., 2019), as is documented here. Differences 
between bias adjustments applied in each data set are smaller than the assessed adjustments themselves, which 
result in a net reduction in observed warming compared to unadjusted measurements (Kennedy et al., 2019). 
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Nevertheless, differences in SST bias assessments feature prominently as a source of difference between studies 
and remain a key uncertainty in assessing long-term change (Kent et al., 2017).

Despite methodological differences, temperature series derived from different analyses are in good agree-
ment, generally lying within the assessed uncertainty range of the HadCRUT5 analysis. Updates in Had-
CRUT5 bring our estimates of global and hemispheric series closer to those of other recent studies. Remain-
ing differences between estimates are understood to predominantly arise from differences in spatial analysis 
methods applied and differences in how each analysis accounts for changes in marine observing methods.

Appendix A: Details of Spatial Analysis Methods
A.1. Modeling the Temperature Anomaly Field as a Gaussian Process

Here we describe the methods used to construct the HadCRUT5 analysis. The method described in this section 
follows the Gaussian process method with explicit basis functions, described in Rasmussen and Williams (2006). 
The methods for analysis hyperparameter estimation are described in Appendix A.2. Appendix A.3 describes ap-
plication to the noninfilled land air temperature and sea surface temperature ensemble grids, including methods 
for sampling analysis uncertainties. Regional masking of the analyses is described in Appendix A.4.

For a monthly temperature anomaly field g, we model a vector of gridded temperature anomaly observa-
tions y as an additive combination of the true grid cell temperature anomaly values at the observed grid 
cells, denoted gobs, and an observational error term ε :

obs y g ε (A1)

The temperature anomaly field is decomposed into a regression model for the field mean, described in 
terms of a matrix of basis functions H with coefficients β, and a spatially correlated field f. The observations 
are then modeled by this decomposition, notating the basis function and the spatial field values at the ob-
served grid cells as Hobs and fobs:

obs obs
T  y f H β ε (A2)

Similarly, we define g∗ as the values true temperature anomaly values at a set of prediction grid cells, no-
tating basis functions and the spatial random field values at the prediction grid cells as H∗ and f∗, so that 

T
   g f H β. In this analysis, H is set as a vector of ones so that the regression model acts as an estimate 

of a constant field mean for the analyzed month.

The spatial field f is defined in terms of its covariance structure. This covariance structure is parameterized 
as a function of distance between locations, as is common in Gaussian process or kriging analyses. The 
covariance k(sm, sn) in spatial field values between locations sm and sn is defined as:

      , cov ,m n m nk s s f s f s (A3)

which defines the elements of a covariance matrix K, with elements  ,m nmn k s s  K . In this analysis, 
a Matérn covariance function is used to model the covariances k(sm, sn). This covariance function is pa-
rameterized by a smoothing hyperparameter ν, a range hyperparameter r that controls the rate at which 
covariance decays with distance between locations, and an amplitude hyperparameter σ. We use a station-
ary covariance function, with fixed values of the model hyperparameters fitted independently for the land 
air temperature and SST analyses. Covariances are evaluated as a function of Euclidian distance, rather 
than great circle distance, to retain the flexibility of Matérn covariance functions for data on the surface 
of a spherical Earth, avoiding restrictions to the range of smoothing hyperparameter values ν for which 
Matérn covariances are valid (i.e., to produce positive-definite covariance matrices) when using great circle 
distances (Gneiting,  2013). For separation distances with sufficiently strong covariance to be physically 
important, the Euclidian distance is close to the great circle distance.
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Values of the field at observed grid cells, fobs, are modeled as realizations from  obs obs,N 0f K  while 
those at predictions locations, f∗, are modeled as  ,N  0f K . Cross covariances between observed grid 
cells and prediction grid cells (i.e., the full output grid) are defined as Kcross. We define Ky as the sum of the 
covariance Kobs and the observational error covariance R:

obs yK K R (A4)

The observational error covariance matrices are constructed from the error model terms of the noninfilled 
data sets. When the analysis method is applied to an ensemble member of the land air temperature en-
semble (i.e., the observation vector y contains the grid cell values for an individual land ensemble member 
for one month), the observational error covariance R contains the additional uncorrelated within-grid-cell 
measurement and sampling error variances on the leading diagonal with zeros elsewhere. When applied to 
a SST ensemble member (i.e., y contains the grid cell values for an individual HadSST4 ensemble member), 
R is constructed from the HadSST4 per-platform uncertainties for the partially correlated error component, 
provided as full error covariances in HadSST4, with additional uncertainty from uncorrelated measurement 
and sampling error variances added onto the leading diagonal.

Estimation proceeds following Rasmussen and Williams (2006). The expected value of the anomaly field g∗ 
given the observations y is defined as |g yμ  where:

1
| cross |

T T
  g y y β yμ K K y F μ (A5)

and:

1
obs cross


  yF H H K K (A6)

here the terms involving the estimation of regression coefficients β (of which we need no prior knowledge) 
are:

1
| | obs

 Σβ y β y yμ H K y (A7)

  11
| obs obs

T Σβ y yH K H (A8)

The posterior covariance |Σg y for the Gaussian process prediction is given by:

| cross cross |
T T

   Σ Σg y y β yK K K K F F (A9)

Together, |g yµ  and |Σg y define the full posterior distribution of the Gaussian process estimate of the grid-
ded temperature anomaly field g∗ for all output grid cells, given observations y.

A.2. Kernel Hyperparameter Estimation

The estimation of the amplitude (σ) and decorrelation range (r) parametersof our spatial model is based 
on application of the maximum marginal likelihood method that is described in Rasmussen and Wil-
liams (2006). Here, the kernel hyperparameters  , rθ  are fit through numerical optimization to find 
the parameters that maximize the marginal log likelihood function, rearranged here as:

   1 1
| | | |

1 1 1 1log | log log log 2
2 2 2 2 2y

N Jp   
     Σ ΣT T

y β y β y β y β yy θ y K y μ μ K (A10)

here, N is the number of observed grid cells in y and J is the number of covariates included in the regression 
portion of the analysis model. We include a single covariate for the analysis field mean, hence 1J   in our 
application.
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The hyperparameters are fit to monthly ‘best estimate’ gridded temperature anomaly fields separately for 
land air temperatures and SSTs. Observational uncertainties are derived from the HadCRUT5 land en-
semble uncertainty model (described in Morice et al.,  2012) and HadSST4 uncertainty model (Kennedy 
et al., 2019), as described below.

As we fit hyperparameters to best estimates of the nonfilled grids, we include an additional uncertainty com-
ponent in the observational error covariance to represent the observational bias uncertainty that is encoded 
into the land ensemble and the HadSST4 ensemble. Hence, when fitting hyperparameters, an extended ob-
servational error covariance R' is substituted for R where ensemble  ΣR R  and Σensemble is an error covariance 
matrix that is empirically derived from the ensemble. The ensemble-derived error covariance matrices are 
only used when fitting hyperparameters for the best estimate fields. They are not included in the observational 
error covariance term when fitting the analysis fields for individual ensemble members in Appendix A.3.

For land hyperparameter estimation, the monthly observation vector y is constructed from a CRUTEM5 
best estimate field. The observational error covariance R is constructed from the uncorrelated measure-
ment and sampling uncertainty grids, from the Brohan et al. (2006) error model, while Σensemble is computed 
from the HadCRUT5 land ensemble. For marine hyperparameter estimation, the observation vector y is 
constructed from a HadSST4 ensemble median field. The observational error covariance matrices R are con-
structed by combining HadSST4 uncorrelated measurement and sampling uncertainties with the HadSST4 
“micro bias” error covariance matrices and Σensemble is computed from the HadSST4 ensemble.

Hyperparameter estimates are computed for each of the 360 monthly fields in the 1961 to 1990 climatology 
period, during which the observational sampling is near global in extent. The hyperparameters used in the 
analysis are taken as the average of the hyperparameters fitted in the 360 monthly optimizations, with scale 
parameters rounded to the nearest 0.05˚C and range parameters rounded to the nearest 50 km. The result-
ing amplitude parameter σ and range parameter r for the land air temperature analysis are 1.2  ˚C and 

1300r   km. For the sea surface temperature analysis, the fitted parameters are 0.6  ˚C and 1300r   km. 
The smoothing parameter was fixed at 1.5  . This model represents typical land and marine temperature 
anomaly variability. The model does not include regional and seasonal variations in these parameters, none-
theless where there is a sufficient observational constraint the method can reproduce appropriate regional 
and seasonal variability in the analysis anomaly fields. Additional information on the monthly hyperparam-
eter fits can be found in the Supporting Information.

A.3. Ensemble Analysis 

The HadCRUT5 ensemble land and marine analyses are constructed by applying Gaussian process regres-
sion to each ensemble member of the noninfilled land and marine data sets. Uncertainty is further explored 
by encoding analysis uncertainty into the ensemble, sampling from the Gaussian process posterior distribu-
tion through a process called conditional simulation (Chilès & Delfiner, 2012).

We denote a vector of observed grid cell temperature anomalies for a noninfilled ensemble member as yd, 
with the subscript d indexing the ensemble member. We then apply the Gaussian process analysis method 
to compute the expected value of the temperature anomaly field |d dg yμ  for the ensemble member, substi-
tuting yd and |d dg yμ  into Equation A5. We then proceed to sample the analysis uncertainty through condi-
tional simulation, as described below.

For each ensemble member, we draw a random sample from the joint prior distribution of the anomaly field 
at observed and prediction locations, setting the regression coefficient for each sample to an arbitrary value 
of   0β . This sampling distribution is defined as:

obs obs obs cross

cross
,

T T

T
N

 




                  
   

0

0

g H K K
g K KH

 (A11)

This provides samples of the anomaly field, according to the Gaussian process model on the full output grid, 
drawn as T

      0g f H , and at the observed locations obs obs obs
T  0g f H , with the correct covariance 

structure between observed and output grid locations.
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We then generate pseudo-observations y' of the simulated temperature field by sampling from the observa-
tional error model  ,N  0ε R . The simulated observation is then defined as:

obs obs
T    0y f H ε (A12)

Simulations of reconstruction error are based on application of the Gaussian process estimation to the 
simulated anomaly fields and simulated (pseudo) observations. The difference between the simulated field 
sample g  and the estimate based on the simulated pseudo observations | g yμ  is a sample of the reconstruc-
tion error according to the Gaussian process model. This difference, |    g ye μ g , is a sample from the 
posterior distribution of the Gaussian process regression, that is,  | |,N      Σg y g ye μ .

For an ensemble member indexed by d with observation vector yd, the analysis values g∗d are computed as 
the sum of the Gaussian process estimate |d dg yμ , based on the real observations yd, and a simulated recon-
struction error sample de :

|d dd d   g yg μ e (A13)

The resulting ensemble encodes both the bias terms in the underlying observational ensemble and the re-
construction error for the Gaussian process.

The applied Gaussian process estimation is purely spatial and so does not provide information on temporally 
correlated reconstruction error. To mitigate this, we modify the above sampling method to encode temporal 
correlation into the conditional simulation process. The simulated spatial fields g  and obsg  are sampled such 
that they are fully correlated throughout a year, that is the same spatial field is used for each sample within a 
year. This provides a conservative upper bound on uncertainty in annual averages derived from the ensemble.

Known temporal correlations in observational measurement and sampling errors, which are not represent-
ed in the noninfilled land and marine ensembles, are similarly encoded into the observational error samples 
dε  when generating pseudo-observations. This strategy is applied for the residual SST micro biases that are 

represented in the HadSST4 observational error covariance matrices. These are encoded using the same 
random draw for all months in a year when sampling. This allows uncertainty in annual averages to be 
computed under a conservative assumption of full temporal correlation of SST micro biases within a year, 
as defined by the HadSST4 uncertainty model (Kennedy et al., 2019). Other measurement and sampling 
uncertainties, associated with temporally uncorrelated errors, are sampled independently for each month. 
No additional temporal correlation is encoded into the ensemble for land air temperatures as there is no 
temporal correlation in the measurement and sampling error terms for CRUTEM5 (although the analyzed 
land ensemble does already sample time correlated observational errors from residual station biases, which 
are distinct from the measurement and sampling uncertainty terms discussed here).

Although knowledge of temporal correlation in errors is not used to improve the estimated anomaly fields, 
the result of the sampling process is to enable an upper bound on uncertainty in annual averages to be ob-
tained directly from the ensemble.

A.4. Observational Constraint Mask 

Despite the application of spatial reconstruction, there are regions of the world in which the available ob-
servational coverage, particularly in the early part of the record, is such that a reliable reconstruction is not 
possible. In regions where local observations are not available, the analysis ensemble mean reverts toward 
the regression model estimate of the mean temperature anomaly, inferred from observed regions, while the 
ensemble spread tends toward that described by the Gaussian process prior distribution.

Consequently, regions where the constraint from local observations is poor are removed from the analysis. 
The reconstruction in these regions is highly sensitive to the prior covariance model and the estimated re-
gression term |

T
 β yH μ , for which the coefficient estimate may be biased toward observed regions. This has 

been found to be the case in test analyses of climate model simulations in which global average temperature 
estimates have been found to be biased toward northern hemisphere temperatures during periods with 
sparse southern hemisphere coverage.
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The criteria used to mask regions, defined in terms of a threshold α, is based on the ratio of posterior and 
prior variance of the local Gaussian process estimate, omitting the global regression term which has an im-
proper prior, with regions of the analysis masked where the following inequality is satisfied:

 
 

1
T
cross crossdiag

diag







 

yK K K K

K
 (A14)

The left-hand side of Equation A14 is bounded between zero and one and we use a threshold of 0.25   
to provide a balance between retaining regions with useful information content and masking those regions 
that have a weak observational constraint. Global and hemispheric average temperature series for varying α 
are provided in the Supporting Information and indicate that these diagnostics are insensitive to the choice 
of α values in the range 0.1–0.5

Data Availability Statement
The gridded temperature anomalies, the global and hemispheric timeseries and their uncertainty intervals will be 
available from the Met Office website (https://www.metoffice.gov.uk/hadobs) HadCRUT5 data will be archived 
for long term preservation and reuse as part of the HadCRUT catalog at CEDA https://catalogue.ceda.ac.uk/
uuid/f7189fabb084452c9818ba41e59ccabd. The CEDA archive of the HadCRUT.5.0.0.0 data can be accessed 
from https://catalogue.ceda.ac.uk/uuid/b9698c5ecf754b1d981728c37d3a9f02. ERA5 was obtained from the Co-
pernicus Climate Change Service (C3S) (2017): ERA5: Fifth generation of ECMWF atmospheric reanalyzes of 
the global climate. Copernicus Climate Change Service Climate Data Store (CDS), date of access: 28/11/2019, 
https://cds.climate.copernicus.eu. HadISST.2.2.0.0 was accessed on 11/12/2019 from https://www.metoffice.
gov.uk/hadobs/hadisst2/. The HadSST.4.0.0.0 ensemble is available from https://www.metoffice.gov.uk/hadobs/
hadsst4/. CRUTEM5 data will be available from https://www.metoffice.gov.uk/hadobs and the CRUTEM collec-
tion at CEDA https://catalogue.ceda.ac.uk/uuid/eeabb5e1ff2140f48e76ea1ffda6bb48. The CEDA archive of the 
CRUTEM.5.0.0.0 data can be accessed from https://catalogue.ceda.ac.uk/uuid/901f576dacae4e049630ab879d-
6fb476. HadCRUT.4.6.0.0 is available from https://www.metoffice.gov.uk/hadobs/hadcrut4/. GISTEMP version 4 
was accessed on 17/11/2019 at 15:45 GMT from https://data.giss.nasa.gov/gistemp/. NOAAGlobalTemp version 
5 was accessed on 15/10/2019 at 07:07 GMT from https://www.ncdc.noaa.gov/noaa-merged-land-ocean-glob-
al-surface-temperature-analysis-noaaglobaltemp-v5. Berkeley Earth was accessed on 17/11/2019 at 16:25 GMT 
from https://berkeleyearth.org/data-new/. Cowtan and Way was accessed on 14/10/2019 at 10:40 GMT from 
https://www-users.york.ac.uk/∼kdc3/papers/coverage2013/series.html.
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