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Decoding the content of cross-modal influences in the brain 

Abstract 

This thesis examined how context and prior experience can shape the neural 

computations occurring in the human brain, specifically by using pattern 

classification analysis to decode the content of cross-modal influences in and around 

the primary somatosensory cortex (S1). In Chapter 2, fMRI was used to investigate 

whether simply hearing familiar sounds depicting different hand-object interactions 

could be discriminated in S1, even though stimulus presentation occurred in the 

auditory domain and no external tactile stimulation occurred. Results found 

discriminable patterns of activity about the sound of different hand-object 

interactions in hand-sensitive areas of S1, and not our two control categories of 

familiar animal vocalizations and unfamiliar pure tones. Chapter 3 aimed to 

corroborate the cross-modal effects found in the previous fMRI literature using a 

high temporal resolution neuroimaging technique: EEG. Specifically, EEG was used 

to examine whether simply viewing images of different familiar visual object 

categories which imply rich haptic information could be identified in sensorimotor-

related oscillatory responses, even though input was from a visual source and no 

tactile stimulation occurred. Results found the content of different familiar, but not 

unfamiliar, visual object categories could be discriminated in the mu rhythm 

oscillatory response, thus establishing a potential oscillatory marker for the cross-

modal effects previously observed. Chapter 4 involved an interactive fMRI paradigm 

using real 3D objects to test whether the primary function of the cross-modal 

influences previously detected is a likely result of predictive coding mechanisms. 

Whilst no reliable evidence for an account of predictive coding was found in this 

experiment, this study provided critical insight into the development of experiments 

which can directly test the assumptions of predictive coding with real action. The 

research conducted in this thesis has, therefore, provided significant contributions to 

the literature regarding our understanding of cross-modal influences and cortical 

feedback in the human brain.  

 

Keywords: cross-modal, cortical feedback, multi-voxel pattern analysis, mu rhythm, 

predictive coding, primary somatosensory cortex. (6)  
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CHAPTER 1  1 

 

CHAPTER 1   

–  

General Introduction 

  



CHAPTER 1  2 

 

1.1. Prelude 

How the human brain processes sensory information is much more complex 

than a typical textbook definition of cortex function. A standard explanation will 

likely state that the primary sensory cortical areas in the brain are specialised in 

passively registering specific types of sensory input (e.g. the primary visual cortex 

registers incoming visual information). Whilst this is strictly true, in reality it is 

unlikely that any one sense ever operates independently at any given time in such a 

simplistic manner. For example, I am currently typing on my keyboard. The feel of 

the keys on my fingertips is a tactile sensation, yet I am also receiving simultaneous 

auditory and visual input whenever I press down on the keys and see the letters that 

appear in front of me on the screen. I am also using my previous experience of 

typing on keyboards to accurately predict where the next key I plan to use will be. I 

am using the current context of the particular size of this keyboard to adapt my hand 

and finger movements accordingly. All this information comprises a simultaneous 

combination of visual, auditory, and tactile input, adapted to my previous 

experiences with the world and continuously being updated based on the current 

context that I am in. As such, moving away from standard textbook definitions of 

primary sensory cortex function, and instead focusing on how these areas integrate 

different sensory information and adapt with experience, is an important question 

and increasingly popular area of investigation in cognitive neuroscience today.  

The primary aim of this thesis is to examine how our prior experience with 

the world, together with the current context, can shape the neural computations that 

are occurring in the primary sensory cortical regions of the human brain. 

Specifically, this thesis focuses on how information is processed in and around the 

primary somatosensory cortex - the first known cortical area to process tactile input. 

This chapter will provide a detailed review about how we currently understand 

human cortex function. First, traditional views of cortex function will be reviewed, 

indicating how these views have changed over the past few decades. Then, research 

investigating multisensory processes across the primary sensory cortical areas will be 

introduced. Next, theories to explain how the brain may combine sensory input will 

be detailed. Following a comprehensive review of the literature, this chapter will 

subsequently introduce the important unanswered questions around sensory 

information processing which have been addressed in the present thesis.  



CHAPTER 1  3 

 

1.2. The primary sensory cortical areas 

The first known cortical areas in the human brain which process sensory 

information from the outside world are known as the primary sensory cortices. There 

are three dominant primary sensory cortices. The primary visual cortex (V1) is 

centred around the calcarine sulcus of the occipital lobe, the primary auditory cortex 

(A1) is located in the mid superior temporal lobe, and the primary somatosensory 

cortex (S1) is located in the most anterior portion of the parietal lobe; these cortical 

areas are known to process visual, auditory, and tactile information respectively 

(Crossman & Neary, 2015). Figure 1.1 displays the anatomical location of the 

primary sensory cortices in the left cerebral hemisphere. This section of the 

introduction will provide a detailed overview of research which has studied how 

sensory information is processed in the primary sensory cortices in the human brain. 

1.2.1. Traditional models of cortex function in the primary sensory 

cortices. 

The primary sensory cortices are located within the cerebral cortex; a highly 

convoluted thin sheet of neural tissue approximately 2-3mm thick, enveloping the 

surface of the human brain. Due to the nature of the many complex folds in this 

Figure 1.1: The three primary sensory cortices belonging to the senses of vision 

(V1), audition (A1), and tactile (S1) information, demonstrated in the left cerebral 

hemisphere. Taken from Watson, Paxinos, and Kirkcaldie (2010). 
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cortical sheet, the cortex actually accounts for approximately 40-50 per cent of the 

entire mass of the human brain (Ramachandran, 2002). The cortex is divided in to 

many different functional areas, each specialised for specific tasks (see Brodmann, 

1994; Brodmann & Garey, 2006). These areas can be further organised in to a 

functional hierarchy of high- and low-level cortical brain regions (Felleman & Van 

Essen, 1991; C. Koch, 2004; Maunsell & Van Essen, 1983; Mumford, 1991, 1992; 

Rockland & Pandya, 1979). As explained simply by Hawkins and Blakeslee (2004), 

these areas are not physically arranged ‘above’ or ‘below’ other areas, rather, the 

level in which a functional area sits in the cortical hierarchy depends on how the 

areas are connected to one another. Whilst low-level areas send information up to 

high-level areas via a feedforward pathway, high-level areas can send information 

back down to low-level areas via a separate feedback pathway (Hawkins & 

Blakeslee, 2004; Maunsell & Van Essen, 1983; Mumford, 1992). There are also 

lateral connections which can send information within the same level of a given 

functional area, such as within V1. Figure 1.2 depicts an example of the feedforward, 

feedback and lateral connections in the visual system.  

Figure 1.2: An example of the feedforward, feedback, and lateral pathways in the 

visual processing hierarchy. Taken and slightly adapted from Friston (2005). 

High-level area 

Low-level area 
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Traditional models of sensory information processing indicated all sensory 

input (e.g. vision, audition, and tactile information) travelled through the cortex from 

low- to high-level cortical regions along a feedforward pathway (e.g. Lamme, Super, 

& Spekreijse, 1998). This pathway suggests sensory information enters the brain via 

the retina of the eye, the cochlea of the ear, or the somatosensory receptors on the 

skin, and is first transformed to a specific region in the thalamus dedicated to each 

type of sensory input. For example, visual input enters the lateral geniculate nucleus 

(LGN), auditory input enters the medial geniculate nucleus (MGN), and tactile input 

enters the ventral posterior nucleus (VPN); all located within the thalamus 

(Crossman & Neary, 2015). Sensory information is then relayed from the nuclei in 

the thalamus to the corresponding primary sensory cortex for each sense (e.g. V1, 

A1, or S1 respectively). These areas are at the lowest level in the cortical hierarchy 

and process sensory input at its raw most basic level (S. M. Sherman & Guillery, 

2002). The connections between the thalamus and primary cortices are topographic, 

meaning information projects to a given primary sensory cortex in an ordered 

fashion. For example, primary visual and somatosensory cortices are spatially 

organised in such a way that a specific cortical region is representative of the exact 

location of the sensory surface of the retina or skin (Udin & Fawcett, 1988). In 

auditory cortex, specific sound frequencies sent from the cochlea are represented in a 

tonotopically organised map of low to high frequencies from central to outer regions 

of A1 (Elia Formisano et al., 2003; Talavage, Ledden, Benson, Rosen, & Melcher, 

2000). Finally, feedforward models suggest sensory information is then passed from 

the primary cortical area up the cortical hierarchy to high-level association areas 

which carry out a more complex analysis of the information. For example, areas such 

as the superior temporal sulcus (STS) or inferotemporal cortex (IT) can assign 

meaning to the raw sensory input, and contain rich, abstract information about the 

world (Felleman & Van Essen, 1991; Maunsell & Van Essen, 1983; Tanaka, 1996). 

The feedforward pathway has been extensively studied within the visual 

system. For example, Serre, Oliva and Poggio (2007) demonstrate a feedforward 

architecture of visual processing from V1 through to IT during a rapid categorization 

task (see also Chapman, Zahs, & Stryker, 1991; Reid & Alonso, 1995). The 

feedforward flow of visual processing has been largely characterised by models 

which have studied the neuronal response when stimulating a specific region of 

sensory space, identifying what is known as the receptive field of the neuron (Alonso 
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& Chen, 2009). For example, a visual receptive field model is concerned with 

determining exactly what properties of a visual stimulus elicit the maximum 

response of the receptive field in a given neuron in V1 (Carandini et al., 2005). The 

classic studies by Hubel and Wiesel (1968; 1959; 1962) described the powerful 

method of studying the receptive fields of single neurons in V1 in the cat and 

monkey brain, identifying two main cell types depending on their receptive field 

structures; simple and complex cells. They found that simple cells in V1 are 

preferentially activated by specific patterns of light or orientation (Figure 1.3A), 

whereas complex cells have larger receptive fields and are more responsive to the 

boundaries and changes between light and dark (Figure 1.3B). Therefore, each 

neuron in V1 has a specific receptive field which signifies a particular region of 

visual space it is selective for, with a maximum size of around 1° (Alonso & Chen, 

2009). From this research, area V1 was taken to be a stimulus driven feature detector 

which simply responds to the visual information that is present in the real world, 

such as changes in light or contrast.  

Figure 1.3: A visual example of the receptive field of (A) a simple cell, and (B) a 

complex cell, in a V1 neuron. (A) Here, cells in V1 are preferentially activated by 

specific patterns of light or orientation. (B) Here, cells are more responsive to the 

boundaries and changes between light and dark. Taken from Carandini et al. (2005). 

A 

B 
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Moving beyond the feature detector in V1, traditional models of visual cortex 

function suggest this information is subsequently sent up the cortical hierarchy to 

higher level visual areas, which have broader receptive fields and construct a higher 

order representation of the visual stimulus (Zeki, 1969). For example, neurons in IT 

show selectivity to complex objects (Rolls, 1991; Tanaka, 1996), and other areas 

along the ventral visual stream, such as the inferior occipital and fusiform gyri, are 

selective to the recognition of objects even when partially occluded (Tang et al., 

2014). Whilst receptive field models have been predominantly studied in V1, the 

same principles have been applied to other primary sensory cortical areas. For 

example, somatosensory receptive fields comprise a region of space on the surface of 

the skin which, when stimulated, can subsequently evoke a response in a specific 

neuron in S1 (Alonso & Chen, 2009). In S1, the accuracy of sensing tactile 

stimulation varies across the body. For example, receptive fields on the fingertips 

have a discrimination threshold diameter of around 1-2mm, whereas the diameter on 

the palms is around 5-10mm (Breedlove, Watson, & Rosenzweig, 2010). Moreover, 

recent work has found receptive field sizes differ among individual fingers, 

indicating the index finger contains smaller receptive fields compared to the little 

finger (Puckett, Bollmann, Junday, Barth, & Cunnington, 2020). As such, 

discrimination of two spatially separate stimuli is more accurate the smaller the 

diameter of a receptive field. Once again, traditional research on somatosensory 

receptive fields would suggest S1 is a simple detector which merely responds to 

tactile information from specific areas on the sensory surface of the skin, feeding this 

information up to higher-level brain areas, such as secondary somatosensory cortex 

(S2), which is involved in tactile object recognition (Gardner & Johnson, 2012).  

1.2.2. The missing content of traditional models of cortex function. 

A problematic aspect of the conventional feedforward model of cortex 

function is the fact that this model provides no explanation as to how context and 

prior experience can influence processing in the primary sensory cortical areas. For 

example, whilst receptive field models aim to provide all information needed to 

explain neuronal responses in the primary cortical areas (such as V1; Rust, Schwartz, 

Movshon, & Simoncelli, 2005), these models do not account for the role of the 

feedback and lateral pathways in the cortex. It is important to consider feedback and 
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lateral connections in any model of cortical processing, especially since feedforward 

models (e.g. Chapman et al., 1991; Reid & Alonso, 1995; Serre et al., 2007) based 

on Hubel and Wiesel’s (1968; 1959; 1962) original studies in V1 have been found to 

only account for around 40 per cent of the total explainable variance of responses in 

V1 neurons during natural vision (David & Gallant, 2005). This 40 per cent, as 

explained by Carandini et al. (2005), is the best estimate of how well the 

conventional feedforward models account for natural visual responses in V1. 

Although this is a sizeable amount of explained variance, previous work has 

estimated around 60-80 per cent of the total response variance of a given V1 neuron 

remains unexplained from these models, and is likely to be a function of cortical 

inputs arising from areas other than the LGN (Olshausen & Field, 2005). Further 

work has also found traditional auditory and somatosensory receptive field models to 

account for approximately 55 and 40 per cent of the total explainable response 

variance in A1 and S1 respectively (see Blake & Merzenich, 2002, and DiCarlo & 

Johnson, 2002; DiCarlo, Johnson, & Hsiao, 1998 respectively).  

Furthermore, since most receptive field models are based on data gathered 

from simple stimuli such as viewing gratings or bars, hearing random tone pips, or 

feeling random dot patterns, it is important to consider how contextual priors from 

more complex stimuli may shape processing in the primary sensory cortical areas. A 

classic illustration of how prior experience can shape processing in the primary 

cortical areas can be demonstrated with illusions. To give visual illusions as one 

example, in the famous Kanizsa (1976, 1979) illusion (see Figure 1.4), a non-

existent white triangle or square can be clearly perceived, even though in reality the 

figures simply depict a series of Pac-Man shaped stimuli arranged in a certain 

position. The illusory contours of the shapes have no physical basis, however, the 

fact that these contours are so clearly perceived challenges the idea that the visual 

system merely processes raw sensory input at its most basic level, in turn 

demonstrating how prior knowledge can influence visual perception. As a result, 

other theories of cortical processing have suggested phenomena such as the Kanizsa 

illusion may be the result of a separate neural pathway in the brain. Indeed, we know 

high-level areas can send information back down to low-level areas via feedback 

cortico-cortical pathways (Hawkins & Blakeslee, 2004; Maunsell & Van Essen, 

1983; Mumford, 1992). This means the primary cortical areas such as V1 must not 

only receive information entering the brain from the external environment, such as 
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via the retina, but also from other cortical areas which send information back to V1 

via a separate neural path. As a result, other theories, such as Gregory’s (1970) 

visual assumption theory, argues top-down processing via such feedback cortico-

cortical pathways must be important to facilitate perception. 

Neural evidence to support the idea that a primary sensory region can be 

influenced from contextual information sent via feedback pathways in the brain has 

been established using functional magnetic resonance imaging (fMRI) in the visual 

system. For example, Murray, Boyaci, and Kersten (2006) showed participants 

visual illusions of two balls which projected the same visual angle yet were 

perceived to be at different distances. As briefly mentioned in Section 1.2.1., each 

primary cortical area is spatially organised into a topographic map. For vision, 

retinotopy can be used to map visual input to the specific location of neurons in V1. 

Therefore, Murray et al (2006) used retinotopy to find that the region of V1 which 

retinotopically represented the two balls was larger for the ball that was perceived as 

being larger, despite the fact they were exactly the same size. Furthermore, Muckli, 

Kohler, Kriegeskorte, and Singer (2005) presented participants with two blinking 

squares to display an illusion of apparent motion, and found the region of V1 that 

retinotopically represented the illusory path of the apparent motion showed a 

significant response, despite the fact there was no physical stimulus on this path. 

Figure 1.4: The Kanizsa (1976, 1979) illusion. The left image appears to contain a 

solid white triangle, and the right image appears to include a solid white square, 

both with well-defined contours. However, these shapes are both subjective, and 

actually have no physical basis. 



CHAPTER 1  10 

 

Additionally, Lee and Nguyen (2001) displayed Kanizsa illusion figures (see Figure 

1.4 above) to monkeys whilst monitoring cell responses in V1 and secondary visual 

area V2. Remarkably, they found neural responses to the illusory contours of the 

edges of the Kanizsa illusion in both V1 and V2. Other research has also found 

neuronal responses to the illusory contours of the Kanizsa illusion in visual cortex 

(Von Der Heydt, Peterhans, & Baumgartner, 1984). Taken together, this research 

strongly indicates V1 does not merely process the raw visual information present in 

the outside world. This research therefore challenges the conventional feedforward 

models of information processing.  

Whilst contextual influences on perception have been well documented 

within the field of vision, we can assume that similar mechanisms can be applied to 

the other primary sensory cortices. This is due to the uniformity of feedforward, 

feedback, and lateral pathways across all areas of cortex (Edelman & Mountcastle, 

1978). Indeed, despite receiving less attention in the literature, research has found 

neural evidence for contextual influences in A1. For example, researchers have used 

fMRI to find activity in A1 reflects a perceived continuity of illusory tones in noise, 

meaning even if the stimuli were acoustically identical yet were perceived 

differently, activity in A1 reflected the perceived difference (Riecke, Van Opstal, 

Goebel, & Formisano, 2007). Neural evidence for such contextual effects has also 

been found in S1. For example, in the cutaneous rabbit illusion (Geldard & Sherrick, 

1972), repetitive presentations of brief stimulation at two or more points on the skin 

can lead to the illusion that areas on the skin situated between the physical 

stimulation points have been stimulated. Using this illusion in an fMRI study, 

researchers found activation in S1 at the somatotopic location corresponding to the 

illusory perception of stimulation on the skin (Blankenburg, Ruff, Deichmann, Rees, 

& Driver, 2006). Similar effects have also been found in S1 using optical imaging 

(L. M. Chen, Friedman, & Roe, 2003). Once again, this research demonstrates how 

the primary sensory cortices must process more than the raw sensory input entering 

the brain from the external environment.  

As such, updated models which account for the role of feedforward, 

feedback, and lateral pathways in shaping the neural processes even in primary 

sensory cortices provide a more accurate representation of cortex function. They 

offer a convincing argument for how context and prior experience can shape 

information processing in the brain (see Heeger, 2017). Specifically, these models 
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recognise the importance of the different neuron populations in the layered structure 

of the cortex, which group together based on similarities in connections and 

functions to form six basic layers (Ramachandran, 2002); layer I being the most 

superficial layer (see Figure 1.5). Layer IV is known to be the main receiving layer 

of cortex, which receives the most input from both thalamic afferents and other 

cortical structures, mainly consisting of neurons known as stellate cells. On the other 

hand, layer V provides the main output of the cortex, consisting of large pyramidal 

neurons which project information to other areas of the brain via long, thick axons 

(Mumford, 1992; Ramachandran, 2002). 

The functional relevance of the laminar organisation of the six layers of 

cortex was notably studied in the visual system by Rockland and Pandya (1979), 

who found that visual input travelling through the cortex along the renowned 

feedforward pathway from the thalamus terminated in layer IV of the corresponding 

primary cortical area (V1). Since they found layer IV is where the bulk of thalamic 

afferents terminate, they proposed a highly developed layer IV is a sure indication of 

I 

II 

III 

IV 

V 

VI 

Figure 1.5: Neural populations in the six layers of the cerebral cortex. Layer I is the 

most superficial layer. Note the stellate cells in layer IV and the pyramidal cells in 

layer V, the main neurons which receive and project information from and to other 

areas of cortex respectively. Taken from Ramachandran (2002). 
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a primary sensory cortical area. This has since been further confirmed in subsequent 

research (Felleman & Van Essen, 1991), with further work recognizing any given 

primary cortical area (e.g. V1, A1, and S1) can typically be identified by a mass of 

densely packed cells in layer IV of cortex (Mesulam, 1998). Rockland and Pandya 

(1979) also discovered information passing up the cortical hierarchy originated from 

neurons in layers III and V from a low-level cortical area, terminating in layer IV of 

the next higher-level cortical region. Finally, they discovered reciprocal connections 

sent information from high-level visual areas back down the cortical hierarchy 

towards primary visual area V1. This information flow tended to originate from 

neurons in the deeper layers such as V and VI of the high-level cortical areas, 

terminating in layer I of the next area going back down the cortical hierarchy toward 

primary visual area V1, avoiding layer IV altogether (see also Felleman & Van 

Essen, 1991). As such, it is clear that the different layers of cortex have a functional 

purpose in transmitting information up and down the cortical hierarchy. Specifically, 

this research provides direct neural evidence for exactly how both feedforward and 

feedback neural pathways in the brain play different fundamental functional roles in 

shaping the responses of the primary cortical areas, such as V1.  

Drawing back upon the empirical research which has investigated the 

influence of contextual information in the primary cortical areas, Lee and Nguyen 

(2001) not only found neural responses to the illusory contours of the edges of the 

Kanizsa illusion in both V1 and V2 (see above), but specifically they found such 

responses in the superficial layers of such regions, thus suggesting high-level areas 

sent this contextual information back down the cortical hierarchy to V1 via a 

feedback pathway. Furthermore, subsequent research has found merely 10 per cent 

of the input to layer IV neurons of primary visual area V1 arise from thalamic 

afferents (Masland & Martin, 2007), which therefore suggests the remaining input to 

a given V1 neuron derives from intracortical neurons, or neurons located in distal 

areas of cortex, via feedback and lateral connections. Since this research suggests 

feedback and lateral connections to V1 outweigh feedforward connections by over 

half, this lead researchers to later believe feedforward stimulus driven information is 

actually a minor task of the cortex (Muckli, 2010), with most activity, even in the 

primary sensory cortices, being controlled for by contextual influences via feedback 

or lateral neural pathways in the brain. 
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Further empirical research has investigated the role of feedback pathways in 

shaping neural responses in primary cortical regions, such as that of Smith and 

Muckli (2010), who were particularly interested in the role of feedback pathways 

when presented with visual stimuli under more natural viewing conditions. In an 

fMRI experiment, participants were presented with different images of natural visual 

scenes, in which the lower right quadrant of each scene was occluded from view. 

Smith and Muckli found that discriminable patterns of information relating to the 

different scenes could be read out from the region of early visual cortex which 

retinotopically represented the occluded quadrant of each scene. As this 

discriminable information was based on activity patterns alone in regions with 

missing feedforward input, this indicates early visual cortex must have received 

content-specific information inferred from the context of each scene, supposedly 

through cortical feedback from high-level areas. This was further supported with a 

control condition whereby no occlusion was present when viewing the natural 

scenes. The researchers used cross-classification methods to find that the region of 

early visual cortex representing the occluded quadrant contained similar patterns of 

brain activity when stimulated either through feedforward or feedback conditions 

(see also Muckli & Petro, 2013). Furthermore, this experiment was replicated using 

7-Tesla fMRI to enable layer-specific analysis, to find that whilst the control 

condition of the entire scene produced discriminable patterns of information about 

each scene in all layers of V1, representations for the partial occlusion conditions 

were only discriminable in the outer superficial layers (e.g. layers I and II; Muckli et 

al., 2015). These are the cortical layers that are expected to receive information 

through cortical feedback (Lee & Mumford, 2003). Overall, the findings thus suggest 

that non-stimulated regions of V1 contain information about the surrounding visual 

context, which is also related to the information projected from stimulus driven 

vision along the renowned feedforward pathway. Other research has also found such 

context effects in V1 (see Muckli, Kohler, Kriegeskorte, & Singer, 2005; Murray, 

Boyaci, & Kersten, 2006), further supporting the idea that feedback connections play 

a critical role in information processing in the primary sensory cortices.  

As introduced above, high spatial resolution neuroimaging at 7-Tesla enables 

segregation of the different layers of cortex, which is becoming an increasingly 

popular technique for investigating the laminar architecture of feedforward and 

feedback connections in the cortex. Whilst the studies described to this point have 
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focused mainly on the visual system (due to vision being the most studied sense), 

research has also used 7-Tesla fMRI to investigate the laminar architecture of 

primary cortical areas A1 and S1. For example, 7-Tesla fMRI has been used to 

examine the columnar organisation of the processing of sound frequency in A1 (De 

Martino et al., 2015). Furthermore, tactile thalamic input has also been found to 

terminate in layer IV of S1 (Thomson, 2003), with recent research also 

demonstrating how the different layers of S1 contain different neuron types with 

distinct feedforward inputs and feedback projections (Palomero-Gallagher & Zilles, 

2019). Whilst the laminar architecture of specific feedforward and feedback 

processes in S1 has been less studied, recent research has begun to investigate this 

further. For example, feedforward tactile input has recently been found to 

preferentially activate the middle layers of S1, whilst expectation of a tactile 

sensation has been found to evoke activity in superficial and deep layers of S1 (Yu et 

al., 2019). Taken together, this research further validates the different roles of the six 

cortical layers for processing sensory feedforward and feedback signals in the 

primary sensory cortices, thus emphasizing the functional importance of the laminar 

architecture of the human cerebral cortex and how context can influence processing 

in the primary cortical areas.  

1.3. Multisensory processing across the primary sensory modalities 

The multitude of research discussed on cortex function to this point has 

focused on how sensory input belonging to one independent sensory modality, such 

as vision, is processed in the human brain. However, when experiencing an event in 

the real world, it is rare that any one sense would ever operate independently at any 

given time. For example, typing on a keyboard constitutes an integration of visual, 

tactile and auditory sensory components. As such, it is important to understand how 

the brain processes and integrates information from multiple sensory sources at the 

same time. Furthermore, whilst the sensory representations of an event such as 

typing on a keyboard would typically be thought to be constructed in multiple 

individual primary cortical regions (e.g. V1, S1, and A1), it is likely that the brain 

could form associative links between these senses through experience. Therefore, 

one could expect that context and prior experience can not only shape processing 

within a sensory modality (see for example Smith & Muckli, 2010; discussed in 
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detail above), but also across modality connections. In this section, classic 

multisensory studies investigating how the brain integrates multisensory information, 

along with research that has revealed the influence of one sense on another, will be 

introduced. This section will proceed to discuss how the wiring between the senses 

can exhibit neuroplastic changes based on experience and reform following sensory 

deprivation. Finally, more recent ground-breaking research will be reviewed which 

has revealed even the primary sensory cortices of the human brain are not only 

influenced by context within a sensory modality, but can receive contextual 

influences cross-modally from other independent sensory sources.  

1.3.1. Classic studies investigating multisensory processing in the cortex. 

Investigating exactly how and where the human brain converges information 

from independent sensory inputs is essential for understanding cortex function. A 

celebrated review by Ghazanfar and Schroeder (2006) suggested certain high-level 

association brain areas, such as the superior temporal sulcus (STS) region, the 

posterior parietal cortex (PPC), pre-motor cortex (PMC), and areas located within 

frontal and prefrontal cortices, may receive input from several senses, in turn 

forming multisensory ‘hubs’ in the brain. For example, Jones and Powell (1970) 

discovered each primary sensory cortical area in the brain of the Rhesus monkey 

contained neural connections to STS and orbito-frontal cortex, classifying such areas 

as multisensory convergence zones. Furthermore, the superior temporal polysensory 

(STP) area of the Macaque brain has been found to respond to somatosensory, 

auditory, and visual stimulation (Bruce, Desimone, & Gross, 1981; Falchier, 

Clavagnier, Barone, & Kennedy, 2002; Hikosaka, Iwai, Saito, & Tanaka, 1988). As a 

compliment to the animal studies, Beauchamp (2005) conducted a review of 

neuroimaging studies which demonstrate multisensory convergence in the lateral 

occipito-temporal cortex in humans, suggesting this area may be functionally 

equivalent to the STP areas observed in animal studies. For example, the lateral 

occipital complex in humans is preferentially activated in response to visual and 

tactile stimuli (Beauchamp, 2005). Furthermore, an area in human posterior STS has 

been found to respond to visual, auditory, and somatosensory stimulation 

(Beauchamp, Yasar, Frye, & Ro, 2008). These areas have all hence been suggested 

to be cortical regions that converge sensory information from multiple modalities.  
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Since the multisensory convergence zones identified above are high-level 

regions, it was generally assumed that convergence of multisensory information 

occurred only after the primary cortical areas had processed the individual types of 

sensory input in the corresponding unisensory modality (see for example Massaro, 

1999). However, research using electroencephalography (EEG) to investigate the 

timing of the neural responses to both uni- and multi-sensory stimuli can provide 

further insight as to at what stage each type of information is likely to be processed 

in the brain. For example, a study by Giard and Peronnet (1999) found neural 

responses to a combination of multisensory audio-visual stimuli as early as when 

either the audio, or the visual, unisensory stimuli were presented alone (all around 

40ms post-stimulus), suggesting multimodal information interacts very early in the 

sensory processing chain. This was further corroborated at a later date, whereby 

Molholm et al. (2002) found neural responses to audio-visual stimuli were virtually 

simultaneous to the first neural responses from independent sensory information. 

Therefore, another argument outlined in a review by Driver and Noesselt 

(2008) is that multisensory convergence may occur earlier in the cortical hierarchy 

than previously thought. For example, Wallace, Ramachandran, and Stein (2004) 

studied the anatomy of the rat brain to find overlapping cortical areas at the borders 

between the sensory-specific domains that contained a mixture of neurons 

representing each individual bordering region, in addition to multisensory neurons 

that represented the convergence of the overlapping modalities. They suggested such 

regions not only represent both independent sensory modalities, but may also play 

important roles in the brains ability to integrate multisensory information. Wallace et 

al. (2004) mention the pathway of information processing to these transitional areas 

is yet to be determined, however they suggest the zones may be formed by the 

convergence of sensory-specific nuclei sent from the thalamus. Therefore, it is 

possible that multisensory information enters these areas earlier in the cortical 

hierarchy than the high-level multisensory convergence zones mentioned previously, 

with such zones existing adjacent to each low-level sensory-specific area.  

In fact, research has remarkably found multisensory convergence can occur 

even in the early sensory areas of the brain; regions which are traditionally 

considered to be unisensory (for extensive reviews see Driver & Noesselt, 2008; 

Ghazanfar & Schroeder, 2006; Kayser & Logothetis, 2007; Macaluso & Driver, 

2005). For example, Calvert (1997) found linguistic visual cues and silent speech-
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like movements activated auditory cortical areas in an fMRI experiment. This was 

found in the absence of actual auditory input, thus showing that traditional 

‘unisensory’ cortical areas can be influenced from other sensory modalities based on 

information presented via an entirely independent sensory source. Further work has 

also used fMRI on the Macaque monkey to find responses to visual (Kayser & 

Logothetis, 2007) or tactile (Fu et al., 2003; Kayser, Petkov, Augath, & Logothetis, 

2005) stimuli in and around A1. Similar effects have also been observed in visual 

cortices, whereby McIntosh, Cabeza, and Lobaugh (1998) found learned associations 

between an auditory and visual stimulus resulted in occipital activity when the 

auditory stimulus was subsequently presented in isolation. In somatosensory cortex, 

neurons have been found to activate in response to visual (Zhou & Fuster, 1997, 

2000) and auditory (Zhou & Fuster, 2004) cues if they are associated with tactile 

information. Finally, Liang, Mouraux, Hu, and Iannetti (2013) presented participants 

with visual, auditory, and tactile stimuli in an fMRI study and found the pattern 

elicited in response to each type of sensory stimulus was discriminable in any 

primary cortical area. For example, S1 could discriminate between the unique 

signatures of a visual or an auditory stimulus, in addition to a tactile stimulus. Taken 

together, this research shows how multisensory integration can occur even in the 

primary sensory regions of cortex.  

The fact research has found multisensory information is present even in the 

primary sensory cortices of the brain may be a result of information being sent from 

high-level multisensory convergence zones back down to the primary cortical areas 

via feedback pathways (see for example Stein, Meredith, & Wallace, 1993). 

However, another alternative to how this occurs was discussed in a review by Driver 

and Noesselt (2008), whereby research has suggested direct neural connections may 

exist between the unisensory modalities. For example, animal studies have found 

direct cortico-cortical connections from primary auditory to primary visual cortex 

(Falchier et al., 2002), between primary auditory and primary somatosensory cortex 

(Budinger, Laszcz, Lison, Scheich, & Ohl, 2008; Henschke, Noesselt, Scheich, & 

Budinger, 2015), and from visual areas towards areas of primary somatosensory 

cortex (Cappe & Barone, 2005). In studies such as that by Cappe and Barone, they 

found information processing along these direct connections can follow either a 

feedforward or feedback profile, thus arguing against a cortical hierarchy of 

information processing in the brain in this case. However, Driver and Noesselt note 
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that such direct neural connections are relatively sparse in comparison to the 

feedback connections that send information from multisensory convergence zones 

such as STS to primary sensory cortices. As such, it is unlikely that direct cortico-

cortical pathways are a dominant pathway of multisensory convergence in the brain.  

1.3.2. Neural plasticity of multisensory processing, and the neuroplastic 

effects of sensory deprivation. 

Understanding the neural pathways for multisensory processing in the brain 

leads to an interest in how specific experiences may cause neuroplastic changes in 

and between such underlying cortical brain structures; also known as neural 

plasticity. Neural plasticity is the ability for the brain to reorganise itself in terms of 

its functional or structural properties in response to a given event, or a set of events 

(Huttenlocher, 2002). This can be a learned change, for example, animal studies have 

revealed multisensory integration improves with maturation, whereby multisensory 

neurons are unable to synthesize cross-modal information received in early life, with 

all sensory-responsive neurons being unimodal during early postnatal stages (Stein, 

Perrault Jr, Stanford, & Rowland, 2009; Wallace, Carriere, Perrault, Vaughan, & 

Stein, 2006; Wallace & Stein, 1997). Furthermore, Xu, Yu, Rowland, Stanford, and 

Stein (2014) found neurons in the superior colliculus of cats that were deprived from 

co-activated visual and auditory experiences could not engage in typical 

multisensory integration. More recently, research has found a sensory cortex can 

even rewire specific aspects of the corresponding sense. Studying S1 activity in foot 

artists who were born without arms, Dempsey-Jones, Wesselink, Friedman, and 

Makin (2019) found an organised topographic map of the toes in S1 in the specific 

area which would be typical of a map of the fingers in a control population. Overall, 

this suggests sensory processing is not hardwired, but rather cross-modal 

connections are continuously being generated and updated through experience with 

the world (see also Hebb, 1949; Paraskevopoulos & Herholz, 2013; 

Paraskevopoulos, Kuchenbuch, Herholz, & Pantev, 2012).   

Furthermore, neural plasticity can also occur when a person has undergone 

sensory deprivation. Unlike traditionally thought, research has found deprivation of a 

sensory modality (such as deafness and/or blindness) can result in reorganisation of 

the neural circuitry in the brain (for reviews, see Collignon, Champoux, Voss, & 
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Lepore, 2011; Collignon, Voss, Lassonde, & Lepore, 2009; Frasnelli, Collignon, 

Voss, & Lepore, 2011). This can result in a strengthening of nerve impulses in a 

non-deprived modality, such as an enhanced tonotopic map found in auditory cortex 

in blind individuals (Elbert et al., 2002). Interestingly, research has also found cross-

modal changes in areas of cortex which are sensory-deprived. Cross-modal plasticity 

occurs when neurons or brain regions that would have typically processed a certain 

type of sensory information (e.g. visual regions process visual information) can 

adapt to process a completely different kind of sensory information when the person 

has undergone sensory deprivation to that modality. For example, Sadato et al. 

(1996) used positron emission tomography (PET) to find activation in V1 during 

tactile discrimination tasks for blind braille readers when compared to sighted 

controls. Other research has found activation in V1 in response to auditory change 

detections in blind individuals (Kujala et al., 2005). Furthermore, when investigating 

participants who were deaf, Finney, Fine, and Dobkins (2001) found visually evoked 

activity in auditory brain regions when compared to hearing controls. Together this 

research suggests neuronal wiring between the sensory areas in the brain is 

experience-dependent and not hard-wired. 

In terms of the neural mechanisms underlying how sensory information can 

be sent cross-modally after sensory deprivation, it is generally thought to be due to 

how the synapses are wired in the brain from birth. As explained in a review by 

Collignon et al. (2009), initial synaptic connections in early life are primarily 

arbitrary and can consist of connections between multiple senses. For example, from 

audition to visual cortex in the cat brain (Innocenti & Clarke, 1984). However, 

following Hebb’s (1949) law of plasticity, it is thought the subsequent synaptic 

pruning phase eliminates any unused connections and causes certain areas to be 

specialised for different functions, thus eradicating connections such as those 

between vision and audition (Changeux, Courrpge, & Danchin, 1973). Interestingly, 

however, such connections between audition and vision in the cat cortex have been 

found to remain intact if they are visually deprived from birth (Berman, 1991). This 

is thought to be because auditory input is no longer in competition with visual inputs 

during the synaptic stabilisation phase, thus the connections do not undergo synaptic 

pruning. However, this theory posits that redundant connections do not escape the 

critical period of synaptic pruning, therefore, it does not account for why cross-

modal connections still exist in people who have experienced sensory deprivation 
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after the synaptic pruning phase, nor does this account for why we can find sensory 

information can be sent cross-modally in healthy participants. Furthermore, the 

research discussed in Section 1.3.1. above which found direct neural connections 

between primary sensory cortices (see e.g. Budinger et al., 2008; Cappe & Barone, 

2005; Falchier et al., 2002; Henschke et al., 2015) further suggests not all 

connections are pruned early in life despite the supposed lack of functional 

significance behind it.  

Other theories therefore suggest that cross-modal connections are rather 

silenced yet remain intact, and the cross-modal plasticity observed in late blindness 

may be a result of these redundant connections increasing in strength and essentially 

becoming reactivated upon sensory deprivation (Collignon et al., 2009). For 

example, a study by Klinge, Eippert, Röder, and Büchel (2010) found stronger 

cortico-cortical connections between A1 and V1 in blind participants compared to 

those who were sighted. However, crucially, this research revealed such connections 

do exist, yet are weakened, in the typically functioning human brain relative to blind 

individuals. This may explain why we can see cross-modal effects even in the 

typically functioning brain in people who have not undergone any type of sensory 

loss. The idea here is that the connections are not pruned entirely, but rather 

weakened and then brought back to strength following sensory deprivation 

(Collignon et al., 2009). Furthermore, a review by Bavelier and Neville (2002) also 

suggests polymodal association areas, such as the superior colliculus, become 

reorganised following sensory deprivation, whereby there is an increase in the 

number of neurons that respond to the sensory areas that remain intact. As such, 

Karlen, Kahn, and Krubitzer (2006) suggest it may be a combination of cortico-

cortical connections and connections to polysensory subcortical areas which are 

modified following sensory deprivation.  

1.3.3. Unisensory areas contain content-specific information from other 

sensory modalities. 

Whilst it has been known for some time that the primary sensory cortices can 

receive sensory information traditionally belonging to other primary sensory 

modalities (see Section 1.3.1. above for a review), especially when a person has 

undergone sensory deprivation (see Section 1.3.2. above), it is only within the last 
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decade that research has examined the specific content of the information which can 

be sent cross-modally (for a review, see Meyer & Damasio, 2009). This is an 

interesting avenue of research for the reason that if two sensory modalities are often 

stimulated simultaneously, experience-based neural plasticity should mean a 

stimulus presented in one modality could evoke specific traces of activity in the 

primary sensory cortex of an entirely independent sensory region, providing the 

stimulus implies features representative of that sensory modality (see Figure 1.6 for a 

visual diagram of this theory). This has already been found in terms of the neural 

response - for example, as discussed in Section 1.3.1., Zhou and Fuster found 

neurons in somatosensory cortex activate in response to visual (Zhou & Fuster, 

1997, 2000) and auditory (Zhou & Fuster, 2004) cues if they are associated with 

tactile information. However, what has not been shown from this previous research 

is whether the specific content of this information can be discriminated within the 

primary cortical area which is independent to that of stimulus presentation. A 

popular method for investigating the content of cross-modal information is to use 

multi-voxel pattern analysis (MVPA); an analysis technique used mainly in fMRI to 

examine whether distributed patterns of activity across multiple voxels are 

statistically discriminable across different stimulus conditions (Davis et al., 2014; 

Norman, Polyn, Detre, & Haxby, 2006).  

Figure 1.6: A diagram to visually represent how sensory input belonging to one 

sensory modality (e.g. a visual stimulus) could send information back to the primary 

cortical area of an entirely independent sensory modality (e.g. S1), providing the 

visual input implies features representative of the independent modality.  
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Research over the past decade has indeed found information in a primary 

sensory cortical area that is independent to the source of stimulus presentation can be 

reliably discriminated. For example, in an fMRI experiment by Meyer et al. (2010), 

participants simply viewed different silent yet sound implying video clips (e.g. silent 

animal calls or musical instruments), and MVPA was used to find each video clip 

could be significantly discriminated based on the patterns of activity elicited in A1 

alone. This suggests content-specific activity was transmitted to A1 even in the 

absence of external auditory stimulation, supposedly through experience-based 

plasticity wiring the two modalities together in the brain. In a later study, Meyer, 

Kaplan, Essex, Damasio, and Damasio (2011) also showed participants different 

video clips conveying object interactions with the hands (e.g. hands exploring a 

tennis ball or a light bulb), and found MVPA could significantly discriminate 

between the different videos by looking at patterns of activity in S1. This suggests 

information regarding the tactile properties of the objects was sent to S1 in the 

absence of any external tactile stimulation, again supposedly through associative 

links between the two areas formed from prior experience of interacting with the 

objects.  

Furthermore, Vetter, Smith, and Muckli (2014) investigated whether content-

specific activity could be discriminated in V1 in the absence of external visual 

stimulation when presenting participants with only the sounds of different rich visual 

scenes (e.g. the sound of traffic noise, or a rainforest). An interesting aspect of this 

study was that the researchers also tested whether content-specific activity could be 

decoded in such areas when the information originated from imagery rather than a 

stimulus entering the brain from the external environment. They showed that the 

content of both the sound and imagery of rich visual scenes could be decoded in 

early visual cortex. This finding is noteworthy, since this provides converging 

evidence that abstract information implying visual features can be fed back from 

high-level areas to early visual cortex, which is comparable across auditory or 

imagery exemplars, thus providing evidence that such information may be category 

specific rather than stimulus specific. Specifically, Vetter et al. found such 

discriminable information within the regions which retinotopically represented the 

periphery of visual space, particularly in the far periphery for the auditory stimuli. 

This is important since previous research has found evidence for direct connections 

between auditory and visual cortex in the peripheral regions of primary sensory 
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cortices (e.g. Cate et al., 2009). This may mean peripheral areas of early sensory 

regions receive the information as a prime for soon-to-appear objects in the visual 

field, and suggests different areas of V1, specifically peripheral areas, are specialised 

in receiving feedback information from auditory cortex. A final noteworthy finding 

from this study is the fact that whole brain searchlight analysis revealed high-level 

multisensory areas such as posterior STS may be multisensory relay stations in the 

brain which feedback information to early visual cortex, thus supporting the research 

mentioned in Section 1.3.1. above which suggests such areas are multisensory 

convergence zones. 

The research discussed in this section until now suggests content-specific 

information presented via one sense can be sent across to non-stimulated primary 

sensory modalities, however it does not prove whether prior experience with the 

stimuli is necessary for successful discrimination. Therefore, the first known study to 

address the question of whether familiarity is necessary for cross-modal context 

effects was conducted by Smith and Goodale (2015). In their study, they showed 

participants still images of three different familiar object categories (wine glasses, 

mobile phones, or apples), in addition to three unfamiliar object categories (cubies, 

smoothies, and spikies; Op de Beeck, Torfs, & Wagemans, 2008). Using pattern 

classification techniques, they found discriminable patterns of information in S1 only 

for the familiar visual object categories, which strongly suggests such cross-modal 

connections require a high degree of experience with the object, since the artificial 

objects did not produce comparable effects. Additionally, they were able to find 

similar patterns of activation across multiple exemplars of the same stimulus. For 

example, three exemplars of a wine glass all produced statistically similar patterns of 

activation. This finding is important, since it strongly supports the idea that high-

level cortical areas transmit content-specific information about stimulus categories as 

a whole to other primary sensory cortices, as opposed to simply transmitting fine-

grained sensory properties about any familiar stimulus without discriminating the 

unique tactile properties associated with each individual stimulus. Additionally, 

whole brain searchlight analysis revealed decoding in high-level areas within the 

parietal lobe, such as the superior parietal lobule, which have previously been 

suggested to be involved in multimodal integration (Hsiao, 2008), thus further 

supporting the idea of such high-level areas being multisensory relay stations for 

transmitting sensory information cross-modally.  
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Whilst this research has found discriminable patterns of activity in a primary 

sensory cortex independent to that of stimulus presentation, the underlying theory as 

to why such cross-modal effects exist remains unclear. Furthermore, this research 

has not examined cross-modal effects between all pairs of sensory modalities, such 

as the potential cross-modal links between audition and touch. Therefore, it would be 

interesting to investigate whether the dominant sense of vision (Colavita, 1974; 

Mumford, 1991) is needed in order to observe these cross-modal effects. 

Additionally, given this is a relatively novel area of study, this research has only 

examined such effects using 3-Tesla fMRI. Therefore, interesting avenues for future 

research to pursue could use 7-Tesla fMRI to examine the underlying laminar 

architecture of these cross-modal effects to further understand the role of different 

feedforward and feedback pathways in shaping these responses in the primary 

sensory cortices. Therefore, much research is still needed to understand why these 

cross-modal context effects exist even in the primary sensory cortical areas of the 

human brain.  

1.4. Theories to explain cross-modal processing in unisensory cortical areas 

The literature discussed to this point has revealed neurons even in the 

primary sensory cortical areas can receive input not only via neural connections 

projecting stimulus-related information via feedforward pathways (e.g. Lamme et al., 

1998), but also via feedback and lateral connections which convey contextual 

information. These feedback and lateral pathways can shape information processing 

both within a sensory modality (e.g. the context of different visual scenes can be 

discriminated in non-stimulated regions of early visual cortex; Smith & Muckli, 

2010), and via feedback across modality connections (e.g. the tactile content of 

different familiar visual objects can be discriminated in early somatosensory cortex; 

Smith & Goodale, 2015). The uniform structure of these bi-directional connections 

across the entire cortex (Felleman & Van Essen, 1991; Maunsell & Van Essen, 

1983) suggests a common computation to the function of the brain must be at work 

here. Therefore, the key theoretical frameworks which help to explain how and why 

context may shape processing in the primary sensory cortical areas will now be 

reviewed, with reference to Bayesian inference and predictive coding.  
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1.4.1. Bayesian inference. 

Bayesian inference is a powerful statistical formula that is used to predict the 

likelihood of a given hypothesis by assigning probabilities based on all available 

information previously stored about the hypothesis. The weights of these 

probabilities can be updated when given new information, and this formula is an 

increasingly popular theory for understanding how the human brain functions. 

Theories about the Bayesian brain propose the brain has an internal model of the 

world, whereby incoming sensory information is represented in the brain by 

computing the likelihood of how such information should be encoded based on prior 

experience with the situation; it suggests the brain actively constructs an explanation 

for understanding the world that it is in. When receiving new information which was 

not previously stored, it is thought that the brain can use Bayesian statistics to store 

the information in its internal model in the most statistically optimal way, thus the 

model can be continuously updated based on our experiences with the world. This 

entire process is called Bayesian inference (Brenner, 2015). Lee and Mumford 

(2003) assigned Bayesian theories to information processing in visual cortex. They 

suggested the feedforward and feedback connections in the brain implement 

Bayesian inference in the visual processing hierarchy, whereby high-level visual 

areas guide low-level visual areas to aid sensory processing. The idea here is that the 

brain will find the most optimal way to integrate bottom-up sensory signals with top-

down expectations based on prior experience.  

Many years of classic work by Friston (2005, 2009, 2010, 2012) further 

proposes a unified brain theory building on Bayesian inference, suggesting the brain 

minimises free energy, or the “surprise”, of the internal models of probabilities 

generated. This means the brain not only computes probabilities about what is likely 

to happen, but also minimises the states that are unlikely, thus maximising the 

accuracy of our perceptual representations. 

Much empirical research supports the theory that the brain is Bayesian, 

dating back to behavioural work such as that of Palmer (1975), who found objects 

can be perceived faster when preceded by an appropriate context. This means a 

visual stimulus was more readily perceived when the outcome matched what would 

typically be expected, based on prior experience. This research therefore suggests 

prior experiences with a certain event may be combined with feedforward sensory 
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visual input in a statistically optimal way to produce expectations and probabilities 

about the likely outcome. Furthermore, research has used a visual contrast detection 

task to find the higher the probability of a visual event occurring, the increased 

likelihood of reporting the presence of a visual signal (Wyart, Nobre, & 

Summerfield, 2012), or used pattern classification to find more weight assigned to 

expected visual input in visual cortex (Kok, Jehee, & de Lange, 2012). This research 

suggests prior expectations of visual input can influence bottom-up sensory 

processing, thus integrating both types of information in a statistically optimal way. 

Whilst the studies discussed above are predominantly focused on Bayesian 

processing within an independent sensory area (e.g. visual cortex), it is important to 

note, as mentioned previously, that the brain constantly receives input from multiple 

independent sensory sources in the real world. Therefore, Bayesian statistics can also 

be used to help explain how the brain can integrate multiple sensory signals and 

determine whether such signals belong to the same or different events (Kording et 

al., 2007; Rohe & Noppeney, 2015). Bayesian theories suggest the brain combines 

the noisy information from independent senses and makes probabilistic assumptions 

of a common source (Kayser & Shams, 2015). For example, when hearing and 

seeing a person speaking (whereby vision and audition comprise independent 

sensory information), the brain can make probabilistic assumptions as to whether the 

auditory and visual input belong to the same person (the common source).  

A classic study investigating Bayesian inference for multisensory processing 

across the two senses of vision and touch was conducted by Ernst and Banks (2002), 

who proposed the brain uses a rule of maximum-likelihood estimation, since they 

found visual and haptic information is integrated in the brain in a statistically optimal 

fashion. In their research, they first determined participants’ reliability of 

discriminating the size of an object based on either visual or haptic information 

alone. Crucially, Ernst and Banks manipulated the reliability of discriminating the 

visual stimulus by adding noise to the visual display. The participants’ 

discrimination reliability was then used to make Bayesian predictions about the 

amount of weight which would likely be given to visual or tactile information alone, 

when asked to determine the size of an object when conducting a multisensory 

discrimination task of visual and haptic information combined. They found the more 

visual noise added to the multisensory discrimination task, the more weight of 

probability was added to the haptic dimension. This study suggests the human brain 
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optimally weights signals arriving from independent sensory modalities according to 

Bayesian inference, since more weight was applied to the haptic domain when the 

visual domain was compromised.  

Further research has explored the underlying neural mechanisms of Bayesian 

inference by suggesting the brain integrates sensory signals from a common source 

whilst segregating sensory information from independent sources via a neural 

hierarchy of multisensory processing in the brain (Rohe, Ehlis, & Noppeney, 2019; 

Rohe & Noppeney, 2015, 2016). This series of research has used various 

multisensory Bayesian modelling with cross-validation procedures to demonstrate 

that only high-level cortical regions integrate sensory signals from a common source, 

with the highest-level regions taking in to account the uncertainty of a signal based 

on Bayesian inference. On the other hand, the low-level primary cortical areas 

represent the segregation of signals from independent sources. Taken together, this 

series of research has provided insight into the differing computational operations 

across the cortical hierarchy during multisensory interactions.  

Finally, Bayesian theories together with Friston’s (2005, 2009, 2010, 2012) 

free energy principle can also explain the reason behind the plasticity of the neural 

connections between the sensory areas in the brain. As mentioned in Section 1.3.2., 

the brain can alter neural connections between brain areas based on experience. For 

example, two neurons that fire consistently will eventually develop a stronger 

connection compared to two neurons which rarely fire together (Hebb, 1949). In line 

with Bayesian theories and the free energy principle, if a given neuron is stimulated 

via one sense, such as vision, and that neuron expects another neuron in an entirely 

independent region to respond, such as a neuron in S1, and this expectation is met, 

the connection between the two areas should be increased. Conversely, if the 

expectation is wrong and the neuron in S1 does not respond, the strength of the 

connection would be reduced in order to minimise the free energy of the unexpected 

stimulus (Friston, 2010; Friston & Stephan, 2007; Huang, 2008).  

Overall, Bayesian inference theories provide a robust explanation as to how 

multisensory integration may occur in the brain based on rules of probability. The 

theory acknowledges the fact that feedforward, feedback, and lateral pathways all 

contribute to sensory processing, and suggests probabilistic inference is generated 

based on the feedforward observations together with the contextual information sent 

via feedback or lateral pathways. However, Aitchison and Lengyel (2017) note that 
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whilst Bayesian inference provides a strong statistical method for how predictions 

are computed in the brain based on probabilities, it fails to specify the underlying 

neural computation of such predictions. Furthermore, as mentioned in a review by 

Friston (2012), Bayesian inference is only a description of optimal behaviour, and 

does not propose how the brain optimises events such as perception or multisensory 

integration under conditions of uncertainty. As such, the predictive coding theory 

will now be introduced, which provides one very prominent explanation for how 

Bayesian inference applies to human brain function at a computational level. 

1.4.2. Predictive coding. 

The theory of predictive coding is an increasingly popular framework in 

cognitive neuroscience which helps to explain how Bayesian inference can be 

implemented in the human brain in a neurally plausible manner. The key principle of 

predictive coding states that the brain builds internal models about the world, and 

generates predictions about likely upcoming events based on prior experience and 

the current context, continuously testing these predictions against what actually 

happened in real time (de Lange, Heilbron, & Kok, 2018). In relation to the primary 

sensory cortical areas, predictive coding suggests these areas are continuously 

making low-level predictions about what they will expect to see, feel, or hear, during 

any given situation, based on all previous experiences with the situation (for a 

review, see Clark, 2013). With this in mind, the idea is that the brain actively 

generates expectations and predictions to help shape sensory processing, as opposed 

to passively registering the sensory information entering the brain from the outside 

world (Clark, 2013; de Lange et al., 2018; Kok et al., 2012). It is theorised that the 

predictions that the brain generates can be updated using rules of probability in a 

Bayesian manner (Friston, 2009). Although theories of prediction had been 

hypothesised for a while (Mumford, 1991, 1992), researchers in more recent years 

have further organised these hypothesised ideas into one coherent theoretical 

predictive coding framework (for a review, see Kok & De Lange, 2015). 

To explain in more detail, the framework suggests each cortical brain region 

contains two neuronal populations: prediction units, and prediction error units. 

Whilst prediction units represent the hypothesis best explained by incoming sensory 

information, prediction error units represent any unexplained sensory input, hence, 
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the difference between the actual input and the predicted input (Kok, 2016). Kok and 

De Lange (2015) suggest it is these prediction error units that project up the cortical 

hierarchy, whereby the next high-level region receives this error unit and finds a new 

hypothesis that best explains the input it has received. This high-level region then 

sends the new prediction back down to the low-level region, which compares the 

prediction to the low-level region’s hypothesis. Any further mismatch represents 

another prediction error, which is sent back up the cortical hierarchy for the high-

level region to match it to a new hypothesis. This efficient recurrent cycle of 

hierarchical cortical processing continues until all prediction error units cease to fire, 

and a reconstructed, precise, and current version of the world is represented. In sum, 

the key idea is that any given cortical area is actively building an internal model of 

the likely forthcoming stimulation, and is continuously comparing this expectation 

with the actual sensory input received until all information is explained. Figure 1.7 

provides a visual diagram of this cortical processing hierarchy. 

This hierarchical prediction cycle, as stated by Kok and De Lange (2015), is 

suggested to have two main functions in the brain. First, prediction errors allow 

unexpected and potentially highly relevant stimuli to be more salient. Second, a 

correct prediction enables the neural representation of expected stimuli to be 

enhanced or ‘sharpened’. These two functions can be empirically tested with fMRI 

when measuring the amplitude of the neural response in a given cortical area using 

univariate analysis, and the representational content of the information in that 

cortical area using MVPA classification techniques.  

Figure 1.7: A diagram to visually represent the predictive process that occurs in 

human cortex. Taken from Rao and Ballard (1999). 



CHAPTER 1  30 

 

In terms of the neural response, cancellation theories suggest we prioritise 

unexpected events (prediction errors) by suppressing the neural response of expected 

input (predictions). Indeed, a renowned study by Kok et al. (2012) used a paradigm 

which manipulated the expectation of viewing certain orientations of different visual 

gratings in an fMRI scanner. They found that correctly predicted visual gratings 

resulted in less neural activity in V1. This result agrees with the idea that an accurate 

prediction leads to a dampened neural response with less firing of prediction errors, 

whilst unexpected stimuli leads to enhanced neuronal firing of prediction errors, 

enabling the stimuli to be more salient. Other studies have also found evidence of 

neural suppression for a correctly predicted event (Alink, Schwiedrzik, Kohler, 

Singer, & Muckli, 2010; Bays, Flanagan, & Wolpert, 2006; Bays & Wolpert, 2007; 

Blakemore, Wolpert, & Frith, 1998; Kikuchi et al., 2019; Lee & Mumford, 2003; 

Limanowski, Sarasso, & Blankenburg, 2018; Murray, Kersten, Olshausen, Schrater, 

& Woods, 2002; Richter, Ekman, & de Lange, 2018).   

Whilst a correctly predicted visual grating resulted in less neural activity in 

V1, Kok et al. (2012) used MVPA techniques to reveal the representation of 

expected gratings was enhanced in V1, meaning the pattern classifier could better 

decode an expected compared to an unexpected stimulus (see also Kok & De Lange, 

2015). As such, de Lange et al. (2018) alternatively suggest neural suppression for an 

expected event may not merely be a reflection of a dampened response, but may 

actually reflect an active ‘sharpening’ of the underlying representation of the 

stimulus (see also Friston, 2005; Kok, Mostert, & De Lange, 2017; Lee & Mumford, 

2003). Such a theory is in line with Bayesian models that suggest cortical regions 

may assign more weight on sensory channels to an expected event, since this could 

help to enhance the perception of that event (see also Kaiser, Quek, Cichy, & Peelen, 

2019). Indeed, Kok et al. (2012) found the reduced neural amplitude in V1 for an 

expected visual grating was more suppressed in neurons which preferred the non-

presented orientation. More recently, a study by Yon, Gilbert, de Lange, and Press 

(2018) asked participants to perform hand actions in an fMRI scanner whilst viewing 

an avatar hand which would simultaneously execute an action that was either 

congruent or incongruent with the hand action they physically made. Results found 

congruent visual stimuli were better decoded in occipital cortical regions, which was 

complimented by a suppressed neural response only for the voxels tuned away from, 

not towards, the expected visual stimulus. These studies hence suggest that more 
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weight may actually be added to a predicted event by dampening the response in 

specific voxels which prefer alternative stimuli (see also Den Ouden, Friston, Daw, 

McIntosh, & Stephan, 2009; Summerfield & De Lange, 2014). In turn, this suggests 

a more selective population of neurons tuned to the expected event may be pre-

activated in low-level cortical regions before the input has even been received, 

suppressing any unexpected features and resulting in a sharp, accurate representation 

of the input if the prediction is met (Press, Kok, & Yon, 2020). 

The neuronal process by which predictions and prediction errors are 

transported through the cortical hierarchies ties back in with Section 1.2.2., whereby 

feedforward and feedback pathways were introduced as having different functional 

roles in projecting information to and receiving information from the six different 

layers in the cortex (Rockland & Pandya, 1979). Predictive coding theories explain 

the functional significance behind feedforward and feedback pathways, in turn 

providing an explanation as to how information is transmitted amongst the six layers 

of cortex. As described by Rao and Ballard (1999) when examining encoding of 

natural images in the visual system, a model of the feedforward pathway suggested 

prediction errors travel up the visual cortical hierarchy, whereas feedback pathways 

carry predictions from high-level visual areas back down to the low-level visual 

regions. Rao and Sejnowski (2002) further suggested prediction errors sent up the 

cortical hierarchy via such feedforward pathways are sent from superficial layers to 

middle layer IV of the next cortical region, whereas predictions sent via feedback 

pathways originate in deep layer neurons. Indeed, more recent work has investigated 

how predictive processing occurs in the brain using 7-Tesla fMRI to explore 

feedforward and feedback pathways at the layer-specific level. As mentioned briefly 

in Section 1.2.2., Yu et al. (2019) used layer-specific fMRI to investigate the laminar 

architecture of human S1 when participants either physically perceived tactile 

stimulation, predicted to receive tactile stimulation, or did not expect to receive 

tactile stimulation. By investigating sensory input and predictive feedback in S1 in 

this way, they found that sensory tactile input from thalamic afferents along the 

feedforward pathway preferentially activated middle layers, whereas tasks involving 

predictive feedback (that is, the participants predicted to receive tactile stimulation, 

but did not actually receive any stimulation) only engaged the superficial or deep 

layers of S1. Furthermore, this activation was significantly stronger than a control 

condition whereby the tactile stimulation was unpredictable. This finding provides 
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strong evidence for predictive processing at the submillimetre level across the 

different layers of cortex in S1.  

Much additional empirical research has been conducted over the years which 

supports the theory of predictive coding. For example, Murray, Kersten, Olshausen, 

Schrater, and Woods (2002) showed participants either coherent or random shapes in 

an fMRI study, and found that activity in V1 was reduced when participants viewed 

the coherent shapes compared to the random shapes. This finding agrees with 

predictive coding theories, since predictive coding would suggest there are less 

prediction errors in the coherent shape condition due to the fact the information can 

be explained by high-level areas, thus explaining why there is less neural activity in 

this case. Furthermore, Alink, Schwiedrzik, Kohler, Singer, and Muckli (2010) used 

a visual apparent motion paradigm to find that responses to expected flashes based 

on the spatiotemporal context of the apparent motion pathway resulted in less signal 

in V1 when compared to an ‘unexpected’ flash which was not on the path trajectory. 

This finding is important as the weaker neural responses in V1 can be explained as 

being due to high-level regions expecting or predicting the input along the apparent 

pathway, since participants were completely naïve to the fact the intention of the task 

was to perceive an apparent motion illusion. 

Overall, predictive coding theories provide an elegant explanation as to how 

Bayesian inference is implemented in the human brain at a representational level. 

The theory suggests the common goal of a given brain area is to minimise prediction 

errors, which is accomplished via high-level regions sending predictions about the 

likely upcoming input down the cortical hierarchy to the low-level cortical region in 

a continuous cycle until all sensory input has been explained. This can hence explain 

why content-specific information about a certain stimulus can be detected in a 

primary cortical area independent to that of stimulus presentation if the stimulus 

implies features representative of that modality (see Section 1.3.3.), since the theory 

suggests the primary sensory cortices may be actively predicting forthcoming 

stimulation based on prior experience. The idea here is that predictions may be 

transmitted from high-level cortical regions down to the primary sensory cortices, 

pre-activating these areas in anticipation of the expected upcoming event. 

Furthermore, such predictions and prediction errors explain the functional 

significance behind the six different cortical layers. It is important to highlight here 

that the idea that the laminar structure of the six layers in the cortex comprises a 
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common computational algorithm is not new (see Edelman & Mountcastle, 1978), 

rather only later did researchers suggest this common computation, and primary 

function of the cortex, is prediction. In turn, the predictive coding theory has helped 

to provide a general account of computational brain processing across perception, 

cognition, and action in the human brain (Clark, 2013). 

1.5. The primary somatosensory cortex 

The literature reviewed to this point has discussed the neural processes and 

overall theories underlying how the brain processes sensory information, however 

this section of the thesis will now focus specifically on information processing 

within the primary somatosensory cortex (S1). This is because the primary focus of 

the present thesis is to examine the neural mechanisms underlying how and why 

content-specific information can be sent to S1 and surrounding sensorimotor areas 

when information begins from an independent sensory stimulus, such as audition or 

vision. This section will first detail the structure and function of S1 and will proceed 

to explain why it is important to focus explicitly on how context and prior experience 

can influence the underlying neural computations within and around S1 in the human 

brain. 

1.5.1. Structure and function of the primary somatosensory cortex. 

The primary somatosensory cortex (S1) processes tactile and proprioceptive 

information and is located in the post-central gyrus (PCG), posterior to the central 

sulcus. It is further sub-divided in to four anatomically distinct areas defined by 

Brodmann as areas BA3a, BA3b, BA1, and BA2 (Brodmann, 1994; Brodmann & 

Garey, 2006). These areas can be seen in Figure 1.8, which depicts the anatomical 

locations of the four Brodmann’s areas around the central sulcus and post-central 

sulcus. BA3a and BA3b are known to receive the most input from the thalamus, and 

deal primarily with processing proprioceptive and tactile information respectively 

(Chaudhuri, 2011). BA1 and BA2 receive input from BA3a and BA3b, thus are 

situated at a higher level in the cortical hierarchy and are involved in more high-level 

information processing (Eskenasy & Clarke, 2000). Whilst BA1 receives the next 
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higher level of tactile information, BA2 combines both tactile and proprioceptive 

information at the next higher-level region in the cortical hierarchy. 

As briefly mentioned in Section 1.2.1., different areas of the surface of the 

skin send information to specific regions in S1 which results in a measurable 

topographic map. This topographic map was first discovered by Penfield and 

colleagues (Penfield & Boldrey, 1937; Penfield & Rasmussen, 1950, 1952), who 

found that when applying small electric currents to different areas of the PCG in 

human participants undergoing brain surgery, there was a systematic representation 

of the neurons to corresponding parts of the body. From this, Penfield was able to 

create a somatotopic map, known as the somatosensory homunculus. As can be seen 

in Figure 1.9, each part of the body is represented in the somatosensory homunculus 

in proportion to its relative importance and/or use. For example, body parts which 

are used often such as the hands obtain a larger mass of cortical tissue in the PCG, in 

Figure 1.8: The four anatomical sub-divisions of the primary somatosensory cortex. 

The boundaries are around the central sulcus (CS) and post-central sulcus (PCS). 

Taken from Keysers, Kaas, and Gazzola (Keysers et al., 2010). 



CHAPTER 1  35 

 

which the individual fingers are even represented in an ordered sequence (Penfield & 

Boldrey, 1937; Schweizer, Voit, & Frahm, 2008). In contrast, body parts used less 

often, such as the elbow, obtain a smaller mass of cortical tissue. This somatotopic 

representation in S1 has also been confirmed in research on monkeys (Kaas, Nelson, 

Sur, Lin, & Merzenich, 1979). Furthermore, given the extensive literature reviewed 

on neural plasticity in the brain (see Section 1.3.2. above), it is not surprising that 

this topographical map is not hardwired. For example, plastic alterations have been 

found in the cortical area which represents the hands in musicians, whereby the area 

is not only more enlarged, but the increase is specific to the fingers which are 

frequently used in comparison to the musically untrained (Elbert, Pantev, 

Wienbruch, Rockstroh, & Taub, 1995; Pantev et al., 1998). 

In terms of the representation of the hands in the segregated areas (e.g. BA3a, 

BA3b, BA1, and BA2), neuroimaging studies have found that the somatotopic 

distribution of the fingers is represented in BA3b and BA1 (Nelson & Chen, 2008); 

the two areas which receive their dominant input from tactile information (Sur, 

Merzenich, & Kaas, 1980). It is important to note that a study investigating 

Figure 1.9: The somatosensory homunculus. Taken from Amaral (2000) and 

adapted from Penfield and Rasmussen (1950). 
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ipsilateral and contralateral responses in S1 following stimulation to the median 

nerve found that ipsilateral responses were significantly more posterior in the right 

hemisphere compared to contralateral stimulation, corresponding to BA2 (Nihashi et 

al., 2005). Since BA2 is suggested to be a high-level area, this suggests ipsilateral 

activation to posterior regions of right S1 corresponds to high-level information 

processes, whereas contralateral activation corresponds more to traditional 

feedforward input in more anterior regions of S1. This is because it has been known 

for some time that incoming tactile information is projected to the contralateral side 

of the brain, such that somatosensory signals from the right side of the body are sent 

to the left hemispheres S1 and vice versa (Chaudhuri, 2011). Therefore, information 

in ipsilateral S1 can be argued to be a result of a potentially higher level of 

information processing.  

1.5.2. Why it is important to study the primary somatosensory cortex. 

The reason that the current thesis is focusing specifically on neural 

processing within S1 is due to the fact that, despite an abundance of research 

investigating cross-modal context effects over recent years, very few studies have 

focused on how S1 can receive content-specific information from visual, and 

especially auditory, sources (Ghazanfar & Schroeder, 2006). Furthermore, the 

majority of research which has investigated general cortical function has focused on 

processing within the visual cortex (e.g. Carandini et al., 2005; David & Gallant, 

2005; Masland & Martin, 2007; Maunsell & Van Essen, 1983; Rockland & Pandya, 

1979). This is not surprising since it is widely considered to be the most dominant 

primary sensory modality (Colavita, 1974; Howard & Templeton, 1966; Welch & 

Warren, 1986), and comprises at least double the amount of cells compared to any 

other cortical region (Mumford, 1991). Therefore, there is a gap in the literature in 

understanding the basic cortical processes involved in other sensory modalities, such 

as S1.  

1.6. Aims and objectives of this thesis 

The literature reviewed in this thesis chapter has detailed the transition of 

how we currently understand the neural computations involved in the primary 
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sensory cortical regions of the human brain. To briefly summarise, research in recent 

years has established that the majority of the input to neurons, even within the 

primary sensory cortical brain areas, comes from other cortical sources via lateral 

and feedback connections in the brain (e.g. see Muckli & Petro, 2013). A prominent 

account suggests this is due to the fact the brain predicts upcoming sensory input, 

thus sends predictions of what it expects to experience in the real world to the 

relative primary sensory cortical brain regions (see Clark, 2013), essentially pre-

activating the cortical area in the event of subsequent input. With this in mind, 

research has found that the primary sensory cortical brain regions are subject to 

contextual influences both within and across the primary sensory modalities (for 

reviews, see Driver & Noesselt, 2008; Ghazanfar & Schroeder, 2006). Three key 

questions regarding such contextual information processing that we do not know, 

however, have been addressed in the present thesis.  

First, whilst research has found different familiar visual stimuli which imply 

haptic information can be discriminated in S1 (Meyer et al., 2011; Smith & Goodale, 

2015), different visual stimuli which imply auditory information can be 

distinguished in A1 (Meyer et al., 2010), and different auditory stimuli which imply 

visual information can be discriminated in V1 (Vetter et al., 2014), no research to 

date has investigated whether content-specific information can be sent to S1 when 

beginning from an auditory source. Answering this question is important in order to 

establish whether the mechanisms for transmitting content-specific information exist 

across all pairs of sensory modalities. If we do indeed find information specific to 

the tactile content of different auditory stimuli can be discriminated in S1, this can 

determine whether the dominant sense of vision (Colavita, 1974; Mumford, 1991) is 

needed in order to observe such cross-sensory effects. 

Second, no research to date has established whether content-specific 

information can be detected in an area of cortex independent to that of stimulus 

presentation using techniques other than fMRI. As such, investigating whether such 

information can be detected using a different technique, such as EEG, could help 

establish corroboration of these results across other key neuroimaging methods used 

in cognitive neuroscience. This is an important area of study since the previous fMRI 

studies can only confirm which areas in the brain can receive this cross-modal 

information. However, if we can corroborate these studies using EEG, we can 

determine the potential timing of these effects at a millisecond level. Furthermore, 
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establishing similar effects using EEG could open an avenue for quick advances in 

this field of cognitive neuroscience, since such studies are cheaper and more 

accessible than fMRI.   

Third, to date we do not know for certain whether the primary function of the 

cross-modal influences detected is a likely result of predictive coding in the brain. 

This is because previous research can only speculate as to why the cross-modal 

effects observed actually exist. As such, a study investigating cross-modal influences 

which can also directly test the assumptions of predictive coding, rather than simply 

being consistent with the theory, is needed. Understanding the underlying reason as 

to why we observe these cross-modal effects is an important area of study, since it 

could help future research to investigate any deviations in the predictive effects we 

observe in neurological or psychiatric disorders. 

These three questions are gaps in the literature which are important to answer 

in order to advance our understanding about how context and prior experience can 

shape the neural computations occurring in the human cerebral cortex. Specifically, 

these experiments aim to provide further insight into the relatively limited number of 

studies which have studied contextual effects within (and around) the primary 

somatosensory cortex (S1). In Chapter 2, fMRI was used to investigate whether 

simply hearing sounds that depict different familiar hand-object interactions can 

elicit significantly different patterns of activity in S1, despite the complete absence 

of external tactile stimulation. In Chapter 3, EEG was used to examine whether 

viewing different familiar visual object categories which participants have had a rich 

haptic prior experience with can be significantly discriminated in the mu rhythm 

oscillatory response, despite no external tactile stimulation or motor response. In 

Chapter 4, fMRI was used to investigate whether we could directly test the 

assumptions of the theory of predictive coding when asking participants to interact 

with real 3D objects placed directly in front of them in an MRI scanner. This thesis 

will now introduce each of the three experimental chapters which have aimed to 

answer each of these questions in turn.
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CHAPTER 2   

–  

Decoding the sound of hand-object interactions in primary 

somatosensory cortex 
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2.1. Abstract 

Neurons, even in earliest sensory regions of cortex, are subject to a great deal 

of contextual influences from both within and across modality connections. For 

example, research has shown that cross-modal connections from vision to primary 

somatosensory cortex (S1) transmit content-specific information about familiar, but 

not unfamiliar, visual object categories. As such, the present work investigated 

whether S1 would also contain content-specific information about sounds depicting 

familiar hand-object interactions (e.g. bouncing a ball). In a rapid event-related 

functional magnetic resonance imaging (fMRI) experiment, participants (N = 10) 

listened attentively to sounds from three different categories: familiar hand-object 

interactions, and control categories of familiar animal vocalizations and unfamiliar 

pure tones, while performing a one-back repetition counting task. Multi-voxel 

pattern analysis revealed significantly above chance decoding for the hand-object 

interactions within pooled S1 (i.e. post-central gyrus; PCG), whilst no significantly 

above chance decoding was found for either control category. Crucially, when 

running analyses in the top 100 hand-sensitive voxels in each participant, defined 

from an independent tactile localiser, decoding accuracies were significantly higher 

for hand-object interaction sounds when compared to both control categories in left 

S1. On the other hand, univariate results revealed no significant differences between 

categories except for primary auditory cortex. These findings indicate that hearing 

sounds depicting familiar hand-object interactions elicit different patterns of activity 

in S1, despite the complete absence of external tactile stimulation. Therefore, this 

suggests cross-modal connections from audition to S1 may transmit content-specific 

information about sounds depicting familiar hand-object interactions.  

 

Keywords: cortical feedback, cross-modal, multi-voxel pattern analysis, 

multisensory, S1. (5) 
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2.2. Introduction 

Much traditional neuroscientific research has typically investigated the 

function of the primary sensory cortical brain areas (e.g. primary visual, auditory, 

and somatosensory cortices) with respect to how sensory input is processed within 

its corresponding primary sensory modality. For example, research has explored how 

the primary visual cortex (V1) processes incoming visual information (for a review, 

see Carandini et al., 2005), or how the primary auditory cortex (A1) processes 

incoming sound frequencies (see Brewer & Barton, 2016 for a review). However, it 

is well-known that most input to neurons, even in the primary sensory cortices, is 

actually received from contextual cortical sources, via local or long-range internal 

neural connections (for a review of the visual system, see Muckli & Petro, 2013). 

This has been predominantly illustrated in the visual system. For example, previous 

research has revealed when viewing displays of different natural visual scenes, non-

visually stimulated regions of early visual cortex contained distinct information 

about each scenes’ surrounding context (Muckli et al., 2015; Smith & Muckli, 2010). 

This is just one of many examples that has demonstrated how the primary sensory 

cortices can receive contextual input that does not derive from external stimulation 

(see also Lee & Nguyen, 2001; Muckli, Kohler, Kriegeskorte, & Singer, 2005; 

Murray, Boyaci, & Kersten, 2006). 

Knowing that the primary sensory cortices can receive contextual 

information within their respective sensory modality has led researchers to 

investigate whether the primary sensory cortices can receive contextual information 

via across modality connections (for reviews, see Driver & Noesselt, 2008; 

Ghazanfar & Schroeder, 2006). This is plausible since classic multisensory studies 

have already shown that the primary sensory cortices are subject to modulatory 

influences from other sensory modalities (Calvert, 1997; Fu et al., 2003; Kayser et 

al., 2005; Kayser & Logothetis, 2007; Liang et al., 2013; McIntosh et al., 1998; Zhou 

& Fuster, 1997, 2000, 2004). However, more recent research has used pattern 

classification algorithms to reveal the content of this cross-modal information can be 

reliably discriminated in such regions. For example, research has found the primary 

somatosensory cortex (S1), known to process tactile information, can receive 

information related to the content of still images of different familiar, but not 

unfamiliar, object categories (Smith & Goodale, 2015), or different videos of hand-
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object interactions (Meyer et al., 2011), despite the absence of any tactile stimulation 

during the experiment. Furthermore, Meyer et al. (2010) showed that simply viewing 

different silent yet sound-implying video clips transmits discriminable information to 

A1 in the absence of external auditory stimulation. Additionally, when hearing 

different sounds of rich visual scenes, information specific to the content of the 

different scenes can be discriminated in early visual cortex, particularly in regions 

representing the periphery of visual space (Vetter et al., 2014). Taken together, these 

studies have shown that information specific to the content of a certain stimulus can 

be reliably discriminated in an entirely independent primary sensory modality, 

providing the stimulus implies features representative of that modality. One area that 

has not been addressed to date, however, is whether the sound of different types of 

haptic-implying information can be discriminated in S1. Therefore, in the present 

study, we aimed to examine whether simply hearing the sound of different hand-

object interactions (e.g. the sound of typing on a keyboard) could send content-

specific information cross-modally to S1. We would expect this to be possible due to 

pre-existing associative links that are formed from prior experience of both sensory 

aspects of such an object interaction (e.g., the sound and tactile stimulation elicited 

from typing on a keyboard; see Meyer & Damasio, 2009).  

There are several ideas for the neural network by which these sensory signals 

travel along in order to be discriminated cross-modally in supposedly entirely 

independent sensory-specific cortices. For example, research has suggested high-

level association brain areas, such as posterior superior temporal sulcus (pSTS), pre-

motor cortex (PMC), or posterior parietal cortex (PPC; Driver & Noesselt, 2008), 

may receive information from multiple sensory sources, in turn forming 

multisensory convergence zones in the brain before feeding contextual information 

back to any associated sensory-specific areas (Ghazanfar & Schroeder, 2006). This is 

likely since research has found evidence for strong bidirectional neural connections 

between each primary sensory cortical area and such high-level multisensory 

convergence zones (Jones & Powell, 1970). Preferences for certain pairings of 

sensory modalities in these convergence zones have been indicated based on their 

proximity to one another. For instance, visual-auditory convergence, and visual-

somatosensory convergence, is suggested to occur in pSTS and PPC respectively, 

given these regions are located between the two sensory-specific cortices (Ghazanfar 

& Schroeder, 2006; Smith & Goodale, 2015; Wallace et al., 2004). However, since 



CHAPTER 2  43 

 

 

somatosensory input has also been detected in pSTS (Hikosaka, 1993; Kassuba, 

Menz, Röder, & Siebner, 2013; Schroeder & Foxe, 2002), thus violating this 

proximity rule, it may be the case that these identified multisensory convergence 

zones do not have proximity preferences, but rather could receive input from any 

combination of these senses.  

Since the literature investigating multisensory convergences zones indicates a 

preference for visual-auditory, and visual-somatosensory convergence (Driver & 

Noesselt, 2008; Ghazanfar & Schroeder, 2006), it is important to examine whether 

evidence for convergence between auditory-tactile information can also be found. 

Specifically, the present study aims to investigate whether information which implies 

different rich tactile (and motor) information with the hands can be discriminated in 

S1 when beginning from an auditory source. It is important to address this question 

since to date is it not clear whether discriminable patterns of information can be sent 

between all pairs of primary sensory modalities, especially when the dominant sense 

of vision (Colavita, 1974; Mumford, 1991) is taken out of the equation. The reason 

why we expect to find such cross-modal effects for this pair of modalities is due to 

the overall theory of why information entering the cortex via one sense can be 

detected in a supposedly entirely independent sensory modality with any pairing. It 

is speculated that predictive coding theories of brain function provide a plausible 

explanation as to why this may be the case. The theory of predictive coding (see 

Chapter 1, Section 1.4.2. for a review) suggests that the brain actively generates 

expectations and predictions about likely upcoming input to help shape sensory 

processing (Clark, 2013; Friston et al., 2009). As such, it may be the case that simply 

viewing a familiar object may lead to content-specific activity in S1 (Meyer et al., 

2011; Smith & Goodale, 2015) since it is useful information in the event of a 

potential future interaction with the object. If this is the case, it would be reasonable 

to assume the same cross-modal effects can be detected when hearing sounds that 

imply tactile information, such as the sounds of familiar hand-object interactions, 

since such information could aid future or concurrent interaction with the object.  

A few human studies have previously investigated links between audition 

and tactile information in the brain. For example, research has used an fMRI 

paradigm with MVPA to find the classifier could accurately determine whether a 

person executed a hand or mouth action based on activation patterns elicited in PMC 

when simply hearing the same action (Etzel, Gazzola, & Keysers, 2008). 
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Furthermore, auditory stimuli of the hands crumpling different types of material have 

been found to show greater neural activity in the inferior parietal lobe (IPL) relative 

to scrambled material sounds and non-human vocalizations (Arnott, Cant, Dutton, & 

Goodale, 2008). Liang, Mouraux, Hu, and Iannetti (2013) also used fMRI with 

MVPA to show patterns between two independent stimulated modalities could be 

decoded in a non-stimulated early sensory region (e.g. audition vs vision could be 

decoded in S1). However, no studies to date have specifically tested whether 

content-specific information about different types of tactile-implying auditory 

stimuli can be discriminated cross-modally in the primary sensory cortex of S1.  

In order to examine whether haptic-implying auditory information can be 

discriminated in S1, auditory sounds which convey different types of tactile 

stimulation would be necessary, such as sounds of the hands interacting with 

different types of objects. Previous research investigating the neural representation 

of object processing has tended to focus on the integration of visual-auditory or 

visual-somatosensory object information (Amedi, Von Kriegstein, Van Atteveldt, 

Beauchamp, & Naumer, 2005; Beauchamp, 2005), with limited research 

investigating object specific knowledge from the angle of audio-tactile integration. 

One study by Kassuba et al. (2013) has previously found semantically coherent 

auditory and haptic object features activated the fusiform gyrus, thus suggesting this 

may be a convergence zone for conceptual object knowledge. A more recent study 

revealed when hearing sounds of different object materials being manipulated, the 

different materials were better decoded in inferior frontal cortex when participants 

were asked to identify the material, compared to when they were asked to identify 

the action (Hjortkjær, Kassuba, Madsen, Skov, & Siebner, 2018). This suggests 

higher-order regions, such as inferior frontal cortex, may process elements of 

auditory information that are separated from the pure acoustic properties of the 

stimulus. With this in mind, we can assume that such high-level cortical regions 

could subsequently project information regarding the tactile properties of the sound 

to S1 via feedback pathways in the brain.  

Based on the literature discussed, we have good reason to believe that simply 

hearing different sounds depicting object interactions with the hands could send 

discriminable information to S1. We are specifically interested in exploring whether 

discriminable activity can be detected cross-modally in the primary cortical region of 

S1 since previous research has found evidence for comparable cross-modal effects 
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between other pairs of primary sensory modalities (Meyer et al., 2010, 2011; Smith 

& Goodale, 2015; Vetter et al., 2014). However, it is important to note that 

information specific to the tactile content of the different hand-object interaction 

sounds could also be discriminated in pre-motor and motor cortical areas, since prior 

research has found evidence for distinguishable information in such areas about 

hand-action sounds (Etzel et al., 2008). Furthermore, since sounds which convey 

different types of tactile information will inevitably contain dynamic action-related 

components in addition to tactile sensations, activity in pre-motor and motor areas 

would be expected. 

Therefore, the present study investigated, for the first time, whether content-

specific information can be sent cross-modally to S1 when beginning from the 

auditory domain. Specifically, this study tested whether such cross-modal effects 

found in the previous literature exist when participants are presented with sounds 

depicting familiar hand-object interactions. As such, participants were presented 

with different sound clips of familiar hand-object interactions (e.g. bouncing a ball, 

typing on a keyboard), in addition to two control categories (familiar animal 

vocalizations, and unfamiliar pure tones), in an event-related functional magnetic 

resonance imaging (fMRI) experiment. We predicted that MVPA would show 

significant decoding of sound identity for the hand-object interaction sounds in S1, 

but not for the two control categories since no rich familiar tactile information would 

be implied with these sounds. Specifically, we also expected to find stronger 

decoding in independently localised hand-sensitive voxels of S1, since they should 

arguably contain maximal sensitivity to the hands and not include unrelated voxels 

such as those corresponding to other parts of the body. Finally, we also expected to 

find similar patterns of activation for the hand-object interaction sounds in pre-motor 

and motor areas, given the dynamic action-related content of the sounds.  

2.3. Methods 

2.3.1. Participants. 

Self-reported right handed healthy participants (N = 10; 3 male), with an age 

range of 18-25 years (M = 22.7, SD = 2.41), participated in this experiment. All 

participants reported normal or corrected-to-normal vision, and normal hearing, and 
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were deemed eligible after meeting MRI screening criteria, approved by the 

Scannexus MRI centre in Maastricht. Written consent was obtained in accordance 

with approval from the Research Ethics Committee of the School of Psychology at 

the University of East Anglia. Participants received €24 euros (equivalent to £20 

sterling British pounds) for their time.  

2.3.2. Stimuli and design. 

Three different categories of auditory stimuli were used in a rapid event-

related fMRI design: sounds depicting hand-object interactions, animal 

vocalizations, and pure tones. There were five different sub-categories within each of 

these categories, with two exemplars of each sub-category, thus resulting in 30 

individual stimuli in total. The five hand-object interaction sub-categories consisted 

of bouncing a basketball, knocking on a door, typing on a keyboard, crushing paper, 

and sawing wood. These were chosen for the reason that participants should have 

previously either directly experienced rich haptic interactions with such objects, or 

observed such interactions. Two control categories were also used to serve the 

purpose of controlling for familiarity and semantic richness effects. First, animal 

vocalizations were used as familiar sounds not directly involving interactions with 

the hands. These consisted of birds chirping, a dog barking, a fly buzzing, a frog 

croaking, and a rooster crowing. An independent ratings experiment confirmed these 

sounds were matched to the hand-object interactions for familiarity (see Appendix A, 

Table A1 and A2). Sounds from these two categories were downloaded from 

SoundSnap.com, YouTube.com, and a sound database taken from Giordano, 

McDonnell, and McAdams (2010). The second control category were non-

meaningful sounds, defined as pure tones. These consisted of pure tones of five 

different frequencies (400Hz, 800Hz, 1600Hz, 3200Hz, and 6400Hz), created in 

MATLAB (The MathWorks, USA). All sounds were stored in WAV format, and 

were cut to exactly 2000ms using Audacity 2.1.2, with sound filling the entire 

duration. Finally, all sounds were normalised to the root mean square (RMS) level 

(Giordano, McAdams, Zatorre, Kriegeskorte, & Belin, 2013). More information 

regarding how these sounds were selected, including pilot experiments and ratings 

for the sounds, can be seen in Appendix A. 



CHAPTER 2  47 

 

 

2.3.3. Procedure. 

After signing informed consent, each participant was trained on the 

experimental procedure on a trial set of stimuli not included in the main experiment, 

before entering the scan room. Participants were instructed to fixate on a black and 

white central fixation cross presented against a grey background whilst listening 

carefully to the sounds, which were played at a self-reported comfortable level (as in 

Leaver & Rauschecker, 2010; Man, Damasio, Meyer, & Kaplan, 2015; Man, Kaplan, 

Damasio, & Meyer, 2012; Meyer et al., 2010). Using a custom built script in 

MATLAB (The MathWorks, USA, 2010a) and the Psychophysics Toolbox 

(Brainard, 1997), each run began and ended with 12s silent blocks of fixation. After 

the initial 12s fixation, 60 individual stimuli were played, with each unique sound 

presented twice per run. Stimuli were played in a pseudo-randomly allocated order at 

2s duration with a 3s ISI (5s trial duration). At random intervals, 15 null trials 

(duration 5s) were interspersed where no sound was played. This resulted in a total 

run time of 399s.  

During each run, participants performed a one-back repetition counting task, 

and hence counted the number of times they heard a sound repeated twice in a row, 

for example, two sounds each of a dog barking (randomly allocated from 2 to 6 per 

run). We chose this task as it was important that no explicit motor action such as 

pressing a button was required, to prevent a possible confound in somatosensory 

cortex activity (see Smith & Goodale, 2015). Thus, participants verbally stated the 

number of counted repetitions they heard at the end of each run, and they were 

explicitly asked to not make any movements in the scanner unless necessary. 

Participants completed either 8 (N = 3) or 9 (N = 6) runs, with the exception of one 

participant, who completed 7, thus, participants were exposed to approximately 32-

36 repetitions per sub-category stimulus, and 16-18 repetitions per unique sound.  

After the main experiment, participants took part in a somatosensory 

localisation experiment, whereby a vibro-tactile stimulation device was used to 

localise the hand region in the somatosensory cortex (see Smith & Goodale, 2015). 

Participants were not informed about this part of the experiment until all main 

experimental runs had been completed. Piezo-electric Stimulator pads (Dancer 

Design, UK) were placed against the participant’s index finger, ring finger, and palm 

of each hand using Velcro (six pads total, three per hand; see Appendix B, Figure B-
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1 for a visual example on one hand). Each pad contained a 6mm diameter disk 

centred in an 8 mm diameter static aperture. The disks stimulated both hands 

simultaneously with a 25 Hz vibration in a direction normal to the surface of the disk 

and skin, at an amplitude within the range of ±0.5mm. The somatosensory localiser 

runs consisted of 15 stimulation blocks and 15 baseline blocks (block design, 12s on, 

12s off, 366s total run time). Note that for the first two participants, a slightly 

modified timing was employed (block design, 30s on, 30s off; 10 stimulation blocks, 

9 baseline blocks). Each participant completed 1 (N = 2) or 2 (N = 8) somatosensory 

mapping runs, and kept their eyes fixated on a black and white central fixation cross 

presented against a grey background for the duration of each run. Participants were 

debriefed after completion of all scanning sessions. 

2.3.4. MRI data acquisition. 

Structural and functional MRI data was collected using a high-field 3-Tesla 

MRI scanner (Siemens Prisma, 64 channel head coil, Scannexus, Maastricht, the 

Netherlands). High resolution T1 weighted anatomical images of the entire brain 

were obtained with a three-dimensional magnetization-prepared rapid-acquisition 

gradient echo (3D MPRAGE) sequence (192 volumes, 1mm isotropic). Blood-

oxygen level dependent (BOLD) signals were recorded using a multiband echo-

planar imaging (EPI) sequence: (400 volumes, TR = 1000ms; TE = 30ms; flip angle 

77; 36 oblique slices, matrix 78 x 78; voxel size = 2.5mm3; slice thickness 2.5mm; 

interslice gap 2.5mm; field of view 196; multiband factor 2). A short five volume 

posterior-anterior opposite phase encoding direction scan was acquired before the 

main functional scans, to allow for subsequent EPI distortion correction (Fritz et al., 

2014; Jezzard & Balaban, 1995). Slices were positioned to cover somatosensory, 

auditory, visual, and frontal cortex. Sounds were presented via an in-ear hi-fi audio 

system (Sensimetrics, Woburn MA, USA), and the visual display was rear projected 

onto a screen behind the participant via an LCD projector. Finally, a miniature Piezo 

Tactile Stimulator (mini-PTS; developed by Dancer Design, UK) was used to deliver 

vibro-tactile stimulation to the hands, using the same fMRI sequence with a modified 

number of volumes (366s for the majority, slightly longer for the first two 

participants due to slightly different design – see Section 2.3.3. above).  
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2.3.5. MRI data pre-processing. 

Functional data for each main experimental run, in addition to somatosensory 

localiser runs, was pre-processed in Brain Voyager 20.4 (Brain Innovation, 

Maastricht, The Netherlands; Goebel, Esposito, & Formisano, 2006), using defaults 

for slice scan time correction, 3D rigid body motion correction, and temporal 

filtering. Functional data were intra-session aligned to the pre-processed functional 

run closest to the anatomical scan of each participant. Distortion correction was 

applied using COPE 1.0 (Fritz et al., 2014), using the 5 volume scan acquired in the 

opposite phase encode direction (posterior to anterior) for each participant. Voxel 

displacement maps (VDM)’s were created for each participant, which were applied 

for EPI distortion correction to each run in turn. Functional data were then 

coregistered to the participant’s ACPC anatomical scan. Note no Talairach 

transformations were applied, since such a transformation would remove valuable 

fine-grained pattern information from the data that may be useful for MVPA analysis 

(Argall, Saad, & Beauchamp, 2006; Fischl, Sereno, Tootell, & Dale, 1999; Goebel et 

al., 2006; Kriegeskorte & Bandettini, 2007). 

2.3.6. Regions of interest.  

2.3.6.1. Anatomical mask of Post-Central Gyri (S1mask). 

In order to accurately capture the potential contribution from each sub-region 

of S1 (e.g. area 3a, 3b, 1 or 2; see Chapter 1, Section 1.5.1. for more information), 

hand-drawn masks of the post-central gyrus (PCG) were created in each individual 

participant. Drawing the anatomical masks enabled a more detailed parcellation on 

the brain of each participant following previous practice in the field (Meyer et al., 

2011; Smith & Goodale, 2015). In doing so, this allowed us to include all the tactile 

and proprioceptive information potentially available in S1 for the pattern 

classification algorithms, thus isolating more precisely the contribution of PCG to 

the spatial fMRI response patterns (see Smith & Goodale, 2015 for further 

information).  

The anatomical masks were created using MRIcron 6 (Rorden, Karnath, & 

Bonilha, 2007) using each participant’s anatomical MRI scan in ACPC space. As in 
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Meyer et al. (2011) and Smith and Goodale (2015), the latero-inferior border was 

taken to be the last axial slice where the corpus callosum was not visible. From 

anterior to posterior the masks were defined by the floors of the central and post-

central sulci. Furthermore, masks did not extend to the medial wall in either 

hemisphere. This resulted in an average of 41 slices (total range 39 to 46) for each 

hemisphere per participant (see Figure 2.1A and 2.1B for an example in one 

participant). The average voxel count was 1969 (SD = 229) for the right PCG, and 

2106 (SD = 215) for the left PCG, which did not significantly differ from one 

another (p = .084). The size of each mask per participant is reported in Appendix C, 

Table C1. See also Appendix C, Figure C-1 for visual examples of the hand-drawn 

masks in each participant. The masks defined here from this point onwards will now 

be referred to as S1mask. 

2.3.6.2. Hand sensitive voxels in Post-Central Gyri (S1localiser) 

We also created a localised region of interest (ROI) from the somatosensory 

localiser which comprised a subset of 100 voxels within each participant’s 

anatomically defined S1mask (see Section 2.3.6.1. above). These voxels were the most 

responsive to stimulation of both hands in each participant (see Section 2.3.7.3. 

below for more information). This subset ROI is shown in the yellow voxels overlaid 

on the S1mask in the inflated brain of one participant in Figure 2.1B. From this point 

onwards, this ROI will be referred to as S1localiser. To see both the hand-drawn masks 

and the hand-sensitive voxels on each individual participants ACPC brains, see 

Appendix C, Figure C-1. 
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2.3.6.3. Additional regions of interest. 

Additional ROI’s were created using the Jüelich Anatomy toolbox (Eickhoff 

et al., 2005) as in Smith and Goodale (2015). Regions included Primary Auditory 

Cortex (A1; Morosan et al., 2001; Rademacher et al., 2001), Pre-Motor Cortex 

Figure 2.1: Anatomical masks of the lateral post-central gyrus (PCG) for a 

representative participant. (A) Raw hand-drawn masks in axial display. The numbers 

in white refer to slices through the Z plane. The box in the lower right image depicts 

the slices of the brain on which the PCG was marked (see Section 2.3.6.1). (B) As in 

A, but a 3D rendered version showing right (blue), left (red) and pooled 

hemispheres. Voxels in yellow indicate the hand-sensitive voxels (see Section 

2.3.6.2. for more information). 
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(PMC; Geyer, 2003), Primary Motor Cortex (M1; Geyer et al., 1996), and Primary 

Visual Cortex (V1; Amunts, Malikovic, Mohlberg, Schormann, & Zilles, 2000). All 

additional ROI’s were transformed into each participants ACPC brain, and we used 

the 30% probability cut-off for each map as this produces a roughly comparable 

number of voxels as in S1mask (Smith & Goodale, 2015; Eickhoff et al., 2005). See 

Appendix D, Figure D-1 for examples of the anatomical masks for the additional 

ROI’s. 

2.3.7. Data analysis. 

2.3.7.1. Multi-voxel pattern analysis. 

For the multi-voxel pattern analysis (MVPA; e.g. Haynes, 2015), a GLM was 

created from each participant’s unsmoothed and undistorted functional run in ACPC 

space, with a different predictor coding stimulus onset for each stimulus presentation 

(60 predictors), convolved with a standard double gamma model of the 

haemodynamic response function (see Greening, Mitchell, & Smith, 2018; Smith & 

Muckli, 2010). The resulting beta-weight estimates are the input to the pattern 

classification algorithm. We trained a linear support vector machine (LIBSVM 3.20 

toolbox; C. Chang & Lin, 2011) to learn the mapping between the spatial patterns of 

brain activation generated in response to each of the five different sub-categories of 

sound within a particular sound category (for example: for hand-object interactions, 

the classifier was trained on a five way discrimination between each relevant sub-

category: typing on a keyboard, knocking on a door, crushing paper and so on; 

Greening et al., 2018; Smith & Goodale, 2015; Smith & Muckli, 2010; Vetter et al., 

2014). The classifier was trained and tested on independent data, using a leave one 

run out cross-validation procedure (Smith & Goodale, 2015; Smith & Muckli, 2010). 

The input to the classifier was always single trial brain activity patterns (beta 

weights) from a particular ROI, while the independent test data consisted of an 

average activity pattern taken across the repetitions of specific exemplars in the left 

out run (e.g. the single trial beta weights of the four presentations of ‘bouncing a 

ball’ in the left out run were averaged). We have used this approach successfully in 

previous studies, as averaging effectively increases the signal to noise of the patterns 

(Muckli et al., 2015; Smith & Muckli, 2010; Vetter et al., 2014). For similar 
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approaches applied to EEG and MEG data, see Smith and Smith (2019) and 

Grootswagers, Wardle, and Carlson (2017) respectively.  

Finally, we used the LIBSVM toolbox (C. Chang & Lin, 2011) to implement 

the linear SVM algorithm, using default parameters (C = 1). The activity pattern 

estimates (beta weights) within each voxel in the training data was normalised within 

a range of -1 to 1, prior to input to the SVM. The test data were also normalised 

using the same parameters as in the training set, in order to optimise classification 

performance. To test whether group level decoding accuracy was significantly above 

chance, we performed non-parametric Wilcoxon signed-rank tests using exact 

method on all MVPA analyses, against the expected chance level of 1/5 (E 

Formisano, De Martino, Bonte, & Goebel, 2008; Greening et al., 2018), with all 

significance values reported two-tailed. Effect sizes for the Wilcoxon tests are 

calculated as r = Z / √N, when N = number of observations (Rosenthal, 1991), to be 

identified as small (> .1), moderate (> .3), and large (> .5), according to Cohen’s 

(1988) classification of effect sizes. Finally, to control multiple comparisons, a false 

discovery rate (FDR) correction was implemented. The adjusted q-value at ≤ .05 

resulted in a corrected significance value of FDR p ≤ .012 for all decoding results 

(Benjamini & Yekutieli, 2001). 

2.3.7.2. Univariate deconvolution analysis. 

Deconvolution analysis was also conducted to ensure an accurate model of 

the hemodynamic response function (HRF) in each category (hand-object 

interactions, animal vocalizations, and pure tones). A general linear model (GLM) 

was created from each participants unsmoothed and undistorted functional run in 

ACPC space with 20 predictors per category to fully model the HRF (Uludag, 

Ugurbil, & Berliner, 2015). This resulted in a total of 60 predictors used to fully 

model the HRF for each category and participant. Each predictor was modelled as a 

series of delta (stick) functions coding stimulus onset. The peak amplitude of the 

neural response for each category was then estimated by applying the resulting 

design matrix file to each ROI and extracting the beta weights accordingly; see 

Section 2.3.6. above for more information on each ROI. The data from volumes 6 

and 7 after trial onset were extracted and averaged together. This corresponded to 6s 

and 7s after trial onset as being the peak of the HRF, and these values were used to 
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calculate the peak amplitude in response to hand-object interactions, animal 

vocalisations, and pure tones for each participant. 

A 2-way repeated measures ANOVA was conducted on the beta weights 

extracted independently from each ROI with the following parameters: hemisphere 

(right, left, pooled) and category (hand-object interactions, animal vocalizations, 

pure tones). We used parametric ANOVA’s in order to be able to detect any 

interactions between the two factors in each of our ROI’s (Toothaker & Newman, 

1994). All univariate statistical tests are Greenhouse-Geisser corrected, and all post-

hoc paired t-tests are reported as two-tailed at the p < .05 level with Bonferroni 

corrections applied.   

2.3.7.3. Univariate analysis of somatosensory localiser. 

An additional univariate analysis was conducted for the somatosensory 

localiser data using a GLM approach, with one predictor defining stimulation onset 

convolved with the standard double gamma model of the HRF. The t-values were 

defined from the localiser by taking the contrast of stimulation vs baseline in each 

participant. This allowed us to define the 100 voxels showing the strongest hand-

related response in each participants S1mask. Univariate neural responses to tactile 

stimulation were extracted by applying the somatosensory localiser GLM to the ROI 

of each participants S1mask, in addition to the ROI defined from the top 100 hand-

sensitive voxels (S1localiser). As the primary somatosensory cortex is located in the 

post-central gyrus, and the primary motor (M1) / pre-motor cortices (PMC) are 

located in and around the pre-central gyrus, we checked for any signs of significant 

neural activity in both M1 and PMC in response to the somatosensory localiser. This 

was done in order to check for any signs of contamination of tactile responses across 

the borders of these adjacent anatomical areas.  

A 2-way repeated measures ANOVA was conducted with the following 

parameters: hemisphere (right, left, pooled) and ROI (S1mask, S1localiser, PMC, M1). 

We used parametric ANOVA’s in order to be able to detect any interactions between 

these two parameters (Toothaker & Newman, 1994). All univariate statistical tests 

are Greenhouse-Geisser corrected, and all post-hoc paired t-tests are reported as two-

tailed at the p < .05 level with Bonferroni corrections applied. 
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2.4. Results 

2.4.1. Multi-voxel pattern analysis. 

For the MVPA, we computed cross-validated decoding performance of sound 

identity for each sound category (familiar hand-object interactions, animal 

vocalizations, and pure tones) independently in right, left and pooled S1mask and S1 

localiser, and also in our additional ROI’s. Control for repeated tests was implemented 

by use of the false discovery rate (q < .05). 

2.4.1.1. Primary somatosensory cortex (S1mask). 

As predicted, significantly above-chance decoding was found for hand-object 

interaction sounds in pooled S1 (Med = 28.75%; Z = -2.490, p = .012, r = .557); 

signed rank, two-tailed test, chance = 20% (see Figure 2.2A). Whilst right and left 

S1 alone did reveal above chance decoding, this did not pass FDR correction (right 

S1: Med = 23.65%; Z = -2.199, p = .025, r = .492; left S1: Med = 30.56%; Z = -

2.383, p = .016, r = .533). Crucially however, the same analyses for our two control 

categories of familiar animal vocalizations and unfamiliar pure tones did not show 

any significant above chance decoding in right, left, or pooled S1 (all p’s > .4). 

Further pairwise comparisons revealed decoding performance for hand-object 

interactions was significantly higher than pure tones in pooled S1 (Z = -2.380, p = 

.016, r = .532). Decoding accuracies across the right and left hemisphere were not 

significantly different from one another for hand-object interaction sounds (p = 

.105). Thus, the S1 carries content-specific information only for the familiar hand-

object interaction sounds which convey haptic properties with the hands when 

pooling across hemispheres. 
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2.4.1.2. Primary somatosensory cortex (S1localiser).  

When selecting the top 100 most active voxels in S1 from the somatosensory 

hand localiser, significant decoding for hand-object interactions was found only in 

left S1 (Med = 29.45%; Z = -2.504, p = .008, r = .560); signed rank, two-tailed test, 

Figure 2.2: Decoding of sound identity. (A) Cross-validated 5 automatic forced 

choice decoding performance for each stimulus category (hand-object interactions, 

animal vocalizations and pure tones) for right and left S1 (post-central gyri) 

independently and pooled across hemispheres. Double stars: p ≤ .012 & FDR q < 

.05. Single star: p < 0.05. (B) As in A but for the top 100 voxels that were 

responsive to tactile stimulation of the hands in an independent localiser session. 

(C–F) As in A but for several additional, anatomically defined, regions of interest. 

(G) As in B left S1 (post-central gyri), but single participant data. 
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chance = 20% (see Figure 2.2B; see also Figure 2.2G for single participant data). 

Critically, further post-hoc comparisons revealed decoding accuracies for hand-

object interactions in left S1 were significantly higher than both control categories 

(Hands vs Animals: Z = -2.346, p = .016, r = .525; Hands vs Tones: Z = -2.603, p = 

.006, r = .582). In addition, decoding of hand-object interactions was significantly 

higher in the left than the right S1 (Z = -2.199, p = .027, r = .492). These results 

show the classifier could reliably decode hand-object interaction sounds above 

chance when constrained to the hand-sensitive voxels in left S1, which were 

significantly higher than both control categories. Thus, sound identity was reliably 

decoded above chance when restricting the MVPA analysis to voxels with high 

responses to tactile stimulation of the right, but not left, hand.   

2.4.1.3. Primary auditory cortex.  

As would be expected, decoding in primary auditory cortex (A1) was 

robustly significant for all sound categories (all Meds ≥ 64.72%, all Z’s ≤ -2.601, all 

p’s ≤ .002, all r’s ≥ .627; signed rank, two-tailed test, chance = 20%; see Figure 

2.2C). Further pairwise comparisons showed in right A1, decoding of pure tones 

(Med = 83.65%) was significantly higher than both animal vocalizations (Med = 

71.25%, Z = -2.431, p = .012, r = .544) and hand-object interactions (Med = 66.25%, 

Z = -2.666, p = .004, r = .596), in addition to animal vocalizations being significantly 

higher than hand-object interactions (Z = -2.668, p = .004, r = .597). In pooled A1, 

pure tones (Med = 84.29%) were decoded significantly better than hand-object 

interactions (Med = 73.75%, Z = -2.552, p =.008, r = .571), and animal vocalizations 

(Med = 84.45%) were decoded significantly better than hand-object interactions (Z = 

-2.243, p = .023, r = .502). Thus in A1, all sound categories were highly 

discriminated with the specific pattern of decoding performance being the opposite 

to that in S1, with better decoding of pure tones, followed by animal vocalizations, 

then hand-object interaction sounds. 

2.4.1.4. Pre-motor cortex.  

In pre-motor cortex (PMC), significantly above chance decoding was found 

for hand-object interactions in right PMC (Med = 30.56%; Z = -2.601, p = .006, r = 
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.582), left PMC (Med = 24.72%, Z -2.527, p = .008, r = .565) and pooled PMC (Med 

= 31.25%, Z = -2.666, p = .004, r = .596); signed rank, two-tailed test, chance = 20% 

(see Figure 2.2D). Interestingly, further tests showed decoding for hand-object 

interactions was significantly higher than pure tones in right PMC (Z = -2.449, p = 

.012, r = .548), left PMC (Z = -2.197, p = .031, r = .491), and pooled PMC (Z = -

2.807, p = .002,  r = .628). Finally, above chance decoding of animal vocalizations 

was found in pooled PMC, which did not survive FDR corrections (Med = 27.22%, 

Z = -1.963, p = .047, r = .439). Thus, overall it appears that PMC may contain a 

degree of information about both types of familiar sound, but not the pure tone 

control category. 

2.4.1.5. Primary motor cortex.  

Decoding accuracies in primary motor cortex (M1) revealed above chance 

decoding for hand-object interactions only in left M1 (Med = 27.09, Z = -2.245, p = 

.021, r = .502; signed rank, two-tailed, chance = 20%; see Figure 2.2E), however this 

did not survive FDR corrections. There were no reliable differences in decoding 

across categories or hemispheres.  

2.4.1.6. Primary visual cortex.  

Decoding accuracies in primary visual cortex (V1) revealed no significant 

above chance decoding (see Figure 2.2F).  

2.4.2. Univariate deconvolution analysis. 

Results from the univariate deconvolution analysis can be seen in Figure 2.3. 

Interestingly, the only significant differences revealed from the ANOVAs were 

found in primary auditory cortex (A1). Here, the ANOVA revealed a significant 

main effect of sound category in A1: F1.630, 14.672 = 14.061, p = .001, ηp
2 = .610 (see 

Figure 2.3C). Post-hoc pairwise comparisons revealed the highest neural amplitude 

to be animal vocalizations (M = .421), followed by hand-object interactions (M = 

.373), then pure tones (M = .327). All these means were significantly different from 

each other (all p’s ≤ .018), except for the difference between hand-object interactions 
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and pure tones (p = .165). No significant main effect was found of hemisphere (p = 

.818). Furthermore, a significant interaction was found between sound category and 

hemisphere in A1: F1.579, 14.212 = 9.319, p = .004, ηp
2 = .509. Further pairwise 

comparisons revealed each sound to be significantly different from one another in 

each hemisphere of A1 (p’s ≤ .025), with the exception of hand-object interactions 

and pure tones not being significantly different from one another in left and pooled 

A1 (p’s = 1.000 and .154 respectively), nor animal vocalizations and hand-object 

interactions being significantly different from one another in right A1 (p = .167). A 

table of all the results from the univariate deconvolution ANOVA in each ROI can 

be seen in Appendix E, Table E1. 

 

Figure 2.3: Univariate deconvolution results. (A) Mean beta values for each 

stimulus category (hand-object interactions, animal vocalizations and pure tones) for 

right and left S1 (post-central gyri), and pooled across hemispheres. (B) As in A but 

for the top 100 voxels that were most responsive to tactile stimulation of the hands in 

an independent localiser session. (C–F) As in A but for several additional, 

anatomically defined, regions of interest. 
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2.4.3. Univariate analysis of somatosensory localiser. 

Univariate analysis of the somatosensory localiser data checked for 

differences in the neural amplitude in response to tactile stimulation on the 

participant’s hands. Results revealed a significant main effect of ROI F1.279, 11.511 = 

85.536, p < .001, ηp
2 = .905 (see Figure 2.4). Post-hoc pairwise comparisons revealed 

the peak neural amplitude was significantly higher in S1localiser when compared to all 

other ROI’s (all p’s < .001). Furthermore, the neural amplitude was significantly 

higher in S1mask compared to PMC and M1. There were no significant differences in 

the neural amplitude between PMC and M1. Additionally, there was no significant 

main effect of hemisphere (p = .430), nor was there a significant interaction between 

ROI and hemisphere (p = .300). Thus, there appears to be no indication of 

contamination of tactile responses in nearby regions at this level of analysis. 

However, given the vastly different number of voxels between S1mask and S1localiser, 

further detailed analysis is required to confirm this suggestion.  

 

Figure 2.4: Univariate results from the somatosensory localiser. Bar chart reveals 

the mean beta values in response to tactile stimulation of the hands when compared 

to baseline in the entire mask of S1, the localised subset region of S1, pre-motor, 

and primary motor cortices.  
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2.5. Discussion 

The results from the present study show, for the first time, that simply 

hearing sounds that depict familiar hand-object interactions can elicit significantly 

different patterns of activity in primary somatosensory cortex (S1), despite the 

complete absence of external tactile stimulation. Crucially, the same effects were not 

found for the two control categories of familiar animal vocalizations, and unfamiliar 

pure tones. Furthermore, when restricting the S1 analysis to the top 100 voxels 

which were most sensitive to tactile stimulation on the hands, decoding accuracies 

for the hand-object interaction sounds were significantly higher than both control 

categories. These results suggest that cross-modal connections in the brain may 

transmit the content of auditory information to S1, providing the sound conveys rich 

tactile information. Furthermore, the results show that pre-motor cortex (PMC) 

contains information specific to the content of the sounds of hand-object interactions, 

as well as weaker evidence of a similar effect for the sounds of animal vocalizations.  

2.5.1. Cross-modal connections transmit the tactile related content of 

auditory information to S1. 

The present study agrees with a set of studies that have shown supposedly 

sensory-specific cortices contain information related to that sensory modality even if 

external stimulation did not begin from that sensory domain (Meyer et al., 2010, 

2011; Vetter et al., 2014; Smith & Goodale, 2015). Our results significantly extend 

this previous body of work by demonstrating, for the first time, that information 

related to the tactile component of the sound of different hand-object interactions can 

be found in S1, even though external stimulation arrived from the auditory domain. 

Specifically, these results have expanded on Smith and Goodale (2015), and Meyer 

et al. (2011), who were particularly interested in investigating cross-modal 

connections between vision and S1. They found information about the tactile content 

of different familiar visual objects (Smith & Goodale, 2015), or videos of different 

hand-object interactions (Meyer et al., 2011), could be discriminated in S1. Here, 

this study has shown hearing sounds related to different hand-object interactions can 

also trigger content-specific activity in S1. Similar to Smith & Goodale (2015), these 

results demonstrate that such effects are not present for all sound categories, but only 
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for specific sounds which convey tactile properties with the hands. Crucially, both 

the current study and Smith & Goodale (2015) demonstrate that these effects are 

strongest when the analyses are limited to independently-localised hand-(or finger-) 

sensitive voxels in S1, with the decoding effects being significantly higher for the 

tactile related stimuli when compared to the appropriate control categories. Hence, 

this highlights how not just any sound, or even any familiar sound, can transmit the 

same cross-modal information. Overall, since only hand-object interaction sounds 

were found to activate S1 where hand-sensitive voxels are located, this demonstrates 

some associative links may have been formed between the two sensory modalities 

from prior experience of interacting with such objects.  

We have strong evidence to suggest that the results in S1 reflect high-level 

information about the tactile component of the different hand-object sounds being 

discriminated in this region, as opposed to passive relay of low-level acoustic 

features from auditory cortex, for two reasons. First, the pattern of decoding 

performance in A1 was the exact opposite to the decoding performance found in S1, 

whereby pure tones showed the highest decoding accuracies, followed by animal 

vocalizations, then hand-object interactions, particularly in right A1. Second, since 

the decoding for hand-object interaction sounds was stronger when restricting the 

analysis to the hand-sensitive voxels, and the univariate analysis from the 

somatosensory vibro-tactile localiser revealed a neural response only in S1mask and 

S1localiser, this suggests the results for hand-object interaction sounds are driven by 

cortical regions that process tactile-related information.  

It is not surprising that the pattern classification results in A1 revealed higher 

decoding effects for pure tones, since A1 comprises a tonotopic organization 

(Humphries, Liebenthal, & Binder, 2010) which is narrowly tuned to different 

frequency patterns (Rauschecker, Tian, Pons, & Mishkin, 1996; Wessinger et al., 

2000). Furthermore, recent research in humans found neurons in auditory cortex are 

robust in distinguishing different frequencies of pure tone (Zhu, Liu, Li, & Yuan, 

2019). The fact animal vocalizations show higher decoding accuracies compared to 

hand-object interactions in A1 may also be expected given voice-selective areas exist 

in human auditory cortex (Belin, Zatorre, Lafaille, Ahad, & Pike, 2000), and such 

complex sounds are important to identify in order to interact with our environment 

appropriately, such as when visual information is lacking (Altmann, Doehrmann, & 

Kaiser, 2007). Furthermore, Lewis et al. (2005) suggested processing of animal 
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vocalization sounds may occur closer to A1 for compactness of cortical wiring, 

given the probability that fewer multimodal associations should be made with such 

sounds ( e.g. in contrast to lip reading whilst listening to speech; Calvert, 1997). 

Whilst no significant univariate differences in the neural signal were found in our S1 

ROI’s, significant differences between sound categories were found in A1. Here, 

animal vocalizations produced the strongest neural signal, followed by hand-object 

interactions, then pure tones. This could be explained by research which has found 

stronger activation in auditory cortices for living versus non-living sounds (Engel, 

Frum, Puce, Walker, & Lewis, 2009; Giordano et al., 2013; Lewis et al., 2004). 

Furthermore, categorising animal vocalisations has previously been found to show 

preferential activation in A1 and bilateral middle superior temporal gyrus (mSTG) 

when compared to hand-manipulated tool sounds (Lewis, Brefczynski, Phinney, 

Janik, & DeYoe, 2005). Overall, these results highlight the important difference 

between analysing data at the spatially distributed pattern level, or at the 

conventional univariate level, to answer separate unique questions about neural 

activity in the brain. 

These results have expanded on the auditory literature by revealing that S1, 

specifically the hand-sensitive region of S1, displays a functional preference for 

sounds that depict hand-object interactions. Research has previously suggested 

evidence for cross-modal processing from audition to S1. For example, Zhou and 

Fuster (2004) showed that neurons in somatosensory cortex activate in response to 

auditory cues if they are associated with tactile information. Furthermore, Lemus, 

Hernández, Luna, Zainos, and Romo (2010) found neurons in somatosensory cortex 

that responded to acoustic stimuli, however were unable to find evidence for 

discriminating the identity of the sound stimuli they presented. Liang et al. (2013) 

were able to find stimulus modality could be decoded in S1, however they only 

compared stimulus pairings. For example, auditory versus visual information could 

be decoded in S1. As such, our results have expanded on this literature by finding, 

for the first time, that the specific content of auditory information which is sent to S1 

is selective for hand-object sounds when limiting the analyses to the hand-sensitive 

voxels of S1. We note that such decoding effects were not significantly higher than 

our two control categories when running the analysis in the entire mask of S1, which 

may be due to the fact such a mask will undoubtedly comprise the entire topographic 

map of different areas of the surface of the skin (Penfield & Boldrey, 1937; Penfield 
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& Rasmussen, 1950, 1952). To expand on our findings, it could be interesting for 

future research to test another tactile-implying sound which involves a different area 

of the body, such as the mouth or feet, to test whether decoding of the sound of 

different haptic-implying object interactions is localised to the body regions which 

would be used to interact with the object.  

In terms of the functional significance behind why this cross-sensory 

information has been observed in S1, it is possible that these findings can be 

explained by predictive coding theories of human brain function (Clark, 2013; 

Friston et al., 2009). Here, it may be the case that when hearing the sounds 

associated with a familiar hand-object interaction, information related to the tactile 

content of the stimuli is sent to S1 since it is information which may be useful for 

future (or concurrent) interaction with the specific object. If this is the case, 

predictive coding would assume the brain is predicting the tactile content of the 

hand-object interaction sounds based on prior experience of interacting with such 

objects. With this in mind, it could be possible for future research to directly test this 

theory by using appropriately designed paradigms where specific sensory cues (e.g. 

visual or auditory) predict forthcoming 3D objects (see for example Rossit, 

McAdam, Mclean, Goodale, & Culham, 2013) in a target modality such as the 

primary somatosensory cortex (see Kok, Jehee, & de Lange, 2012; see also Zhou & 

Fuster, 2000).  

Alternatively, it might be the case that the pattern of activity present in S1 for 

hand-object interaction sounds is not useful for future object interaction, but rather 

the decoded information reflects a broader representation of stored object knowledge 

in the haptic domain (e.g. Man et al., 2012; Martin, 2016; Meyer & Damasio, 2009). 

These theories propose that the representation of object concepts is distributed across 

a network of the perceptual, action and emotion systems in the brain (Martin, 2016), 

and that conceptual processing involves neural re-use of the same brain areas used to 

represent that information during perception and action (Anderson, 2010; Barsalou, 

2016). The idea here is that object knowledge, such as knowledge about a keyboard, 

is stored within the entire processing stream which was active at the time 

information was acquired or updated (Martin, 2016). With this in mind, the decoding 

effects we observe about the hand-object interaction sounds could be argued to be a 

representation of the neural re-use of brain areas which would have been utilised 

when the knowledge about that object was acquired. For example, when you hear the 
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sound of typing on a keyboard, S1 and PMC become activated since they comprise 

part of the same neural network that was active when information about a keyboard 

was first acquired. While these accounts do not generally invoke the primary sensory 

cortices as being involved in the representation of object knowledge, Martin’s (2016) 

account, for example, proposes that these regions could become involved under 

specific task conditions. Therefore, we could expect that representation of object 

knowledge accounts would predict that the effects we observe in S1, or even PMC, 

may be modified as a function of task constraints. For example, we may expect to 

observe stronger decoding effects for tasks where somatosensory properties of 

objects and/or actions are more versus less prominent. Indeed, previous research has 

found evidence that attentional modulations influence perception of sensory 

information in S1 (Puckett, Bollmann, Barth, & Cunnington, 2017). As such, it 

would be interesting to see how decoding accuracies differ as a function of the 

experimental task in future experiments. 

There are several possible neural routes which can explain how information 

related to the tactile content of auditory stimuli can be discriminated in S1. First, 

information may enter high-level multisensory convergence zones, such as posterior 

superior temporal sulcus (pSTS) or posterior parietal cortex (Driver & Noesselt, 

2008; see also Chapter 1, Section 1.3.1. for more information), which may receive 

the information from the auditory source before sending the related tactile 

information to S1 via feedback pathways in the brain. This is highly plausible since 

all sensory pathways have been found to convergence in the depths of the pSTS, 

displaying strong bidirectional connections from this convergence zone to each 

primary sensory cortex (Jones & Powell, 1970). Another possibility is the fusiform 

gyrus, since Kassuba et al. (2013) found semantically coherent auditory and haptic 

object features activated this area. Second, auditory information could have been 

directly projected to S1, since previous research on animals has found evidence for 

direct cortico-cortical connections between primary auditory and primary 

somatosensory cortex in both directions (Budinger et al., 2006; Henschke et al., 

2015; see also Cappe & Barone, 2005). However, such direct connections are 

relatively sparse as opposed to the amount of feedback arriving from higher 

multisensory areas (Driver & Noesselt, 2008), meaning it is unlikely to be a 

dominant route in transmitting this information. Finally, a third possibility is the 

involvement of lower tier multisensory regions (Driver & Noesselt, 2008) that are 
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anatomically located next to primary sensory cortical areas. For instance, auditory 

regions located close to secondary somatosensory cortex (S2) may be bimodal 

responding to both auditory and tactile information (see for example Cappe & 

Barone, 2005; Wallace, Ramachandran, & Stein, 2004). This is supported in recent 

studies which have indicated the presence of auditory frequency information in S2 

and the parietal operculum subdivision OP4 (Pérez-Bellido, Anne Barnes, 

Crommett, & Yau, 2018), paired with the fact auditory information presented at very 

fast time-scales has been found to converge in S1, arising from the early stages of the 

feedforward pathway (Sugiyama, Takeuchi, Inui, Nishihara, & Shioiri, 2018). 

2.5.2. Hemispheric differences between auditory and visually triggered 

cross-sensory information in S1. 

It is important to note that both Smith and Goodale (2015) and Meyer et al. 

(2011) used visual stimuli (either images of familiar graspable objects, or videos 

depicting the hands exploring different objects, respectively) and found stronger 

decoding accuracies in the right hemisphere of S1, whereas in the present study with 

auditory stimuli stronger decoding was found in the left hemisphere of S1. There are 

several potential reasons for the greater involvement of hand-sensitive voxels in left 

S1 in the present study. First, some of the sounds used depict bimanual actions (e.g. 

typing on a keyboard) and previous studies have found greater activation in the left 

hemisphere for bimanual action sounds (Aziz-Zadeh, Iacoboni, Zaidel, Wilson, & 

Mazziotta, 2004). In addition, much research concerning the neural processing of 

tools has reported a strong left lateralization of the tool network in right-handed 

participants (as our participants were; Ishibashi, Pobric, Saito, & Lambon Ralph, 

2016; Lewis, Brefczynski, Phinney, Janik, & DeYoe, 2005; Lewis, Phinney, 

Brefczynski-Lewis, & DeYoe, 2006) although this would suggest left-lateralization 

for both sounds and images/videos, which was not the case when comparing the 

results of this study to Smith and Goodale (2015), and Meyer et al. (2011). However, 

it may be the case that the left hemisphere lateralization observed in this study 

depends upon the object directed action content being strongly emphasized, as was 

the case in the current study due to the use of rich sounds. Finally, one further 

important difference between Smith and Goodale (2015) and the present study is that 

Smith and Goodale localised the finger sensitive voxels in S1 for each participants 
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hand independently, which permitted considering the relative influence of contra- 

and ipsi-lateral influences, whereas in the present study both hands were mapped 

simultaneously. Hence, in the present study, the selected voxels may have reflected a 

stronger contra-lateral bias, and therefore reflect the relatively earlier sub-regions of 

S1, such as area 3b (Keysers, Kaas, & Gazzola, 2010). To determine whether this is 

the case, future research would ideally run the localisers on each hand independently 

to determine the relative role of hand sensitive voxels in left and right S1 to either 

visually or auditory triggered information.  

2.5.3. Decoding action related information in pre-motor cortices. 

In pre-motor cortex (PMC), reliable decoding of hand-object interaction 

sounds was found in both the left and right hemisphere, which was significantly 

greater compared to the decoding of pure tones. Traces of evidence for decoding of 

animal vocalizations was also found in PMC when pooling across hemispheres, 

which notably did not survive FDR correction. Overall, these decoding effects are 

not surprising, since PMC is known to play a large role in processing action related 

information (Gallese, Fadiga, Fogassi, & Rizzolatti, 1996). For instance, PMC has 

been found to be preferentially activated for object-related hand actions and non-

object-related mouth actions (Buccino et al., 2001). Since both the familiar sounds of 

hand-object interactions and animal vocalizations imply such an action, it would 

seem reasonable for the sounds to be discriminated in pre-motor areas.  

Decoding in PMC for both hand-object interactions and (albeit weak 

evidence) for animal vocalizations could also be part of a somatotopic auditory 

mirror neuron system, since PMC has previously been found to be active in response 

to both performing an action and hearing the corresponding action sound (Kohler et 

al., 2002). PMC has also been found to be able to reliably discriminate between 

whether a person executed a hand or mouth action based on activation patterns 

elicited in PMC when hearing the same action (Etzel et al., 2008). Furthermore, 

Gazzola, Aziz-Zadeh, and Keysers (2006) found overlap at the voxel level between 

left PMC activation when human participants executed a motor action, or listened to 

the sound of the action. Crucially, they found a somatotopic pattern, whereby a 

dorsal cluster within PMC was involved in listening to and executing hand actions, 

and a ventral cluster within PMC was involved in listening to and executing mouth 
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actions. Therefore, both hand- and mouth-specific clusters within PMC may 

contribute to the decoding found in the present experiment. We would predict no 

significant decoding for the hand-object sounds if PMC analyses were limited to 

mouth-sensitive voxels in PMC, and likewise for animal vocalizations in hand-

sensitive voxels in PMC. Hence in future work it would be optimal to include an 

additional mouth and hand movement localiser to test these predictions. Overall, the 

decoding effects observed for action-related information in PMC (and also M1, 

although not surviving FDR correction) suggest these regions also receive content-

specific information regarding the action properties of familiar hand-object 

interaction sounds (with weaker evidence of an effect for animal vocalizations).  

Finally, as mentioned previously in Chapter 1, Section 1.3.1., pre-motor 

cortical regions are known to be involved in multisensory processing (Driver & 

Noesselt, 2008). Specifically, research has found ventral PMC contains 

representations about both the sight and sound of different actions (Kaplan & 

Iacoboni, 2007). Additionally, a variety of research has found evidence for PMC 

being part of the auditory dorsal stream, which is thought to be involved in linking 

sound and action  (Brown et al., 2013; Brown, Zatorre, & Penhune, 2015; J. L. Chen, 

Penhune, & Zatorre, 2009; J. L. Chen, Rae, & Watkins, 2012; Hickok & Poeppel, 

2004; Lega, Stephan, Zatorre, & Penhune, 2016; Zatorre, Chen, & Penhune, 2007). 

Therefore, another possibility is that we found evidence for decoding the sound of 

hand-object interactions in PMC since such sounds include an action, and PMC may 

have played a crucial role in linking the hand-object sound with the individual 

representation of the action.   

2.6. Conclusion 

Overall, this study has shown, for the first time, that the identity of different 

familiar hand-object interaction sounds can be discriminated in hand-sensitive areas 

of S1, in the absence of any external tactile stimulation. Such decoding effects were 

not found for the two control categories of familiar animal vocalizations, and 

unfamiliar pure tones, thus suggesting not just any sound, or even any familiar 

sound, can produce the same effects. Therefore, since only hand-object interaction 

sounds were found to be discriminated in S1 where hand-sensitive voxels are 

located, we suggest cross-modal connections from audition to S1 may transmit 
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content-specific information only about familiar sounds that involve a tactile 

component. This work provides converging evidence that activity in supposedly 

modality-specific primary sensory cortical areas can be shaped in a content-specific 

manner by relevant contextual information transmitted across sensory modalities. 

This effect is in keeping with the rich range of contextual effects expected in primary 

sensory cortical areas under the predictive coding framework. 
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CHAPTER 3  

–  

Decoding the content of familiar visual object categories in the mu 

rhythm oscillatory response  
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3.1. Abstract 

Recently we have used fMRI to show that cross-modal connections from 

vision to primary somatosensory cortex can transmit information specific to the 

content of different familiar, but not unfamiliar, visual object categories, despite the 

complete absence of tactile stimulation. Here we sought to corroborate and extend 

our fMRI results using high temporal resolution neuroimaging (EEG), specifically 

by investigating whether the mu rhythm, thought to reflect sensorimotor processing, 

could also discriminate between such different familiar, but not unfamiliar, visual 

objects categories. Therefore, in the present study, right-handed participants (N=27) 

viewed images of both familiar (apple, wine glass) and unfamiliar (cubie, smoothie) 

objects, whilst detecting colour changes in a central fixation cross. Multivariate 

pattern analysis (MVPA) revealed significant decoding of familiar, but not 

unfamiliar, visual object categories in the mu rhythm oscillatory response. Thus, we 

suggest that connections between vision and sensorimotor areas may transmit 

information specific to the tactile (or motor) component of only familiar visual 

objects, even when no action or motor response is either executed or implied – 

corroborating our previous fMRI study. In addition, we report significant attenuation 

in the central beta band for both familiar and unfamiliar visual objects, but not in the 

mu rhythm. This finding highlights how analysing two different aspects of the 

oscillatory response – either attenuation or the representation of information content 

– provide complementary views on the role of the mu rhythm in response to viewing 

different visual object categories. 

 

Keywords: alpha, EEG, multisensory, multivariate pattern analysis, mu rhythm. (5) 
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3.2. Introduction 

Over the past decade, research has found multisensory integration occurs 

even in the primary sensory cortices of the human brain (see Driver & Noesselt, 

2008; Ghazanfar & Schroeder, 2006 for reviews). More recently, research has used 

fMRI with multi-voxel pattern analysis (MVPA) to find that the content of 

information presented via one sense can actually be discriminated in an entirely 

independent primary sensory modality if the stimulus implies features representative 

of that modality. For example, Smith and Goodale (2015) have recently shown 

cross-modal connections from vision to primary somatosensory cortex (S1) transmit 

information specific to the content of familiar, but not unfamiliar, visual object 

categories in the absence of tactile stimulation. Furthermore, Chapter 2 revealed 

cross-modal connections between audition and S1 transmit information specific to 

the content of different sounds which convey object interactions with the hands (see 

also Bailey, Giordano, Kaas, & Smith, 2019). In the present study, we sought to 

corroborate these previous findings using electroencephalography (EEG). 

Specifically, EEG was used to investigate whether presenting a visual stimulus of a 

familiar object which implies rich haptic information could produce a distinct 

oscillatory pattern over sensorimotor cortex, namely the mu rhythm (Berger, 1929), 

despite the complete absence of tactile stimulation or a motor response when 

viewing the familiar visual objects.  

The mu rhythm is a movement related neural oscillation in the 8-13 Hz 

frequency range measured over sensorimotor cortex (Berger, 1929). It is a resting 

oscillation, meaning it can be measured when no active processing is occurring 

(Kuhlman, 1978; Pfurtscheller, Neuper, Andrew, & Edlinger, 1997). As such, 

attenuation of the mu rhythm, also known as event-related desynchronization (ERD), 

can be interpreted as an electrophysiological correlate of an active sensorimotor 

cortex, since oscillatory power decreases are presumably due to desynchronization of 

neurons in a local patch of cortex (Pfurtscheller, 1997; Pfurtscheller, Stancák, & 

Neuper, 1996; Steriade & Llinás, 1988). A vast amount of research has found mu 

rhythm desynchronization when executing an action, observing an action, or even 

when one merely has the intention to act (Fox et al., 2016; Muthukumaraswamy & 

Johnson, 2004; Pfurtscheller et al., 1997; Pineda, 2005). For this reason, the mu 
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rhythm has often been considered to be an index of mirror neuron activity (Fox et al., 

2016; Muthukumaraswamy, Johnson, & McNair, 2004). 

However, a recent review by Hobson and Bishop (2016) suggests whilst mu 

rhythm suppression can be used to measure mirror neuron activity, the observed 

effects are weak and unreliable, hence making one question whether the mu rhythm 

is truly a reflection of the human mirror neuron system. In fact, some research has 

suggested that the mu rhythm actually primarily reflects the somatosensory features 

of actions, such as the texture of an object being picked up during an action, rather 

than the action itself (Coll, Bird, Catmur, & Press, 2015; Coll, Press, Hobson, 

Catmur, & Bird, 2017; Quandt, Marshall, Bouquet, & Shipley, 2013; Ritter, 

Moosmann, & Villringer, 2009). The idea that the mu rhythm may reflect tactile 

stimulation in addition to executed and observed motor activity is not new. For 

example, Cheyne et al. (2003) used MEG to find tactile stimulation during a finger 

brushing task produced a brief suppression of the mu rhythm, in addition to the 

central beta rhythm (15-25 Hz over sensorimotor cortex) which has also previously 

been shown to be involved in action related processes such as motor imagery, 

passive movement, and action observation (Zaepffel, Trachel, Kilavik, & Brochier, 

2013). From this study, Cheyne et al. attributed the suppression of the mu rhythm to 

tactile activity in S1, and suppression of the central beta rhythm to motor activity in 

primary motor cortex (M1); see also Cheyne (2013) for a review. Further research 

also supports the idea that the mu rhythm reflects tactile information processes 

(Arnstein, Cui, Keysers, Maurits, & Gazzola, 2011; Cannon et al., 2014). 

The research to this point has suggested that the mu rhythm oscillatory 

response may be an index of somatosensory features of actions in addition to the 

motoric components of actions themselves. In fact, suppression of the mu rhythm 

has even been found when participants simply viewed still images of manipulable 

objects (Proverbio, 2012). Proverbio suggested the observed suppression was a 

reflection of somatosensory regions representing object affordance of tool 

manipulability. However, based on our previous work (Bailey et al., 2019; Smith & 

Goodale, 2015; see also Chapter 2), we believe that observing such effects when 

viewing still images of manipulable objects may also reflect information about the 

tactile features of the object being projected to S1 via feedback connections in the 

brain. Whilst this could explain how object affordance is implemented in S1, another 
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theory is that these effects may be a reflection of predictions about the tactile 

features of objects being sent to S1 in anticipation of a potential subsequent 

interaction with the object, in line with predictive coding theories of human brain 

function (Clark, 2013). If this is the case, we may expect to not only observe a 

suppression of activity in the mu rhythm when viewing familiar objects, but actually 

find information specific to the content of different familiar visual objects can be 

discriminated in the mu rhythm, based on learned differences about their tactile (or 

motor) properties. Whilst this cannot directly confirm whether predictive coding is 

indeed the reason behind these effects, such results would provide convincing 

support for the theory. 

The reason why we expect such discriminable information may be present 

specifically within the mu rhythm is due to the fact a recent study by Coll et al. 

(2017) found the mu rhythm shows specificity to somatosensory features of actions. 

In their research, they asked participants to either observe or execute different action 

types with or without concurrent tactile stimulation, and with a real object or a 

pantomime action. In doing this, they could ascertain whether decoding accuracies 

differed as a function of action type, tactile stimulation, or object use. Interestingly, 

MVPA only revealed such specificity for concurrent tactile stimulation and object 

use, and not for different action types. This suggests the mu rhythm shows 

specificity to somatosensory, and not motor, features of actions. 

Furthermore, we have reason to believe we will find discriminable 

information about different familiar visual objects within the mu rhythm despite the 

complete absence of tactile stimulation or a motor response for two reasons. First, 

such cross-modal context effects have already been found with fMRI, since Smith 

and Goodale (2015) found information about the exact same different familiar visual 

objects could be discriminated in S1, in which the mu rhythm is thought to originate 

from (Cheyne, 2013; Cheyne et al., 2003). Second, previous research investigating 

feedforward and feedback processing in the macaque visual cortex found causal 

evidence to suggest low-frequency oscillations, such as alpha, propagate in a 

feedback direction, whereas high-frequency oscillations, such as gamma (40-80 Hz) 

convey feedforward information (Van Kerkoerle et al., 2014). Since the mu rhythm 

oscillates in the alpha frequency range, it is therefore considered to convey feedback 
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related information thus is the likely oscillatory frequency for transmitting feedback 

contextual information across sensory modalities.  

Building on this, the laminar architecture of this coordinated activity has been 

investigated by Bonaiuto et al. (2018), who found low-frequency alpha activity 

originated in deep cortical laminae (see also Buffalo, Fries, Landman, Buschman, & 

Desimone, 2011; L. R. Silva, Amitai, & Connors, 1991; W. Sun & Dan, 2009). 

Hence, this further suggests the alpha oscillation may play a pivotal role in 

coordinating feedback information, since information projected via feedback 

connections is known to originate from deep layers of cortex (Felleman & Van 

Essen, 1991; Rockland & Pandya, 1979). Furthermore, forming predictions about 

when a stimulus may appear has been found to bias the phase of alpha oscillations 

(Samaha, Bauer, Cimaroli, & Postle, 2015), thus predictions have been suggested to 

be coordinated at this oscillatory rate (Bastos et al., 2012). Therefore, if the cross-

modal context effects found by Smith and Goodale (2015) are a result of predictive 

processes occurring in the cortex, we can assume such predictions will be detected in 

the mu rhythm response. This is further supported by the fact Rao and Sejnowski 

(2002) found convincing evidence to suggest predictions are implemented in deep 

layers of cortex (where alpha originates; Bonaiuto et al., 2018), especially in S1 (Yu 

et al., 2019).  

It is important to note here that whilst the oscillatory rate of feedforward and 

feedback connections has been investigated within a modality (e.g. how information 

is communicated between high-level visual areas, such as V4, and low-level visual 

areas, such as V1; Van Kerkoerle et al., 2014), it is not clear how this coordination 

may be implemented across modalities in the brain. This is because, to the best of 

our knowledge, this has not yet been explored. However, the literature to date gives 

us a strong reason to assume any discriminable information about the familiar visual 

objects found in the mu rhythm oscillatory response may be a result of feedback 

coordination, and potentially predictions, in the brain (see also Scheeringa & Fries, 

2019 for a recent review).  

Finally, the central beta oscillation may also be of interest, since Cheyne 

(2013) suggested the exact functional roles of the mu rhythm and central beta 

oscillations are not well understood. The beta oscillation has also been suggested to 

originate from deep layers of cortex, thus it may also reflect feedback processes 
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(Bastos et al., 2015; Michalareas et al., 2016). One interesting difference between the 

mu rhythm and the central beta oscillation, however, is the fact that Cheyne (2013) 

suggested the mu rhythm reflects activity in S1, and the central beta rhythm reflects 

activity in M1. Therefore, we may only expect to find discriminable information 

within the mu rhythm, since this is the oscillation which has been suggested to best 

reflect underlying activity in S1 – our key region of interest which we would expect 

to find information related to the tactile features of viewing images of familiar 

objects, especially since Smith and Goodale (2015) did not find discriminable 

patterns of information in M1 when participants viewed the same familiar visual 

objects.  

As such, in the present study, we used MVPA cross-classification methods to 

examine the oscillatory activity underlying content specific transfer of information 

from vision to sensorimotor areas. To do this, we investigate whether information 

specific to the content of simply viewing familiar, but not unfamiliar, visual object 

categories can be discriminated in the mu rhythm oscillation. We investigated 

familiarity with objects to determine whether experience with the haptic interactions 

of the object is necessary to observe such effects in the neurophysiological 

responses. Since such links have already been found between vision and S1 when 

viewing these objects which convey this rich tactile and motor related information 

(Smith & Goodale, 2015; see also Meyer & Damasio, 2009), we expect the same 

underlying neuronal processes can be detected using EEG. We also investigated 

whether such effects could be detected in the beta (15-25 Hz) frequency band (as in 

Coll et al., 2017), since the central beta band has previously been shown to be 

involved in action related processes such as motor imagery, passive movement, and 

action observation (Zaepffel et al., 2013). Finally, analyses were also performed in 

the occipital alpha band as a control analysis to rule out potential confounds by 

changes in attentional engagement (Hobson & Bishop, 2016). Furthermore, this 

analysis was performed since research has shown occipital alpha reflects neuronal 

top-down influences on perception (M. T. Sherman, Kanai, Seth, & Van Rullen, 

2016), therefore investigating differences in this frequency band in relation to 

familiarity and prior experience with the objects was also of interest. This study 

focused on MVPA as the main analysis technique since it indicates the 

representational content from the task (Mur, Bandettini, & Kriegeskorte, 2009), as 
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opposed to univariate analysis which can only investigate overall involvement in a 

task based on changes in synchronisation in a given region. We expect, based on the 

literature reviewed, to find discriminable patterns of information related to the 

different familiar, but not unfamiliar, visual object categories in the mu rhythm 

oscillatory response.  

3.3. Methods 

3.3.1. Participants. 

Participants (N = 27; 13 male) were right handed (Oldfield, 1971), with an 

age range of 18-34 years (M = 21.19, SD = 3.35). All participants reported normal or 

corrected-to-normal vision and no history of neurological disorders. Written consent 

was obtained in accordance with approval from the Research Ethics Committee of 

the School of Psychology at the University of East Anglia. Participants were 

recruited through an online system and awarded partial course credit, or through a 

paid participant panel, receiving £16 for their participation.  

3.3.2. Stimuli and design. 

Two different conditions of full colour visual object stimuli were used in a 

block design: familiar or unfamiliar objects. Familiar objects consisted of apples and 

wine glasses (Smith & Goodale, 2015; see Figures 3.1A and 3.1B), and unfamiliar 

objects consisted of cubies and smoothies (Op de Beeck, Torfs, & Wagemans, 2008; 

see Figures 3.1C and 3.1D). There were three exemplars of each visual object, 

resulting in 12 individual stimuli total. Familiar objects were chosen based on the 

assumption that participants would have a rich haptic experience with such objects 

(as in Smith & Goodale, 2015). All images were 400 x 400 pixels, displayed against 

a white background in the centre of a 24” monitor screen (resolution 1920 x 1080 

pixels) using E-Prime 2.0. A black and white fixation cross with a black border (28 x 

28 pixels), and a red and green fixation cross with a black border (28 x 28 pixels), 

was also used. A viewing distance of 45cm was maintained for a visual angle height 

of 14° for the stimuli, as in Smith and Goodale (2015).   
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3.3.3. Apparatus and materials. 

A 64-channel slim active electrode system (Brain Products GmbH: 

BrainVision actiCAP) with a BrainAmp MR64 PLUS amplifier was used for the 

EEG data acquisition (see Section 3.3.5. below for more information). The 

Karolinska Sleepiness Scale (KSS; Akerstedt, Anund, Axelsson, & Kecklund, 2014; 

Åkerstedt & Gillberg, 1990) was used to measure participant’s sleepiness during the 

five minutes prior to the end of the experiment. This scale is rated on a Likert scale 

from 1-9 with the following options: 1) extremely alert, 2) very alert, 3) alert, 4) 

rather alert, 5) neither alert nor sleepy, 6) some signs of sleepiness, 7) sleepy, but no 

Figure 3.1: Familiar visual object categories; (A) three exemplars of an apple, (B) 

three exemplars of a wine glass. Unfamiliar visual object categories; (C) three 

exemplars of a cubie, (D) three exemplars of a smoothie. All stimuli taken from 

Smith and Goodale (2015), and modified from Op de Beeck, Torfs, and Wagemans 

(2008).  
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effort to keep awake, 8) sleepy, some effort to keep awake, and 9) very sleepy, great 

effort to keep awake, fighting sleep. We included this scale to test whether 

participants attention and/or drowsiness correlated with overall levels of occipital 

alpha activity (Niedermeyer & da Silva, 2005). 

3.3.4. Procedure. 

Upon arrival, participants signed informed consent and the EEG cap was 

mounted. Once the cap was installed, participants received both verbal and written 

instructions for the task and were trained via practice trials. Before beginning the 

experiment, each participant was shown their eye blinks and muscle artifacts (e.g. 

teeth grinding) on the EEG monitor to emphasize the importance of remaining still 

during EEG recording, and was asked to blink between trials where possible. During 

the experiment, participants sat in a dimly lit room. A black and white fixation cross 

with a black border remained in the centre of the screen throughout the entirety of a 

block, and each block began and ended with 2000ms of fixation against a white 

background. After the initial 2000ms fixation, 12 individual stimuli were displayed 

in a randomly allocated order, meaning each unique stimulus was presented once per 

block. Each stimulus trial began with 1000ms of fixation, followed by a stimulus 

presentation of 1000ms whereby the fixation remained on the screen. Each stimulus 

offset followed a variable delay of fixation for 1500-1900ms. There were 50 blocks 

in total, however 10 of which were catch blocks. In a catch block, a red and green 

fixation cross with a black border (28 x 28 pixels) was displayed over one of the 

stimuli at random.  

Participants were instructed to remain fixated on the central fixation cross in 

order to detect whether there was a colour change in the fixation cross during a 

block. Participants were asked to pay attention to the stimuli which would appear 

behind the fixation cross, but to remain fixated at all times. At the end of an 

experimental block, a question screen appeared which asked participants whether 

they had detected a red and green fixation cross. Participants were instructed to press 

one of two buttons on a four-button response device with their right hand in order to 

answer yes or no, thus eliminating the need for a motor response during experimental 

trials (see also Smith & Goodale, 2015 for a similar approach). Participants would 

receive a break screen after their response, enabling them to take a break before the 
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next block if they wished to do so. Every 10 blocks, participants received a longer 

break in which the screen offset was controlled by the experimenter. During this 

break, the participant was checked on by the experimenter and offered water to aid 

alertness during the experiment. In total, each participant was exposed to 40 

repetitions of each unique stimulus, resulting in 240 familiar visual objects, and 240 

unfamiliar visual objects after removing the catch blocks. The main experiment 

lasted approximately 40-50 minutes.  

At the end of the main experiment, participants were asked to complete the 

KSS (see Section 3.3.3. above) to indicate their sleepiness on a scale from 1 

(extremely alert) to 9 (very sleepy, great effort to keep awake, fighting sleep) during 

the five minutes before completing the rating. This was included since attention 

and/or drowsiness has previously been found to correlate with overall levels of 

occipital alpha activity (Niedermeyer & da Silva, 2005). Then, since a key feature of 

mu suppression is its occurrence both when an individual observes or executes an 

action (Pfurtscheller et al., 1996), participants were asked to complete a voluntary 

motor response task in order to map the mu rhythm in relation to a physical motor 

response. In this experiment, a central black and white fixation cross with a black 

border remained in the centre of the screen with a white background throughout the 

entire block. Participants were instructed to fixate on the black and white central 

fixation cross and press one button from a four-button response device with their 

right index finger approximately every six seconds. The fixation cross was included 

to ensure task engagement when making button responses. Each participant was 

encouraged not to count in their head to avoid alpha contamination (Hobson & 

Bishop, 2016). Participants completed 40 trials of the button pressing, separated in to 

four blocks of 10 trials which lasted approximately 5-10 minutes total. On 

completion of the voluntary motor response task, the EEG cap was dismounted and 

hair washing facilities were offered to all participants. Participants were debriefed 

before leaving the room. The entire session lasted no more than two hours per 

participant. 

3.3.5. EEG data acquisition. 

The electroencephalogram (EEG) was recorded with a 64-channel slim active 

electrode system (Brain Products GmbH: BrainVision actiCAP) embedded in a 
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nylon cap (international 10/20 localisation system), with a BrainAmp MR64 PLUS 

amplifier. One electrode (FT9) was removed from the cap and placed diagonally 

below and away from the outer canthus of the left eye in order to monitor vertical 

eye movements (lower EOG). The reference electrode was placed on the tip of the 

participant’s nose (as in Pfurtscheller, Neuper, Andrew, & Edlinger, 1997), and 

electrode FT10 was moved to the location of FCz, in order to record from the 

position where the reference electrode is usually embedded in this cap. The ground 

electrode was located in the position of FPz. The continuous EEG signal was 

acquired at a high sampling rate of 1000 Hz. Impedance was kept equal to or less 

than 50kΩ before recording started.  

3.3.6. EEG data pre-processing. 

All EEG data pre-processing was performed using the open toolbox 

EEGLAB (Delorme & Makeig, 2004), used within MATLAB (The MathWorks, 

USA, 2017b). Raw data from both the main experiment and voluntary motor 

response task were pre-processed according to the following steps. First, imported 

data were and high- and low-pass filtered between 0.1 Hz and 50 Hz to remove low-

frequency drifts and high-frequency noise respectively. All practice trials, catch 

blocks, and break periods were then manually removed from the continuous data. A 

50 Hz notch filter was also applied to reduce electrical noise. A vertical EOG 

(VEOG) was reconstructed offline by subtracting the lower EOG from FP1 activity. 

A horizontal EOG (HEOG) was also constructed by subtracting F7 from F8 activity 

(Renoult et al., 2015). Independent component analysis (ICA) was then ran on the 

data to detect eye blink artifacts, which were clearly identified and removed when 

inspecting components and scalp maps. Finally, data was cleaned using the artifact 

subspace reconstruction (ASR) plugin developed by Kothe and Jung (2016; Patent 

No. 14/895,440). See also Chang, Hsu, Pion-Tonachini, and Jung (2018) and Mullen 

et al. (2013). The ASR interpolated artifact bursts with a variance of more than 5 

standard deviations different from the automatically detected clean data (see Gabard-

Durnam, Mendez Leal, Wilkinson, & Levin, 2018; Grummett et al., 2014). Data 

segments post-ASR were then rejected with a time-window rejection criterion of 

0.25, meaning the segment was rejected if more than 0.25 of channels were marked 

as bad. Any channels marked as bad in this process were interpolated, and any 
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remaining noisy electrodes were interpolated based on computing kurtosis with a 

threshold of 5 using spherical method (Bigdely-Shamlo, Mullen, Kothe, Su, & 

Robbins, 2015). This resulted in an average of 2.59 electrodes interpolated (SD = 

1.72, range 0-5). The cleaned data was then epoched from -1000ms to 1500ms, time-

locked to stimulus onset (or time-locked to the button press if the voluntary motor 

response task), with a baseline correction of -1000ms. Finally, step-like artifact 

detection was carried out on all electrodes on the epoched data (with the exception of 

the lower EOG electrode) using a threshold of 100μV and moving window of 200ms 

in 50ms steps (see Luck, 2005). An average of 0.39% (SD = .01, range 0 – 5.21%) of 

trials were rejected during the entire cleaning process.  

3.3.7. Regions of interest. 

Two regions of interest (ROI)’s were created for both the univariate and 

multivariate pattern analysis (MVPA). In line with Coll et al. (2017), ten central 

electrodes were selected for the central ROI (C1-2-3-4-z, CP1-2-3-4-z). Furthermore, 

eight occipital electrodes were selected for the occipital ROI (PO3-4-7-8-z, O1-2-z). 

The central ROI was created to compare the effects of mu rhythm suppression and 

content specificity to the different visual object categories in each condition 

(familiar, or unfamiliar visual objects). The occipital ROI was created as a control 

region to rule out potential confounds by changes in attentional engagement from 

occipital alpha activity (see Hobson & Bishop, 2016).  

3.3.8. Data analysis. 

3.3.8.1. Behavioural analysis. 

Behavioural data for the main experiment was analysed based on correct 

detection of a red and green fixation cross, or correct rejection of no colour change 

during a block. Any failures to detect a colour change, or detection of an absent red 

and green fixation cross was classified as an incorrect response. An average accuracy 

was calculated for each participant.  
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3.3.8.2. Univariate cluster-based analysis. 

Univariate time-frequency analysis was conducted at the channel level by 

computing the power of event-related desynchronization/synchronization 

(ERD/ERS) using event-related spectral perturbations (ERSP)’s. The ERSP is a 

known measure of average dynamic changes in amplitude of the specified broad 

band EEG frequency spectrum, as a function of time relative to an experimental 

event (Cuellar & Toro, 2017; Makeig, 1993; Pfurtscheller & Lopes, 1999). To obtain 

the time-frequency data, a short-time Fourier transform was computed across the 

averaged baseline-corrected trials by extracting 200 time points in steps of 10ms, 

using a Hanning-tapered sliding time window with a fixed length of 500ms, covering 

the entire epoch from -1000ms to 1500ms. Here, a divisive baseline was used 

relative to the -1000ms to 0ms time period (Ciuparu & Mureşan, 2016; Marini et al., 

2019). Power was calculated from 1-30 Hz in steps of exactly 1 Hz. Such analyses 

were conducted in both central and occipital ROIs and applied to both conditions of 

familiar and unfamiliar visual object categories, in addition to the voluntary motor 

response task. Mean changes in spectral power are expressed in decibels (dB). 

To avoid circular inference (see Kriegeskorte, Lindquist, Nichols, Poldrack, 

& Vul, 2010; Kriegeskorte, Simmons, Bellgowan, & Baker, 2009), oscillation 

clusters were then identified by selecting all pixels across the time-frequency plots 

during stimulus duration (0-30 Hz, 100 time points corresponding to 0-1000ms) in 

both the central and occipital ROIs which were statistically significant based on the 

average ERSP data of all conditions (M. Cohen, 2014), at a significance level of 

0.01. Once the precise boundaries of the significant clusters had been defined, the 

cluster masks were applied separately to each condition (familiar and unfamiliar 

visual objects) and ROI (central and occipital). The data from each mask and each 

participant was then extracted and averaged. The average ERSP data was also 

extracted from the voluntary motor response task by identifying significant clusters 

based on the ERSP data from the button press.  

Overall, a single averaged ERSP value was extracted in each ROI and 

condition from the mask created from each significant cluster. Paired-sample 

parametric t-tests were then conducted to compare differences between ERSP data 

for familiar and unfamiliar visual objects. A single ERSP value was also extracted 
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from each cluster and ROI from the voluntary motor response task for each 

participant. Effect sizes for all t-tests are calculated as Cohen’s d = t / √ N (Lakens, 

2013). 

3.3.8.3. Univariate time-frequency window analysis. 

The univariate ERSP data from the main experiment (see Section 3.3.8.2. 

above for information on how this data was extracted) was also analysed for 

significant desynchronization within strictly selected alpha and beta frequency bands 

for each ROI (central and occipital) averaged over stimulus duration (0-1000ms 

time-locked to stimulus onset). The frequencies selected were between 8-13 Hz for 

alpha, and 15-25 Hz for beta (Coll et al., 2017). This additional analysis was done in 

order to match the univariate desynchronization data exactly to the frequency bands 

selected for the MVPA (see Section 3.3.8.5. below for comparison to MVPA). To 

test whether the ERSP data showed significant synchronization/desynchronization, 

we performed one-sample parametric t-tests against zero (baseline). All paired t-tests 

are reported as two-tailed at the p < .05 level with Bonferroni corrections applied. 

Effect sizes for all t-tests are calculated as Cohen’s d = t / √ N.  

3.3.8.4. Correlation analysis. 

In order to examine whether participants subjective ratings of sleepiness 

correlated with occipital alpha activity (Niedermeyer & da Silva, 2005), a correlation 

analysis was ran using participants scores from the KSS (see Section 3.3.3. above) 

against all conditions and ROIs.   

3.3.8.5. Multivariate pattern analysis. 

The MVPA was trained on single-trial ERSP data using a linear support 

vector machine (LIBSVM 3.20 toolbox; C. Chang & Lin, 2011) and tested against 

the average pattern from each visual object category (see Smith & Smith, 2019). The 

pattern classifiers were trained to discriminate between object identity within our 

two conditions: familiar or unfamiliar visual object categories. For example, in the 

familiar object condition, the classifier was trained to discriminate between an apple 
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and a wine glass. A k-fold cross validation approach was used to estimate this 

performance, whereby the model was built from k – 1 subsamples (70% of trials) 

and tested on the average of the remaining independent k subsample (30% of trials). 

Therefore, the classifier was trained with 168 single trials (84 trials for each visual 

object category; e.g. apples and wine glasses), and tested on decoding performance 

against the average of 72 trials (36 for each visual object category) in each condition. 

This was carried out in both the alpha (8-13 Hz) and beta (15-25 Hz) frequency 

bands (see Coll et al., 2017; Cuellar & Toro, 2017), in both the central and occipital 

ROI’s, to test whether discriminable patterns of information could be detected for 

different familiar or unfamiliar visual objects in each ROI and frequency band. This 

analysis was performed on 20 randomly partitioned training test set iterations across 

the entire 1000ms stimulus duration time window. Overall, one decoding accuracy 

was obtained for each condition, separated by ROI and frequency band for each 

participant.  

To test whether group level decoding accuracy was significantly above 

chance, we performed one-sample parametric t-tests on all MVPA analyses, against 

the chance level of 1/2 (50%). Significance values are reported as one-tailed due to 

prior expectations of the direction of the results. To control for multiple 

comparisons, all decoding accuracies are corrected using false discovery rate (FDR). 

The adjusted q-value at ≤ .05 resulted in a significance value of FDR p ≤ .016 for all 

results (Benjamini & Yekutieli, 2001). Effect sizes for all t-tests are calculated as 

Cohen’s d = t / √ N. All effect sizes are to be identified as small (> .2), medium (> 

.5), and large (> .8) according to Cohen’s (1988) classification of effect sizes.  

3.4. Results 

3.4.1. Behavioural accuracy. 

The mean accuracy of catch trial detection was 99.56% (SD = 1.01%, range = 

96% - 100%), thus indicating that participants were very good at detecting the 

absence or presence of a red and green fixation cross during a block. Participants 

sleepiness ratings covered the full scale, with an average of 5.74 (SD = 2.03, range 1 

- 9). Average response times for the voluntary motor response task were 6838ms (SD 

= 933ms, range 5497 – 7244ms).  
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3.4.2. Univariate results: Cluster-based analysis. 

For the univariate analysis, significant clusters were first identified via a data-

driven approach, to investigate where there were significant differences in power 

across the 1-30 Hz frequencies. The purpose of this analysis was to determine 

whether a mu rhythm desynchronization could be detected from merely viewing the 

familiar graspable objects. We also tested whether a mu rhythm desynchronization 

could be detected in the voluntary motor response task.  

3.4.2.1. Main experiment central ROI.  

When examining the significant clusters of both conditions averaged together 

in the central ROI, we observed significant synchronization over the delta/theta band 

covering stimulus duration and peaking around 100-400ms post stimulus onset, and 

significant desynchronization covering the beta band, also spanning stimulus 

duration and peaking over 200-600ms (see Figure 3.2A). Data from these clusters 

were then extracted separately for each condition (familiar or unfamiliar object 

categories; see Figure 3.2A). Note that the actual significant pixels for familiar and 

unfamiliar visual objects are displayed in Appendix F, Figure F-1, however to keep 

the number of pixels matched across both conditions and avoid circular inference, 

the masks based on the average of both conditions were used to extract the data 

(Figure 3.2A). The synchronization over the delta/theta band was found to be 

strongly significant for both familiar (M = .454, t26 = 7.918, p < .001, d = 1.524) and 

unfamiliar (M = .463, t26 = 6.174, p < .001, d = 1.188) visual object categories. 

Further pairwise comparisons revealed these were not significantly different from 

one another (t26 = .157, p = .876). The desynchronization from the beta band was 

also strongly significant for both familiar (M = -.272, t26 = -5.333, p < .001, d = -

1.026) and unfamiliar (M = -.309, t26 = -6.252, p < .001, d = -1.203) visual object 

categories. Once again, further pairwise comparisons revealed these were not 

significantly different from one another (t26 = -1.207, p = .238). A bar chart 

displaying the averaged ERSP values can be seen in Figure 3.2B. Taken together, the 

results from the central ROI show that observation of graspable objects, regardless of 

familiarity with the object, causes desynchronization in the beta frequency band. In 
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contrast to our expectations, there were no such significant effects found within the 

mu rhythm in these analyses. 

 

Figure 3.2: Univariate results from the cluster analysis. (A) The significant pixels 

taken from the average ERSP data from both familiar and unfamiliar objects, in both 

central and occipital ROIs. The raw ERSP data taken from this mask is visually 

shown for both conditions of familiar and unfamiliar visual objects. (B) Average 

ERSP values in each significant cluster for both central and occipital ROIs. 

Significant differences between conditions are shown.  
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3.4.2.2. Main experiment occipital ROI.  

When we examined the significant clusters of both conditions averaged 

together in the occipital ROI, we observed significant synchronization over the 

delta/theta band from 0-600ms and peaking between 0-400ms post stimulus onset, 

and significant desynchronization covering the alpha/beta band, spanning stimulus 

duration and peaking between 200-600ms (see Figure 3.2A). Data from these 

clusters were then extracted separately for each condition (familiar or unfamiliar 

object categories; see Figure 3.2A). Note that the actual significant pixels for 

familiar and unfamiliar visual objects are displayed in Appendix F, Figure F-1, 

however to keep the number of pixels matched across both conditions and avoid 

circular inference, the masks based on the average of both conditions were used to 

extract the data (Figure 3.2A). The significant synchronization covering the delta/ 

theta combined frequency bands was significant for both familiar (M = .807, t26 = 

7.230, p < .001, d = .1.391) and unfamiliar (M = 1.090, t26 = 8.547, p < .001, d = 

1.645) visual object categories. Here, mean synchronization for familiar and 

unfamiliar visual object categories were significantly different from one another (t26 

= 3.298, p = .003, d = .635). The significant desynchronization covering the alpha 

and beta combined frequency bands was significant for familiar (M = -.474, t26 = -

4.985, p < .001, d = -.959) and unfamiliar (M = -.543, t26 = -6.057, p < .001, d = -

1.166) visual object categories. Further pairwise comparisons revealed the mean 

desynchronization for familiar and unfamiliar visual object categories were different 

from one another (t26 = -2.177, p = .039, d = -.419), however, this result did not 

survive Bonferroni correction at a corrected p value of .013. A bar chart displaying 

the exact averaged ERSP values can be seen in Figure 3.2B. The results in the 

occipital ROI suggest a strong desynchronization can be found over both the alpha 

and beta frequency bands in response to viewing both the familiar and the unfamiliar 

visual object categories, in which the suppression appears to be slightly stronger for 

viewing unfamiliar visual objects compared to familiar.  

3.4.2.3. Voluntary motor response task central ROI.  

Three significant clusters were identified in the central ROI for the voluntary 

motor response task, as seen in Figure 3.3A. A significant desynchronization was 
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found over the alpha band central electrodes (the mu rhythm), beginning at the onset 

of button press and lasting approximately 1000ms, with the peak around 400-800ms 

(M = -.712, t26 = -5.297, p < .001, d = -1.019). Another significant desynchronization 

was found over the beta frequency band, spanning around -100ms to 200ms time-

locked to the button press, with the peak around 0-200ms (M = -.457, t26 = -6.419, p 

< .001, d = -1.235). Finally, significant synchronization was found over the beta 

frequency band, spanning around 500-1000ms post-button press, peaking around 

700-1000ms (M = .590, t26 = 4.517, p < .001, d = .869). These results show a strong 

mu rhythm desynchronization can be found when participants completed a simple 

button-press experiment, demonstrating the mu rhythm can easily be detected when 

participants execute a physical motor response.   

3.4.2.4. Voluntary motor response task occipital ROI.  

Two significant clusters were revealed in the occipital ROI for the voluntary 

motor response task (see Figure 3.3B). Significant desynchronization was found in 

the alpha frequency band from around -200ms to 1000ms time-locked to button 

press, and peaking around 200-600ms (M = -.653, t26 = -4.502, p < .001, d = -.866). 

Significant synchronization was also found in the beta frequency band, lasting from 

Figure 3.3: Univariate results from the cluster analysis. The significant pixels 

corresponding to the ERSP data from the voluntary motor response task are outlined 

in both central and occipital ROIs.  
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around 300-1000ms post-button press, and peaking around 600-800ms (M = .572, t26 

= 4.469, p < .001, d = .860). These results show that the alpha band also attenuates 

in the occipital ROI in response to execution of a button press. 

3.4.3. Univariate results: Alpha- and beta-band analysis. 

The univariate data was also analysed within strictly selected alpha and beta 

frequency bands for each ROI (central and occipital) averaged over stimulus 

duration (0-1000ms time-locked to stimulus onset), in order to match the univariate 

desynchronization data exactly to the frequency bands selected for the MVPA. 

3.4.3.1. Main experiment central ROI.  

When restricted to the 8-13 Hz frequency band, no significant 

desynchronization was found for either familiar (t26 = -.042, p = .967) or unfamiliar 

(t26 = -1.160, p = .257) visual object categories. Similar to the cluster-based analysis, 

the beta (15-25 Hz) frequency band revealed significant desynchronization for both 

the familiar (M = -.251, t26 = -4.630, p < .001, d = -.891) and unfamiliar (M = -.284, 

t26 = -5.296, p < .001, d = -1.019) visual object categories. Further pairwise 

comparisons revealed there were not significantly different from one another within 

the beta band (t26 = 1.001, p = .326). These results (see Figure 3.4) compliment the 

cluster-based analysis, suggesting no significant desynchronization within the mu 

rhythm frequency band, yet significant desynchronization for both visual object 

categories in the beta frequency band. 
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3.4.3.2. Main experiment occipital ROI.  

The 8-13 Hz frequency band in the occipital ROI revealed significant 

desynchronization for familiar (M = -.488, t26 = -2.972, p = .006, d = -.572) and 

unfamiliar (M = -.691, t26 = -4.161, p < .001, d = .801) visual object categories. 

Further pairwise comparisons revealed these to be significantly different from one 

another (t26 = 2.711, p = .012, d = .522). In the beta (15-25 Hz) frequency band, 

significant desynchronization was also found for both familiar (M = -.342, t26 = -

5.336, p < .001, d = -1.027) and unfamiliar (M = -.346, t26 = -5.949, p < .001, d = -

1.145) visual object categories. Further pairwise comparisons revealed these were 

not significantly different from one another (t26 = .164, p = .871). These results (see 

Figure 3.4) compliment the cluster-based analysis, showing alpha and beta 

desynchronization for both visual object categories. Interestingly, when separating 

the alpha and beta band rather than looking at the combined cluster, we find the 

alpha band shows significant differences in desynchronization for the familiar and 

unfamiliar visual objects, with stronger attenuation for viewing the unfamiliar 

objects compared to the familiar objects. 

Figure 3.4: Univariate results from the alpha- and beta-band analysis. Figure shows 

the ERSP data in response to viewing both familiar and unfamiliar objects, in both 

central and occipital ROIs. 
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3.4.4. Correlation analysis. 

The results from the correlation analysis revealed no significant correlations 

between each participant’s subjective sleepiness ratings and any alpha activity across 

all conditions and ROI’s (all p’s ≥ .321). As such, we can assume participants 

feelings of drowsiness throughout the experiment did not influence any of the alpha 

desynchronizations that we observe.  

3.4.5. Multivariate pattern analysis results. 

In order to determine whether content-specific information regarding the 

familiar visual objects could be decoded from the mu rhythm frequency band, we 

computed cross-validated decoding performance of visual object category 

independently for each condition (familiar and unfamiliar visual objects) in the 

central and occipital ROI, for both the alpha (8-13 Hz) and beta (15-25 Hz) 

frequency bands. The analysis was conducted across stimulus duration (0-1000ms 

time-locked to stimulus onset). Therefore, this analysis matched the univariate alpha- 

and beta-band analysis (see Section 3.4.3. above).  

3.4.5.1. Central ROI.  

Remarkably, significantly above chance decoding was found for the familiar 

visual object categories in the central alpha (mu rhythm) frequency band (M = 

57.31%, t26 = 2.268, p = .016, d = .436; see Figure 3.5). Conversely, such decoding 

effects were not found for the unfamiliar object categories (t26 = .670, p = .509). 

Further paired samples tests showed these decoding accuracies were not significantly 

different from one another (t26 = .921, p = .366). Interestingly, no significant 

decoding was found for either familiar (t26 = -.746, p = .462) or unfamiliar (t26 = 

.026, p = .980) visual object categories in the central beta frequency band. These 

results show, despite a lack of desynchronization in the mu rhythm in the univariate 

analysis, discriminable information regarding the familiar, but not unfamiliar, visual 

object categories can be found in the mu rhythm oscillatory response.  
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3.4.5.2. Occipital ROI.  

As can be seen in Figure 3.5, strong significant decoding was found for 

familiar visual object categories in the occipital alpha frequency band (M = 71.48%, 

t26 = 6.284, p < .001, d = 1.209). Significant decoding was also found for unfamiliar 

object categories (M = 57.87%, t26 = 2.478, p = .010, d = .477). Interestingly, further 

comparisons revealed decoding for familiar visual object categories to be 

significantly higher than decoding for unfamiliar visual object categories (t26 = 

3.124, p = .002, d = .601). No significant decoding was found for either familiar (t26 

= 1.385, p = .178) or unfamiliar (t26 = .699, p = .491) visual object categories in the 

occipital beta frequency band. These results show discriminable information for both 

conditions of familiar and unfamiliar visual object categories in the alpha frequency 

band, which compliments the desynchronization results in the univariate analysis. 

However, interestingly the familiar visual objects are significantly more 

discriminable than the unfamiliar visual objects, which is in contrast to the univariate 

analysis which reveals stronger desynchronization for the unfamiliar objects in the 

occipital alpha frequency band. Decoding was not significant for either object 

Figure 3.5: Decoding of object identity within each visual object category. Cross-

validated two automatic forced choice decoding performance for each stimulus 

category (familiar and unfamiliar objects) for each frequency band and ROI.  
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category in the beta frequency band, which is interesting given strong significant 

desynchronization was found within the beta band in the univariate analysis.  

3.5. Discussion 

The present study revealed viewing different familiar visual objects which 

participants have had a rich haptic prior experience with can be significantly 

discriminated in the mu rhythm oscillatory response, despite no tactile stimulation or 

motor response during the experiment. Interestingly, no reliable information related 

to viewing different images of unfamiliar visual object categories was found in the 

mu rhythm. These results thus suggest connections from vision to sensorimotor areas 

may transmit content-specific information about familiar, but not unfamiliar, visual 

object categories, in which this information can be detected in the alpha frequency 

patterns generated by clusters of neurons in sensorimotor areas. Furthermore, 

univariate analysis investigating changes in event related spectral power revealed 

significant attenuation in the central beta frequency band when viewing both familiar 

and unfamiliar objects, whilst no such attenuation was found in the mu rhythm. 

These findings suggest content specific information from vision to sensorimotor 

areas may occur in specific oscillation frequencies, and highlight how the analysis 

technique employed can answer different questions about the role of the mu rhythm 

in response to viewing different visual object categories. 

3.5.1. Connections from vision to sensorimotor areas trigger content 

specific information in the mu rhythm oscillatory response. 

The findings from the current study corroborate that of Smith and Goodale 

(2015), who found content-specific information about different familiar visual 

objects could be sent from vision to S1 when participants viewed the same stimuli. 

Here we have expanded on Smith and Goodale’s study by finding a likely oscillatory 

marker for such cross-modal processes that dominates the alpha, and not beta, 

frequency band. This is because content-specific information could be decoded in the 

mu rhythm oscillatory response when participants viewed the different familiar, but 

not the unfamiliar, visual objects. Since both the present study and Smith and 

Goodale found no such decoding for the unfamiliar visual objects, this suggests a 
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rich prior haptic experience with the object is necessary to produce such effects. If 

the underlying effect is originating from S1, then these results are in line with a 

variety of previous research which has also found content-specific information 

belonging to supposedly unisensory modalities can be sent cross-modally to an 

entirely independent sense (Bailey et al., 2019; Meyer et al., 2011, 2010; Vetter et 

al., 2014; see also Chapter 2). We expand on this literature by showing, for the first 

time, that EEG can be used to find information specific to the content of different 

familiar visual objects can be sent from vision to sensorimotor areas when simply 

viewing them, despite the fact the mu rhythm is functionally related to motor and 

tactile related activity in sensorimotor cortex (for a review, see Pineda, 2005; see 

also Cheyne, 2013). As such, we suggest electrophysiological connections from 

vision to S1 may transmit content-specific information only about different familiar 

visual objects that convey rich tactile information. 

It is important to note that due to the weak spatial resolution of EEG it may 

be the case that the significant decoding we observe in the mu rhythm oscillation 

could be originating from M1, especially since we found weak evidence for a degree 

of information about hearing the sound of familiar hand-object interactions in M1 

(see Chapter 2; see also Bailey et al., 2019). However, since Cheyne et al. (2003) 

attributed the suppression of the mu rhythm to activity in S1, and suppression of the 

central beta rhythm to activity in primary motor cortex (M1), and Smith and Goodale 

(2015) found decoding for viewing familiar visual objects only in S1, and not M1, 

we have reason to believe the effects we observe originate from S1.  

These results have provided a valuable contribution to understanding the role 

of the mu rhythm oscillatory response, building upon previous research such as that 

of Coll et al. (2017) who suggested the mu rhythm contains specificity to the 

somatosensory features of observed and executed actions. Interestingly, they only 

found such specificity for tactile stimulation and real object use in mu rhythm 

activity when using cross-modal MVPA methods (e.g. trained on observation of 

actions, tested on execution of actions). It is important to note here that cross-modal 

classification would not have been possible in the present experiment since 

participant passively viewed still images of object stimuli and no action execution 

task was required. Interestingly however, when Coll et al. used uni-modal MVPA 

(e.g. trained on observation of actions, tested on observation of actions), such as in 
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the present study, little specificity for somatosensory features of actions was found, 

since widespread above-chance decoding was found for all conditions. This finding 

supports the meta-analysis by Foxe et al. (2016) who suggested the specificity of the 

mu rhythm is insensitive to differences between conditions. We on the other hand 

provide some support for the specific content of information in the mu rhythm 

oscillation by finding different familiar visual objects can be reliably discriminated 

when using uni-modal MVPA methods (e.g. trained and tested on the observation of 

an object). We suggest that familiarity with the tactile (or motor) features of an 

object may be a critical component for specificity, since discriminable information 

between the different unfamiliar visual objects could not be detected. However, it is 

important to note that this claim must be interpreted with caution, since the 

significant decoding for the familiar visual objects was not significantly higher than 

the non-significant decoding of the unfamiliar visual objects. Furthermore, we show 

such discriminable information is present when no action is performed. Whilst 

previous research has found significant attenuation within the mu rhythm when 

viewing images of tools which elicit motor affordances (see for example Proverbio, 

2012), this is the first study to find the content of such information can be 

discriminated in the mu rhythm when viewing static images of familiar objects. 

Taken together, these results strongly suggest the mu rhythm oscillation receives 

information about the tactile and/or motor components of objects which participants 

have had a rich haptic prior experience with. 

The fact we find discriminable information in the mu rhythm specific to the 

content of static images of familiar graspable objects challenges previous research 

which suggests the mu rhythm is simply a measure of mirror neuron activity. To 

reiterate, a review by Hobson and Bishop (2016) suggests that whilst mu suppression 

can be used to measure mirror neuron activity, the observed effects are weak and 

unreliable when observing actions compared to the strong effects observed from 

executing actions. We do not argue against the notion that mu suppression can be 

used to measure the mirror neuron system, as numerous research has indeed found 

firing of cells over sensorimotor cortex are desynchronised during performance of, 

observation of, or imagining to perform an action (see for example Arnstein et al., 

2011; Fox et al., 2016; Muthukumaraswamy et al., 2004; Pfurtscheller et al., 1997). 

Rather, we emphasize the fact that the mu rhythm can be used to answer more 
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questions beyond the function of the mirror neuron system, specifically highlighting 

how different analysis methods can provide new insights into the key function of the 

mu rhythm oscillatory response.  

For example, our research suggests the content of information which is likely 

being sent to sensorimotor cortex via feedback connections from a distal area of 

cortex, in our case, visual cortex or high-level multisensory convergence zones, can 

be measured in the mu rhythm when using multivariate pattern analysis techniques 

which cannot be detected in simple univariate responses. Most previous research has 

analysed mu rhythm attenuation to measure sensorimotor cortex activation. To 

directly compare this to our results would suggest viewing and executing actions, or 

receiving tactile stimulation, is pivotal to detect a mu rhythm response. This is 

because no significant attenuation was found in the mu rhythm when viewing either 

different familiar or unfamiliar object categories in the present study, whereas we 

find strong significant attenuation when participants performed a voluntary motor 

response task. However, a crucial finding is the fact discriminable information about 

the different familiar visual objects can be detected in the mu rhythm when analysing 

the data at the multivariate level. This result highlights how research should consider 

adopting a strong focus on multivariate classification techniques to further 

understand the role of the mu rhythm (see also Coll et al., 2017), since this method 

has higher sensitivity and power to detect fine-grained differences in the 

representational content of the data (see Norman et al., 2006).  

The reason why we find information specific to the content of only familiar, 

and not unfamiliar, visual object categories in the mu rhythm may be reflective of 

predictive coding processes in the brain (see Clark, 2013 for a review; see also 

Chapter 1, Section 1.4.2.). The predictive coding account suggests high-level areas in 

the brain predict expected incoming sensory inputs, in turn projecting these 

predictions down to low-level areas via feedback connections (see Kok & De Lange, 

2015). Of interest is the fact that previous research has suggested low-frequency 

oscillations, such as alpha, conveys feedback related information (Bonaiuto et al., 

2018). Furthermore, alpha activity has been found to originate in deep cortical 

laminae known to convey feedback information (Bonaiuto et al., 2018), such as from 

pyramidal cells in layer V of cortex (Buffalo et al., 2011; L. R. Silva et al., 1991; W. 

Sun & Dan, 2009), with further research suggesting cells in layer V are the cortical 
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origin of the alpha rhythm (F. L. Da Silva & Van Leeuwen, 1977). Research has 

previously found convincing evidence that predictions are implemented in such deep 

cortical layers (Rao & Sejnowski, 2002), specifically in S1 (Yu et al., 2019). 

Therefore, it is possible that the decoding we see in the mu rhythm reflects 

predictions being sent from high-level cortical areas about the tactile and/or motor 

features of the different familiar objects based on predictive coding theories of brain 

function (Clark, 2013). Future research could consider replicating Smith and 

Goodale’s (2015) research at 7-Tesla fMRI to determine which layers of S1 receive 

content-specific information about the different familiar visual objects, to see 

whether the content within each layer correlates with mu rhythm activity. If the same 

participants were tested from the EEG and 7-Tesla fMRI study, we may expect to 

find information specific to the content of different familiar visual objects in the mu 

rhythm oscillatory response from the EEG, which is also detectable in either the deep 

or superficial layers of S1 from the 7-Tesla fMRI study, since such layers have 

previously been found to be more engaged for cortico-cortical predictive feedback 

input (Yu et al., 2019).  

However, our results do not uniquely support predictive coding as the reason 

behind the effects we have observed. Another reason why we find information 

specific to the content of only familiar visual objects in the mu rhythm may be due to 

the fact participants naturally paid more attention to an object they were familiar 

with rather than an unfamiliar object. However, since spectral power changes in the 

occipital alpha oscillation are sensitive to attentional engagement (Hobson & Bishop, 

2016), and we actually found stronger desynchronization for viewing the unfamiliar 

objects compared to the familiar objects, this suggests it is unlikely that we are 

merely measuring engagement of attention to objects that participants are more 

familiar with. However, it could be interesting for future research to test participants 

after haptic exploration of the unfamiliar objects via 3D printing in order to 

determine whether experience with the objects is needed in order for these effects to 

emerge. In this case, we may find discriminable information for both different 

familiar and unfamiliar visual objects in the mu rhythm oscillation, and no 

differences in desynchronization, once participants have explored the haptic 

properties of the unfamiliar objects, when compared to participants who receive no 

training. Whilst this would not directly test predictive coding theories per se, it 
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would strongly support the importance of prior experience with the haptic and/or 

motor properties of the objects to observe such effects in the mu rhythm oscillation.  

3.5.2. The central beta oscillatory response to observation of graspable 

objects. 

An additional interesting finding is the significant desynchronization 

observed in the central beta oscillation in response to participants viewing both 

familiar and unfamiliar graspable objects. These responses were not significantly 

different from one another, suggesting no familiarity effects in the central beta band, 

but rather viewing any graspable object in general can elicit central beta band 

desynchronization. The significant attenuation is not a surprising finding given 

previous research has found the central beta oscillation is involved in action related 

processes such as motor imagery, passive movement, and action observation 

(Zaepffel et al., 2013). However, interestingly, whilst significant desynchronization 

was observed in the central beta band when viewing graspable objects, multivariate 

analysis revealed no above chance decoding in the same frequency band for either 

visual object category. We note Coll et al. (2017) found similar results in their uni-

modal classification analysis, supporting the idea that the central beta oscillation 

lacks specificity for discriminating between different object categories. Rather, it 

seems the central beta oscillation can classify between an observed or executed 

action (Coll et al., 2017), and may even play a role in movement planning (see also 

Tucciarelli, Turella, Oosterhof, Weisz, & Lingnau, 2015; Turella et al., 2016), 

however it fails to distinguish between different action types or different tactile 

properties of objects. Here, these results once again highlight the importance of using 

different analysis techniques to answer different questions about oscillatory 

responses.  

Another interesting finding is the clear difference of attenuation found 

between the main experiment and the voluntary motor response task in the central 

beta oscillation. Neuper, Wörtz, and Pfurtscheller (2006) found beta band 

suppression during preparation of movement, followed by a strong rebound beta 

synchronisation after movement, which occurs whilst the mu rhythm continues to 

desynchronise. This is exactly what we see in the voluntary motor response task and 

is important to highlight for two reasons. First, this directly indicates how central 
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alpha and beta frequency bands exhibit different dynamics (as previously suggested 

by Pfurtscheller, Pregenzer, & Neuper, 1994), emphasizing the importance of 

separating these frequency bands to answer different questions regarding cortex 

function. This contrasts with previous research which suggests the central alpha (mu 

rhythm) and central beta frequency bands are closely related to one another during 

action production and gesture observation (Quandt, Marshall, Shipley, Beilock, & 

Goldin-Meadow, 2012). Future research should consider an EEG source-based 

analysis or magnetoencephalography (MEG) study in order to estimate the location 

of neural activation found in the alpha and beta frequency bands. Indeed, previous 

research has found mu and beta correspond to different sources in the primary 

somatosensory and motor cortex (Cheyne, 2013; Cheyne et al., 2003; Hari & 

Salmelin, 1997). Based on our results, one might expect that the mu rhythm 

desynchronization corresponds to the tactile feel of the button press in S1, whereas 

the beta desynchronization corresponds to the motor plan of the button press in M1 

or pre-motor cortex (Tucciarelli et al., 2015; Turella et al., 2016). Second, the 

difference in desynchronization between the main experiment and the voluntary 

motor response task emphasizes the importance of separating observation and 

execution conditions to answer different questions about the central beta oscillation, 

in line with Coll et al. (2017) who suggested the central beta oscillation can classify 

between an observed or executed action yet fails to show specificity to different 

action types, such as action with a real object or pantomime action.  

3.5.3. Occipital alpha may reflect top-down synchronous activity when 

viewing graspable objects. 

The results found in the occipital alpha frequency band may reflect top-down 

neuronal processes underlying perception of objects, since the alpha frequency has 

previously been suggested to play an important role in directing information flow 

through the brain and allocating resources to relevant regions (Haegens, Handel, & 

Jensen, 2011; Jensen & Mazaheri, 2010). The univariate analysis revealed significant 

desynchronization in the occipital alpha/beta cluster in response to viewing both 

familiar and unfamiliar visual object categories, in which the suppression was 

significantly stronger for unfamiliar objects in the alpha band when restricting the 

analyses to precise frequency boundaries. The overall attenuation may be a reflection 
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of increased blood flow to the visual cortex during perception, since Perry and 

Bentin (2009) have previously found a relationship between alpha suppression 

recorded posteriorly and BOLD responses in parietal and visual cortex. Scheeringa et 

al. (2011) also found alpha suppression reflects the magnitude of the MRI response 

in visual cortex during a visual attention task. The reason why attenuation was 

stronger for the unfamiliar objects in the occipital alpha band may be a result of a 

novelty effect, since previous research has demonstrated stronger occipital alpha 

desynchronization following presentation of a novel stimulus compared to a familiar 

expected stimulus (Harrison, 1946; Mulholland & Runnals, 1962).  

We argue this difference is not simply a confound of expectation about the 

onset of the stimulus or attentional engagement which are known to influence alpha 

activity (see e.g. Hobson & Bishop, 2016; Pfurtscheller, 1992). Tight controls were 

adopted in this experiment to account for such confounds; for instance, maintaining 

constant fixation with a variable delay eliminated the risk of forming an expectation 

about when the stimuli might appear (Samaha et al., 2015). Furthermore, the results 

of the correlations between KSS scores (Akerstedt et al., 2014; Åkerstedt & Gillberg, 

1990) and occipital alpha desynchronization suggest no significant relationship 

between feelings of sleepiness, therefore attentional engagement, and the power of 

attenuation in the occipital alpha frequency band. Finally, if the stronger suppression 

in the occipital alpha oscillation for viewing unfamiliar objects compared to familiar 

objects is due to stronger attention paid to these stimuli, we may expect to find a 

significantly stronger suppression in the mu rhythm also. This is because Hobson 

and Bishop (2016) argue the mu rhythm is easily confounded with occipital alpha 

suppression. However, we do not find the same pattern of results in the mu rhythm 

oscillatory response, with the strength of desynchronization between viewing 

familiar and unfamiliar objects not being significantly different from one another.  

Interestingly, the multivariate analysis in the occipital alpha band revealed 

significant decoding when viewing both visual object categories, which shows a 

reverse effect to the univariate analysis whereby decoding is significantly stronger 

for viewing familiar visual object categories when compared to unfamiliar visual 

objects. We suggest this difference is due to the different analysis techniques 

detecting different aspects of the oscillatory response, since multivariate analysis has 

more power to detect fine-grained differences in the representational content of the 
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data (Norman et al., 2006). As mentioned previously, Bastos et al. (2012) suggested 

the alpha frequency coordinates the feedback of predictions to low-level areas, 

however occipital alpha in particular is known to transmit prior knowledge and 

expectations to visual cortex, such as in a perceptual decision making experiment 

(M. T. Sherman et al., 2016). As such, it may be the case that viewing familiar 

objects could be better read out from occipital alpha activity due feedback cortical 

pathways transmitting information relating to previous knowledge about the different 

familiar visual objects.  

It is important to note that the direction of the multivariate effect in the 

occipital alpha band is similar to the multivariate effect in the central alpha band (mu 

rhythm), meaning in both cases decoding is stronger for viewing familiar compared 

to unfamiliar objects. Once again, decoding accuracies were significantly different 

from one another in the occipital alpha band, yet not in the mu rhythm, thus 

suggesting no occipital alpha confounds in the mu rhythm (Hobson & Bishop, 2016). 

Instead, the reason why the effect is similar (yet weaker) in the mu rhythm may be a 

case of more information being fed back to occipital cortex than sensorimotor cortex 

regarding the stored knowledge about the familiar objects (Martin, 2016), since 

feedback information is suggested to oscillate at an alpha frequency (Bastos et al., 

2012). To confirm this idea, an interesting avenue for future research could consider 

conducting the multivariate analyses in the gamma (40-80 Hz; Seymour, Rippon, 

Gooding-Williams, Schoffelen, & Kessler, 2018) frequency range in both occipital 

and central electrodes, since information processing in this frequency is coherent 

with activity in superficial layers of cortex (Buffalo et al., 2011). This is important 

since feedforward connections predominantly arise from superficial layers of cortex 

(Barone, Batardiere, Knoblauch, & Kennedy, 2000; Buffalo et al., 2011). 

Furthermore, research has suggested gamma conveys feedforward information (Van 

Kerkoerle et al., 2014). Therefore, if gamma reflects feedforward processing, we 

would expect to find above chance decoding for both familiar and unfamiliar visual 

objects in the occipital gamma oscillation, yet no above chance decoding in the 

central gamma oscillation. Furthermore, we would expect to find no differences 

between decoding accuracies for familiar and unfamiliar visual objects in the 

occipital gamma band if this frequency reflects feedforward input, since Smith and 

Goodale (2015) found no significant differences in decoding between viewing 
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familiar and unfamiliar visual objects in V1. This idea is further supported by 

previous research which has found gamma activity most strongly and significantly 

contributed to explaining BOLD variance (Scheeringa et al., 2011) or changes in 

contrast (S. P. Koch, Werner, Steinbrink, Fries, & Obrig, 2009) in human visual 

cortex.  

3.6. Conclusion 

In summary, this study has shown that simply viewing still images of 

different familiar visual object categories which participants have had a rich haptic 

prior experience with can be discriminated within the mu rhythm oscillatory 

response. In contrast, no such decoding effects were found when participants viewed 

still images of different unfamiliar visual object categories. As such, this is the first 

known study to date to find content-specific information about different familiar 

visual object categories can be detected from vision to sensorimotor areas using EEG 

as the analysis technique. In doing this we have shown, for the first time, evidence 

for the precise temporal communication of information, thus a potential oscillatory 

marker, of cross-sensory effects from vision to sensorimotor cortex. Finally, we 

highlight the importance of using different analysis techniques to extract different 

types of information from neural oscillations. We emphasize the need for research to 

focus on multivariate analysis techniques which can read out fine-grained pattern 

information from oscillatory responses, in turn answering new questions that simple 

analyses on attenuation of power fail to detect. 
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CHAPTER 4   

–  

Exploring predictive coding as an account of cross-modal influences 

in the brain 
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4.1. Abstract  

 Over recent years, research has shown even the primary sensory cortical 

regions of the human brain display remarkable effects of high-level context such 

that, for example, primary somatosensory regions can discriminate different hand-

object sounds. These effects are consistent with theories of predictive coding, which 

suggest the role of even the primary sensory regions is not to passively register 

incoming sensory stimuli, but rather to develop internal models about the world and 

actively test them against prior experience. Here, we used real familiar objects in a 

functional magnetic resonance imaging (fMRI) experiment to directly test whether 

predictive coding mechanisms may account for such multisensory information being 

present in primary somatosensory cortex (S1). In an event-related design, right-

handed participants (N = 18) first viewed either a tennis ball, or a plastic cup, placed 

directly in front of them (the prime phase), followed by either the same or a different 

object (the target phase). In the target phase, participants either continued to view the 

object, or reached out to touch the object with their right hand. MVPA results 

showed that whilst S1, and other motor-related cortical regions, could significantly 

decode between whether the participant viewed or touched the object, no significant 

decoding was found for object identity for any of the trial types following FDR 

corrections. The pattern we observed for decoding in S1 revealed stronger decoding 

when the target object was incongruent with the prime object. Interestingly, when 

running the analysis in the finger-sensitive voxels of left S1 (defined from an 

independent finger-mapping localizer to the right hand), this pattern was reversed. 

We discuss our findings with respect to predictive processing operating across 

sensory modalities, but also to alternative reasons why we believe we observed such 

effects along with possible limitations of the study. 

 

Keywords: cross-modal, multisensory, multi-voxel pattern analysis, predictive 

coding, S1. (5)  
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4.2. Introduction 

Whilst traditional views of cortex function assume the primary sensory 

cortices in the brain passively register incoming sensory information which belongs 

to its respective modality (see Carandini et al., 2005 for such an example of the 

visual system), it is becoming increasingly apparent that a primary sensory cortex 

can receive information which was not traditionally thought to belong to that primary 

sensory region (see Driver & Noesselt, 2008; Ghazanfar & Schroeder, 2006 for 

reviews). This has been further demonstrated in studies which have found content-

specific information about a specific stimulus can be transmitted to a primary 

sensory modality independent to that of the source of stimulus presentation (for a 

detailed review, see Chapter 1, Section 1.3.3.). For example, information specific to 

the content of a visual stimulus which implies rich tactile information can be reliably 

discriminated in primary somatosensory cortex (Meyer et al., 2011; Smith & 

Goodale, 2015). Similarly, a visual stimulus which implies auditory information can 

be distinguished in primary auditory cortex (Meyer et al., 2010). Furthermore, 

content-specific information about auditory stimuli which imply visual or haptic 

features have been observed in early visual cortex (Vetter et al., 2014), or primary 

somatosensory cortex (see Chapter 2, see also Bailey et al., 2019), respectively. 

What remains unclear, however, is the functional significance behind these cross-

modal effects which have been observed. The present study aims to address this 

unanswered question, specifically by investigating whether the identified cross-

modal effects are consistent with key aspects of predictive coding.  

Predictive coding theories suggest that the function of any cortical region, 

even the primary sensory cortices, is not to passively register incoming sensory 

information, but rather to generate hypotheses about what is likely to happen based 

on prior experience with the world, and test them against the incoming sensory input, 

in turn actively predicting possible future stimulation (see Clark, 2013). To do this, 

the idea is that any given cortical region comprises two neuronal populations; 

prediction units and prediction error units (Friston, 2005; Kok & De Lange, 2015). It 

is thought that prediction units represent the hypotheses the brain has predicted based 

on prior experience with the situation, whereas prediction error units represent the 

difference between these predictions and the veridical sensory input (Kok, 2016). 
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This theory suggests the neural activity in the primary sensory areas underlying 

perception involves a combination of these neuron populations, whereby each 

cortical area is actively building an internal model of the likely forthcoming 

stimulation and continuously comparing this expectation with the actual sensory 

input received until all information is explained (see Chapter 1, Section 1.4.2. for a 

detailed review). 

Functional magnetic resonance imaging (fMRI) can be used to detect and 

separate likely markers of predictions from prediction errors in the human brain 

when measuring the amplitude of the neural response in a given cortical area using 

univariate analysis, and the representational content of the information in that 

cortical area using multi-voxel pattern analysis (MVPA). When measuring a 

predicted or unpredicted event in terms of the amplitude of the neural response, 

cancellation theories suggest we prioritise unexpected events (prediction errors) by 

suppressing the neural response of expected input (predictions). Indeed, research has 

found predictable sensory inputs have been found to evoke less neural activation in 

the brain (Bays et al., 2006; Blakemore et al., 1998; Kikuchi et al., 2019; 

Limanowski et al., 2018; Richter et al., 2018). Other research has found primary 

cortical regions suppress predicted input, suggesting more weight is added to 

unexpected outcomes which may be more important to explain (Alink et al., 2010; 

Bays & Wolpert, 2007; Lee & Mumford, 2003; Murray et al., 2002). As a 

compliment to a reduced neural amplitude, a few studies have found the 

representational content of the neural response to be stronger for an expected 

outcome. For example, fMRI studies investigating both vision (Kok & De Lange, 

2015; Kok et al., 2012) and action (Yon et al., 2018) related expectations used 

MVPA to find expected events were better decoded compared to unexpected events. 

This has been further supported in single neuron studies investigating stimulus 

expectations in the Macaque brain (Bell, Summerfield, Morin, Malecek, & 

Ungerleider, 2016). As such, the amplitude of the neural response does not 

necessarily relate to the representational content of the data within that cortical 

region (Press et al., 2020). 

However, Bayesian models propose that neural processing in cortical regions 

may assign more weight on sensory channels to an expected event, since this could 

help to enhance the generated percept of the subsequently perceived event (de Lange 
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et al., 2018; Kaiser et al., 2019). If this is the case, an alternative explanation is that a 

neural suppression of an expected stimulus actually reflects a suppression of the 

unexpected features of that stimulus. This would thus result in a ‘sharpened’ percept 

of the event, with the neural response reflecting a more selective population of 

neurons tuned to the expected event, producing a lower amplitude overall (see de 

Lange et al., 2018; see also Yon, Zainzinger, De Lange, Eimer, & Press, 2019). 

Indeed, a noteworthy study found that whilst a reduced neural amplitude in primary 

visual cortex (V1) was apparent when participants were presented with different 

orientations of expected visual gratings (in line with cancellation models - see 

above), this reduced amplitude was actually stronger in neurons which preferred the 

non-presented orientation (Kok et al., 2012). Since voxels preferring an unexpected 

orientation produced a stronger suppression, this suggests more weight may actually 

be added to expected input by suppressing activity in the specific voxels which 

prefer alternative stimuli (Den Ouden et al., 2009; Summerfield & De Lange, 2014). 

Indeed, more recent research investigating prediction with real action has found a 

reduction in neural activity for expected hand actions only for the voxels tuned away 

from, not towards, the expected action (Yon et al., 2018). These studies agree with 

the suggestion that the brain may incorporate a ‘sharpening’ account of prediction 

(Friston, 2005; Lee & Mumford, 2003). The sharpening account suggests the neural 

representation of an expected event is not merely suppressed as redundant 

information, but rather reflects a sharpened response which actively enhances the 

representation of the stimulus (Kok et al., 2017). In other words, if sensory input is 

accurately predicted, the idea is that this information has pre-activated the 

corresponding cortical area, thus resulting in a sharp, accurate representation of the 

input (Press et al., 2020).  

Relating predictive coding theories specifically to the cross-modal context 

effects identified in the previous literature (Bailey et al., 2019; Meyer et al., 2010, 

2011; Smith & Goodale, 2015; Vetter et al., 2014), it may be the case that the 

primary sensory cortices are actively predicting their likely future stimulation before 

the stimulation has even happened. To take the findings from Smith and Goodale 

(2015) as one example, they found content-specific information could be detected in 

primary somatosensory cortex (S1) when participants simply viewed static images of 

familiar objects which implied rich tactile information, such as a wine glass. The 
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reason why such information could be detected may be because neurons in S1 

received predictions containing information about the tactile sensation of the wine 

glass in the event of a possible subsequent interaction (Clark, 2013). Here, predictive 

coding theories provide an elegant framework to help explain why information 

specific to the content of the original source can be detected in a supposedly entirely 

independent primary cortical area. 

Whilst the theory of predictive coding provides a convincing argument as to 

why such cross-modal effects have been observed, the studies introduced to date do 

not provide a direct test that suggests predictive coding is indeed the key component 

which is guiding these effects. This is a necessary area of study because there are 

other plausible theories which can explain why such cross-modal effects have been 

observed in previous research. For example, they may simply reflect activations of a 

broader representation of the stored knowledge of an object (see for example Martin, 

2016). Martin’s (2016) representation of object concepts theory suggests the neural 

representation of object concepts is distributed across the perceptual, action, and 

emotion systems in the brain. Furthermore, Barsalou (2016) suggests object 

perception or categorization involves a neural re-use of the same systems which were 

active when a person stored the initial representation of an object in the brain (see 

also Anderson, 2010). This could also explain why we have previously found 

discriminable information about certain stimuli in cortical areas independent to that 

of stimulus presentation.  

As such, one way to test the potential involvement of predictive coding in 

this context, rather than the potential representation of object concepts in the brain, 

could be to develop an experiment which asks participants to physically interact with 

real 3D objects which may or may not be predicted based upon a visual prime of 

either the same or a different real 3D object. In doing this, we could determine 

whether a purely visual prime of a real 3D object can influence the neural 

representation of the object in tactile-related cortices when physically asked to 

subsequently interact with it. If we find any differences in the neural representation 

in a region such as S1 based upon either a congruent or incongruent visual prime, we 

could argue that the observed cross-modal effects must reflect some information 

processing beyond activations of a broader representation of the stored knowledge of 

an object (Martin, 2016). This is because in both cases, the object the participant 
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interacts with would be exactly the same, yet any observed differences would be 

based upon how the previous object influenced the expectation of interacting with 

the subsequent object. Furthermore, this would build on Smith and Goodale (2015) 

by indicating that the cross-modal context effects that have previously been observed 

are relevant for aiding subsequent object interactions.  

To measure such an experimental paradigm would require physical 

interaction with real 3D objects whilst in an MRI scanner. Such an experimental set-

up is a rare and novel approach, yet has been tested before when investigating how 

the brain responds to 3D tool use (Brandi, Wohlschlager, Sorg, & Hermsdorfer, 

2014; Gallivan, McLean, Valyear, & Culham, 2013; Hermsdörfer, Terlinden, 

Mühlau, Goldenberg, & Wohlschläger, 2007; Imazu, Sugio, Tanaka, & Inui, 2007; 

Valyear, Gallivan, McLean, & Culham, 2012). Other research has also used such a 

set-up when investigating different types of hand actions toward artificial 3D objects 

(Cavina-Pratesi, Goodale, & Culham, 2007; Rossit et al., 2013),  or when viewing 

real objects in the scanner (Snow et al., 2011). One study in particular found viewing 

repetitions of real 3D tools led to a reduced neural signal amplitude in parietal and 

pre-motor areas, thus suggesting passive viewing of tools can activate the 

corresponding sensorimotor areas relating to their conventional use (Valyear et al., 

2012). As such, we borrowed the real action methodology from this rich line of 

previous studies investigating the neural correlates of acting with real 3D objects.  

Following from the literature discussed, the current study aims to directly 

examine, for the first time, whether the cross-modal context effects which have 

previously been found from vision to S1 (Meyer et al., 2011; Smith & Goodale, 

2015) can be explained by the assumptions of predictive coding theories of human 

brain function. To do this, participants were asked to view and subsequently interact 

with real 3D objects (either a tennis ball, or a plastic cup) placed directly in front of 

them in an MRI scanner. On each trial, participants were first shown an object 

(prime phase) and were subsequently shown a second object (target phase) which 

was either consistent or inconsistent with the primed object. We anticipated, based 

on theories of predictive coding, that interacting with objects in the target phase that 

were consistent with the object viewed in the prime phase would yield a suppressed 

neural response, complimented with a greater representation of the object in S1 (Kok 

et al., 2012). On the other hand, if the primed visual object is inconsistent with the 
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target object, we may expect a stronger neural amplitude complimented with a 

weaker representation of the object in S1. Note that in either case, we investigated 

differences in the neural amplitude and neural representation of the exact same 

object interaction in S1. For example, we aimed to examine whether the neural 

representation of a physical interaction with a real tennis ball would differ as a 

function of either a consistent visual prime of a tennis ball, or an inconsistent visual 

prime of a plastic cup. 

4.3. Methods 

4.3.1. Participants. 

Right-handed healthy participants (N = 18; 9 male), with an age range of 19-

29 years (M = 23.33, SD = 2.97), participated in this experiment. All participants 

reported normal or corrected-to-normal vision, normal hearing, and no history of 

neurological or psychiatric disorders. Participants were deemed eligible after 

meeting MRI screening criteria, approved by the radiology department at the Norfolk 

and Norwich University Hospital (NNUH). Written consent was obtained in 

accordance with approval from the Research Ethics Committee of the School of 

Psychology at the University of East Anglia, in addition to approval from NNUH. 

Participants received £10 per MRI hour, and £8 per behavioural hour for their time.  

4.3.2. Design. 

A 2 x 2 design was used with two factors. The first factor was the congruency 

of the primed object with the target object, which consisted of two levels (Valid, or 

Invalid). The second factor was task, which consisted of two levels (View, or 

Touch). As such, there were four trial types (see Figure 4.1) as follows: in a Valid-

View trial, the participant saw an object (the prime), and viewed the same object 

again in the target phase (e.g. primed with a cup, then viewed a cup). In an Invalid-

View trial, the participant was primed with an object, and subsequently viewed a 

different object in the target phase (e.g. primed with a cup, then viewed a ball). In a 

Valid-Touch trial, the participant was primed with an object, and was then asked to 

reach out and touch the same object in the target phase (e.g. primed with a cup, and 
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then asked to reach out and touch a cup). In an Invalid-Touch trial, the participant 

was primed with an object, and then asked to reach out and touch a different object 

in the target phase (e.g. primed with a cup, then asked to reach out and touch a ball). 

These four trial types will now be referred to as Valid-View, Invalid-View, Valid-

Touch, and Invalid-Touch trials from this point onwards. 

Valid-View  

Invalid-View  

Valid-Touch  

Invalid-Touch  

Figure 4.1: An example of the four trial types during the experiment when the 

cup was presented first. The participant was in complete darkness meaning the 

object could only be seen when illuminated. In each trial, the participant would 

first view the illuminated object in the prime phase. Then, the same or a different 

object would become briefly illuminated for a second time at the start of the target 

phase. The participant would hear the instruction to continue to view or to reach 

out and touch the object they saw the second time. The command was then 

executed in the dark. Each trial lasted 6000ms. Note four more trial types were 

used whereby the ball was presented first. 
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4.3.3. Stimuli.  

Two different real 3D objects were used; a yellow tennis ball and a yellow 

plastic cup (see Figure 4.1). These objects were chosen for the reason that they 

comprise different tactile properties and motor functions and participants should 

have prior experience of interacting with both objects. The tennis ball conformed to 

the standard criteria for size and weight of a tennis ball, with a circumference of 

21cm. The plastic cup had a 280ml capacity, with the circumference around the 

middle of the cup also being 21cm.  

4.3.4. Apparatus and materials. 

Both objects were presented on a turntable apparatus (see Figure 4.2, see also 

Snow et al., 2011; Valyear et al., 2012). Use of the metal-free turntable enabled 

direct viewing of the hand workspace without the use of mirrors. The dimensions of 

the turntable were set up in accordance to the dimensions of the wide bore MR 

scanner at NNUH. The visual workspace was 40cm width, 20cm depth, and 10cm 

height. A red Light Emitting Diode (LED) attached to a flexible plastic stalk (LOC-

LINE; Lockwood Products, Inc., Lake Oswego, OR, USA) was positioned centrally 

above the visual workspace to allow for more natural viewing conditions and to 

avoid discomfort by viewing downwards towards the turntable apparatus (Cavina-

Pratesi et al., 2007). Furthermore, as mentioned by Cavina-Pratesi et al. (2007), this 

allowed the objects to be presented in the participant’s lower visual field which is 

typical of everyday situations when interacting with objects. Following a pilot 

session, a black square piece of cardboard was attached to the underside of the LED 

to ensure no reflection of the light onto the objects. A camera and infrared source 

(MRC Systems GmbH, Germany) were attached to the left side of the turntable, 

positioned behind the participants head and facing towards the object in the visual 

workspace. This enabled validation of the correct object being displayed, and the 

correct task being executed, throughout the experiment. An illuminator with white 

LED’s was also attached to the table beside this camera, which allowed viewing of 

the object during a trial since the participant was situated in complete darkness. A 

second camera with infrared lights was attached to the head coil on the right side of 

the participant and angled towards the participant’s right eye to enable confirmation 
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of stable eye movements across the experiment (see Figure 4.2 for a detailed 

example of the set-up).  

4.3.5. Procedure. 

Participants were invited to a training session before the main scanning day 

to be familiarised with the equipment and briefed about what to expect during the 

MRI scan. On the scan day, participants signed informed consent and were screened 

by the radiographers at NNUH before entering the scan room. Participants were then 

Eye camera 

Figure 4.2: fMRI set-up for real action experiments (adapted from Rossit et al., 

2013). The participant lies supine with the head tilted to enable direct viewing of 

real 3D objects placed on a turntable without the use of mirrors. The turntable can 

be rotated by the experimenter between trials to change the object in view. Here, a 

real 3D tennis ball is placed in front of the participant’s visual field, and a real 3D 

plastic cup is placed on the other side of the turntable. Flexible stalks are used to 

position a red LED fixation point, illuminator and MR-compatible cameras to 

record hand and eye movements. The participant’s upper arm is restrained such 

that movements can still be made with elbow, wrist and fingers. Between actions, 

the hand will rest in a comfortable home position as shown. Auditory cues 

regarding the tasks are presented through MR-compatible earphones. During the 

experiment the scanner room is completely dark and the object and workspace can 

only be seen when illuminated. 

Arm strap  

Posterior half 

of head coil 

Flex coil 

Illuminator 

Camera for visual 

workspace 

Infrared 

source 

Visual 

workspace 

for objects 

Fixation 

LED  Turntable  
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set up in the turntable apparatus (see Section 4.3.4 above; see also Figure 4.2). To do 

this, the participant was asked to lay supine on the scan bed in the turntable so that 

their shoulders touched the top of the bed and their head was tilted (~20-30°) with 

foam padding (NoMoCo Pillow, La Jolla, CA, USA) to enable direct viewing of the 

objects placed in front of them. Both objects were placed on the left side of the 

visual workspace of the turntable apparatus. The centre of the left-most edge of the 

object (the position where the right hand would grasp) was placed 8.5cm from the 

left side of the edge of the table, and the centre of the front-most edge of the object 

being placed 7cm from the front of the turntable. This was done in order to keep the 

grasping positions as similar as possible across the two objects.  

Participants placed Sensimetric earphones (Sensimetrics, Woburn MA, USA) 

in their ears and the sound was checked until played at a self-reported comfortable 

level (as in Leaver & Rauschecker, 2010; Man, Damasio, Meyer, & Kaplan, 2015; 

Man, Kaplan, Damasio, & Meyer, 2012; Meyer et al., 2010). Foam padding was 

placed around the crown of the participant’s head to minimise head movement, 

avoiding the ears to ensure no pressure on the earphones which could cause 

discomfort during the experiment. The squeeze ball was placed in the left hand and 

the left arm was placed by the participant’s left side. Foam padding was used under 

the participant’s right arm until the right elbow was in line with the height of the 

turntable, thus maintaining a comfortable position for grasping the objects (see 

Figure 4.2). The upper right arm was then secured with a VelcroTM strap to restrict 

shoulder movements yet allow full movement of the lower arm, including the elbow 

and wrist (as in Rossit et al., 2013). The participants were then instructed to fold 

their right arm diagonally across the chest with the hand in a fist on the left side of 

their chest; this was the resting position which was to be maintained throughout the 

experiment unless instructed otherwise. Participants were asked to confirm they 

could see the objects at the angle their head was tilted at. Finally, participants were 

asked to practice reaching out and grasping the two objects by placing their four 

fingers behind the object and thumb in front of the object to ensure the reaching 

distance was optimal for their arm length. Once they had finished practicing, 

participants were told to maintain the same grasp on the object throughout the 

experiment for consistency.  
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During the experiment, participants were situated in complete darkness and 

instructed to remain fixated on the red LED fixation presented above the objects in 

the centre of their visual field, which remained constant throughout the entire 

experimental run. This ensured the participant was unaware of which object was 

placed in front of them when the object was not illuminated. Using a custom built 

script in MATLAB (The MathWorks, USA, 2010a) and the Psychophysics Toolbox 

(Brainard, 1997), each run began and ended with 12s silent blocks of fixation from 

the red LED. After the initial 12s fixation, a trial began with an object illuminated 

for 500ms (the prime phase), followed by a 3500ms ISI until an object was 

illuminated again for a subsequent 500ms (the target phase). There was then an 

additional 1500ms for the participant to execute the task in darkness. Therefore, the 

trial lasted 6000ms, followed by a 3500 - 3900ms variable ITI until the next trial. 

Participants were informed that on each trial they would see an object become 

illuminated (the prime), and when they saw the object illuminated for a second time 

(the target), they would simultaneously hear the verbal instruction ‘View’ or 

‘Touch’. If participants heard the word ‘View’, they were instructed to remain 

looking at the LED fixation. If participants heard the word ‘Touch’, they were asked 

to reach out and touch the object in front of them using a natural grasp whilst 

remaining fixated on the LED fixation. All hand movements were executed in the 

dark after the illumination to reduce activation due to viewing the motion of the hand 

(Cavina-Pratesi et al., 2007). Participants were informed they had a 2000ms time 

window to reach out, comfortably grasp the object, and return to resting position. In 

order to produce these trial types, an experimenter was positioned in the scanner 

room next to the turntable and would hear the commands to move the turntable 

appropriately through MR-compatible headphones.  

During any experimental run, 40 trials were executed in a randomly allocated 

order, with 10 repetitions of each trial type, resulting in a total run time of 465s. 

Overall, most participants completed 6 runs (M = 5.67, SD = .77, range 4 - 7), thus, 

participants were exposed to approximately 60 repetitions per trial type (either 

Valid-View, Invalid-View, Valid-Touch or Invalid-Touch; see Figure 4.1).  

On a separate day, a subset of participants took part in a somatosensory 

localiser to map the region of S1 which corresponded to the fingers on the right hand 

(N = 10). On entering the scanner, the participant was asked to lay on the scanner 
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bed whilst Piezo-electric stimulator pads (Dancer Design, UK) were placed against 

the participant’s thumb, index finger, middle finger, and ring finger of the right hand 

using Velcro (four pads total; see Appendix B, Figure B-1 for an example of the 

equipment demonstrated from the set-up in Chapter 2). Each pad contained a 6mm 

diameter disk centred in an 8mm diameter static aperture. The disks stimulated the 

participant’s right hand using a 30 Hz sine wave, with the Dancer Design amplifier 

set at 7. Foam padding was used under the right arm for comfort, and the participants 

rested their right hand on foam padding which was placed on their abdomen. During 

an experimental run, participants were given no instruction except to relax, avoid any 

movement and keep fixated on a point in the scanner. In a block design (12s on, 12s 

off), participants received 15 blocks of stimulation to the right hand and 15 blocks of 

baseline. Localiser blocks lasted approximately 348s each. On average, each 

participant completed 2 somatosensory mapping runs (M = 1.9, SD = .57, range 1-3), 

thus resulting in approximately 30 stimulation blocks of the right hand. Participants 

were debriefed after completion of each session. 

4.3.6. MRI data acquisition. 

Structural and functional MRI data was collected using a 3T MR scanner (GE 

Discovery 750 Wide-Bore, NNUH, Norwich, England). A combination of phased-

array coils were used to achieve good signal-to-noise ratio and whole brain coverage; 

the posterior half of a 21-channel head neck unit (HNU) coil at the back of the head, 

with a small flex coil at the front (see Rossit, et al., 2013; see also Figure 4.2 above). 

This use of parallel channels also allows the coil to be tilted to enable direct viewing 

of the turntable without the use of mirrors (see Rossit et al., 2013). T1 weighted 

anatomical images of the whole brain were acquired using a three-dimensional 

BRAVO sequence (196 volumes, voxel size =1mm3). Blood-oxygen level dependent 

(BOLD) signals were recorded using an echo-planar imaging (EPI) sequence: (233 

volumes, TR = 2000ms, TE = 30ms, flip angle 78, 35 slices, matrix 64 x 64, voxel 

size 3.3mm3, slice thickness 3.3mm, interslice gap 3.3mm, field of view 211). Sound 

instructions were presented via an in-ear hi-fi audio system (Sensimetrics, Woburn 

MA, USA). 

On a separate day, a miniature Piezo Tactile Stimulator (mini-PTS; 

developed by Dancer Design, UK) was used to deliver vibro-tactile stimulation to 
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the hands. Here, data was collected using the same MR scanner with only the 21-

channel HNU coil. Both anatomical and functional scans were acquired using the 

same sequence as the main real action experiment, with the exception that there were 

174 volumes in the functional scans for the somatosensory localiser data. All MRI 

data acquired was routinely checked for incidental findings by the consultant 

radiologist at NNUH. 

4.3.7. MRI data pre-processing. 

All MRI data was pre-processed in Brain Voyager 20.4 (Brain Innovation, 

Maastricht, The Netherlands; Goebel et al., 2006). We used cubic spline slice scan 

time correction and 3D motion correction (sinc interpolation), with defaults for 

temporal filtering. Functional data for each run was then separately co-registered to 

each participants ACPC anatomical scan. No Talairach transformations were applied 

to avoid removing valuable fine-grained pattern information from the data that may 

be useful for MVPA analysis (see Chaper 2, also Argall, Saad, & Beauchamp, 2006; 

Bailey et al., 2019; Fischl, Sereno, Tootell, & Dale, 1999; Goebel et al., 2006; 

Kriegeskorte & Bandettini, 2007).  

4.3.8. Regions of interest. 

Due to time constraints, regions of interest (ROIs) for the primary 

somatosensory cortex (S1) were created using the anatomical masks defined in 

Chapter 2 (see also Bailey et al., 2019). All anatomical masks from this previous 

experiment were transformed into Talairach space and overlaid. A probability map 

with 30% cut-off was used to create a standard mask which was transformed into 

each participants ACPC brain, resulting in a mask which will henceforth be 

described as S1mask (see Appendix G Figure G-1). A second ROI was created for S1 

from the somatosensory localiser data. Here, a 15mm3 cube was created around the 

peak voxel from each participant’s tactile localiser data. This was created to localise 

the specific region of S1 which is sensitive to stimulation on the fingers from each 

participant’s right hand, and will henceforth be referred to as S1localiser. We 

experienced difficulty in data acquisition of one participant and failed to find 

activation in S1, thus N = 9 for the creation of S1localiser. For a probability map of the 
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S1localiser ROI in our 9 participants, see Appendix H, Figure H-1. We note the finger-

selective localisation methods differ from that of Chapter 2 and Bailey et al. (2019), 

which was decided for the reason that the anatomical masks of S1 would not be as 

accurate in this experiment since they were defined from a group average – thus, a 

functionally localised region within each participant would be more accurate.  

All additional ROI’s were created using the Jüelich Anatomy toolbox 

(Eickhoff et al., 2005) as in Smith and Goodale (2015) and in Chapter 2 (see also 

Bailey et al., 2019). Regions included Secondary Somatosensory Cortex (Grefkes, 

Geyer, Schormann, Roland, & Zilles, 2001), Pre-Motor Cortex (Geyer, 2003), 

Primary Motor Cortex (Geyer et al., 1996), and Primary Visual Cortex (Amunts et 

al., 2000). We used the 30% probability cut-off for each map to roughly equate the 

voxel size. A figure of the anatomical masks can be seen in Appendix G, Figure G-1.  

4.3.9. Univariate deconvolution analysis. 

Since a rapid event-related design was used, a deconvolution analysis was 

carried out for the univariate analysis to ensure an accurate model of the 

hemodynamic response function (HRF) in each condition. A general linear model 

(GLM) was created from each participant’s unsmoothed functional run in ACPC 

space with 10 predictors per trial type. As we used a 2 x 2 design with the following 

factors: Congruency (Valid or Invalid) and Task (View or Touch), this resulted in a 

total of 40 predictors (4 conditions x 10 predictors to span 20s of activity for each 

trial) used to fully model the HRF for each trial type and participant. Each predictor 

was modelled as a 3 volume boxcar function relating to the 6s trial duration (as in 

Valyear et al., 2012; see Figure 4.3 below). We also included the six 3D head motion 

correction parameters (x, y, and z translation and rotation) from each run as 

covariates (as in Giordano, McAdams, Zatorre, Kriegeskorte, & Belin, 2013). The 

peak amplitude of the neural response for each condition was then estimated by 

applying the resulting design matrix file to each ROI and extracting the beta weights; 

see Section 4.3.8. above for more information on the ROI’s. The data from volumes 

5 and 6 after trial onset (see Figure 4.3 below) were then extracted and averaged 

together (see Appendix I, Figure I-1 for all data in each ROI). Therefore, the mean 

beta weights from 10-12s after trial onset corresponded to the peak of the HRF for 
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each trial, and these values were used to calculate the peak amplitude in response to 

the Valid-View, Invalid-View, Valid-Touch, and Invalid-Touch trials.  

A 3-way repeated measures ANOVA was carried out separately in each ROI 

with the following parameters: hemisphere (right, left, pooled), congruency (valid, 

invalid), and task (view, touch). All univariate statistical tests are Greenhouse-

Geisser corrected, and all post-hoc paired t-tests are reported as two-tailed at the p < 

.05 level with Bonferroni corrections applied.  

4.3.10. Multi-voxel pattern analysis. 

For the multi-voxel pattern analysis (MVPA; e.g. Haynes, 2015), a separate 

GLM was created from each participants unsmoothed functional run in ACPC space, 

with a different predictor coding stimulus onset of each trial in both the prime and 

the target phase. Hence, predictors coded either the ball or the cup in both the prime 

and the target phase, separated by each of the four trial types (see Figure 4.1). 

Therefore, we had 16 predictors in total (2 object identities x 2 phases x 4 trial 

types). Predictors were convolved with a standard double gamma model of the 

haemodynamic response function (see Greening, Mitchell, & Smith, 2018; Smith & 
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Muckli, 2010). The resulting beta-weight estimates are the input to the pattern 

classification algorithm. We used a linear support vector machine (LIBSVM 3.20 

toolbox; C. Chang & Lin, 2011) to implement the linear SVM algorithm, using 

default parameters (C = 1). The activity pattern estimates (beta weights) within each 

voxel in the training data was normalised within a range of -1 to 1, prior to input to 

the SVM. The test data were also normalised using the same parameters as in the 

training set, in order to optimise classification performance.  

The classifier was then trained and tested on independent data, using a leave 

one run out cross-validation procedure (Smith & Goodale, 2015; Smith & Muckli, 

2010) to learn the mapping between the spatial patterns of brain activation generated 

in response to each object identity (ball or cup) at the target phase of a trial. The 

input to the classifier was always single trial brain activity patterns (beta weights) 

while the independent test data consisted of an average activity pattern taken across 

the repetitions of specific exemplars in the left out run (e.g. an average of the single 

trial beta weights from the target phase of the five Valid-Touch trials where the ball 

was the target were averaged). Note this is the same approach as the classifications 

in Chapters 2 and 3 (see also Bailey et al., 2019). As noted previously, we have also 

used this approach successfully in previous studies, as averaging effectively 

increases the signal-to-noise of the patterns (Muckli et al., 2015; Smith & Muckli, 

2010; Vetter et al., 2014). For similar approaches applied to EEG and MEG data, see 

Smith and Smith (2019) and Grootswagers, Wardle, and Carlson (2017) respectively 

(see also Chapter 3).  

For example, in a Valid-Touch trial, the classifier was trained on a two way 

discrimination between either the cup or the ball when the participant viewed (prime) 

and subsequently touched (target) the same object, with the classifier discriminating 

information about the object from the target phase where they reached out and 

touched the object (Greening et al., 2018; Smith & Goodale, 2015; Smith & Muckli, 

2010; Vetter et al., 2014). The reason why we analysed the activation patterns only 

from the target phase in the MVPA and not from the entire 6s trial duration (as in the 

univariate deconvolution analysis – see Section 4.3.9. above) was because we are 

interested in decoding the representation of the object identity in this analysis, as 

opposed to accurately measuring the HRF. If we ran the analysis over the entire 6s 

trial duration, we would be effectively averaging across activation patterns of two of 
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the exact same stimuli in the Valid conditions (e.g. averaging across ball prime, ball 

target) yet averaging across activation patterns of two different stimuli in the Invalid 

conditions (e.g. averaging across cup prime, ball target). If we were to do this, we 

would naively predict the decoding performance to always be better when averaging 

across two stimuli which are the same when compared to averaging across two 

different stimuli, since the classifier is getting more information about the 

representation of a certain object in a valid condition. Therefore, to run the MVPA 

over the 6s trial duration is methodologically suboptimal as it cannot accurately 

model the representation of the object in the target phase for each trial type.  

Finally, to test whether group level decoding accuracy was significantly 

above chance, we performed one-sample t-tests on all MVPA analyses, against the 

expected chance level of 50% due to having two object identities (E Formisano et al., 

2008; Greening et al., 2018). Since all decoding is testing for above chance accuracy, 

all significance values for the MVPA analysis are reported one-tailed (as in Bannert 

& Bartels, 2013; Vickery, Chun, & Lee, 2011). We used this in order to maximise 

power for data collected under challenging conditions (Snow et al., 2011). Effect 

sizes for all one-sample t-tests are calculated as Cohen’s d = t / √ N. Effect sizes are 

to be identified as small (> .2), medium (> .5), and large (> .8) according to Cohen’s 

(1988) classification of effect sizes. Finally, to control multiple comparisons, a false 

discovery rate (FDR) correction was necessary. The adjusted q-value at ≤ .05 

resulted in a corrected significance value of FDR p ≤ .010 for all results (Benjamini 

& Yekutieli, 2001). 

4.4. Results 

4.4.1. Univariate deconvolution analysis. 

Due to the use of a rapid event-related paradigm, a deconvolution analysis 

was conducted. Before describing the results, the task along with the expected 

findings will be explained again to aid understanding.  

In a touch task, all trials consisted of a prime phase and a target phase. In a 

Valid-Touch trial, participants would see an object in the prime phase (e.g. see a 

ball) and would subsequently be asked to reach out and touch the exact same object 

in the target phase (e.g. touch the ball). In an Invalid-Touch trial, participants would 
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see an object in the prime phase (e.g. see a ball) and would subsequently be asked to 

reach out and touch a completely different object in the target phase (e.g. touch a 

cup). If the predictive coding account is true, we would expect to find more overall 

neural activity in the Invalid-Touch trial when compared to the Valid-Touch trial in 

touch-related cortical regions, because the prediction has been violated in the former 

case (Kok et al., 2012; Lee & Mumford, 2003).  

In a view task, all trials would also consist of a prime phase and a target 

phase. In a Valid-View trial, participants would see an object in the prime phase (e.g. 

see a ball) and would subsequently be asked to continue to view the exact same 

object in the target phase (e.g. view the ball). In an Invalid-View trial, participants 

would see an object in the prime phase (e.g. see a ball) and would subsequently be 

asked to view a completely different object in the target phase (e.g. view a cup). If 

the predictive coding account is true, we would expect to see less overall neural 

activity in visual cortical brain regions for the Valid-View trial when compared to 

the Invalid-View trial. This is because in the former case, the prediction has been 

met, resulting in less overall neural activity because prediction errors are likely to 

have been silenced. In the latter case, the prediction has been violated, thus we 

would expect more prediction errors are projected through the cortical hierarchy 

which is reflected by means of more overall neural activity (Kok et al., 2012; Lee & 

Mumford, 2003). Furthermore, we may expect to find a weaker neural response in a 

Valid-View trial compared to an Invalid-View trial based on basic adaptation effects, 

since stimulus repetitions are known to produce an instant decrease in neural activity 

(Grill-Spector, Henson, & Martin, 2006; Koutstaal et al., 2001). 

4.4.1.1. Primary somatosensory cortex.  

In primary somatosensory cortex (S1), we ran analyses in two ROI’s; see 

Section 4.3.8. above for more information on the difference between S1mask and 

S1localiser. The 3-way ANOVA in S1mask revealed a significant main effect of 

hemisphere F1.007, 17.115 = 25.484, p < .001, ηp
2 = .600, whereby the peak amplitude 

was lowest for the right hemisphere (M = .080), followed by the pooled (M = .209), 

and left (M = .305) hemispheres of S1mask, with all means being significantly 

different from one another (all p’s < .001). A significant main effect of task F1, 17 = 

65.820, p < .001, ηp
2 = .795 was also found, whereby the peak amplitude was higher 
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for touch (M = .413) compared to view (M = -.017) at p < .001. However, we found 

no significant main effect of congruency (F1, 17 = 1.389, p = .255). A significant 

interaction was also found between hemisphere and task F1.011, 17.193 = 78.173, p < 

.001, ηp
2 = .821. As would be expected, post-hoc pairwise comparisons investigating 

task differences revealed the peak amplitude was significantly higher in all touch 

tasks when compared to all view tasks in each hemisphere (p’s ≤ .020). Furthermore, 

post-hoc comparisons on hemisphere within each task revealed the peak amplitude 

between each hemisphere was significantly different in every comparison (p’s ≤ 

.042), with the exception of the difference between the right and pooled hemispheres 

in the view task (p = .051). All mean beta values can be seen in Figure 4.4A. 

 

Figure 4.4: Univariate deconvolution results. (A) Mean beta values for each trial 

type (Valid-View, Invalid-View, Valid-Touch, Invalid-Touch) for right and left S1 

(post-central gyri), and pooled across hemispheres. (B) As in A but for the top 100 

voxels that were most responsive to tactile stimulation of the hands in an 

independent localiser session. (C–F) As in A but for several additional, anatomically 

defined, regions of interest. 
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A two-way ANOVA was also ran in the S1localiser ROI to reveal a significant 

main effect of task F1, 8 = 30.129, p = .001, ηp
2 = .790 (see Figure 4.4B), whereby the 

peak amplitude in the touch task (M = .647) was significantly larger than the peak 

amplitude in the view task (M = -.059). There was no significant main effect of 

congruency (F1, 8 = .212, p = .657), nor was there a significant interaction between 

task and congruency (F1, 8 = .285, p = .608).  

4.4.1.2. Primary visual cortex. 

In primary visual cortex (V1), a three-way repeated measure ANOVA 

revealed a significant main effect of task F1, 17 = 16.588, p = .001, ηp
2 = .494 (see 

Figure 4.4C), whereby the peak amplitude was significantly lower in the view task 

(M = -.142) compared to the touch task (M = -.011). No significant main effect was 

found of hemisphere (F1.001, 17.022 = 3.692, p = .072) or congruency (F1, 17 = 1.406, p = 

.252). A significant interaction was also found between hemisphere and task F1.001, 

17.020 = 16.588, p = .001, ηp
2 = .492. Further post-hoc pairwise comparisons 

investigating task differences revealed the peak amplitude was significantly lower in 

the view task when compared to the touch task in each hemisphere (p’s ≤ .015). 

When investigating hemisphere comparisons for each task, the peak amplitude was 

significantly different between each hemisphere in the touch task (p’s ≤ .022), 

however no significant differences were found between hemispheres in the view 

task.  

Here, it is important to note the negative signal we observe in the view task. 

The reason this is a negative amplitude may be due to the specific way the data has 

been modelled in order to incorporate the duration of the motor action. We could not 

accurately segregate the HRF response of the prime and target phase due to the use 

of a rapid event-related design with a fixed ISI in a trial. As such, the entire 6s trial 

duration is included (see Section 4.3.9. above for more information). In the view 

task, this means the majority of the modelled HRF is when the participant remained 

fixated on the fixation LED in the dark, thus a negative amplitude would be expected 

in this case. To confirm this speculation, we ran a standard univariate GLM analysis 

which revealed positive BOLD amplitudes in V1 of a viewed object in both the 

prime and target phase when modelled separately. However, due to the fact the data 

from the prime and target phase cannot be accurately segregated due to the fixed ISI, 
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this data has not been included. See also Appendix I, Figure I-1 for all the data in V1 

from the deconvolved HRF response.  

4.4.1.3. Secondary somatosensory cortex.  

A significant main effect of task was found in secondary somatosensory 

cortex (S2) F1, 17 = 105.399, p < .001, ηp
2 = .861 (see Figure 4.4D), whereby the peak 

amplitude was significantly higher for the touch task (M = .263) when compared to 

the view task (M = .020). No significant main effect was found of hemisphere (F1.001, 

17.022 = .040, p = .961) or congruency (F1, 17 = 1.479, p = .241). Interestingly, we also 

found a significant three-way interaction between hemisphere, congruency, and task 

F1.005, 17.078 = 6.651, p = .019, ηp
2 = .281. Further pairwise comparisons to investigate 

this interaction revealed the peak amplitude of the Invalid-View trial to be 

significantly higher than the peak amplitude of the Valid-View trial in the right (p = 

.010) and pooled (p = .030) hemispheres for the View task (see Figure 4.4D). 

4.4.1.4. Pre-motor cortex. 

In pre-motor cortex (PMC), a significant main effect of hemisphere was 

found F1.002, 17.027 = 26.138, p < .001, ηp
2 = .606 (see Figure 4.4E), whereby the peak 

amplitude was highest in left PMC (M = .351), followed by pooled PMC (M = .294), 

with the lowest amplitude being in right PMC (M  = .235). These means were all 

highly significantly different from one another (p’s < .001). A significant main effect 

of task was also found F1, 17 = 76.755, p < .001, ηp
2 = .819, with the peak amplitude 

being higher for the touch task (M = .587) when compared to the view task (M = 

.000) at p < .001. No significant effect of congruency was found (F1, 17 = .985, p = 

.335). A significant interaction was also found between hemisphere and task F1.002, 

17.032 = 39.725, p < .001, ηp
2 = .700. Further post-hoc pairwise comparisons revealed 

when looking at task differences the peak amplitude was significantly higher for the 

touch task when compared to the view task in each hemisphere, with all p’s < .001. 

When looking at hemisphere differences, the peak amplitude in the touch task was 

significantly higher for the left hemisphere, followed by the pooled hemisphere and 

the lowest being the right hemisphere (all p’s < .001). No significant differences 

were found between the hemispheres in the view task (p’s ≥ .111). 
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4.4.1.5. Primary motor cortex. 

In primary motor cortex (M1),  significant main effect of hemisphere was 

observed F1.003, 17.055 = 98.379, p < .001, ηp
2 = .853 (see Figure 4.4F), whereby the 

peak amplitude was significantly higher for the left hemisphere (M = .301), followed 

by the pooled (M = .189) and the right (M = .078) hemisphere (p’s < .001). A 

significant main effect of task was also found F1, 17 = 43.402, p < .001, ηp
2 = .719, 

with the peak amplitude being larger in the touch task (M = .361) when compared to 

the view task (M = .018). No main effect of congruency was found (F1, 17 = .818, p = 

.379). A significant interaction was also found between hemisphere and task F1.003, 

17.059 = 98.150, p < .001, ηp
2 = .852. Further post-hoc pairwise comparisons 

investigating hemisphere differences revealed the peak amplitude in response to the 

touch task in each hemisphere were all significantly different from one another (all 

p’s < .001), however no significant changes were found between hemispheres in the 

view task. When investigating task differences, the peak amplitude was found to be 

larger for the touch task when compared to the view task in each hemisphere (p’s ≤ 

.011).  

4.4.2. Multi-voxel pattern analysis. 

Here, cross-validated decoding performance of object identity was computed 

in the target stage of the trial. As such, the classifier was trained and tested to 

discriminate between object identity (either cup or ball) independently for Valid-

View, Invalid-View, Valid-Touch and Invalid-Touch trials. Such decoding was 

computed separately in each hemisphere in each ROI. This was done in order to test 

whether the primed object in each trial influenced the representation of the object in 

the target stage of the trial. We also performed cross-validated decoding of task 

(either View or Touch). This was done in order to determine whether each ROI 

could significantly discriminate between task without taking object identity into 

consideration.  
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4.4.2.1. Decoding object identity: Valid-Touch vs Invalid-Touch. 

The classifier was trained to discriminate between object identity (cup or 

ball) in the target phase of the touch task independently for each congruency 

condition (Valid-Touch or Invalid-Touch; see Figure 4.1). To support the predictive 

coding account, we would expect MVPA to reveal higher decoding in the Valid-

Touch trials when compared to Invalid-Touch trials in tactile and/or motor-related 

cortical regions. This is because the prediction has been met in the former case, thus 

resulting in correct predictions causing a stronger neural representation of the object 

when subsequently interacting with the object (Kok et al., 2012; Lee & Mumford, 

2003).  

When looking in S1, MVPA analysis revealed above chance decoding in the 

pooled S1mask for the Invalid-Touch trials (M = .557, t17 = 2.010, p = .030, d = .474, 

chance = 50%; see Figure 4.5A). A similar trend was observed in left S1 which did 

not reach significance at p = .088. However, neither of these findings survived FDR 

correction. Interestingly however, when looking in S1localiser, we observed a flip 

effect whereby decoding accuracies were subjectively higher for the Valid-Touch 

trials compared to the Invalid-Touch trials (see Figure 4.5B). This is of potential 

interest, however, no decoding accuracies reached significance in the S1localiser data. 

We also found above chance decoding in the Invalid-Touch trials in right (M = .549, 

t17 = 1.873, p = .039, d = .441), and left S2 (M = .561, t17 = 1.999, p = .031, d = .471; 

see Figure 4.5D) and pooled PMC (M = .565, t17 = 1.924, p = .036, d = .453; see 

Figure 4.5E). However, once again these findings did not survive FDR correction.  

No significantly above chance decoding was found in the Valid-Touch trials within 

any of these regions (all p’s ≥ .257).  
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4.4.2.2. Decoding object identity: Valid-View vs Invalid-View. 

The classifier was trained to discriminate between object identity (cup or 

ball) in the target phase of the view task independently for each congruency 

condition (Valid-View or Invalid-View; see Figure 4.1). Here, to support the 

predictive coding account, we may expect MVPA to reveal higher decoding in the 

Valid-View trials compared to the Invalid-View trials, particularly in visual cortical 

regions. This is because the prediction has been met in the former case, thus resulting 

in correct predictions causing a stronger neural representation of the object (Kok et 

al., 2012; Lee & Mumford, 2003). However, in this particular pairing of conditions it 

Figure 4.5: Decoding of object identity. (A) Cross-validated 2 automatic forced 

choice decoding performance of object identity (Cup or Ball) for right and left S1 

(post-central gyri) independently and pooled across hemispheres. Decoding is 

separated by Valid-View, Invalid-View, Valid-Touch, and Invalid-Touch trials. 

Chance = 50%. (B) As in A but for the top 100 voxels that were responsive to tactile 

stimulation of the hands in an independent localiser session. (C–F) As in A but for 

several additional, anatomically defined, regions of interest. 
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is important to note we could find stronger decoding in the Invalid-View condition if 

the Valid-View condition causes adaptation effects (see Section 4.4.1. above; Grill-

Spector et al., 2006; Koutstaal et al., 2001). This is because previous research has 

found MVPA is sensitive to voxels which show a stronger univariate neural response 

to a stimulus (Albers, Meindertsma, Toni, & de Lange, 2018; Norman et al., 2006). 

The MVPA results revealed decoding for cup vs ball was above chance in the 

Invalid-View trials in the right (M = .554, t17 = 1.960, p = .033, d = .462) and left 

(M = .592, t17 = 2.583, p = .019, d = .609) hemispheres of V1 (see Figure 4.5C). 

However, both effects did not survive FDR correction. No significant decoding was 

found for the Valid-View trials in V1, and no significantly above-chance decoding 

was found in any other ROI for either Valid-View or Invalid-View trials (all p’s ≥ 

.511).  

4.4.2.3. Decoding task: View vs Touch.  

Given the results, we decided to perform cross-validated decoding of task, 

meaning the classifier was trained to discriminate between the View or Touch task 

without taking object identity or congruency into account. This was to determine 

whether each ROI could significantly discriminate between whether the participant 

had simply viewed or reached out to touch an object during a trial. As would be 

expected, robustly significant decoding was found following FDR corrections in all 

ROI’s and all hemispheres for discriminating between task type (all M’s range from 

.760 - .960, all t’s range from 8.201 – 35.274, all p’s < .001, all d’s range from 1.933 

– 8.314; see Figure 4.6). Further pairwise comparisons revealed decoding was 

significantly higher in the left and pooled hemispheres when compared to the right 

hemispheres for all ROI’s except in V1 (all p’s ≤ .005; see Figure 4.6).  
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4.5. Discussion 

The primary aim of this study was to investigate whether we could directly 

test the assumptions of the theory of predictive coding when asking participants to 

interact with real 3D objects placed directly in front of them in an MRI scanner. 

Predictive coding was measured by examining whether a consistent or an 

inconsistent visual prime of a real 3D object could influence the neural processes in 

the brain when participants were asked to subsequently reach out and touch a real 3D 

object. We expected to find a suppressed neural amplitude complimented by a 

greater representation of the object in primary somatosensory cortex (S1) when 

participants viewed and subsequently reached out to touch the same object (Valid-

Touch). Conversely, we expected a stronger neural amplitude and weaker 

representation of the object in S1 if the participant viewed one object and 

subsequently reached out to touch a different object (Invalid-Touch). We also 

compared such differences when participants only perceived the objects and did not 

Figure 4.6: Multi-voxel pattern analysis decoding accuracies for cross-validated 

decoding of task (View vs Touch) in each ROI, without taking object identity or 

congruency into account. Chance = 50%.  
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reach out to touch them (Valid-View and Invalid-View). Whilst no univariate 

differences were found in the neural amplitude between conditions in S1, we did find 

a reduced neural amplitude in right and pooled hemispheres of secondary 

somatosensory cortex (S2) when participants viewed an object and subsequently 

viewed the same object (Valid-View), compared to when they viewed an object and 

subsequently viewed a different object (Invalid-View). This result thus surprisingly 

reveals evidence for suppression of expected sensory input only during perception, 

and not action, in S2. Interestingly, in contrast to our expectations, we found a trend 

for higher decoding accuracies (albeit not surviving FDR correction) when the 

participants reached out to touch an object which was inconsistent with the visual 

prime (Invalid-Touch). However, due to the absence of above-chance decoding 

surviving any FDR corrections, the results remain inconclusive in this respect. 

Reasons for the non-significant decoding results are discussed along with other 

interesting findings outside of the main research question.  

4.5.1. Predictive coding with action: The influence of a visual prime 

when subsequently reaching out to touch the same or a different real 3D object. 

Here, we investigated whether a visual prime of a real 3D object could send 

predictions about the tactile features of the object to S1, thus strengthening the 

representation of the object upon a subsequent object interaction. We expected this 

would be possible since previous research has found cross-modal connections can 

transmit information specific to the content of different categories of familiar visual 

objects to S1, despite the absence of tactile stimulation during the experiment (Smith 

& Goodale, 2015). The results from Chapter 2 (see also Bailey et al., 2019) also 

revealed similar cross-modal effects whereby information specific to the content of 

familiar hand-object sounds could be discriminated in S1. We suggest predictive 

coding theories (Clark, 2013) can explain the functional significance behind such 

effects, since the cross-modal responses may be useful for future interaction with the 

object. To test this, we compared the neural responses between reaching out to touch 

a real 3D object when the participant was visually primed with either exactly the 

same object (a Valid-Touch trial), against reaching out to touch a real 3D object 

when the participant was visually primed with a completely different object (an 

Invalid-Touch trial). For reference, these two trial types can be seen in Figure 4.1. 
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Based on predictive coding models, we expected to find a reduced neural amplitude 

in S1 in the univariate analysis, complimented with a stronger representation of the 

object in S1 in the MVPA, for a Valid-Touch trial when compared to an Invalid-

Touch trial (see Kok et al., 2012; Lee & Mumford, 2003; Yon et al., 2018). We also 

explored whether similar effects would be found in other somatosensory and motor 

related cortical regions.  

The univariate results revealed no significant differences in the neural 

responses between the Valid-Touch and Invalid-Touch trials in any ROI, meaning a 

congruent versus an incongruent visual prime did not appear to influence the neural 

amplitude of the response to physically reaching out and touching a real 3D object. 

The reason why we did not find any differences here may be due to the fact the brief 

illumination of the object in the target phase may have been enough information for 

the somatosensory (and motor) cortex to predict their determined tactile sensation, 

thus producing comparable effects across both trial types. Furthermore, it may be the 

case that the perceptual prediction from the visual prime was overridden by the 

physical motor prediction in relation to reaching out to grasp the object in the target 

phase. Support for this idea comes from previous research which suggests error 

signals in motor systems self-suppress when eliciting physical movements (Friston, 

2003), with a review by Clark (2013) suggesting a physical action becomes 

conceptually primary in accounts of prediction, whereby the action not only precedes 

sensation, but actually determines sensation. In other words, it is likely that any 

perceptual predictions were updated when participants made the physical motor 

response toward the object they saw in the target phase, rendering the object in the 

prime phase obsolete. This would explain why we find different effects to that of 

Yon et al. (2018), since participants in Yon et al. were simultaneously executing an 

action which differed from the action they saw in the visual display, thus generating 

detectable differences in the neural signal.  

Interestingly however, the MVPA results in the present experiment revealed 

hints of above-chance decoding in primary and secondary somatosensory cortices, in 

addition to pre-motor cortices, only for the Invalid-Touch trials. This finding, despite 

not reaching significance after FDR corrections, is interesting since there is a clear 

trend in the opposite direction to our expectations. If our study is a valid measure of 

predictive coding mechanisms in the brain (Kok et al., 2012; Lee & Mumford, 
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2003), we would expect to find higher decoding accuracies when participants viewed 

and subsequently interacted with the same object, since we suggest the 

representation of the object would be stronger in this case. However, we failed to 

find such effects. The reason why could be due to the experimental design employed. 

As mentioned above, we maintained a brief flash of light at the start of the target 

phase of each trial regardless of the impending task. The experiment was designed in 

this way to prevent participants from grasping inappropriately which would create 

artifacts in the signal. However, due to the nature of this design, participants would 

view a repeated object during Valid-Touch trial before reaching out to touch the 

object. This means the representation may have been weaker in this case since 

previous research has suggested repetition results in a sparser representation of the 

stimulus (Desimone, 1996; Wiggs & Martin, 1998), with further research revealing 

decreases in classification accuracies for a repeated stimulus compared to a non-

repeated stimulus (Kaliukhovich & Vogels, 2013).  

Furthermore, the expectation of seeing one of the two objects throughout the 

experiment was at an equal chance, meaning the element of surprise may have 

decreased throughout the experiment. Therefore, using more objects and/or 

manipulating the levels of expectation in the experimental trials could be an 

interesting avenue for future research to investigate whether we find significantly 

above chance effects of prediction in this instance. Indeed, much of the previous 

literature has manipulated expectation in order to find predictive effects (Kok et al., 

2012; Schenke, Wyer, & Bach, 2016; Yon et al., 2018). 

One final interesting finding in this analysis is the difference in the decoding 

accuracies when running the analysis in left S1mask and left S1localiser; a subset region 

of left S1 which was independently localised to the fingers of the right hand (see 

Section 4.3.8. above for more information; see also Appendix H, Figure H-1). As 

can be seen in Figure 4.5A and 4.5B, the decoding accuracies in S1localiser for Valid 

trials are clearly higher compared to the decoding accuracies for Valid trials in 

S1mask. Conversely, decoding accuracies in S1localiser for Invalid trials are visibly 

lower when compared to decoding accuracies for Invalid trials in S1mask. Out of 

curiosity, a 3-way repeated measures ANOVA was carried out with the following 

parameters: ROI (S1mask, S1localiser), congruency (valid, invalid), and task (view, 

touch). Interestingly, whilst no significant main effects were found, a significant 
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interaction was found between ROI and congruency (F1, 8 = 6.067, p = .039, ηp
2 = 

.431), whereby the decoding accuracies for Invalid trials were significantly lower in 

S1localiser when compared to S1mask (p = .033). Furthermore, in S1mask, decoding 

accuracies were found to be significantly lower for Valid compared to Invalid trials 

(p = .041). This finding is interesting since it reveals hints of a sharpened 

representation of the stimulus specifically in the finger-sensitive voxels of S1 

(Friston, 2005; Kok et al., 2012, 2017; Kok & De Lange, 2015; Lee & Mumford, 

2003; Press et al., 2020; Yon et al., 2018). However, it is worth noting that the S1mask 

ROI was not entirely optimal for the analysis. Here, instead of creating hand-drawn 

masks of the post-central gyrus as in Chapter 2 (see also Bailey et al., 2019; Smith & 

Goodale, 2015), we created probability maps from the masks defined from a 

previous study (see Appendix G, Figure G-1). The reason why this is a problem is 

because the masks in the current study were not as well matched to participant-

specific brain anatomy and therefore more susceptible to overlap with other nearby 

cortical ROI’s (for example, motor and pre-motor cortices). Furthermore, the lower 

decoding for the Invalid-Touch trials in S1localiser could simply be due to the smaller 

sample size (N = 9), or the smaller voxel count. Due to these significant confounds, 

we cannot make any definitive conclusions from this finding. More participants are 

needed for the localiser session to confirm this reverse effect, in addition to 

normalising the number of voxels used across this comparison.  

4.5.2. Predictive coding with perception: The influence of a visual prime 

when subsequently viewing the same or a different real 3D object. 

Another area of study was to investigate whether the neural responses 

differed between viewing a real 3D object when the visual prime was the same 

object (a Valid-View trial), and viewing a real 3D object when the visual prime was 

a different object (an Invalid-View trial). These two trial types can be seen in Figure 

4.1. The univariate results revealed a significantly higher amplitude for an Invalid-

View trial when compared to a Valid-View trial in the right and pooled hemispheres 

of S2. No other significant differences in any other ROI were found when comparing 

the neural amplitude of these two trial types. The results we observe here suggest 

that viewing two of the exact same objects in succession, or viewing two different 

objects in succession, produces differences in the amplitude of neural activity in S2, 
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despite the fact no tactile information was present in this comparison. Interestingly 

however, we only found a univariate difference and did not find any above chance 

decoding of object identity for Valid-View or Invalid-View trials in any ROI after 

FDR correction. We note hints of above chance decoding in Invalid-View trials in 

right and left V1, however, these did not survive FDR correction. 

The difference in the univariate cross-modal response from vision to S2 is 

noteworthy, especially since previous research has found content-specific 

information can be sent to S2 when viewing static images of objects (Smith & 

Goodale, 2015) or videos of hand-object interactions (Meyer et al., 2011). 

Furthermore, it may not be surprising that we have found links between vision and 

S2 given the anatomical connections between S2 and areas known to have visual 

properties (for a review, see Keysers, Kaas, & Gazzola, 2010). The reason why we 

find a weaker neural response for the Valid-View trials when compared to the 

Invalid-View trials may be explained by the fact the stimuli were predicted in the 

Valid-View trials, thus triggering a high-level cross-modal response to S2 which 

evoked less neural activation in the brain when the stimuli were predicted (Bays et 

al., 2006; Blakemore et al., 1998; Kikuchi et al., 2019; Limanowski et al., 2018; 

Richter et al., 2018), in line with a predictive coding mechanism of cortex function. 

The S2 results may also be detecting traces of a high-level representation of the 

associated sensation with the object when it is merely viewed, since this is the region 

where visual information is known to enter the somatosensory system (Keysers et 

al., 2010). Furthermore, S2 has previously been found to reliably discriminate 

between the rough and smooth surfaces of visual objects (H. C. Sun, Welchman, 

Chang, & Di Luca, 2016). This is important since we presented participants with 

both a rough (tennis ball) and smooth (plastic cup) surface on our two chosen 

objects.  

Another reason why we observe more neural suppression for a Valid-View 

trial when compared to an Invalid-View trial in S2 may be because in the former 

case the stimulus has been repeated, thus we may expect a weaker neural response 

based on suppression effects from a repeated stimulus (Grill-Spector et al., 2006; 

Koutstaal et al., 2001). Repetition suppression, also known as fMRI adaptation, is a 

robust effect found in the fMRI literature whereby a significant reduction in the 

hemodynamic response is found for repetitions of identical stimuli (Grill-Spector et 
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al., 2006; Grill-Spector & Malach, 2001; Henson, Shallice, & Dolan, 2000; Weiner, 

Sayres, Vinberg, & Grill-Spector, 2010). There is a large body of research which has 

shown repetition suppression effects when participants are asked to view repeated 

images of objects. For example, a reduction in neural activity has been found in the 

lateral occipital complex (LOC), when repeating 2D images of objects (Kovács, 

Kaiser, Kaliukhovich, Zoltán, & Vogels, 2013; Sayres & Grill-Spector, 2006). 

Furthermore, similar results were observed in Valyear et al. (2012), who found 

repetition suppression in parietal and pre-motor areas when participants viewed 

repetitions of real 3D tools compared to non-repetitions. We expand on this by 

suggesting that viewing repetitions of real 3D objects which are not tools can 

produce a comparable effect in S2. Furthermore, it is worth noting a similar pattern 

across all our ROI’s, despite no other comparisons revealing significant differences 

in the neural response. 

The reason why we observe these effects in S2 yet do not find significant 

effects of suppression between a Valid-View and Invalid-View trial in V1 is a 

surprising result. As such, the univariate differences we observe in S2 must be 

interpreted with caution. We note that whilst the univariate effects during a Valid-

View trial do indicate a trend in the direction we would expect (that is, we do indeed 

observe more suppression for a Valid-View trial when compared to an Invalid-View 

trial; see Figure 4.4C), the difference is a small trend and not significant. We 

speculate this may be explained by the fact we used broad anatomical masks of V1 

with no retinotopy, which hence may have led to a weak isolation of regions of V1 

which truly represented the response to the objects. The non-significance of these 

results does coincide with previous research investigating repetition suppression 

effects in the visual system when viewing real 3D objects in the scanner (Snow et al., 

2011). Snow et al. (2011) were specifically interested in testing whether the neural 

mechanisms of perception measured via repetition-related changes are the same 

when viewing real 3D objects, or a corresponding set of 2D photographs of the same 

objects, both presented via a turntable apparatus in the scanner. Whilst they found 

robust repetition suppression along the ventral and dorsal visual processing stream 

when participants viewed repeated images of the 2D photographs, they found 

extremely weak and non-significant effects of repetition suppression when 

participants viewed repetitions of real 3D objects. Our findings are similar to this 
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research, thus we loosely support the idea from Snow et al. who suggest there may 

be separate neural mechanisms involved in visual processing of 2D images of 3D 

objects and real 3D objects in the brain. An interesting addition to our analysis 

would be to complete an independent LOC localiser scan for our participants, since 

we could determine whether the same non-existent repetition suppression effects are 

apparent in object-selective regions of cortex in the present study, as was the case in 

Snow et al. (2011). Finally, the MVPA results for the view task revealed hints of 

above-chance decoding only in primary visual cortex (V1) for the Invalid-View 

trials. As mentioned previously, the stronger decoding for an Invalid-View trial may 

be explained by the fact decreases in classification accuracies have previously been 

found for a repeated stimulus compared to a non-repeated stimulus (Kaliukhovich & 

Vogels, 2013). However, since no MVPA results survived FDR correction, any 

explanations must be interpreted with caution.  

4.5.3. Task effects of vision versus touch with real 3D everyday objects. 

An additional interesting finding in this study is the strong significant 

decoding we found for the task (Touch vs View) in each of our ROI’s. We ran this 

analysis as a validation check to determine our data was of a high quality to be able 

to accurately determine when an action occurred versus when it did not occur in 

somatosensory and motor regions. The fact we found robust above chance decoding 

in all ROIs suggests our data is of a decent level of quality. Additionally, as was 

found in our research, Gallivan, Cavina-Pratesi, and Culham (2009) found a stronger 

neural response to grasping and reaching actions towards real 3D artificial objects 

when compared to passive viewing at the univariate level. Studies using real world 

objects in the fMRI literature have investigated 3D tool use (Brandi et al., 2014; 

Gallivan et al., 2013; Hermsdörfer et al., 2007; Imazu et al., 2007; Valyear et al., 

2012), hand actions made towards artificial 3D objects (Cavina-Pratesi et al., 2007; 

Gallivan et al., 2009; Rossit et al., 2013), viewing real 3D objects (Snow et al., 2011; 

Snow, Skiba, et al., 2014), or touching real world objects without viewing (Snow, 

Strother, et al., 2014). Other research has also found it is possible to decode the 

modality of stimulus presentation from all primary sensory areas (Liang et al., 2013). 

Here, the robustly significant decoding of task in the present study corroborates 

previous literature by finding the brain can decode differences between the task of 
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viewing or touching real 3D familiar objects in visual, tactile, and motor related 

regions in the human brain. Furthermore, we find such decoding effects are stronger 

in the left hemisphere of the tactile and motor-related cortical regions, as would be 

expected since our participants were right handed, acting with their right arm (see 

also Gallivan et al., 2009). 

It is worth noting that the decoding may be better for View vs Touch in each 

ROI since the univariate analysis revealed a significantly higher peak neural 

amplitude for the Touch task when compared to the View task in all our ROI’s. The 

reason why the univariate response was significantly stronger for the Touch task may 

be due to the fact this experiment was highly vision-oriented, whereby all trials 

regardless of a View or Touch task began with a visual prime. Thus, a Touch task 

may have always produced a stronger neural response since it always involved a 

change in the task requirement of the participant between the prime and the target 

phase. As such, it would be interesting for future research to include a Touch-Touch 

trial, whereby the participant reaches out to touch the same object in both the prime 

and the target phase, or reaches out to touch two different objects in the prime and 

target phase. Here, we may expect to find a weaker neural response in tactile and 

motor-related cortical regions since the task in the prime and target phase would be 

repeated, as is the case in a View task. Furthermore, including a Touch-Touch trial 

would enable a more accurate comparison between the View and the Touch task.  

4.6. Conclusion 

The present study aimed to directly examine whether the cross-modal context 

effects found in previous research have the functional role of prediction by asking 

participants to physically interact with real 3D objects placed directly in front of 

them in the MRI scanner. Whilst our results failed to find a significant result for 

predictive effects, corroborating previous studies we found that the brain can decode 

differences between the task of viewing, and reaching out to touch, real familiar 3D 

objects placed directly in front of them in the scanner using a rapid-event related 

design. Therefore, our results have uncovered the plausibility of using rapid-event 

related designs in the real-action literature. Furthermore, this study has provided a 

guide for informing future research how predictive effects from vision to 

somatosensory and motor regions could be investigated in the brain.  
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5.1. Chapter overview 

The research conducted in this thesis used fMRI and EEG to examine how 

context and prior experience can shape the neural computations occurring in the 

primary somatosensory (and sensorimotor) cortex of the human brain, specifically by 

using pattern classification analysis to decode the content of cross-modal influences 

in the brain. The experiment in Chapter 2 used fMRI to investigate whether hearing 

different familiar sounds depicting object interactions with the hands can be 

discriminated in primary somatosensory cortex (S1), even though stimulus 

presentation occurred in the auditory domain. Chapter 3 aimed to corroborate the 

cross-modal effects found in the previous fMRI literature using a high temporal 

resolution neuroimaging technique: EEG. Specifically, EEG was used to explore 

whether viewing images of different familiar visual objects which imply rich haptic 

information could be identified from sensorimotor-related oscillatory responses, 

even though input was purely from a visual source. Chapter 4 involved an interactive 

paradigm using real 3D objects in an fMRI experiment to test whether predictive 

coding theories can explain the functional significance behind the cross-modal 

effects we observed in Chapters 2 and 3. The results from each experimental chapter 

will now be briefly summarised. Theoretical implications, real world applications, 

limitations, and future directions from the experiments conducted in this thesis will 

also be discussed.  

5.2. Summary of results 

5.2.1. Summary of Chapter 2 results. 

The motivation behind the research conducted in Chapter 2 was to determine 

whether the cross-modal effects observed in the previous literature are present 

between all pairs of primary sensory modalities. Previous research investigating 

cross-modal effects has found that if a stimulus presented via one sense implies 

features representative of an independent sensory modality, information related to 

the content of the stimulus can be detected in that independent primary sensory 

modality. For example, research has found visual stimuli which imply haptic 

information can be discriminated in S1 (Meyer et al., 2011; Smith & Goodale, 2015), 
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visual stimuli which imply auditory information can be distinguished in A1 (Meyer 

et al., 2010), and auditory stimuli which imply visual information can be 

discriminated in V1 (Vetter et al., 2014). All of these studies found information 

related to the content of the stimulus could be detected in a primary sensory cortex 

which was entirely independent to that of stimulus presentation. What had not been 

shown, however, was whether haptic-implying auditory information could be 

detected in S1. This was an important area of study because we have previously 

found haptic-implying visual information can be discriminated in S1 (Smith & 

Goodale, 2015), and since sound is another form of input that could help to predict 

future interaction with objects, this research can help determine whether the cross-

modal effects observed are apparent between all pairs of sensory modalities. 

Furthermore, investigating this particular pair of modalities could determine whether 

the dominant sense of vision (Colavita, 1974; Mumford, 1991) is needed in order to 

observe such cross-sensory effects.  

The results of this study found, for the first time, that sounds which depicted 

familiar hand-object interactions could be reliably detected in S1, even in the 

absence of any external tactile stimulation during the experiment. Specifically, when 

limiting our analyses to the hand-sensitive areas of S1 (determined from a vibro-

tactile localiser), we found decoding of hand-object interaction sounds to be 

significantly better in the left hemisphere when compared to our two control 

categories of the sounds of familiar animal vocalizations, and unfamiliar pure tones. 

This result suggests it is not simply the content of any familiar sound, or any 

unfamiliar sound, which can be reliably discriminated in S1, but specifically sounds 

which imply haptic interactions with the hands. Furthermore, the results we found in 

A1 strongly suggest the results in S1 reflect high-level information about the tactile 

component of the hand-object sounds, and not passive relay of low-level acoustic 

features from auditory cortex, since decoding in A1 revealed the exact opposite 

pattern of effects. Therefore, we suggest from the results in this study that cross-

modal connections from audition to hand-sensitive areas of S1 transmit content-

specific information about familiar sounds which convey object interactions with the 

hands.  
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5.2.2. Summary of Chapter 3 results. 

The primary aim of the study in Chapter 3 was to determine whether the 

cross-modal effects which have been observed in the previous literature (Bailey et 

al., 2019; Meyer et al., 2011, 2010; Smith & Goodale, 2015; Vetter et al., 2014; see 

also Chapter 2) could be corroborated using a different method of data collection. 

Therefore, we used EEG to investigate whether presenting a stimulus via one sense, 

such as vision, which implied features representative of another sense, such as touch, 

could produce a distinct oscillatory response over the associated, yet non-stimulated, 

sensorimotor cortical area. Specifically, we investigated whether neural oscillations 

detected over sensorimotor cortex (the mu rhythm; Berger, 1929), would carry 

information related to images of familiar visual objects which implied rich tactile 

information when compared to unfamiliar visual objects which also imply rich tactile 

information (see also Smith & Goodale, 2015), despite no requirement for a motor 

movement or tactile sensation when viewing the stimuli. This was an important area 

of study for two reasons. First, no studies to date have used a technique other than 

fMRI to test whether information specific to the content of a stimulus can be reliably 

discriminated in/over a primary sensory or sensorimotor cortical area independent to 

that of stimulus presentation. Having only found such effects with fMRI is a 

constraint since such studies can only confirm which areas in the brain can receive 

this cross-modal information. However, if we can corroborate these studies using 

EEG, we can potentially determine the timing of the effects at a millisecond level. 

Secondly, as EEG is a cheap method of data collection, finding a corroborating result 

could open an avenue for quick advances in this field of cognitive neuroscience since 

such studies are more accessible than fMRI.   

The results of this study found, for the first time, that when participants 

simply viewed still images of familiar visual objects which implied rich haptic 

information, multivariate pattern analysis could significantly discriminate between 

the different familiar visual object categories based on information extracted from 

the mu rhythm oscillatory response. This was found despite the fact the mu rhythm is 

a sensorimotor neural oscillation detected over central electrodes (Berger, 1929), 

known to respond to an execution of an action, observation of an action, the intention 

to act, or the texture of an object being picked up during an action (Coll et al., 2015, 

2017; Muthukumaraswamy & Johnson, 2004; Pfurtscheller et al., 1997; Pineda, 
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2005; Quandt et al., 2013; Ritter et al., 2009). In contrast, we did not find any 

reliable information in the mu rhythm oscillatory response related to viewing images 

of the unfamiliar visual object categories. As such, we corroborated and strengthened 

the results of Smith and Goodale (2015), by finding that information likely related to 

the tactile component of only familiar visual objects could be detected in a 

sensorimotor-related oscillatory response (the mu rhythm), even though no tactile 

stimulation or motor response was either executed or implied. Whilst we cannot rule 

out the idea that these effects could be originating from primary motor cortex (M1), 

we have reason to believe the effects we observe originate from S1 since this study is 

a corroboration of Smith and Goodale, who only found such discriminable 

information in S1, and not M1. Therefore, we suggest, similar to Smith and Goodale 

(2015), that information about a visual objects tactile (or motor) properties can be 

sent to sensorimotor related cortices even in the absence of explicit haptic 

interaction, and that a rich prior haptic experience with the objects is necessary to 

observe such effects. Whilst we did not find decoding for the familiar visual objects 

to be significantly higher than the non-significant decoding of unfamiliar visual 

objects, we provide evidence for the oscillatory frequency of these cross-modal 

effects and show promising developments for using cheaper methods of data 

collection in the cross-modal literature.   

5.2.3. Summary of Chapter 4 results. 

The aim of the study conducted in Chapter 4 was to test whether the 

identified cross-modal effects observed in the previous literature (Bailey et al., 2019; 

Meyer et al., 2011, 2010; Smith & Goodale, 2015; Vetter et al., 2014; see also 

Chapter 2) have the functional role of predictive processing (Clark, 2013). This was 

an important study since this previous research can only speculate as to why the 

cross-modal effects observed actually exist. Therefore, we used fMRI to investigate 

whether predictive processing may underlie why S1 has been found to contain 

information triggered from distal sensory modalities, such as from vision (Meyer et 

al., 2011; Smith & Goodale, 2015) or audition (Bailey et al., 2019; see also Chapter 

2). To do this, we presented participants with real familiar 3D objects (either a tennis 

ball, or a plastic cup) in the MRI scanner. Each trial consisted of a prime and target 

phase, in which the primed object was either congruent or incongruent with the 
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target object. The participant would always see the object in the prime phase, and 

was asked to either continue viewing, or to reach out and touch, the object in the 

target phase. To test predictive processing, we investigated whether a congruent 

visual prime would aid subsequent interaction with the object by leading to a 

decreased neural response complimented with a better representation of the object in 

S1 (Kok et al., 2012; Kok & De Lange, 2015). In contrast, we expected an amplified 

neural response complimented with a weaker representation of the object in S1 if the 

visual prime was inconsistent with the target.  

Interestingly, the results in this study found the opposite to our expectations 

in S1, whereby we observed a trend only for above chance classification, thus better 

representation, of object identity when the visual prime was incongruent with the 

target object that the participant was asked to reach out and touch. The same pattern 

was found in additional regions of interest, such as left secondary somatosensory 

cortex (S2) and pooled pre-motor cortex (PMC). We also investigated a subset 

region of S1 which was specifically localised to the right hand, defined by an 

independent vibro-tactile localiser to the fingers and thumb of the participants’ right 

hand. Curiously, in this analysis the pattern indicated a potential reverse effect, 

whereby decoding for incongruent trials was lower than decoding for the congruent 

trials. Speculating on the basis of these trends, we suggest that running the analysis 

in hand-sensitive voxels may have ‘sharpened’ the representation of the object, since 

we were analysing the data in a more selective population of neurons tuned to the 

task (de Lange et al., 2018). If this is the case, this follows previous suggestions that 

voxels tuned to the task produce a stronger representation of the stimulus (Kok et al., 

2012; Kok & De Lange, 2015; Yon et al., 2018). However, due to the lack of 

significant findings after controlling for the false discovery rate (FDR; Benjamini & 

Hochberg, 1995; Benjamini & Yekutieli, 2001), these findings must be interpreted 

with significant caution.  
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5.3. Theoretical implications 

5.3.1. Predictive coding as a theoretical mechanism for decoding high-

level influences in the primary sensory cortices. 

The results from Chapter 2 support the increasingly popular predictive 

coding, also known as predictive processing, theory of human brain function (Clark, 

2013), as we can find high-level influences in a primary somatosensory cortical area 

which is independent to the source of stimulus presentation. This would not be 

possible if the primary sensory cortical areas of the human brain passively registered 

incoming sensory information (e.g. if incoming visual information is only passively 

registered in the primary visual cortex). Rather, it is likely that predictive coding 

models can explain why we observe cross-modal context effects in such primary 

sensory areas. Predictive coding (see Chapter 1, Section 1.4.2. for a detailed review) 

suggests the brain builds internal models about the world through experience, and 

uses contextual information from prior experience and the current context to 

generate predictions about likely upcoming sensory events, continuously testing 

these predictions against what actually happened in real time (de Lange et al., 2018). 

With this theoretical account, it is likely that the primary sensory cortices actively 

predict forthcoming stimulation, with predictions being sent from high-level areas 

down the cortical hierarchy towards the primary sensory areas, whereby the 

predictions are compared against the veridical input in a continuous cycle until all 

sensory input has been explained (Clark, 2013; Kok & De Lange, 2015).   

In relation to the results we see in Chapter 2, the brain has likely built internal 

models about interacting with a familiar object, such as a keyboard, meaning 

associative links have been formed in the brain from prior experience of all sensory 

aspects involved when interacting with the object (e.g. the sound and tactile 

sensation of typing on the keys). If this is the case, when hearing only the sound of a 

familiar hand-object interaction, such as typing on a keyboard, information related to 

the tactile and/or motor content of the stimuli may be sent to S1 as a prediction of 

upcoming input, since it is information which may be useful for future (or 

concurrent) interaction with the specific object. Furthermore, S1 itself may have 

actively anticipated the upcoming stimulation, yet since the tactile sensation was 

never received, prediction errors may have been sent to higher-level regions in an 
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attempt to explain the difference between what was expected and the observed 

sensory information (Clark, 2013; Rao & Ballard, 1999).  

The results from Chapter 3 also provide some support for predictive coding 

in the brain, since we found high-level influences in the oscillatory response 

associated with primary sensorimotor areas. This suggests associative links may 

have been formed from the visual, tactile, and motor aspects of an object such as a 

wine glass, which, when viewing, would often include the action of reaching out to 

interact with the object (see also Smith & Goodale, 2015). As such, simply viewing 

the object could feedback predictions about the likely upcoming interaction to 

somatosensory or sensorimotor regions, oscillating at a rate between 8-13 Hz. This is 

supported by previous research that has suggested such low-frequency oscillations 

are responsible for coordinating predictions along feedback pathways (Bonaiuto et 

al., 2018; Scheeringa & Fries, 2019), and the mu rhythm has been associated with 

activity in S1 (Cheyne, 2013; Cheyne et al., 2003). However, due to the weak spatial 

resolution of EEG we cannot rule out the idea that the effects could have been 

originating from M1, especially since we found weak evidence for a degree of 

information about hearing the sound of familiar hand-object interactions in M1 in 

Chapter 2 (see also Bailey et al., 2019). However, since Smith and Goodale (2015) 

found decoding for viewing the exact same familiar visual objects only in S1, and 

not M1, we have reason to believe the effects we observe originate from S1.  

Whilst neither of the studies conducted Chapters 2 and 3 measured predictive 

coding directly, Chapter 4 aimed to explicitly test the predictive coding account by 

investigating whether a congruent or incongruent visual prime could influence the 

neural response when participants were asked to subsequently reach out and interact 

with the object. We found, in contrast to our hypothesis, hints towards higher 

decoding accuracies in somatosensory and motor-related brain regions when 

participants interacted with an object which was inconsistent with the visual prime – 

although it is important to note these decoding accuracies did not survive FDR 

corrections. Nevertheless, the trend we observe is intriguing, as we believe we may 

have been detecting signs of prediction errors which were likely being transmitted to 

high-level brain regions in an attempt to explain the unexpected input (Rao & 

Ballard, 1999). Furthermore, we observe some very tentative evidence of support for 

predictive processing whereby minimised prediction errors may be apparent in 

voxels selective to the task in S1. This is because we observed a reverse pattern of 
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decoding in S1localiser whereby decoding was lower for Invalid trials compared to 

Valid trials. This tentatively agrees with previous research which has suggested 

voxels tuned to the task produce a stronger representation of the stimulus, since an 

incongruent (and hence, likely unpredicted) event led to weaker decoding in this 

analysis (Kok et al., 2012; Kok & De Lange, 2015; Yon et al., 2018). However, due 

to the lack of significant findings after FDR corrections in this study, no strong 

conclusions can be drawn from these results.  

5.3.2. Representation of object concepts to explain cross-sensory 

processing in the brain.  

Understanding how the early sensory cortical areas represent the information 

from the stimuli used in this thesis can also be explained with theories for how the 

brain represents knowledge of objects. For example, Martin’s (2016) representation 

of object concepts theory suggests the neural representation of object concepts is 

distributed across the perceptual, action, and emotion systems in the brain. In terms 

of object knowledge, the theory suggests that salient information is stored in 

property-specific, not modality-specific, brain regions. In saying this, the idea is that 

specific object categories comprise a unique circuitry in the brain, in which the entire 

processing stream that was activated at the time information was acquired or updated 

can be re-activated in an ‘all-or-none’ fashion. To take an example from the research 

conducted in Chapter 2, hearing the sound of typing on a keyboard may activate all 

previously stored information about the object (e.g., the sight, sound, tactile 

sensation and motor action plans of the keys, in addition to semantic knowledge 

about what a keyboard is used for). Martin’s theory suggests this ability to retain all 

stored knowledge about an object avoids the need of re-learning the properties of an 

object at every encounter. This theory also ties in nicely with the work of Barsalou 

(2016), who suggests object perception or categorization involves a neural re-use of 

the same systems which were active when a person stored the initial representation 

of an object in the brain (see also Anderson, 2010).  

Together these theories could help to explain how multiple sensory 

modalities may receive information from a stimulus presented via one independent 

sense, since the theories suggest object concepts are stored across multiple systems 

in the brain to enable adaptive and efficient basic-level object category identification 
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(Barsalou, 2016; Martin, 2016). In terms of the research in this thesis, when 

presented with a familiar object, activation in early sensory cortical areas 

independent to that of stimulus presentation may be a reflection of the broad 

representation of stored knowledge about the object. The idea is that processing the 

object via one sense activates a neural network of all previously stored associations 

with that object, rather than the idea that these areas are activated to aid future object 

interaction in a predictive manner (see Section 5.3.1. above).  

Due to this alternative explanation, future research should consider 

experiments which can explicitly examine whether the observed cross-modal effects 

are a likely result of predictive coding or stored object concepts becoming re-

activated in the brain. To test predictive coding, an element of expectation could be 

implemented in the experiments used in the present thesis. For example, the study 

from Chapter 2 could be replicated, adding colour changes in the fixation cross 

which indicate the likelihood of hearing a certain type of sound category (for 

example, see Kok et al., 2012). Here, we could investigate the neural responses to 

the exact same sound when it was either expected, or unexpected, to examine 

whether the representation of the hand-object sounds are stronger in S1 when they 

were predicted based upon a cued fixation cross. If this is the case, this would 

provide support for predictive coding in the brain. Furthermore, since Martin’s 

(2016) account of the representation of object knowledge proposes the primary 

sensory regions could become re-activated under specific task conditions, future 

research could consider manipulating task constraints in the studies used in this 

thesis. Here, we may expect stronger decoding for the hand-object interaction sounds 

in S1 for a task in which the somatosensory properties of objects and/or actions are 

more prominent compared to less prominent. If this is the case, the results would 

provide a heavier weight of support for the account of stored object concepts 

becoming re-activated in the brain. 
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5.4. Real world applications 

5.4.1. Decoding cross-modal influences in primary sensory areas can aid 

understanding of neural plasticity in sensory deprivation.  

Our results can be used to explain how specific experiences may cause 

neuroplastic changes in cortical brain structures. Neural plasticity is the ability for 

the brain to reorganise itself in terms of its functional or structural properties in 

response to a given event, or a set of events (Huttenlocher, 2002). Furthermore, 

cross-modal plasticity occurs when neurons or brain regions that would typically 

process a certain type of sensory information (e.g. visual regions process visual 

information) can adapt to process a different kind of sensory information if the 

person has undergone sensory deprivation to that modality (for reviews see 

Collignon, Champoux, Voss, & Lepore, 2011; Collignon, Voss, Lassonde, & 

Lepore, 2009; Frasnelli et al, 2011). For example, visual regions can respond to 

tactile braille reading in blind individuals (Sadato et al., 1996). Interestingly, more 

recent work has found visual regions also respond to braille reading in trained 

sighted participants (Siuda-Krzywicka et al., 2016), indicating large-scale 

neuroplastic changes can occur when learning complex skills.  

Previous research has often suggested the brain only undergoes such cross-

modal plastic changes when a person experiences sensory deprivation, however, the 

fact we have observed cross-modal sensory influences in the typically functioning 

brain in the present thesis suggests these cross-modal connections may exist even if a 

person has not undergone deprivation to a sensory modality. Indeed, previous 

research has found evidence that cortico-cortical connections from A1 to V1 exist, 

yet are weakened, in the typically functioning human brain relative to blind 

individuals (Klinge et al., 2010). The idea is that these connections remain intact and 

are brought back to strength following sensory deprivation (Collignon et al., 2009). 

In the present thesis, we provide some support for this idea by finding that 

information about a certain stimulus can be found in one sensory modality, such as 

S1, when triggered via distal independent sensory modalities, such as audition 

(Bailey et al., 2019; see also Chapter 2) or vision (Meyer et al., 2011; Smith & 

Goodale, 2015; see also Chapter 3). As such, we suggest that cross-modal 

connections can transmit content-specific information related to one sensory 
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modality to an entirely independent sensory modality in a typically functioning 

human brain, thus supporting the notion that these cross-modal connections exist, yet 

may become strengthened following deprivation to a primary sensory cortical area 

(Collignon et al., 2009). However, since we do not know the true nature of the 

connections used in the cross-modal context effects observed in this thesis, no 

definitive conclusions can be drawn from this claim. Future research should consider 

running the studies conducted in this thesis on individuals who have undergone 

sensory deprivation to investigate whether the cross-modal decoding effects are 

stronger for blind individuals when compared to the data used from the typically 

functioning human brain in the present thesis. 

5.4.2. Advances for machine learning and the design of intelligent 

computing chips. 

These findings will also be of interest to computational modellers who may 

be interested in developing intelligent computing chips for building realistic models 

of human brain function, specifically by taking into consideration the influence of 

context on early sensory processing. For example, the Generative Query Network 

(GQN), developed by the artificial intelligence company DeepMind, is a software 

within which machines learn to represent scenes using only their own sensors 

(Eslami et al., 2018). The GQN can create an internal representation of a scene by 

reading information about still images of objects placed in a virtual room, taken from 

different viewpoints, and can generate predictions about what the scene should look 

like from an unobserved viewpoint. As mentioned by Eslami et al. (2018), the GQN 

thus demonstrates representational learning without relying on any human input, 

such as semantic labelling. The algorithm learns the scene and predicts what may be 

shown, and continuously takes the difference between its predictions and what is 

actually observed in order to improve the likelihood of accurately predicting the 

input in the future, similar to predictive processing theories of human brain function 

(Clark, 2013). However, whilst this deep learning model can learn to perceive and 

interpret an internal representation of a scene, including an objects identity and 

position in 3D space, it is constrained to the visual representation of the 3D structure. 

As such, the work in the present thesis emphasises the importance of training 

artificial intelligence models to build representations from multiple sensory 
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modalities to build a complete and more accurate representation of something such 

as an object. For example, when building a representation of a scene in terms of 

where 3D objects are placed in a virtual room, models should be trained on a more 

similar representation as is present in a human brain – accounting for prior 

knowledge of interacting with the objects and the associated motor/tactile features of 

the objects which will be predicted in the primary somatosensory cortex. Indeed, 

recent work by Jacobs and Zu (2019) trained deep or artificial neural networks either 

with both visual and haptic signals, or with visual signals alone, and found a network 

which received multisensory training benefitted in terms of the information it 

represented when compared to a network which only received visual training.  

Our findings are also applicable to state of the art advances in neuroscience 

in the biotechnology and neural engineering community working on developing 

neuroprosthetic devices, such as brain-controlled robotic limbs (Burck, Bigelow, & 

Harshbarger, 2011). For instance, engineers have recently used EEG recordings 

associated with certain movements or states of alertness, and converted them into 

commands for robotic arms (Beyrouthy, Al Kork, Korbane, & Abouelela, 2017). 

These arms are operated via brain activity using neurofeedback from EEG, since the 

arms are equipped with a network of smart sensors that can provide the patient with 

intelligent feedback about something such as an object and its surrounding 

environment. However, a limitation with the field of neuroprosthetics is that the 

amount of information which can be extracted from the EEG signal is low and is not 

as flexible as a natural limb (Abbott & Faisal, 2012), thus restricting the potential 

use of these prosthetics in everyday activities and limiting their overall usage 

(Thomik, Haber, Faisal, & Ieee, 2013). As such, the results we have observed from 

Chapter 3 in the present thesis may help to advance the development of 

neuroprosthetic devices, since we have shown that information specific to the 

category of different familiar visual objects can be detected within the sensorimotor 

oscillatory response. Therefore, the future of neuroprosthetics could design a device 

which can determine the specific tactile and/or motor properties of an object based 

on a person merely viewing or hearing the object, in turn informing the robotic arms 

about the appropriate grip aperture and pressure to put on the object when interacting 

with it based on information present in the primary somatosensory cortex or 

sensorimotor-related oscillatory responses.   
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5.4.3. Applications to understanding neurological disorders and 

conditions of brain function.  

Whilst the research conducted in this thesis has examined healthy 

populations with an aim to test predictive processes in the typically functioning adult 

brain, this research could give rise to important opportunities which can investigate 

any deviations in the predictive effects we observe in neurological or psychiatric 

disorders. For example, research has previously suggested that dysfunctional 

prediction in sensory processing is a causal mechanism in developing delusions in 

patients with schizophrenia (Fletcher & Frith, 2009; Frith & Done, 1988; Horga, 

Schatz, Abi-Dargham, & Peterson, 2014). Therefore, future research could consider 

applying the experimental paradigms used in this thesis to clinical populations, such 

as in patients with schizophrenia, to examine whether different cross-modal effects 

are found between the typical and patient population. If differences in the cross-

modal representation of an object are apparent across the two populations, this could 

provide further support that predictive coding is the underlying theory as to why we 

have observed such cross-modal effects in the present thesis. In doing this, it would 

also further confirm the theory that patients with schizophrenia suffer from deficits 

in elements of predictive coding in the brain. 

Our research could also help to further inform the literature as to why people 

experience neurological conditions such as synaesthesia. Synaesthesia is a condition 

of the brain whereby one sense is simultaneously perceived by one or more 

additional senses. For example, people with synaesthesia may report an ability to see 

sounds or experience colour when reading letters and numbers (Ward, 2013). The 

fact we have found in the present thesis that a primary sensory cortical area can 

receive information specific to the content of a stimulus presented via an entirely 

independent distal modality suggests that feedback connections between the primary 

sensory areas exist even in the typically functioning human brain. As such, it may be 

the case that people who experience synaesthesia have over-active cross-modal 

connections which transmit information between the sensory modalities in a way that 

the person consciously experiences it. Indeed, previous research has suggested such 

‘cross-wiring’ in the brain has been retained in those who experience synaesthesia 

(Ramachandran & Hubbard, 2001). In future research, it would be interesting to use 

a cross-modal paradigm such as in the studies conducted in this thesis with people 
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who experience synaesthesia to determine whether there is a stronger representation 

in the synesthetic group as compared to a typical population such as those studied in 

the present thesis.  

Another interesting application from the research conducted in this thesis is 

its potential use on assessing consciousness in clinical populations, such as those 

diagnosed as being in the vegetative state. A patient is diagnosed as being in a 

vegetative state if they have suffered from severe damage to the brain which results 

in them appearing awake yet showing no signs of awareness or responsiveness in 

any meaningful way. As such, to be diagnosed as being in a vegetative state, it has 

typically been assumed that the person’s sense of self is diminished, with them 

displaying basic reflexes yet no signs of what it means to actually be conscious. 

Within the past few decades, however, the development of state of the art 

neuroimaging techniques has revealed that those diagnosed as being in the vegetative 

state can, in some cases, communicate and show signs of consciousness when 

assessing the activity within their brain, not from their overt behaviours (Cruse et al., 

2012; Owen et al., 2006). For example, ground-breaking research has used fMRI to 

reveal those diagnosed as vegetative can imagine playing tennis or walking around 

their house when merely instructed to do so with the word “imagine”, which is 

verified based on analysing the neural activity in their brain (Owen et al., 2006). 

Furthermore, patients in the vegetative state can display appropriate responses in the 

brain to the plot of watching a film, which would require a conscious experience 

beyond the visual information entering the retina (Naci, Cusack, Anello, & Owen, 

2014). These are merely a few of a series of studies which have revealed evidence of 

awareness in patients diagnosed to be in a vegetative state using fMRI (see also 

Coleman et al., 2007; Monti et al., 2010).  

More recently, research has used EEG to detect signs of consciousness in the 

vegetative state, since it is cheap and transportable, meaning the equipment can be 

taken to the bedside within a patient’s home. For example, Cruse et al. (2011, 2012) 

have used EEG to find significant modulation of sensorimotor beta oscillations in 

vegetative patients following a command to try to move their hands or toes. 

Furthermore, research has suggested alpha oscillations may be the most informative 

marker of a diagnostic model of consciousness (Sokoliuk & Cruse, 2018), since 

alpha is considerably reduced in those diagnosed as being in a vegetative state. As 

such, machine learning methods could help establish whether or not a person is in a 
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vegetative state by training the machines to differentiate between alpha power in 

clinical and healthy populations (Engemann et al., 2018). With this in mind, the 

results from Chapter 3 could be of significant interest to researchers in this field. 

This is because we have found information specific to the content of different 

familiar visual objects can be discriminated in the alpha oscillation over 

sensorimotor areas when healthy participants merely saw the image of the still 

object. The fact the participants were merely viewing the objects and no explicit 

haptic interaction was either required or implied suggests predictive processing 

mechanisms may have been the reason for these effects (Clark, 2013). Furthermore, 

it is likely that the study from Chapter 2 could be corroborated with EEG, whereby 

similar distinguishable responses may be found in the central alpha mu rhythm 

relating to the content of the sound of different hand-object interactions. The reason 

this could be of interest to researchers detecting awareness in the vegetative state is 

because we could examine whether the same distinguishable responses are found in 

the alpha mu rhythm of those diagnosed as being vegetative. If we found comparable 

responses in this clinical population, this could not only suggest the underlying brain 

structures known to underlie a patients level of consciousness remain intact 

(Sokoliuk & Cruse, 2018), but could specifically determine whether the patient’s 

prior knowledge about the tactile or motor features of each individual object is still 

intact.  

5.5. Limitations 

There are several limitations from the studies conducted in this thesis which 

are important to address. Firstly, the largest limitation from the study in Chapter 2 is 

the limited number of participants needed for a ‘gold standard’ number for fMRI 

research (Desmond & Glover, 2002; Poldrack et al., 2017). Whilst our data is strong 

in terms of the a priori hypotheses we set and survives after FDR corrections thus 

assumed to be true, the low sample size causes a lack of power for further analyses 

which may have been informative. For example, the lower sample lead to no 

significant activations found in the brain in a psychophysical interaction (PPI) 

connectivity analysis (O’Reilly, Woolrich, Behrens, Smith, & Johansen-Berg, 2012) 

which we conducted in order to examine whether there was any activity in areas of 

the brain when S1 was used as the seed region of interest. Therefore, testing more 
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participants may have increased the power, giving us the ability to run further 

analyses of interest on the data and determine the potential neural pathway for 

transmitting cross-modal information.  

Furthermore, the experiment would have benefitted from including sounds 

from an additional familiar object interaction category using a different part of the 

body, such as the mouth or the foot. Whilst this could determine whether decoding 

of the sound of different haptic-implying object interactions is localised to the body 

regions which would be used to interact with the object, the implementation of such 

a paradigm would be somewhat difficult. For example, whilst we originally planned 

to include mouth-object interactions in the experiment from Chapter 2, it became 

increasingly apparent that mouth-object interactions rarely involve the use of the 

mouth without the hand. For example, brushing teeth is a common mouth action that 

can be easily identified with its sound, however the action would comprise both the 

arm and hand action in addition to the mouth sensation. Furthermore, foot-object 

interactions are relatively hard to find for a sound experiment, since most would 

involve walking on ground whereby shoes would usually be worn thus perhaps not 

producing a rich tactile sensation, or kicking an object such as a football which may 

not be distinct enough for the sound to be classified and represented in the brain with 

accurate precision.  

One limitation from the study conducted in Chapter 3 is the fact there is a 

heavier weight in the literature stating that the mu rhythm is an index of actual 

motoric actions, as opposed to somatosensory features of actions (A. Cochin, 

Barthelemy, Roux, & Martineau, 1999; S. Cochin, Barthelemy, Lejeune, Roux, & 

Martineau, 1998; Denis, Rowe, Williams, & Milne, 2017; Kumar et al., 2013; 

Muthukumaraswamy & Johnson, 2004; Pfurtscheller et al., 1997; Pineda, 2005). 

Therefore, we could have implemented the somatosensory vibro-tactile localiser in 

the EEG experiment conducted in Chapter 3, in addition to the voluntary motor 

response task, to determine whether we could find an oscillatory response in the mu 

rhythm oscillation when participants received tactile stimulation to the hands in the 

absence of a motor movement. If so, we could have also investigated differences in 

the mu rhythm response when participants received the vibro-tactile stimulation and 

when they executed the self-paced motor response experiment. We know from 

Figure 2.4 in Chapter 2, Section 2.4.3. that the vibro-tactile localiser activates only 

somatosensory, not motor-related cortical regions, therefore using this equipment 
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with the EEG experiment in Chapter 3 could determine whether the mu rhythm 

oscillation can uniquely respond to tactile information in addition to a self-paced 

motor response, as the literature is starting to suggest (Coll et al., 2015, 2017). 

Furthermore, identifying the average of the significant pixels from the vibro-tactile 

localiser could have been used to create a mask for extracting each participants 

ERSP data from the main experiment. This could hence work as a similar 

tactile/hand-localisation tool as was used for the localiser data in Chapters 2 and 4 

(see Chapter 2, Section 2.3.6.2. and Chapter 4, Section 4.3.8. respectively). 

Furthermore, the alpha- and beta-band ERSP values extracted from the time-

frequency windows assume the exact same significant clusters of desynchronization 

for all of our participants. This is because one mask was generated for each cluster, 

based on the average selected time-frequency matrix across all participants, and 

applied to each participant regardless of where the true oscillation in each individual 

participant may have been. Hence with this method, specific individual differences 

in the temporal, spatial, and frequency characteristics are ignored, which could be a 

problem since the boundaries of oscillatory responses are not rigid and tend to vary 

across participants (M. Cohen, 2014). However, we used this method based on 

previous research investigating a similar question about the role of the mu rhythm 

(see Coll et al., 2017). Additionally, we were decoding high-level influences which 

would not be expected to be detected in the pure oscillatory responses. Rather, we 

were investigating whether discriminable information about the objects could be 

found regardless of whether we found an observable mu rhythm response. Whilst we 

could have considered selecting significant subject-specific clusters from the 

voluntary motor response task, we may not have successfully identified a mask for 

each participant since the mu rhythm cannot be detected in every participant 

(Hobson & Bishop, 2017). Therefore, we believe the best method of analysis was 

chosen in this case, but acknowledge the accompanying limitation with the method.  

Another limitation in the study conducted in Chapter 3 is the lack of an 

additional control stimulus which is a novel stimulus that is not an object. This 

would have been a beneficial control category to include in order to determine 

whether any mu suppression is apparent when viewing a novel stimulus which 

cannot be physically interacted with, such as images of stimulus gratings (e.g. Kok et 

al., 2012). This type of category would significantly differ from the unfamiliar 

objects which, despite the lack of familiarity, could be interacted with. If we found 
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no modulation of a sensorimotor response when participants viewed a novel stimulus 

which is not an object, we could argue, similar to the study in Chapter 2, that it is not 

merely any stimulus which causes a mu suppression, but an object which is able to 

be interacted with.  

Limitations from the study conducted in Chapter 4 surround the fact we were 

interested in the somatosensory (and motor) response of an action, yet the design was 

largely oriented to vision. An ideal design would have also incorporated a trial in 

which participants were asked to reach out and touch the object in both the prime 

phase and the target phase of the trial. This could have determined whether any 

adaptation effects may exist when participants are asked to reach out and touch the 

same object two times in a row. Lastly, the region of S1 in Chapter 4 is not optimal 

since hand-drawn masks of the post-central gyrus were not made in each individual 

participant, but rather a probability map was created based on the mask of S1 created 

from the participants in Chapter 2. Furthermore, the lower number of participants in 

the vibro-tactile localiser data from this study has led us to interpret the results with 

caution. In future work, we plan to create hand-drawn masks of the post-central 

gyrus in each individual participant in order to accurately define each participant’s 

post-central gyrus along with the relevant sub-divisions of S1. Unfortunately this is a 

time-consuming task, thus implementing software such as FreeSurfer (Fischl, 2012) 

to quantify the functional, connectional and structural properties of the human brain 

could be an option for future analyses with the data collected in Chapter 4.  

Finally, it is important to note that the results from the multivariate pattern 

analyses conducted in all experimental chapters (Chapters 2, 3, and 4) were 

calculated by entering classification accuracies into a parametric t-test, or non-

parametric equivalent Wilcoxon signed-rank test, which were then compared to 

chance level across all participants. Therefore, the caveats which have been 

associated with this procedure must be addressed. As mentioned in a relatively 

recent paper by Allefeld, Görgen, and Haynes (2016), the potential problem with this 

method is the fact that the true value of classification accuracies here can never be 

below chance level, therefore this changes the meaning behind the population-level 

null hypothesis which suggests there is no effect in any participant of the population. 

As such, rejecting a null hypothesis using this method only allows one to infer that 

there are some participants within that sample in which there is an information 

content effect, rather than inferring that there is an information content effect which 
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generalises to the entire population (see also Brodersen & Chumbley, 2012). 

However, it is also important to note that despite the caveat that such a procedure 

may not be able to provide population inference, each experimental chapter in the 

present thesis compared classification accuracies across different conditions within 

the same participant populations. For example, the results in Chapter 2 found 

decoding accuracies in our experimental condition were significantly higher than 

decoding accuracies in our control conditions, thus providing evidence within our 

specific participant population for differing levels of information content effects in 

our hypothesised direction. 

5.6. Future directions 

5.6.1. Transcranial magnetic stimulation. 

There are many interesting avenues that future research could explore with 

Transcranial Magnetic Stimulation (TMS); a powerful non-invasive method of brain 

stimulation which can temporarily disrupt a targeted area of the cortex (Barker, 

Jalinous, & Freeston, 1985; Hallett, 2000). For example, a combined TMS-fMRI 

study could be used to further explore the results found in Chapter 2, whereby TMS 

could be applied to a higher-order multisensory relay brain region, such as STS. 

Since high-level areas such as STS are thought to be a multisensory convergence 

zone for these cross-modal effects (Beauchamp, 2005; Driver & Noesselt, 2008; 

Ghazanfar & Schroeder, 2006), this could hence examine whether disruption to this 

region impairs the ability for the pattern classifier to decode different familiar hand-

object sounds in S1 when compared to the results from Chapter 2. If this was found, 

using TMS would show causal evidence for the role of multisensory areas in these 

types of effects, as it would suggest multisensory influences are necessary for 

successful recognition. We have reason to believe this is possible since previous 

research has found disrupting the occipital face area leads to impairments when 

recognising faces (Pitcher, Walsh, Yovel, & Duchaine, 2007). 

If we can find causal evidence to suggest STS plays a pivotal role in 

transmitting information specific to the content of hand-object sounds to S1, another 

interesting avenue that TMS could explore could be to use a novel paradigm known 

as cortico-cortical paired association stimulation (ccPAS). This is a form of TMS 
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that induces short-term plastic changes between paired pulses at two regions of 

interest on the surface of the cortex (Romei, Chiappini, Hibbard, & Avenanti, 2016). 

With this in mind, TMS could be used to artificially induce the communication 

between two neuronal populations (e.g. between A1 and STS), to examine whether 

artificially facilitating the connections improves the categorisation of the hand-object 

sounds in S1. Similarly, such a paradigm could also be applied to the study 

conducted in Chapter 3, whereby we could artificially induce the communication 

between V1 and STS to examine whether categorisation of familiar visual objects is 

improved in this case when compared to unfamiliar visual objects or compared to a 

sham condition. 

5.6.2. Functional magnetic resonance imaging at 7-Tesla. 

Future research could also use layer-specific fMRI to investigate the laminar 

architecture underlying the cross-sensory contextual effects we have observed in the 

present thesis. For example, we could replicate the experimental designs used in 

Chapter 2 and 3 using 7-Tesla fMRI, which would allow us to investigate the layer-

specific profile of activity underlying the transmission of visual or auditory 

information to S1. In order to support predictive coding theories of human brain 

function, we would expect to find decoding of the sound of familiar hand-object 

interactions, or familiar visual object categories, in either the deep or superficial 

layers of S1, regardless of the initial stimulation modality (Muckli et al., 2015; 

Palomero-Gallagher & Zilles, 2019; Yu et al., 2019). Furthermore, we could use 

cross-classification techniques to determine whether the same neural code is 

activated in S1 for the same object category, regardless of stimulation modality. For 

example, we could present participants with both the sound of typing on a keyboard, 

and a video of a person typing on a keyboard, to investigate whether the neural 

signature detected in S1 is the same across these two independent stimulus types 

which convey similar tactile information. Such results would be of strong interest to 

the predictive coding literature and would help to richly characterize the functional 

laminar architecture underlying cross-sensory context effects in primary 

somatosensory cortex.  
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5.6.3. Training paradigms to assess familiarity effects of cross-modal 

processing.  

Another interesting area for future research could be to investigate how the 

neural representation of unfamiliar objects could change if participants are 

familiarised with 3D printed versions of the unfamiliar objects. For example, we 

could use 3D printed versions of the cubies and smoothies (see Chapter 3, Section 

3.3.2., Figure 3.1C and 3.1D respectively) taken from Op de Beeck et al. (2008). 

Here, the same design by Smith and Goodale (2015) could be used in an fMRI 

experiment both before and after participants are asked to pick up, interact with, and 

familiarise themselves with the tactile properties of the cubies and smoothies. 

Following the assumption that familiarity is needed for cross-modal connections to 

carry information related to the tactile features of objects to S1, we would expect to 

find no significant decoding in S1 when viewing novel objects if participants have 

not been trained with them, replicating Smith and Goodale (2015). However, if 

participants have been trained with 3D printed versions of these unfamiliar objects, 

thus making them familiar to the person, we would expect to be able to significantly 

decode between the tactile features of the unfamiliar objects in S1 when participants 

are only viewing them, since they would then be familiarised with the tactile 

properties of the objects. This would hence permit causal evidence that experience 

with the tactile features of the objects is necessary for these effects to emerge. 

Such a study could also be conducted between other pairs of sensory 

modalities, for example, a training element could be added to the study in Chapter 2 

which investigated the links between sounds conveying hand-object interactions and 

the classifiers ability to discriminate these sounds in S1. Here, the same fMRI design 

could be used as in Chapter 2 (see also Bailey et al., 2019) both before and after 

participants are trained to learn tactile associations with a sample of different 

arbitrary artificial sounds. Once again, following the assumption that familiarity with 

the tactile features of the sounds is needed to carry discriminable patterns of activity 

to S1, we would expect to find significant decoding for different previously novel 

sounds in S1 when participants have been trained to learn a tactile association with 

the sounds when compared to the patterns of activity elicited for the same sounds 

when participants received no training. Furthermore, participants could even learn a 

tactile association to a sound for each hand independently, thus enabling 
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investigation into whether the representation in S1 corresponds to the hemisphere 

relative to the hand they learned the haptic association with. Such a study could 

further confirm that prior knowledge with the tactile features of an object is essential 

in order to observe such cross-modal effects and provide further insight into the 

laterality of such effects in relation to each hand.  

Another experiment which could assess familiarity effects could be a 

replication of the experiment in Chapter 2, however we could ask participants to 

physically interact with familiar objects with their hands, such as asking them to type 

on a keyboard, and we could record the sound of each participant’s hand-object 

interaction. The participant could subsequently hear the sounds they personally 

created in an fMRI scanner, in addition to a series of hand-object sounds they did not 

personally create. Here, we may expect to observe stronger decoding accuracies for 

the hand-objects interaction sounds that the participant personally created when 

compared to hand-object sounds which were not personally created.  Such an 

experiment would strongly validate the idea that familiarity is a key component 

needed to observe these cross-modal effects by revealing personal familiarity creates 

the strongest representation of the sound of a hand-object interaction in S1.  

5.6.4. An improved direct measure of predictive coding with real action.  

It is worth highlighting a potential adapted paradigm from the real action 

study conducted in Chapter 4, since the results failed to find convincing evidence for 

a valid measure of predictive coding effects of action in the brain. As mentioned in 

Chapter 4, Section 4.5.1., the reason why we may not have found evidence for 

predictive coding may have been due to the fact the brief illumination of the object 

in the target phase was a sufficient amount of information for the somatosensory 

(and motor) cortex to predict their determined tactile sensation, thus producing 

comparable effects regardless of the visual prime. If this was the case, an adapted 

paradigm could instead include an auditory prime of a distinguishable hand-object 

sound that is either congruent or incongruent with the object participants are asked to 

reach out and interact with. For example, participants could view a real object, such 

as a keyboard, in which they will then be asked to reach out and touch the object. 

Then, a sound could also be played whilst participants are reaching out to touch the 

object. This sound could either be congruent (e.g. typing on a keyboard) or 
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incongruent (e.g. knocking on a door). If predictive coding (Clark, 2013; see also 

Chapter 1, Section 1.4.2) can explain the functional significance behind these cross-

modal effects, we would expect to find stronger decoding of a real object interaction 

when participants have simultaneously heard a sound that is congruent with the 

action they are making compared to hearing a sound which is incongruent with the 

action (Kok et al., 2012). We have further reason to believe this would be possible 

based on the results in Chapter 2, which found hearing such sounds produced 

discriminable patterns of information in S1. This would be an improvement to the 

paradigm in Chapter 4 since the sound could be played whilst the participant is 

simultaneously executing the action, thus making the results comparable to Yon et al. 

(2018). If such differences were found, we could provide the first evidence for 

predictive coding in the brain during action with real 3D objects.  

5.7. General conclusion 

To conclude, the research presented in this thesis has found the content of 

cross-modal influences can be decoded in the brain by revealing two important 

results. First, simply hearing the sound of different familiar hand-object interactions 

can send discriminable patterns of activity to the primary somatosensory cortex (S1), 

despite the complete absence of external tactile stimulation. This suggests cross-

modal context effects can be observed even when the dominant sense of vision is 

taken out of the equation. Second, viewing different familiar visual objects which 

imply rich haptic information can be discriminated in the mu rhythm oscillatory 

response, despite the absence of physical tactile stimulation or a motor response. 

Therefore, this thesis has also found evidence to support such cross-modal context 

effects using a different neuroimaging technique (EEG) and has established a 

potential oscillatory marker for these effects. Whilst no reliable evidence was found 

for a direct account of predictive coding to explain these cross-modal influences, this 

thesis has also provided critical insight into the development of experiments which 

can directly test the assumptions of predictive coding with real action. The research 

conducted in this thesis has, therefore, provided significant contributions to the 

literature regarding our understanding of cross-modal influences and cortical 

feedback in the human brain.    
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Appendices 

Appendix A: Pilot Experiment 

A behavioural experiment was designed to determine which sounds would be 

used for the fMRI experiment in Chapter 2. Participants listened to a selection of 

different sounds, and were asked to identify them, and rate them on a number of 

different aspects. 

Methods. 

Participants. 

Psychology undergraduate students (N = 29; 5 male) with an age range of 18-

37 years (M = 20.36, SD = 3.42) were recruited for this experiment. All participants 

reported normal or corrected-to-normal vision, and normal hearing. Written consent 

was obtained following ethical approval from the Research Ethics Committee of the 

School of Psychology at the University of East Anglia. Participants were awarded 

virtual course credits for their participation. 

Stimuli, Design & Procedure. 

Initially, three sound categories were piloted: hand-object interactions (e.g. 

typing on a keyboard, knocking on a door), mouth-object interactions (e.g. eating an 

apple, sipping a drink), and animal vocalizations (e.g. dog barking, rooster crowing). 

Royalty free sounds in WAV format were downloaded from various sound databases 

such as Soundsnap.com, YouTube.com, and from a sound database used in 

Giordano, McDonnel, and McAdams (2010). Using Audacity audio software 2.1.2, 

all sounds were cut to exactly 2000ms in length, ensuring sound filled the entire 

duration. Sounds were all normalised to the root mean square (Giordano et al., 

2013). Overall, 66 different stimuli were piloted; 33 per category, with two 

exemplars of each stimulus. The experimental session lasted between 45-60 minutes 

for each participant.  
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For the experimental task, sounds were loaded into an E-Prime 2.0 

experiment. Participants listened to each sound once through professional SONY 

MDR-7506 headphones, with the volume set at a self-reported comfortable level (as 

in Leaver & Rauschecker, 2010; Man, Damasio, Meyer, & Kaplan, 2015; Man, 

Kaplan, Damasio, & Meyer, 2012; Meyer et al., 2010). To begin a trial, participants 

were asked to press a button, which would initiate a countdown screen from three 

seconds. Following the countdown, a 2000ms sound was played whilst participants 

viewed a blank white screen. All sound stimuli were presented in a random order. 

Once a sound finished playing, participants were automatically redirected to a screen 

asking them a series of self-paced questions. The questions used in this experiment 

were derived from a series of previous research using sounds (Giordano et al., 2010, 

2013; Marcell et al., 2000; Schneider et al., 2008). The following seven questions 

were asked:  

 (1) Identification. Participants were asked to identify the sound using at least 

one verb, and one or two nouns, as seen in Giordano, et al. (2010). Participants were 

instructed to make their best guess if they did not know.  

(2) Confidence. Participants were asked to rate how confident they were with 

their decision. Ratings we on a 1-7 Likert scale from 1 (not at all confident) to 7 

(very confident).  

(3) Familiarity. Participants rated how familiar they were with the sound. In 

particular, how commonly they heard the sound in day-to-day life, not just in the 

way it was presented to them. This was important, since the main study was 

interested in how general familiarity with a sound may evoke traces of activity in 

other brain areas. Ratings were made from 1 (not at all familiar) to 7 (very familiar).  

(4) Number of sound-generating events. The next rating was how many 

sound-generating events participants believed were present. For example, a ticking 

of a clock would have many events, whereas a simple click of a mouse button would 

only have one event. It was important to control for this across our sound categories, 

since the number of sound-generating events has been found to evoke different brain 

activity patterns important for classifier performance (Meyer et al., 2011). Ratings 

were made from 1 (no events) to 7 (many events).  

(5) Action and movement related information. Next, participants were asked 

to subjectively rate the amount of action and movement related information that was 
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present for each sound – whilst this was expected to be higher for hand- and mouth- 

object interactions, participants were given no indication to this. They were simply 

asked “Did the sound convey action and movement related information?” Ratings 

were made from 1 (no action and movement related information) to 7 (much action 

and movement related information).  

(6) Vividness. Participants also rated how strongly they experienced mental 

imagery whilst listening to the sound, with the question adapted from the Bucknell 

Auditory Imagery Scale (Halpern, 2015), and also Meyer, et al. (2010). Participants 

were asked to rate “the quality of the sound in terms of how strongly it evoked an 

image in your head”. Ratings were made from 1 (no image evoked at all) to 7 (I 

could see the image very clearly).  

(7) Perspective. Finally, participants were asked to specify the perspective 

they imagined the sound to be taking place. Participants were given five options: 1. 

You were making the sound yourself. 2. Somebody else was making the sound. 3. A 

(non-human) animal was making the sound. 4. Nobody was making the sound. 5. 

Other (please specify).  

Results. 

Stimuli to be used in the main experiment were primarily selected according 

to correct identification (average of at least 90% across all participants), with high 

confidence and familiarity ratings (average of > 5 across all participants). 

Identification was analysed as strict correct (correct verb and noun, e.g. door knock) 

or a not so strict correct (either a verb or a noun, e.g. knocking). We also matched 

the average number of sound-generating events across our final sound categories 

(see Table A1 and A2 for final stimuli ratings of hand-object interactions and animal 

vocalizations respectively).  

For the final stimulus set, it was decided that mouth-object sounds would be 

removed due to the ambiguity of these sounds conveying purely a mouth-related 

action. For example, sounds such as eating an apple or brushing teeth would also 

involve a hand movement. Thus, ratings from the mouth-object sounds have been 

excluded. Following this decision, we then decided to include pure tones as an 

unfamiliar control category, in which the sounds were created by Bruno Giordano. 



APPENDICES  196 

 

 

Once the final stimulus set was decided, sounds were re-normalised to the root mean 

square (Giordano et al., 2013).   

Final selected stimuli. 

1) Familiar stimuli: Five hand-object interactions; typing on a keyboard, 

bouncing a basketball, knocking on a door, crushing paper, and sawing wood. 

2) Familiar control stimuli: Five animal vocalizations; dog barking, birds 

chirping, rooster crowing, fly buzzing, and frog croaking. Animal sounds 

were chosen as a familiar sound control category, to rule out the idea that any 

familiar sound can evoke traces of activity to primary somatosensory cortex 

(Lewis, 2005; Lewis, Phinney, Brefczynski-Lewis, & DeYoe, 2006; Lewis, 

Talkington, Puce, Engel, & Frum, 2011).  

3) Unfamiliar control stimuli: Five pure tones (different frequencies of the same 

tone; 400Hz, 800Hz, 1600Hz, 3200Hz, and 6400Hz). Tones were included as 

an unfamiliar control category (Lewis, 2005; Mesulam, 1998) to rule out the 

idea that merely any sound can lead to discrimination in primary 

somatosensory cortex.  
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Table A1. 

Mean ratings of selected hand-object interaction stimuli (N = 29) 

Stimuli Confidence Familiarity Sound 

gen events 

Action info Perspective Vividness Strict correct Not strict correct 

Typing keyboard 1 5.93 5.89 5.68 5.07 1.75 5.68 64.29% 96.43% 

Typing keyboard 2 5.57 5.86 5.43 5.11 1.54 5.43 60.71% 89.29% 

Door knock 1 6.79 6.25 5.46 5.50 1.79 5.93 96.43% 100.00% 

Door knock 2 6.36 5.86 5.07 5.43 1.75 5.89 82.14% 85.71% 

Sawing wood 1 6.36 4.71 3.93 5.50 1.82 5.79 67.86% 100.00% 

Sawing wood 2 5.79 4.36 4.64 5.61 1.89 5.93 67.86% 92.86% 

Basketball bounce 1 5.79 4.75 4.82 5.39 1.86 6.07 78.57% 85.71% 

Basketball bounce 2 6.32 4.82 4.14 5.50 2.14 5.89 78.57% 85.71% 

Paper crush 1 5.54 5.32 3.54 5.11 2.04 5.00 64.29% 100.00% 

Paper crush 2 4.93 5.32 3.96 5.11 1.79 5.36 92.86% 96.43% 

AVERAGE: 5.94 5.31 4.67 5.33 1.84 5.70 75.36% 93.21% 
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Table A2. 

Mean ratings of selected animal vocalization stimuli (N = 29) 

Stimuli Confidence Familiarity Sound gen 

events 

Action info Perspective Vividness Strict correct Not strict correct 

Dog bark 1 6.89 6.07 4.68 4.00 2.96 6.43 100.00% 100.00% 

Dog bark 2 6.93 6.07 4.75 3.96 3.00 6.25 96.43% 100.00% 

Bird chirp 1 6.75 6.46 5.29 4.04 3.00 6.04 85.71% 100.00% 

Bird chirp 2 5.39 4.89 4.96 3.61 3.00 5.04 71.43% 96.43% 

Rooster crow 1 6.54 4.61 3.82 3.00 3.07 5.86 57.14% 100.00% 

Rooster crow 2 6.50 4.79 3.75 3.29 3.00 5.89 60.71% 100.00% 

Frog croak 1 6.57 4.43 4.21 3.32 3.00 5.43 60.71% 100.00% 

Frog croak 2 6.61 4.61 4.07 3.32 2.93 5.86 60.71% 100.00% 

Fly buzz 1 6.11 5.54 4.39 5.18 2.96 5.82 67.86% 96.43% 

Fly buzz 2 6.32 5.64 4.96 4.89 3.00 6.00 71.43% 100.00% 

AVERAGE: 6.46 5.31 4.49 3.86 2.99 5.86 73.21% 99.29% 
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Appendix B: Miniature piezo-tactile stimulator 

  

Figure B-1. Image of miniature Piezo-Tactile Stimulator. Demonstration of the 

three pads placed on the index finger, ring finger, and palm of the left hand.  
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Appendix C: All hand-drawn masks of the post-central gyri 

 

Table C1. 

Number of voxels (and associated cubic volume) in the hand-drawn post-central 

gyrus for each hemisphere per participant (pooled = left and right combined). 

Means and standard deviations for each hemisphere are also specified 

 Number of Voxels 

 

Cubic Volume (cm^3) 

Participant Right Left Pooled Right Left Pooled 

1 2373 2257 4630 19.0 18.1 37.0 

2 1755 2097 3852 14.0 16.8 30.8 

3 1997 1787 3784 16.0 14.3 30.3 

4 1638 1950 3588 13.1 15.6 28.7 

5 2016 2170 4186 16.1 17.4 33.5 

6 1805 1738 3543 14.4 13.9 28.3 

7 2180 2303 4483 17.4 18.4 35.9 

8 1950 2131 4081 15.6 17.0 32.6 

9 2183 2331 4514 17.5 18.6 36.1 

10 1790 2296 4086 14.3 18.4 32.7 

Mean 1969 2106 4075 15.7 16.9 32.6 

St Dev 229 215 385 1.84 1.72 3.08 
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Figure C-1. Anatomical masks of the lateral post-central gyrus (PCG) for all 

participants. Figures display a 3D rendered version of the right (blue), left (red) and 

pooled hemispheres. Voxels in yellow indicate the hand-selective voxels (see 

Chapter 2, Section 2.3.6.2. for more information). 
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Appendix D: Anatomical masks of the additional ROI’s in Chapter 2 

 

 

  

Figure D-1. Image of the four additional anatomical masks taken from the Jüelich 

Anatomy toolbox. Masks overlaid on the average of 10 participants Talairach 

brains. Note each mask was transformed to each individual participants ACPC 

brain.  
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Appendix E: Table of p values from the univariate deconvolution ANOVA  

 

 

  

Table E1 

Results from the univariate deconvolution ANOVA, showing main effects and 

interactions for each ROI. Significant results in bold.  

ROI Main effect of hemisphere 

S1mask F1.001, 9.013 = .175, p = .686, ηp
2 = .019 

S1localiser F1.200, 10.798 = .342, p = .610, ηp
2 = .037 

A1 F1.001, 9.008 = .056, p = .818, ηp
2 = .006 

PMC F1, 9.001 = 1.111, p = .319, ηp
2 = .110 

M1 F1.001, 9.005 = .825, p = .387, ηp
2 = .084 

V1 F1, 9.003 = .803, p = .393, ηp
2 = .082 

  

ROI Main effect of sound 

S1mask F1.601, 14.409 = 1.150, p = .332, ηp
2 = .113 

S1localiser F1.369, 12.320 = 1.592, p = .238, ηp
2 = .150 

A1 F1.630, 14.672 = 14.061, p = .001, ηp
2 = .610 

PMC F1.973, 17..755 = 2.840, p = .086, ηp
2 = .240 

M1 F1.716, 15.444 = 2.906, p = .091, ηp
2 = .244 

V1 F1.370, 12.331 = 1.976, p = .185, ηp
2 = .180 

  

ROI Interaction between hemisphere and sound 

S1mask F1.480, 13.322 = 1.266, p = .301, ηp
2 = .123 

S1localiser F1.981, 17.827 = .224, p = .799, ηp
2 = .024 

A1 F1.579, 14.212 = 9.319, p = .004, ηp
2 = .509 

PMC F1.463, 13.163 = .388, p = .622, ηp
2 = .041 

M1 F1.599, 14.389 = 1.515, p = .250, ηp
2 = .144 

V1 F1.690, 15.214 = .363, p = .667, ηp
2 = .039 
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Appendix F: Actual significant pixels from cluster-based analysis in each visual 

object category and ROI  

 

 

 

 

 

 

 

  

Figure F-1. Masks of actual significant pixels in each condition and ROI. This 

data was not analysed and is shown for visual purposes. 
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Appendix G: Anatomical masks of the ROI’s in Chapter 4 

 

 

 

 

 

 

 

 

 

  

Figure G-1. Image of the anatomical masks taken from the Jüelich Anatomy 

toolbox and the probability map of S1. Masks overlaid on the average of 18 

participants Talairach brains. Note each mask was transformed to each individual 

participants ACPC brain.  
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Appendix H: Probability map of the S1localiser cube from 9 participants  

  

Figure H-1. Image of the probability map created from the S1localiser cubes from 9 

participants. Note the probability map is created in Talairach space and overlaid on 

the average of 18 participants Talairach brains  
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Appendix I: Plots for all univariate deconvolution analysis 
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Figure I-1. Deconvolution plots of all volumes in each ROI. Note volumes 5 and 

6 were extracted and averaged for the analysis.   


