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Abstract 

I 

Abstract 

Rapid urbanization and industrialization in developing countries have stimulated 

energy consumption and resulted in environmental degradation. One of the global 

challenges today is to sustain socioeconomic development under the constraints of 

limited resources and without compromise in environmental wellness, climate 

resilience or function. Sustainable production and consumption is a promising way 

out of this grand challenge. A fundamental shift towards sustainable production and 

consumption patterns relies on a detailed characterization of material and emission 

flows between producers, consumers and environmental receptors.  Such information, 

however, is greatly lacking in developing countries for both national and subnational 

levels. 

This study presents an integrated assessment of the interlinkages between energy, 

pollution and socioeconomic demands in China and its provinces with the thread of 

production- and consumption-based emissions. The double-digit growth of China’s 

economy before 2011 and its slow-down in the “new normal” period since then, rapid 

urbanization and rise of middle income class, and recession in export growth have 

resulted in dramatic changes in socioeconomic dimensions.  It is important to 

understand how the socioeconomic drivers have evolved and fuelled the energy 

consumption and air pollution formation.  

Production- and consumption-based accounting approaches provide two distinct yet 

complementary angles to understand the nexus of socioeconomic demands, energy 

and pollution.  This study develops an integrated assessment framework to depict 

material and emission flows between producers, consumers and environmental 

receptors.  A four-stage research framework is proposed.  It starts from the 

compilation of a primary energy consumption matrix, followed by the establishment 

of production-based inventories of greenhouse gases and air pollutants.  Energy and 

emission accounts are then connected to socioeconomic accounts through 

environmentally-extended input-output (EEIO) analysis and decomposition 

techniques.  Socioeconomic drivers that are responsible for energy consumption or 

emissions can be revealed, including entities such as intermediate sectors and final 

consumers and macroeconomic factors such as population growth, economic growth, 

industrial structure, energy intensity and energy mix.  Meanwhile, production-based 
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emissions marked by different socioeconomic drivers are fed into environmental 

modelling tools such as an air quality model.  Through environmental models, a vast 

variety of environmental end-points can be evaluated, including but not limited to the 

ambient air pollutant concentration, air quality attainment rate, pollution formation 

regimes and death toll.  With the corresponding relationship between production- and 

consumption-based emissions, socioeconomic demands and environmental 

consequences can be connected in an explicit and quantitative way. 

The proposed framework has been demonstrated at the provincial and national levels 

in China to advance the understanding of causes and effects of environmental issues 

in a socioeconomic context.  Recognizing the central role of energy consumption in 

climate and air pollution problems, the production-based patterns of energy 

consumption in 30 provinces in China and their socioeconomic drivers are first 

investigated.  Energy elasticity (the percentage change in energy consumption to 

achieve a 1% change in national GDP) in China have decreased continuously from 

2003 to 2016. Starting at a level of 1.11 from 2003 to 2007, the energy elasticity 

dropped to 0.58 from 2007 to 2011, followed by an even lower value of 0.42 from 

2011 to 2016. The reduction in the growth of energy consumption is even more 

prominent at the provincial level. Eight of the provinces saw declines in their total 

primary consumption from 2011 to 2016. They differed from their counterparts since 

2011, when the decreasing effect of energy intensity was enhanced and, for the first 

time, surpassed or approximated the increasing effect of economic growth.  The 

catching-up was more associated with the significant reduction of energy intensity 

rather than the slowdown of economic growth.  New decreasing factors such as the 

share of coal and industrial structure change were also emerging to curb the growth.  

In addition, six provinces have levelled off their total primary consumption and 

decreased the combined consumption of coal and petroleum.  Their driver 

mechanisms were similar but the share of cleaner fuels, e.g., natural gas and non-

fossil fuels, increased significantly.  Nevertheless, such declines were demonstrated to 

be initial rather than structural changes.  To secure the trend or fasten transition, one 

path is to sustain the strong decreasing effect mainly from energy intensity, which is 

applicable to Hebei, Liaoning, Jilin, Henan, Hubei and Yunnan, whose energy 

intensities are still high (3.0~5.8 tce/10
4
 $USD in 2016).  The other path is to 

complement energy intensity with new decreasing drivers, which better suits the other 
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provinces which have reached relatively low levels of energy intensity and have less 

potential for further reduction.   

Another two case studies at province levels are conducted.  One is to investigate the 

demands behind air pollutant emissions in a fast developing region in China. 

Guangdong is a typical fast-developing region with annual GDP growth around 11% 

and China’s export industry hub. It is beset with air pollution problems featured by 

fine particulate matter (PM2.5) and ground-level ozone (O3). This study reveals that 

the varying trends of air pollutants from 2007 to 2012 were associated with 

production-based control measures and changes in economic structure and trading 

patterns. From the consumption perspective, due to the stringent control of SO2 in 

power plants and key industries, SO2 emissions saw substantial declines, while the 

less controlled PM10, PM2.5, non-methane volatile organic compounds (NMVOCs) 

and CO emissions continued to grow. The contributions of the cleaner service sectors 

to all seven pollutants increased. This increase could be a consequence of the 

expansion of the service sector, which grew by 41% in terms of its contributions to 

Guangdong’s GDP in 5 years. Meanwhile, exports accounted for more than 50% of 

the emissions, but their share had started to decrease for most pollutants except 

NMVOCs and CO. It suggests that Guangdong is moving towards a cleaner 

production and consumption pathway. The transformation of the industrial structure 

and increase in urban demand should help to further reduce emissions while 

maintaining economic development. 

The other case study focuses on CO2 emission in a less developed region in China. 

The production- and consumption-based characteristics of Tibet's CO2 emissions and 

its linkages with other regions in China are studied. Results show that the 

consumption-based CO2 emissions in Tibet (18.8 Mt, similar to Guinea's emissions in 

2015) were three times as high as the production-based estimate (6.2 Mt). Tibet 

displays unique emission patterns with the highest ratio of consumption- to 

production-based emissions in China, which are more similar with the east developed 

provinces rather than its counterparts in west China. More than half of Tibet's 

consumption-based emissions are supported by Qinghai, Hebei, Sichuan, and others, 

enabled by the Qinghai-Tibet railway that connected Tibet to China's national railway 

system. High carbon footprint but low life expectancy is found in Tibet, suggesting 
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the emerging need of a more sustainable consumption pathway under the intensifying 

interregional connections by Belt and Road Initiative. 

This study also presents a national study on the nexus of demand-emission-pollution-

health.  While China has made enormous progress in combatting PM2.5 pollution, its 

O3 exposure metrics increased by more than 50% from 2013 to 2017. This study 

investigates the socioeconomic drivers behind the O3 precursor emissions (NMVOCs, 

NOx and CO) and their effects on O3 formation chemistry, ambient O3 level and 

mortality.  As the world’s factory, goods produced in China for foreign markets lead 

to an increase of domestic non-methane volatile organic compounds (NMVOCs) 

emissions by 3.5 million tons in 2013; about 13% of the national total or, equivalent 

to half of emissions from European Union (EU). Export demand driven emissions 

have mixed impacts on China’s ozone (O3) formation, but they generally contribute 

about 6~15% of peak O3 levels (6~10 µg/m
3
) caused by human activities in the 

coastal area resulting in an estimated 4615 (1514 ~ 7600) premature deaths. By 

benchmarking emission intensity in China to EU, the export footprint and NMVOCs 

emissions from the whole production capacity can be reduced by nearly 60% at 

moderate costs (at an annualized cost equivalent to 0.05% to 0.30% of industrial 

output). Such efforts will slow down the upward trend of O3 with notable health 

benefits.  For a substantial attenuation of O3 pollution in China, however, concerted 

actions addressing domestic demands from urban and rural household are in great 

need. 

This PhD study presents an integrated assessment framework and captures how 

socioeconomic demands in China evolved and acted as driving forces of national and 

regional energy consumption, air pollutant emissions and pollution formation.  In 

addition to end-of-pipe treatments, the roots of environmental problems need to be 

understood in socioeconomic context. The booming socioeconomic demands are 

responsible for the rise of energy consumption and poor air quality, but China as a 

whole and some of its more developed regions have been under a crucial transition 

towards sustainable production and consumption while maintaining the prosperity of 

individual and society. Experiences in China can be mirrored to other developing 

countries to foster sustainable production and consumption patterns.  
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Chapter 1 Introduction 

Many developing countries have seen substantial socioeconomic improvements in the 

past decade, but in return they are confronting severe challenges to sustain fast growth 

in a resource- and emission-constrained world.  However, not all forms of 

socioeconomic growth cause damage to the environment.  Environmental 

sustainability can be integrated with economic growth and welfare through 

responsible consumption and production.  To enable such a transition, nevertheless, 

lots of efforts are still needed in the developing countries from knowledge gap, 

capacity building to institutional setting. 

Experiences in China serve as valuable real-world examples for the world to fathom 

the feasibility and progress of responsible consumption and production in developing 

economies.  This chapter provides an introduction to socioeconomic development and 

transition, energy consumption patterns, and air pollution characteristics in China.  

Under such backdrops, research aims, objectives and framework of this study will be 

proposed.  

1.1. China’s socioeconomic status 

The socioeconomic development of China can be reflected from its national gross 

domestic product (GDP), main sectors to the increase of GDP, per capita GDP, 

urbanization rate, rural poverty rate and household consumption expenditure.  In 

general, China has made huge progress in its socioeconomic development by 

maintaining high GDP growth (>7% per annual), increasing per capita GDP by more 

than 4 times and lifting 384 million rural population out of poverty 
1
 from 2000 to 

2017.  

                                                 

 

1
 Poverty is defined as annual income less than 1274 yuan (2010 constant price) per head. 



Chapter 1 

2 

China’s economy saw high growth before global financial crisis in 2007 and is under 

crucial transitions in the “new normal” period which aims at “low but high-quality 

growth”. As shown in Figure 1-1, its national GDP grew by 10.7% annually from 

2000 to 2007, then slowed down to around 8.2% from 2008 to 2017.  Since China’s 

total population is generally stable over the years, per capita GDP grew at similar 

spaces as the national GDP.  The share of GDP by sectors also changed significantly, 

as shown in Figure 1-2.  Contribution from primary industries dropped from 19% in 

2000 to 8% in 2017.  The increase of GDP was mainly induced by the rapid growth of 

secondary and tertiary industries, both grew by more than 9% every year.  By 2017, 

tertiary industries, including wholesale and retail trades, transport, storage and post, 

hotel and catering, finance, real estate and others, have made up 51% of national GDP.   

 

Figure 1-1 China’s annual growth in national GDP and per capita GDP  

Data source: National Bureau of Statistics, P.R.China, 2018a. 
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Figure 1-2 Share of national GDP by sectors in 2000 (inner pie) and 2017 (outer pie)  

Data source: National Bureau of Statistics, P.R.China, 2018a. 

 

Though China’s total population remains relatively stable after 2000, the movement 

of people from rural to urban areas is enormous.  In 2000, approximately 459 million 

people lived in the rural areas. By 2017, the number of city dwellers had reached 813 

million, accounting for 58.53% of China’s total population.  Such a movement entails 

significant change of consumption patterns and final demands, which is partly 

revealed by recent studies using input-output analysis in China.  In the wake of fast 

urbanization, the percentage of poor rural population had decreased from 49.8% in 

2000 to 3.1% in 2017, equal to 384 million people.   

Household consumption expenditure increased rapidly but the gap between rural and 

urban households is still huge.  As Figure 1-3 showed, consumption expenditure in 

urban households tripled from 2000 to 2017, reaching 29914 yuan (in 2015 constant 

price).  Growth in rural household was even higher, with expenditure 3.57 times that 

of 2000.  The absolute differences between urban and rural household, however, 

remain large.  Despite of rapid growth rate, rural household expenditure in 2017 was 

equivalent to the value of urban household in 2002, or only 37.9% that of urban 

household in 2017.   



Chapter 1 

4 

 

Figure 1-3 Consumption expenditure of urban and rural household (per head, constant price in 

2015, yuan) 

Data source: National Bureau of Statistics, P.R.China, 2018a. 

 

In addition to the disparity in urban and rural households, provincial differences are 

also notable.  China is a vast country that comprises more than 30 administrative 

regions widely divergent in their development statuses.  If the per capita GDP of each 

province in China was compared to the national total of other countries in the globe, 

one would find that the gap between provinces in China is equal to the differences of 

more than 80 countries.  Taking the data in 2017 as an example (as shown in Figure 1-

4), Beijing had the highest per capita GDP among all the provinces and was 

comparable to the national average of Estonia in 2017.  Estonia was ranked as 56
th

 

highest among 264 countries in the globe in terms of per capita GDP (International 

Monetary Fund, 2018).  On the contrary, Gansu had the lowest per capita GDP in 

China which was around the national average of Guyana.  Per capita GDP of Guyana 

was ranked as 141
st
 in the world in 2017 (International Monetary Fund, 2018).   
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Figure 1-4 Per capita GDP by provinces in 2017  

Data source: National Bureau of Statistics, P.R.China, 2018a. 

 

1.2. China’s energy consumption patterns 

China is now the world’s largest energy consumer, accounting for about 22% of the 

global budget in terms of the total primary energy supply in 2017 (International 

Energy Agency (IEA)., 2017).  The growth of energy consumption does not strictly 

follow that of economic growth, as shown in Figure 1-5.  To illustrate the efficiency 

of energy consumption, elasticity of energy consumption, which is the percentage 

change in energy consumption to achieve one per cent change in national GDP, is also 

introduced in Figure 1-5.  Energy consumption in China increased steeply before 

2004, at a rate that was much faster than GDP growth.  Energy elasticity was highest 

in 2004 with the value of 1.67, indicating energy consumption around 2004 was 

relatively inefficient.  Growth of GDP outpaced that of energy consumption after 

2005, leading to energy elasticity that was less than 1.  Energy elasticity reached an 

all-time low in 2015, with only 0.14% growth of energy consumption to achieve 1% 

GDP growth.  Nevertheless, total energy consumption has rebounded since 2016.  
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Figure 1-5 Growth of energy consumption and GDP, and elasticity of energy consumption 

from 2000 to 2017 

Data source: National Bureau of Statistics, P.R.China, 2018b. 

 

The rebound of energy consumption is mainly driven by the rapid growth of non-

fossil fuels and natural gas in recent years.  As shown in Figure 1-6, while coal is still 

the dominant fuel, its consumption has plateaued from 2011 to 2016.  Before 2011, 

coal consumption grew by 11% per year, then slowed down to around 4% per year.  

Relative contributions by provinces are stable.  Jiangsu, Shandong, Hebei, Inner 

Mongolia, Shanxi, Henan and Liaoning are the major consumers within China in 

terms of primary energy.  The growth of petroleum consumption saw similar trends.  

From 2003 to 2011, four years in a row, annual growth of petroleum consumption was 

13% and 8%, respectively.  After 2011, petroleum consumption grew by 5% per year.  

Provinces in the east and south China are major drivers, including Jiangsu, Shandong, 

Shanghai, Zhejiang and Guangdong. 

On the other hand, consumption of natural gas and non-fossil fuels in China increased 

rapidly since 2011.  The annual growth rate of natural gas and non-fossil fuels was 11% 

and 8% from 2011 to 2016.  As a result, dependence of coal was decreasing and the 

energy mix was decarbonizing.  Percentage of coal dropped from 76% in 2003 to 71% 

in 2016.  Share of natural gas and non-fossil fuels, in turn, increased from 6% to 11% 

during the same period. 
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Figure 1-6 Energy consumption by fuel types and provinces from 2003 to 2015. 

Data source: National Bureau of Statistics, P.R.China, 2018b. 

 

1.3. Air pollutant emissions and control 

Air pollution is one of the environmental problems of most concern in China.  

Emission from China contributes 18-35% of global air pollutant emission budget 

(Hoesly et al., 2018).  Major air pollutants in China include sulphur dioxide (SO2), 

nitrogen oxides (NOx), carbon monoxide (CO), nonmethane volatile organic 

compounds (NMVOCs), ammonia (NH3), and particulate matter (PM).  Their 

emissions from human activities are responsible for reduced visibility and frequent 

haze events characterized by high concentrations of PM2.5 (particulate matter with an 

aerodynamic diameter of less than 2.5 μm) and ground-level ozone (hereafter referred 

to as “O3”).  In particular, the O3 here refers to the “bad” O3 in the troposphere, which 

irritates the respiratory system when inhaled and significantly increases the risk of 

death from respiratory causes (Jerrett et al., 2009).   

For decades air pollutant emissions have paralleled economic growth, but a trend of 

decoupling is emerging, especially after China enacted the Clean Air Action and 

implemented the new air quality standard.  China has strengthened its emission 
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standards since 2010, covering all the major source sectors including thermal power 

plants, industrial boilers, residential sector, and vehicles (Zheng et al., 2018a).  Take 

coal-fired power plants as examples, emission limits were 400 mg/m
3
 for SO2, 450-

1100 mg/m
3
 for NOx and 50 mg/m

3
 for TSP before 2012.  Since 2012, emission 

limits have been tightened to 100 (new units) or 200 (existing units) mg/m
3
 for SO2, 

100 (new and existing units) mg/m
3
 for NOx and 30 (new and existing units) mg/m

3
 

for total suspended particulate (TSP).  Though the emission standard proposed in 

2012 was ambitious, its implementation turned out to be a success.  In December 

2015, China pledged to reduce emissions from coal power plants by 60% by 2020 

with “Ultra-low” emission standard.  Emission limits for SO2, NOx and TSP are 

lower at 35, 50, and 10 mg/m
3
, respectively.   

Regarding industrial sectors, efforts were highlighted in improving efficiency and 

strengthen emission standards.  On the one hand, outdated industrial capacities have 

been phased out.  Small and inefficient workshops that failed to meet the energy 

efficiency, environmental or safety standards have been retired and replaced with 

efficient facilities.  As a result, energy intensity (energy consumed per unit of 

industrial gross output) had decreased by 3.3%, 2.9%, 1%, 4.2% and 3.0% for steel, 

cement, aluminium, ethylene and synthetic ammonia, from 2013 to 2016 (National 

Bureau of Statistics, 2018b).  On the other hand, new industrial emission standards 

have been put into effect since 2013.  Emission-intensive industries have been 

targeted, such as iron and steel, cement, brick, coke, glass and chemical industries.  

Emission standard for cement industry, for example, has tightened from 800 mg/m
3
 

for NOx and 50 mg/m
3
 for TSP before 2014 to 400 mg/m

3
 (NOx) and 30 mg/m

3
 (TSP) 

after 2014.  For coal boilers in industrial sectors, SO2 and TSP emission standard 

before 2014 was 900 mg/m
3
 and 80-250 mg/m

3
, respectively, and NOx emission was 

not regulated.  New emission standard has set lower values for SO2 (300 mg/m
3
) and 

TSP (50 mg/m
3
) and included NOx (300 mg/m

3
). 

Emissions from transport sector are regulated by strengthening vehicle emission 

standards, retiring old vehicles, and improving fuel quality.  Following the Euro III 

standard enacted in 2008, standards for newly-registered light duty gasoline vehicles 

and diesel vehicles have been upgraded to Euro V in 2017.  For heavy duty gasoline 

vehicles, the current emission standard is in line with Euro IV.  Fuel economy, 

meanwhile, has reduced from 8.0 L/100 km in 2010 to 6.9 L/100 km in 2015, for new 
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cars.  Efforts in the residential sector mainly target direct coal-burning activities with 

alternatives such as natural gas and electricity.  Fuel switch has been promoted in 

millions of residences in north China.   

Such measures turned out to be successful with decreased air pollutant emissions and 

improved air quality.  SO2 emission peaked at 2011 with 29.1 Tg then decreased 

sharply to 10.5 Tg in 2017, as shown in Figure 1-7a.  Similarly, NOx emission has 

peaked at 29.2 Tg in 2012 and dropped to 22.0 Tg in 2017.  Primary PM2.5 emission is 

also under control and decreases steadily by 7% per year from 2012 to 2017. 

Air pollution control efforts had been devoted to SO2, NOx and PM before 2017, with 

strict end-of-pipe treatments from fossil fuels combustion.  They fell short in 

NMVOCs and NH3, which are mainly emitted by non-combustion sources.  For 

example, emissions of NMVOCs increase persistently from 2000 to 2017, as shown in 

Figure 1-7b.  While SO2 and NOx each decreased by 62% and 17% after China’s 

Clean Air Actions, NMVOCs emissions grew by 13%, from 2010 to 2017 (Figure 

1-7b).  Emissions of CO2 seem to peak around 2013, partly thanks to the switch from 

coal to other fuels and the improvement of fuel quality driven by air quality concerns.  

Nevertheless, since most end-of-pipe treatments for air pollutants are not effective for 

CO2 (or even increase its emissions due to the extra energy burden to run the air 

pollutant emission treatment devices), the decrease of CO2 emissions after the plateau 

in 2013 should be much slower than other air pollutants such as SO2 and NOx.  Some 

studies also argue that CO2 emission rose in 2018 (Figueres et al., 2018). 
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Figure 1-7 Emissions of (a) SO2 and NOx, (b) PM2.5 and NMVOC, and (c) CO2 in China 

Data source: SO2, NOx, PM2.5 and NMVOC emissions were retrieved from the databases of 

the Greenhouse Gas - Air Pollution Interactions and Synergies (GAINS) (International 

Institute for Applied System Analysis, 2018) and multi-resolution emission inventory for 

China (MEIC) (Tsinghua University, 2018); CO2 emissions were from China Emission 

Accounts and Datasets (CEADS) (Shan et al., 2017), Carbon Dioxide Information Analysis 

Centre (CDIAC) (Boden et al. 2016), Emission Database for Global Atmospheric Research 

(EDGAR) (Olivier et al., 2016) and Global Carbon Budget (GCB) (Le Quéré et al., 2016). 

 

1.4. Ground-level ozone pollution and its formation regime in 

China 

With focused control on primary PM2.5, sulfur dioxide (SO2) and nitrogen oxide 

(NOx), the average PM2.5 concentration in 74 cities of key control decreased by 35% 

in 2017 (47 µg/m
3
), compared to a level of 72 µg/m

3
 in 2013 (China National 

Environmental Monitoring Centre, 2018a).  Nevertheless, due to the lax control in 

NMVOCs, which is one of the key precursors of O3 in the troposphere, O3 level 

shows a worrying trend.  The hourly concentration of O3 in China increased by 16~27% 

from 2013 to 2017 (Figure 1-8), while the O3 exposure metrics (cumulative O3 

concentration) increased even higher by 57~77% (Lu et al., 2018).  The present extent 
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of O3 pollution, in terms of the exposure of humans and vegetation, is found greater in 

China than in any other developed region of the world with comprehensive O3 

monitoring (Lu et al., 2018).  With initial progress being made from particulate 

control, China still has a long way to go to curb the rise of O3. 

 

Figure 1-8 Ozone levels in 74 cities of key control in China in terms of (a) 90
th
 percentile of 

max 8-h O3 average in 2017 and (b) relative changes compared to 2013 

Data source: Ozone levels in 74 cities were collected from China National Environmental 

Monitoring Centre (2018a). 

 

Unlike most air pollutants, O3 in the troposphere is not directly emitted by human 

activities.  Rather, it is secondary photochemical pollutant formed via a series of 

complex chemical processes driven by sunlight.  Figure 1-9 schematically shows the 

key players involved in the formation of O3 in the troposphere (Jenkin et al., 2000).  

The mechanisms have been well-established and can be found in previous studies 

(Atkinson, 1990&1994).   
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Figure 1-9 Schematic representation of the free radical-catalysed oxidation of a generic 

saturated hydrocarbon, RH, to its first generation oxidized product, R-HO. The key role played 

by the NOx species in the chain-propagating process is also illustrated, which leads to the 

generation of O3 as a by-product (Adapted from Jenkin et al. (2000)). 

 

From the perspective of air pollution control, O3 formation is mainly driven by two 

major classes of directly emitted precursors: NOx and NMVOCs.  The relationship 

between O3, NOx and NMVOCs is nonlinear and sensitive to the relative ratio of 

NOx and NMVOCs in the atmosphere.  In other words, the maximum O3 

concentration that is ultimately formed is not directly proportional to the initial 

atmospheric concentrations of NOX and NMVOCs.  First proposed by Haagen-Smit 

and Fox (1954), O3 isopleth shows the maximum O3 concentration that result from 

initial mixtures of NOX and NMVOCs.  As shown in Figure 1-10, the contour lines 

represent the maximum O3 concentration.  For dots on the same contour line, their 

initial conditions (NMVOCs and NOx concentrations or emission rates) are different 

but would result in same peak O3 concentration.  An O3 isopleth exhibits a diagonal 

ridge from the lower left to the upper right corner of the graph.  The diagonal ridge 

divides the graph into two areas characterized by different O3-NOx-NMVOCs 

relationships.  Figure 1-10 shows a typical set of O3 isopleths developed by empirical 

kinetic modelling approach (Dodge, 1977).  It should be noted that Figure 1-10 uses 

the term of volatile organic compounds (VOC) instead of NMVOCs.  VOC in Figure 

1-10 thus includes methane and NMVOCs.  However, the relationship between O3, 

NOx and VOC illustrates in Figure 1-10 is generally applicable to NMVOCs as well.   
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When the initial conditions are to the right of the ridge line, lowering NOx 

concentration either at constant VOC concentration or in conjunction with lowering 

VOCs leads to lower peak O3 concentration.  Such an O3 formation regime is 

generally observed in rural areas and suburbs downwind of cities (Ou et al., 2016), 

and it is said to be “NOx-limited”.  Under such a regime, the supply of organic peroxy 

radicals (RO2) and peroxy radicals (HO2) is ample to convert nitric oxide (NO) to 

nitrogen dioxide (NO2).  The photolysis of NO2 serves as the only important source of 

O3 formation and the decrease of NOx directly results in a decrease in O3.  When the 

initial condition is to the left of the ridge line, lowering VOC at constant NOx will 

result in lower peak O3 concentration.  Peak O3 concentration will also decrease if 

VOCs and NOx are reduced proportionately and simultaneously.  However, lowering 

NOx at constant VOC will result in increased peak O3 concentration until the ridge 

line is reached.  In other words, NOx reduction in some conditions could lead to 

increased O3, as a result of the complex chemistry of O3 formation (Atkinson, 

1990&1994; Jenkin et al., 2000).  Such an O3 formation regime is usually found in 

highly polluted urban areas with low VOC/NOx ratio and is called “VOC-limited” (or 

“NMVOC-limited” hereinafter). 

 

Figure 1-10. Example of an isopleth diagram illustrating calculated peak ozone concentrations 

generated from various initial concentrations of NOx and a specified VOC mixture using the 

empirical kinetic modelling approach (Adapted from (Dodge, 1977)). It should be noted that 

this figure uses the term of VOC instead of NMVOCs.  VOC here thus includes methane and 

NMVOCs.  However, the relationship between O3, NOx and VOC illustrates here is generally 

applicable to NMVOCs as well.   
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The O3-NOx-NMVOCs relationship has important implications on the development 

of O3 control strategies.  The isopleth graph shows that NOx reduction will lead to 

significantly different effects on peak O3 concentration depending on the initial 

NMVOCs/NOx ratio.  The NMVOCs/NOx emission ratios are therefore crucial to 

determine the O3 regime and consequently, the effectiveness of control strategies.   

 

1.5. Research Aims, Objectives and Framework 

1.5.1. Research aims and objectives 

The past decade saw substantial changes in China’s socioeconomic status, energy 

consumption patterns and pollution characteristics.  The interactions between the three, 

however, are less understood.  This study aims to advance the methodologies and 

knowledge in integrated assessment of energy, pollution and socioeconomic demands.  

Specifically, the focus will be on China as a whole and its provinces in various 

development stages.  Great progress in China’s socioeconomic development, its 

predominant role in global energy consumption and persistent pollution in the home 

land together make it a unique platform to demonstrate the methods and study the 

roles of socioeconomic demands in energy and pollution issues.  Experiences in China 

will serve as real-world examples on how to reconcile the conflicts between 

socioeconomic development urges, limited energy, and environmental degradation.   

The fulfilment of research aim is realized by objectives specified as follow. 

 Develop an integrated assessment framework to depict material and emission 

flows between producers, consumers and environmental receptors; 

 Demonstrate the proposed framework (the whole flow or part of it) in national 

and subnational studies; 

 Identify the socioeconomic drivers of China’s primary energy consumption 

and understand the mechanism of declined energy consumption in some 

provinces since 2011; 

 Advance the understanding of pollution causes from the demand side, 

especially for the ever-rising O3 problem; 

 Evaluate the sustainability of China’s production and consumption patterns, 

and explore the generalization of its experiences. 
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1.5.2. Research Framework and thesis structure 

Emission and material flows are the keys to connect the environmental and 

socioeconomic systems.  In this study, a four-stage research framework to capture the 

flows between producers, consumers and environmental receptors is proposed, as 

shown in Figure 1-11.   

 Step 1 Primary energy consumption accounting 

The first step aims to estimate the primary energy consumption by fuel types and 

sectors.  Specifically, the method in Figure 1-9 is designed according to China’s 

energy statistic systems.  Energy Balance Table (EBT) and sectoral final energy 

consumption table in national and subnational levels are used.  EBT provides 

aggregate information on energy indigenous production, input & output of 

transformation, regional flows and final consumption.  On top of this, sectoral final 

energy consumption table is used to provide the final energy consumption of 40 

manufacturing sectors, which are aggregated as one single number in EBT.  Detailed 

methods can be referred to Section 3.1.  This step eventually produces a primary 

energy consumption matrix with a dimension of 4 fuel types (coal, petroleum 

products, natural gas and non-fossil fuels) and 46 sectors (including primary industry, 

41 secondary industrial sectors, 2 tertiary industrial sectors, urban and rural household 

consumption).  

 Step 2 Direct emission accounting 

The second step identifies the entities that emit the air pollutant emissions by 

development and validation of production-based emission inventories.  The primary 

energy consumption matrix is one of the key inputs to estimate emissions from fossil 

fuels combustion.  Besides, industrial output, consumption of raw material and others 

are also used to study the process-based emissions (more details can be found in 

Section 3.1).  Given the inherent uncertainty of emission inventories, validation 

should be carried out where possible.  This study explores the possibilities of 

inventory validation using ambient measurement data.  Validation is carried out for 

NMVOCs, one of the air pollutants with highest uncertainty in terms of production-

based emissions (See Section 3.2).   

 Step 3 Linkage between emission and socioeconomic accounts 
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Energy and emission accounts are connected to the socioeconomic account through 

multi-regional input-output (MRIO) analysis and decomposition analysis (DA).  

MRIO tracks down emissions along the supply chain, and consequently, reveals the 

demands (from intermediate sectors and final consumers in local or from other 

regions) that drive local production activities with air pollutant emissions.  A 

consumption-based inventory is developed and used for further analysis in 

environmental simulation platform.  DA is used as a complement to identify the 

socioeconomic drivers of energy consumption or emissions.  While MRIO provides 

an explicit depiction of emissions from producers, intermediate sectors and final 

demands, DA decomposes the aggregated energy consumption or emissions to a 

number of pre-defined factors of interest such as population growth, economic growth, 

industrial structure, energy intensity and energy mix.  

 Step 4 Measuring environmental outcomes and alternative paths 

The consumption-based emission inventory in Step 3 reveals the emissions driven by 

different demands and is used to develop the model-ready emission profiles for 

environmental model.  In this study, an air quality simulation platform configured by 

Sparse Matrix Operator Kernel Emissions (SMOKE) Model, Weather Research and 

Forecasting (WRF) Model and Community Multiscale Air Quality (CMAQ) Model is 

adopted.  The adoption of air quality modelling platform transforms the demand-

attributed emissions into ambient concentrations, followed by health impact 

estimation such as excess premature death due to elevation of air pollutant 

concentration.  In this way, environmental consequences in association with 

socioeconomic demands are measured.   Key demands driving environmental 

degradation are identified and mitigation potentials can be measured following similar 

work flow. 
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Figure 1-11 Research framework to capture material and emission flows between producers, 

consumers and environmental receptors 
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The structure of thesis is organized in accordance with the proposed framework.  

Chapter 2 reviews the established methods and knowns in energy-pollution-

socioeconomic assessment and identifies the research gaps.  Chapter 3 and 4 propose 

the integrated assessment framework to depict material and emission flows between 

producers, consumers and environmental receptors.  In particular, Chapter 3 focuses 

on the data and methods to compile the energy and emission accounts.  Chapter 4 

elaborates how energy consumption and emissions are used to connect the 

socioeconomic and environmental systems and the methods to measure environmental 

consequences in association with socioeconomic demands.  Chapter 5 to 8 

demonstrate the proposed framework (the whole flow or part of it) in national and 

subnational studies.  Chapter 5 studies the production-based patterns of energy 

consumption in 30 provinces in China and their drivers for growing, plateaued and 

declined consumption.  Chapter 6 and 7 investigates the demand-driven emissions of 

Guangdong and Tibet, respectively.  The former one serves as an example of more 

developed regions in China while the later one reflects the status of less developed 

ones.  Chapter 8 presents a national study on the nexus of demand-emission-pollution-

health.  It reveals the socioeconomic demands driving the rising ground-level O3 

pollution in China, its health impacts and the cost and benefits of mitigation pathways.  

Chapter 9 summarizes the key findings, contributions, innovation of this study, along 

with limitations and suggestions for future work. 
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Chapter 2 Research Background 

2.1. China’s energy consumption and uncertainty 

To study the issues concerning energy consumption in China, official statistics 

provided by the National Bureau of Statistics (NBS) and the Bureau of Statistics of 

the local governments are the exclusive data sources, especially for studies over a 

long time span.  This subsection first induces the national and provincial energy 

statistics available in China, followed by a review of current studies on the 

uncertainties and data quality. 

2.1.1. Primary and secondary energy consumption 

The concept of primary and secondary energy is crucial in energy statistics in the 

course of compilation of energy balances.  In one sense, it is important to separate 

new energy entering the system (primary) and the energy that is transformed within 

the system (secondary) in order to avoid double counting.  In another sense, the 

definitions greatly affect the measuring and recording of energy flows in the energy 

balances, and hence, altering long-range policy design and analysis of broader energy 

or environmental issues.  Despite its importance, there is lack of a clear and 

internationally agreed definition of primary and secondary energy. 

According to the Concepts and Methods in Energy Statistics by the United Nations 

(UN) (United Nations, 1982), “Primary energy should be used to designate those 

sources that only involve extraction or capture, with or without separation from 

contiguous material, cleaning or grading, before the energy embodied in that source 

can be converted into heat or mechanical work.” By contrast, “Secondary energy 

should be used to designate all sources of energy that results from transformation of 

primary sources”.  The Energy Statistics Manual by Organisation for Economic Co-

operation and Development, International Energy Agency and statistical office of the 

European Union (hereinafter referred to as “OECD/IEA/Eurostat”) 

(OECD/IEA/EUROSTAT, 2004) explains the concepts of primary and secondary 

energy commodities as “Energy commodities are either extracted or captured directly 

from natural resources (and are termed primary) such as crude oil, hard coal, natural 
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gas, or are produced from primary commodities” and “Secondary energy comes from 

the transformation of primary or secondary energy”, respectively. 

These sets of definitions have agreements on the most important factor distinguishes 

the primary and secondary energy.  It is the process or activity involved for humans to 

make use of the energy in the source (Øvergaard, 2008).  From the very beginning, all 

the energy on earth originates from the sun.  It is through the natural energy chains 

that energy from the sun is transferred to other forms.  “Energy can neither be created 

nor destroyed”, as stated in the first law of thermodynamics.  Therefore, energy 

transformations happens naturally all the time.  The line between primary and 

secondary energy, however, is the first time when human factors are involved to 

extract, collect or transform the energy.  Regarding primary energy, it generally refers 

to the process of extraction or capture.  The physical and chemical characteristics of 

the energy is not changed.  For instance, hard coal is extracted from the ground.  It is 

then cleaned and separated from rocks and other non-energy substances, but its 

physical and chemical property such as calorific value remain constant.  As for 

secondary energy, it is identified by the process of transformation.  It includes any 

process of transforming one form of energy to the other.  A quintessential example is 

the conversion of fossil fuels to electricity and heat that are used by end users such as 

household. 

The line between primary and secondary energy can be relatively ambiguous when it 

comes down to electricity and heat from sources other than fossil fuels.  Table 2-1 

adapts the summary from (Øvergaard, 2008) on how the UN and OECD/IEA/Eurostat 

definitions diverge on electricity commodities.   

Table 2-1 Classification of electricity in two international manuals (Øvergaard, 2008) 

 

Hydro, Wind 

Solar, Tide 

Wave 

Nuclear fusion 

Geothermal 

and Solar 

Thermal 

Coal, 

natural 

gas, oil, 

renewables 

UN manual Primary Primary Primary Secondary 

OECD/IEA/Eurostat 

manual 
Primary Secondary 

Secondary Secondary 

 

In this study, the definition of a Chinese study (Shan et al., 2017) was adopted, which 

is generally in line with the UN definition.  Figure 1 presents a schematic illustration 
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of primary versus secondary energy used throughout this work.  There are 30 types of 

fuels under China’s energy statistics systems.  Among them, raw coal, crude oil, 

natural gas and other energy are classified as primary energy sources.  The other 26 

types of fuels, including but not limited to cleaned coal, briquettes, gasoline, diesel oil, 

fuel oil, liquefied petroleum gas, are defined as secondary energy.   

 

Figure 2-1 Schematic illustration of primary and secondary energy 

 

2.1.2. Data quality and uncertainty 

As a developing country, data quality of official statistics in China is subject to 

considerable uncertainties and limitations.  Such concerns have resulted in quite a few 

studies that tried to understand the causes of poor data quality, and its impacts in 

energy planning, emission mitigation target and other socioeconomic analysis. 

Statistical corruption is one of the factors that undermine the credibility of official 

data (Junguo and Hong, 2009; Ma et al., 2014).  It has been found in China for years.  

Two reasons account for that.  First, economic growth is the measure to evaluate the 

performance of local officials.  Statistical data such as GDP and value added are used 

as a reflection on economic growth.  Second, the statistical bureau is not an 

independent entity in China.  Rather, it is regulated by or dependent on local 

government.  It is not surprising that statistics are vulnerable to government 
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interference and tailored for different purpose.  This is called “numbers make leaders” 

phenomenon.  Things are improving with a new regulation “Rules on Punishment for 

Violation of Laws in Statistics”.  It was put in effect by the Ministry of Supervision, 

Ministry of Human Resources and Social Security and National Bureau of Statistics. 

Reliability of energy statistics in China is also questioned due to the inconsistency in 

its national and provincial statistics.  As mentioned above, the National Bureau of 

Statistics (NBS) and the Bureau of Statistics of the local governments in provincial or 

even city-level compile their own statistics on energy consumption as well as other 

socioeconomic data.  Due to the different scopes and methods, large gaps were found 

between statistics from different levels.  A previous study has developed two CO2 

emission inventories for China using the national and the sum of provincial energy 

statistics (Guan et al., 2012).  While the activity level data were both publicly 

available official energy data, the difference of CO2 emissions was found to be 1.4 

gigatonnes for 2010.  This figure is equivalent to Japan’s annual CO2 emissions, 

which was the world’s fourth largest emitter or 5% of the global total.  Such a large 

gap was mainly introduced by the differences in coal consumption in coal washing 

and manufacturing.  An earlier study investigated the same issue by examining the 

sectoral discrepancies between national and provincial statistics (Ma et al., 2014).  It 

was also found that industrial sectors were the major contributors to discrepancies in 

both GDP and total energy consumption.  Another study has used satellite-based 

measurements of nitrogen dioxide (NO2) concentration and noted substantial 

differences in coal consumption as reported in three different sets of official statistics, 

with a perceived underreporting of coal consumption (Hajime et al., 2006).  

Understanding the inconsistency in its energy statistics system, China has 

retrospectively revised the statistics, which reflects both improvement and uncertainty 

inherent in China’s data (Qi et al., 2016).  The national energy statistics in China has 

been revised three times since 2000 (2006, 2010 and 2015).  Table 2-2 summaries the 

total energy consumption and raw coal consumption extracted from three revisions, 

which was adopted from (Zheng et al., 2018b).  The first revision in 2006 increased 

total energy consumption by an average of 5% from 1999 to 2003.  It was mainly due 

to the adjustment in raw coal and other petroleum products, which was increased by 4% 

and four-fold, respectively.  The second revision took place in 2010.  It raised the total 
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energy consumption by an average of 7% from 2000 to 2007, in comparison with the 

2006 data.  Raw coal and coke were the focuses with an average increase of 8% and 

3%, respectively.  The most recent revision was in 2015, with an average increase of 

total consumption of 2%.  Impact of energy data revisions on China’s ability to 

achieve its carbon mitigation targets has been investigated (Zheng et al., 2018b).  It 

was shown that the achievement of national mitigation targets (as well as international 

pledges) might be postponed by two years.  The peak value of total CO2 emission is 

also highly uncertain, with the uncertainty varying from 12% to 29%.   

Table 2-2 Comparison between energy data in three revisions (Zheng et al., 2018b) 

Year 

Total Energy consumption (Mtce)   Raw coal (Mt) 

2015 

data 

2010 

data 

2006 

data 

Original 

data 
  

2015 

data 

2010 

data 

2006 

data 

Original 

data 

2000 1159 1205 1101 1036  1047 1107 1022 967 

2001 1231 1239 1135 1085  1106 1129 1049 1017 

2002 1330 1318 1217 1173  1212 1209 1108 1090 

2003 1562 1528 1384 1318  1436 1412 1305 1253 

2004 1799 1768 1638   1644 1615 1495  

2005 2034 1964 1873   1856 1774 1650  

2006 2243 2151 2053   2053 1953 1803  

2007 2412 2292 2231   2207 2088 1936  

2008 2484 2349    2277 2136   

2009 2671 2458    2448 2241   

2010 2861 2625    2590 2358   

2011 3141 2845    2886 2605   

2012 3258 2939    2978 2669   

2013 3388     3092    

2014 3319         2928       

 

It is noted that only revisions on national levels were carried out.  After revisions, the 

gaps between national and provincial statistics have been narrowed.  In this study, the 

provincial energy statistics were used to develop the primary energy consumption 

matrix.  Their uncertainty and comparison with the most up-to-date national statistics 

are discussed in Section 3.1.1.  
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2.2. Production- and consumption-based emission accounting 

This study relies heavily on two approaches of emission estimation: production and 

consumption-based accounting.  The concepts of such two methods, and their 

application and limitations are introduced here with selected studies. 

2.2.1. Definitions of production- and consumption-based emissions 

In general, emission –be it GHG or air pollutant discharge– from a geographic area 

can be varied from definitions of emission boundaries (Barrett et al., 2013) : 

 Territory-based emission: The administrative-territorial emission refers to 

emission “taking place within national (including administered) territories 

and offshore areas over which the country has jurisdiction (page overview.5)” 

(IPCC., 1996).  It excludes the emissions from international transport such as 

aviation, shipping, and tourism (Barrett et al., 2013).  Territory-based 

emission, therefore, reflects the anthropogenic emission by domestic 

production and resident activities within one’s boundary (Kennedy et al., 2009, 

2010). 

 Production-based emission: It is relatively similar to territory-based emission 

but in a wider scope.  Specifically, it encompasses not only “emissions from 

international aviation and shipping are typically allocated to the country of 

the relevant vessel’s operator (page 453)” (Barrett et al., 2013), but also the 

“emissions from international tourism are allocated based on where 

individual tourists are resident, rather than their destination (page 453)” 

(Barrett et al., 2013). 

 Consumption-based emission: Emission from consumption is fundamentally 

different from the above two methods.  It breaks the geographical boundary of 

where emission is discharged and attributes the emission to final consumer of 

products.  As quoted, “all emissions occurring along the chains of production 

and distribution are allocated to the final consumer of products (page 211)” 

(Wiedmann, 2009).   

It can be observed that the boundaries of territory- and production-based emissions 

overlap with each other to a large extent.  In practices, these two terms are used 

interchangeably in many circumstances.  In this study, the term – “production-based”– 
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is used.  The production-based emission in this study, nevertheless, only reflects part 

of the emissions from international aviation and shipping and neglects the emissions 

from international tourism.  This is due the energy statistics employed in this study 

cannot reflect the energy consumed by Chinese vessels operated outside its boarder 

and emissions from international tourism is hard to allocate to the nationalities of 

individual tourists.   

In a generalized form, the production-based emission of a region includes the 

emissions from resident institutional units analogous to GDP (Peters and Hertwich, 

2007), 

Production =  Emissions from resident institutional units     Eq. 2-1 

The construction of consumption-based emission, emissions embodied in exports are 

excluded while the emissions embodied in imports are included, 

Consumption = Production – Exports +Imports     Eq. 2-2 

In both equations, the expression “emission embodied” refers to all the missions 

required to produce the product.  It includes all steps in production from raw material 

extraction through to final assembly and ultimately the final sale of the product.  

These emissions can be calculated either by the input-output analysis (Leontief, 1970) 

or allocation through the global production networks with similar methodologies 

(Wiedmann et al., 2007). 

2.2.2. Applications and limitations 

Depending on the definition and system boundary, emission and shared responsibility 

of the same geographic area may vary.  Despite the increasing recognition of 

consumption-based accounting, territory- or production-based emissions remain 

dominant in international, regional and local efforts for GHG emission reduction and 

air pollution alleviation.  International binding commitments under the United 

National Framework Convention of Climate Change (UNFCCC) and Kyoto Protocol, 

for instances, are territory-based.  At the heart of the Paris Agreement, Nationally 

determined contributions (NDCs) record emission released by agents within the 

geographic borders of a nation.  National emissions reported to the Convention on 

Long-range Transboundary Air Pollution (LRTAP Convention) in Europe follow 
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similar methods.  In local scale, production-based accounting is widely used to 

formulate emission reduction targets and pollution mitigation strategies.  In China, the 

national emission ceilings for air pollutants such as SO2, NOx, PM10 and NMVOCs, 

are based upon production-based accounting.   

The widespread use of production-based accounting reflects its advantages in 

emission estimation.  Firstly, it is relatively straightforward and easy for interpretation 

and implementation.  It is because the boundary of production-based emission is clear 

and in line with the geographic boundary.  The activity level data required by 

production-based accounting, is also consistent with the System of National Accounts, 

which is used for GDP and other socioeconomic accounts.  The data needed for 

production-based accounting is therefore easier to attain and the capacity required is 

lower than that of consumption-based approach.  Secondly, it is recognized that 

production-based emission is subject to lower uncertainty.  As Equation 2-2 shown, 

the estimation of consumption-based emission is indeed based upon production-based 

accounting by subtracting the export-embodied emissions and including embodied 

emissions in the imports.  It therefore inherites the uncertainty from production-based 

approach.  In addition, segmentation of import- and export-embodied emissions 

introduces considerable uncertainty as trade flows and input-output tables are 

employed.  Worse still, while quantitative assessment can be carried out for 

production-based inventory with well-established and feasible ways (Frey and Zheng, 

2002; Zheng and Frey, 2005; Zheng et al., 2009a; Li et al., 2016), it is hard to 

measure how reliable consumption-based accounting is.  Studies on the latter are 

sparse (Sato, 2014; Owen, 2017) though some attempts have been made with 

stochastic multivariate method and others (Rodrigues et al., 2018).  Thirdly, 

production-based emission can be seamlessly connected (once it is temporally and 

spatially allocated) with environment system models, integrated assessment models 

(IAMs) and other emission planning and simulation tools.  It greatly extends the 

application of production-based emissions and their policy significances.  Such 

applications are reviewed in more detail in Section 2.3. 

However, there are two main critiques on production-based accounting.  One is the 

difficulty to allow for the emissions from international air and sea transport and 

international tourism to countries.  Since such emissions do not take place within a 
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specific country, it is relatively difficult to allocate such emissions (Yoon, Yang and 

Kim, 2018).  Currently, the UNFCCC has not reached an agreement on how to 

attribute the bunker fuels for international transport to individual countries.  The other 

is the potential of carbon leakage.  Carbon leakage refers to the phenomena that 

decreasing emission in one country can be directly linked to increasing emissions in 

the other country with looser environmental regulations (Franzen and Mader, 2018).  

Under the production-based accounting scheme, emission-intensive industries in 

countries with strict emission controls, regulations or taxes might relocate to 

territories with fewer restrictions.  Then the goods produced in the less restricted area 

might be shipped to the more restrictive countries.  The production-based emissions 

from more restrictive countries, therefore, might be reduced.  In global scale, 

nevertheless, emissions might remain rather constant if not increase.  Take the Kyoto 

Protocol for an example, it was estimated that around 5 Gt of CO2 (~ 15% of the 

global budget) was relocated from Annex I to non-Annex I countries through the 

international trade of goods and services (Peter and Hertwich, 2007).  Globally, 23% 

of CO2 emissions were embodied in exports predominantly from developing countries 

such as China to developed nations in 2004 (Davis and Caldeira, 2010).  A more 

recent study suggests that the proportion was increasing over time: CO2 emissions 

related to international trade climbed to 26% in 2008 (Peters, Davis and Andrew, 

2012). 

Consumption-based accounting takes care of such problems, especially the potentials 

of carbon leakage.  The use of consumption-based inventories subtracts export-

embodied emissions but includes import-embodied emission.  The outsourced 

emissions are thus under surveillance (Kondo, Moriguchi and Shimizu, 1998; 

Munksgaard and Pedersen, 2001; Lenzen, Pade and Munksgaard, 2004).  Another 

advantage of consumption-based approach is its wider coverage of global emission 

with limited participation (Peters, 2008a&b).  Using the Annex I countries in Kyoto 

Protocol as examples, if consumption-based emission were regulated instead of 

production-based emission, efforts by the Annex I countries could be in reducing 

emissions not only within their own territories but also the originating countries which 

produce goods for them.  It would naturally stimulate cleaner production in wider 

scales and make polices such as the Clean Development Mechanism (CDM) a natural 

part of the NDC (Peters and Hertwich, 2007). 
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Accounting from the perspective of consumption is subject to three key disadvantages.  

First, consumption-based accounting requires much more complex calculation and the 

usage of surrogates to allocate emissions.  As mentioned above, such an accounting 

approach is highly demanding in data concerning multilateral trade.  In addition to the 

inherent uncertainty in the statistics on global trade flows, available data such as those 

from the Global Trade Analysis Project and other input-output tables are generally in 

monetary value.  To transfer the monetary flow to emission flow, it requires the 

adoption of various surrogates such as energy consumption, industrial output, and 

consumption of raw materials (Sargento, Ramos and Hewings, 2012; Huo et al., 2014; 

Meng et al., 2015, 2017; Mi et al., 2016).  Considering the large uncertainty and the 

lack of recognized method for uncertainty assessment, the reliability of consumption-

based emission is still under criticism.  Second, it is argued that consumption-based 

approach violates the principle of product liability (Lenzen et al., 2007; Franzen and 

Mader, 2018).  It states that producers are responsible for the quality and safety of 

their productions.  Third, binding commitment on consumption-based emissions 

would require political decision making to extend outside of the standard geo-political 

area (Peters, 2008a&b). 

Debate around the issue of production- and consumption-based emission is ongoing.  

The key battle field is on the size of carbon leakages and its flowing direction, which 

determines whether switching from production- based accounting to consumption-

based accounting is beneficial.  From the league of consumption-based accounting, 

estimations of the export-embodied emissions show the significances of carbon 

leakage between countries under different regulations (Kondo, Moriguchi and 

Shimizu, 1998; Davis and Caldeira, 2010; Peters, Davis and Andrew, 2012).  

Advocates for production-based accounting argued that such empirical investigations 

are still sparse (Franzen and Mader, 2018).  Some studies even suggested small or no 

evidence for strong carbon leakages.  Branger and Quirion (2014) investigated EU 

countries before and after the implementation of the European Union Emissions 

Trading System (EU ETS) and reported that emission leakages were generally 

insignificant.  It is noteworthy that such a finding might have resulted from the very 

low carbon price in the EU.  Incentives for a relocation of carbon intensive industries 

such as cement or aluminium production were therefore small.  Another study 

compared the production- and consumption-based CO2 emission of 110 countries for 
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the time span of 1997 to 2011 (Franzen and Mader, 2018).  They concluded that 

within-country differences depending on accounting schemes are small.  More 

importantly, they argued there exists no evidence on carbon leakage from the 

developed countries to the developing countries.  Take the ratio of consumption- and 

production-based CO2 emissions per capita by countries for instance, the top five 

countries with the largest ratios are almost all developing countries with the exception 

of Switzerland.   

2.3. Energy consumption, pollution formation and 

environmental consequences 

Energy sits at the core of many environmental problems the world is confronting 

today, be it climate change or harmful air pollutant levels in indoor and outdoor 

environment.  There is an extensive body of literature that shows how energy system 

contributes to climate and air pollution issues.  These studies can be divided into three 

categories according to the methodologies. 

2.3.1. Emission Inventory 

The first one is characterized by emission inventory.  From the perspective of either 

production or consumption, emissions as by-products of fossil fuel combustion can be 

estimated.  Regarding the sources of activity level data, emissions can be estimated 

from bottom-up or top-down approaches.  The bottom-up approach starts with local 

data at municipal level or even from the specific object of the emissions (Kannari et 

al., 2007; Beusen et al., 2008; Lutsey and Sperling, 2008; Zhao et al., 2011; Kuenen 

et al., 2014; Shi et al., 2014).  In terms of emissions from energy sectors, it can be the 

fuels consumed by individual power plants, industrial boilers and household stoves.  

Along with fuel consumption, technology types, latitude and longitude, service years 

and other information are also required in some circumstances in order to select 

representative emission factors and allocate the emissions.   

The top-down approach can be referred to the traditional emission inventories based 

upon activity level data at national/regional level and the top-down models emerged 

in recent years.  The top-down emission inventories are compiled by similar 

methodology as that of bottom-up inventories.  The key difference, however, is the 

usage of bulk activity level at national or regional scale and default emission factors 
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instead of technology-specific ones (Liu et al., 2016; Li et al., 2017a; Liu et al., 

2018a).  In other words, activity level data and emission factors used in top-down 

inventories are coarser and more applicable to areas with limited data.   

Top-down models are fundamentally different since they involve the usage of satellite 

data (Arellano et al., 2004; Levelt et al., 2006; Bergamaschi et al., 2009; Yurganov et 

al., 2011; Wang et al., 2012; Ghude et al., 2013; Houweling et al., 2017) and to a less 

extent, usage of ambient measurement (Lee et al., 2011; Tang et al., 2013).  Such a 

method generally relies on the development of inverse algorithm between emissions 

and observations from satellite or ambient measurement and extrapolation to other 

grids and time spans of interests.  Take NOx emission as an example, its emissions 

are produced during combustion processes and, thus may serve as a proxy for fossil 

fuel-based energy usage and greenhouse gases and other pollutants.  Duncan et al. 

(2016) used high-resolution nitrogen dioxide (NO2) data from the Ozone Monitoring 

Instrument (OMI) (Levelt et al., 2006) to analyse changes in urban NO2 levels around 

the world from 2005 to 2014.  Based upon linear trend analysis used in Duncan et al. 

(2016) and exponential modified Gaussian methods, Liu et al. (2017) developed an 

advanced fitting function to relate the observation variations to bottom-up information 

and to evaluate the NOx emission trends over Chinese cities from 2005 to 2015.  

Another stem of top-down models is represented by receptor models, which are 

mathematical or statistical procedures to identify and quantify the source of air 

pollutants at a receptor location (Henry et al., 1984).  It statistically apportions the 

measured ambient air pollutant concentrations, for multiple time periods at one or 

multiple monitoring sites, to the emission sources according to some pre-knowledge 

of their emission characteristics (primarily their chemical characteristics). The site- 

and time-specific ambient measurements are subject to sampling and analytical errors 

and to meteorological variability (Karagulian and Belis, 2012; Belis et al., 2015).   

These emission estimation methods serve as complementary tools and independent 

references to each other.  On the one hand, emission inventories are often developed 

in an intermediate manner with both top-down and bottom-up approaches.  This is due 

to the fact the availability of activity level data can vary by sources and sectors.  For 

example, Dios et al. (2012) used a mix of top-down and bottom-up methodologies to 

develop a set of high resolution emission inventories for the European continent.  
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According to the data availability in China, Zheng et al. (2009a) estimated the 

emissions from power plants and industrial sources with a bottom-up approach.  

Emissions from on-road mobile sources, non-road mobile sources and others 

generally follow a top-down manner. 

On the other hand, top-down inverse models have received increasing attention as 

crucial means to validate emission inventories that are developed from statistical 

analysis.  Debate on the usage of top-down modelling results to validate emission 

inventories still continues and evolves with new evidences (Wang et al., 2006a; Hsu 

et al., 2010; Zhao et al., 2012a; López-Aparicio et al., 2017).  A previous study 

discussed the possibility of introducing top-down models to assess the compliance 

with Kyoto Protocol (Rypdal et al., 2005).  They calculated the probable emissions 

using measured concentrations of gases in the atmosphere and meteorological models.  

Applicability of such top-down estimations were critically reviewed.  It was found 

that inverse modelling results could be useful to monitor the global success of the 

protocol in particular those dealing with fluorinated gases.  Nevertheless, Rypdal et al. 

(2005) concluded that top-down methods are still too inaccurate, cumbersome and 

politically problematic to be independent alternatives to the reported emission 

inventories for compliance assessment.  As measurement methods have improved 

remarkably in recent years, some studies suggested that the regulation of greenhouse 

gas emissions can have integrity only if verified by direct atmospheric measurements 

(Royal Astronomical Society, 2009; Committee on Methods for Estimating 

Greenhouse Gas Emissions, 2010; Nisbet and Weiss, 2010).  The emerging 

measurements include the continuous high-precision CO2, CH4, N2O data with the 

advent of new optical method (Marquis and Tans, 2008), and the advancements in air 

pollutant monitoring in terms of spatial and temporal coverage, and speciated 

constituents (Molina et al., 2007; Lin et al., 2008; Park et al., 2013; Bian et al., 2014). 

The usage of receptor models is less common than inverse modelling in terms of the 

cross-validation with emission inventories.  Receptor models, however, have their 

own merits as independent references to validate the source contribution of PM2.5 and 

NMVOCs.  For example, quite a few of studies compared NMVOCs emission source 

identification results between the emission inventory and receptor models, and found 

significant inconsistencies in source contributions, especially for solvent use, 
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Liquefied Petroleum Gas (LPG) uses, and biogenic sources (Watson et al., 2001; 

Morino et al., 2011; Wang et al., 2014a). In China, Zheng et al. (2009b) compared the 

source apportionment by emission inventory with receptor modelling by Liu et al. 

(2008). General consistency was gained on the high contributions from gasoline 

vehicles, coating and solvents, but large discrepancies were observed in the 

contribution of LPG, and some specific areas with high emission loadings. Despite the 

observed discrepancies, the question of how to interpret the mixed and sometimes 

conflicting answers for source identification remains less studied.  Reasons 

responsible for the discrepancies varied in different studies and they were proposed 

and studied in a somewhat biased way with the underlying assumption that one of the 

methods is more reliable and the discrepancies are mainly attributed by the limitation 

or flaw of the other. For studies focused on emission inventories, representativeness 

of sampling time and sites, photochemical loss and the tracers used in receptor model 

were questioned Zheng et al. (2009b) . As for studies based on receptor model, they 

argued that emission inventories may fall short of the data quality of activity level 

data, emission factor and potentially missing sources that lead to under- or over-

estimations (Wang et al., 2014b). 

2.3.2. Life cycle assessment 

Life-cycle assessment, or LCA, is an environmental accounting and management 

approach that considers all the aspects of resource use and environmental releases 

associated with an industrial system from cradle to grave (Tukker, 2000; Cabeza et al., 

2014).  LCA differs from the above-mentioned emission accounting approaches in the 

way that it accounts for all emissions connected to goods or services, regardless of 

which industrial or economic activities or sectors produce these emissions (e.g., 

energy, mining, manufacturing, or waste sector) and when these emissions occur over 

time (US Environmental Protection Agency, 2010).  The other emission accounting 

approaches mentioned above - be it production- or consumption-based – generally 

focus on the emissions by specific sectors or activities or consumers on annual basis. 

LCA is an emerging tool to evaluate the emissions and other wastes stemmed from 

energy production, transportation and consumption.  It is especially useful to provide 

a comprehensive comparison between different energy solutions in terms of their 

environmental benefits and drawbacks.  Various energy alternatives are on the 

https://www.sciencedirect.com/topics/earth-and-planetary-sciences/liquefied-petroleum-gas
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horizon, such as solar, wind, hydro power and hydrogen.  They are promising clean 

energy when one considers the emissions during usage.  However, it is questionable 

how clean these alternatives can be when we include all the emissions occur during 

extraction, infrastructure and retirement.  The build-up of wind turbines, for example, 

requires considerable amount of rare-earth materials (e.g., neodymium and 

dysprosium), which is generally extracted in the developing countries with poor 

management and heavy emissions (Rademaker et al., 2013; Zhou et al., 2017).  LCA 

is developed to take care of these problems.  Pehnt (2006) developed the dynamic 

LCA of renewable energy technologies.  Using Germany as a case study, they 

evaluated the emissions of CO2, CH4, N2O, SO2, NOx, NH3 and HCl of electricity 

provided by hydropower, photovoltaics, wind, solar thermal, geothermal and wood.  It 

was found that the inputs of finite energy resources and emissions of greenhouse 

gases for all renewable energy chains were extremely low compared with the 

conventional system.  There exists, however, variabilities in LCA studies according to 

the size and the technology of the case (Evans et al., 2009; Sherwani et al., 2010; 

Blengini et al., 2011; Asdrubali et al., 2013; Vázquez-Rowe et al., 2014).  Efforts 

have been made to harmonize the results from literatures (Evans et al., 2009; 

Cherubini, 2010; Ramesh et al., 2010; Sesana and Salvalai, 2013; Turconi et al., 

2013).  Wrapping up results of 100 different case studies, Asdrubali et al. (2013) 

found wind power with a lower overall environmental impact than other renewable 

technology.  It had the lowest carbon dioxide equivalent (CO2eq) emissions and the 

lower embodied energy (the energy that is consumed to produce the materials and 

devices for wind power generation).  Geothermal power and photovoltaics, instead, 

had the highest overall environmental impacts and the widest range of variability.  

Evidences in favour of renewable energy technology are accumulating and laying the 

ground for the wide deployment of renewable energy.  A recent study critically 

reviewed the trade-offs of increased up-front emissions and reduced operational 

emissions of renewable technologies (Hertwich et al., 2015).  They presented the first 

global and integrated LCA of long-term, wide-scale implementation of electricity 

generation from renewable sources (i.e., photovoltaic and solar thermal, wind, and 

hydropower) and of carbon dioxide capture and storage for fossil power generation.  

Considering the emissions causing PM exposure, freshwater eco-toxicity and 

eutrophication, and climate change effect, it was concluded that renewable energy 
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yields more environmental benefits than fossil fuel systems.  Bulk material 

requirement appear manageable but not negligible.  Copper is the only material for 

which supply may be a concern. 

2.3.3. Numerical modelling 

The above two methods provide quantitative analysis on how energy-relevant sources 

and others contribute to GHG and air pollutant emissions.  With the help of numerical 

modelling, source contribution to a wider range of environmental indicators can be 

assessed.  In the context of climate and air pollution, a numerical model is a 

mathematical simulation of how GHGs or air pollutants disperse and react in the 

atmosphere and other earth-system modules such as ocean and land.  Model outputs 

include temperature, ambient air pollutant concentrations and other environmental 

factors of concern (United States Environmental Protection Agency, 2016).  The core 

of a numerical model is to reproduce the real-world systems with mathematical 

equations to reflect the law of physics, fluid motion, and chemistry.  The real-world 

systems, however, are too complicated to be comprehensively represented in 

numerical models.  Depending on the scope of study area, temporal and spatial 

resolution, and the environmental indicators of interest, different simplifications and 

compromises are made to ensure that numerical models are both reliable and 

computationally feasible.  Since climate is generally an issue of wider scope, global or 

regional models are employed such as the Community Earth System Model (CESM) 

(Zveryaev, 2015; Kay et al., 2016; Li et al., 2018a) and general circulation model 

(GCM) (Oglesby and Saltzman, 1990; Kyselý, 2002; Ruosteenoja et al., 2007).  For 

air quality studies, multi-scale models are developed for global, regional or even street 

levels.  GEOS-Chem, for example, is a global model of atmospheric chemistry driven 

by assimilated meteorological observations from the Goddard Earth Observing 

System (GEOS) of the NASA Global Modeling Assimilation Office (GMAO) (Bey et 

al., 2001).  It is widely used to study the global circulation and formation of PM2.5 

(Henze et al., 2009; Kim et al., 2015), O3 (Fusco and Logan, 2003; Zhang et al., 

2011), black carbon (Cogan et al., 2012), CO (Chen et al., 2009) and other air 

pollutants (Wang et al., 2014b) in the troposphere.  On regional scales such as 

national and provincial levels, the Community Multiscale Air Quality Modeling 

System (CMAQ) (Binkowski and Roselle, 2003; Foley et al., 2010) and 
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Comprehensive Air Quality Model with Extensions (CAMx) (Tesche et al., 2006; 

Nopmongcol et al., 2012) are widely used.  They are photochemical grid models on 

fine resolutions, e.g., a few kilometres and per hour.  The Operational Street Pollution 

Model (OSPM) (Kakosimos et al., 2010) and other street-in-grid models were 

developed (Kim et al., 2018) to study the dispersion of air pollutants in street canyons. 

One of the key applications of numerical models is to study the casual relationship 

between emissions and the concentrations of either greenhouse gas or air pollutants in 

the atmosphere.  The invention of such tools enable researchers and policy makers to 

explore the “what if” question.  By designing emission scenarios that reflect the 

possible policy pathways, one can foresee the effectiveness of proposed mitigation 

strategy (Pallav et al., 2010).   

In the field of climate studies, numerical tools are used to assess the possible 

pathways or technologies to limit temperature rise or other climate impacts.  For 

example, Tilmes et al., (2016) used CESM to investigate climate outcomes applying 

stratospheric sulphur injection (SSI), one of the geoengineering techniques.  They 

argued that SSI produces mean and extreme temperature in CESM comparable to an 

early decarbonisation pathway.  Some critique the internal variability in climate 

models, and thus their reliability in future climate projections (Vidale et al., 2003; 

Horton et al., 2006; Knutti and Sedláček, 2013).  To address such an issue, ensembles 

of simulations or models are used (von Deimling et al., 2006; Tebaldi and Knutti, 

2007; Meier et al., 2012).  Sanderson et al. (2018) had produced a 15 member 

ensemble conducted with CESM.  Though internal variability is still a significant 

component of uncertainty, they reported that there is evidence of a significantly 

increased risk of extreme warm events in some regions as early as 2030 in RCP8.5 

relative to RCP4.5.  Another study combined the projections of sixteen GCM models 

to assess strategies for adaptation to climate change impacts in hydropower generation 

in Brazil (Lucena et al., 2018). 

For air quality research, the same work flows as climate modelling study are generally 

followed.  The end-points for effectiveness assessment can be air pollutant 

concentrations, air quality exceedance rate, health exposure and even co-benefits (or 

trade-off) of climate effects.   
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The concentration of air pollutants and exceedance rate of air quality are key outputs 

provided by air quality models that can assist in control strategy formulation.  Kinnon 

et al. (2016) presented a good example using the CMAQ model to investigate the air 

quality impacts of fuel cell electric hydrogen vehicles (FCEVs) in California.  It 

covered the regional energy system projection, development of emission fields and 

atmospheric modelling.  Such a modelling study provided evidence on the reduction 

potentials of FCEVs on O3 and PM2.5 concentrations and had assisted decision makers 

in developing effective air quality improvement strategies from the transportation 

sector.  Similar studies are numerous concerning the air quality improvement 

potentials from emission reductions in power sector (Gégo et al., 2008; Wang et al., 

2010a), industry (Cheng et al., 2007; San José et al., 2007), household (Gu et al., 

2018; Baykara et al., 2019), open field biomass burning (Zhang et al., 2006; Huang et 

al., 2013) and others.   

The output of air quality models are generally gridded concentrations.  Combined 

with demographic data such as population density, age and gender distribution, one 

could assess the health risk driven by elevated air pollution.  Pollutants with the 

strongest evidence for public health concern include PM, O3, NO2, SO2 and air toxics 

such as mercury and hydrogen chloride (Ezzati and Kammen, 2002; Afroz, Hassan 

and Ibrahim, 2003; Zhang and Smith, 2007).  Globally, 9 out of 10 people breathe air 

containing high levels of pollutants (World Health Organization, 2018).  Air pollution 

from indoor and outdoor is responsible for a death toll of 7 million people every year 

(World Health Organization, 2019).  Such estimations are built upon the evidence 

from epidemiology which develops the health-exposure relationships between air 

pollutant concentrations and the mortality rates for specific diseases.  Currently, there 

are a growing number of studies to establish the concentration-response relations 

between PM2.5 and mortality associated with cardiovascular disease (Schwartz et al., 

2002; Wyzga and Rohr, 2015; Limaye et al., 2019), and to a lesser extent, on O3 and 

respiratory diseases (Gelzleichter et al., 1992; Atkinson et al., 2012; Bae et al., 2015).  

These studies generally develop the quantitative association between the historical air 

pollutant concentrations and the excess mortality by various regression models.  

(Jerrett et al., 2009) used the air quality monitoring record and health statistic in the 

US from 1977 to 2000 to study the health risk of long-term exposure of PM2.5 and O3.  

The estimated relative risk of death from respiratory causes that was associated with 
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an increment in O3 concentration of 10 ppb was 1.040 (95% confidence interval, 

1.010 to 1.067).  Such epidemiology studies, however, are still limited in both their 

numbers and study areas, which generally focus on developed regions due to the high 

demand for historical data.   

The impact of energy transition, emission control measures and strategies on public 

health is then computed by the outputs of air quality model and the established 

concentration-response relationship (Wang and Mauzerall, 2006; Fann et al., 2009; 

Jackson et al., 2010; Beevers et al., 2013).  Linking the outputs from CMAQ with 

census data and the concentration-response relationship, Atkinson et al. (2012) 

estimated the PM2.5-related public health impact associated with the emissions for a 

set of power plants in the US.  Zhao et al. (2018) reported that reduced usage of solid 

fuels in household fuels had led to a 42% decrease of integrated population-weighted 

exposure to PM2.5 from 2005 to 2015 in China.  Abel et al. (2019) studied the air 

quality-related health benefits of energy efficiency in the US. They used the AVoided 

Emissions and geneRation Tool (AVERT) to simulate plant-level generation and 

emissions, the CMAQ model to simulate air quality, and the Environmental Benefits 

Mapping and Analysis Program (BenMAP) to quantify mortality impacts.  A 12% 

summertime reduction baseload electricity demand would result in 10~16% reduction 

of NOx, SO2 and CO2 emissions, and consequently, avoid 300 premature deaths 

annually.  Such measures of the benefits on public heath are indeed important 

considerations in air pollution mitigation strategy formulation.  Moreover, when 

energy-relevant emissions are involved, they also serve as evidence and extra 

incentives to combine the immediate and long-term benefits and makes no-regret or 

low-regret climate policy possible (Burtraw et al., 2003; Dudek et al., 2003; Amann 

et al., 2011).  It is in this way that numerical models play roles in the current and 

future air pollution and energy policies. 

In some circumstances, air quality and climate models are used jointly to study the 

interaction between climate and air quality and the effectiveness of mitigation 

pathways under such complex dynamics (Hogrefe et al., 2004; Groosman et al., 2011; 

Glotfelty et al., 2017; Hong et al., 2017).  Stowell et al. (2017) used a hybrid 

downscaling approach evaluate the separate impact of climate change and emission 

control policies on O3 levels and associated excess mortality in the US in the 2050s.  
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With a combination of climate, air quality and epidemiological models, Orru et al. 

(2017) estimated that climate change would adversely affect future air quality for 

more than 85% of China’s population, with an increase of 3% and 3% of the 

population-weighted average concentrations of PM2.5 and O3, respectively.  Such 

studies, nevertheless, are highly dependent on the climate change scenarios and on 

projections of future air pollution emissions, with relatively high uncertainty (Ebi and 

McGregor, 2008; Liao et al., 2009; Davis et al., 2011).  Another limitation is the lack 

of projections on the effects on morbidity (Orru et al., 2017). 

2.4. Incorporation of socioeconomic factors in environmental 

studies and integrated assessment 

Climate change and air pollution are deeply woven into human society.  There are a 

multitude of studies on their complex interactions.  Here, focus will be on two strands 

of research.  One is the “cause-focused” research, which investigates how human 

demands and activities fuel the climate and air quality problems.  Another strand is 

“impact-focused” research that measures the socioeconmic impact of climate change 

and air pollution. 

Strictly speaking, the emission inventory and life cycle assessment reviewed above 

can be categorized into the caused-focused research, and the numerical modelling 

addresses both the causes and impacts.  The studies reviewed below, however, have 

more focus on specialized socioenomic analysis.  While emission inventory and life 

cycle assessment reveal the human activities that are directly responsible for pollution 

precursors, caused-focused literature digs deeper in the socioecomic drivers in 

macroeconomic level.  Compared to the health burden calculated by numerical 

models, impact-focused studies estimate the direct and indirect socioeconomic 

impacts in monetary term.  Some studies can even investigate how climate and air 

pollution contribute to social issues such as inequality. 

Here, cause- and impact-focused studies are reviewed in Section 2.4.1 and 2.4.2, 

repectively.  They are followed by a review of integrated assessment studies in Secion 

2.4.3, which are interdiscipinary works that combine socioeconmic analysis with 

conventional environmetal tools. 
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2.4.1. Socioeconomic drivers of climate problem and air pollution 

There is a proliferation of studies to uncover the socioeconomic drivers of GHG and 

air pollutant emissions.  One of the perennial questions in the centre of energy and 

environmental policy is how to reduce emissions (or energy consumption) while 

maintaining stable economic growth (Coers and Sanders, 2013).  To answer this 

question, causal relationship between emissions (or energy consumption) and real 

GDP growth should be investigated (Ozturk, 2010; Wagner et al., 2016).  A major 

strand of studies on energy and emission socioeconomic drivers, therefore, is to study 

the causality between these two.  Empirical studies are accumulating concerning the 

existence and direction of causality.  Tang et al. (2016a) used a neoclassical Solow 

growth framework to test Granger Causality between energy consumption and 

economic growth in Vietnam from 1971 to 2011 and reported the causality running 

from energy consumption to economic growth.  With Panel Vector Autoregressive 

and impulse response function, Antonakakis et al. (2017) studied the energy 

consumption, economic growth and CO2 emissions in 106 countries classified by 

income groups over the period of 1971 to 2011.  They found that causality between 

total economic growth and energy consumption is bidirectional.  However, they 

cannot certify a statistically significant relationship between renewable energy 

consumption and economic growth.  There is a lack of evidence that renewable 

energy consumption is able to promote growth in a more efficient and 

environmentally sustainable way.  Results from literature, however, have been 

inconclusive.  Ghoshray et al. (2018) proposed that the inconsistency can be 

explained by some methodological flaws.  One is the use of bivariate models, which 

fail to detect more complex causal relations and neglect the effects from other driving 

factors.  The other is the use of liner causal models.  The second flaw can be partly 

overcome by the usage of non-linear causal relationships or other noble methods such 

as Flexible Fourier (Ghoshray et al., 2018). 

The above review on causality or decoupling studies highlights the need of a 

multivariate framework.  Such a need gave rise to methodological and empirical 

studies regarding panel data analysis, Index decomposition analysis (IDA) and 

Structural Decomposition Analysis (SDA).  First, panel data analysis is a statistical 

method to analyse two dimensional data.  In the context of energy consumption and 
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emission data, the object is typically time series data with sectoral details (Marques et 

al., 2010; Jiang et al., 2014; Du et al., 2016).  Given the immense difference in the 

shares of renewable energy in total primary energy supply among OECD countries, 

Gan and Smith (2011) applied panel data modelling approach to identify the drivers 

of renewable energy development in OECD countries.  Common drivers were GDP 

per capita and market deployment policies, and country-specific drivers revealed 

different pathways for bioenergy development.  A similar study was conducted by 

Chen (2018) to study the factors influencing renewable consumption in 30 provinces 

in China from 1996 to 2013.  They studied the effects of economic growth, CO2 

emissions, foreign trade and urbanization on the renewable energy consumption.  

Results were similar to that of Gan and Smith (2011), in which economic 

development was an important positive driver with heterogeneous effects across 

regions.  The links between socioeconomic indicators, energy consumption and 

emissions can be investigated following similar methods (Andrés and Padilla, 2018; 

Du et al., 2018; Feng et al., 2018; Pao and Chen, 2019).  While empirical evidences 

covering more countries and longer time span are accumulating over time, findings 

are not conclusive.  Chen (2018) reviewed nearly 90 pieces of literature on the driving 

effects from economic growth and urbanization to energy consumption and CO2 

emissions.  These studies found divergence in the multivariate relationships.  Indeed, 

results of nearly 90 literatures can be divided into 7 groups in favouring of different 

types of causal relationships.  Such divergences show that results are country- and 

time- specific and can vary from case to case. 

Second, IDA is widely used to analyse change in energy consumption and emissions 

over time.  It is used to analyse changes in indicators such as energy use, CO2-

emissions, labour demand and value added (Ang and Liu, 2007; Ang and Xu, 2013). 

The changes in these variables are decomposed into determinants such as 

technological, demand, and structural effects.  Similar to panel data analysis, such a 

technique is applicable to deal with multidimensional and multilevel data.  The family 

of IDA includes additive and multiplicative analyses.  Both of them are based upon 

the chain computation method and the Divisia (log-change) decomposition method 

(Ang, 1994).  It was first used to study electricity consumption trends in industry in 

the late 1970s.  Growth of studies has been tremendous since then.  While it is hard to 

numerate all the studies, a comprehensive review covering both the methodological 



Chapter 2 

41 

 

and application fronts was provided by Ang and Zhang (2000).  More specific reviews 

on sub-areas are also provided recently.  Liu and Ang (2007) reviewed the studies that 

decomposed changes in aggregate energy intensity of industry to the relative impacts 

arising from energy intensity change and product-mix change.  Xu and Ang (2013) 

focused on the decomposition studies on energy related CO2 emissions. 

SDA is another decomposition method that has developed independently from IDA.  

IDA and SDA have the same aims but apply different models.  IDA uses only 

aggregate sector information, while SDA relies on the input-output framework and is 

also quoted as “IO SDA” (Rose and Casler, 1996).  SDA is based on input–output 

coefficients and final demand per sector from the IO tables.  SDA can therefore 

distinguish between a range of technological effects and final demand effects that are 

not possible in the IDA framework (Rutger and van der Bergh, 2003).  Earlier studies 

are dated back to the late 1980s (Rose, 1984; Gould and Kulshreshtha, 1986), and the 

application of SDA has been developed into a major analytical tool lately.  A majority 

of SDA studies on energy and emissions use additive decomposition (Su and Ang, 

2012).  By additive SDA and the conjunction of global and regional IO tables, Meng 

et al. (2019) presented a good example on how SDA can be used to identify the 

socioeconomic driver of environmental issue.  Given the fact that the growth of global 

emissions of PM2.5 and many of its precursors slowed down from 2004 to 2011, Meng 

et al. (2019) reported that improvements in energy intensities and production 

efficiency were the major drivers.   

Reviewing the existing studies, IDA and SDA have been demonstrated as useful 

complements to device/process level, engineering-based industrial energy analysis 

and macro-level econometric analysis that relates energy consumption or emissions to 

some explanatory variables.  While the objectives and techniques are basically the 

same among studies, there are great variations in the pre-determined variables and 

data set used.  Such inconsistencies make it hard to compare the results from different 

studies even for the same study area.  Take China as an example, there is an extensive 

body of literature on driver analysis of China’s energy consumption at the national 

level and, to a lesser extent, at the provincial level.  At the national level, these studies 

cover a wide time span from 1970 to 2015 but are generally inconsistent in the 

number of decomposed factors, time lag and sectors of interest (Song and Zheng, 
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2012; Xu et al., 2014; Zhang et al., 2016a; Fan et al., 2017; Zhao et al., 2017; Guan et 

al., 2018; Wang et al., 2018a). 

2.4.2. Impacts of climate and air pollution in socioeconomic context 

The impacts of climate and air pollution to human society can be understood in two 

ways.  One is the direct impact or cost, which is caused by the direct consequences of 

climate and air pollution problems.  Typically, it is the short-term physical impacts on 

natural resources, people and tangible assets.  Take air pollution as an example, the 

direct impact would be the death toll, decreased morbidity, increased national burden 

of health care, corrosion of susceptible materials and infrastructure, reduced crop 

yield and others.  Direct impacts studies, therefore, translate such outcomes into 

monetary loss.  Given the data availability and epidemic evidences, impact studies of 

air pollution are mainly on measuring the direct impacts of mortality and morbidity 

(Venners et al., 2003; Kan and Chen, 2004; Meng et al., 2016a).  Based upon an 

exposure-response relationship, relative risks for a particular disease are associated 

with air pollutant concentration levels (Wong et al., 2002; Meng et al., 2016a).  

Health cost is then measured either by evaluating patients’ willingness-to-pay (WTP) 

to avoid disease risk (Alberini and Krupnick, 2000; Carlsson and Johansson-Stenman, 

2000; Wang and Mullahy, 2006) or by applying the productive years of life loss 

(PYLL) (Miraglia et al., 2005; Matus et al., 2012; Xia et al., 2016).  From the 

perspective of climate, impacts from drought, flood, heat wave and other natural 

disasters that are intensified by climate can be measured (Whetton et al., 1993; Yang 

et al., 2012; Gleick, 2014).  The direct impact of flood, for example, includes the 

expected annual damage (EAD) from river flooding events, which is estimated to be 

6.4 billion Euro in 2012 and may increase to 14 to 21.5 billion Euro (constant 2006 

prices) by 2100 (Feyen et al., 2012).   

The indirect impacts, by contrast, investigates the cascading effects triggered by 

negative nature of climate and air pollution problems.  It refers to the economic 

impact or loss resulting from labour delay, capital loss, disruption of economic 

activities in the whole production supply chain and costs for physical capital 

reconstruction (Hallegatte and Przyluski, 2010; Baghersad and Zobel, 2015; 

Hallegatte, 2015, 2017).  The quantification of indirect impacts are an emerging field.  

To track down cascading effects along the supply chain, IO or computable general 
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equilibrium (CGE) is adopted.  For example, Xia et al. (2018) used MRIO table for 30 

provinces in China to study the disease-induced working-time reduction in 2012.  

Such an indirect impact was estimated to be CNY 398.23 billion, equivalent to ~1% 

of China’s GDP in 2012.  Nam et al. (2010) applied CGE to measure the welfare loss 

caused by air pollution in Europe.  Even for European countries where air quality is 

relative high, they still experienced an annual loss in consumption of about 222 billion 

Euro in year 2000 prices (~3% of total consumption) and a total welfare loss of about 

370 billion Euro.  Nam et al. (2010) constructed an econometric and IO joint method 

and estimated that the indirect economic loss for the transportation sector caused by 

representative haze pollution of Beijing in 2013 was 23.7 million yuan.  Methods in 

this field, however, are still building up. 

2.4.3. Integrated assessment 

Integrated assessment is an interdisciplinary approach to combine, interpret and 

communicate knowledge from diverse scientific disciplines to expose an entire cause-

effect chain of a problem from a synoptic perspective.  By integrating a broader set of 

studies, approaches and points of view coming from different scientific areas 

interacting each other, integrated assessment strives to provide more and better 

information on the issue assessed than single disciplinary studies added up (Jakeman 

and Letcher, 2003; Van Delden et al., 2011; Voinov and Shugart, 2013).  In the 

context of climate and air pollution problems investigated here, integrated assessment 

should embrace the social, economic, technical and environmental perspectives (Toth, 

1998; Kalaugher et al., 2013; Welsh et al., 2013).   

Energy system models (ESMs) and integrated assessment models (IAMs) represent 

one dominant strand of integrated assessment in terms of energy and climate policy 

(Cantore, 2011; van Vuuren et al., 2011; Harfoot et al., 2014).  The underlying 

philosophy of ESMs and IAMs is similar with AQMs, which is to explore the “what if” 

or “how to” questions by a wide range of numerical experiments embodied in the 

models.  The ESMs and IAMs, however, are simplified replicates of the material and 

energy flows inside human society and economy, rather than the physical and 

chemical laws depicted in AQMs.  More specifically, ESMs and IAMs contain with 

them a representation of fuel extraction, transformation of fuels into useful energy 

forms such as electricity, hydrogen, heating and transport fuels, delivery of this 



Chapter 2 

44 

 

energy to end users, and the use of this energy to provide services such as transporting 

people and freight, heating buildings, and powering factories (Gambhir, 2019).  They 

cover the economic and technical perspectives by the integration of cost (e.g., 

infrastructure and maintenance cost), tax, carbon prices, performance and availability 

of technologies, and other technical parameters.  In some circumstances, ESMs and 

IAMs are linked to a CGE model to produce a better reflection on the economic 

system such as the price and demand elasticity (Messner and Schrattenholzer, 2000; 

Klaassen and Riahi, 2007; Kypreos and Lehtila, 2015).  Social considerations are 

generally embodied in the design of socio-economic growth. Environmental aspects 

are reflected by the pre-determined emission constraints and climate targets.  Since 

their development, ESMs and IAMs have been used widely to explore low-carbon 

pathways.  Their prominences have been well documented in the latest (5
th

) 

assessment report by Intergovernmental Panel on Climate Change (IPCC), which is an 

ensemble of over 1000 modeled future emissions pathways (Intergovernmental Panel 

on Climate Change, 2014).  The existing models include the TIMES Integrated 

Assessment Model (TIAM) (Loulou and Labriet, 2008; Gracceva and Zeniewski, 

2013; Selosse and Ricci, 2014), MESSAGE Integrated Assessment Model 

(MESSAGE) (McCollum et al., 2011; Rogner and Riahi, 2013; Sullivan et al., 2013), 

and their extensions (Messner and Schrattenholzer, 2000; Huppmann et al., 2019).   

It can be observed that such integrated models are designed for energy-relevant GHG 

emissions and climate targets.  Air pollutant emissions are not standardized 

components with such models.  To enable integrated assessment for the sake of air 

quality, ESMs and IAMs can be connected to other simulation models via external 

links.  Some studies have used the inputs and outputs from MESSAGE and the 

Greenhouse Gas - Air Pollution Interactions and Synergies (GAINS) model in an 

iterative manner to explore the energy pathways under air pollutant emission 

constraints.  Specifically, energy scenarios provided by MESSAGE are used as inputs 

for GAINS to quantify the air concentration and health benefits.  By iteration, a 

pathway with minimum cost from the energy system (optimized by MESSAGE) to 

reach a certain air quality target (controlled by GAINS) will be provided as output.  

Following such a methodology, Maragatham and Rafaj (2012) facilitated an impact 

assessment of simultaneous control of air pollution and GHG abatement under energy 

projections by 2050. 
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Another strand refers to a wider range of studies in looser forms.  It represents the 

efforts to combine the above cause-focused and impact-focused socioeconomic 

studies with conventional environmental studies.  Instead of a nested structure 

embodied in one single model, they combine the approaches from different disciplines 

via soft links.  The advantages of such studies include flexibilities and transparencies.  

For ESMs and IAMs, many of their model parameters are not open and the 

optimization functions and other settings are generally fixed (McMichael, 1997; 

Cocks et al., 1998; Ackerman et al., 2009).  There is no consensus on how such loose-

form studies should be constructed.  They can vary from research question, data 

availability, involved expertise and other factors.  Kumar and Saroj (2014) proposed a 

simplified framework to study the nexus between energy production, related water 

consumption and air pollution under the backdrop of growing population and 

urbanisation.  The key idea was to integrate production, consumption, emissions and 

control into one single assessment framework.  Similarly, Griggs et al. (2014) 

developed an integrated framework to incorporate six sustainable development goals 

(SDGs) which included both development and environmental considerations.  

Numerous studies of the kind have emerged in recent years to advocate the idea of 

integrated assessment (Camagni et al., 1998; Ezzati et al., 2001; Nair et al., 2014; Li 

et al., 2017b).  Many of them, however, are in conceptual stages and qualitative 

manners.  There are still enormous gaps in both methodologies and data to facilitate a 

feasible integrated assessment framework. 

Quantitative studies are accumulating to overcome the methodological and data gaps 

in integrated assessment.  Some studies used mathematical constraints to ensure 

optimization was reached with multiple targets.  For example, (Zeng et al., 2017) 

developed the population-production-pollution nexus for Beijing, China, with eight 

constraints touching the factors of population, incomes, emission penalty, loss from 

reduced production activities, cost for environmental retreatment and inter-regional 

transportation.  It identified the optimized policies to reconcile the conflicts from 

demand, production and pollution mitigation.  The introduction of mathematical 

constraints in these studies have limited their usage, however.  While a 

mathematically optimal solution can be provided, it is not necessarily the optimal 

option in the real world considering other socioeconomic barriers.  More importantly, 
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it is hard to quantify the cause and effect relationship between the environment and 

socioeconomic systems. 

Studies aiming to capture the material and emission flows between energy, 

environment and socioeconomic systems have emerged accordingly.  To break the 

systems’ boundaries, the input-output (IO) framework is used.  More specifically, the 

environmentally-extended input-output (EEIO) framework is adopted.  Compared to 

the traditional IO method, EEIO integrates material or emission flow data into the 

monetary input-output relation (Tukker et al., 2009; Kitzes, 2013; Hawkins et al., 

2015).  With EEIO and complex network analysis, Chen et al. (2018) studied the 

global energy flows embodied in international trade.  Wang et al. (2019) combined 

the EEIO framework and ecological network analysis to depict the sectoral embodied 

consumption of water and energy and their inter-sector flows.  The impact of the 

energy–water linkage on energy and water systems was investigated and results 

showed that nexus impact on the water system was larger than that on the energy 

system.  In term of air pollution, attempts have been made to connect EEIO with 

atmospheric transport models for a better understanding of pollution causes and 

responsibility.  Lin et al. (2014) provided an influential work to study the emissions 

embodied in the international trade between US and China and the environmental 

impacts in both countries.  Specifically, emissions of SO2, NOx, CO and black carbon 

were analysed, followed by simulated concentrations of PM2.5 and O3.  It exposed an 

interesting integrated assessment work on the causes and impacts of bilateral trade.  

One limitation of this study, however, was the simulation of O3, in which NMVOCs 

emissions were remained constant across scenarios.  Later on, Zhang et al. (2017) 

provided a more throughout study that addressed all the global economies.  In 

addition, they extended the analysis to public health, which linked the drivers of 

global consumption to premature mortality associated with PM2.5 outdoor exposure.  

Integrated assessments on other pollutants, such as black carbon (Meng et al., 2018) 

and mercury (Hui et al., 2017; Li et al., 2017c; Chen et al., 2019) were also carried 

out.  Nevertheless, studies of this kind are still sparse and applications on other 

secondary pollutants such as O3 are very limited.  
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2.5. Research Gap 

With respect to energy, pollution and socioeconomics, each of them is an area with a 

multitude of studies that are hard to numerate exhaustively.  This chapter strives to 

review studies relevant to the proposed methodological framework (See Figure 1-9 in 

Section 1.4.2).  Research gaps in data, methodology and knowledge are identified and 

discussed below. 

2.5.1. Methodology and data gaps 

The merits of integrated assessment have received more attention recently.  Such an 

interdisciplinary approach can combine, interpret and communicate knowledge from 

diverse scientific disciplines and provide more and better information on the issue 

than single disciplinary studies added up.  This is especially true for climate and air 

pollution problems, which have their roots and fruits in the economic, social and 

ecological systems.  Towards an integrated assessment of energy, pollution and 

socioeconomics, different models, conceptual frameworks and quantitative methods 

have been proposed.  Nevertheless, each of them has their own limitations.  Since 

integrated assessment models are generally designed to reach optimal solutions of 

energy systems under the predetermined climate targets, they are less applicable to 

explore the full chain of cause and impact in energy, pollution and socioeconomic 

system.  To enable integrated assessment for the sake of air quality, they also need to 

connect to other simulation models via external links.  Concerning integrated 

assessment frameworks, a lot of studies have advocated the importance to introduce 

different perspectives in order to better understand the trade-offs and synergies.  Many 

of them, however, are in conceptual stages and qualitative manners.  Quantitative 

studies are accumulating but still limited.  Some studies used mathematical constraints 

to ensure optimization was reached with multiple targets, which are indeed similar to 

the underlying logic of integrated assessment models.  The others try to connect the 

social and economic system with the environmental system by the IO framework.  

They have succeeded in providing quantitative evidence on the emission and material 

flows between different systems and renewing the understanding on the cause and 

effect of climate and air pollution (Lin et al., 2014; Zhang et al., 2017b; Meng et al., 

2018; Chen et al., 2019).  Nevertheless, studies in such quantitative manners are still 

sparse.  Recognizing the central role of IO in the integrate assessment, this study 
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develops an integrated assessment framework to depict material and emission flows 

between producers, consumers and environmental receptors.  Such a framework is 

comprised by EEIO analysis, decomposition techniques, air quality modelling, health 

exposure evaluation, and a comprehensive set of technical and cost parameters.  It is 

argued that production- and consumption-based emissions can serve as the keys to 

connect different systems and allow a quantitative assessment on the full chain of 

cause and effect. 

In addition, this study attempts to overcome some of the limitations in energy and 

emission data and the MRIO table in China.  First, existing studies have exposed the 

mixed quality of energy consumption and emission data in China (Marland, 2008; 

Junguo and Hong, 2009), which is also a common issue for other developing 

countries.  Statistical corruption, inconsistency between statistic systems in different 

administrative levels, and frequent revisions of energy statistics have been identified 

as three of the key factors responsible for questionable quality of energy consumption 

statistics.  The uncertainty in energy data would be propagated into the compilation of 

production- and consumption-based emission inventories and consequently, 

undermines the reliability of integrated assessment.  According to the existing studies, 

uncertainty is especially large for air pollutants such as PM2.5 and NMVOCs.  This 

raises data and methodology gaps with respect to the reliability of energy and 

emission data and their validation.  This study tries to overcome such research gaps 

by a comparison of energy statistic in national and provincial levels (See Section 3.1.1) 

and an attempt to validate NMVOCs emission inventories with ground-level 

measurements of speciated NMVOCs (See Section 3.1.3).  Second, the central role of 

an IO framework in quantitative integrated assessment has been acknowledged.  

Currently, the MRIO table is available for 30 mainland provinces in China (Mi et al., 

2017).  While such a MRIO has captured the major economic activities between 

provinces, there is still a need to extend the current table to cover the whole national 

economy.  The extension of the MIRO would enable an integrated assessment in 

wider coverage and expose the production and consumption characteristics of some 

regions that are generally neglected.  This study tries to advance the development of 

China’s MRIO table by extending it to cover all the provinces in mainland. 
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2.5.2. Knowledge gaps 

The above methodologies and data gaps partly result in insufficient knowledge on the 

complex interaction between energy consumption, pollution formation and 

socioeconomic demands in China.  This study identifies the research gaps in terms of 

subnational studies and the causes and effects of some emerging trends in energy 

consumption and pollution. 

First, studies in subnational levels for a vast country as China are vital but are still 

lacking.  As a country that comprises more than 30 administrative regions, provinces 

in China are widely divergent in their development statuses as shown in Section 1.1.  

Due to the data availability and work load, studies in subnational levels are generally 

less than those in national levels.  However, the overall trends for China as a whole 

can disguise some interesting and contradictory pictures between Chinese regions, as 

demonstrated in studies on the determinants of carbon intensities (Guan et al., 2014) 

and regional emission drivers (Mi et al., 2017). 

With respect to energy consumption, the dominance of national studies or the 

grouping of regions have overlooked the crucial transitions in provincial levels.  The 

energy elasticity (the percentage change in energy consumption to achieve one per 

cent change in national GDP) (Shimi and Reji, 2013; Giraud, 2014) in China had 

decreased continuously from 2003 to 2015.  Starting at a level of 1.11 from 2003 to 

2007, the energy elasticity dropped to 0.58 during 2007 to 2011, followed by an even 

lower value of 0.46 from 2011 to 2015.  China seems to be on the way towards more 

energy-efficient growth.  The slowdown of energy consumption growth is even more 

prominent in provincial level.  Eight of its provinces have seen declines in their total 

primary consumption (including coal, petroleum, natural gas and non-fossil fuels) 

from 2011 to 2015.  The other five provinces, in addition, have decreased their 

combined consumption of coal and petroleum though their total primary consumption 

has slightly increased.  Collectively, nearly half of China’s 30 inland provinces are 

making positive transitions in their energy consumption.  However, the drivers behind 

such transitions and the possibility to sustain them are not covered in current studies.  

There is an extensive body of literature on driver analysis of China’s energy 

consumption at the national level, and to a lesser extent, at the provincial level.  At the 

national level, these studies cover a wide time span from 1970 to 2015 but are 
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generally inconsistent in the number of decomposed factors, time lag and sectors of 

interest (Guan et al., 2008, 2018; Liu et al., 2012; Zhang and Da, 2015; Wang and 

Feng, 2017).  Such inconsistencies make it hard to compare the results from different 

studies.  At the provincial level, many of the studies are focused on energy-related 

CO2 emissions (Jiang et al., 2017; Ye et al., 2017), energy intensity (Song and Zheng, 

2012; Elliott et al., 2017) and CO2 emission intensity (Tan et al., 2011; Wang et al., 

2018a).  They missed the declines of some provinces in energy consumption due to 

the grouping of provinces or lack of sub-period analysis. For example, some studies 

only targeted the start and end years (e.g., 2000 and 2015, 2005 and 2010), which 

obscured the emerging trend in between.  The others grouped the provinces by their 

spatial locations or types of drivers for ease of discussion.  In a previous study, for 

instance, provinces were grouped into East, Central and West (Wang and Feng, 2017).  

The energy-related CO2 emissions for the Central provinces have levelled off since 

2011.  Among them, it is highly likely that some of their emissions had already 

declined.  It is a pity that the trend was smoothed and omitted. 

Third, there is a worrying trend on the ground-level O3 in China yet its causes and 

effects are still poorly characterized.  While China has made enormous progress in 

combatting the fine particulate matter (PM2.5) pollution, ozone (O3) pollution is on the 

rise.  With focused control of primary PM2.5, sulfur dioxide (SO2) and nitrogen oxides 

(NOx) (Chinese State Council, 2013), the PM2.5 concentration decreased by 35% in 

2017 (47 µg/m
3
), compared to a level of 72 µg/m

3
 in 2013 (China National 

Environmental Monitoring Centre, 2018b).  Meanwhile, the hourly concentration of 

O3 in China increased by 16~27% from 2013 to 2017.  The O3 exposure metrics 

(cumulative O3 concentration) increased even more by 57~77% (Lu et al., 2018).  The 

present extent of O3 pollution, in terms of the exposure of humans and vegetation, is 

greater in China than in any other developed region of the world with comprehensive 

O3 monitoring (Lu et al., 2018).  Evaluation of past data in the United States and 

some other developed countries showed that O3 pollution became more prominent 

after initial progress on particulate control had been made (Coordinating Research 

Council, 2015; Fujita et al., 2016).  Few earlier studies in China also highlighted the 

threat of worsening O3 pollution following the strong PM2.5 control policies ( Xing et 

al., 2011a; Xue et al., 2014; Ou et al., 2016).  Still, the surge of O3 in recent years is 

surprising in terms of its extent.  There is an awareness of simultaneous reductions of 



Chapter 2 

51 

 

NMVOCs and NH3 with NOx control to enhance the effectiveness (Xing et al., 2018), 

but more investigation on the increased O3 and evidence-based policy 

recommendation are still needed.  China’s initial success on air pollution control is 

marked by strong end-of-pipe treatments based on the production-based knowledge.  

As China is undergoing crucial transitions of economic and social growths (“new 

normal”), the drivers and consumption patterns behind air pollutant emissions should 

be understood. Such knowledge may enable coordination of emission control and 

China’s supply- and demand- side reform.  To this end, an integrated assessment from 

both the production- and consumption-based perspectives is needed.   
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Chapter 3 Method and data of energy-pollution-

socioeconomic integrated assessment 

In accordance with the methodological framework proposed in Section 1.4.2 (See 

Figure 1-9), the methods and data sources involved are introduced in this Chapter.  

Section 3.1 describes the compilation of the primary energy consumption matrix, 

production-based CO2 and air pollutant emissions and source of socioeconomic data.  

Section 3.2 introduces how the socioeconomic drivers and demands driving the 

energy consumption and emissions are identified.  Section 3.3 provides details on the 

construction of the air quality modelling platform and its validation.  Evaluation of 

health impacts caused by elevated air pollution and the cost to introduce cleaner 

production measures is given in Section 3.4.  Section 3.5 is a summary of methods 

and data sources.  It is also a brief restatement on the proposed methodological 

framework and how the methods and data sources used here can support such a 

framework. 

3.1. Energy consumption, emission and socioeconomic data 

3.1.1. Compilation of primary energy consumption matrix by sectors 

and fuel types 

To support the development of air pollutant and greenhouse gas emission inventories, 

primary energy consumption is a prerequisite.  Primary energy consumption refers to 

the use of crude energy, which is the energy that has not been subjected to any 

conversion or transformation process.  It differs from final energy consumption, 

which has a much higher proportion of electricity after transformation. 

In most energy statistics in China, final energy consumption is recorded.  The ways to 

estimate primary energy consumption are different for fossil fuels and non-fossil fuels.  

As for fossil fuels, final consumption in physical quantities are available for 8 

aggregate sectors from EBT: (1) Agriculture, forestry, animal husbandry and fishery; 

(2) Industry; (3) Construction; (4) Transport, storage and post; (5) wholesale, retail 

trade and hotel, restaurants; (6) Others; (7) Urban residential consumption; and (8) 

Rural residential consumption.  The final energy consumption in the above sectors 
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except industry is indeed the same as primary energy consumption, as they do not 

involve any energy transformation activities.  In the industrial sectors, however, there 

exist various activities of energy transformation, such as the input of coal and 

petroleum products in the thermal power sector for electricity generation, input of raw 

coal and cleaned coal for coke production and others.  The final energy consumption 

of industrial sectors, therefore, reflects only part of the fuels that are actually 

consumed.  To include the fuels used for transformation, statistics on the input and 

output of fuels used for transformation are collected and added up to the industrial 

sectors.  Combined with the sectoral final energy consumption table which includes 

40 manufacturing sectors, the input and output of fuels for energy transformation is 

added up to or deducted from the corresponding sectors, respectively. 

In terms of non-fossil fuels, they are represented as electricity and other energy in the 

final energy consumption statistics.  The electricity includes those from fossil and 

non-fossil fuels.  The amount of electricity generated from non-fossil fuels are 

estimated by the indigenous production of electricity from non-fossil fuels, electricity 

moving in from other provinces and electricity sent out to other provinces, as shown 

in Equation 3-1. 

ENFi = Ii + Mi × Θ - Si × Θi                  Eq. 3-1 

Where ENFi is the electricity from non-fossil fuels consumed in province i, Ii is the 

indigenous production of electricity from non-fossil fuels in province i, Mi is the 

amount of electricity moving into province i from other provinces, Θ is the percentage 

of non-fossil fuels in the total electricity generated nationally, Si  is the amount of 

electricity sent out from province i to other provinces, Θi is the percentage of non-

fossil fuels in the electricity generated in province i. Θ and Θi can be calculated from 

the national and provincial EBTs, respectively, from the information of primary 

energy supply. 

Once the electricity from non-fossil fuels consumed by a province is estimated from 

the above equation, it is allocated to sectors based upon the sectoral consumption of 

total electricity.  The underlying assumption here is that, proportions of non-fossil 

fuels and fossil fuels in the electricity used in end consumers are the same across 

sectors since one cannot tell the primary source of electricity once they are connected 

to grids. 
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The above procedures would provide the consumption of 30 types of fuels in physical 

quantities for 46 sectors (including primary industry, 41 secondary industrial sectors, 

2 tertiary industrial sectors, urban and rural household consumption).  The explicit 

lists of fuel types and sectors can be found in Table 3-1 and Table 3-2, respectively.  

In other words, every province could have a 30×46 matrix on primary energy 

consumption, which is used for emission estimation.  For the decomposition analysis 

in Chapter 5, physical quantities are transformed to coal equivalent for an apt 

comparison across fuel types and the 30 types of fuels are aggregated into 4 categories 

as shown in Table 3-1.  

Table 3-1 Energy types and their aggregation 

Category Fuel types Category Fuel types 

Coal 

Raw coal 

Petroleum  

Fuel oil 

Cleaned coal Naphtha 

Other washed coal Lubricants 

Briquettes Petroleum waxes 

Gangue White spirit 

Coke Bitumen asphalt 

Coke oven gas Petroleum coke 

Blast furnace gas Liquefied petroleum gas (LPG) 

Converter gas Refinery gas 

Other gas Other petroleum products 

Other coking products 
Natural Gas 

Natural gas 

Petroleum  

Crude Oil Liquefied natural gas (LNG) 

Gasoline 
Non-fossil 

fuels 

Other energy 

Kerosene 
Electricity (after adjustment using 

Eq. 3-1) 

Diesel oil Heat 
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Table 3-2 Sector number and names 

No. Category Sector  No. Category Sector 

1 Primary 
Farming, Forestry, Animal Husbandry, Fishery & 

Water Conservancy 
 24 

Secondary-

Manufacturing 

Chemical Fiber 

2 

Secondary-

Manufacturing 

Coal Mining and Dressing  25 Rubber Products 

3 Petroleum and Natural Gas Extraction  26 Plastic Products 

4 Ferrous Metals Mining and Dressing  27 Non-metal Mineral Products 

5 Nonferrous Metals Mining and Dressing  28 Smelting and Pressing of Ferrous Metals 

6 Non-metal Minerals Mining and Dressing  29 Smelting and Pressing of Nonferrous Metals 

7 Other Minerals Mining and Dressing  30 Metal Products 

8 Logging and Transport of Wood and Bamboo  31 Ordinary Machinery 

9 Food Processing  32 Equipment for Special Purpose 

10 Food Production  33 Transportation Equipment 

11 Beverage Production  34 Electric Equipment and Machinery 

12 Tobacco Processing  35 Electronic and Telecommunications Equipment 

13 Textile Industry  36 Instruments, Meters Cultural and Office Machinery 

14 Garments and Other Fiber Products  37 Other Manufacturing Industry 

15 Leather, Furs, Down and Related Products  38 Scrap and waste 

16 
Timber Processing, Bamboo, Cane, Palm & Straw 

Products 
 39 

Electric Power, Steam and Hot Water Production 

and Supply 

17 Furniture Manufacturing  40 Gas Production and Supply 
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18 Papermaking and Paper Products  41 Tap Water Production and Supply 

19 Printing and Record Medium Reproduction  42 
Secondary-

Construction 
Construction 

20 Cultural, Educational and Sports Articles  43 Tertiary 
Transport, Storage, Postal & Telecommunications 

Services 

21 Petroleum Processing and Coking  44 Tertiary Wholesale, Retail Trade and Catering Service 

22 Raw Chemical Materials and Chemical Products  45 Residential Urban consumption 

23 Medical and Pharmaceutical Products   46 Residential Rural consumption 
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There are gaps between energy statistics at the provincial levels and those from 

national metrics.  One previous work compared the CO2 emission inventories 

compiled by national and provincial energy statistics for the period of 1997 to 2010 

and found large inconsistency between the emissions calculated between these two 

official energy data sets (Guan et al., 2012).  Nevertheless, China has revised its 

energy statistics three times since 2000 to improve the self-consistency (Zheng et al., 

2018b).  The gap between the national and provincial statistics is closing.  This study 

uses the latest provincial energy statistics from 2000 to 2016, which is indeed the only 

available data covering all the mainland provinces in such a time frame.  The 

provincial sum is compared to the national consumption in Table 3-3.  The relative 

differences between the two were from -6% to 8%.   

Table 3-3 Differences between national and provincial energy statistics 

Year 

Total Energy Consumption (10
4
 tce) 

Relative Difference National Provincial Sum 

2003 197083 185264 -6% 

2004 230281 212286 -8% 

2005 261369 251521 -4% 

2006 286467 278232 -3% 

2007 311442 302576 -3% 

2008 320611 320217 0% 

2009 336126 336870 0% 

2010 360648 375760 4% 

2011 387043 418296 8% 

2012 402138 415851 3% 

2013 416913 413406 -1% 

2014 425806 435637 2% 

2015 429905 441905 3% 

2016 435819 455357 4% 

 

Though the sum of provincial statistics is compared with the national energy budget, 

the uncertainty (or variability) of energy consumption of a single province is hard to 

fathom since there is no other available data source to reflect the provincial 

consumption.  All that can be concluded is that the sum of provincial statistics is 

generally consistent with the national one.  The sum of provincial statistics presents a 

similar trend as that of the national value. 
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3.1.2. Production-based emissions of CO2 

The production-based CO2 emission inventories for subnational levels in China 

developed by previous studies (Shan et al., 2016a, 2017) are adopted. These 

inventories are compiled with a consistent methodology and data sources using the 

energy consumption data from China’s Energy Statistical Yearbooks and the best 

available local emission coefficients (Liu et al. 2015a; Mi et al. 2016).  

Specifically, the primary energy consumption matrix is used to estimate the emissions 

from combustion sources.  For CO2 emissions, the well-established methods for China 

are adopted from previous studies (Shan et al., 2016a, 2017).  In brief, CO2 emissions 

from energy-related combustion is estimated as below, 

CEi,k,j = ADi,k,j × NCVj × CCj ×Ojk              Eq 3-2 

Where CEi,j,k refers to the CO2 emissions from fossil fuel j burned in sector k of 

province i; ADi,j,k is the consumption of fossil fuel j in sector k; NCVj is the net caloric 

values; CCj is the CO2 emissions per net caloric value produced by fossil fuel j; and 

Ojk is the oxygenation efficiency.  

The process-based CO2 emissions, which are produced by physical-chemical reactions 

in production process other than combustion, are estimated as in Equation 3-3.  

CEi,k = ADPi,k × EFCk                 Eq. 3-3 

Where CEi,k refers to the process-related CO2 emissions from sector k in province i; 

and ADPi,k is the activity level of sector k in province i such as industrial outputs, 

EFCk is the CO2 emission factor of sector k.  Details on the methods and emission 

factors used refer to (Shan et al., 2016b, 2017). 

3.1.3. Production-based emissions of air pollutants  

Subnational emissions of seven pollutants (SO2, NOx, PM10, PM2.5, NMVOCs, CO 

and NH3) were adopted from previous studies (Bian et al., 2019).  Validations with 

ambient measurements (this section) and modelling results (See section 3.3) were 

carried out in this study.  

Air pollutant emissions from the major known sources were included, including 

power plants, industrial combustion, residential combustion, on-road mobile source, 
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non-road mobile source, dust source, industrial process sources, non-industrial solvent 

use, storage and transportation, agriculture source, biomass burning, and others. 

 Power plants, industrial combustion and residential combustion  

Air pollutant emissions from fuel combustion in power plants, industrial sources and 

residential usage can be estimated by either mass balance or emission factor methods.  

For SO2 emissions, mass balance method is adopted. 

PEi,j,k,p = ADi,j,k × Cj× SCi,j,k × ∑q(PRi,j,k,p,q× (1-ƞp,q))              Eq 3-4 

Where PEi,j,k,p refers to the emissions of pollutant p (which is SO2 in this case) from 

fossil fuel j burned in sector k of province i; ADi,j,k is the consumption of fossil fuel j 

in sector k; Cj is the fuel-based coefficient, which is 0.8 for coal and 1 for petroleum; 

PRi,j,k,p,q is the penetration rate of air pollutant emission treatments q for pollutant p 

(which is SO2 in this case) from fossil fuel j burned in sector k of province i; ƞp,q is the 

removal efficiency of air pollutant emission treatments q for pollutant p (which is SO2 

in this case). 

For NOx, CO, PM10, PM2.5 and NMVOCs, emissions from fossil fuel combustion are 

calculated by emission factor as follows. 

PEi,j,k,p = ADi,j,k ×EFj,k,p × ∑q (PRi,j,k,p,q× (1-ƞp,q))              Eq 3-5 

Where PEi,j,k,p refers to the emissions of pollutant p from fossil fuel j burned in sector 

k of province i; ADi,j,k is the consumption of fossil fuel j in sector k, province i; 

EFj,k,p is the unabated emission factor for pollutant p using fossil fuel j in sector k; 

PRi,j,k,p,q is the penetration rate of air pollutant emission treatment q for pollutant p 

from fossil fuel j burned in sector k of province i; ƞp,q is the removal efficiency of air 

pollutant emission treatment q for pollutant p. 

Emission factors are adopted from Bian et al. (2019), Zheng et al. (2018a), Lu et al. 

(2013) and Zheng et al. (2009a).  Energy consumption matrix developed in Section 

3.1.1 is used as activity level data. 

 Industrial process source 

Some of the NOx, CO, PM10, PM2.5 and NMVOCs emissions are from non-

combustion processes in industries.  Here, emission actor approach is adopted. 
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PEi,k p = ADPi,k × ∑(Xi,k,p,t ×EFi,k,p,t)                  Eq 3-6 

Where PEi,k,p refers to the non-combustion emissions of pollutant p from sector k of 

province i; ADPi,k is the activity level of sector k in province j such as industrial 

outputs; Xi,k,p,t is the application rate of technology t (relevant to different emission 

levels of pollutant p) in sector k of province i; EFi,k,p,q is the emission factor of 

pollutant p for technology t in sector k of province i. 

Emission factors are adopted from Bian et al. (2019), Zheng et al. (2013, 2018a), Yin 

et al. (2015) and Ou et al. (2015).  Activity level data are from National Bureau of 

Statistics (2018a&c) as well as point-source data from the industries. 

 On-road mobile sources and dust source 

Emissions from on-road mobile sources and dust are estimated as Eq. 3-7.   

PEi,p =∑v(Pi,v ×VKTi,v × EFv,p)                  Eq 3-7 

Where PEi is the emission of pollutant p from on-road mobile sources in province i; 

Pi,v is the population of vehicle v in province i; VKTi,v is the annual average mileage 

travelled of vehicle type v in province i, with the unit of km; EFv,p is the emission 

factor of pollutant p of vehicle type v, with the unit of g km
-1

.  

Emission factors are adopted from Bian et al. (2019) and Zheng et al. (2009a&c, 

2018a).  Vehicle populations are from National Bureau of Statistics (2018d).  Average 

mileage travelled by vehicle type is collected from local transport departments. 

Dust source refer to the PM2.5 and PM10 emissions from construction sites, which can 

be estimated by Eq. 3-8. 

PEi,p =Si ×CTi × EFp                  Eq 3-8 

Where PEi,p is the emissions of pollutant p in province i from dust sources; Si is the 

construction area in province i, in km
2
; CTi is the average construction time per site in 

province i, in the unit of day; EFp is the emission factor of pollutant p, in g·km
-2

day
-1

. 

Emission factor for dust sources and average construction time are from Bian et al. 

(2018) and Zheng et al. (2018a).  Statistics of construction area are from National 

Bureau of Statistics (2018a).   

 Household solvents 
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Household consumption of paints, consumer products and other can result in 

NMVOCs emissions.  Such emissions are estimated by an emission factor method. 

PEi,p =POPi × EFp                  Eq 3-9 

Where PEi,p is the NMVOCs emissions from household in province i; POPi is the 

total population in province i; EFp is the emission factor, in the unit of g per capita.  

Emission factors are collected from Ou et al. (2015) and Zheng et al. (2018a).  

Population data are from National Bureau of Statistics (2018a). 

 Other sources 

Given the data availabilities and workloads, emission inventories for other sources are 

retrieved from previous studies.  For off-road mobile source, inventories developed by 

Li et al. (2018b) are adopted.  Biomass burning emissions are from Xu et al. (2019).  

NH3 emission inventories are adopted from Zheng et al. (2020).  NMVOCs emissions 

from biogenic sources are estimated by Model of Emissions of Gases and Aerosols 

from Nature (MEGAN) (Jiang et al., 2018).  

3.1.4. Validation of NMVOCs emission inventories 

Among the air pollutants studied here, NMVOCs is one of the groups with the highest 

uncertainty.  Validation of emission inventories with independent measurements is an 

important procedure for data quality control if such measurements are available.  

Using the ambient measurement of speciated NMVOCs from a gridded sampling 

campaign (hereafter as “Grid Study”), NMVOCs emission inventories in Guangdong 

province are validated.  The Grid Study collected air samples simultaneously in 84 

grids with the grid size of 20 × 20 km
2
, at 5 am and 10 am on four days (29 October 

2008 and 1 March, 26 September and 5 December 2009) in Guangdong province.  A 

total of 672 samples were collected and analysed using gas chromatography (GC) 

with a multi-detector system and high-pressure liquid chromatography (HPLC) with a 

photodiode array detector for NMVOCs and oxygenated VOCs (OVOCs), 

respectively. Details of the sampling and analysis methods utilized in Grid Study can 

be found in Louie et al. (2013).   

To enable cross-validation of emission inventories and ambient measurement, data 

from the Grid Study were first analysed with a receptor model (RM) -- positive matrix 

factorization (PMF) model (version 3.0).  RM generally follows the top-down based 
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methodology. It statistically apportions the measured ambient air pollutant 

concentrations, for multiple time periods at one or multiple monitoring sites, to the 

emission sources according to some prior-knowledge of their emission characteristics 

(primarily their chemical characteristics). The site- and time-specific ambient VOC 

species measurements are subject to sampling and analytical errors and to 

meteorological variability (Belis et al., 2015).  Following the protocol of previous 

studies (Yuan et al., 2013), twenty base runs and 100 bootstrap runs were performed 

to select the best solution and estimate the stability and uncertainty. Nine factors were 

identified, after which they were mapped onto the emission sources according to the 

abundances of various tracers, i.e., combustion, diesel exhaust, gasoline exhaust, 

gasoline evaporation, liquefied petroleum gas (LPG)-related sources, mixed solvents, 

industrial emissions, biogenic emissions and secondary and aged air masses. 

The results obtained from both the emission inventory and PMF were unified in terms 

of their source classification, sampling time, and temporal and spatial resolutions. 

Regarding the source classification, the bottom-up emission inventory method 

incorporates a much more detailed source classification system, while the RM 

technique provides a general delineation of multiple sources based on the similarities 

among source profiles. Therefore, the deliberately classified sources in the EIs were 

grouped to match the 8 RM-based source categories, including combustion, gasoline 

exhaust, diesel exhaust, industrial processes, mixed solvents, LPG-related sources, 

gasoline evaporation and secondary and aged air masses. While secondary and aged 

air mass sources were classified within the RM, no primary emission sources in the 

EIs were assigned to this category.  Hourly VOC emissions of the 8 sampling periods, 

i.e., 5 am and 10 am on 29 October 2008 and on 1 March, 26 September and 5 

December 2009, were extracted from the EIs of 2008 and 2009 for comparison. To 

unify the spatial scale, the spatial surrogates used in the 3 × 3 km
2
 emission inventory 

were used to develop the 20 × 20 km
2
 spatial factors for the emission allocation. The 

source characterization results acquired using the emission inventory and the PMF 

therefore had the same sampling time and spatial resolution and were ready for 

comparison in terms of source contribution percentages at both different temporal 

variations (i.e., hourly and annual) and different spatial scales (i.e., 20 × 20 km
2
, 40 × 

40 km
2
, and 200 × 200 km

2
). 



Chapter 3 

63 

The discrepancies between emission inventory and RM varied from different temporal 

and spatial resolutions.  As expected, the discrepancies were the largest in the finest 

temporal and spatial resolution, which was hourly and 20 × 20 km
2
, respectively.  As 

shown in Figure 3-1a, 57% of the results between two methods varied >3 times, i.e., 

the EI result was >3 times of RM or the other way around (RM result was >3 times of 

EI). 24% of the estimations even had differences >15-fold, and almost all source 

categories contributed to these extreme values. 

If comparisons were made in larger temporal and spatial resolutions, e.g., combined 

the 8 sampling periods as annual average or combined every 4 grids to a bigger grid 

of 40 × 40 km
2
, the discrepancies between the two methods seemed to be smoothed in 

some degrees. As Figure 3-1b illustrates, the percentage for those with variations >3 

times decreased to 46% when comparison was made for annual average in 20 × 20 

km
2
 resolution. Similarly, when the grid size was increased to 40 × 40 km

2
, the 

percentage dropped to 46% (Figure 3-1c). If both spatial and temporal enhancements 

were adopted, only 38% of the results remained in the range of >3 times, i.e., 62% of 

the results fell in the range between 1/3 and 3 (Figure 3-1d).  If the grid size further 

increased to cover the entire region and samples in all eight events averaged, 78% of 

the percentage ratios (7 out of 9 sources) fell in the range between 1/3 and 3 (Figure 

3-1e). Only biogenic emission and LPG-related sources still had percentage ratios >3, 

implying other factors may contribute to discrepancies for the two categories. 



Chapter 3 

64 

 

Figure 3-1 Summary of the differences in source contributions between emission inventory 

(EI) and RM in different temporal and spatial resolutions. The y-axis is the frequency of 

contribution estimates that fall within a specific range. The middle of the x-axis (E = P) 

represents the case that there is no difference between two methods' estimations. As the x-axis 

approaches the right side, PMF estimates were 3, 7, 15, and >15 times higher than those of EI, 

and the opposite as the x-axis approaches to the left. The percentage of samples with E/P from 

1/3 to 3 increased from 43% in (a) all the way to 78% in (e) along with spatial and temporal 

averaging enhancements. 

 

Even after reconciling the spatiotemporal resolution as discussed above, substantial 

disagreements still existed for biogenic emissions and LPG-related sources.  Two 

reasons explained the discrepancies.   

The first one is chemical loss, which might be the key factor explaining the 

disagreements of biogenic emissions.  RM uses isoprene as the tracer to identify 

biogenic source.  But isoprene is highly reactive, which is one to two orders higher 
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than those of other species in an RM (Harley and Cass, 1995).  Substantial loss is 

expected from source to the receptor where measurements are made.  Figure 3-2 

shows that the discrepancy between emission inventory and RM correlated well with 

the source reactivity.  By combining the reactivity (kOH) of different NMVOC species 

with their proportions in a source, the source reactivity can be estimated.  As shown in 

Figure 3-2, biogenic emissions (point 9) in the upper-right corner constituted the most 

reactive source, and it was associated with the largest difference between emission 

inventory and RM.  As the source reactivity decreased, the relative differences of 

source contributions by emission inventory and RM declined as well, with the 

exception of LPG-related sources and secondary and aged air masses. Secondary 

sources exhibited the lowest reactivity, as it is composed of long-lived species. Since 

a secondary source cannot correspond to any source in an emission inventory, its 

associated discrepancy was expected to be high. If LPG-related sources and secondary 

and aged air masses were removed, the source reactivity showed a positive 

relationship with the relative differences of two methods (r
2
 = 0.59). Therefore, 

chemical loss constituted the single most important factor in the disagreement 

between EI and RM. Accordingly, some adjustment methods have been developed to 

account for the chemical losses of VOC species in the atmosphere to reconcile the 

results acquired using emission inventories and RMs (Na and Pyo Kim, 2007; Yuan et 

al., 2012). 

 

Figure 3-2 Relationship between source reactivity and the relative differences in SAs between 

EI and RM (a) for the nine sources and (b) excluding LPG and secondary sources. The 

number near the dot represents the ranking of source reactivity (1 is the lowest and 9 is the 

highest). The shaded area represents the 95% confidence interval of the fitting. 
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The above factors failed to explain the significant discrepancy in the contribution of 

LPG-related sources. Its source contribution estimated using the RM was 15 times 

that by emission inventory. The disagreement in the LPG-related source contributions 

from EI and RM has been reported elsewhere in China (Zhang et al., 2009; Zhao et al., 

2012b), Japan (Morino et al., 2011) and North America (Blake and Rowland, 1995; 

Fujita et al., 1995), suggesting that this discrepancy is globally pervasive.   

One possible cause is the usage of propane and i/n-butane in the RM as unique tracers 

of LPG sources. Propane and i/n-butane are ubiquitous in the atmosphere and 

generally make up large portions of the measured NMVOCs.  These species were 

generally treated as tracers of LPG sources due to their higher percentages in the 

source profiles (percentage of a species in a source's emission).  Propane and i/n-

butane each comprises 40%, 4% and 9% of the NMVOC emitted from LPG exhaust 

(Ou et al., 2015), much higher than their percentages in other sources. With the 

measurements of high concentrations of propane and i/n-butane in ambient samples 

and the underlying assumption that propane and i/n-butane came dominantly from 

LPG sources, LPG was constantly apportioned with high source contribution by RM.  

However, if the emission intensity was considered, industrial processes, which 

dominated the emissions in Guangdong, would contribute 47%, 29% and 54% of the 

total propane and i/n-butane emissions. Regardless of whether these percentages were 

accurate or not, it should be cautious to use propane and i/n-butane as the tracers of 

LPG.  More efforts are needed to measure the local source profiles, especially the 

presence of propane and i/n-butane, in a wide variety of industrial processes. 

Another possibility is underestimation of LPG emissions in the current emission 

inventory. A previous study suspected that usage of LPG might result in significant 

leakage (Blake and Rowland, 1995), with leakage rate of 1–5% depending on the 

boundary conditions. Evaporative emissions from LPG usage and gasoline 

evaporation during vehicle movement and parking were absent in the current emission 

inventory. A recent study in China highlighted that vehicular evaporative emissions 

(predominantly from gasoline) constituted a missing yet significant part of NMVOC 

emissions in emission inventory, and estimated that one vehicle in China emitted 1.6 

kg of NMVOC emissions per year (Liu et al., 2015b).  If these two potentially 

missing sources were taken into account in EI, the source contributions by EI would 

change as those shown in Figure 3-3. It was noted that the large discrepancy in LPG-
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related sources was reconciled by inclusion of vehicular evaporative emissions and 2% 

LPG leakage rate. This highlighted that the need to review and improve emission 

estimations from evaporative sources in emission inventory. 

 

Figure 3-3 Comparison of source contributionss by RM and emission inventories with 

different vehicular evaporative emissions and LPG leakage scenarios. 

 

Though the inclusion of vehicular evaporative emissions and 2% LPG leakage rate led 

to the least discrepancy between emission inventory and RM, only vehicular 

evaporation emissions were incorporated in the current NMVOCs emission 

inventories.  It is because the LPG contribution from RM was also subject to its own 

limitation, which was the usage of propane and i/n-butane as the tracers of LPG 

source.  Until more evidences are collected, it would be reckless to manipulate the 

current estimation of LPG emission in the inventory.  As for vehicular evaporation 

emissions, the finding in this study echoes another study which provides strong 

evidences of this missing source (Liu et al., 2015b).  Therefore, it was included in the 

inventories for further analysis.  

3.1.5. Socioeconomic data 

Other socioeconomic data were collected from China’s statistical yearbooks and the 

Statistical Communiqué of Economic and Social Development by provinces.  

Specifically, provincial GDP data by primary, secondary, tertiary industry were 

attained from the statistical yearbooks.  The division of GDP from light and heavy 

industries were based upon the statistics by the provincial Statistical Communiqué.  
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All the GDP data were in constant price of 2015 according to the indices of real GDP 

growth.  Population by provinces within the study period was obtained from the 

China’s Statistical Yearbooks.   

3.2. Identification of socioeconomic drivers and demands 

Energy and emission accounts are connected to the socioeconomic account through 

decomposition analysis and MRIO analysis. In section 3.2.1, the method of 

decomposition analysis is introduced.  It reveals the driving force by the pre-selected 

socioeconomic factors, which are population growth, economic growth, change of 

industrial structure, energy efficiency and energy mix.  Section 3.2.2 presents the 

methods for the compilation of the MRIO table for 31 provinces in China for the year 

of 2012.  Section 3.2.3 introduces the methods of environmentally-extended MRIO 

based upon the MRIO table for 31 provinces, which identifies the intermediate and 

final demands behind production-based emissions. 

3.2.1. Driver decomposition analysis 

Decomposition analysis is a recognized method of quantitatively characterizing the 

socioeconomic drivers of energy and environmental issues.  Among the current DA 

methods, the logarithmic mean Divisia index (LMDI) is adopted in this study due to 

its path independence, consistency in aggregation, ability to handle zero values and 

demonstrated suitability in time series analyses of energy data (Ang & Liu, 2001; Ang, 

2005; Cansino et al., 2018; Goh et al., 2018; Román et al., 2018). The provincial 

energy consumption ECi was decomposed as follows:  

, ,, ,

, ,

i j ki k i ki
i ij k j k

i i i k i k

ECGDP ECGDP
EC POP POP Eco InS Eff M

POP GDP GDP EC
               Eq.3-10 

where ECi represents primary energy consumption in province i, POPi is the 

population of province i; GDPi is the GDP of province i; GDPi,k is the GDP of sector 

k in province i; ECi,k is the total energy consumption by sector k in province i; ECi,j,k is 

the consumption of fuel j in sector k of province i.  Thus, according to Eq. 3-10, E can 

be decomposed into the following five factors: 

(1) POP is the population of province i. 
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(2) Eco = GDPi/POPi is the per capita GDP of province i, which is a gauge of 

economic growth. 

(3) InS= GDPi,k /GDPi is the share of GDP associated with sector k and reflects 

the industrial structure of province i. 

(4) Eff = ECi,k /GDPi,k is the energy consumed by sector j per unit GDP growth 

and measures the energy efficiency in province i. 

(5) M = ECi,j,k
 
/ECi,k is the proportion of fuel j in sector k and represents the 

energy mix. M1, M2, M3 and M4 are the effects of the coal share, petroleum 

share, natural gas share and non-fossil fuel share, respectively. 

The changes in provincial energy consumption and its drivers every four years can be 

calculated as follows: 
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Eq.3-11 

Individually, L or w does not refer to specific mathematical operation here.  Rather, 

they should be understood in a combination which refers to a weighting factor called 

the logarithmic mean weight 
4 4 4( , ) ( ) / (ln( ) ln( ))t t t t t t

ij ij ij ij ij ijL w w EC EC EC EC     . 

, , , , , , ,POP Eco InS Eff coal petroleum gas non fossileE E E E E E E E          are the energy 

consumption changes due to population changes, economic growth, industrial 

structure adjustments, efficiency gains, and changes in the energy mix associated with 

coal, petroleum, natural gas and non-fossil fuels, respectively. 

Recent studies have combined the decomposition analysis with cumulative sum 

(CUSUM) test (Guan et al., 2018).  Such a combination would determine whether the 

changes in energy consumption drivers is statistically significant (Kuan and Hornik, 

1995).  A standard linear regression model for a time series was introduced as follows: 

  Eq. 3-12 yt = xt
Tbt +ut    (t =1,...,T )          (1)
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where  is the dependent variable,  is a  vector of independent variables,  is 

time, and  represents the  vector of estimated coefficients.  The structural 

change test determines the validity of the hypothesis that the estimated coefficients 

remain unchanged. 

    Eq. 3-13 

If the null hypothesis is rejected, the occurrence of one or more structural changes 

must be considered.  In practice, it is common to assume that there are  structural 

breaks that change coefficients.  Additionally, the transition points can rarely be 

predetermined.  Thus, it is reasonable to adopt a generalized fluctuation framework 

that does not assume a particular pattern of deviation from the null hypothesis (Kuan 

and Hornik, 1995).  The core of this technique is to separate deviations from 

consistent trends in a graphical manner rather than by assuming any specific 

parametric relations while the central limit theorem holds.  

To identify the structural break for each specific province, an empirical analysis was 

conducted by fitting a constant to a vector of time series energy consumption for a 

certain province.  In this model setting, we can determine whether a statistically 

significant structural change occurred and when the associated transition occurred.  

Thus, an OLS-based CUSUM test based on the cumulated sums of standard OLS 

residuals was conducted (Ploberger and Krämer, 1992; Zeileis, 2002). 

  Eq. 3-14 

In Eq. 3-11 the limiting process of  follows the standard Brownian bridge

, where W(1) is the standard Brownian motion. 

After identifying the occurrences of structural changes, the transition points (i.e., how 

many structural changes occurred) are identified according to a previously published 

method (Bai, 1997).  The algorithm follows a dynamic programming procedure based 

on the Bellman principle.  The transition points are determined by Residual Sum of 

Square and Bayesian Information Criteria. The empirical analysis portion of the 

CUSUM test and the associated tests were performed using R software. 
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3.2.2. Multi-region Input-Output (MRIO) Table for 31 provinces 

The MRIO table for 31 provinces is compiled based on the input-output tables (IOTs) 

for 31 provinces, which are released by the National Statistics Bureau of China. 

(National Statistics Bureau of China, 2013) These IOTs include 42 economic sectors 

and five final demands, namely, rural household consumption, urban household 

consumption, government consumption, fixed capital formation and inventory change. 

Exports and imports are also reported and divided into international and domestic 

amounts. 

The above IOTs depict the sectoral inputs and outputs in monetary terms for a given 

region. However, their interactions with other regions are unknown. To simulate inter-

regional flows, a gravity model is adopted. The standard gravity model expresses the 

inter-regional flow as a function of the total regional outflows, total regional inflows, 

transfer cost and distance, as shown in Eq. 3-12. 
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       Eq. 3-15 

where yi
rs

 is the trade flows of sector i from region r to s; e
ß0

 is the constant 

proportionality factor; xi
ro

 is the total outflows of sector i from region r to s; d is the 

distance between region r and s, which is approximated by the distances between 

capitals; ß1 and ß2 are weighting coefficients assigned to the masses of origin and 

destination, respectively; and ß3 is the distance decay parameter. Taking the logarithm 

of both sides, Eq. 3.15 can be expressed as follows: 

   0 1 2 3ln ln( ) ln( ) lnrs rO Os rs

i i iy x x d            Eq. 3-16 

Considering the dimensions of the matrix, Eq. 3-17 is constructed. 

0 0 1 1 2 2 3 3        Y L X X X      Eq. 3-17 

where Y is an N×1 matrix of the logarithm of the trade flows of product i between 

regions; L0 is an N×1 matrix with all elements equal to 1; X1 and X2 are the 

logarithms of the total outflows from origin regions and total inflows to destination 

regions, respectively; and X3 is the logarithm of the distance between two regions. Eq. 

3.17 is solved by multiple regressions.  
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Based upon the above standard gravity model, two ratios, namely, the impact 

coefficients and impact exponent, are introduced to reflect varying inter-regional 

competition and cooperation relationships for different sectors (Mi et al., 2017). The 

modified trade flow is written as follows: 

 ' /
i

gh

iY Y c


      Eq. 3-18 

where 
'Y is the modified trade flow and Ŷ is the trade flow obtained from the standard 

gravity model. Due to data availability, 42 sectors in the IOTs are aggregated into 30 

sectors before the gravity model is applied.  

With the above adjusted gravity model, an initial trade flow matrix that describes the 

flows between every pair of economic sectors for 31 provinces in monetary terms is 

constructed. Such an initial trade flow matrix does not match the double sum 

constraints, i.e., the total output and input of a specific sector do not match. Therefore, 

an RAS approach was adopted to adjust the initial trade flow matrix to ensure 

agreement with the sum constraints (Jackson and Murray, 2004; Miller and Blair, 

2009). The error terms of the adjusted flow matrix were generally within 5%. 

3.2.3. Intermediate and final demands from environmentally-

extended input-output analysis 

Environmentally-extended input-output (EEIO) analysis is an established method to 

understand how emissions are associated with demands from a given economy.  The 

total outputs of sectors in a given economy X can be understood as the sum of the 

intermediate input to other sectors Z and the finished goods for final consumers Y.  

For an economy with M regions and N industries.  In each region, xi
r
 represents the 

total output of industry i in country r and can be expressed as  

31 30 31

1 1 1

r rs rs

i ij i

s j s

x z y
  

  
        Eq. 3-19 

Where 
rs

ijz
(r, s=1, 2, …, 31) represents the intermediate product sold from industry i in 

country r to industry j in country s, yi
rs

 represents the finished goods sold from 

industry i in country r to final consumers in country s.  
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A technical coefficient aij
rs 

= zij
rs

/xj
s
 is defined as the input from sector i in region r 

needed to produce one unit of output from sector j in region s. Eq. 3-16 can therefore 

be formulated as follows: 

X AX  
         Eq. 3-20 

where X, A, and ɤ are the matrices of xi
r
, aij

rs
 and yi

rs
, respectively.  

Then, a vector of direct emission intensity, h, is introduced to describe the sector-

specific air pollutant or GHG emissions per unit of economic output as follows: 

'/ 'h E X           Eq. 3-21 

where E' and X' are the vectors of production-based emissions and total output in 

monetary terms for 30 industries and 31 regions, respectively. 

The air pollutant or GHG emissions associated with final consumption in region r can 

be calculated as follows: 

1( )F h I A      Eq. 3-22 

Where h is a row vector representing direct emission intensity, I is a 930×930 

identity matrix, A is the matrix of technical coefficient, and ɤ are final demands vector 

of all the regions.  In this way, the air pollutant or GHG emissions attributable to five 

final demands (from local as well as other provinces or countries), i.e., rural 

consumption, urban consumption, governmental consumption, capital formation and 

inventory change, and export, can be estimated. By linking China’s MRIO table for 

30 provinces with global trade analysis project (GTAP) database, the originating 

countries driving the export demand were identified (Mi et al., 2017, 2018).  

3.3. Air quality simulation 

An air quality modelling platform was developed for mainland China to support the 

case study for ground-level O3 pollution in Chapter 7.  The air quality modeling 

platform coupled the Weather Research and Forecast (WRF) model (Thaxton et al., 

2017), SparseMatrix Operator Kernel Emissions (SMOKE) model (Vukovich et al., 

2006), and CMAQ model (Hong et al., 2017), with a spatial resolution of 27×27 km
2
.  

The Weather Research and Forecast (WRF) model v3.9 was used to provide 
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meteorological data.  The CMAQ v5.0.2 with the CB-05 gas-phase chemical 

mechanism was used to simulate the ambient O3 mixing ratios under different 

precursor emissions scenario. The SMOKE provided model-ready emission data by 

allocating the annual emissions at province level into hourly interval and grid cell.  

Species allocations were also involved.  The model-ready meteorological and 

emission data was then fed into air quality model. The model was spun-up for 3 days 

in each month to eliminate the impact of initial conditions. Detailed model 

configurations of CMAQ and WRF are shown in Table 3-4. 

Table 3-4 Details on model configuration 

WRF v3.9 

Horizontal resolution 27km 

Number of sigma level 26 

Longwave Radiation Rapid Radioactive Transfer Model (RRTM) 

Shortwave Radiation Dudhia scheme 

Microphysics WRF Single-Moment 6-class (WSM6) 

Land-surface Noah 

Advection global mass-conserving scheme 

Planetary boundary layer (PBL) scheme MRF 

Cumulus option Kain-Fritsch 

CMAQv5.0.2 

Horizontal resolution 27km 

Number of sigma level 18  

Gas-phase chemistry Carbon Bond 05 (CB05)  

Aerosol module AERO6 

Horizontal advection module Yamo 

Vertical diffusion module 
Asymmetric Convective Model version 2 

(ACM2) 

Photolysis calculation module In-line 

CMAQ cloud module ACM  

C CTM generalized -coordinate driver modul Yamartino 

Vertical layer Number 18 layers 

 

Ground-level O3 measurements were used to validate the modeling performance.  In 

China, ambient O3 mixing ratios were not regularly measured nation-wide until 2013.  

The records of ambient O3 from China’s national air quality monitoring network were 

adopted for the reference year 2013 (Figure 3-4).  Specifically, the performance of 

modeling platform in July and October 2013 were evaluated.  These two months 
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represented two typical O3 seasons in China.  Normalized mean bias (NMB), 

normalized mean error (NME), and correlation coefficient (R) were used as indicators 

of model performance.  According to recommended benchmarks for photochemical 

model performance statistics, the NMB for the 1 hour average or maximum daily 8 

hour average ozone should be no larger than 15%, and the R should be higher than 

0.50 (Emery et al., 2017).  The model performances of this work were within the 

above suggested range.  The NME of this study was similar to those of previous 

studies in China (Liu et al., 2010; Hu et al., 2016; Zhang et al., 2016b).  For example, 

the NME for the 1 hour average O3 over the eastern China in July was around 

58.8~62.7% (Liu et al., 2010).  The modeling system can reproduce the O3 mixing 

ratio reliably.  In case study (Chapter 7), this study mainly refers to the maximum 8 

hour average since it was reproduced well in the model and it is more relevant to the 

health impact. 

 

 

Figure 3-4 Locations of ambient ozone monitoring sites in China 
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Table 3-5 Statistics of model performances 

Indicator 

1 hour average O3 Highest daily maximum 8 hour average O3 

Jul 2013 Oct 2013  Jul 2013 Oct 2013 

NMB(%) 15.11 9.70  -1.26 -14.42 

NME(%) 54.02 55.26  26.22 26.47 

R 0.55 0.57  0.70 0.68 

 

3.4. Health impact and mitigation cost evaluation 

The risk of death from respiratory causes in association with an increase in ozone 

concentration has been documented in previous studies (Jerrett et al., 2009).  Here, 

number of premature deaths due to change of O3 concentration was estimated as 

follows: 

RR = exp (β (X-X0))                Eq. 3-23 

∆𝑀 = 𝑦0 (
𝑅𝑅−1

𝑅𝑅
)  𝑃𝑂𝑃                Eq. 3-24 

Where RR is the relative risk, β is the concentration-response factor (Jerrett et al., 

2009; Liu et al., 2018b),  X-X0 is the change of O3 concentration from different 

scenarios, M is the excess mortalities attributed to change of pollution, y0 is the 

baseline mortality rate, and POP is the exposed population.  

Costs of cleaner production in selected industrial sectors was evaluated.  Given that 

local cost information was not available, the cost of such practices in Europe using 

IIASA-GAINS model data was adopted.  Understanding the differences of cost of 

labour, infrastructure and others between China and Europe, the estimation here has 

large uncertainty in representing the exact cost in China.  Interpretation of the 

estimated cost will be discussed later in Chapter 7 by comparison with an existing 

study. 

3.5. Summary 

The methods and data sources to support the methodological framework (Figure 1-9) 

were introduced in this chapter.  To enable an integrated assessment of energy, 

pollution and socioeconomics, methods in environmental economics and 
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environmental modelling were combined.  Production-based energy consumption and 

emissions lay at the intersection of these two fields.  On the one hand, the 

socioeconomic drivers and demands driving the production-based energy 

consumption and emissions were identified by decomposition analysis and input-

output analysis.  On the other hand, production-based emission inventories were fed 

into air quality simulation platform to quantify the environmental impacts by different 

production activities, followed by health impact assessment and cost estimation.  

Gripping the connection of production- and consumption-based emissions, 

production-based emissions and their impacts in environmental system model can be 

traced back to the underlying demands and drivers in socioeconomic system. 

Understanding the inherent uncertainty in production-based emission inventories, this 

study tried to evaluate the reliability of NMVOCs emissions with ambient 

measurement record.  It is true that bottom-up emission inventories and ambient 

measurements are not comparable in some senses.  The concentration measured in the 

ambient is a mixed result of in-situ emissions and the physical and chemical 

transformations happen between emission sources and measurement site.  

Nevertheless, the results produced by receptor model, which is based upon ambient 

measurements, are widely used to inform policy makers and complement emission 

inventories.  In addition, the ambient measurements used in this study evenly covered 

the whole study region, which are representative in terms of spatial coverage.  

Therefore, a trial to validate the speciated NMVOCs emission inventories with 

ambient records were conducted in this study.  Discrepancies between two methods 

were quite large if comparison was made grid by grid (20 × 20 km
2
).  Cross-validation 

in regional scale such as 200× 200 km
2
 were much more reasonable.  At the regional 

scale, the existing discrepancies between two methods were mainly explained by 

source reactivity.  It draws caution on the implication of receptor model, which tends 

to underestimate the contribution of sources with higher reactivity.  These two 

methods have fundamental differences in the relative contribution of LPG-related and 

vehicular evaporative source, indicating at least one of the methods were significantly 

flawed.  After reviewing evidence from existing studies, vehicular evaporation 

emissions were added into the current emission inventories, with an emission factor of 

1.6 kg of NMVOCs emissions per vehicle per year.  No solid conclusion can be 
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reached for LPG-related sources.  It is urged that both the emission inventory and 

receptor model need to critically review their estimations on LPG-related contribution. 

As a standard procedure of air quality simulation, the reliability of production-based 

inventories were also validated by evaluating the reproduction of ambient 

concentration in the air quality model.  Ground-level O3 measurements from China’s 

national air quality monitoring network were used as independent references.  

Indicators of model performance suggested that modeling system can reproduce the 

O3 mixing ratio reliably.   
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Chapter 4 China’s provincial energy consumption 

and its socioeconomic drivers 

Primary energy consumption for 30 provinces in China from 2003 to 2016 was 

analysed in this Chapter.  As mentioned above in Section 1.2, energy elasticity 

declined dramatically from the peak value of 1.67 in 2004 to 0.14 in 2015, indicating 

that every 1% growth of GDP in 2015 was sustained by only 0.14% growth of energy 

consumption.  It is crucial to understand the drivers behind such transitions and how 

feasible they are to sustain in the future.  In the first section of this Chapter, energy 

consumption and economic growth in provincial levels are first reviewed.  Provinces 

were classified into a few groups according to their patterns in energy consumption 

and elasticities.  Section 4.2 shows the decomposition analysis results of provinces 

with declined energy consumption.  The key drivers responsible for negative energy 

elasticity are identified.  Decomposition analysis results for provinces with increasing 

consumption are presented in Section 4.3.  Comparison between these two groups and 

their transition pathways towards energy-efficient growth are discussed in Section 4.4.  

The last section is a summary of the key findings and limitations of this Chapter.  In 

terms of data source, this chapter uses the energy consumption compiled in Section 

3.1.1 and other socioeconomic data as described in Section 3.1.5. 

4.1. Energy consumption and economic growth in provincial 

levels 

The years from 2003 to 2016 chronicle China’s three distinct periods, characterized 

by fast economic expansion from 2003 to 2007, the fall and recovery of the economy 

under the strike of the global financial crisis from 2007 to 2011, and the strategic 

adjustment from 2011 to 2016 known as “China’s new normal” period (a slowdown 

of economic growth to around 7%) aimed at “low but high-quality growth”.  

According to the economic cycle, the period from 2003 to 2016 were divided into 

three phases for analysis. 
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Figure 4-1 Comparison of energy annual growth and GDP annual growth in three periods, i.e., 

(a) 2003-2007, (b) 2007-2011 and (c) 2011-2015.  The upper left area with dots in pink 

includes provinces with high energy elasticity (0 < ∆GDP < ∆Energy).  The middle area in 

blue indicates that provinces are with moderate energy elasticity (0 <∆Energy < ∆GDP).  The 

lower right area in green stands for other province with low elasticity (∆Energy < 0 < ∆GDP).  

The percentages within each area represent the contribution to the national energy 

consumption.  For example, 53% in the upper left area of (a) indicates that provinces within 

this area together contributed to 53% of the energy consumed nationally.  The map within 

each subfigure shows the locations of provinces with different energy elasticity. 

Data source: National Bureau of Statistics, 2018 a&b. 

 

During the time from 2003 to 2007, as shown in Figure 4-1, 13 out of the 30 

provinces had energy growth rate higher than their economic growth (energy elasticity 

larger than 1), accounting for 53% of the total energy consumed in China.  Energy 

consumption in these provinces kept growing and its increase rate outpaced that of 

GDP.  Regarding the other 17 provinces, their energy consumption were also 

climbing, but at a rate that was lower than that of GDP.  Both the economic and 

energy consumption growth slowed down after 2007, and the deceleration of energy 

consumption were more noticeable in most provinces.  Only 3 provinces, or 4% of the 

total energy consumption, had energy elasticity larger than 1.  The energy elasticity of 

(a) (b) (c) 
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the other provinces was between 0 to 1.  As China entered the “new-normal” period 

after 2011, the economic and energy consumption grew at even lower rates.  Xinjiang 

was the only one with energy elasticity larger than 1.  The other 21 provinces had 

energy elasticity between 0 and 1, which together made up 69% of energy consumed 

in this period.  Energy consumption in 8 provinces in 2016 was found lower than the 

value in 2011, with negative energy elasticity.  They were Jilin, Hebei, Henan, Hubei, 

Chongqing, Shanghai, Fujian and Yunnan.   

4.2. Socioeconomic drivers for provinces with declined 

consumption 

Drivers responsible for the initial decline of energy consumption in the eight 

provinces were revealed by the decomposition analysis.  Here, the pre-defined factors 

were population growth, economic growth, industrial structure, energy intensity, and 

energy mix (i.e., the share of coal, petroleum, natural gas and non-fossil fuels).   

Despite the variations in absolute contributions, the extensive body of literature agree 

that economic growth is always the predominant driver of increased energy 

consumption, while energy intensity is the most significant factor of decreased energy 

consumption in China (Guan et al., 2009; Zhang and Cheng, 2009; Chong et al., 2015; 

Jiang et al., 2017; Liu et al., 2018c).  Nevertheless, the decreasing effect of energy 

intensity on energy consumption is hardly close to the increasing effect of economic 

growth.  This phenomenon is observed in previous studies as well as in the analysis 

before 2011 in this work.  However, changes began to occur during the period from 

2011 to 2016.  In eight provinces, the decreasing effect of energy intensity exceeded 

or approximated the increasing effect of economic growth (‘catch-up’ of energy 

intensity).  In six of these provinces, energy intensity alone offset all the increased 

consumption triggered by the economy (Figure 4-2a).  Collectively, the decrease in 

energy intensity in six provinces, i.e., Fujian, Chongqing, Jilin, Henan, Hubei and 

Yunnan, led to a decrease of 473 million tonnes of coal equivalent (Mtce), surpassing 

the increase caused by economic growth (419 Mtce).  For the other two provinces, i.e., 

Hebei and Shanghai, the decrease from energy intensity compensated 95% and 73% 

of the increased consumption led by economic growth, respectively (Figure 4-2b).  

Detailed decomposition results by province can be found in Appendix Table A1. 
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Moreover, new drivers that decrease consumption are emerging.  One driver is the 

share of coal.  All the eight provinces with declined consumption are found to have 

decreasing consumption triggered by a decreased share of coal in the energy mix 

(Grey in Figure 4-2a).  In Hubei, Shanghai, Fujian and Yunnan, the decreasing effect 

from the share of coal was particularly significant, which offset 27%, 21%, 21% and 

16% of the increase from economic growth, respectively.  It is true that part of the 

decreased consumption was offset by the increase of petroleum, natural gas or non-

fossil fuels.  However, the net effect of the changes caused by coal, petroleum, natural 

gas and non-fossil fuels were not zero (Guan et al., 2018).  Take Hubei for an 

example, share of coal was responsible for a decrease of 16 Mtce energy consumption, 

while share of petroleum, natural gas and non-fossil fuel accounted for an increase of 

13, 1.7 and 1.7 Mtce, respectively.  Their net effects came down to a decrease of 0.4 

Mtce.  In some circumstances, the decreased effect of coal was not followed by a 

decreased net effect.  This is because only the quantity of fuel (i.e., weight) was 

considered here.  Quality of fuel, e.g., content of carbon or caloric value, cannot be 

reflected (Guan et al., 2018).  Despite the small net effects in many cases, it is still 

worthy to investigate the driving effects by fuel types to understand the changes 

entailed by different fuels (Du et al., 2016; Jiang et al., 2017, Goh et al., 2018).  

Indeed, the decreasing effect of share of coal was rarely observed in provinces with 

climbing energy consumption (see Figure 4-3 b,c&d) while it was a common 

decreasing driver for provinces with decreased consumption. 

The other driver is the change of industrial structure.  With the exceptions of 

Chongqing, Yunnan and Hubei, industrial structure is a driver that decreases 

consumption featured by a reduced share of heavy industries (Dark blue in Figure 4-

2b).  
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Figure 4-2 Key negative drivers leading to reduced consumption (a&b) and the locations of 

provinces with reduced total energy consumption in China (c).  (a) and (b) are the so-called 

“waterfall” diagrams to show the driving effects by factors, which are population growth, 

economic growth, industrial growth, energy intensity, share of coal, share of petroleum, share 

of natural gas, and share of non-fossil fuels. The bars plotted represent changes in 

consumption and in a sequential way to provide a cumulative consumption. Despite the two 

dark green bars at the beginning (total consumption in 2011) and the end (total consumption 

in 2016), the 8 bars in-between represents the driving effects of the above 8 factors.  For bars 

going up such as the bright yellow one of economic growth in (a), they are factors that lead to 

increased consumption.  As for bars going down such as the light blue one of energy intensity 

in (a), they stand for factors that are responsible for decreased consumption.  (c) shows the 

locations of provinces with reduced total energy consumption in China, which are coloured in 

dark green.  

 

Drivers of reduced consumption, mainly from energy intensity, have caught up with 

the drivers that increase consumption and have led to reduced energy consumption in 

Shanghai, Hubei and other provinces (Fig. 1d in dark green).  Similar patterns are 
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observed in Beijing and in the other five provinces (Fig. 1d in light green), which 

were able to reduce their combined consumption of coal and petroleum. 

In a deeper sense, the catch-up might be attributed to either the slowdown in 

economic growth or the significant reduction in energy intensity (or both).  Indeed, 

both drivers contribute, but the effect of the energy intensity is more dominant.  

Economic growth was responsible for 283, 386 and 419 Mtce growth in energy 

consumption for the eight provinces from 2003 to 2007, from 2007 to 2011 and from 

2011 to 2016, respectively.  The driving effect from the economy kept growing but at 

a slower pace.  Meanwhile, the decrease from energy intensity was dominant.  Within 

the same time frame, energy intensity had led to decreases in energy consumption of 

42 (from 2003 to 2007), 209 (from 2007 to 2011), and 473 Mtce (from 2011 to 2016).  

In the most recent six years from 2011 to 2016, the decreasing effect from energy 

intensity alone (473 Mtce) was able to offset all the increasing effect of economic 

growth on energy consumption (419 Mtce)– not to mention the additional decreases 

by the share of coal and the change of industrial structure.  It can be concluded that 

the catch-up is more attributable to the enhancement of drivers that reduce 

consumption rather than the slowdown of the economy. 

The observed declines in consumption are encouraging, but it is important to know 

the possibility of sustaining such trends.  If there is a structural break in the 

consumption pattern, the nascent decline is likely to last and can be interpreted as a 

‘structural decline’ (Guan et al., 2018).  Here, an econometric (cumulative sum) test 

was used to identify structural break points in provincial energy consumptions from 

2003 to 2016.   

For the 8 provinces analysed above, unfortunately, only two of them (Shanghai and 

Hubei) have structural breaking points during the period from 2011 to 2016.  This 

finding suggests that the strong decreasing forces featured by energy intensity and, to 

a lesser extent, by the change of industrial structure and share of coal, are likely to be 

sustained.  Regarding the other provinces, the changes in their energy drivers are not 

structurally significant. 
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4.3. Socioeconomic drivers for provinces with increasing 

consumption 

Although new drivers that decrease consumption, i.e., share of coal and industrial 

structure, are emerging, a thorough review of the energy drivers from 2003 to 2016 in 

Chinese provinces shows that energy intensity was always the first driver of reduction 

that developed and applicable to provinces in various development states.  Figure 4-3 

illustrates the evolution of energy drivers for a province with an initial decline in 

consumption (e.g., Chongqing in a) and for provinces with growing consumption (e.g., 

Shaanxi in b and Inner Mongolia in c).  Figure 4-3a shows how the decreasing effect 

of energy intensity emerged in Chongqing and quickly intensified to a magnitude 

comparable to that of economic growth, accompanied by the emergences of new 

drivers such as share of coal.  Shaanxi and Inner Mongolia also reflect the 

enhancement of energy intensity but at a much slower rate.  The effects from 

industrial structure change and share of coal were minor or even increasing.  In 

addition, a reduction in energy intensity did not severely compromise economic 

growth.  Provinces with increasing consumption were able to reduce their energy 

intensity by 7% while maintaining an 8% GDP annual growth from 2011 to 2016.  As 

the only province with energy elasticity larger than 1, the driving effect of energy 

intensity in Xinjiang distinguishes with others.  It remained as the positive driver 

throughout the study period, with no sign of decreasing (Figure 4-3d).   
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Figure 4-3 Evolution of energy drivers in provinces with (a) reduced and (b, c&d) increased 

consumption.  (a) provides an example of a province with reduced consumption since 2011.  

The dark green bars represent the total energy consumption in 2003, 2007, 2011 and 2016.  

The 8 bars in-between show the driving effects by factors, which are population growth, 

economic growth, industrial growth, energy intensity, share of coal, share of petroleum, share 

of natural gas, and share of non-fossil fuels.  For bars going up such as the bright yellow one 

of economic growth in (a), they are factors that lead to increased consumption.  As for bars 

going down such as the light blue one of energy intensity in (a), they stand for factors that are 

responsible for decreased consumption.  (b), (c) and (d) show the other three examples with 

energy consumption that consistently increased from 2003 to 2016.  Annual total 

consumptions in 2003, 2007, 2011 and 2016 were shown in red bars.  Numbers above the bars 

in (a), (b), (c) and (d) represent the driving effects of factors in terms of energy consumption.  

For example, “+18” in (a) means that economic growth was responsible for 18 Mtc increase 

of energy consumption from 2003 to 2007. “-4” in (a) means that energy intensity led to a 

decrease of 4 Mtce of energy consumption from 2003 to 2007.  Numbers above the arrow 

indicates the change of provincial total energy consumption.  For example, “+17” above the 

arrow from 2003 to 2007 in (a) suggests that energy consumption increased by 17 Mtce in this 

period. 
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4.4. Province-specific transition pathways towards more 

energy-efficient growth 

The above analysis shows that energy intensity is the most important factor 

determining the energy elasticity of a province.  Such an observation indicates two 

potential reduction pathways.  One path is to sustain the strong decreasing effect 

mainly from energy intensity.  It might be applicable to Hebei, Liaoning, Jilin, Henan, 

Hubei and Yunnan, whose energy intensities are still high (3.0~5.8 tce/10
4
 $USD in 

2016).  Regarding Xinjiang, the only province with climbing energy intensity, more 

efforts should be made to understand the key sectors driving the climb, and develop 

measures to curb the trend.  This reduction pathway is feasible as energy intensity 

reduction seems to be a low-hanging fruit achievable even by less developed 

provinces (See Section 4.3). 

Part of high energy intensities of less developed provinces are attributed to their 

locations in the upstream of the supply chain as energy suppliers and heavy industrial 

goods producers (Tang et al., 2016b).  For example, approximately 34% of the 

electricity produced in Inner Mongolia was sent out to other provinces in 2016.  The 

less developed provinces will benefit from demand-side adjustments and decoupling 

from energy in developed provinces.  Nevertheless, local technological improvements 

might be more practical in the short term and benefit the greener growth of China as a 

whole.  A dynamic market for energy-saving technologies has been developed in 

China with 5800 energy service companies and energy performance contracts worth 

15 billion USD (Voita, 2018).  As a way to apportion the responsibility, subsidies 

from other downstream provinces with greater ability to pay might be considered to 

fasten technological improvement in these supporting provinces. 

The other is to complement energy intensity with new decreasing drivers.  This suits 

better the other eight provinces, which have achieved relatively low levels of energy 

intensity.  Their energy intensities were reduced by 34% from 2011 to 2016, whereas 

the average rate for the other provinces was 24%.  By 2016, the energy intensities of 

these eight provinces were among the lowest in China and were even comparable to 

that of the United States, although their per capita GDP were only 20~30% that of the 

United States.  A prominent example is Beijing.  With a per capita GDP at 30% that 

of the United States, the energy intensity in Beijing by 2016 was 7% lower than that 



Chapter 4 

88 

of the United States.  To maintain decreasing drivers neck to neck with economic 

growth, the decreasing effects from energy mix and, to a lesser extent, from industrial 

structure, should be exploited.  As the Energy Supply and Consumption Revolution 

Strategy (2016-2030) (hereinafter as the Strategy) was launched in 2016, China will 

further reduce its energy intensity by 15% from 2015 to 2020.  Such a reduction is 

less than the 23% achieved from 2011 to 2015, indicating that energy intensity might 

not be as strong of a decreasing driver as it was in the past.   

The Strategy also targets the share of cleaner fuels (natural gas and non-fossil fuels) 

and production overcapacities.  By 2030, the share of cleaner fuels should reach 35%, 

doubling the level in 2016.  The share of coal and petroleum, in other words, will be 

capped at 65%.  The decreasing effects from share of coal and petroleum could be 

greatly enhanced (Tang et al., 2018).  This is especially true for the provinces with 

declined consumption, whose reduction potentials from energy intensity are depleting.  

Their greater ability to pay and pressure on pollution alleviation also urge the 

transition.  Phasing-out overcapacities is also highlighted in the Strategy, targeting 

inefficient capacities in coal mines, iron and steel, and cement industries.  The 

decreasing effect of industrial structure might emerge in those energy-suppling 

provinces and heavy industrial hubs, such as Heilongjiang, whose share of heavy 

industries decreased from 23.9% in 2011 to 17.3% in 2016.  The decreasing effect of 

industrial structure change on energy consumption (25 Mtce) even exceeded that of 

energy intensity (9 Mtce) from 2011 to 2016. 

The total energy consumption of China will be capped as 5000 Mtce and 6000 Mtce 

by 2020 and 2030, respectively.  The annual growth, as a result, must be no higher 

than 1.8%, comparable to the growth from 2011 to 2016 (1.7% annually).  To achieve 

such a low growing rate, energy consumption of some provinces need to be reduced, 

or at least, plateaued.  China should endeavour to secure the initial declines observed 

in some of its provinces and foster energy efficiency improvement and industrial 

reconstruction for more energy-efficient growth in the less developed provinces. 

4.5. Summary 

There is an extensive body of literature on driver analysis of China’s energy 

consumption at the national level and, to a lesser extent, at the provincial level.  Many 

of the studies at provincial level focus on energy-related carbon dioxide (CO2) 
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emissions (Ye et al., 2017), energy intensity (Elliott et al., 2017) and CO2 emission 

intensity (Tan et al., 2011).  However, they missed the declines in energy 

consumption of some provinces due to the grouping of provinces or lack of sub-

period analysis.  For example, some studies only targeted the start and end years (e.g., 

2000 to 2015, or 2005 to 2010), which obscured the emerging trend in between these 

periods.  Other studies grouped the provinces by their spatial locations or types of 

drivers for ease of discussion.  In a previous study, for instance, provinces were 

grouped into eastern, central and western regions and energy-related CO2 emissions 

for central regions have levelled off since 2011 (Jiang et al., 2017).  Among these 

provinces, it is highly likely that some of their emissions had already declined.  It is 

unfortunate that the trend was smoothed and overlooked. 

In this Chapter, results of decomposition analysis of primary energy consumption in 

the provincial level from 2003 to 2017 were presented.  Specifically, changes in 

energy drivers for the provinces with observed declines in their primary energy 

consumption were revealed and compared with other provinces with increased 

consumption.  These eight provinces differed from the others since 2011, when the 

decreasing effect of energy intensity was enhanced and, for the first time, surpassed or 

approximated the increasing effect of economic growth.  The catching-up was more 

associated with the significant reduction of energy intensity rather than the slowdown 

of economic growth.  New decreasing factors such as the share of coal and industrial 

structure change were also emerging to curb the growth. 

It is found that the driving effect of energy intensity is the most important factor 

determining the energy elasticity of a province.  Energy intensity reduction seems to 

be a low-hanging fruit achievable by provinces in different development states, but its 

potentials in some developed provinces are depleting.  As China aims to continue 

aggressive cut in energy intensity, more reduction should be contributed by the less 

developed ones.  For more developed provinces with relatively low energy intensity, 

potentials from the new decreasing drivers, such as energy mix and change in 

industrial structure, should be explored. 
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Chapter 5 Air pollutant emissions in a fast-

developing region and its socioeconomic drivers 

This Chapter demonstrates part of the proposed framework in a subnational study in 

Guangdong province, China.  It one of the fast developing regions in China that 

confront the challenges of air pollution mitigation and sustainable economic 

development.  Previous studies have focused on the production-based emission 

characterization for control strategy formulation, while the drivers of emission growth 

and pattern changes from the consumption side are rarely explored.  This study used 

the environmentally extended input-output analysis to study the intermediate and final 

demands for seven air pollutants in year 2007 and 2012.  The changes of air pollutant 

emissions in these five years and the roles of socioeconomic demands were studied.   

Section 5.1 compares the sectoral contribution from production- and consumption-

based perspectives.  From the consumption-based perspective, the intermediate 

demands driving production activities were discussed.  Section 5.2 studies the change 

of sectoral contributions and their intensities from 2007 to 2012.  In Section 5.3, 

production activities were associated with final demands including urban and rural 

consumption, governmental consumption, capital formation and export.  On the 

leveraging of the above analysis, implications on sustainable production and 

consumption in Guangdong are discussed in Section 5.4.  This Chapter is closed by a 

summary Section 5.5. 

5.1. Production- and consumption-based source 

characterization 

To match the production-based emission inventories with input-output table (IOT), 

the 42 production sectors in Guangdong’s input-output tables were aggregated into 16 

sectors (see Table 5-1).  During the mapping process, primary energy consumption 

matrix and the other socioeconomic statistics collected in Chapter 3 were used as 

proxies to allocate the aggregated emissions in residential and service sectors, and 

household solvents.  
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Table 5-1 Energy Category of the 16 sectors 

No Sector Sectors in IOT 
a
 

1 Agriculture (1) Farming, Forestry, Animal Husbandry, Fishery and Water Conservancy 

2 
Food 

Processing 

(6) Food Processing, Food Production, Beverage Production, Tobacco 

Processing 

3 Garments 
(8) Garments and Other Fibre Products, Leather, Furs, Down and Related 

Products 

4 
Timber 

Processing 

(9) Timber Processing, Bamboo, Cane, Palm and Straw Products, Furniture 

Manufacturing 

5 
Paper 

Products 

(10) Papermaking and Paper Products, Printing and Record Medium 

Reproduction 

6 
Chemical 

Products 

(12) Raw Chemical Materials and Chemical Products, Medical and 

Pharmaceutical Products, Chemical Fibre, Rubber Products, Plastic Products 

7 

Non-metal 

Mineral 

Products  

(13) Non-metal Mineral Products  

8 

Smelting and 

Pressing of 

Metal  

(14) Smelting and Pressing of Ferrous and Nonferrous Metals 

9 
Transportatio

n Equipment 
(18) Transportation Equipment 

10 
Electric 

Equipment  
(19) Electric Equipment and Machinery  

11 

Telecommun

ications 

Equipment 

(20) Electronic and Telecommunications Equipment 

12 
Electric 

Power 
(25) Electric Power and Heat; (26) Steam and (27) Water Production and Supply 

13 Construction (28) Construction Industry  

14 
Transport 

and Storage  
(30) Transport, Storage and Post 

15 
Other 

Services 

(29) Wholesale and Retail Trade; (31)Hotels, Catering Service; (32) Information 

Transmission, Computer services and Software; (33) Finances; (34) Real state; 

(35) Leasing and commercial services; (36) Research and Experimental 

Development; (37)Water conservancy, Environment and Public Facilities 

Management; (38) Service to Households and Other Service; (39) Education; 

(40) Health, Social Security and Social Welfare; (41) Culture, Sports and 

Entertainment; (42) Public Management and Social Organization 

16 Others 

(2) Coal Mining and Dressing; (3) Petroleum and Natural Gas Extraction; (4) 

Ferrous and Nonferrous Metals Mining and Dressing; (5) Non-metal and Other 

Minerals Mining and Dressing; (7) Textile Industry; (11) Petroleum Processing 

and Coking, (16) Ordinary Machinery; (17) Equipment for Special Purpose; (21) 

Instruments, Meters Cultural and Office Machinery; (22) Artworks and other 

manufactures; (23) Waste; (24) Metal Products and Maintenance;  

a 
Number in the bracket was the order of the sector in the input-output tables. 
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Sectoral contributions from production- and consumption-based accounting in 2012 

were shown in Figure 5-1.  Regarding the consumption perspective, emissions driven 

by five final demands, i.e., rural consumption, urban consumption, government 

consumption, capital formation and export, were included.  As shown in Figure 5-1, 

the production-based source contributions varied between pollutants, but the 

contribution patterns were roughly similar from the perspective of consumption 

except NH3. 

 

Figure 5-1 Evolution Source contributions from production (outer pie) and consumption 

(inner pie) perspectives for SO2, NOx, CO, PM2.5, NMVOCs and NH3 in Guangdong in 2012 

 

For SO2, electric power, non-metal mineral products and transport were three 

dominant contributors in production, which constituted 39%, 17% and 14% of the 

production-based emissions (excluding rural and urban direct emissions), respectively.  

From the perspective of consumption, however, the contributions of these three 

sources decreased to 7%, 8% and 6%.  Instead, construction and other services were 

the biggest contributors, responsible for 15% and 11% of the emissions.  Similar 

characteristics were observed for NOx, CO, PM10 and PM2.5.  According to the 
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production-based accounting, electric power, transport, non-metal mineral products, 

smelting and pressing of metal made up over 80% of NOx, CO, PM10 and PM2.5 

emissions.  Their subtotal contributions decreased to less than 30% from the 

consumption perspective, while the proportions of construction, other services and 

transport took the lead. 

With respect to NMVOCs, their production-based emissions are more related to 

vehicles and industrial processes that involve the extensive usage of NMVOCs-

containing products such as paints and adhesives.  Consequently, their production-

based emissions were mostly from transport (39%) and light industries such as 

telecommunication equipment (12%).  From the consumption perspective, light 

industries were still important contributors, but the proportion of transport dropped to 

15%.  Other services and construction accounted for 12 and 10% of the emission.  For 

NH3, agriculture dominated its production-based emission with 94% contribution.  

The contribution of agriculture declined to 54% from the consumption side, 

accompanied by increased proportions of food processing (14%) and other services 

(11%). 

The differences between consumption and production perspectives were associated 

with the emission flows between sectors.  Large amounts of SO2, NOx, CO, PM10 and 

PM2.5 emissions caused by fossil fuels combustion from electric power, non- metal 

mineral products and transport were indeed caused by the demands of construction 

and services.  The NH3 emission from agriculture was related to demands of the 

agriculture sector itself as well as those from food processing and other service sectors.  

5.2. Change of sectoral emissions from 2007 to 2012 

The seven pollutants saw different emission trends over the half decade from 2007 to 

2012.  Emissions of SO2 (including urban and rural direct emissions) saw a decline of 

28%, while NOx, CO, PM10, PM2.5, NMVOCs and NH3 grew by 1.4, 26, 8.6, 8.5, 31 

and 10%, respectively.  Changes of sectoral emissions from consumption and 

production perspectives are discussed below (Figure 5-2).  

From a production perspective, the decrease of SO2 emissions were attributed to the 

substantial emission reductions in the three largest sources- electric power (Sector 12), 

transport (Sector 14) and non-metal mineral products (Sector 7), which dropped by 38, 
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19 and 9%.  This is resulted from the stringent SO2 control measures implemented 

during the 11
th

 and 12
th

 five-year plan (2006-2010 and 2011-2015), by increasing the 

penetration rates of desulfurization treatments and usage of low-sulphur coal in power 

plants and large industrial boilers.  In terms of consumption, the largest contributor-

construction (Sector 13) - experienced a drop of 42%.  Other important contributors 

such as transport, non-metal mineral products, telecommunication equipment (Sector 

11) also declined by varying degrees.  The emissions of paper products (Sector 5) and 

other services (Sector 15), however, rose by 37 and 6.4%, respectively.  

 

Figure 5-2 Consumption-based and production-based emissions of (a)SO2, (b)NOx, (c) PM2.5 

and (d) NMVOCs in 2007 and 2012.  Sector numbers from 1 to 16 refer to the orders of 

sectors in Table5-1.  Sector 17 and 18 refers to urban and rural direct consumption, 
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respectively.  For every subfigure, there are two bars in the upper frame (consumption-based 

emissions) and the lower frame (production-based emissions).  The first bar represents the 

emissions in 2007 and the second one for emissions in 2012.  In terms of consumption-based 

emissions, the final demands driven the emissions are shown in different colours: rural 

consumption (green), urban consumption (red), governmental consumption (grey), capital 

formation and inventory change (yellow), and export (blue).  

 

With regards to NOx, the production-based emissions from power plants generally 

remained loosely controlled until 2010, when denitrifications such as selective 

catalytic reduction (SCR) were required for electric sectors and large industrial 

sources.  Thanks to these measures, the NOx emissions from the electric sector 

decreased by 1.3%.  Meanwhile, emission from transport increased by 7%.  From the 

view of consumption, emission from construction and telecommunication equipment 

dropped by 32% and 41%, respectively.  But emissions from other major contributors- 

other services, transport and electric power, experienced increases of 59%, 10% and 

27%. 

The production-based emissions of PM2.5 were mainly made up by non-metal mineral 

products, transport, electric power and rural direct emissions from burning of woods 

and straw.  From 2007 to 2012, emissions from the electric sector and rural 

consumption decreased by 5.2% and 12%, while those from non-metal mineral 

products and transport went up by 19% and 27%.  Viewing from the perspective of 

consumption, most major contributors experienced an increasing trend except non-

metal mineral products (-1.7%).  Construction, transport and other services rose by 

15%, 28% and 39%.  PM10 exhibited similar trends as PM2.5. 

NMVOCs saw a surge of 31% during the five years.  The production-based emissions 

from transport and telecommunication increased by 41% and 2.5 times, accompanied 

by varying increases from other light industries.  Similar increasing trends were 

observed concerning the consumption-based emissions.  Emissions from transport, 

construction, other services and telecommunication were 38%, 35%, 68% and 70% 

higher in 2012.  As for CO, the increase was mainly attributed to transport from the 

production view, while construction, transport and other services explained the 

growth from the consumption perspective.  Regarding NH3, agriculture explained the 

emission growth from both perspectives. 
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The changes of emissions were attributable to different sources from the point of 

views of production and consumption.  Viewing from production, the emissions from 

power plants displayed a decreasing trend for SO2 and generally remained stable for 

other pollutants such as NOx and PM2.5.  Transport, non-metal mineral productions 

and other light industries kept growing for most pollutants except SO2, serving as the 

drivers of the increasing emissions of NOx, PM10, PM2.5, NMVOCs and CO.  From 

the consumption perspective, the varying trends by pollutants were contributed by 

construction, electric power, transport, other services, non-mental mineral productions 

and some light industries.  The SO2 and NOx emissions from construction decreased 

noticeably but its emissions of PM2.5 and NMVOCs went up.  With exception of SO2, 

emissions from transport increased.  It is noted that emissions from other services to 

all the pollutants kept growing over the years.  

5.3. Change of source contributions and intensities from 2007 

to 2012 

As discussed above, the production-based emissions from the electric sector generally 

displayed a downward trend, while the emissions from transport, non-metal mineral 

products and some light industries grew by different levels.  As a consequence, the 

source contribution patterns from the production perspective changed from 2007 to 

2012.  The contribution of electric power slightly decreased or remained stable, 

accompanied by increasing proportions from transport, non-metal mineral products 

and light industries, as shown in Figure 5-3a.   
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Figure 5-3 Changes in NOx source contributions from 2007 (outer pie) to 2012 (inner pie) 

from (a) production and (b) consumption perspectives 

 

From the consumption perspective, the change in source contribution seems to be 

more notable than that in production.  As a result of the change of emissions from key 

contributors, the contributions of construction to SO2 and NOx decreased noticeably 

from 18 and 17% in 2007 to 14 and 11% in 2012, respectively.  Meanwhile, the 

proportions of other services played a more prominent role for nearly all the pollutants.  

Its contribution to SO2, NOx, PM10, PM2.5 and NMVOCs from consumption 

perspective increased from 8, 9, 8, 11 and 9% to 11, 15, 12, 14 and 11% in the five 

years, as illustrated in Figure 5-3b with NOx as an example. 

Concerning the emission intensities by sectors, both the direct and embodied emission 

intensities showed a decreasing trend for most sources.  Here, the sectoral embodied 

emission intensities were discussed in details.   

Figure 5-4 showed that, for SO2 and NOx, the emission intensity of power sector 

(Sector 12) was the highest, followed by that of transport (Sector 14), non-metal 

mineral products (Sector 7) and construction (Sector 13).  All the four high emission-

loading sectors saw a substantial decline from 2007 to 2012, especially for SO2.  The 
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SO2 emission intensity of electric power decreased by 57%, and decrease rates for the 

other three sectors were in the range of 54-72%.  For NOx, the intensity of power 

sector slipped down by 31% and other sectors by 43-67%. 

 

Figure 5-4 Embodied emission intensities of SO2, NOx, PM2.5 and NMVOCs in 2007 and 

2012.  Sector numbers from 1 to 15 refer to the orders of sectors in Table5-1. 

 

Regarding PM10 and PM2.5, non-metal mineral products and transport showed the 

highest emission intensities but dropped by 36-41% and 39-40% during the half 

decade.  Electric power and transport also had high particulate emission loadings, 

which declined by 32-40%.  With respect to NMVOCs, the intensity of transport and 

timber processing (Sector 4) stood out and saw a decrease of 35 and 36%, respectively.  

The intensities of CO were quite similar for most sectors, but they decreased by a 

much lower rate than that of other pollutants and some even increased.  As for NH3, 

the agriculture and food processing industry had outstanding intensities, which were 

reduced by 35 and 41%. 

Noteworthy is that the sectors with high emission intensities were generally the same 

as those with high absolute emissions except other services.  This sector took up 10-

20% of the emissions from consumption perspective, but its emission intensity (Sector 
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15) was relatively low as shown in Figure 5-4.  Take the SO2 intensity in 2012 as an 

example, the intensity of electric power was 19 times that of other services.  

Combined with the fact that other services took a more prominent role in the emission 

of consumption end, it suggests that Guangdong is moving towards a greener 

consumption pathway.  This might benefit from the efforts in emission reductions 

from the production end and the growing weight of other service industries in 

Guangdong, which increased from 17 to 24% of the provincial GDP from 2007 to 

2012.  

5.4. Final demands in 2007 and 2012 

The emissions from the consumption perspective are driven by different final 

demands.  Contributions of final demands to the 7 pollutants can be found in Table 5-

2.  As shown in Figure 5-2, with the exception of construction, which was mainly 

constituted by capital formation, other sectors were related to export and urban 

consumption.  Indeed, export (including international export and interprovincial 

outflow) was the most important driver for the emissions of SO2 (Figure 5-5a), NOx, 

PM10, PM2.5 and NMVOCs (Figure 5-5c) in Guangdong, accounting for 50% or more 

emissions from the consumption perspective.  From 2007 to 2012, the proportion of 

export decreased for SO2, NOx, PM10 and PM2.5.  As Figure 5-5c illustrated, the 

contribution of export declined from 56 to 50% for SO2.  But for NMVOCs and CO, 

the percentages of export were stable or slightly increased.  For all the pollutants, 

urban consumption made up increasing contributions, e.g., its contribution to SO2 and 

NMVOCs increased from 16 and 18% to 21 and 10% in five years. This is due much 

to the urbanization process in Guangdong.  From 2007 to 2012, the proportion of 

urban population grew from 63.1 to 67.4%, reaching 71.4 million in 2012.  
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Table 5-2 Energy Contributions by final demands 

Pollutants Year Rural a  Urban b  
Governmental 

consumption 

Capital 

formation 
Export 

SO2 
2007 4% 16% 2% 22% 56% 

2012 5% 21% 3% 20% 50% 

NOx 
2007 5% 20% 3% 21% 51% 

2012 6% 25% 4% 18% 48% 

CO 
2007 38% 10% 2% 11% 40% 

2012 28% 14% 2% 15% 42% 

PM10 
2007 18% 13% 2% 22% 45% 

2012 16% 16% 3% 24% 42% 

PM25 
2007 23% 13% 3% 21% 40% 

2012 20% 16% 3% 23% 38% 

NMVOCs 
2007 15% 18% 2% 13% 52% 

2012 12% 19% 3% 15% 52% 

NH3 
2007 21% 44% 3% 5% 28% 

2012 22% 48% 3% 6% 22% 

a Including indirect and direct consumption; 
b Including indirect and direct consumption 

 

Figure 5-5 Contributions and emission intensities by final demands of (a, b) SO2 and (c, d) 

NMVOCs in 2007 and 2012 
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In terms of emission intensities, capital formation and export stood out with high 

emission rates of SO2, NOx, CO, PM10 and PM2.5.  For NMVOCs, the intensities 

embodied in export, rural and urban consumptions were high, while those of capital 

formation and government consumption were low (Figure 5-5d).  As for NH3, rural 

consumption was associated with the highest emission intensity, followed by that of 

urban consumption.  During the half decade, the emission intensities of the five final 

demands generally experienced a decreasing trend with varying degrees for different 

pollutants.  Again, SO2 experienced the most notable decline, of which intensities 

from capital formation and export dropped by 68 and 57% respectively.  Following 

SO2, notable declines were also observed for NOx, PM10 and PM2.5.  The decreases of 

VOC and CO were in the least degree.  For NMVOCs, the emission intensity 

embodied in export, rural and urban consumption were reduced by 24, 26 and 26% 

respectively, which accounted for only half their counterparts of SO2.  

Compared to the national average, export accounts for an unusually high share of 

Guangdong’s consumption-based emission, suggesting that Guangdong bears an even 

higher cost of air pollution and related health loss due to the embodied emissions in 

export.  As the “world factory”, China is recognized as the largest embodied emission 

exporter in the world (Lin et al., 2014; Zhang et al., 2017) According to Huo et al. 

(2014) (Huo et al., 2014), export explained 24, 24, 15 and 19% of the SO2, NOx, 

PM2.5 and VOC emission in China in 2010.  The proportion of export in Guangdong, 

which accounted for half of the emissions, double the national average.  A recent 

study has linked the embodied emission with health impacts and showed that the 

number of premature mortality as a result of international trade can be higher than 

those as a result of long-distance atmospheric pollution transport (Zhang et al., 2017).  

It indicates that a probably huge external cost was borne by the people of Guangdong 

in producing the various products for export. 
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Figure 5-6 Air pollutant emissions embodied in import and export in 2007 and 2012 

 

Intriguingly, Guangdong also had high emissions embodied in import (including 

international import and interprovincial inflow).  As shown in Fig.6, the embodied 

emissions in import were close to those in exports for SO2, NOx, CO, PM10 and PM2.5.  

For NH3, the emissions from import surpassed those from export, which were 1.55 

and 2.04 times of export in 2007 and 2012.  With respect to VOC, of which a large 

proportion of production-based emissions (nearly 45%) were emitted from light 

industries for export commodities, the embodied emissions in export remained higher 

than that in import but the gap was narrowing.  The embodied emissions of import 

equalled to 59 and 72% of export embodied emissions in 2007 and 2012, respectively.  

The embodied emissions in import were generally associated with electric power, 

construction, agriculture, chemical products, smelting and pressing of metal, 

telecommunication equipment and transport.  Meanwhile, substantial emissions were 

embodied in the export commodities from telecommunication equipment, transport 

and the several key light industries in Guangdong, i.e., paper products, timber 

processing, garments and chemical products.  The differences between the 

contributing sectors to embodied import and export emissions reflected the trade 
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characteristics in Guangdong, which relies on the electricity, raw materials for 

manufacturing and agricultural products from other areas to support local production 

and living demands while exports great amount of electrical equipment and machinery, 

wood furniture, paper products, ceramics, garments and others for interprovincial or 

international trades.  

5.5. Implications for Guangdong’s sustainble production and 

consumption 

As revealed by this study and other existing emission inventories, the traditionally 

major emitters from production perspectives were electric power, transport, non-metal 

mineral products, and some equipment machinery and light industries.  These sources 

are the targets of the current control measures that track the emissions from the 

production end.  From the consumption perspective, however, the contributions from 

construction, transport and other services were the highest.  Substantial emissions 

from the large production-based emitters were indeed caused by the demands of these 

sources, which should cause more concern in terms of their hidden responsibilities for 

local air pollution.  

The major contributors from production and consumption perspectives were usually 

associated with high emission intensities, with the exception of other service sector.  

From 2007 to 2012, most of these major contributors saw a decrease of more than 30% 

in their emission intensities.  Nevertheless, due largely to the dramatic growth in local 

population and economy, their emissions of air pollutants generally displayed an 

increasing trend except for SO2.  From the production perspective, thanks to the 

stringent desulfurization measures during the 11
th

 and 12
th

 five-year plan, SO2 

emissions saw substantial decreases in electric power, transport and non-mental 

mineral products.  Emissions of the power sector remained stable for other pollutants.  

Transport, non-mental mineral products and other industries were the major 

production-based drivers for the increase of PM10, PM2.5, CO and NMVOCs.  From 

the consumption perspective, construction had lower SO2 and NOx emission in 2012, 

but its emissions to other pollutant kept increasing.  Additionally, transport, other 

service, electric power and some light industries such as paper product were the major 

drivers of the increasing air pollutant emissions from final demand. 



Chapter 5 

104 

As one of the major emission contributors from consumption perspective, other 

service sector had very low emission intensity.  Noteworthy is that, during the half 

decade, the contribution of construction to the emissions driven by final demands 

slipped down, while other service took a more prominent role.  This coincides with 

the increasing share of other service industries in Guangdong’s GDP, which grew 

from 17 to 24% during the five years.  It suggests that Guangdong was making 

progress in industrial transformation and greener consumption. 

Being the major exporting province in China, which was widely known as the “world 

factory”, Guangdong had an unusually high share of export in the air pollutant 

emissions.  More than a half of the air pollutant emissions were driven by export.  

This figure was twice of the national average.  Telecommunication equipment, 

transport and the several key light industries in Guangdong, i.e., paper products, 

timber processing, garments and chemical products were the major industrial sectors 

responsible for the huge amount of export commodities.  The share of export started 

to decrease for SO2, NOx, PM10 and PM2.5, but remained still for CO and NMVOCs. 

This large emission exporter also relied heavily on the import of agricultural products, 

raw materials, electricity and others from other areas.  Indeed, the embodied 

emissions of import for SO2, NOx, CO, PM10 and PM2.5 were close to those of export.  

The embodied emissions of import for NH3 were nearly twice of those of export.  But 

for NMVOCs, whose emissions were largely related to machinery and light industries 

of export commodities, its embodied emissions of export still outweighed the import 

emissions. 

Analysis shows that that Guangdong was moving forward to cleaner production and 

consumption.  Nevertheless, more concern should be laid on the NMVOCs and CO 

emissions embodied in export.  The experience in Guangdong suggested that 

transformation of the industrial structure to clean industries and simulating urban 

demands would benefit from further emission reduction while maintaining economic 

growth and living standards of local people.  

5.6. Summary 

From 2007 to 2012, the GDP of Guangdong increased dramatically by 80%.  

Meanwhile, it saw a 28% decrease of SO2 emissions, accompanied by stabilized NOx 
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emissions and 26, 8.6, 8.5, 31 and 10% increase of CO, PM10, PM2.5, NMVOCs and 

NH3, respectively.  This Chapter tried to examine drivers of air pollutant emissions of 

this fast developing region in order to gain a better understanding of air pollution 

causes and their evolutions. 

Changes of air pollutant emissions can be explained by the control measures from the 

production end, evolution of industrial structures and final demands.  The control 

measures were generally focused on SO2, followed by NOx, PM10 and PM2.5, and to 

the least extent, NMVOCs and CO.  This was reflected in the emissions from both 

production and consumption perspectives in the way that the emissions of key sectors 

generally saw the most significant decline for SO2 but displayed a slightly or notably 

increasing trend for PM10, PM2.5 and NMVOCs.  Meanwhile, due to the growth of 

service industries in the economy and the increasing urban consumption demand, the 

share of other service industries (excluding transport, storage and post) in Guangdong’ 

GDP grew by 41% in five years, resulting in the increasing proportion of the low-

emission-intensity service sector in the emissions of all the 7 pollutants.  The service 

sector was taking a more prominent role in the emissions from the perspective of 

consumption.   

Analysis revealed an astonishingly high contribution of export to the air pollutant 

emissions in this region.  Export accounted for half of the emissions, doubled the 

national average.  Fortunately, emission intensities of SO2, NOx, PM10 and PM2.5 in 

export commodities had declined significantly from 2007 to 2012.  Intensities of 

NMVOCs and CO, nevertheless, remained consistently high and call for caution. 
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Chapter 6 Emissions from Tibet and its 

interactions with local and exogenous demands 

This Chapter serves as another case study at subnational level in China.  It provides 

the first consumption-based estimation of CO2 emissions from Tibet, and shows how 

emissions were embodied within interregional trade.  The organization of this Chapter 

is similar to Chapter 5.  In Section 6.1, emissions from two accounting approaches – 

production and consumption – are compared.  It was found that consumption-based 

emissions from Tibet were much higher than its production-based account.  Section 

6.2 digs into the emission patterns from the two approaches.  Contributions by sectors 

and final demands are discussed.  Section 6.3 focuses on the embodied emissions 

within interregional trade between Tibet and other provinces in China.  Implications 

on regional sustainable production and consumption are discussed in Section 6.4.  

Key findings and limitations are summarized in Section 6.5.  

6.1. Production- and consumption-based emissions 

While production-based accounting calculates emissions within a territory, 

consumption-based estimations cross territorial boundaries and tracks the emissions 

embodied in the regional supply chain induced by the demands of the study area 

(Chen et al. 2013; Meng et al. 2016b; Mi et al. 2016). In this study, it was found that 

consumption-based emissions of Tibet were much greater than the production-based 

emissions and that emissions occurring in other regions accounted for a large 

proportion of Tibet’s consumption-based emissions. 

In 2012, the production-based emissions of Tibet were estimated to be 6.2 Mt of CO2, 

accounting for 0.07% of China’s total CO2 budget. From the consumption-based 

perspective, Tibet’s CO2 emissions increased three folds, reaching 18.8 Mt (0.2% of 

the national total), which is equal to the emissions of Guinea in 2015 (20.75 Mt) 

(EDGAR, 2017). Consequently, the consumption-based emission intensity of Tibet 

was much greater than the production-based intensity. The production-based emission 

intensity was 0.41 tCO2/10
4
 RMB in 2012, ranking 23

rd
 among the 31 provinces 

studied here. In contrast, the consumption-based emission intensity was 1.56 tCO2/10
4
 

RMB in 2012, ranking 14
th

 among the 31 provinces. 
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Figure 6-1 Composition of production- and consumption-based CO2 emissions 

 

The pattern of Tibet’s consumption-based emissions was more similar to those of the 

more developed regions than those of its counterparts in western China. Figure 6-1 

compares the production- and consumption-based emissions of Tibet, provinces in 

western China, developed regions in east China and Tibet’s neighbor, Nepal. The 

production- and consumption-based estimates share one common emission 

component: the emissions emitted locally to satisfy local demand. The differences 

between these estimates are thus caused by the gap between local emissions induced 

by the exported emissions (in dark green in the left-hand side of Figure 1) and 

imported emissions (in dark yellow in the right-hand side of in Figure 1). In China, 

substantial CO2 emissions are driven by the demands of the more developed provinces 

along the east coast. In addition, the emissions related to the goods and services 

consumed in these regions are imported from less-developed provinces in central and 

western China (Mi et al. 2017). As a result, the consumption-based emissions of 

developed regions are generally much higher than their territory-based emissions. As 

an example, the territory-based emissions of Beijing were 79.4 Mt of CO2 in 2012, 

but its consumption-based emissions were 196.6 Mt, 2.5 times greater than the 
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territory-based value. In sharp contrast, the territory-based emissions of the less-

developed western provinces tended to exceed the consumption-based emissions. For 

example, the consumption-based emissions of Inner Mongolia and Ningxia were 

334.9 and 87.2 Mt in 2012, respectively, each equal to 60% of the territory-based 

emissions. Indeed, approximately 66% and 54% of the emissions in Inner Mongolia 

and Ningxia, respectively, were emitted during the production of goods and services 

that were ultimately consumed in other regions.  

In contrast, the consumption-based emission of Tibet far exceeded its production-

based account. Of the 18.8 Mt of consumption-based emissions in Tibet, 69% were 

exported to other regions rather than emitted locally. This pattern distinguishes Tibet 

from other western provinces in China that are generally emission importers 

supporting the consumption and exports in the richer eastern regions. In fact, the ratio 

of consumption- based to territory-based emissions in Tibet (3.0) was the highest 

among the 31 provinces studied here, including greatly developed areas such as 

Beijing (2.5), Tianjin (1.5) and Guangdong (1.3). The neighbor of Tibet, Nepal, has 

very similar characteristics; the consumption-based emissions in Nepal were 2.8 times 

greater than the production-based emissions. These regions are both located near the 

Himalayas and have limited natural resources and fragile environments that make 

mass industrial production difficult. Such low self-sufficiency results in high 

dependencies on other regions.  

6.2. Sectoral contributions and driving demands 

The discrepancies between sectoral contributions from production- and consumption-

based estimation were also substantial. As shown in Figure 6-2a, the production-based 

CO2 emissions in Tibet were mainly attributed to non-metal mineral products (29%), 

other services (19%), transport (15%) and electricity and heat production (12%). 

Other services accounted for the second largest level of production-based emissions. 

This result is due to the high share of tertiary industry in Tibet, which accounted for 

54% of its GDP in 2012, ranking the third highest in China after Beijing (76%) and 

Shanghai (60%) (National Bureau of Statistics of the People’s Republic of China 

2013).  
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Figure 6-2 Emission flows from production to consumption and final demands. (a) CO2 

emissions from local production activities in Tibet – 6.2 Mt (production-based emissions), 

which is not sufficient to support Tibet’s demands; (b) CO2 emissions from production 

activities in Tibet and other regions in China that support Tibet’s demands – 18.8 Mt; (c) 

Consumption-based sectoral CO2 emissions totaling 18.8 Mt; (d) CO2 emissions by final 

demand – 18.8 Mt; (e) CO2 emissions supported by production in other regions by final 

demand – 13.0 Mt.  

 

The local production activities and production activities in other regions in China 

(Figure 6-2b) collectively supported the consumption in Tibet (Figure 6-2c). From the 

consumption-based perspective, a large amount of emissions from non-metal mineral 

products, electricity and heat production, and metal smelting and processing were due 

to the demand for construction. Construction accounted for 57% of the consumption-

based emissions followed by other services (14%) and transport (4%). Food 

processing, garments and fiber products, agriculture, the chemical industry, and 

electric equipment and machinery each contributed 2% to the total consumption-based 

emissions. Though the contribution of construction to consumption-based emissions is 

generally higher than its contribution to production-based emissions (Huo et al. 2014; 

Mi et al. 2016; Ou et al. 2017), the share of emissions from construction in Tibet was 

still astonishingly high. 
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The consumptions of different sectors are associated with different final demands 

(Figure 6-2d), namely, rural consumption, urban consumption, government 

consumption, capital formation and inventory change. The consumptions of 

construction and electric equipment and machinery were predominantly driven by 

capital formation and inventory change. As a result, 74% of the consumption-based 

emissions were related to the demands of capital formation and inventory change. The 

second highest demand was government consumption, which accounted for 14% of 

the total consumption-based emissions. Approximately 84% and 42% of the 

emissions from other services and transport were related to the government’s demand, 

respectively. Urban and rural consumption each accounted for 6% of the total 

emissions through the demands of food processing, garments and fiber products, and 

agriculture. Among these final demands, 74%, 44%, 56% and 72% of the demands of 

capital formation and inventory change, government consumption, urban consumption 

and rural consumption, respectively, were supported by production in other provinces, 

as shown in Figure 6-2e.  

6.3. Interactions with other provinces 

Tibet was interconnected with most provinces in China through interprovincial trade. 

Figure 6-3 illustrates the CO2 emissions related to Tibet’s demands, i.e., embodied 

emissions in import to Tibet. In particular, flows of CO2 emissions were significant 

for the provinces adjacent to Tibet, e.g., Qinghai, Sichuan and Gansu. Qinghai, 

Tibet’s neighbor to the east, was the region with the largest support of Tibet’s 

demands and consumption-based emissions (20%, 3.8 Mt). Approximately 0.9 and 

0.6 Mt CO2 emissions were embodied in the interprovincial trade from Sichuan and 

Gansu to Tibet, respectively. Net emission flows from other regions to Tibet were 

also observed, especially from regions in the north, such as Hebei (1.9 Mt) and Inner 

Mongolia (0.8 Mt). Some minor flows also originated from the Yangtze River 

(Shanghai, Zhejiang and Jiangsu) and the Pearl River Delta (Guangdong), which are 

China’s most economically developed areas. These results make Tibet stand out from 

its western counterparts, which are usually net emission exporters supporting the 

developed coastal areas, i.e., CO2 emissions flowed from west to east (Mi et al. 2016). 
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Figure 6-3 CO2 emissions related to Tibet’s demands. Percentage represents the contribution 

of the inflowing province to the consumption-based emission of Tibet 

 

Some studies have noted that CO2 emission flows began to reverse in 2012 (Mi et al. 

2017). Some provinces in southwest China (e.g., Sichuan, Chongqing, Guizhou and 

Guangxi) have shifted from being net emission exporters to net emission importers. 

However, the provinces in northwest China (including Xinjiang, Qinghai, Inner 

Mongolia, Gansu, Shaanxi and Ningxia) are still net emission exporters. The 

aftermath of the global financial crisis and China’s supply- and demand-side reforms 

might be the reasons leading to this change. Tibet borders provinces in both southwest 

and northwest China and is not included in previous studies. In this study, the 

consumption-based emission patterns of Tibet were more similar to those in 

southwest China. The consumption characteristics of Tibet in this study are additional 

evidence of the ongoing reversal in emission flows within China. 
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Such frequent interaction between Tibet and other provinces in China has been 

enabled by the development of the Qinghai-Tibet railway in recent years. As shown in 

Figure 6-3, the density of the national railway network becomes sparser from the east 

to west. After, 2006 Tibet was connected to the national railway network through the 

Qinghai-Tibet railway stretching from Lhasa in Tibet to Golmud in Qinghai. Prior to 

this time, only road and air transportation were available. Air transport was expensive 

and limited in volume. Road transport was unreliable due to the harsh geographical 

conditions and weather such as frequent mud and rock slides. More stable and cheaper 

transportation was available after the Qinghhai-Tibet Railway was put into use, which 

reduced the freight rate from 0.27 (road transport) to 0.12 RMB per ton (price in 2007 

RMB). The volume of railway freight surged from 24.9 million tons in 2006 to 40.2 

million tons in 2012, and this transportation method is responsible for 75% of the 

goods transported to/from Tibet.  

Tibet’s economy is mainly supported by agriculture, animal husbandry, forestry and 

services. Such an economic structure results in high dependences on a wide range of 

industrial products, especially those from heavy-industries such as cement, iron, steel, 

machinery and equipment. Specifically, non-metal mineral products, iron and steel, 

general and special equipment and machinery, metal products, chemical products, 

processed food, garments and fiber products, and paper products from other regions in 

China accounted for 71% of imported goods to Tibet. The supply of such products has 

inevitably led to more intense production activity in other provinces, especially in the 

regions that support Tibet the most, including Qinghai, Hebei, Inner Mongolia, Gansu 

and Sichuan. The production activities related to Tibet’s demands were generally in 

energy-intense sectors. As shown in Figure 6-4, the sectors associated with Tibet’s 

demands were the most diversified in Qinghai and included non-metal mineral 

products, electricity production, metal pressing and smelting, and the chemical 

industry. The emissions from these four sectors increased by 1.7, 1.0, 0.6 and 0.5 Mt, 

respectively. The emissions outsourced to Hebei were mainly related to non-metal 

mineral products (0.5 Mt), electricity production (0.5 Mt) and metal pressing and 

smelting (0.5 Mt). For Inner Mongolia, Gansu and Sichuan, electricity production and 

non-metal mineral products were the dominant sectors. Electricity production made 

up an important proportion of outsourced production activities, but Tibet did not 

directly import electricity from other regions. Instead, it was induced by the increased 
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electricity demand from other production activities such as equipment and machinery 

manufacturing, food processing, and other products when they were produced locally 

and exported to Tibet afterwards. 

 

Figure 6-4 Production activity inflows from (a) Qinghai, (b) Hebei, (c) Inner Mongolia and (d) 

Gansu due to the demands of Tibet. The number next to each sector’s name (e.g., 1.0 Mt) 

indicates the absolute CO2 emissions, and the percentage represents the sectoral contribution 

to CO2 emissions related to Tibet’s demand in a given region.) 

 

The outsourced sectors described above are generally the critical supporting sectors in 

secondary industry, but these sectors are not flourishing in Tibet due to the limitations 

of the local environment and natural resources. Tibet is a traditionally agriculture-

based autonomous region. After the economic development of the past decade, 

tertiary industry is now the leading economic driver in this region and accounted for 

54% of its GDP in 2012 (National Bureau of Statistics of the People’s Republic of 

China, 2013). Industry, including non-metal mineral products, metal processing, 

chemical industry and others, accounted for only 8% of the annual GDP of Tibet. 

6.4. Implications for Tibet’s sustainable production and 

consumption 

The ratio of consumption-based to production-based emissions of Tibet was the 

highest among the 31 Chinese provinces studied here. Nearly 70% of the 

consumption-based emissions of CO2 of Tibet were emitted in other regions instead of 

in Tibet itself. If these off-site emissions were to occur locally, Tibet’s local emissions 
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would triple, increasing from 6.2 to 18.8 Mt CO2 in a year. Considering the less 

advanced manufacturing technology in Tibet, these emissions would climb to 22.3 Mt, 

3.6 times greater than the current emissions. Such a relocation of emissions is not as 

relevant for greenhouse gases that are long-lived and have environmental impacts that 

are not sensitive to emission location, such as CO2. However, for short-lived air 

pollutants and air toxics, such as sulphur dioxide, nitrogen oxides, VOCs, and heavy 

metals, the emission location greatly determines the harm to ecosystems and human 

health (Lin et al., 2014; Jiang et al., 2015; Huo et al., 2017). Given that air pollutants 

and CO2 have large overlaps in their emissions sources from fossil fuel combustion 

(Cifuentes et al., 2001; West et al., 2013; Schmale et al., 2014), the consumption-

based characteristics observed in this study are also applicable to air pollutants. If off-

site emissions occurred locally in Tibet, the fragile environment would experience 

catastrophic damage. Further study on how the consumption patterns and virtual 

transport of emissions affect the local and national environment should be carried out. 

As inter-regional interactions are expected to become more frequent under the 

development of western China, the design of a more sustainable consumption 

pathway for Tibet is crucial. The inter-regional interactions observed in this study are 

enabled by the transformation of the transportation system in the northwest China in 

recent years. The transportation infrastructure is expected to be steadily upgraded in 

the coming decade under China’s plan to develop the northwest and the Belt and Road 

Initiative. Previous studies have defined two criteria for regions within 

“Goldemberg’s Corner,” namely, per capita carbon emissions (consumption-based 

perspective) of less than one tonne C per year and a life expectancy of over 70 years 

(Steinberger et al., 2012; Steinberger and Roberts 2010; Lamb et al., 2014). Regions 

within Goldemberg’s Corner represent a sustainable lifestyle with a good balance of 

environmental conservation and human welfare. Tibet exhibits the opposite trend with 

a high carbon footprint and a low life expectancy. The per capita carbon emissions in 

Tibet were 1.74 tonne C in 2012, and the average life expectancy was 67.8 years. The 

carbon footprint of Tibet ranked 3
rd

 highest among the 31 Chinese provinces studied 

here after Tianjin and Shanghai. However, the life expectancies of Tianjin and 

Shanghai were 75.4 and 72.3 years, respectively (see Figure 6-5). The geographical 

and meteorological constraints would be one reason for the lower life expectancy in 

Tibet. Thin oxygen, strong solar radiation and frequent extreme weather are prone to 



Chapter 6 

115 

shorten life expectancy. Underdeveloped medical care and other economic factors are 

also contributing. From the perspective of consumption, the high carbon footprint 

suggests more can be done to benefit both human welfare and environmental concerns. 

The high proportion of red meat in Tibet’s dietary structure, for example, shortens 

human life expectancy and leads to high carbon and air pollutant emissions. Under the 

quickly developing transportation system, opportunities to change the consumption 

patterns are emerging with easier access of healthier and more environmentally 

friendly products. In addition, substantial consumption-based emissions are associated 

with construction, whose emission intensity is generally high. Tibet needs to diversify 

the local economy towards low carbon development in the long run. 

 

Figure 6-5 Carbon footprint and life expectancy of 31 provinces in China, India and Nepal.  

The rectangle at the upper left represents the “Goldemberg’s Corner”, in which per capita 

carbon emission (consumption-based perspective) is less than one tonne C per year and life 

expectancy is over 70 years (Steinberger et al., 2012; Steinberger and Roberts 2010; Lamb et 

al., 2014).  Countries with “Goldemberg’s Corner” are generally considered as 

representations of sustainable lifestyle with a good balance of both environmental 

conservation (as reflected by per capita carbon emission) and human welfare (as reflected by 

life expectancy).  Tibet was located at the lower right corner, which indicates the opposite 

representation of “Goldemberg’s Corner”.  In other words, per capita carbon emission in 

Tibet was high and the life expectancy was low. 
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6.5. Summary 

Located in the most western part of China and as the world’s highest plateau known 

as Qinghai-Tibet Plateau, Tibet plays a unique role in the global ecosystem and 

climate.  Nevertheless, Tibet is usually missing from China’s emission accounts, 

especially from those of consumption-based emissions. This Chapter presents the first 

consumption-based estimation of Tibet’s emissions. Though Tibet’s emissions might 

be low compared to the total emissions of China (0.2% of the national total from the 

consumption perspective), such knowledge is indispensable in understanding the 

environmental issues in Tibet.  Results show that the consumption-based CO2 

emissions in Tibet (18.8 Mt, similar to Guinea’s emissions in 2015) were three times 

as high as the production-based estimate (6.2 Mt).  Tibet displays unique emission 

patterns with the highest ratio of consumption- to production-based emissions in 

China, which are more similar to the east developed provinces rather than its 

counterparts in west China. More than half of Tibet’s consumption-based emissions 

are supported by Qinghai, Hebei, Sichuan and others, enabled by the Qinghai-Tibet 

railway that connected Tibet to China’s national railway system. High carbon 

footprint but low life expectancy is found in Tibet, suggesting the emerging need of a 

more sustainable consumption pathway under the intensifying interregional 

connections. 

Due to the limited data source, a quantitative estimation on the uncertainty of Tibet’s 

consumption-based emission is unavailable. Nevertheless, it is expected that the 

uncertainty of Tibet’s consumption-based carbon account would be much higher than 

China’s national metrics. A recent study found that Chinese national data is one of the 

largest contributors to the uncertainty of global consumption-based carbon account 

with a coefficient of variation of 9.07% (Rodrigues et al., 2018). Another consensus is 

that consumption-based emission is associated with higher uncertainty than the 

production-based metrics since more data transformation are involved (Owen et al., 

2014; Sato, 2014). According to the estimation by Shan et al. (2018), the uncertainties 

of China’s provincial CO2 emission were roughly (-15%, 25%) at a 97.5% confidence 

interval. Given the poorer data quality of activity level data and emission factors, the 

uncertainty of Tibet’s consumption-based emission estimation would be higher than 

the above mentioned range. More efforts are needed to measure the uncertainty of 

consumption-based account to prioritize uncertainty reduction efforts. 
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Chapter 7 Integrated assessment on ground-level 

ozone pollution in China and its mitigation  

This Chapter presents a national case study on energy, pollution and socioeconomic 

integrated assessment using the proposed framework in Figure 1-9.  It tackles the 

rising ground-level O3 problem in China with special focus on export industries.  The 

primary energy consumption matrix supports the development of production- and 

consumption-based emission inventories for O3 precursors: NMVOCs, NOx and CO.  

Since the production-based emission characteristics have been studied extensively, the 

focus of Section 7.1 is on the consumption-based emissions of O3 precursors.  

Contributions from final demands, i.e., rural and urban consumption, governmental 

consumption, capital formation and export, to precursors’ emissions are estimated.  

Given the non-linear relationship between O3 and its precursors, contributions to 

precursors’ emissions are not necessarily the same as those to the ambient O3 level.  

Hence, input-output analysis was combined with an air quality model to quantify the 

ambient O3 level associated with different demands.  Among these final demands, 

export represents the exogenous driving force, while the others are domestic.  In 

Section 7.2, scenarios with and without export-driven emissions were constructed to 

study the contributions from exogenous and domestic driving forces.  In Section 7.3, a 

possible mitigation pathway was explored by comparing the emission intensities in 

China and 28 European countries (EU28).  Mitigation potentials were measured in 

terms of precursor emissions, footprint, and ambient O3 level reduction.  Section 7.4 

discusses the implications for further O3 pollution mitigation in China, from the 

perspectives of production and consumption.  Section 7.5 closes this Chapter with a 

summary of key findings and limitations. 

7.1. Net emissions by provinces 

Contribution patterns to the total emissions can be relatively different from the 

production- and consumption-based perspectives, as observed in Chapter 5 and 6.  

One of the key questions after the development of consumption-based emission 

inventories, therefore, is how the consumption-based contributors vary from those 

from production-based accounting.  In China, environmental polices such as total 

emission caps are based upon production-based emissions.  It is beneficial to 
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understand if the consumption-based contributors are different from those production-

based emitters that are targeted in policy formulation. 

The net of consumption- and production-based emissions of a province defines its role 

as a “production-based” or “consumption-based” province (Mi et al., 2016).  If its 

production-based emissions exceed its consumption-based emissions, this province is 

“production-based” as its local emissions are not only emitted to satisfy its own 

demands but also to support other provinces.  By contrast, for a “consumption-based” 

province, its consumption-based emissions surpass its production-based emissions, 

indicating that demand of this province has overflowed and increased the emissions in 

other provinces.  Figure 7-1 shows the net emissions by provinces.  Due to the 

variations in emission sources, the roles of provinces in terms of NMVOCs emissions 

were different from those of NOx and CO emissions.  Regarding NMVOCs, 

provinces with the highest net consumption-based emissions were Beijing, Jilin, 

Hunan, Guangdong and Yunnan.  The production-based provinces of NMVOCs, on 

the other hand, were Jiangsu, Zhejiang, Fujian, Hebei and Shandong.  These 

provinces are quintessential light industries hubs in China, which produce and send 

out huge amount of industrial goods.  With respect to NOx and CO, the production-

based provinces were typically the energy suppliers such as Hebei, Shanxi, and Inner 

Mongolia.   
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Figure 7-1 NMVOCs, NOx and CO net emissions by province.  The net emission shows the 

difference between production- and consumption-based emissions. 
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Though provinces had different roles in production and consumption, the provincial 

contributions did not change significantly from these two perspectives.  Table 7-1 

displays the production- and consumption-based emissions and relative contributions 

by provinces.  Despite the absolute differences in production- and consumption-based 

emissions, the relative contributions to total emissions were generally stable.  The top 

10 contributors to production-based NMVOCs emissions, for example, made up 59% 

of the total emission budget.  They were also the top contributors to the consumption-

based emissions, which together accounted for 53% of the consumption-based 

emissions.  Only a few exceptions were found for Beijing and Fujian.  In terms of 

production, Beijing contributed only 1% of the national emissions.  From 

consumption, its demands drove 4% of NMVOCs emissions.  By contrast, the 

contribution from Fujian to production-based emissions (4%) was double its 

consumption-based contribution (2%).  To sum up, the contributors from 

consumption-based perspective generally overlap with those from production.  

Current polices do not overlook any major emitters but might need to address not only 

the local production activities but also demand-side guidance and transitions. 
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Table 7-1 Production- and consumption-based emissions and relative contributions by provinces 

Province 

NMVOCs NOx CO 

Production-based Consumption-based Production-based Consumption-based Production-based Consumption-based 

Beijing 286 1% 962 4% 226 1% 1610 6% 1079 1% 3574 2% 

Tianjin 560 2% 574 2% 520 2% 685 2% 2354 2% 2911 2% 

Hebei 1544 6% 1480 6% 2537 9% 2300 8% 18175 12% 14201 9% 

Shandong 2515 9% 2207 9% 2590 9% 2647 9% 13442 9% 13002 9% 

Liaoning 1135 4% 1063 4% 1472 5% 1846 6% 7475 5% 6803 4% 

Jilin 603 2% 675 3% 621 2% 910 3% 4363 3% 5456 4% 

Heilongjiang 1125 4% 1096 4% 849 3% 874 3% 6171 4% 6634 4% 

Shanxi 747 3% 741 3% 1440 5% 827 3% 6999 5% 5649 4% 

Anhui 903 3% 888 4% 984 3% 831 3% 5491 4% 4989 3% 

Jiangxi 594 2% 615 2% 552 2% 665 2% 3797 2% 3415 2% 

Henan 1591 6% 1592 6% 1751 6% 1648 6% 9578 6% 9947 7% 

Hubei 939 4% 900 4% 942 3% 1049 4% 6075 4% 5855 4% 

Hunan 826 3% 931 4% 764 3% 990 3% 5670 4% 6036 4% 

Shanghai 599 2% 482 2% 788 3% 506 2% 1859 1% 1689 1% 

Jiangsu 2047 8% 1509 6% 1827 6% 1802 6% 9175 6% 8948 6% 

Zhejiang 1772 7% 1137 5% 1175 4% 1164 4% 3513 2% 4775 3% 

Fujian 964 4% 615 2% 614 2% 457 2% 2216 1% 2059 1% 

Guangdong 1979 7% 1550 6% 1615 6% 1412 5% 6115 4% 6359 4% 

Hainan 132 0% 138 1% 152 1% 214 1% 443 0% 914 1% 

Inner Mongolia 708 3% 831 3% 1847 6% 878 3% 6520 4% 5272 3% 

Shaanxi 638 2% 647 3% 813 3% 858 3% 3747 2% 4010 3% 

Gansu 411 2% 404 2% 450 2% 388 1% 2942 2% 2668 2% 

Qinghai 83 0% 107 0% 104 0% 151 1% 654 0% 839 1% 

Continued on next page 
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Table 7-2 Production- and consumption-based emissions and relative contributions by provinces (Continued) 

Province 

NMVOCs NOx CO 

Production-based Consumption-based Production-based Consumption-based Production-based Consumption-based 

Ningxia 145 1% 139 1% 430 1% 282 1% 1058 1% 906 1% 

Xinjiang 603 2% 563 2% 815 3% 754 3% 3814 2% 3836 3% 

Guangxi 683 3% 705 3% 615 2% 705 2% 3749 2% 3782 2% 

Chongqing 436 2% 460 2% 444 2% 592 2% 2477 2% 2888 2% 

Sichuan 1019 4% 1043 4% 836 3% 844 3% 6219 4% 6118 4% 

Guizhou 307 1% 370 1% 567 2% 487 2% 3286 2% 2983 2% 

Yunnan 541 2% 680 3% 714 2% 742 3% 4751 3% 4425 3% 

Tibet 63 0% 78 0% 62 0% 85 0% 582 0% 667 0% 

 



Chapter 7 

123 

7.2. Emissions driven by final demands 

This section deconstructs the demands behind production-based emissions.  In every 

province, the demands driven local production activities are shown in Figure 7-2.  

Capital formation was the single largest demand driving the emissions within China, 

which accounted for 30%, 43% and 36% of the NMVOCs, NOx and CO emissions, 

respectively.  Urban consumption was the second largest driver, responsible for 27%, 

22% and 20% of the emissions.  Contributions from rural consumption were 24% for 

NMVOCs, 11% for NOx and 30% for CO.  Contributions from export were 13% and 

10% for NMVOCs and CO, respectively, which were around half of those from rural 

consumption.  As for NOx emissions, export made up 15% of the emissions, which 

was even higher than that from rural consumption.  The emissions caused by the 

demand of international market were indeed comparable to the emissions triggered by 

564 million rural population in China. 

As the world’s largest exporter for a lot of NMVOCs-relevant products, the 

contributions from export industries to domestic emissions were not as high as 

expected.  This is due to the fact that a substantial amount of NMVOCs (~30%) 

comes from direct emissions (not relevant to trade) such as household solvents and 

biomass burning.  Nevertheless, if such a relative contribution was translated into 

absolute number, export elevated the anthropogenic emissions of NMVOCs by 3478 

kt in 2013.  If such emissions were considered from a single country, it can be ranked 

as the 10
th

 largest NMVOCs emitter in the world (Huang et al., 2017), or be half the 

emissions of 28 European countries (EU-28) (European Environment Agency, 2019).   
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Figure 7-2 NMVOCs, NOx and CO provincial emissions by final demands.   
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In addition, China’s export industries are concentrated along the east and south coast 

as shown in Figure 7-3.  Shandong, Yangtze River Delta (YRD), Guangdong and 

Fujian together made up 65% of China export-related GDP in 2013 (Figure 7-3).  The 

impacts of export were highlighted in these areas.  Around 18~26% NMVOCs 

emissions from human activities in these areas were indeed associated with demand 

for export rather than local or domestic demand. 

From the perspective of NOx emissions, 15% of the national emissions were related 

to export.  The contributions of export stood out not only in the east and south coastal 

areas but also some inland provinces such as Inner Mongolia, Hebei and Shanxi.  

Export-related emission accounted for 18~33% of the NOx emissions in the above 

four areas.  In addition, they were responsible for 19%, 12% and 12% of the NOx 

budgets in Inner Mongolia, Hebei and Shanxi, respectively.  This is due to the NOx 

emissions from power and other heavy industry sectors to support the production of 

export commodities.   

 

Figure 7-3 GDP of export by provinces in 2013. 

 

The conjunction of China’s MRIO table with GTAP enables one to track down 

destinations of China’s export goods.  China exports goods to 140 countries but the 

United States (US) alone accounted for 23% NMVOCs emissions relevant to export 

(as shown in Figure 7-4).  Demand from the US accounted for 20% and 19% of the 
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NOx and CO emissions embodied in export, respectively.  Contributions from 

Western Europe were neck and neck to those from North America, which explained 

22%, 22% and 21% of export-related emissions. 

 

Figure 7-4 Export-driven emissions by destinations.  For NMVOCs emissions (a), Export-

driven emissions stood out in the east and south coast, e.g., Shandong, Jiangsu, Zhejiang and 

Guangdong. Demands from the USA and western Europe explained nearly half the export-

relevant emissions. As for NOx emissions (b), export contributed to 15% national sum of 
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NOx emissions. Export embodied emissions were notable in the east and south coast as well 

as other inland provinces such as Inner Mongolia and Hebei. Regarding CO emissions in (c), 

about 10% CO emissions in China were driven by export.  Impacts of export were highlighted 

in Hebei, Shandong and Jiangsu. 

 

7.3. Scenario constructions 

To understand the exact impact of different demands on O3 concentrations in China, 

sscenarios were constructed in an air quality modelling platform.  As shown in Figure 

7-5, a base case and 4 scenarios were constructed.  The differences between different 

bases were emission inputs.  For the base case, air pollutant emissions of NOx, 

NMVOCs and CO for the year of 2013 were adopted, which represented the ‘true’ 

emissions (emissions in reality under the best knowledge) in 2013.  Case 1 to 4 used 

reconstructed emissions under different assumptions.  Two months representing the 

typical high O3 values in the north China (i.e., July) and the south China (i.e., October) 

were selected for analysis. 

 

Figure 7-5 Design of scenarios.  Emission inputs were the key differences between different 

cases.  Their emissions and reasons for such settings are elaborated in the main text. 
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For Case 1, NOx, NMVOCs, and CO emissions relevant to export demands were 

excluded.  By comparing the modelling results from base case and Case 1, the 

contribution of export-driven emissions on O3 concentration can be revealed.   

For Case 2, industrial emissions of NMVOCs were reduced by certain percentages.  

The percentages were sector-specific, according to the reduction potentials.  The 

sectoral NMVOCs emission intensities in China were compared to those in the EU28 

as estimated in the GAINS model (Amann et al., 2011) and determined the reduction 

percentages by sectors.  Results of the comparison were discussed in Section 7.4.1.  

Emission inputs in Case 2 reflected the NMVOCs emission reduction potentials from 

industrial sectors under such cleaner production practices.  By comparing the results 

of base case and Case 2, the effectiveness of cleaner production on O3 pollution 

control was estimated.  It should be noted that only NMVOCs emission reduction 

potentials were explored here.  This is due to the fact that NMVOCs emission control 

measures are still lacking in China while emissions of other pollutants have seen 

significant decreased. 

Regarding Case 3, it was developed to understand the impacts of disproportional 

control of NMVOCs and NOx in China from 2013 to 2017 on O3 concentrations and 

served as base case of Case 4.  As a consequence of China’s clear air actions aiming 

at PM2.5 and end-of-pipe treatments in the energy sectors, NOx emissions had 

decreased by 21% from 2013 to 2017 while NMVOCs still grew persistently (+2%).  

It is suspected that such uncoordinated control would result in recent increase of O3.  

In Case 3, emissions of NMVOCs, NOx and CO had been updated to the levels of 

2017. 

Case 4 was then constructed to test if the cleaner production measures from the 

industrial sectors were still effective under the emission levels in 2017.  Given the 

chemistry of O3 formation, the disproportional control of NMVOCs and NOx from 

2013 to 2017 might affect the effectiveness of future control strategies.  The 

effectiveness of cleaner production measures in Case 2 might have been altered.  

Sectoral reduction percentages in Case 2 were considered under the emission levels in 

2017 in Case 4.  Results of the above cases are discussed in the following sections. 
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7.4. Impacts from export: Ozone chemistry, concentration and 

premature mortality 

This section discussed the impact from export demands, which were based upon the 

results of base case and Case 1.  Serving as an entry point to understand the O3 

pollution problem from the consumption-based perspective, the impacts from 

exogenous and domestic demands were studied.  Here, emphasis was placed on the 

export demand as it was related to the mitigation strategies explored in Section 7.5.  It 

is true that more studies to investigate the mitigation potentials and strategies from 

capital formation, rural and urban consumption are also needed. 

As mentioned above, there exist a non-linear relationship between O3 concentration 

and the emissions of NMVOCs, NOx and CO.  Such a non-linearity refers to two 

different regimes: NOx- and NMVOC-limited (Jacob, 2000; Li et al., 2015; Fujita et 

al., 2016).  Under the NOx-limited regime, the NMVOCs/NOx ratio in the 

atmosphere is generally higher (characteristics of rural areas and of suburbs); and 

lowering NOx concentrations either at constant NMVOCs concentration or in 

conjunction with lowering VOCs results in lower peak concentrations of O3.  For the 

NMVOCs- limited regime, the NMVOCs/NOx ratio in the atmosphere is lower with 

ample supply of NOx (characteristics of some highly polluted urban and industrial 

areas); Lowering NMVOCs at constant NOx results in lower peak O3 concentration, 

but lowering NOx at constant NMVOCs will result in increased O3.  The 

NMVOCs/NOx emission ratios are crucial to determine the O3 regime and 

consequently, the control strategies on its precursors’ emissions.   

The demand of export might not only change the magnitude of precursor emissions, 

but also the ratio between NMVOCs and NOx, and subsequently, the chemistry of O3 

formation.  Here, it was found that export did alert the emission ratios between 

NMVOCs and NOx differently across the country, but the impact was not significant.  

As shown in Figure 7-6a, the demand of export was generally associated with more 

NMVOCs emission in the east and south coastal areas but more NOx emissions in the 

northern and inland provinces.  This is due to the emission characteristics of 

NMVOCs and NOx and the industry layout of China.  In addition to common sources 

such as transportation, NOx emissions are generally from fossil fuel combustion from 

the energy-intensive and heavy industrial sectors, while NMVOCs emissions are 
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emitted from miscellaneous non-combustion processes of light industries.  As light 

industries thrive in the east and south coast but heavy industries in the northern and 

inland provinces, the NMVOCs emissions from export in coastal provinces generally 

outweighed those of NOx emissions, and vice versa for northern and inland provinces.  

Nevertheless, the export-relevant emissions were still dwarfed by the emissions from 

domestic demands within China.  As a result, the overall NMVOCs to NOx emission 

ratio did not change significantly.  Nationally, export emissions have decreased the 

NMVOCs to NOx ratio from 0.94 to 0.91.  The decrease was more notable in most O3 

hotspots in China such as the Jing-Jin-Ji, Shanxi, Guangdong and Jiangsu (Figure 7-6.  

It suggests that demand of export have slightly increased the sensitivity of O3 

formation to NMVOCs emissions (‘more NMVOCs-limited’).  Under such a 

NMVOCs-intensified chemistry, a rebound
2
 of O3 would be expected if NOx was 

reduced without conjunct reduction of NMVOCs, which was the case of China’s 

clean air actions from 2010 to 2017 (Zheng et al., 2018a; Li et al., 2018c).  

 

                                                 

 

2
 A rebound here indicates the undesirable increase of O3 under NMVOCs-limited regime 

(characteristics of some highly polluted urban and industrial areas).  Under such a regime, lowering 

NMVOCs at constant NOx results in lower peak O3 concentration, but lowering NOx at constant 

NMVOCs will result in increased O3.  More details on the NMVOCs-NOx-O3 chemistry can refer to 

Chapter 1.4. 



Chapter 7 

131 

 

Figure 7-6 Relative emissions of NMVOCs and NOx alerted by export demand. a, Absolute 

value of NOx (in blue) and NMVOCs (in red) related to export demand by provinces. b, Ratio 

between anthropogenic NMVOCs to NOx emissions with (in yellow) and without (in grey) 

export demands. The ratio slightly decreased for the whole nation.  Decreases were more 

notable in most east and southern coastal provinces with intensive export-driven NMVOCs 

emissions. 

 

Comparing to base case, results of Case 1 indicate that export-related emissions had 

mixed effects on the O3 formation due to the varying NMVOCs/NOx emission ratios 

and change of O3 chemistry in different seasons.  In July, the impact from export was 

consistent across the country (Figure 7-7a).  Demand from export had elevated the 

peak O3 level (daily max 1h concentration) in Shandong, YRD, Guangdong and 

Fujian by 6~10 µg/m
3
, accounting for 6~20% of the peak O3 level by anthropogenic 

causes.  The Jing-Jin-Ji region, although not an export industry hub, also suffered 

from notable elevation of O3 (+6 µg/m
3
).  In October, the impact of export-related 
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emissions varied.  Similar increases of O3 were observed in southern China (Figure 7-

7b).  In the vast areas north to the Yangtze River Delta, instead of an increase, export-

related emissions inhibited the O3 peak by 1~3 µg/m
3
.  Inhibition from export 

emissions were most notable around the Jing-Jin-Ji area (3~5 µg/m
3
).  

The mixed effect in October is mainly explained by the intensification of NMVOCs-

limited chemistry in the northern China due to the changes of biogenic NMVOCs 

emissions and export emissions.  In most urban areas of China such as Jing-Jin-Ji, the 

formation of O3 is governed by NMVOCs-limited regime (Wang et al., 2006b, 2010b; 

Han et al., 2008; Ou et al., 2016; Zhang et al., 2016b; Zheng et al., 2017).  Such a 

regime is characterized by low NMVOCs/NOx emission ratio.  As the temperature 

dropped from July to October, biogenic NMVOCs emissions declined and led to even 

lower NMVOCs/NOx emission ratio in October.  This is especially true for the 

northern provinces where temperature dropped more significantly than that in the 

south.  On top of this, the demand of exports had pumped more NOx than NMVOCs 

emissions in the atmosphere (as discussed in the last section).  When excluding the 

export-relevant emissions, O3 would increase as shown in Figure 7-7b.   

In this sense, emissions from export demand helped alleviate the O3 pollution in 

October in the vast northern China.  Nevertheless, October is not the typical O3 high 

season for the north China.  Considering the peak O3 that poses threat to human health 

( >100 µg/m
3
 for 8h mean (WHO, 2005)), the impact of export-relevant emissions is 

generally negative.  It was estimated that an annualized premature death from 

respiratory disease attributable to export emissions was 4615 (1514 ~ 7600; 95% 

confidence interval).  It accounted to 5% of the national death toll from respiratory 

disease relevant to ambient O3 pollution (Liu et al., 2018b).   
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Figure 7-7 Contributions of export demands to O3 concentrations in (a) July and (b) October, 

2013.  O3 concentrations in base case were subtracted from those in Case 1 (O3 in Case 1O3 

in base case).  Export demand had mixed effects on the peak O3 concentration.  It contributed 

to the increases of O3 concentrations in most areas of China in July.  In October, it elevated 

the O3 concentration in south China but inhibited O3 formation in the north China plain.  More 

details refer to discussion in Section 7.4. 

 

7.5. Closing the gap in emission intensity: Mitigation potentials 

and cost 

7.5.1. Mapping the emission intensity in China and EU28 

The adverse impact from export activities can be potentially eased by either 

decreasing the quantity of export goods or cutting down the emissions emitted per 

unit of goods (‘emission intensity’).  The on-going US-China trade war overshadows 

the future of China’s export industries.  While it is hard to predict how the export 

industries will develop, effort from the homeland to promote cleaner production is 

always necessary.  Here, the NMVOCs emission levels per unit of goods produced in 

China were compared with those in the EU28 as estimated in the GAINS model 

(Amann et al., 2011).  For most industrial sectors, the emission intensities in China 

around 2013 were comparable to the upper bound of the EU28 around 2000, as shown 

in Figure 7-8 a-e.  Following the experience in EU28, NMVOCs levels can be 

substantially cut down with proven and affordable technologies (Amann et al., 2018).  

For example, it has been shown that implementation of improved management 
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practices in degreasing sector could lead to 41% lower emissions while more 

advanced techniques such as the combination of sealed degreasers, hydrofluorocarbon 

solvents and activated carbon adsorption can reduce emissions by well over 90%.  For 

a few sectors such as petroleum refineries and rubber tyre production, emission levels 

in China are systematically higher than those in the EU28.  This might be attributed to 

the different compositions of products or poorer management along the production 

line that leads to higher NMVOCs emissions. 

 

Figure 7-8 NMVOCs emission intensities for China and EU28. Box plots represent the 

distribution of European levels in every five years from 1990 to 2030. Dotted line denotes the 

level of China in 2013. Intensities of China fall within the range of EU 28 for most sectors, 

e.g., a, automobile manufacturing, b, PCB, c, printing, d, pharmacy and e, vegetable oil. For 

(f), petroleum refineries, intensities in China was systematically higher than in Europe. To 

evaluate emission reduction potentials, relative change of emission intensities in Europe was 

adopted. 
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7.5.2. Potentials of emissions and pollution mitigation 

By benchmarking the emission levels in China with those attainable in the EU28 by 

2030, the reduction potential for China’s export industries were estimated.  Here, the 

reduction potential of emissions is first discussed, followed by the mitigation 

potentials in terms of ambient O3 concentration and premature morality. 

For those sectors with emission intensities within the EU range, the mean level across 

the EU countries (instead of the median or the country with the lowest value) was 

used as a reference for the possible low level that can be achieved.  For the few 

sectors with systematically higher emission levels, a relative change was adopted 

instead of an absolute value.  It is estimated that 57% of production-based NMVOCs 

emissions from export industries could be reduced (1165 kt·a
-1

).  When expanding the 

above approach to the whole production capacity, a reduction of 4437 kt·a
-1

 of 

NMVOCs would be expected, i.e., 58% and 17% of industrial and total anthropogenic 

NMVOCs emissions in China, respectively.   

To study the O3 mitigation potentials, two scenarios were constructed, which were 

Case 2 and 4 in Figure 7-5.  Case 2 and 4 were developed by considering emission 

reduction potentials from production practices in line with those in the EU28 based 

upon the emission rates in 2013 (Case2) and in 2017 (Case 4), respectively.  The year 

of 2013 was the reference year in this study.  The inclusion of year 2017 was an 

attempt to reflect the radical change of NMVOCs and NOx emissions between 2013 

and 2017 and to investigate the efficacy of industrial emission reduction under the 

most up-to-date emissions.  As mentioned above, the efficacy of precursor emission 

reduction on O3 pollution alleviation can vary depending on the O3 formation 

chemistry.  Since 2011, the air pollution policy in China was heavily focused on 

reduction of emissions of SO2, NOx, and primary particulate matter from the energy 

sector.  NOx emission had peaked around 2012 and decreased by 25% in five years 

from 2012 to 2017.  NMVOCs emission, meanwhile, slightly grew by 2%. (Figure 7-

9).   
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Figure 7-9 China’s NMVOCs and NOx emissions from 2010 to 2017 (adapted from Zheng et 

al. (2018a)) 

 

When NMVOCs industrial emissions were reduced according to their reduction 

potentials (NOx and other air pollutant emissions remained constant), a nation-wide 

O3 decrease is modelled.  As shown in Figure 7-10 a&b, the decrease was significant 

in the vast coastal areas and some north inland provinces.  In July, 2013, the 

maximum 8 hour O3 average in Jing-Jin-Ji, Shandong, Yangtze River Delta and 

Guangdong dropped by 5.0, 3.3, 3.7, and 0.6 µg/m
3
, respectively.  The O3 

concentration declined more significantly in October.  It decreased by 5.6, 5.7, 3.8, 

and 2.9 µg/m
3
 in Jing-Jin-Ji, Shandong, Yangtze River Delta and Guangdong.  The 

intensified NMVOCs-limited chemistry in October made the NMVOCs emission 

reductions even more effective.  

By adopting the same NMVOCs emission reductions for the emission rates of 

NMVOCs and NOx in 2017, it was found that NMVOCs emission reduction was still 

effective to lower the peak O3 level but not as significantly as it for the 2013 emission 

rates (Figure 7-10 c&d). It suggests that the response of O3 to the change of NMVOCs 

emissions is decreasing as NOx emissions keeps going down in China. 
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Figure 7-10 Effectiveness of cleaner production practices in 2013 (a&b) and 2017 (c&d).  In 

a&b, O3 concentrations in base case were subtracted from those in Case 2 (O3 in Case 2O3 

in base case).  Nation-wide decreases of O3 can be observed when emission intensities of 

NMVOCs from key industrial sectors were lowered to European references under the 2013 

emission rates.  In c&d, O3 concentrations in Case 3 were subtracted from those in Case 4 (O3 

in Case 4O3 in Case 3).  Considering the reduction of NOx emissions from 2013 to 2017 (-

17%), NMVOCs emission reductions from industries were still effective – but not 

significantly so– on lowering the peak O3.  

 

7.5.3. Mitigation cost for the industries 

The costs of cleaner production in selected industrial sectors and how much they 

would affect the price competitiveness of China’s goods were estimated.  Given that 

local cost information was not available, this study referred to the cost of such 

practices in Europe using GAINS model data.  Understanding the differences of cost 

of labour, infrastructure and others between China and Europe, the estimation here 

has large uncertainty in representing the exact cost in China.  Interpretation of the 
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estimated cost will be discussed later in this section by comparison with an existing 

study. 

The costs for introducing such low emission practices were estimated at 0.05% to 0.3% 

of the annual industrial output, varying across sectors (Table 7-2).  For pigment 

manufacturing and shoe making industries, emissions can be cut down by around 30% 

with annualized cost of 0.24% and 0.05%, respectively.  Regarding printing, PCB, 

pharmacy and automobile manufacturing, sectoral emission reduction of 50% to 70% 

can be achieved with annualized cost from 0.13 to 0.3%.  Negative unit costs were 

estimated for few sectors such as tyre manufacturing, wood furniture making and 

extraction of edible oil.  It is because the value of saved or recovered solvent (e.g., 

hexane in vegetable oil producing process) offsets the investment and additional 

operating costs of control technologies.  The recovery of these NMVOCs does not 

only reduce the emissions but also increase the output and revenue.  Since prices of 

solvents, pollution discharge fees, labour costs and other input material costs are 

generally lower in China, the negative costs estimated here might be overstated. 

Nevertheless, the ‘true’ costs for these sectors should not be excessive and decrease 

over time.  Therefore, it is assumed the costs are relatively low and set them as zero in 

Table 7-2. 

The estimated cost is comparable to a study in the Pearl River Delta region, South 

China (Streets et al., 2006).  Costs for adsorption by activated carbon and switch from 

low-solvent to solvent-free paints were estimated as $501 and $13317 per ton of 

abated NMVOCs in that study, respectively.  Cost for solvent substitution is much 

higher.  Estimated costs in this paper fall within the above range, varying from $923 

to $5992 per ton of NMVOCs; the upper bound is lower than that of previous study 

(Streets et al., 2006) since a mix of technological means is adopted in each sector.  

For instance, a combination of process modification, solvent substitution, adsorption 

and incineration techniques are adopted in the automobile manufacturing sector.  As a 

result, the average cost would be lower than a sole measure of solvent substitution. 
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Table 7-3 Potentials for emission reductions and abatement cost 

Sources 
NMVOCs Emission Factors NMVOCs Reduction 

Potentials (ton) a 

Annualized 

Abatement Cost  

(million $) 

Industrial Output in 

2013  

(million $) China in 2013 Possible low level Unit 

Petroleum Refinery 1.82 b 1.08 c kg/t product 353972 0  

Extraction of Edible Oil 6.88 d 2.29 c kg/t product 256444 0  

Tyre 0.6 e 0.44 c kg/tyre 176464 0  

Wood Furniture Making 0.92 f 0.49 c kg/piece 252913 0  

Extraction of Oil 1.42 b 0.93 c kg/t 105982 0  

Paint Manufacturing 15 b 11 c kg/t product 38170 35 53226 (0.24%) 

 

Ink Manufacturing 50 b 36 c kg/t product 9459 9 

Dye Manufacturing 81 b 58 c kg/t product 20575 19 

Carbon Black Manufacturing 52 b 37 c kg/t product 69036 64 

Glue Manufacturing 11 g 8 c kg/t product 15742 15  

Printing 993 301 kg/t ink 396216 501 167718 (0.30%) 

Shoe Making 0.028 m 0.020 c kg/pair 37087 56 106140 (0.05%) 

Printed Circuit Board 0.22 h 0.09 c kg/m2 29019 55 22548 (0.24%) 

Metal Coating (Small devices) 0.20 b 0.08 c kg/piece 67305 127  

Metal Coating (Large devices) 0.40 b 0.15 c kg/piece 216 0.4 o  

Pharmacy 260 i 125 c kg/t product 354546 977 359629 (0.27%) 

Automobile Manufacturing           

Bikes 0.3 b 0.12 c kg/VEH 4290 26 853225 (0.13%) 
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Small Vehicles 2.43 b 0.972 c kg/VEH 19208 115  

Other Vehicles 21.2 b 8.48 c kg/VEH 152106 911 

Motorbikes 1.8 b 0.72 c kg/VEH 13470 81 

Coking 2.1 j 0.427 k kg/t coal charged 1128867 NA  

Polymeric Coating 0.182 b 0.009 l kg/m2 818404 NA  

Polymers and Resins           

Polyethylene 7.85 m 2.00 k kg/t product 68679 NA  

Polypropylene 3.00 b 0.35 n kg/t product 33019 NA  

Polyvinyl chloride 0.7448 b 0.1 k kg/t product 9865 NA  

Polystyrene 2.92 b 0.15 k kg/t product 5817 NA  

a Reduction potentials estimated based on the activity level in 2013; 
b Emission factor from Ministry of Ecology and Environment P.R. China (2014); 
c Value is estimated based on the EU- average emission factor trajectory; 
d Weighted average of the emission factors of corn oil, cottonseed oil, peanut oil and soybean oil from Ministry of Ecology and Environment P.R. China (2014); 
e Average factor of Ministry of Ecology and Environment P.R. China (2014) and previous studies (Klimont et al., 2002; Hong Kong-Guangdong Joint Working Group on Sustainable 

Development and Environmental Protection, 2008; Zheng et al., 2009a&b; Huang et al., 2011); 
f Weighted average of offset printing, rotogravure printing and letterpress printing (Guangdong Polytechnic of Environmental Protection Engineering and South China University of Technology, 

2012); 
g Local factor unavailable. Factor from European Environment Agency (2016) was adopted; 
h From a field survey in the Pearl River Delta (Guangdong Polytechnic of Environmental Protection Engineering and South China University of Technology, 2012); 
i Emission factor from Zheng et al. (2018a); 
j Local factor unavailable. Factor from United States Environmental Protection Agency (2009) was adopted (Wei et al., 2008; Huang et al., 2011; Wang et al., 2018b), which was based on the 

higher bound of emission level in an earlier study by Economic Commission for Europe (1990); 
k Based on the lower bound of emission level by Economic Commission for Europe (1990);  
l By carbon adsorption units using activated carbon, 95% of NMVOCs from this process can be removed United States Environmental Protection Agency (2009); 
m Average of high- and low-density polyethylene emission factors from Ministry of Ecology and Environment P.R. China (2014); 
n Factor from United States Environmental Protection Agency (2009); 
o The value should be underestimated since only the activity level data of cutting machine was available for the national statistics.  
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7.6. Implications for control strategies 

The above analysis revealed a multitude of information on the causes and drivers of 

O3 pollution in China.  This section critically digests the evidence presented in the 

above sections and strives to inform policy formulation from production and 

consumption.  

7.6.1. Implications for production-based control strategies 

This study provides two key messages to inform production-based control strategies 

in China.  The first one is the necessity of coordinated NMVOCs control along with 

NOx.  It is argued that the aggressive reduction of PM2.5 in China has been partly 

attributed to the rise of O3 level in recent years.  The clean-up of the energy sector has 

resulted in a radical decrease of NOx emissions.  It has shaped the O3 regime to being 

even more NMVOCs-limited and gave rise to increased O3 concentrations. 

Recalling the result of Case 1, O3 in the north China increased due to disproportionate 

reduction of NOx and NMVOCs (Figure 7-7b).  It indicates that, under the NMVOCs-

limited regime, aggressive reduction of NOx without joint efforts on NMVOCs could 

result in the rise of O3 concentrations.  For the vast urban areas in China that suffer 

from high O3 levels such as the Jing-Jin-Ji, Yangtze River Delta and Pearl River Delta, 

studies have found that O3 formation was governed by NMVOCs-limited regime 

(Wang et al., 2006b, 2017; Han et al., 2011; Xing et al., 2011b; Zhu et al., 2016; Lyu 

et al., 2016; Xu et al., 2016; Zheng et al., 2017; Li et al., 2018c; Xing et al. 2018; 

Zeng et al., 2018).  From 2013 to 2017, the hourly concentration of O3 in China 

increased by 16~27% from 2013 to 2017 (Figure 1-8), while the O3 exposure metrics 

(cumulative O3 concentration) increased even more by 57~77% (Lu et al., 2018).  

Meanwhile, as a consequence of China’s clear air actions aiming at PM2.5 and end-of-

pipe treatments in the energy sectors, NOx emissions had decreased by 21% from 

2013 to 2017 while NMVOCs still grew persistently (+2%).  It is suspected that such 

uncoordinated control would result in recent increase of O3. 

To testify such an inference, Case 3 was constructed as shown in Figure 7-6.  

Emission rates in the Base Case, which were the baseline emissions of NMVOCs, 

NOx and CO in 2013, had been updated to 2017, considering the reduction of NOx 

and increase in NMVOCs emissions.  Modelling results in Case 3 were compared 
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with the Base Case.  The change of O3 concentrations due to the disproportionate 

reduction on NOx and NMVOCs is illustrated in Figure 7-10.  It is clear that 

uncoordinated control of precursors’ emissions have been partly attributed to the rise 

of O3 in the populous city clusters.  In particular, peak O3 levels in the Jing-Jin-Ji and 

the Yangtze River Delta increased by 10.9 and 2.5 µg/m
3
, respectively.  A recent 

study investigated the anthropogenic drivers of 2013-2017 trends of surface O3 in 

China (Li et al., 2018c).  In addition to the changes of precursors emissions, the 

decrease (~40%) of PM2.5 concentration in the atmosphere also contributed 

significantly to the increasing O3 trend due to the slow-down of aerosol sink of 

hydroperoxy (HO2) radicals and thus simulation of O3 production (Li et al., 2018c).   

 

Figure 7-11 Impact of disproportionate reduction of NMVOCs and NOx on O3 peak 

concentration in (a) July and (b) October.  O3 concentrations in base case (representing the 

emissions in 2013) were subtracted from those in Case 3 (representing the missions in 2017) 

(O3 in Case 3O3 in base case). 

 

The second implication is on the great reduction potentials from industries at 

moderate cost.  Compared to other criteria pollutants such as SO2 and NOx, the 

control of NMVOCs emissions are more challenging due to its complicated sources 

and varying abatement technologies, especially those from industries (Chan and Yao, 

2008; Zheng et al., 2013; Zhong et al., 2013; Ou et al., 2015; Wang et al., 2018b&c).  

While the transport-related NMVOCs emission had started to decrease since 2010 

(Zheng et al., 2018a), NMVOCs emission from industrial processes and solvent use 

are still increasing.  This study estimates a large NMVOCs reduction potential from 
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cleaner industrial production.  For the selected 25 industrial sectors, their NMVOCs 

emission can be cut down by 63% applying end-of-pipe controls or solvent 

management and low-solvent substitutes.  Since these 25 sectors made up 56% of the 

NMVOCs emissions from all industry, the industrial NMVOC emissions can be 

reduced by 35%, which is equivalent to 16% of the anthropogenic NMVOCs 

emissions in China.  Such emission reductions would lead to approximately 5, 3 and 2 

µg/m
3
 of decrease in max 8h O3 in Jing-Jin-Ji, Yangtze River Delta and Guangdong, 

respectively.  Compared to the O3 pollution level that China is confronting, more 

efforts targeting other industrial sectors as well as the household sector should be 

carried out. 

Cleaner production practices have a positive effect on alleviating the O3 problem and 

their cost seem to be bearable for China’s industries.  Goods produced in China are 

competitive in both the domestic and international markets since they are cheap, 

partly due to rather lax emission standards.  Requiring introduction of cleaner 

production technologies resulting in reduction of NMVOCs emissions by 50~70%, 

the costs for most sectors were less than 3% of the value added of the goods produced.  

The price competiveness of China’s goods would not be seriously undermined.  The 

pharmaceutical industry appears to be an exception with 32% NMVOCs emission 

reduction at a cost of 4.6% of its value added.  Considering the fact that the analysis 

relies upon the average European costs, the ‘real’ cost in China might be lower and 

the mitigation strategy more affordable for the industries. 

7.6.2. Implications for consumption-based control strategies 

This study mainly explores the potentials of O3 alleviation from export.  The crucial 

message for policy formulation is that swift actions are needed in order to reap the 

most benefit.  In other words, the efficacy of addressing export industries emissions 

on O3 reduction decreases over time. 

The nature of export enterprises, i.e., usually large in size and regularly evaluated 

under the national environment monitoring system, makes them viable for efficient 

NMVOCs emission control.  By closing the gap of emission intensities between 

China and EU28, the reduced NMVOCs emissions (~4.5 million tons for the whole 

production capacity) would lead to a nation-wide decrease of peak O3 in both July and 

October, 2013, especially for the east and south coast and north China plain (2~8 
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µg/m
3
, Figure 7-7 c&d). It is not a big change compared to the absolute value of O3 

but would slow down the rising trend of O3 and the number of premature deaths could 

be reduced by 4708 (1566 ~ 7762; 95% confidence interval).  Benefit for local 

population would be even larger if occupational exposure was also considered.  Quite 

a few NMVOCs species are not only precursors of O3, but also known or suspected 

carcinogens.  Benzene, for example, is a human carcinogen (Group 1) by the 

International Agency for Research on Cancer (International Agency for Research on 

Cancer, 2012).  For 3 out of the 20 sectors, i.e., wood furniture making, ink and paint 

production and shoe making, the number of their employees reached 2.8 million in 

2013 (China Light Industry Association, 2014).   

By adopting the same NMVOCs emission reduction in the emission rates of 

NMVOCs and NOx in 2017 (Case 4) showed that that NMVOCs emission reduction 

was still effective to lower the peak O3 concentrations but not as significantly as for 

the 2013 emission rates (Figure 7-7 e&f). It suggests that the response of O3 to the 

change of NMVOCs emissions is decreasing as NOx emissions keeps going down in 

China. Ideally, reductions of NMVOC should precede substantial NOx reduction in 

order to achieve low ozone concentration in the long term and avoid high peak ozone 

episodes in the mid-term (Ou et al., 2016).  The current policy, however, appears to 

be the opposite, starting from aggressive NOx reduction followed by  tightening 

NMVOCs standards for both transportation and industrial emissions since 2018 

(Ministry of Ecology and Environment of the People’s Republic of China, 2019). 

While reduction of NMVOCs is always beneficiary considering their toxicity or 

carcinogenic characteristics, its benefit on curbing O3 rise would be more appreciable 

if swift actions are taken when O3 still response significantly to the change of 

NMVOCs.  

China exports goods to 140 countries but the United States (US) alone accounted for 

23% NMVOCs emissions relevant to export.  A large proportion of industrial 

products characterized by high NMVOCs emission intensity are subject to recently 

increased tariffs, such as paints, dyes, glues, adhesives, wood furniture, man-made 

textiles, machinery, electronics, vehicles and parts, ships and boats.  Nevertheless, it is 

difficult to predict how the demand and structure of export might be affected.  In the 

short term, the reliable supply chain, skilled workers, growing domestic demand still 

make China highly competitive as the world’s factory.  The increased tariffs are likely 
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to be borne by the producers assuming decreased profit margins.  Even in an extreme 

case where production for export is heavily distorted, the direct NMVOCs emissions 

should be only marginally affected. This is because the emissions embodied in US-

China trade accounted only for 3% of the anthropogenic national total and 5~7% of 

export industries hubs.   

For substantial reduction of NMVOCs emissions, production for the domestic market 

(as well as consumption of solvent based products) needs to be addressed.  The direct 

and indirect consumption of urban and rural households in China contributed about 40% 

of NMVOCs emissions.  With increasing household income and consumption, that 

contribution is expected to grow further.  Policies addressing household products and 

consumer behaviour should be formulated.  Long-term attainment of O3 targets across 

the country would also call for further NOx reduction of more than 50% (Ou et al., 

2016). As demand from abroad accounted for about 15% of China’s NOx emissions in 

2013, strategies targeting domestic demand driving NOx emissions and end-of-pipe 

treatment would be the key to halve NOx emission and consequently bring ambient 

O3 to a safe level nation-wide. 

7.7. Summary 

China is facing a growing O3 pollution problem despite its initial success on PM2.5 

control.  With an increase of 16~27% from 2013 to 2017, the O3 concentrations in 

China is greater than any other developed country in the world or even the United 

States in the 1990s.  The causes and formation of O3 pollution in China and possible 

means for alleviation are investigated in this Chapter. 

This study contributes to improved understanding of the consumption-based 

emissions of O3 precursors and formation in China.  Contribution of ‘export-driven’ 

emissions to the O3 formation within China was estimated.  Due to the differences in 

spatial pattern for various types of industrial production, export industries in the north 

and inland provinces are more relevant for NOx emissions, while those around the 

east and south coastal areas have higher NMVOCs emission loadings due to the 

thriving light industries.  As a result, export-related emissions contributed positively 

to the formation of O3 in the South China.  The export emissions were responsible for 

3~6 µg/m
3
 of the max 8h O3 in light industry hubs such as Guangdong and Zhejiang.  

For the northern provinces, the high NOx emission loadings driven by export demand 



Chapter 7 

146 

inhibit the O3 formation by 1~2 µg/m
3
 under the strong VOCs-limited chemistry 

regime in October contrasting a 4~6 µg/m
3
 increase in July. 

Modelling results in this study suggest that aggressive reduction of NOx without 

coordinated control of NMVOCs could lead to an increase of O3.  This might partly 

explain the recent rise of O3 in China and call for a more balanced control of both 

NMVOCs and NOx.  While the transport-related NMVOCs emission have started to 

decrease, NMVOCs emissions from industries still increase.  We found that the 

selected 25 industrial sectors have large emission reduction potentials; emission 

density could be reduced by about 63%.  If sector-wise reduction was applied (not 

only for export goods but also for other goods produced in the same plant/facility), 

such reduction would lead to a decrease of 2~5 µg/m
3
 of max 8h O3 in Jing-Jin-Ji, 

Yangtze River Delta and Guangdong.   

Preliminary cost estimation showed that such cleaner production practices would not 

seriously undermine the price competiveness of China’s goods.  With an annualized 

cost of less than 3% of the value added of goods produced, NMVOCs emissions for 

most sectors could be reduced by 50~70%.  We conclude that NMVOCs reductions 

from industrial sectors are technically and economically possible. 

The 25 industrial sectors, addressed in this study, are estimated to account for about 

56% of the industrial emissions, such efforts alone are therefore not enough to combat 

the O3 problem in China.  Potentials of cleaner production practices for other 

industrial sectors and greener consumption of household products should be explored 

in further study. 
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Chapter 8 Conclusions 

This PhD work presents an integrated assessment on the interplay of energy, pollution 

and socioeconomic demands in China at the time of drastic social and economic 

transition.  Production- and consumption-based accounting approaches are used to 

connect the environmental and socioeconomic systems and depict the material and 

emission flows between producers, consumers and environmental receptors.  This 

study has filled in part of the research gaps in integrated assessment and provided 

policy-relevant implications on China’s sustainable production and consumption.  

Key findings, contributions and limitations of this work are discussed in this Chapter. 

8.1. Summary of work and key findings 

This study first argues that conventional socioeconomic analysis techniques can be 

combined with environmental models to understand the full chain of cause and effect 

of environmental issues.  A four-stage research framework is proposed.  It starts from 

the compilation of a primary energy consumption matrix, followed by the 

establishment of production-based inventories of GHG and air pollutants.  Energy and 

emission accounts are then connected to socioeconomic accounts through EEIO 

analysis and decomposition techniques.  Socioeconomic drivers that are responsible 

for energy consumption or emissions can be revealed, including entities such as 

intermediate sectors and final consumers and macroeconomic factors such as 

population growth, economic growth, industrial structure, energy intensity and energy 

mix.  Meanwhile, production-based emissions marked by different socioeconomic 

drivers are fed into environmental modelling tools such as CMAQ.  Through 

environmental models, a vast variety of environmental end-points can be evaluated, 

including but not limited to the ambient air pollutant concentration, air quality 

attainment rate, pollution formation regimes and death toll.  With the corresponding 

relationship between production- and consumption-based emissions, socioeconomic 

demands and environmental consequences can be connected in an explicit and 

quantitative way.  This study advocates the idea that the causes and effects of 

environmental issues should be understood in a socioeconomic context. 

This study understands the central roles of energy consumption, emission inventory 

and IO tables in the integrated assessment framework and tries to overcome some of 
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the limitations in terms of data quality.  First, official energy statistics at provincial 

levels were compared with the national sum.  Second, this study evaluated the 

reliability of NMVOCs emissions with ambient measurements.  Third, the MRIO 

table for 30 provinces in China was extended to 31 provinces covering Tibet. 

With the best available data, the proposed assessment framework has been 

demonstrated in national and subnational studies in China to advance the current 

understanding of energy consumption and pollution formation.  Key findings are 

summarized as follow: 

1) Gaps between national and provincial energy statistics 

This study used the latest provincial energy statistics from 2000 to 2016, which was 

indeed the only available data covering all the mainland provinces in such a time 

frame.  It was found that the gap between national and provincial statistics was 

closing after China revised its national statistic three times since 2000.  The relative 

differences of total energy consumption between the two were from -6% to 8%. 

2) Cross-validation of emission inventory and ambient measurements 

Thanks to the ambient measurement record from a gridded sampling campaign, 

emissions of NMVOCs in this study were validated.  Data from the sampling 

campaign was first analysed by receptor model and then compared with the emission 

inventory.  The key factors leading to the discrepancies between emission inventory 

and receptor modelling were identified, including the number of NMVOCs species, 

tempo-spatial resolution, effect of photochemical loss, tracers used in receptor model 

and potentially missing sources in emission inventory.  With respect to the 

improvement of emission inventory, evaporation emission from vehicles and LPG-

related sources were found as the potentially missing sources.  Considering the 

existing evidence from other studies, only evaporation emissions from vehicles were 

included in the inventories for further assessment. 

3) Development of MRIO table for 31 provinces and the regional interactions  

A MRIO table for 31 mainland provinces in China was developed.  This MRIO table 

was used for the integrated assessment of ground-level O3 problem in China.  In 

addition, the production- and consumption-based characteristics of Tibet were 

investigated.  Tibet displays unique emission patterns with the highest ratio of 
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consumption- to production-based emissions in China, which are more similar with 

the east developed provinces rather than its counterparts in west China.  

Consumption-based CO2 emissions in Tibet (18.8 Mt, similar to Guinea’s emissions 

in 2015) were three times as high as the production-based estimate (6.2 Mt).  More 

than half of Tibet’s consumption-based emissions are supported by Qinghai, Hebei, 

Sichuan and others, enabled by the Qinghai-Tibet railway that connected Tibet to 

China’s national railway system.  It is also found that Tibet has the third highest 

carbon footprint (carbon emissions per capita) in China but low life expectancy.  It 

indicates that the current consumption of Tibet is neither climate-friendly nor good for 

human welfare. 

4) Socioeconomic drivers of China’s energy consumption from 2003 to 2016 

Once the primary energy consumption matrix was developed, this study observed 

substantial decrease of energy elasticity in China.  Such a trend was even more 

prominent at the provincial level.  Eight of the provinces saw declines in their total 

primary consumption (including coal, petroleum, natural gas and non-fossil fuels) 

from 2011 to 2016.  This work investigated the changes in energy drivers for 

provinces with observed declines in their primary energy consumption and discussed 

how their drivers were different from the other provinces.  These eight provinces 

differed from the others since 2011, when the decreasing effect of energy intensity 

was enhanced and, for the first time, surpassed or approximated the increasing effect 

of economic growth.  The catching-up was more associated with the significant 

reduction of energy intensity rather than the slowdown of economic growth.  New 

decreasing factors such as the share of coal and industrial structure change were also 

emerging to curb the growth.  In addition, six provinces have levelled off their total 

primary consumption and decreased the combined consumption of coal and petroleum.  

Their driver mechanisms were similar but the share of cleaner fuels, e.g., natural gas 

and non-fossil fuels, increased significantly.  Nevertheless, such declines were 

demonstrated to be initial rather than structural changes.  Province-specific pathways 

should be followed to secure the trend or fasten transition. 

5) Socioeconomic drivers of air pollutant emissions in a fast-developing region 

The roots of air pollutant emissions in one of the city clusters in China – Guangdong 

province – were studied from the socioeconomic context.  From 2007 to 2012, the 
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GDP of Guangdong increased dramatically by 80%.  Meanwhile, it saw a 28% 

decrease of SO2 emissions, accompanied by stabilized NOx emissions and 26, 8.6, 8.5, 

31 and 10% increase of CO, PM10, PM2.5, NMVOCs and NH3, respectively.  The 

varying trends of air pollutants from 2007 to 2012 were associated with the 

production-based control measures and the changes of economic structure and trading 

patterns.  Due to the stringent control of SO2 in power plants and key industries, the 

SO2 emissions from consumption perspective saw substantial declines, while the less-

controlled PM10, PM2.5, NMVOCs and CO kept growing.  Driven by the increasing 

urban consumption and efforts in industrial transformation, the share of other service 

industries (excluding transport, storage and post) in Guangdong’ GDP grew by 41% 

in five years, resulting in the increasing proportion of the low-emission-intensity 

service sector in the emissions of all the 7 pollutants.  Meanwhile, export accounted 

for an astonishingly high share of air pollutant emission (~50%, doubled the national 

average), but its share started to decrease for most pollutants except NMVOCs and 

CO. 

6) Integrated assessment on the causes and effects of ground-level O3 in China 

While Chinese policies addressing PM2.5 pollution resulted in declining 

concentrations of ambient PM2.5, the ground-level O3 pollution has been on the rise.  

With an increase of 16~27% from 2013 to 2017, the O3 level in China is greater than 

any other developed country in the world or even the United States in the 1990s.  

With an integrated assessment framework centred by EEIO analysis, this study 

combined the air quality model, health exposure assessment and a comprehensive set 

of technical and cost parameters from IIASA-GAINS database to study the causes and 

effects of rising O3 in socioeconomic context with a focus on export demand and the 

related industrial emissions.  Goods produced in China for foreign markets lead to an 

increase of domestic NMVOCs emissions by 3.5 million tons in 2013; about 13% of 

the national total or, equivalent to half of emissions from EU.  Export demand driven 

emissions have mixed impacts on China’s O3 concentration, but they generally 

contribute about 6~15% of peak O3 levels (6~10 µg/m
3
) caused by human activities in 

the coastal area resulting in an estimated 4615 (1514 ~ 7600) premature deaths.   

Past air quality improvement efforts in China have focused on end-of-pipe treatments 

on energy-related sources such as power plants, industrial boilers and vehicles.  Such 
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efforts have not only altered the energy structure in China and also the emission ratios 

between NMVOCs and NOx, the latter of which has a profound impact on the 

increase in O3.  It was found that demand for export has slightly increased the 

sensitivity of O3 formation to NMVOCs emissions (‘more NMVOCs-limited’).  In 

addition to the elevation of peak O3 level, export demand has shaped the O3 formation 

in China in a more hidden way by altering the emission ratios of O3 precursors. 

Differences in the emission intensities between China and the EU 28 were evaluated.  

Measures from the production-based perspective could significantly lower the 

consumption footprints of export and other domestic demands at moderate cost.  By 

benchmarking the emission intensity in China to the EU, the export footprint and 

NMVOCs emissions from the whole production capacity can be reduced by nearly 

60%.  Such efforts will slow down the upward trend of O3 with notable health benefits. 

For substantial reduction of NMVOCs emissions and ambient O3 level, demands from 

domestic market need to be addressed.  The direct and indirect consumption of urban 

and rural households in China contributed about 40% of the NMVOCs emissions.  

With increasing household income and consumption, that contribution is expected to 

grow further.  Long-term attainment of O3 across the country would also call for 

further NOx reduction of more than 50%.  As demand from abroad accounted for 

about 15% of China’s NOx emissions in 2013, strategies targeting domestic demand 

driving NOx emissions and end-of-pipe treatment would be the key to halve NOx 

emission and consequently bring ambient O3 to a safe level nation-wide. 

8.2. Contributions to scholarship and policy 

This study has advanced the current understanding on energy consumption and air 

pollution in China from an interdisciplinary approach.  It advances the methodologies 

in integrated assessment, provides quantitative evidences on the interlinkages between 

environmental and socioeconomic systems, and explores the possibilities of cleaner 

growth from both demand and supply sides. 

First, this study has managed to bring together a few powerful tools from the 

disciplinary of environmental and socioeconomic studies to push the boundaries of 

application and knowledge.  Some of the research gaps in quantitative integrated 

assessment have been filled.  By combining the techniques of production- and 
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consumption-based emission inventory development, a wider range of environmental 

modelling and socioeconomic analysis tools can be integrated and adjusted in a 

flexible way according to objectives and research questions.  Considering the quick 

expansion of interdisciplinary studies in recent years, methods and their 

demonstrations in this study are expected to be influential and contribute to the further 

development in similar fields.  Originality of the methodologies developed in this 

study has been recognized by the Mikahlevich Award given by the International 

Institute for Applied Systems Analysis in 2018, which aims to recognize 

mathematically and methodologically oriented research. 

Second, this work has overcome some of the research gaps with respect to the mix of 

data quality in developing countries.  According to the data availability in China, 

methods to avoid double counting of energy consumption associated with electricity 

are proposed.  Primary sources of electricity used in final consumers are identified by 

considering the indigenous production of electricity from different sources of energy, 

electricity moving in from other provinces and electricity sent out to other provinces 

(Eq. 3-1).  Procedures for cross-validation between emission inventories and receptor 

modelling results are proposed (Section 3.1.3).  To make results from these two 

methods comparable and guide the improvement of both sides, one should ensure 

consensus of the species used in emission inventory and receptor model, and employ a 

larger spatial coverage and longer time span to partly cancel out the effect of uneven 

mixing.  Validation in this study exposes the key methodological flaws in both 

methods.  For receptor modelling, chemical losses of reactive species and the overlap 

of tracers used by different sources are problematic.  As for emission inventories, 

evaporation emissions from vehicles and LPG-related emissions might be 

underestimated.  This study has also contributed to the development of MRIO table in 

China by extending the table to cover all the 31 mainland provinces.  The table has 

been used in this work and comprised part of the China Emission Accounts and 

Datasets (CEADS).  It is free to download via http://www.ceads.net/data/input-output-

tables/ for academic use. 

Third, this study provides the first assessment on the driving mechanisms responsible 

for the declined energy consumption in some of Chinese provinces.  This work has 

captured the catching-up effect of energy intensity and, for the first time, the 

decreasing effect of energy intensity exceeded or approximated the increasing effect 

http://www.ceads.net/data/input-output-tables/
http://www.ceads.net/data/input-output-tables/
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of economic growth.  Further analysis showed that the catching-up was more 

associated with the significant reduction of energy intensity rather than the slowdown 

of economic growth.  New decreasing factors such as the share of coal and industrial 

structure change were also emerging to curb the growth.  Such findings are valuable 

for the academic discussion of energy transition in China.  They are also significant 

for energy policy.  As China caps its total energy consumption at the level of 5000 

Mtce and 6000 Mtce by 2020 and 2030, respectively, the annual growth in the coming 

decade should be no higher than 1.8%.  To achieve such a low growth rate, the energy 

consumption of some provinces should be reduced, or at least, stabilized.  The 

mechanisms identified in this work shed some light on how energy consumption can 

be reduced at the provincial levels with real-world examples. 

Fourth, this work has filled in the knowledge gap in the consumption-based emissions 

of Tibet, the second largest province in China in terms of area.  A consumption-based 

emission inventory was developed for Tibet and the regional interactions of provincial 

emissions were studied using the MRIO table for 31 provinces in China.  Findings in 

this study contribute to the research on China’s emission accounts, in which emission 

from Tibet is usually missing.  A unique emission pattern is also observed.  Tibet is 

found to have the highest ratio of consumption-based to production-based emissions 

among 31 mainland provinces in China, exceeding the figures of Beijing, Tianjin and 

Guangdong.  Some studies have noted that CO2 emission flows began to reverse in 

2012 (Mi et al. 2017).  The consumption characteristics of Tibet in this study are 

additional evidence of the ongoing reversal in emission flows within China.  In terms 

of policy implications, this study also evaluates the sustainability of Tibet’s 

consumption and production.  The unique emission pattern is believed to be explained 

by the low self-sufficiency of Tibet’s economy.  It heavily relies on the imported 

goods of non-metal mineral products, iron and steel, general and special equipment 

and machinery, metal products, chemical products, processed food, garments and 

fiber products, and paper products from other regions in China, and thus outsources a 

significant amount of emissions.  Such a virtual transport of emissions might have 

significant implications on short-lived air pollutants and air toxics, whose negative 

effects on ecosystems and human health are sensitive to the emission location.  Tibet 

is found to fall out of the “Goldemberg’s Corner,” indicating an unsustainable 

lifestyle within the region.  As inter-regional interactions are expected to become 
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more frequent under the development of western China, they might serve as potential 

leverages for a more sustainable consumption pathway in Tibet. 

Fifth, this study complements the current production-based knowledge in one of 

China’s most developed city clusters by exploring the drivers of emission growth and 

pattern changes from the consumption side.  Guangdong is one of key economic 

drivers in China and a microcosm of the fast developing regions that confront the 

double challenges of sustainable economic development and pollution mitigation.  

While previous studies have dwelled on the production-based emission 

characterization for control strategy formulation, the drivers of emission growth and 

pattern changes from the consumption side are rarely explored.  This work presents 

the first study on the air pollution causes in this region from the perspective of 

socioeconomic demands.  The drivers and demands behind 7 pollutants were 

examined and how they evolved during the half decade studied.  It was found that 

Guangdong was moving towards a cleaner production and consumption pathway, and 

transformation of industrial structure and simulating urban demand should benefit 

further emission reduction while maintain economic development.   

Sixth, this study provide timely information on the causes and effects of rising 

ground-level O3 problem in China, which is significant in both academia and real-

world application.  While an integrated assessment has been carried out for some 

GHG and air pollutants such as PM2.5 and BC, studies on O3 are very limited.  For the 

first time, the socioeconomic driving forces of O3 in China are revealed.  Analysis in 

this study has shown that the interactions between socioeconomic demands and local 

O3 pollution are complicated and different to those of PM2.5 and BC.  Take the 

demand from export as an example, its contributions to the observed O3 level vary 

with geographic locations and seasons.  In addition to the peak O3 level, export-driven 

emissions have also altered the emission ratios of O3 precursors, and thus the 

chemistry regime and the O3 response to emission control strategies.  It serves as the 

first piece of evidence on how the relocation of emissions via international trade has 

shaped the air pollution formation mechanism.  Results in this study have real-world 

significances in a more coordinated control of multi-pollutants.  On the one hand, it is 

arguable that a more balanced control strategy on both NOx and NMVOCs is need for 

an overall improvement of air quality in China.  On the other hand, this study stresses 

the potentials of air pollution mitigations in developing countries by closing the 
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emission intensities.  Thanks to the comprehensive technical and cost parameters 

embodied in the IIASA-GAINS model, this study compared the NMVOCs emission 

levels per unit of goods produced in China with those in the EU28.  For most 

industrial sectors, the emission intensities in China around 2013 were comparable to 

the upper bound of the EU28 around 2000.  By closing the gap of emission intensities 

between China and EU28, the reduced NMVOCs emissions (~4.5 million tons for the 

whole production capacity) would lead to a nation-wide decrease of peak O3 in both 

July and October.  It is suggested that export demand could be an entry point to tackle 

the O3 precursors’ emissions from non-combustion industrial sources. 

8.3. Limitations and future research 

Despite the efforts to fill in the existing research gaps, this study is subject to some 

limitations and inherent uncertainties in terms of data and methodologies.  Such 

shortcoming are critically reviewed in this section and suggests for further research 

are provided. 

First, while a great emphasis has been put on environmental modelling and health 

exposure assessment, analysis from socioeconomics could be enhanced.  The author 

recognizes that the socioeconomic analysis tools incorporated in the research 

framework are limited.  The MRIO and decomposition analysis reflect the activities 

and demands from economic sectors or in macroeconomic level, which provide 

decent descriptions on the regional and national socioeconomic systems.  However, 

attentions to the socioeconomic analysis at finer resolutions are rising recently.  To 

enable fundamental transition in consumption patterns, it is argued that analysis 

should be carried out in granularity level such as individuals.  Agent-based models, 

for example, add decision capabilities to the agents, have more flexibility and could 

explore more example scenarios in micro levels.  In addition, when discussing the 

demand of final consumers, this study does not incorporate expertise in behaviour 

studies.  Though the key demanders are identified in this study, it is still not clear how 

their behaviours have resulted in such demands and what are the hurdles to guide a 

more responsible consumption.  The author suggests that the current integrated 

assessment framework could be improved substantially if analysis tools in granularity 

level are incorporated.  
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Second, integrated assessment is inevitably subject to the uncertainties from all the 

data and models being used.  In this study, the major sources of uncertainties include 

energy statistics, emission factors, activity levels, the input-output table and air 

quality modelling.  Uncertainties in aspects of energy statistics, emission inventory 

and the air quality model have been discussed and evaluated in this study.  However, 

this study cannot evaluate the uncertainty of MRIO and GTAP data.  Moreover, the 

propagation of uncertainties from different sources in the integrated assessment is not 

studied.  To increase the reliability and robustness, it is urged that quantitative 

evaluation of uncertainty for the whole work flow of integrated assessment should be 

carried out in future studies. 

Third, the author would like to acknowledge the mismatch of years and study areas in 

some of the energy consumption and air pollution analysis in this study.  While 

Chapter 4 has investigated the socioeconomic drivers of energy consumption from 

2003 to 2016, the integrated assessment on the GHG and air pollution in the following 

chapters is for one or two years.  This is because of the data availability of input-

output tables and emission inventories.  As a result, this study does not provide a 

comprehensive analysis on the driving factors and effects of GHG and air pollution in 

a longer time span.  It would be potentially interesting if provincial drivers for GHG 

and air pollution could be also investigated and compared to the driving mechanisms 

of just energy consumption.  Synergies or trade-offs between energy, climate and 

pollution can be revealed and serve as important evidences to guide the future 

development of environmental policies. 

Fourth, Chapter 7 mainly addresses the demand of export and industrial emissions.  

Nevertheless, other domestic demands also make up significant contributions to the 

O3 precursors emissions, especially for the inland provinces.  For an overall and 

nation-wide improvement of air quality, emissions driven by the other demands 

should be analysed to understand the emission reduction potential through emission 

control or consumer guidance.  The author suggests that, after industrial emissions are 

under control and curbed, which is indeed undergoing in China, relative contributions 

from urban and rural household could be even higher.  Following the framework in 

this study, contributions of domestic demands and their evolution in the future can be 

evaluated.  Policies from the consumption side could be of vital importance.  This also 
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echoes the above-mentioned incorporation of agent-based models and behaviour 

studies in the integrated assessment. 
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Appendix 1: Tables 

Appendix Table A1 Decomposition results by provinces 

Province Period 

Primary Energy Consumption Changed by Drivers (10
4
 tce) 

Population 
Growth 

Economic 
Growth 

Industrial 
Structure 

Energy 
Intensity 

Share of 
Coal 

Share of 
Petroleum 

Share of Natural 
Gas 

Share of Non-fossil 
Fuels 

Chongqing 2011-2016 454 3114 450 -4315 -295 -11 239 54 

Chongqing 2007-2011 -26 3053 1029 -1200 337 -21 -74 -229 

Chongqing 2003-2007 -243 1782 497 -373 -267 -4 -8 298 

Fujian 2011-2016 306 4263 -361 -4482 -897 567 223 100 

Fujian 2007-2011 230 3380 510 -754 -405 199 371 -113 

Fujian 2003-2007 145 2096 185 500 105 -143 6 45 

Hebei 2011-2016 670 9154 -2978 -8742 -399 -14 292 130 

Hebei 2007-2011 993 8422 1771 -4148 -84 -51 165 -25 

Hebei 2003-2007 395 6847 1866 -605 -140 -49 -9 248 

Henan 2011-2016 208 8928 -140 -9681 -590 152 303 133 

Henan 2007-2011 57 8161 2274 -6068 -309 -30 158 212 

Henan 2003-2007 -396 6629 436 1732 184 -231 30 28 

Hubei 2011-2016 222 6070 1276 -8783 -1628 1281 169 170 
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Hubei 2007-2011 129 6060 1353 -3022 817 -806 158 -116 

Hubei 2003-2007 21 3783 1269 -1262 -300 35 44 228 

Jilin 2011-2016 13 3509 -698 -4180 -152 -21 52 91 

Jilin 2007-2011 59 4328 316 -1995 249 -290 90 -40 

Jilin 2003-2007 60 3073 304 -2021 -412 276 20 80 

Shanghai 2011-2016 291 3342 -1273 -2455 -690 355 272 60 

Shanghai 2007-2011 1148 1983 23 -1360 -238 42 187 11 

Shanghai 2003-2007 1077 2229 190 -1429 -378 157 215 15 

Yunnan 2011-2016 186 3531 263 -4622 -571 -63 49 577 

Yunnan 2007-2011 196 3203 827 -2362 -287 85 -30 238 

Yunnan 2003-2007 157 1882 1829 -721 91 -46 -48 9 

Beijing 2011-2016 329 1292 -94 -1473 -1030 -135 1072 73 

Beijing 2007-2011 786 746 -161 -1261 -488 165 283 40 

Beijing 2003-2007 516 1250 138 -934 -172 128 92 -45 

Guangdong 2011-2016 759 8347 -721 -7729 -729 -89 702 129 

Guangdong 2007-2011 1671 6165 460 -2643 956 -1444 130 382 

Guangdong 2003-2007 1034 6032 1267 -2059 170 -373 412 -158 

Hunan 2011-2016 307 4665 -230 -4882 383 -126 86 -299 

Hunan 2007-2011 390 4671 1427 -3469 -330 -375 58 691 
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Hunan 2003-2007 -305 3216 863 860 232 -180 59 -74 

Liaoning 2011-2016 -5 5214 -3030 -2437 -464 375 63 27 

Liaoning 2007-2011 357 8336 2176 -4408 -1815 1724 189 -54 

Liaoning 2003-2007 252 5452 1363 -1399 -80 281 -151 -34 

Tianjin 2011-2016 954 2784 -318 -3236 -759 97 600 64 

Tianjin 2007-2011 1087 2256 421 -989 -717 725 50 -21 

Tianjin 2003-2007 346 1521 618 -1035 152 -203 14 51 

Zhejiang 2011-2016 232 6163 -858 -5125 -396 -215 437 176 

Zhejiang 2007-2011 822 4563 462 -2321 -1097 840 204 72 

Zhejiang 2003-2007 553 4199 688 200 210 -288 198 -53 
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(IF=4.900), 628, 697-706. 

In these jointly-authored publications, this PhD author led the identification of 

research gaps in existing literature.  The identified research gaps are reflected in 

Section 2.5 of this PhD work.  This PhD author contribute over 85% of the 

methodology, data and knowledge gaps identified. 
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J.M. Ou, J. Meng, H. Zheng, Z. Mi, Y. Shan, D. Guan*, 2019. Frequent 

Interactions of Tibet’s CO2 emissions with those of other regions in China. 

Earth’s Future (IF=4.594), 7, 491-502. 
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2018. Reconciling discrepancies in the source characterization of VOCs between 



Appendix 2: Jointly-authored publications 

162 

emission inventories and receptor modeling. Science of the Total Environment 

(IF=4.900), 628, 697-706. 

In these jointly-authored publications, this PhD author led the overall research, 

designed the methodology and conducted quality assurance and quality control of 

the data.  The methods and data sources used in these publications were based 

upon the methodological framework of this PhD work.  This PhD author 

contribute over 75% of the designed methodologies and data control of the above 

mentioned publications. 

 

Chapter 4, China’s provincial energy consumption and its socioeconomic drivers 

J.M. Ou, J. Meng, Y. Shan, H. Zheng, Z. Mi, D. Guan*, 2019. Initial Declines in 

China’s Provincial Energy Consumption and Their Drivers. Joule, 3, 5, 1163-

1168. 

In this jointly-authored publication, this PhD author led the data analysis and 

result discussion.  J. Meng provided expertise on the applications of 

decomposition techniques.  Y. Shan and H. Zheng helped to collected the raw 

data of energy statistics.  Z. Mi and D. Guan contributed on insights, result 

discussion and response to reviewers’ comments.  This PhD author contributed 

over 80% of the data analysis and result discussion. 

 

Chapter 5, Air pollutant emissions in a fast-developing region and its 

socioeconomic drivers 

J.M. Ou, J. Meng, J.Y. Zheng*, Z.F. Mi, Y.H. Bian, X. Yu, J.R., Liu, D.B., 

Guan*, 2017. Demand-driven air pollutant emissions for a fast-developing region 

in China. Applied Energy (IF=7.900), 204: 131-124. 

In this jointly-authored publication, this PhD author contributed over 80% of the 

data analysis and result discussion.  J. Meng provided expertise on the 

applications of environmentally-extended input-output analysis.  J.Y. Zheng, 

Y.H. Bian helped to compile the production-based emission inventories.  Z.F. Mi, 

X. Yu, J.R, Liu and D.B. Guan contributed on insights, discussion and response 

to reviewers’ comments. 
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Chapter 6, Emissions from Tibet and its interactions with local and exogenous 

demands 

J.M. Ou, J. Meng, H. Zheng, Z. Mi, Y. Shan, D. Guan*, 2019. Frequent 

Interactions of Tibet’s CO2 emissions with those of other regions in China. 

Earth’s Future (IF=4.594), 7, 491-502. 

In this jointly-authored publication, this PhD author contributed over 80% of the 

data analysis and result discussion.  J. Meng, H. Zheng, Z. Mi and D. Guan 

provided support on the development of multi-regional table, and its application.  

Y. Shan compiled the production-based CO2 emission inventories.  All authors 

contributed on result discussion and revision. 

 

Chapter 7, Integrated assessment on ground-level ozone pollution in China and 

its mitigation  

J.M. Ou, Z. J. Huang, Z. Klimont*, G. Jia, S. Zhang, C. Li, J. Meng, Z. Mi, H. 

Zheng, Y. Shan, J. Zheng*, D. Guan*., 2019. Role of export industries on China’s 

ground-level ozone pollution. Under review by Science Advance.  

In this jointly-authored publication, this PhD author contributed over 80% of the 

data analysis and result discussion.  This PhD author, Z. Klimont, J. Zheng, S. 

Zhang and D. Guan designed the studies.  Z.J. Huang, G. Jia, and C. Li provided 

technical support on air quality modelling.  Z. Klimont provided data from 

GAINS database.  J. Meng, Z. Mi, Y. Shan and H. Zheng provided support on 

input-output analysis. 
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