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Factor copula models for mixed data

Sayed H. Kadhem and Aristidis K. Nikoloulopoulos
School of Computing Sciences, University of East Anglia, Norwich, UK

We develop factor copula models to analyse the dependence among mixed continuous
and discrete responses. Factor copulamodels are canonical vine copulas that involve both
observed and latent variables, hence they allow tail, asymmetric and nonlinear
dependence. They can be explained as conditional independence models with latent
variables that do not necessarily have an additive latent structure.We focus on important
issues of interest to the social data analyst, such as model selection and goodness of fit.
Our general methodology is demonstrated with an extensive simulation study and
illustrated by reanalysing three mixed response data sets. Our studies suggest that there
can be a substantial improvement over the standard factormodel formixed data andmake
the argument for moving to factor copula models.

1. Introduction

It is very common in social science (e.g., in surveys) to deal with data sets that havemixed
continuous and discrete responses. In the literature, two broad frameworks have been
considered to model the dependence among such mixed continuous and discrete
responses, namely the latent variable and copula framework.

There are two approaches for modelling multivariate mixed data with latent variables:
the underlying variable approach that treats all variables as continuous by assuming the
discrete responses are a manifestation of underlying continuous variables that usually
follow the normal distribution (e.g., Lee, Poon, & Bentler, 1992; Muthén, 1984; Quinn,
2004); and the response function approach that postulates distributions on the observed
variables conditional on the latent variables usually being from the exponential family
(e.g., Huber, Ronchetti, & Victoria-Feser, 2004; Moustaki, 1996; Moustaki & Knott, 2000;
Moustaki & Victoria-Feser, 2006; Wedel & Kamakura, 2001). The former method almost
invariably assumes that the underlying variables (linked to the observed variables via a
threshold process to yield ordinal data and an identity process to yield continuous data)
follow a multivariate normal (MVN) distribution, while the latter assumes that the
observed variables are conditionally independent usually given MVN distributed latent
variables. They are equivalent when in the underlying and the response function
approach the MVN distribution has a factor and an independence correlation structure,
respectively (Takane & de Leeuw, 1987).
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The underlying variable approach calls the MVN distribution as a latent model for the
discrete responses, and therefore maximum likelihood (ML) estimation requires
multidimensional integrations (Nikoloulopoulos, 2013, 2016); their dimension is equal
to the number of observed discrete variables. This is why alternative estimation methods
such as the three-stage weighted least squares and composite likelihood have been
proposed (see, for example, Katsikatsou, Moustaki, Yang-Wallentin, & Jöreskog, 2012).
The response function approach, with the dependence coming from p latent (unobserv-
able) variables/factors, where p≪d (the number of observed variables), requires p- rather
than d-dimensional integration. Hence, ML estimation is feasible, especially when the
number of latent variables is small.

Nevertheless, both approaches are restricted to theMVN assumption for the observed
or latent variables, which is not valid in the realistic scenario of tail asymmetry or tail
dependence existing in the mixed data. Ma and Genton (2010), Montanari and Viroli
(2010), and Irincheeva, Cantoni, and Genton (2012a) stress that the MVN assumption
might not be adequate, and acknowledge that the effect of misspecifying the distribution
of the latent variables could lead to biased model estimates and poor fit. To this end,
Irincheeva, Cantoni, and Genton (2012b) proposed a more flexible response function
approach by strategically multiplying the MVN density of the latent variables by a
polynomial function to achieve departures from normality.

As we have discussed, the underlying variable approach exploits the use of the MVN
assumption to model the joint distribution of mixed data. The univariate margins are
transformed to normality and then the MVN distribution is fitted to the transformed data.
This construction is apparently the MVN copula applied to mixed data (He, Li,
Edmondson, Rader, & Li, 2012; Hoff, 2007; Jiryaie, Withanage, Wu, & de Leon, 2016;
Shen &Weissfeld, 2006; Song, Li, & Yuan, 2009), but previous papers (e.g., Quinn, 2004)
do not refer to copulas as the approach can be explained without copulas.

Smith and Khaled (2012), Stöber, Hong, Czado, and Ghosh (2015), and Zilko and
Kurowicka (2016) employed vine copulas to model mixed data. Vine copulas have two
major advantages over the MVN copula, as emphasized in Panagiotelis, Czado, Joe, and
Stöber (2017). The first is that the computational complexity of computing the joint
probability distribution function grows quadraticallywith d, whereas for theMVN copula
the computational complexity grows exponentially with d. The second is that vine
copulas are highly flexible through their specification from bivariate parametric copulas
with different tail dependence or asymmetry properties. They have as special case the
MVN copula, if all the bivariate parametric copulas are bivariate normal (BVN).

In this paper we extend the factor copula models in Krupskii and Joe (2013) and
Nikoloulopoulos and Joe (2015) to the case of mixed continuous and discrete responses.
Factor copulas are vine copula models that involve both observed and latent variables.
Hence, they are highly flexible through their specification from bivariate parametric
copulas with different tail dependence or asymmetry properties. The underlying variable
approach where the MVN distribution has a p-factor correlation structure or its
equivalent, the response function approach where the MVN distribution has an
independence correlation structure, is a special case of factor copula models when all
the bivariate parametric copulas are BVN (hereafter referred to as the standard factor
model). Factor copula models are more interpretable and fit better than vine copula
models, when dependence can be explained through latent variables. Furthermore, they
are closed under margins, that is, lower-order marginals belong to the same parametric
family of copulas and a different permutation of the observed variables has exactly the
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same distribution. This is not the case for vine copulas without latent variables, where a
different permutation of the observed variables could lead to a different distribution.

We tackle issues of particular interest to the social data analyst such asmodel selection
and goodness of fit. Model selection in previous papers on factor copula models (Krupskii
& Joe, 2013; Nikoloulopoulos & Joe, 2015) was mainly based on simple diagnostics. In
addition to simple diagnostics based on semi-correlations, we propose a heuristic method
that automatically selects the bivariate parametric copula families.With regard to the issue
of goodness-of-fit testing,wepropose a technique based on theM2 goodness-of-fit statistic
(Maydeu-Olivares & Joe, 2006) in multidimensional contingency tables to overcome the
shortage of goodness-of-fit statistics formixed continuous anddiscrete response data (e.g.,
Moustaki & Knott, 2000).

The remainder of the paper proceeds as follows. Section 2 introduces the factor copula
models for mixed data and provides choices of parametric bivariate copulas with latent
variables. Section 3 provides estimation techniques and computational details. Sections 4
and 5 propose methods for model selection and goodness of fit, respectively. Section 6
presents applications of our methodology to three mixed response data sets. Section 7
contains an extensive simulation study to gauge the small-sample efficiency of the
proposed estimation, investigate the misspecification of the bivariate copulas, and
examine the reliability of themodel selection and goodness-of-fit techniques.We conclude
with some discussion in Section 8, followed by a brief section with software details.

2. The factor copula model for mixed responses

Although the factor copula models can be explained as truncated canonical vines rooted
at the latent variables, we derive the models as conditional independence models, i.e., a
response function approach with dependence coming from latent (unobservable)
variables/factors. The p-factor model assumes that the mixed continuous and discrete
responses Y¼ðY 1, :::,YdÞ are conditionally independent given p latent variables
X1, :::,Xp. In line with Krupskii and Joe (2013) and Nikoloulopoulos and Joe (2015), we
use a general copula construction, based on a set of bivariate copulas that link observed to
latent variables, to specify the factor copula models for mixed continuous and discrete
variables. The idea in the derivation of this p-factormodelwill be shownbelow for the one-
factor and two-factor cases. It can be extended to p≥ 3 factors or latent variables in a
similar manner. The evaluation of a p-dimensional integral can be successfully performed
as we strategically assume that the factors or latent variables are independent.

For the one-factor model, let X1 be a latent variable, which we assume to be standard
uniform (without loss of generality). From Sklar (1959), there is a bivariate copula CX1j

such that PrðX1 ≤ x,Y j ≤ yÞ¼CX1jðx,F jðyÞÞ for 0 ≤ x ≤ 1 where F j is the cumulative
distribution function of Y j. Then it follows that

F jjX1
ðyjxÞ :¼ PrðY j ≤ yjX1 ¼ xÞ¼

∂CX1jðx,F jðyÞÞ
∂x

: (1)

Letting C jjX1
ðF jðyÞjxÞ¼ ∂CX1jðx,F jðyÞÞ=∂x for short and y¼ðy1, :::,ydÞ be realizations

of Y, the density1 of the observed data in the one-factor model case is

1We mean the density of Y with respect to the product measure on the respective supports of the marginal
variables. For discrete margins with integer values this is the counting measure on the set of possible outcomes;
for continuous margins we consider the Lebesgue measure in .
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f Y yð Þ¼
Z 1

0

Yd

j¼1

f jjX1
yjjx

! "
dx, (2)

where

f jjX1
ðyjxÞ¼

C jjX1
ðF jðyÞjxÞ$C jjX1

ðF jðy$1ÞjxÞ ifY j isdiscrete,

cX1jðx,F jðyÞÞf jðyÞ ifY j iscontinuous,

(

is the density ofY j ¼ y conditional onX1 ¼ x; cX1j is the bivariate copula density ofX1 and
Y j, and f j is the univariate density of Y j.

For the two-factor model, consider two latent variables X1,X2 that are, without loss of
generality, independent uniform Uð0,1Þ random variables. Let CX1j be defined as in the
one-factor model, and let CX2j be a bivariate copula such that

PrðX2 ≤ x2,Y j ≤ yjX1 ¼ x1Þ¼CX2jðx2,F jjX1
ðyjx1ÞÞ,

where F jjX1
is given by equation (1). Then, for 0≤ x1,x2 ≤ 1,

PrðY j ≤ yjX1 ¼ x1,X2 ¼ x2Þ ¼ ∂

∂x2
PrðX2 ≤ x2,Y j ≤ yjX1 ¼ x1Þ

¼ ∂

∂x2
CX2jðx2,F jjX1

ðyjx1ÞÞ¼C jjX2
ðF jjX1

ðyjx1Þjx2Þ:

The density of the observed data in the two-factor model case is

f YðyÞ¼
Z 1

0

Z 1

0

Yd

j¼1

f X2jjX1
ðx2,yjjx1Þdx1dx2, (3)

where

f X2 jjX1
x2,yjx1ð Þ¼

C jjX2
F jjX1

yjx1ð Þjx2
# $

$C jjX2
F jjX1

y$1jx1ð Þjx2
# $

ifY j isdiscrete,

c jX2;X1
F jjX1

yjx1ð Þ,x2
# $

cX1j x1,F j yð Þ
# $

f j yð Þ ifY j is continuous:

(

Note that the copula CX1j links the jth response to the first latent variable X1, and the
copula CX2j links the jth response to the second latent variable X2 conditional on X1. In
our general statistical model there are no constraints in the choices of the parametric
marginal F j or copula fCX1j,CX2jg distributions.

2.1. Choices of bivariate copulas with latent variables
We provide choices of parametric bivariate copulas that can be used to link the latent to
the observed variables. We will consider copula families that have different tail
dependence (Joe, 1993) or tail order (Hua & Joe, 2011).

A bivariate copula C is reflection symmetric if its density satisfies
cðu1,u2Þ¼ cð1$u1,1$u2Þ for all 0 ≤ u1,u2 ≤ 1. Otherwise, it is reflection asymmetric
often with more probability in the joint upper tail or joint lower tail. Upper tail
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dependence means that cð1$u,1$uÞ¼Oðu$1Þ as u! 0 and lower tail dependence
means that cðu,uÞ¼Oðu$1Þ as u! 0. If U1,U2ð Þ∼C for a bivariate copula C, then
1$U1,1$U2ð Þ∼ Ĉ, where Ĉðu1,u2Þ¼u1þu2$1þCð1$u1,1$u2Þ is the survival or
reflected copula of C; this ‘reflection’ of each uniformUð0,1Þ random variable about 1=2
changes the direction of tail asymmetry. Under some regularity conditions (e.g., existing
finite density in the interior of the unit square, ultimately monotone in the tail), if there
exist κLðCÞ>0 and some LðuÞ that is slowly varying at 0þ (i.e., L utð Þ

L uð Þ ∼ 1, as u! 0þ for all
t>0), then κLðCÞ is the lower tail order ofC. Theupper tail order κU ðCÞ can be defined by
the reflection of ðU1,U2Þ, that is, !Cð1$u,1$uÞ∼uκU ðCÞL∗ðuÞ as u! 0þ, where C is the
survival function of the copula and L∗ðuÞ is a slowly varying function. With κ¼ κL or κU , a
bivariate copula has intermediate tail dependence if κ∈ð1,2Þ, tail dependence if κ¼ 1,
and tail quadrant independence if κ¼ 2, with LðuÞ being asymptomatically a constant.

Having provided brief definitions of tail dependence and tail order,weprovide below a
list of bivariate parametric copulas with varying tail behaviour:
& reflection symmetric copulas with intermediate tail dependence such as the BVN

copula with κL ¼ κU ¼ 2=ð1þθÞ, where θ is the copula (correlation) parameter;
& reflection symmetric copulas with tail quadrant independence (κL ¼ κU ¼ 2), such as

the Frank copula;
& reflection asymmetric copulas with upper tail dependence only, such as

& the Gumbel copula with κL ¼ 21=θ and κU ¼ 1, where θ is the copula parameter,
& the Joe copula with κL ¼ 2 and κU ¼ 1;

& reflection symmetric copulas with tail dependence, such as the tν copula with ν the
degrees of freedom and κL ¼ κU ¼ 1;

& reflection asymmetric copulas with upper and lower tail dependence that can range
independently from 0 to 1, such as the BB1 and BB7 copulas with κL ¼ 1 and κU ¼ 1;

& reflection asymmetric copulas with tail quadrant independence, such as the BB8 and
BB10 copulas.

The BVN, Frank, and tν are comprehensive copulas, that is, they interpolate between
countermonotonicity (perfect negative dependence) and comonotonicity (perfect
positive dependence). The other aforementioned parametric families of copulas
(Gumbel, Joe, BB1, BB7, BB8 and BB10) interpolate between independence and perfect
positive dependence. Nevertheless, negative dependence can be obtained from these
copulas by considering reflection of one of the uniform random variables on ð0,1Þ. If
U1,U2ð Þ∼C for a bivariate copula C with positive dependence, then
& 1$U1,U2ð Þ∼ Ĉ

ð1Þ
, where Ĉ

ð1Þðu1,u2Þ¼u2$Cð1$u1,u2Þ is the 1-reflected copula of
C with negative lower-upper tail dependence;

& U1,1$U2ð Þ∼ Ĉ
ð2Þ
, where Ĉ

ð2Þðu1,u2Þ¼u1$Cðu1,1$u2Þ is the 2-reflected copula of
C with negative upper-lower dependence.

Negative upper-lower tail dependencemeans that cð1$u,uÞ¼Oðu$1Þ as u! 0þ and
negative lower-upper tail dependence means that cðu,1$uÞ¼Oðu$1Þ as u! 0þ (Joe,
2011).

In Figure 1, to depict the concepts of refection symmetric and asymmetric tail
dependence and quadrant tail independence, we show contour plots of the correspond-
ing copula densities with standard normal margins and dependence parameters
corresponding to a Kendall’s τ value of .5. Sharper corners (relative to ellipse) indicate
tail dependence.
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2.2. Semi-correlations to detect tail dependence or tail asymmetry
Choices of copulas with upper or lower tail dependence are better if the observed
variables havemore joint upper or lower tail probability thanwould be expectedwith the
standard factor model. This can be shown with summaries of correlations in the upper
joint tail and lower joint tail.

For continuous variables, although copula theory uses transforms to standard uniform
marginsU j ¼ F jðY jÞ, we convert to normal scoresZ j ¼Φ$1ðU jÞ to check deviations from
the elliptical shape thatwould be expectedwith the BVNcopula (Nikoloulopoulos, Joe, &
Li, 2012). The correlations of normal scores in the upper and lower tail (hereafter semi-
correlations) are defined as (Joe, 2014, p. 71):

Figure 1. Contour plots of bivariate copulas with standard normal margins and dependence

parameters corresponding to a Kendall’s τvalue of .5 in absolute value.
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ρþN ¼CorðZ j1 ,Z j2 jZ j1 >0,Z j2 >0Þ

¼
R∞
0

R∞
0 z1z2ϕðz1Þϕðz2Þc Φðz1Þ,Φðz2Þð Þdz1dz2$

R∞
0 zϕðzÞð1$C2j1ð0:5jΦðzÞÞÞdz

# $2
=Cð0:5,0:5Þ

R∞
0 z2ϕðzÞð1$C2j1ð0:5jΦðzÞÞÞdz$

R∞
0 zϕðzÞð1$C2j1ð0:5jΦðzÞÞÞdz

# $2
=Cð0:5,0:5Þ

,

ρ$N ¼CorðZ j1 ,Z j2 jZ j1 <0,Z j2 <0Þ

¼

R 0
$∞
R 0
$∞z1z2ϕðz1Þϕðz2Þc Φðz1Þ,Φðz2Þð Þdz1dz2$

R 0
$∞zϕðzÞC2j1ð0:5jΦðzÞÞdz

! "2
=Cð0:5,0:5Þ

R 0
$∞z

2ϕðzÞC2j1ð0:5jΦðzÞÞdz$
R 0
$∞zϕðzÞC2j1ð0:5jΦðzÞÞdz

! "2
=Cð0:5,0:5Þ

,

where Φ(') and ϕ(') is the univariate normal cdf and density, respectively.
Note in passing that for the BVN copula ρþN ¼ ρ$N and that it has a closed form (see Joe,

2014, p. 71).
From the above expressions, it is apparent that the normal scores semi-correlations

depend only on the copula C of ðU j1 ,U j2Þ. Table 1 has semi-correlations for all the
aforementioned bivariate parametric copulas with τ¼ f:3, :5, :7g. From the table we can
see that ρþN ¼ ρ$N for any reflection symmetric copula, while they are different for any
reflection asymmetric one. If there is stronger upper (lower) tail dependence than with
the BVN, then the upper (lower) semi-correlation is larger.

The population versions ρþN ,ρ$N also applywhen the variablesY j are ordinal. Under the
univariate probit model (Agresti, 2010, Section 3.3.2) Z j are standard normal underlying
latent variables, such that

Y j ¼ yj if αyj$1,j ≤ Z j ≤ αyjj,yj ¼ 1, :::,K j, (4)

where K j is the number of categories of Y j and α1j, :::,αK j$1,j are the univariate cutpoints
(we assume α0j ¼$∞ and αK jj ¼∞). Note in passing that for binary variables (K j ¼ 2) the
calculation of the semi-correlations is meaningless as the binary variables have no tail
asymmetries.

The sample versions of ρþN ,ρ$N are sample linear (when both variables are continuous),
polychoric (when both variables are ordinal), and polyserial (when one variable is
continuous and the other is ordinal) correlations in the joint lower and upper quadrants of
the two variables. The sample polychoric and polyserial correlation is defined as

ρ̂N ¼ argmax
ρ

∑
n

i¼1
log Φ2ðαyi1 ,αyi2 ;ρÞ$Φ2ðαyi1$1,αyi2 ;ρÞ$Φ2ðαyi1 ,αyi2$1;ρÞþΦ2ðαyi1$1,αyi2$1;ρÞ

# $

where Φ2(',';ρ) is the bivariate normal cdf with correlation ρ and

ρ̂N ¼ argmax
ρ

∑
n

i¼1
log ϕðzi1Þ Φ

αyi2 $ρzi1
ð1$ρ2Þ1=2

 !

$Φ
αyi2$1$ρzi1
ð1$ρ2Þ1=2

 ! !( )

with zij ¼Φ ðnþ1Þ$1∑n
i¼11ðY ij ≤ yijÞ

! "
, respectively.

3. Estimation

We use a two-stage copula modelling approach to the estimation of a multivariate model
that borrows the strengths of the semi-parametric and inference function for margins
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(IFM) approach in Genest, Ghoudi, and Rivest (1995) and Joe (2005), respectively.
Suppose that the data are yij, j¼ 1, :::,d, i¼ 1, :::,n, where i is an index for individuals or
clusters and j is an index for thewithin-clustermeasurements. For i¼ 1, :::,n,we start from
a d-variate sample yi1, :::,yid from which d estimators F1ðyi1Þ, :::,FdðyidÞ can be obtained.
We use these to transform the yi1, :::,yid sample into a uniform sample
ui1 ¼ F1ðyi1Þ, :::,uid ¼ FdðyidÞ on [0, 1]d and then fit the factor copula model at the
second step. For continuous and discrete data yij, we use nonparametric and parametric
univariate distributions, respectively, to transform the data yij into copula data
uij ¼ F jðyijÞ, that is, data on the uniform scale. Hence our proposed approach, in line
with the approaches in Genest et al. (1995) and Joe (2005), can be regarded as a two-step
approach on the original data or simply as the standard one-step ML method on the
transformed (copula) data.

3.1. Univariate modelling
For continuous random variables, we estimate each marginal distribution nonparamet-
rically by the empirical distribution function of Y j, namely,

Table 1. Lower semi-correlations ρ$N , upper semi-correlations ρþN , lower tail dependence λL, and
upper tail dependence λU , with τ¼ f:3, :5, :7g for one-parameter and two-parameter bivariate
copulas

Bivariate copula τ θ δ ρ$N ρþN λL λU

BVN 0.3 0.45 0.23 0.23 0.00 0.00
0.5 0.71 0.47 0.47 0.00 0.00
0.7 0.89 0.75 0.75 0.00 0.00

t3 0.3 0.45 0.45 0.45 0.29 0.29
0.5 0.71 0.61 0.61 0.45 0.45
0.7 0.89 0.80 0.80 0.66 0.66

Frank 0.3 2.92 0.15 0.15 0.00 0.00
0.5 5.74 0.32 0.32 0.00 0.00
0.7 11.41 0.60 0.60 0.00 0.00

Joe 0.3 1.77 0.05 0.58 0.00 0.52
0.5 2.86 0.14 0.78 0.00 0.73
0.7 5.46 0.37 0.92 0.00 0.86

Gumbel 0.3 1.43 0.16 0.46 0.00 0.38
0.5 2.00 0.36 0.67 0.00 0.59
0.7 3.33 0.64 0.85 0.00 0.77

BB1 0.3 0.50 1.14 0.43 0.25 0.30 0.17
0.5 0.35 1.71 0.52 0.59 0.31 0.50
0.7 1.33 2.00 0.85 0.72 0.77 0.59

BB7 0.3 1.40 0.40 0.28 0.37 0.18 0.36
0.5 1.50 1.57 0.66 0.42 0.64 0.41
0.7 4.00 2.00 0.73 0.85 0.71 0.81

BB8 0.3 3.92 0.60 0.10 0.22 0.00 0.00
0.5 4.51 0.80 0.20 0.52 0.00 0.00
0.7 6.89 0.90 0.41 0.84 0.00 0.00

BB10 0.3 1.60 0.83 0.18 0.09 0.00 0.00
0.5 2.50 0.98 0.43 0.19 0.00 0.00
0.7 10.00 1.00 0.25 0.66 0.00 0.00
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F jðyijÞ¼
1

nþ1
∑
n

i¼1
1ðY ij ≤ yijÞ¼

Rij

nþ1
,

where Rij denotes the rank of Y ij as in the semi-parametric estimation of Genest et al.
(1995) and Shih and Louis (1995). Hence we allow the distribution of the continuous
margins to be quite free and not restricted by parametric families.

Nevertheless, rank-based methods cannot be used for discrete variables with copulas
(Genest & Nešlehová, 2007). Hence, for both ordinal and count variables we have chosen
realistic parametric models:
& For an ordinal response variable Y j, we use the univariate probit model in Equation (4).

The ordinal response Y j is assumed to have density

f jðyj;γ jÞ¼ΦðαyjjÞ$Φðαyj$1,jÞ,
where γ j ¼ðα1j, :::,αK j$1,jÞ is the vector of the univariate cutpoints.
& For a count response variable Y j, we use the negative binomial distribution (Lawless,

1987). This allows for over-dispersion and its probability mass function is

f jðyj;γ jÞ¼
Γðξ$1

j þyjÞ
Γðξ$1

j Þyj!

μyj ξ
y
j

ð1þ ξ$1
j Þξ

$1
j þyj

, yj ¼ 0,1,2, :::, μ j>0, ξ j>0,

where γ j ¼ fμ j,ξ jg is the vector with the mean and dispersion parameters. In the limit
ξ! 0 the negative binomial reduces to Poisson, which belongs to the exponential family
of distributions and is the only distribution for count data that existing latent variable
models for mixed data can accommodate.

To this end, for a discrete random variable Y j, we approach estimation bymaximizing
the univariate log-likelihoods

l jðγ jÞ¼ ∑
n

i¼1
log f jðyij;γ jÞ

over the vector of the univariate parameters γ j. This is equivalent to the first step of the
IFM method in Joe (1997, 2005).

In linewith the IFMmethod, if oneuses amisspecified univariatemodel for the discrete
responses at the first step, then the estimationof the copula parameters at the second step,
deteriorates as demonstrated inKim, Silvapulle, and Silvapulle (2007). Nevertheless, there
is no ‘correct specification’ of themargins or copula for data analysis. If one does a proper
analysis of the univariatemargins for goodness of fit, then the proposed two-stage (or IFM)
method should be fine. Kim et al. (2007) have ‘true univariate distributions for
simulations’ and ‘specified univariate distributions for estimation’ that were very far apart
and unrealistic, because the difference of the two is easily detected without too much
data.

3.2. Copula modelling
Having estimated the univariate marginal distributions, we proceed to estimation of the
dependence parameters. For the one-factor and two-factormodels,we letCX1j andCX2j be
parametric bivariate copulas, say with dependence parameters θ j and δ j, respectively. Let
θ¼ fγ j,θ j : j¼ 1, :::,dg and θ¼ fγ j,θ j,δ j : j¼ 1, :::,dg denote the set of all parameters for
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the one- and two-factor model, respectively. Estimation can be achieved by maximizing
the joint log-likelihood

‘YðθÞ¼ ∑
n

i¼1
log f Yðyi1, :::,yid;θÞ (5)

over the copula parameters θ j or δ j, j¼ 1, :::,d, with the univariate parameters/
distributions fixed as estimated at the first step of the proposed two-step estimation
approach. The estimated parameters can be obtained by using a quasi-Newton (Nash,
1990) method applied to the logarithm of the joint likelihood. This numerical method
requires only the objective function (the logarithm of the joint likelihood), while the
gradients are computed numerically and the Hessian matrix of the second-order
derivatives is updated at each iteration. The standard errors (SEs) of the estimates can
be obtained via the gradients and the Hessian computed numerically during the
maximization process. These SEs are adequate to assess the flatness of the log-likelihood.
Proper SEs that account for the estimation of univariate parameters can be obtained by
maximizing the joint likelihood in equation (5) in one step over θ.

For factor copula models numerical evaluation of the joint density f Yðy;θÞ can be
easily done using Gauss–Legendre quadrature (Stroud & Secrest, 1966). To compute one-
dimensional integrals for the one-factor model, we use the approximation

f YðyÞ¼
Z 1

0

Yd

j¼1

f jjX1
ðyjjxÞdx ≈ ∑

nq

q¼1
wq

Yd

j¼1

f jjX1
ðyjjxqÞ,

where fxq : q¼ 1, :::,nqg are the quadrature points and fwq : q¼ 1, :::,nqg are the
quadrature weights. To compute two-dimensional integrals for the two-factor model, the
approximation uses Gauss–Legendre quadrature points in a double sum:

f YðyÞ ¼
R1

0

R1

0

Qd

j¼1
f X2 jjX1

ðx2,yjjx1Þ dx1dx2

≈ ∑
nq

q1¼1
∑
nq

q2¼1
wq1wq2

Qd

j¼1
f X2 jjX1

ðxq2
,yjjxq1Þ:

With Gauss–Legendre quadrature, the same nodes and weights are used for different
functions; this helps in yielding smooth numerical derivatives for numerical optimization
via quasi-Newton (Nash, 1990). Our comparisons show that nq ¼ 25 is adequate with
good precision.

4. Model selection

In this section we propose a heuristic method that automatically selects the bivariate
parametric copula families that link the observed to the latent variables. This is very useful
when the direction of the tail asymmetry based on semi-correlations is not consistent or
clear. Formultivariatemixed data, it is not feasible to estimate all possible combinations of
bivariate parametric copula families and compare them on the basis of information
criteria. We develop an algorithm that can quickly select a factor copula model that
accurately captures the (tail) dependence features in the data at hand. The linking copulas
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for each factor are selected with a sequential algorithm under the initial assumption that
linking copulas are Frank, and then sequentially copulas with non-tail quadrant
independence are assigned to any pairs where necessary to account for tail asymmetry
(discrete data) or tail dependence (continuous data).

For the one-factor model, the proposed model selection algorithm is summarized in
the following steps:
1. For j¼ 1, :::,d, estimate the marginal distributions F jðyÞ.
2. Fit the one-factor copula model with Frank copulas to link each of the d observed

variables with the latent variable, that is, maximize the log-likelihood function of the
factor copula model in Equation (5) over the vector of copula parameters ðθ1, :::,θdÞ.

3. If the jth linking copula has θ̂ j>0, then select a set of copula candidates with the
ability to interpolate between independence and comonotonicity, otherwise select a
set of copula candidates with ability to interpolate between countermonotonicity
and independence.

4. For j¼ 1, :::,d:

a. fit all the possible one-factor copulamodels, iterating over all the copula candidates
for the jth variable;

b. select the copula family that corresponds to the lowest information criterion, say
the Akaike, that is, AIC¼$2(lþ2(#copula parameters;

c. fix the selected linking copula family for the jth variable.

For more than one factor we can select the appropriate linking copulas accordingly.
We first select copula families in the first factor, and then we proceed to the next factor
and apply exactly the same algorithm.

5. Techniques for parametric model comparison and goodness of fit

Factor copulamodelswith different bivariate linking copulas can be compared via the log-
likelihood or AIC at the maximum likelihood estimate. In addition, we will use Vuong’s
test (Vuong, 1989) to show if a factor copula model provides a better fit than the standard
factor model with a latent additive structure, that is a factor copula model with BVN
bivariate linking copulas (Krupskii & Joe, 2013; Nikoloulopoulos & Joe, 2015). Vuong’s
test is the sample version of the difference in Kullback–Leibler divergence between two
models and can be used to differentiate two parametric models which could be non-
nested. This test has been used extensively in the copula literature to compare vine copula
models (e.g., Brechmann, Czado, & Aas, 2012; Joe, 2014; Nikoloulopoulos, 2017). We
provide specific details in Section 5.1.

Furthermore, to assess the overall goodness of fit of the factor copulamodels formixed
data, we will make appropriate use of the limited information M2 statistic (Maydeu-
Olivares & Joe, 2006). The M2 statistic has been developed for goodness-of-fit testing in
multidimensional contingency tables. Nikoloulopoulos and Joe (2015) has used the M2

statistic to assess the goodness of fit of factor copula models for ordinal data. We build on
the aforementioned papers and propose a methodology to assess the overall goodness of
fit of factor copula models for mixed continuous and discrete responses. We provide the
specifics for the M2 statistic in Section 5.2.
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5.1. Vuong’s test for parametric model comparison
In this subsection we summarize Vuong’s test for comparing parametric models (Vuong,
1989). Assume that we have models 1 and 2 with parametric densities f

ð1Þ
Y and f

ð2Þ
Y ,

respectively. We can compare

Δ1 f Y ¼n$1 ∑
n

i¼1
E f Y log f YðyiÞ$E f Y log f

ð1Þ
Y yi;θ1ð Þ

n o% &
,

Δ2 f Y ¼n$1 ∑
n

i¼1
E f Y log f YðyiÞ$E f Y log f

ð2Þ
Y ðyi;θ2Þ

n o% &
,

where θ1,θ2 are the parameters in models 1 and 2, respectively, that lead to the closest
Kullback–Leibler divergence to the true f Y; equivalently, they are the limits in probability
of the ML estimates based on models 1 and 2, respectively.

Model 1 is closer to the true f Y, i.e., it is the better-fitting model ifΔ¼Δ1f Y $Δ2 f Y <0,
andmodel 2 is the better-fittingmodel ifΔ>0. The sample version ofΔwithML estimates
θ̂1, θ̂2 is

D¼ ∑
n

i¼1
Di=n,

where Di ¼ log f
ð2Þ
Y ðyi;θ̂2Þ=f

ð1Þ
Y ðyi;θ̂1Þ

h i
. Vuong (1989) has shown that asymptotically

ffiffiffi
n

p
D=s∼Nð0,1Þ,

where s2 ¼ðn$1Þ$1∑n
i¼1ðDi$DÞ2. Hence, its 95% confidence interval (CI) is

D)1:96( 1ffiffiffi
n

p σ.

5.2. M2 goodness-of-fit statistic
Since theM2 statistic has been developed formultivariate ordinal data (Maydeu-Olivares &
Joe, 2006), we propose to first transform the continuous and count variables to ordinal
and then calculate the M2 statistic at the ML estimate before transformation.

Continuous variables can be transformed to ordinal with categories that are
meaningful both practically and scientifically. If this is not the case, we propose an
unsupervised strategy of transforming a continuous into an ordinal variable:
1. Set the number of ordinal categories K j.
2. Transform Y j into a standard uniform random variable U j using its empirical

distribution function.
3. Set the ordinal cutpoints on the uniform scale by generating a regular sequence from

1 to K j$1 and then dividing by K j.
4. Divide the range of U j into intervals with the ordinal cutpoints as breaks.
5. TransformU j into an ordinal variable Y j according to the interval in which its values

fall.

Count variables that contain very high or very low counts can be treated as ordinal
where the first or the last category contains all the low or high counts, respectively, and
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their other values remain as they are. We further propose an unsupervised strategy for
categorizing a count into an ordinal variable:
1. Set the number of ordinal categories K j.
2. Divide the range of Y j into intervals with a regular sequence of length K jþ1 from

minðY jÞ to maxðY jÞ as breaks.
3. TransformY j into an ordinal variable according to the interval inwhich its values fall.

After applying the transformations as above for each continuous or count variable, we
have d ordinal variables Y 1, :::,Yd (both the original and the transformed ones) where the
jth ð1≤ j ≤ dÞ variable consists of K j ≥ 2 categories labelled 0,1, :::,K j$1. Consider the
set of univariate and bivariate residuals that do not include category 0. This is a residual
vector of dimension

s¼ ∑
d

j¼1
ðK j$1Þþ ∑

1≤ j1< j2 ≤ d

ðK j1 $1ÞðK j2 $1Þ:

For a factor copula model with parameter vector θ of dimension q, let
π2ðθÞ¼ ð _π1ðθÞT , _π2ðθÞT Þ

T
be the column vector of the model-based marginal probabilities

with _π1ðθÞ the vector of univariatemarginal probabilities, and _π2ðθÞ the vector of bivariate
marginal probabilities. Also, let p2 ¼ð _pT

1 , _p
T
2 Þ

T
be the vector of the observed sample

proportions, with _p1 the vector of univariate marginal proportions, and _p2 the vector of
the bivariate marginal proportions.

With a sample size n, the limited information statistic M2 is given by

M2 ¼M2ðθ̂Þ¼nðp2$π2ðθ̂ÞÞ
T
C2ðθ̂Þðp2$π2ðθ̂ÞÞ, (6)

with

C2ðθÞ¼Ξ$1
2 $Ξ$1

2 Δ2ðΔT
2Ξ$1

2 Δ2Þ$1ΔT
2Ξ$1

2 ¼ΔðcÞ
2 ½ΔðcÞ

2 +TΞ2ΔðcÞ
2

! "$1
½ΔðcÞ

2 +T , (7)

where Δ2 ¼ ∂π2ðθÞ=∂θT is an s(q matrix with the derivatives of all the univariate

and bivariate marginal probabilities with respect to the model parameters, ΔðcÞ
2 is

an s(ðs$qÞ orthogonal complement to Δ2 such that ½ΔðcÞ
2 +

T
Δ2 ¼ 0, and

Ξ2 ¼ diag π2ðθÞð Þ$π2ðθÞπ2ðθÞT is the s × s covariance matrix of all the univariate and
bivariate marginal sample proportions, excluding category 0. Due to equality in (7), C2 is
invariant to the choice of orthogonal complement. The limited information statistic M2

has a null asymptotic distribution that is χ2 with s$q degrees of freedom when the

estimate θ̂ is
ffiffiffi
n

p
-consistent. For details on the computation of Ξ2 andΔ2 for factor copula

models we refer the interested reader to Nikoloulopoulos and Joe (2015).

6. Applications

In this section we illustrate the proposed methodology by reanalysing three mixed
response data sets.

Initially, we use the diagnostic method in Joe (2014, pp. 245–246) to show that each
data set (or, more precisely, the correlation matrix of the observed variables for each data
set) has a factor structure based on linear factor analysis. The correlation matrix Robserved
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has been obtained based on the sample correlations from the bivariate pairs of the
observed variables. These are the linear (when both variables are continuous), polychoric
(when both variables are discrete), and polyserial (when one variable is continuous and
the other is discrete) sample correlations among the observed variables. The resulting
Robserved is generally positive definite if the sample size is not small enough; if not, one has
to convert it to positive definite. We calculate various measures of discrepancy between
Robserved and Rmodel (the resulting correlation matrix of linear factor analysis), such as the
maximum absolute correlation difference D1 ¼maxjRmodel$Robservedj, the average
absolute correlation difference D2 ¼ avgjRmodel$Robservedj, and the correlation matrix
discrepancy measure D3 ¼ logðdetðRmodelÞÞ$ logðdetðRobservedÞÞþ trðR$1

modelRobservedÞ$d.
After confirming that a factor model with a parsimonious correlation structure is

reasonable,we calculate the semi-correlations for each pair of observed variables to check
if there is tail asymmetry. Thiswill be useful information for choosing potential parametric
bivariate copulas other than the BVN copulas that lead to the standard factor model. Note
that when the variables are negatively associated we calculate the sample semi-
correlations in the lower-upper and upper-lower quadrant.

Having discussed why more flexible dependencies are needed in cases of mixed data
and how those dependencies in the data can be captured by suitable bivariate copulas, we
proceed with factor copula models and construct a plausible factor copula model, to
capture any type of reflection asymmetric dependence, by using the proposed algorithm
in Section 4. For a baseline comparison, we first fit the factor copula models with the
comprehensive bivariate parametric copula families that allow for reflection symmetric
dependence; these are the BVN, Frank, and tν copulas. For tν copulas, we summarize the
choice of integer ν with the largest log-likelihood. For the standard two-factor model, to
obtain a unique solution we must impose sufficient constraints. One parameter for the
second factor can be set to zero and the likelihood can be maximized with respect to the
other 2d$1 parameters. We report the varimax transform (Kaiser, 1958) of the loadings
(a reparametrization of the 2d parameters), converted to factor copula parameters via the
relations

θ j ¼ β j1, δ j ¼
β j2

ð1$β2j1Þ
1=2

, (8)

where β j1 and β j2 are the loadings at the first and second factor, respectively (Krupskii &
Joe, 2013; Nikoloulopoulos & Joe, 2015).

If the number of parameters is not the same between the models, we use the AIC as a
rough diagnostic measure of goodness of fit between the models, otherwise we use the
likelihood at the ML estimates. We further compute Vuong’s tests with model 1 as the
factor copula model with BVN copulas (i.e., the standard factor model) to reveal if any
other factor copula model provides better fit than the standard factor model. To make it
easier to compare strengths of dependence, we convert the estimated parameters to
Kendall’s τs in ð$1,1Þ via the relations in Joe (2014, Chapter 4); SEs are also converted via
the delta method. For the model that provides the best fit, we provide the estimates and
SEs that are obtained bymaximizing the joint likelihood in equation (5) in one step over θ.
Although the two-stage estimation approach in Section 3 is a convenient way to quickly
compare candidate factor copula models, the full likelihood is applied for the best-fitting
factor copula model. The overall fit of the factor copula models is evaluated using theM2
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statistic. Note that the M2 statistic in the case with 2d$1 copulas (one set to
independence for the second factor) is computed with Δ2 having one less column .

6.1. Political-economic data set
Quinn (2004) considered measuring the (latent) political-economic risk of 62 countries
for the year 1987. The political-economic risk is defined as the country’s risk in
manipulating economic rules for its ownand its constituents’ advantage (see, for example,
North & Weingast, 1989). Quinn (2004) used five mixed variables, namely, the black-
market premium in each country (continuous, used as a proxy for illegal economic
activity), productivity as measured by real gross domestic product per worker at 1985
international prices (continuous), the independence of the national judiciary (binary; 1 if
the judiciary is judged to be independent and 0 otherwise), and two ordinal variables
measuring the lack of expropriation risk and lack of corruption. The data set and a
complete description thereof can be found in Quinn (2004) or in the R package
MCMCpack (Martin,Quinn,&Park, 2011). Note that since the black-market premium is
negatively associated with the remaining variables (from the context), we reorient it,
leading to positive dependence among all the observed variables.

Table 2 shows that the sample correlation matrix of the mixed responses has a one-
factor structure based on linear factor analysis (large D3 is due to the small sample size as
demonstrated using simulated data in Section 7). The sample semi-correlations in Table 2
show that there is more probability in the upper tail or lower tail compared with a
discretized MVN, suggesting that a factor model with bivariate parametric copulas with
upper or lower tail dependence might provide a better fit. Table 3 gives the estimated
parameters, their SEs on Kendall’s τ scale, joint log-likelihoods, the 95% CIs of Vuong’s

Table 2. The sample correlation ρN , lower semi-correlation ρ$N , and upper semi-correlation ρþN for
each pair of variables, alongwith themeasures of discrepancy between the sample and the resulting
correlation matrix of linear factor analysis with one and two factors for the political-economic risk
data

Pairs of variables ρN ρ$N ρþN

BM GDP .53 −.04 .57
BM IJ .61 – –
BM XPR .67 .88 .63
BM CRP .62 .16 .55
GDP IJ .78 – –
GDP XPR .55 .11 .75
GDP CRP .77 .24 .63
IJ XPR .91 – –
IJ CRP .87 – –
XPR CRP .76 .71 .71

No. of factors D1 D2 D3

1 0.16 0.04 0.91
2 0.06 0.01 0.22

Note. BM, black-market premium; CRP, lack of corruption, GDP, gross domestic product; IJ,
independent judiciary; XPR, lack of expropriation risk.
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tests, and the M2 statistics for the one-factor copula models. Table 3 also indicates the
parametric copula family chosen for each pair using the proposed heuristic algorithm.
Copulas with asymmetric dependence are selected for all the copulas that link the latent
variable to each of the observed variables. Hence, it is revealed that there are features in
the data such as tail dependence and asymmetry which cannot be captured by copulas
with reflection symmetric dependence such as BVN, Frank, and tν copulas.

In all the fittedmodels the estimated Kendall’s τs are similar. Kendall’s τ only accounts
for the dependence dominated by the middle of the data, and it is expected to be similar
among different families of copulas. However, the tail dependence and tail order vary, as
explained in Section 2.1, and they are properties to consider when choosing among
different families of copulas (Nikoloulopoulos & Karlis, 2008).

The table shows that the selected model using the proposed algorithm provides the
best fit and there is a substantial improvement over the standard factor model as indicated
by the Vuong and M2 statistics. To compute the M2 statistics we transformed the
continuous variables to ordinal with five categories using the unsupervised strategy in
Section 5.2; similar inference was drawnwhenwe transformed them to ordinal with 3, 4,
or 6 categories. The factor copula parameter of 0.51 on negative black market premium
indicates a negative association between the illegal economic activity and the latent
variable. All the other estimated factor copula parameters indicate a positive association
between eachof the other observed variables (independent judiciary, productivity, lack of
expropriation, and lack of corruption) with the latent variable. Hence, we can interpret
the latent variable to be political-economic certainty.

6.2. General Social Survey
Hoff (2007) analysed seven demographic variables for 464 male respondents to the 1994
General Social Survey. Of these seven, two were continuous (income and age of the

Table 3. Estimated parameters, their standard errors (SE) on Kendall’s τ scale, joint log-likelihoods,
the 95% CIs of Vuong’s statistics, and the M2 statistics for the one-factor copula models for the
political-economic risk data

One-factor

BVNa t5 Frank Selected model

τ̂ SE τ̂ SE τ̂ SE Copulas τ̂ SE

BM 0.50 0.06 0.51 0.07 0.49 0.06 Joe 0.51 0.05
GDP 0.57 0.05 0.57 0.06 0.58 0.06 Joe 0.58 0.05
IJ 0.80 0.09 0.81 0.09 0.75 0.09 Reflected Joe 0.80 0.07
XPR 0.66 0.06 0.68 0.07 0.66 0.06 Joe 0.69 0.06
CRP 0.71 0.06 0.70 0.06 0.72 0.06 Gumbel 0.74 0.06

l −165.15 −166.25 $164.89 −151.98
Vuong 95% CI ð$0:051,0:015Þ ð$0:077,0:085Þ ð0:073,0:352Þ
M2 179.2 187.4 177.6 129.2
df 134 134 134 134
p-value <:01 <:01 <:01 .60

Notes. BM, black-market premium; GDP, gross domestic product; IJ, independent judiciary; XPR,
lack of expropriation risk; CRP, lack of corruption.
aThe resulting model is the same as the standard factor model.
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respondents), three were ordinal with five categories (highest degree of the survey
respondent, income and highest degree of respondent’s parents), and two were count
variables (number of children of the survey respondent and respondent’s parents). The
data are available in Hoff (2007, supplementary materials).

Table 4 shows that the sample correlationmatrix of themixed responses has a two- or
even three-factor structure based on linear factor analysis. The direction of the tail
asymmetry based on sample semi-correlations in Table 4 is not consistent, and this shows
the usefulness of the proposed model selection technique. Table 5 gives the estimated
parameters, their SEs onKendall’s τ scale, the joint log-likelihoods, the 95%CIs of Vuong’s
tests, and theM2 statistics for the one-factor and two-factor copulamodels. The best fit for
the one-factormodel is based on the bivariate copulas selected by the proposed algorithm,
where there is improvement over the factor copulamodelwith BVN copulas according to
Vuong’s statistic. However, assessing the overall goodness of fit via the M2 statistic, it is
revealed that one latent variable is not adequate to explain the dependencies among the
mixed responses. To apply theM2 statistic, age and income were transformed to ordinal
with four (18–24, 25–44, 45–64, and 65+) and five (0–10, 11–19, 20–29, 30–40, and 41+)

Table 4. The sample correlation ρN , lower semi-correlation ρ$N , and upper semi-correlation ρþN for
each pair of variables, alongwith themeasures of discrepancy between the sample and the resulting
correlation matrix of linear factor analysis with 1, 2, and 3 factors for the General Social Survey data
set

Pairs of variables ρN ρ$N ρþN

Income Age .29 .48 .23
Income Degree .52 .24 .33
Income Pincome .14 .02 .28
Income Pdegree .24 .04 .08
Income Child .22 .23 .01
Income Pchild $.09 .06 .00
Age Degree .06 .22 $.04
Age Pincome $.11 $.02 .12
Age Pdegree $.14 $.42 .44
Age Child .58 .36 .26
Age Pchild .12 .18 .07
Degree Pincome .21 .17 $.05
Degree Pdegree .46 .46 .41
Degree Child $.11 $.10 $.09
Degree Pchild $.25 $.14 $.30
Pincome Pdegree .44 .44 .34
Pincome Child $.16 $.15 .11
Pincome Pchild $.23 .13 $.30
Pdegree Child $.21 .08 .10
Pdegree Pchild $.34 .19 $.32
Child Pchild .20 $.11 $.06

No. of factors D1 D2 D3

1 0.55 0.09 0.82
2 0.15 0.03 0.13
3 0.02 0.00 0.00
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Table 5. Estimated parameters, their standard errors (SE) on Kendall’s τ scale, joint log-likelihoods,
the 95% CIs of Vuong’s statistics, and theM2 statistics for the one- and two-factor copula models for
the General Social Survey data set

One-factor

BVNa t9 Frank Selected model

τ̂ SE τ̂ SE τ̂ SE Copulas τ̂ SE

Income 0.20 0.04 0.20 0.04 0.20 0.04 Joe 0.29 0.04
Age $0.14 0.04 $0.14 0.04 $0.14 0.04 2rJoe $0.14 0.03
Degree 0.40 0.04 0.39 0.04 0.38 0.04 t3 0.45 0.04
Pincome 0.33 0.03 0.34 0.04 0.35 0.04 t3 0.33 0.05
Pdegree 0.62 0.05 0.65 0.05 0.68 0.06 rGumbel 0.56 0.05
Child $0.20 0.04 $0.19 0.04 $0.19 0.04 2rJoe $0.14 0.03
Pchild $0.32 0.03 $0.31 0.04 $0.32 0.04 2rGumbel $0.27 0.03

l $3,425.39 $3,420.56 $3,433.83 $3,397.79
Vuong 95% CI ð$0:005, $0:025Þ ð$0:037,0:001Þ ð0:022,0:097Þ
M2 743.74 715.45 738.76 660.47
df 348 348 348 348
p-value <.001 <.001 <:001 <:001

Two-factor

BVNa t9 Frank Selected model

τ̂ τ̂ τ̂ SE Copulas τ̂ SE

First factor
Income 0.36 0.35 0.13 0.04 rGumbel 0.34 0.03
Age $0.05 $0.06 0.50 0.05 rJoe 0.49 0.03
Degree 0.55 0.53 $0.12 0.04 BVN 0.18 0.04
Pincome 0.27 0.28 $0.21 0.04 1rJoe $0.13 0.04
Pdegree 0.48 0.50 $0.31 0.05 1rJoe $0.13 0.04
Child $0.13 $0.14 0.52 0.05 rJoe 0.44 0.04
Pchild $0.28 $0.28 0.23 0.04 Gumbel 0.11 0.03

Second factor
Income 0.38 0.41 0.50 0.06 Gumbel 0.40 0.04
Age 0.54 0.55 0.21 0.04 2rJoe $0.14 0.03
Degree 0.14 0.17 0.57 0.07 rJoe 0.65 0.06
Pincome $0.09 $0.08 0.23 0.04 Gumbel 0.30 0.04
Pdegree $0.16 $0.14 0.44 0.05 t5 0.49 0.04
Child 0.53 0.53 0.08 0.04 BVN $0.24 0.04
Pchild 0.13 0.10 $0.24 0.04 2rGumbel $0.26 0.03

l $3,286.80 $3,278.88 $3,300.07 $3,235.86
Vuong 95% CI ð$0:004, $0:038Þ ð$0:058,0:001Þ ð0:061,0:159Þ
M2 471.47 461.70 492.37 370.61
df 342 342 341 341
p-value <:001 <:001 <:001 0.13

Note. aThe resulting model is the same as the standard factor model. pdemographic: demographic
variable of respondent’s parents. rCopula: reflected copula; 1rCopula: 1-reflected copula; 2rCopula:
2-reflected copula.
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categories, respectively, and the numbers of children of the survey respondent and
respondent’s parents were treated as ordinal where the fourth (more than 3 children) and
eighth (more than 7 children) category, respectively, contained all the high counts.

The two-factor copula models with BVN, tν, and Frank copulas provide some
improvement over the one-factor copula models, but according to the M2 statistic they
still have a poor fit. Note that the factor copula model with t9 copulas was not identifiable
(large SEs) in line with Nikoloulopoulos and Joe (2015), hence one parameter for the
second factor was set to zero and the likelihood was maximized with respect to the
remaining parameters. We report the varimax transform (Kaiser, 1958) of the loadings,
converted to factor copula parameters via the relations in (8).

The selected two-factor copula model using the algorithm in Section 4 shows
improvement over the standard factor model according to Vuong’s statistic and better fit
according to theM2 statistic; it changes a p-value less than :001 to one greater than :10. For
the two-factor model based on the proposed algorithm for model selection, note that,
without the need for a varimax rotation, the unique loading parameters (τ̂s converted to
normal copula parameters θ̂ j and δ̂ j and then to loadings using the relations in (8)) show
that one factor is loaded only on the demographic variables of the respondent’s parents.

6.3. Swiss Consumption Survey
Irincheeva et al. (2012b) considered measuring the latent variable ‘financial wealth of the
household’ in its different realizations by analysing seven household variables of
n¼ 9,960 respondents to the Swiss Consumption Survey. Out of these seven, three were
continuous (food, clothing and leisure expenses), threewere binary (dishwasher, car, and
motorcycle), and one was a count variable (the number of bicycles in of the household’s
possession).

With simple descriptive statistics such as scatter plots of the original data, Irincheeva
et al. (2012b), have shown that these mixed responses have reflection asymmetric
dependence, and fitted their latent variable approachwith one and two latent variables. In
Figure 2 we depict the bivariate normal scores plots for the continuous data along with
their correlations and semi-correlations.With a bivariate normal scores plot one can check
for deviations from the elliptical shape that would be expected with the BVN copula, and
hence assess if tail asymmetry and tail dependence exist on the data. For all the pairs the
upper semi-correlation is larger, and interestingly, contrasting the bivariate normal scores
plots in Figure 2 with the contour plots in Figure 1, it is apparent that for the continuous
variables the linking copulas might be the BB10 copulas.

Table 6 shows that the sample correlation matrix of the mixed responses has a two-
factor structure based on linear factor analysis. The sample semi-correlations in Table 6
show that there is more probability in the upper tail and lower tail among the continuous
variables and between each of the continuous variables with the count variable,
respectively, suggesting that a factor model with bivariate parametric copulas with
asymmetric tail dependence might provide a better fit. Table 7 gives the estimated
parameters, their SEs on Kendall’s tau scale, the joint log-likelihoods, the 95% CIs of
Vuong’s tests, and theM2 statistics for the one-factor and two-factor copula models. The
best-fitting one- and two-factormodels resultwhenwe use BB10 copulaswith asymmetric
quadrant tail independence to link the latent variable to each of the continuous observed
variables, and copulas with lower tail dependence to link the latent variables to the
discrete observed variables. Once again the one-factor copula model is not adequate to
explain the dependence among the mixed responses based on the M2 statistic (Table 7,
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one factor). To apply theM2 statistic, we transformed the continuous variables to ordinal
with three categories using the unsupervised strategy in Section 5, and the count variable
bicycle was treated as ordinal where the sixth category contained all the high counts (five
bicycles or more).

While it is revealed that the selected two-factor copulamodel is the bestmodel (lowest
AIC) and there is substantial improvement over the standard two-factor model, it is not
apparent from the M2 statistic that the response patterns are satisfactorily explained by
even two latent variables. This is not surprising since one should expect discrepancies
between the postulated parametric model and the population probabilities, when the
sample size is sufficiently large (Maydeu-Olivares & Joe, 2014). In Table 8 we list the
maximum deviations of observed and expected counts for each bivariate margin, that
is, D j1 j2 ¼nmaxy1,y2 jp j1, j2,y1,y2

$π j1, j2,y1,y2ðθ̂Þj. From the table, it is revealed, that there is
no misfit. The maximum discrepancy occurs between the continuous variables food and
leisure. For this bivariate margin, the discrepancy of 509/9,960 maximum occurs in the
BVN factor copula model, while this drops to 133/9,960 in the selected two-factor copula
model.

Figure 2. Bivariate normal scores plots, along with correlations and semi-correlations for the

continuous data from the Swiss Consumption Survey.
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For the selected two-factormodel based on the proposed algorithm, note that, without
the need for a varimax rotation, the unique loadings show that one factor is loaded only on
the discrete variables (dishwasher, car, motorcycle, and bicycles), while both factors are
loaded on the continuous variables (food, clothes, and leisure). This shows that the one
latent variablewhich is only associatedwith the continuous variablesmeasures expenses,
while the other which is associated with all the mixed variables measures possession.

7. Simulations

An extensive simulation study was conducted to (a) examine the performance of the
diagnostics to show that the correlation matrix of the simulated variables has a factor
structure, (b) check the small-sample efficiency of the sample versions of ρN ,ρþN ,ρ$N , (c)
gauge the small-sample efficiency of the proposed estimation method and investigate the
misspecification of the bivariate pair copulas, (d) examine the reliability of using the
heuristic algorithm to select the correct bivariate linking copulas, and (e) study the small-

Table 6. The sample correlation ρN , lower semi-correlation ρ$N , and upper semi-correlation ρþN for
each pair of variables, alongwith themeasures of discrepancy between the sample and the resulting
correlationmatrix of linear factor analysis with 1, 2, and 3 factors for the Swiss Consumption Survey
data set

Pairs of variables ρN ρ$N ρþN

Food Clothes .65 .21 .76
Food Leisure .60 .18 .76
Food Dishwasher .31 – –
Food Car .38 – –
Food Motorcycle .11 – –
Food Bicycles .21 .22 .02
Clothes Leisure .52 .02 .63
Clothes Dishwasher .23 – –
Clothes Car .25 – –
Clothes Motorcycle .07 – –
Clothes Bicycles .18 .15 .02
Leisure Dishwasher .24 – –
Leisure Car .18 – –
Leisure Motorcycle .01 – –
Leisure Bicycles .08 .04 .08
Dishwasher Car .43 – –
Dishwasher Motorcycle .03 – –
Dishwasher Bicycles .24 – –
Car Motorcycle .18 – –
Car Bicycles .26 – –
Motorcycle Bicycles .21 – –

No. of factors D1 D2 D3

1 0.27 0.06 0.26
2 0.12 0.02 0.06
3 0.03 0.01 0.01
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sample performance of the M2 statistic after transforming the continuous and count
variables to ordinal.

We randomly generated samples of size n¼ f100,300,500g from each of the selected
one- and two-factor copula models in the three application examples in Section 6. We set

Table 7. Estimated parameters, their standard errors (SE) on Kendall’s τ scale, joint log-likelihoods,
the 95% CIs of Vuong’s statistics, and theM2 statistics for the one- and two-factor copula models for
the Swiss Consumption Survey data set

One-factor

BVNa t5 Frank Selected model

τ̂ SE τ̂ SE τ̂ SE Copulas τ̂ SE

Food 0.69 0.01 0.73 0.01 0.74 0.01 Reflected BB10 0.79 0.00
Clothes 0.53 0.01 0.53 0.01 0.53 0.01 BB10 0.38 0.00
Leisure 0.47 0.01 0.50 0.01 0.50 0.01 BB10 0.39 0.00
Dishwasher 0.24 0.01 0.25 0.01 0.23 0.01 Reflected Joe 0.28 0.01
Car 0.27 0.01 0.30 0.01 0.28 0.01 Reflected Joe 0.23 0.01
Motorcycle 0.07 0.01 0.06 0.01 0.08 0.01 Reflected Joe 0.13 0.01
Bicycles 0.15 0.01 0.15 0.01 0.16 0.01 Reflected Joe 0.17 0.01

AIC 55,004.24 54,221.36 55,105.88 48,932.32
Vuong 95% CI ð0:032,0:046Þ ð$0:015,0:005Þ ð0:286,0:324Þ
M2 2,775.73 2,734.05 2,808.53 1,626.54
df 71 71 71 68
p-value <.001 <:001 <:001 <:001

Two-factor

BVNa t7 Frank Selected model

τ̂ τ̂ SE τ̂ SE Copulas τ̂ SE

First factor
Food 0.61 0.34 0.03 0.48 0.01 BB10 0.38 0.00
Clothes 0.51 0.32 0.03 0.42 0.01 BB10 0.36 0.01
Leisure 0.49 0.35 0.02 0.42 0.01 BB10 0.38 0.01
Dishwasher 0.14 $0.07 0.03 0.08 0.01 reflected Joe 0.19 0.02
Car 0.12 $0.13 0.03 0.07 0.01 reflected Joe 0.10 0.01
Motorcycle 0.01 $0.10 0.02 $0.08 0.01 Frank 0.02 0.01
Bicycles 0.07 $0.10 0.02 $0.05 0.01 Frank 0.04 0.01

Second factor
Food 0.36 0.66 0.01 0.66 0.01 BB10 0.53 0.01
Clothes 0.18 0.46 0.02 0.40 0.01 BVN 0.28 0.01
Leisure 0.07 0.41 0.02 0.36 0.01 BB10 0.30 0.01
Dishwasher 0.33 0.37 0.01 0.26 0.01 BVN 0.42 0.01
Car 0.48 0.46 0.02 0.36 0.01 reflected Joe 0.35 0.01
Motorcycle 0.19 0.15 0.01 0.21 0.02 reflected Joe 0.17 0.01
Bicycles 0.27 0.27 0.01 0.31 0.01 reflected Gumbel 0.27 0.01

AIC 54,245.91 53,482.23 53,514.75 46,233.00
Vuong 95% CI ð0:032,0:045Þ ð0:028,0:046Þ ð0:386,0:419Þ
M2 1,920.27 1,886.66 1,945.07 450.32
df 65 64 64 59
p-value <:001 <:001 <:001 <:001

Note. aThe resulting model is the same as the standard factor model.
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the type of the variables, the univariate margins and the bivariate linking copulas, along
with their univariate and dependence parameters to mimic the real data. Binary variables
donot have tail asymmetries, henceparametric copulas are less distinguishable. Therefore
instead of binary, we simulated from ordinal variables with three equally weighted
categories.

Table 9 contains the simulatedmeans and standard deviations (SDs) of the discrepancy
measuresD1,D2 andD3. The resulting summaries show that all the discrepancymeasures
correctly recognize both that the correlation structure has a factor structure and the
number of factors. Among the discrepancy measures, D2 performs well even for a small
sample size (n¼ 100), while this is not the case forD1 andD3 which require larger sample
sizes to successfully determine the number of adequate factors.

To check the small-sample efficiency of the sample versions of ρN , ρþN , and ρ$N we
generated 104 random samples of size n¼ f100,300,500g from all the aforementioned
bivariate copulas that join the distributions of two continuous variables, two ordinal
variables, one continuous and one ordinal variable, one continuous and one count
variable, one ordinal and one count, and two count variables with small (τ¼ :3),moderate
(τ¼ :5) and strong dependence (τ¼ :7). Representative results are shown in Table 10 for
the Gumbel copula. Note that the count variable was treated as ordinal with five
categories, where the fifth category contained all the counts greater than 3. The resulting
biases, root mean square errors (RMSEs), and SDs, scaled by n, show the estimation of the
correlations and semi-correlations is highly efficient. Note in passing that because only
part of the data is used in computing sample semi-correlations, their variability is larger

Table 8. Maximum deviations D j1, j2 of observed and expected counts for each bivariate margin
ðj1, j2Þ for the one- and two-factor copula models for the Swiss Consumption Survey data set

D j1, j2

One-factor model Two-factor model

BVN t5 Frank Selected BVN t7 Frank Selected

D1,2 347 317 303 167 349 311 270 40
D1,3 511 468 456 183 509 460 428 133
D1,4 158 177 163 70 159 185 161 56
D1,5 231 189 223 119 233 181 230 60
D1,6 87 117 88 60 87 130 72 12
D1,7 78 92 79 88 78 110 89 81
D2,3 442 418 431 69 433 403 393 54
D2,4 59 80 84 145 38 56 64 86
D2,5 96 107 107 201 60 47 93 36
D2,6 18 3 18 27 19 15 29 39
D2,7 51 76 60 83 49 91 52 61
D3,4 182 146 141 196 253 216 168 83
D3,5 82 105 106 191 59 13 83 61
D3,6 59 58 69 71 13 23 27 45
D3,7 62 54 64 103 65 67 69 59
D4,5 289 276 286 223 66 74 207 2
D4,6 9 5 11 29 133 138 100 96
D4,7 82 81 81 88 28 20 46 54
D5,6 111 123 111 77 15 22 19 20
D5,7 101 96 95 68 33 25 40 64
D6,7 70 74 70 61 80 96 87 52
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Table 9. Small sample of size n¼ f100,300,500g simulations (104 replications) from the selected
factor copulamodels in Section 6 to assess themeasures of discrepancyD1,D2, andD3 between the
observed and the resulting correlation matrix of linear factor analysis for 1, 2, and 3 factors, with
resulting means and standard deviations (SD)

n No. of factors

D1 D2 D3

Mean SD Mean SD Mean SD

Political-economic data set – one-factor model
100 1 0.061 0.027 0.016 0.006 0.101 0.071

2 0.022 0.016 0.004 0.003 0.014 0.023
300 1 0.038 0.017 0.010 0.004 0.036 0.023

2 0.011 0.008 0.002 0.002 0.004 0.005
500 1 0.033 0.014 0.009 0.003 0.024 0.015

2 0.009 0.006 0.002 0.001 0.002 0.003
General Social Survey – one-factor model
100 1 0.178 0.048 0.048 0.010 0.192 0.074

2 0.119 0.037 0.025 0.006 0.077 0.039
3 0.066 0.030 0.010 0.004 0.021 0.016

300 1 0.104 0.028 0.028 0.006 0.062 0.023
2 0.068 0.021 0.015 0.004 0.024 0.012
3 0.036 0.017 0.006 0.002 0.006 0.005

500 1 0.081 0.022 0.022 0.004 0.038 0.014
2 0.053 0.016 0.012 0.003 0.014 0.007
3 0.028 0.013 0.005 0.002 0.004 0.003

Swiss Consumption Survey – one-factor model
100 1 0.223 0.059 0.059 0.011 0.291 0.101

2 0.144 0.046 0.029 0.007 0.106 0.053
3 0.077 0.035 0.011 0.004 0.028 0.022

300 1 0.162 0.044 0.045 0.007 0.156 0.044
2 0.091 0.030 0.018 0.005 0.036 0.019
3 0.044 0.021 0.007 0.003 0.009 0.007

500 1 0.150 0.039 0.041 0.006 0.130 0.032
2 0.071 0.024 0.014 0.004 0.022 0.011
3 0.034 0.016 0.005 0.002 0.005 0.004

General Social Survey – two-factor model
100 1 0.360 0.066 0.102 0.018 0.691 0.183

2 0.117 0.042 0.027 0.007 0.118 0.059
3 0.059 0.028 0.010 0.004 0.028 0.023

300 1 0.332 0.045 0.101 0.012 0.573 0.103
2 0.066 0.023 0.017 0.004 0.042 0.021
3 0.033 0.015 0.006 0.003 0.009 0.008

500 1 0.326 0.037 0.101 0.010 0.552 0.078
2 0.052 0.017 0.014 0.004 0.027 0.014
3 0.026 0.012 0.005 0.002 0.006 0.005

Swiss Consumption Survey – two-factor model
100 1 0.249 0.070 0.060 0.013 0.343 0.129

2 0.130 0.047 0.026 0.007 0.111 0.056
3 0.065 0.031 0.010 0.004 0.028 0.023

300 1 0.200 0.047 0.048 0.009 0.198 0.061
2 0.075 0.028 0.017 0.004 0.040 0.020

Continued
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than the correlations. However, if there is a consistent direction to the tail asymmetry
based on semi-correlations, this is useful information for choosing potential bivariate
parametric copulas.

Table 11 contains the resulting biases, RMSEs, and SDs, scaled by n, for the estimates
obtained using the estimation approach in Section 3. The results show that the proposed
estimation approach is highly efficient according to the simulated biases, SDs, and RMSEs.
We further investigated the misspecification of the bivariate pair copulas by deriving the
same statistics but from the one-factor model with BVN pair copulas (i.e., the standard
one-factor model). Once again, the simulated data are based on the selected one-factor
copulamodels in Section 6. Table 12 contains the resulting biases, RMSEs, and SDs, scaled
by n. The results show that the Kendall’s tau estimates are not robust to pair-copula
misspecification if the true (simulated) factor copula model has different dependence in
the middle of the data (e.g., when the BB10 copulas that can provide a non-convex shape
of dependence; see Figure 1) are used to specify the true factor copula model (Table 12,
Swiss Consumption Survey). Aswe have alreadymentioned, the Kendall’s τ only accounts
for dependence dominated by the middle of the data, and it is expected to be similar
among parametric families of copulas that provide a convex shape of dependence
(Table 12, political-economic data set and General Social Survey).

Table 13 contains four common nominal levels of the M2 statistic under the factor
copula models for mixed data. We transformed the continuous and count variables to
ordinal with K ¼ f3,4,5g and K ¼ f3,4g categories, respectively, using the unsupervised
strategies proposed in Section 5.2. We also transformed the count variables to ordinal
with K ¼ 5 categories by treating them as ordinal, where the fifth category contained all
the counts greater than 3. As the observed levels are close to nominal levels, it is
demonstrated that theM2 statistic remains reliable formixed data and that the information
loss under transformation to ordinal is minimal.

Table 14 presents the number of times the true bivariate parametric copulas were
chosen over 100 simulation runs. If the true copula has distinct dependence properties
with medium to strong dependence, then the algorithm performs extremely well as the
sample size increases. Low selection rates occur if the true copulas have low dependence
or similar tail dependence properties, since it is then difficult to distinguish among
parametric families of copulas (Nikoloulopoulos & Karlis, 2008). For example,
& in the results from the two-factor model for the General Social Survey, the true copula

for the first continuous variable (first factor) is the reflected Gumbel with τ¼ :34 and is
only selected a very small number of times. The algorithm instead selected with a high
probability the reflected Joe (results not shown here due to space constraints), because
both reflected Joe and Gumbel copulas provide similar dependence properties, i.e.,
lower tail dependence.

Table 9. (Continued)

n No. of factors

D1 D2 D3

Mean SD Mean SD Mean SD

3 0.036 0.017 0.006 0.003 0.009 0.007
500 1 0.191 0.038 0.046 0.007 0.171 0.045

2 0.059 0.021 0.014 0.004 0.026 0.013
3 0.027 0.013 0.005 0.002 0.006 0.005
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& in the results from the two-factor model for the Swiss Consumption Survey, the
variables with Frank copulas have the lowest selection rates. This is due to the fact that
their true Kendall’s τ parameters are close to 0 (independence).

Table 13. Small sample of size n¼ f100,300,500g distributions for M2 (104 replications).
Empirical rejection levels at α¼ f:20, :10, :05, :01g, degrees of freedom (df), and mean under the
factor copula models. Continuous and count variables are transformed to ordinal with K ¼ f3,4,5g
and K ¼ f3,4g categories, respectively, using the general strategies proposed in Section 5.2.
Count variables are also transformed to ordinal with K ¼ 5 categories by treating them as ordinal,
where the fifth category contained all the counts greater than 3

n¼ 100 n¼ 300 n¼ 500

K ¼ 3 K ¼ 4 K ¼ 5 K ¼ 3 K ¼ 4 K ¼ 5 K ¼ 3 K ¼ 4 K ¼ 5

Political-economic data set – one-factor model
df 92 121 152 92 121 152 92 121 152
Mean 89.3 118.3 148.4 91.0 119.7 152.6 91.0 119.6 152.3
α¼ :20 .183 .192 .197 .196 .194 .195 .196 .189 .190
α¼ :10 .121 .125 .134 .122 .121 .119 .114 .109 .109
α¼ :05 .083 .089 .098 .076 .077 .077 .072 .070 .067
α¼ :01 .044 .046 .055 .036 .034 .037 .027 .030 .026

General Social Survey – one-factor model
df 161 239 329 161 239 329 161 239 329
Mean 161.5 240.0 333.0 160.7 239.4 329.7 161.3 240.2 329.6
α¼ :20 .213 .220 .240 .202 .216 .203 .211 .228 .212
α¼ :10 .110 .121 .122 .106 .118 .102 .118 .127 .108
α¼ :05 .058 .070 .061 .054 .067 .051 .065 .073 .056
α¼ :01 .013 .018 .014 .014 .019 .012 .016 .023 .011

Swiss Consumption Survey – one-factor model
df 74 128 194 74 128 194 74 128 194
Mean 75.4 130.1 197.8 74.6 128.5 195.1 74.5 128.0 194.4
α¼ :20 .229 .239 .254 .214 .209 .221 .210 .202 .207
α¼ :10 .121 .135 .147 .111 .104 .113 .105 .099 .103
α¼ :05 .067 .076 .086 .056 .055 .060 .051 .053 .053
α¼ :01 .016 .024 .030 .011 .013 .013 .012 .011 .012

General Social Survey – two-factor model Swiss Consumption Survey – two-factor model

n¼ 500 n¼ 500

K ¼ 3 K ¼ 4 K ¼ 5 K ¼ 3 K ¼ 4 K ¼ 5

df 154 232 322 65 119 185
Mean 154.8 234.0 323.3 65.6 119.7 185.5
α¼ :20 .217 .234 .214 .217 .215 .217
α¼ :10 .113 .131 .116 .114 .111 .113
α¼ :05 .065 .075 .059 .060 .057 .060
α¼ :01 .018 .022 .018 .013 .013 .017
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Table 14. Frequencies of the true bivariate copula identified using the model selection algorithm
from 100 simulation runs.

Political-economic data set – one-factor model

n

Continuous Ordinal

1rJoe Joe rJoe Joe Gumbel

100 88 81 45 82 34
300 88 93 54 83 60
500 91 100 66 100 79

General Social Survey – one-factor model

n

Continuous Ordinal Count

Joe 2rJoe t5 t5 rGumbel 2rJoe 2rGumbel

100 68 63 27 19 27 56 28
300 89 79 41 43 49 65 55
500 91 85 61 65 74 73 68

Swiss Consumption Survey – one-factor model

n

Continuous Ordinal Count

rBB10 BB10 BB10 rJoe rJoe rJoe rJoe

100 27 94 91 61 60 41 56
300 50 99 98 64 71 63 68
500 70 98 98 68 74 71 72

General Social Survey – two-factor model

1st factor

Continuous Ordinal Count

rGumbel rJoe BVN 1rJoe 1rJoe rJoe Gumbel
n

100 22 40 10 19 19 50 6
300 26 52 11 42 36 79 16
500 19 67 13 52 53 83 39

2nd factor Gumbel 2rJoe rJoe Gumbel t5 BVN 2rGumbel
n

100 13 28 28 7 14 21 17
300 26 39 56 30 45 28 47
500 32 67 65 53 59 33 70

Continued
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8. Discussion

We have extended the factor copula model proposed in Krupskii and Joe (2013) and
Nikoloulopoulos and Joe (2015) to the case of mixed continuous and discrete responses.
It is the most general factor model as (a) it has the standard factor model with an additive
latent structure as a special case when the BVN copulas are used, (b) it can have a latent
structure that is not additive if other than BVN copulas are called, (c) the parameters of the
univariate distributions are separated from the copula (dependence) parameters which
are interpretable as dependence of an observed variable with a latent variable, or
conditional dependence of an observed variable with a latent variable given preceding
latent variables. Other nonlinear (e.g., Rizopoulos & Moustaki, 2008), semi-parametric
(e.g., Gruhl, Erosheva, & Crane, 2013), or nonparametric models (e.g., Kelava, Kohler,
Krzyżak, & Schaffland, 2017) with latent variables have either an additive latent structure
or allow polynomial and interaction terms to be added in the linear predictor, hence are
not as general. Another mixed variable model in the literature, called the factor copula
model (Murray, Dunson, Carin, & Lucas, 2013), is restricted to the MVN copula like the
model proposed by Gruhl et al. (2013), hence it has an additive latent structure.

We have shown that the factor copulamodels provide a substantial improvement over
the standard factor model on the basis of the log-likelihood principle, Vuong’s and M2

statistics. Hence, superior statistical inference for the loading parameters of interest can
be achieved. This improvement relies on the fact that the latent variable distribution is
expressed via factor copulas instead of the MVN distribution. The latter is restricted to
linear and reflection symmetric dependence. Rizopoulos and Moustaki (2008) stressed
that the inadequacy of normally distributed latent variables can be caused by the nonlinear
dependence on the latent variables. The factor copula can provide flexible reflection
asymmetric tail and nonlinear dependence as it is a truncated canonical vine copula
(Brechmann et al., 2012) rooted at the latent variables. Joe, Li, andNikoloulopoulos (2010)
show that in order for a vine copula to have (tail) dependence for all bivariatemargins, it is
only necessary for the bivariate copulas at level 1 to have (tail) dependence and it is not
necessary for the conditional bivariate copulas at levels 2, :::,d$1 to have tail

Swiss Consumption Survey – two-factor model

1st factor

Continuous Ordinal Count

BB10 BB10 BB10 rJoe rJoe Frank Frank
n

100 57 77 55 31 28 23 34
300 81 94 82 51 40 19 21
500 88 94 87 49 50 21 16

2nd factor BB10 BVN BB10 BVN rJoe rJoe rGumbel
n

100 5 14 28 10 29 31 10
300 27 29 43 22 49 40 16
500 39 39 60 31 55 63 31

Note: rCopula: reflected copula; 1rCopula: 1-reflected copula; 2rCopula: 2-reflected copula.

Table 14 (Continued)
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dependence. The one-factor copula has bivariate copulas with tail dependence at the first
level and independence copulas at all the remaining levels of the vine (truncated after the
first level). The two-factor copula has bivariate copulas with tail dependence at the first
and second level and independence copulas at all the remaining levels (truncated after the
second level). Hence, the tail dependence among the latent variables and each of the
observed variables is inherited by the tail dependence among the observed variables.

Even in cases where the effect of misspecifying the bivariate linking copula choice to
build the factor copula models can be seen as minimal for the Kendall’s τ (loading)
parameters, the tail dependence varies, as explained in Section 2.1, and is a property to
considerwhen choosing among different families of copulas and hence affects prediction.
Rabe-Hesketh, Pickles, and Skrondal (2003) highlighted the importance of the correct
distributional assumptions for the prediction of latent scores. The latent scores will
essentially show the effect of different model assumptions, because it is an inference that
depends on the joint distribution. The factor copula models have bivariate copulas that
link the latent variables to each of the observed variables. If these bivariate copulas have
upper or lower tail dependence, then this type of dependence is inherited by the
dependence between the factor scores and each of the observed variables. Hence, factor
scores are fairly different than those for the standard factor model if the sample size is
sufficient. Figure 3 demonstrates these differences by revisiting the political-economic

Figure 3. Comparison of the political-economic risk rankings obtained via our selected model, the

standard factor model, and the mixed-data factor analysis of Quinn (2004).
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data set in Section 6.1 and comparing the political-economic risk ranking obtained via our
selected model, the factor copula model with BVN copulas (standard factor model), and
the mixed data factor analysis of Quinn (2004). It is revealed that even for a small sample
size (n¼ 62) there are differences. Between the factor copula model with BVN copulas
and the factor analysis model of Quinn (2004), there are small to moderate differences,
becausewhile thesemodels share the same latent variables distribution, the formermodel
does not assume the observed variables to be normally distributed, but rather uses the
empirical distribution of the continuous observed variables, that is, allows the margins to
be quite free and not restricted by the normal distribution. The differences in the lower
panel graph are solely due the misspecification of the latent variable distribution.

As stated by many researchers (e.g., Rabe-Hesketh & Skrondal, 2001, 2004), the major
difficulty for all the models with latent variables is identifiability. For example, for the
standard factor model or the more flexible model in Irincheeva et al. (2012b), one of the
loadings in the second factor has to be set to zero, because the model with 2d loadings is
not identifiable. The standard factor model arises as special case of our model if we use as
bivariate linking copulas the BVN copulas. Hence, for the two-factor copula model with
BVN copulas, one of the BVN copulas in the second factor has to be set as an
independence copula. However, using other than BVN copulas, the two-factor copula
model is near-identifiable with 2d bivariate linking copulas, as it as been demonstrated by
Krupskii and Joe (2013) and Nikoloulopoulos and Joe (2015).
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