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Factor copula models for mixed data

Sayed H. Kadhem and Aristidis K. Nikoloulopoulos

School of Computing Sciences, University of East Anglia, Norwich, UK

We develop factor copula models to analyse the dependence among mixed continuous
and discrete responses. Factor copula models are canonical vine copulas that involve both
observed and latent variables, hence they allow tail, asymmetric and nonlinear
dependence. They can be explained as conditional independence models with latent
variables that do not necessarily have an additive latent structure. We focus on important
issues of interest to the social data analyst, such as model selection and goodness of fit.
Our general methodology is demonstrated with an extensive simulation study and
illustrated by reanalysing three mixed response data sets. Our studies suggest that there
can be a substantial improvement over the standard factor model for mixed data and make
the argument for moving to factor copula models.

|I. Introduction

It is very common in social science (e.g., in surveys) to deal with data sets that have mixed
continuous and discrete responses. In the literature, two broad frameworks have been
considered to model the dependence among such mixed continuous and discrete
responses, namely the latent variable and copula framework.

There are two approaches for modelling multivariate mixed data with latent variables:
the underlying variable approach that treats all variables as continuous by assuming the
discrete responses are a manifestation of underlying continuous variables that usually
follow the normal distribution (e.g., Lee, Poon, & Bentler, 1992; Muthén, 1984; Quinn,
2004); and the response function approach that postulates distributions on the observed
variables conditional on the latent variables usually being from the exponential family
(e.g., Huber, Ronchetti, & Victoria-Feser, 2004; Moustaki, 1996; Moustaki & Knott, 2000;
Moustaki & Victoria-Feser, 2006; Wedel & Kamakura, 2001). The former method almost
invariably assumes that the underlying variables (linked to the observed variables via a
threshold process to yield ordinal data and an identity process to yield continuous data)
follow a multivariate normal (MVN) distribution, while the latter assumes that the
observed variables are conditionally independent usually given MVN distributed latent
variables. They are equivalent when in the underlying and the response function
approach the MVN distribution has a factor and an independence correlation structure,
respectively (Takane & de Leeuw, 1987).
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The underlying variable approach calls the MVN distribution as a latent model for the
discrete responses, and therefore maximum likelihood (ML) estimation requires
multidimensional integrations (Nikoloulopoulos, 2013, 2016); their dimension is equal
to the number of observed discrete variables. This is why alternative estimation methods
such as the three-stage weighted least squares and composite likelihood have been
proposed (see, for example, Katsikatsou, Moustaki, Yang-Wallentin, & Joreskog, 2012).
The response function approach, with the dependence coming from p latent (unobserv-
able) variables/factors, where p < d (the number of observed variables), requires p- rather
than d-dimensional integration. Hence, ML estimation is feasible, especially when the
number of latent variables is small.

Nevertheless, both approaches are restricted to the MVN assumption for the observed
or latent variables, which is not valid in the realistic scenario of tail asymmetry or tail
dependence existing in the mixed data. Ma and Genton (2010), Montanari and Viroli
(2010), and Irincheeva, Cantoni, and Genton (2012a) stress that the MVN assumption
might not be adequate, and acknowledge that the effect of misspecifying the distribution
of the latent variables could lead to biased model estimates and poor fit. To this end,
Irincheeva, Cantoni, and Genton (2012b) proposed a more flexible response function
approach by strategically multiplying the MVN density of the latent variables by a
polynomial function to achieve departures from normality.

As we have discussed, the underlying variable approach exploits the use of the MVN
assumption to model the joint distribution of mixed data. The univariate margins are
transformed to normality and then the MVN distribution is fitted to the transformed data.
This construction is apparently the MVN copula applied to mixed data (He, Li,
Edmondson, Rader, & Li, 2012; Hoff, 2007, Jiryaie, Withanage, Wu, & de Leon, 2016;
Shen & Weissfeld, 2006; Song, Li, & Yuan, 2009), but previous papers (e.g., Quinn, 2004)
do not refer to copulas as the approach can be explained without copulas.

Smith and Khaled (2012), Stober, Hong, Czado, and Ghosh (2015), and Zilko and
Kurowicka (2016) employed vine copulas to model mixed data. Vine copulas have two
major advantages over the MVN copula, as emphasized in Panagiotelis, Czado, Joe, and
Stober (2017). The first is that the computational complexity of computing the joint
probability distribution function grows quadratically with d, whereas for the MVN copula
the computational complexity grows exponentially with d. The second is that vine
copulas are highly flexible through their specification from bivariate parametric copulas
with different tail dependence or asymmetry properties. They have as special case the
MVN copula, if all the bivariate parametric copulas are bivariate normal (BVN).

In this paper we extend the factor copula models in Krupskii and Joe (2013) and
Nikoloulopoulos and Joe (2015) to the case of mixed continuous and discrete responses.
Factor copulas are vine copula models that involve both observed and latent variables.
Hence, they are highly flexible through their specification from bivariate parametric
copulas with different tail dependence or asymmetry properties. The underlying variable
approach where the MVN distribution has a p-factor correlation structure or its
equivalent, the response function approach where the MVN distribution has an
independence correlation structure, is a special case of factor copula models when all
the bivariate parametric copulas are BVN (hereafter referred to as the standard factor
model). Factor copula models are more interpretable and fit better than vine copula
models, when dependence can be explained through latent variables. Furthermore, they
are closed under margins, that is, lower-order marginals belong to the same parametric
family of copulas and a different permutation of the observed variables has exactly the
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same distribution. This is not the case for vine copulas without latent variables, where a
different permutation of the observed variables could lead to a different distribution.

We tackle issues of particular interest to the social data analyst such as model selection
and goodness of fit. Model selection in previous papers on factor copula models (Krupskii
& Joe, 2013; Nikoloulopoulos & Joe, 2015) was mainly based on simple diagnostics. In
addition to simple diagnostics based on semi-correlations, we propose a heuristic method
that automatically selects the bivariate parametric copula families. With regard to the issue
of goodness-of-fit testing, we propose a technique based on the M, goodness-of-fit statistic
(Maydeu-Olivares & Joe, 2006) in multidimensional contingency tables to overcome the
shortage of goodness-of-fit statistics for mixed continuous and discrete response data (e.g.,
Moustaki & Knott, 2000).

The remainder of the paper proceeds as follows. Section 2 introduces the factor copula
models for mixed data and provides choices of parametric bivariate copulas with latent
variables. Section 3 provides estimation techniques and computational details. Sections 4
and 5 propose methods for model selection and goodness of fit, respectively. Section 6
presents applications of our methodology to three mixed response data sets. Section 7
contains an extensive simulation study to gauge the small-sample efficiency of the
proposed estimation, investigate the misspecification of the bivariate copulas, and
examine the reliability of the model selection and goodness-of-fit techniques. We conclude
with some discussion in Section 8, followed by a brief section with software details.

2. The factor copula model for mixed responses

Although the factor copula models can be explained as truncated canonical vines rooted
at the latent variables, we derive the models as conditional independence models, i.e., a
response function approach with dependence coming from latent (unobservable)
variables/factors. The p-factor model assumes that the mixed continuous and discrete
responses Y= (Y7y,...,Y,) are conditionally independent given p latent variables
X1,...,X,. In line with Krupskii and Joe (2013) and Nikoloulopoulos and Joe (2015), we
use a general copula construction, based on a set of bivariate copulas that link observed to
latent variables, to specify the factor copula models for mixed continuous and discrete
variables. The idea in the derivation of this p-factor model will be shown below for the one-
factor and two-factor cases. It can be extended to p > 3 factors or latent variables in a
similar manner. The evaluation of a p-dimensional integral can be successfully performed
as we strategically assume that the factors or latent variables are independent.

For the one-factor model, let X; be a latent variable, which we assume to be standard
uniform (without loss of generality). From Sklar (1959), there is a bivariate copula Cx;
such that Pr(X; <x,Y; <y)=Cx,;(x,F;(y)) for 0<x <1 where F; is the cumulative
distribution function of Y;. Then it follows that

oCx . ;(x,F;
Fjix, lx) :=Pr(Y; <p|X1 =x) = Xu(gx i) o

Letting C jix, (F;(y)|x) = 0Cx,;(x,F;(y))/0x for shortand y = (y, ...,),) be realizations
of Y, the density' of the observed data in the one-factor model case is

'We mean the density of Y with respect to the product measure on the respective supports of the marginal
variables. For discrete margins with integer values this is the counting measure on the set of possible outcomes;
for continuous margins we consider the Lebesgue measure in R.
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fy(y)= /01 ﬁijl <yj’x)dx, @)
=

where

| Cux,(Fi)|x) = Cjpx, (F;(p — 1)|x) if Y ;isdiscrete,
S O1%) = cx, (5 F; 0 f () if Y ;is continuous,
is the density of Y; =y conditional on X' = x; cx; is the bivariate copula density of X; and
Y, and f is the univariate density of ;.
For the two-factor model, consider two latent variables X, X, that are, without loss of
generality, independent uniform U(0,1) random variables. Let Cx,; be defined as in the
one-factor model, and let Cx,; be a bivariate copula such that

Pr(X; <x2,Y; <p|X1 =x1) = Cxy(x2,F jix, (¥|x1)),

where F jx, is given by equation (1). Then, for 0 <xj,x2 <1,

0
PI'(Y] Sy|X1 le,Xz ZDCZ) ZJPI‘(XZ S.X'Z,Yj Sy|X1 =x1)
2

0

= 5, O (2., (7100) = €, (F i, (e o).

The density of the observed data in the two-factor model case is

1 1.d
fY(Y):/O/OHszle(XZ’yj|xl)d-x1d-x2a €))
=1

where

Cix, (Fj|X1 (y|x1)|x2) —Cix, (FJ-|X1 (y— 1|x1)|x2) if Y;isdiscrete,

I xopix, (62,01%1) = v .
Sl ¢, (F jix, 0]%1),22) ex,j (x1,FjO/))fj(y) if Y;is continuous.
Note that the copula Cx ; links the jth response to the first latent variable X, and the

copula Cx,; links the jth response to the second latent variable X, conditional on X;. In

our general statistical model there are no constraints in the choices of the parametric
marginal F; or copula {Cx,;,Cx,;} distributions.

2.1. Choices of bivariate copulas with latent variables
We provide choices of parametric bivariate copulas that can be used to link the latent to
the observed variables. We will consider copula families that have different tail
dependence (Joe, 1993) or tail order (Hua & Joe, 2011).

A Dbivariate copula C is reflection symmeiric if its density satisfies
c(uy,uz) =c(1—uy,1 —uy) for all 0 <uq,u, < 1. Otherwise, it is reflection asymmetric
often with more probability in the joint upper tail or joint lower tail. Upper tail
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dependence means that ¢(1—u,1—u)=0(u"") as u— 0 and lower tail dependence
means that c(u,u)=0(u""') as u— 0. If (U;,U,)~C for a bivariate copula C, then
(1-Uy,1-U>) ~ C, where é(ul,uz) =u;+uy—1+C(1—uy,1—u;y) is the survival or
reflected copula of C; this ‘reflection’ of each uniform U(0, 1) random variable about 1/2
changes the direction of tail asymmetry. Under some regularity conditions (e.g., existing
finite density in the interior of the unit square, ultimately monotone in the tail), if there
exist kz(C) >0 and some L(z) that is slowly varying at 0" (i.e., LL(‘;t) ~1, as u — 0" for all
t>0), then k;(C) is the lower tail order of C. The upper tail order ky;(C) can be defined by
the reflection of (U1, U,), thatis, C(1 —u,1 —u) ~ "' ©)L* (1) as u — 0T, where C is the
survival function of the copula and L* () is a slowly varying function. With k =k or ky, a
bivariate copula has intermediate tail dependence if k€ (1,2), tail dependence if k =1,
and tail quadrant independence if k = 2, with L(«) being asymptomatically a constant.
Having provided brief definitions of tail dependence and tail order, we provide below a
list of bivariate parametric copulas with varying tail behaviour:
e reflection symmetric copulas with intermediate tail dependence such as the BVN
copula with k; =k =2/(146), where 0 is the copula (correlation) parameter;
e reflection symmetric copulas with tail quadrant independence (k; = ky = 2), such as
the Frank copula;
e reflection asymmetric copulas with upper tail dependence only, such as

e the Gumbel copula with k; = 21/9 and ky = 1, where 0 is the copula parameter,
e the Joe copula with k;, =2 and xy =1;
e reflection symmetric copulas with tail dependence, such as the ¢, copula with v the
degrees of freedom and k; =xy =1;
e reflection asymmetric copulas with upper and lower tail dependence that can range
independently from O to 1, such as the BB1 and BB7 copulas with x; =1 and kyy = 1;
e reflection asymmetric copulas with tail quadrant independence, such as the BB8 and
BB10 copulas.

The BVN, Frank, and ¢, are comprehensive copulas, that is, they interpolate between
countermonotonicity (perfect negative dependence) and comonotonicity (perfect
positive dependence). The other aforementioned parametric families of copulas
(Gumbel, Joe, BB1, BB7, BB8 and BB10) interpolate between independence and perfect
positive dependence. Nevertheless, negative dependence can be obtained from these
copulas by considering reflection of one of the uniform random variables on (0,1). If
(U1,U,) ~ C for a bivariate copula C with positive dependence, then
o (1-U,,Uz)~ C 1), where é(l (u1,uz) =uy — C(1 —uy,u,) is the 1-reflected copula of

C with negative lower-upper tail dependence;
o (Ui,1-U;z)~ ¢ , where C 2 (u1,u) =uy — C(uy,1 —u,) is the 2-reflected copula of
C with negative upper-lower dependence.

Negative upper-lower tail dependence means that ¢(1 —u,u) = O(u ') asu — 0" and
negative lower-upper tail dependence means that c(u,1 —u)=0(u""') as u — 0" (Joe,
2011).

In Figure 1, to depict the concepts of refection symmetric and asymmetric tail
dependence and quadrant tail independence, we show contour plots of the correspond-
ing copula densities with standard normal margins and dependence parameters
corresponding to a Kendall’s T value of .5. Sharper corners (relative to ellipse) indicate
tail dependence.
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BVN Frank ts

Figure 1. Contour plots of bivariate copulas with standard normal margins and dependence
parameters corresponding to a Kendall’s tvalue of .5 in absolute value.

2.2. Semi-correlations to detect tail dependence or tail asymmetry

Choices of copulas with upper or lower tail dependence are better if the observed
variables have more joint upper or lower tail probability than would be expected with the
standard factor model. This can be shown with summaries of correlations in the upper
joint tail and lower joint tail.

For continuous variables, although copula theory uses transforms to standard uniform
margins U; = F;(Y ), we convert to normal scores Z; = ® ' (U,) to check deviations from
the elliptical shape that would be expected with the BVN copula (Nikoloulopoulos, Joe, &
Li, 2012). The correlations of normal scores in the upper and lower tail (hereafter semi-
correlations) are defined as (Joe, 2014, p. 71):
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py =Cor(Z;,Z;|Z; >0,Z;,>0)
_Jo Jemizab(z)d(22)e(@(21), D(22))dz1dz — ([52(2) (1~ C21(0.5|®(2)))dz)* /€(0.5,0.5)
&2 d(z) (1= C (05]0(2)))dz — (f;°20(2) (1 — €22 (0.5]@(2)))dz)* /€(0.5,0.5)

py =Cor(Z;,Z;\|Z; <0,Z; <0)
Lm0 () (@), @(z2)dzdz — fi,ozd)(Z)Cz“(O.S\QD(z))dz)z 16(0.5,0.5)

S 22 0(2)C21 (05]0(=))dz —  [°, 20(2)C2 (0.5]0(=))dz) /€(0.5,0.5)

)

where ®(-) and ¢(-) is the univariate normal cdf and density, respectively.

Note in passing that for the BVN copula py;, = p,, and that it has a closed form (see Joe,
2014, p. 7).

From the above expressions, it is apparent that the normal scores semi-correlations
depend only on the copula C of (U; ,U; ). Table 1 has semi-correlations for all the
aforementioned bivariate parametric copulas with T = {.3,.5,.7}. From the table we can
see that py = pjy for any reflection symmetric copula, while they are different for any
reflection asymmetric one. If there is stronger upper (lower) tail dependence than with
the BVN, then the upper (lower) semi-correlation is larger.

The population versions py, py, also apply when the variables Y ; are ordinal. Under the
univariate probit model (Agresti, 2010, Section 3.3.2) Z; are standard normal underlying
latent variables, such that

Y] :y] ﬂay],IJSZJSO(y}],y]:L,K], (4)

where K is the number of categories of Y; and ay;, ..., ak,—1,; are the univariate cutpoints
(we assume ap; = —oo and ak ; = o0). Note in passing that for binary variables (K ; = 2) the
calculation of the semi-correlations is meaningless as the binary variables have no tail
asymmetries.

The sample versions of py;, py, are sample linear (when both variables are continuous),
polychoric (when both variables are ordinal), and polyserial (when one variable is
continuous and the other is ordinal) correlations in the joint lower and upper quadrants of
the two variables. The sample polychoric and polyserial correlation is defined as

n
()N = argl’l’l[i)lX leOg((Dz (ayil ’(x)’iz;p) B q)z((xyufl’(xytz;p) —®; ((Xy“ ’ayizfl;p) + @, ((xyu*l’(xyﬁ*l; p))
i=

where ©,(-,-;p) is the bivariate normal cdf with correlation p and

. n oy, — PZi1 Qy,,—1 — PZi1
Py =argmax lOg{(I)(Zil) (‘D (3’721/2> - (y—21/2>> }
i=1 (1—p?) (1—p?)

with z;; = ® ((n +1)7' Y, 1(Yy Syl.j)> , respectively.

3. Estimation

We use a two-stage copula modelling approach to the estimation of a multivariate model
that borrows the strengths of the semi-parametric and inference function for margins



372 Sayed H. Kadhem and Aristidis K. Nikoloulopoulos

Table 1. Lower semi-correlations pj, upper semi-correlations py, lower tail dependence A, and
upper tail dependence Ay, with t=1{.3,.5,.7} for one-parameter and two-parameter bivariate
copulas

Bivariate copula T 0 ) Pn e M Ao
BVN 0.3 0.45 0.23 0.23 0.00 0.00
0.5 0.71 0.47 0.47 0.00 0.00
0.7 0.89 0.75 0.75 0.00 0.00
13 0.3 0.45 0.45 0.45 0.29 0.29
0.5 0.71 0.61 0.61 0.45 0.45
0.7 0.89 0.80 0.80 0.66 0.66
Frank 0.3 292 0.15 0.15 0.00 0.00
0.5 5.74 0.32 0.32 0.00 0.00
0.7 11.41 0.60 0.60 0.00 0.00
Joe 0.3 1.77 0.05 0.58 0.00 0.52
0.5 2.86 0.14 0.78 0.00 0.73
0.7 5.46 0.37 0.92 0.00 0.86
Gumbel 0.3 1.43 0.16 0.46 0.00 0.38
0.5 2.00 0.36 0.67 0.00 0.59
0.7 3.33 0.64 0.85 0.00 0.77
BB1 0.3 0.50 1.14 0.43 0.25 0.30 0.17
0.5 0.35 1.71 0.52 0.59 0.31 0.50
0.7 1.33 2.00 0.85 0.72 0.77 0.59
BB7 0.3 1.40 0.40 0.28 0.37 0.18 0.36
0.5 1.50 1.57 0.66 0.42 0.64 0.41
0.7 4.00 2.00 0.73 0.85 0.71 0.81
BBS 0.3 3.92 0.60 0.10 0.22 0.00 0.00
0.5 4.51 0.80 0.20 0.52 0.00 0.00
0.7 6.89 0.90 0.41 0.84 0.00 0.00
BB10 0.3 1.60 0.83 0.18 0.09 0.00 0.00
0.5 2.50 0.98 0.43 0.19 0.00 0.00
0.7 10.00 1.00 0.25 0.66 0.00 0.00

(FM) approach in Genest, Ghoudi, and Rivest (1995) and Joe (2005), respectively.
Suppose that the data are Vi j=1,....d,i=1,...,n, where 7 is an index for individuals or
clusters andjis an index for the within-cluster measurements. Fori =1, ..., n, we start from
a d-variate sample y,,, ...,¥,, from which d estimators Fy(y;,),...,F4(y,,;) can be obtained.
We wuse these to transform the y,,...,y;,;, sample into a uniform sample
un =F1(»;), .., ttia=Fa(y;;) on [0, 11 and then fit the factor copula model at the
second step. For continuous and discrete data y,;, we use nonparametric and parametric
univariate distributions, respectively, to transform the data y, into copula data
u;="r; (yl]), that is, data on the uniform scale. Hence our proposed approach, in line
with the approaches in Genest et al. (1995) and Joe (2005), can be regarded as a two-step
approach on the original data or simply as the standard one-step ML method on the
transformed (copula) data.

3.1. Univariate modelling
For continuous random variables, we estimate each marginal distribution nonparamet-
rically by the empirical distribution function of Y ;, namely,
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1

F;(yy) :n—H; LYy <y;)=

Ry
n+1

K

where R;; denotes the rank of Y; as in the semi-parametric estimation of Genest et al.
(1995) and Shih and Louis (1995). Hence we allow the distribution of the continuous
margins to be quite free and not restricted by parametric families.

Nevertheless, rank-based methods cannot be used for discrete variables with copulas
(Genest & Neslehova, 2007). Hence, for both ordinal and count variables we have chosen
realistic parametric models:

e Foran ordinal response variable Y ;, we use the univariate probit model in Equation (4).
The ordinal response Y; is assumed to have density

Fi0) =@(ay,) — D(ay,-1),
where Y= (alj, ...,aK/._la,-) is the vector of the univariate cutpoints.
e For a count response variable Y ;, we use the negative binomial distribution (Lawless,
1987). This allows for over-dispersion and its probability mass function is

e+, Ve
£, = & +y) WE

e (e s 0.1,2,0, #;>0, §>0,

where v, = {pj, E j} is the vector with the mean and dispersion parameters. In the limit

& — 0 the negative binomial reduces to Poisson, which belongs to the exponential family
of distributions and is the only distribution for count data that existing latent variable
models for mixed data can accommodate.

To this end, for a discrete random variable Y ;, we approach estimation by maximizing
the univariate log-likelihoods

i) = ;logf ;)

over the vector of the univariate parameters ;. This is equivalent to the first step of the
IFM method in Joe (1997, 2005).

In line with the IFM method, if one uses a misspecified univariate model for the discrete
responses at the first step, then the estimation of the copula parameters at the second step,
deteriorates as demonstrated in Kim, Silvapulle, and Silvapulle (2007). Nevertheless, there
is no ‘correct specification’ of the margins or copula for data analysis. If one does a proper
analysis of the univariate margins for goodness of fit, then the proposed two-stage (or [IFM)
method should be fine. Kim et al. (2007) have ‘true univariate distributions for
simulations’ and ‘specified univariate distributions for estimation’ that were very far apart
and unrealistic, because the difference of the two is easily detected without too much
data.

3.2. Copula modelling

Having estimated the univariate marginal distributions, we proceed to estimation of the
dependence parameters. For the one-factor and two-factor models, welet Cx,; and Cx,; be
parametric bivariate copulas, say with dependence parameters 0; and 6;, respectively. Let
0= {yj,ej j=1,...d} and 0= {yj,Bj,6j :j=1,...,d} denote the set of all parameters for



374 Sayed H. Kadhem and Aristidis K. Nikoloulopoulos

the one- and two-factor model, respectively. Estimation can be achieved by maximizing
the joint log-likelihood

by (0) = ;long@il’ s Via:9) €G))

over the copula parameters 0; or d;j=1,...,d, with the univariate parameters/
distributions fixed as estimated at the first step of the proposed two-step estimation
approach. The estimated parameters can be obtained by using a quasi-Newton (Nash,
1990) method applied to the logarithm of the joint likelihood. This numerical method
requires only the objective function (the logarithm of the joint likelihood), while the
gradients are computed numerically and the Hessian matrix of the second-order
derivatives is updated at each iteration. The standard errors (SEs) of the estimates can
be obtained via the gradients and the Hessian computed numerically during the
maximization process. These SEs are adequate to assess the flatness of the log-likelihood.
Proper SEs that account for the estimation of univariate parameters can be obtained by
maximizing the joint likelihood in equation (5) in one step over 0.

For factor copula models numerical evaluation of the joint density fy(y;0) can be
easily done using Gauss—Legendre quadrature (Stroud & Secrest, 1966). To compute one-
dimensional integrals for the one-factor model, we use the approximation

:/ Hf]|X](y lc)dox ~ Z qufﬂX] |xq

where {x,:q=1,...,n,} are the quadrature points and {w,:q=1,...,n,} are the
quadrature weights. To compute two-dimensional integrals for the two-factor model, the
approximation uses Gauss—-Legendre quadrature points in a double sum:

11 d
=[J11f S x,j1x, Xzyy]|x1)dx1dx2
00 j=1
ng  Ng

D) Wq Wy, HfX2]|X1 (xqz,y]|qu)

q,=1q,=1

With Gauss—Legendre quadrature, the same nodes and weights are used for different
functions; this helps in yielding smooth numerical derivatives for numerical optimization
via quasi-Newton (Nash, 1990). Our comparisons show that »n, =25 is adequate with
good precision.

4. Model selection

In this section we propose a heuristic method that automatically selects the bivariate
parametric copula families that link the observed to the latent variables. This is very useful
when the direction of the tail asymmetry based on semi-correlations is not consistent or
clear. For multivariate mixed data, it is not feasible to estimate all possible combinations of
bivariate parametric copula families and compare them on the basis of information
criteria. We develop an algorithm that can quickly select a factor copula model that
accurately captures the (tail) dependence features in the data at hand. The linking copulas
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for each factor are selected with a sequential algorithm under the initial assumption that
linking copulas are Frank, and then sequentially copulas with non-tail quadrant
independence are assigned to any pairs where necessary to account for tail asymmetry
(discrete data) or tail dependence (continuous data).

For the one-factor model, the proposed model selection algorithm is summarized in
the following steps:

1. Forj=1,...,d, estimate the marginal distributions F,;(y).

2. Fit the one-factor copula model with Frank copulas to link each of the d observed
variables with the latent variable, that is, maximize the log-likelihood function of the
factor copula model in Equation (5) over the vector of copula parameters (01, ...,0,).

3. If the jth linking copula has éj >0, then select a set of copula candidates with the
ability to interpolate between independence and comonotonicity, otherwise select a
set of copula candidates with ability to interpolate between countermonotonicity
and independence.

4.Forj=1,....d:

a. fitall the possible one-factor copula models, iterating over all the copula candidates
for the jth variable;

b. select the copula family that corresponds to the lowest information criterion, say
the Akaike, that is, AIC = —2 X / 4 2 X #copula parameters;

c. fix the selected linking copula family for the jth variable.

For more than one factor we can select the appropriate linking copulas accordingly.
We first select copula families in the first factor, and then we proceed to the next factor
and apply exactly the same algorithm.

5. Techniques for parametric model comparison and goodness of fit

Factor copula models with different bivariate linking copulas can be compared via the log-
likelihood or AIC at the maximum likelihood estimate. In addition, we will use Vuong’s
test (Vuong, 1989) to show if a factor copula model provides a better fit than the standard
factor model with a latent additive structure, that is a factor copula model with BVN
bivariate linking copulas (Krupskii & Joe, 2013; Nikoloulopoulos & Joe, 2015). Vuong'’s
test is the sample version of the difference in Kullback—Leibler divergence between two
models and can be used to differentiate two parametric models which could be non-
nested. This test has been used extensively in the copula literature to compare vine copula
models (e.g., Brechmann, Czado, & Aas, 2012; Joe, 2014; Nikoloulopoulos, 2017). We
provide specific details in Section 5.1.

Furthermore, to assess the overall goodness of fit of the factor copula models for mixed
data, we will make appropriate use of the limited information M, statistic (Maydeu-
Olivares & Joe, 2006). The M, statistic has been developed for goodness-of-fit testing in
multidimensional contingency tables. Nikoloulopoulos and Joe (2015) has used the M,
statistic to assess the goodness of fit of factor copula models for ordinal data. We build on
the aforementioned papers and propose a methodology to assess the overall goodness of
fit of factor copula models for mixed continuous and discrete responses. We provide the
specifics for the M, statistic in Section 5.2.
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5.1. Vuong’s test for parametric model comparison

In this subsection we summarize Vuong’s test for comparing parametric models (Vuong,
1989). Assume that we have models 1 and 2 with parametric densities fg ) and fg? ,
respectively. We can compare

3 £ toafv(y) ~Eylogsy (v,00) |

AlfY = n_l

il @) ]
Apry=n > {Efylong(Yi) —Eslogfy (Yi;OZ)}

Li=1

where 0,0, are the parameters in models 1 and 2, respectively, that lead to the closest
Kullback—Leibler divergence to the true f; equivalently, they are the limits in probability
of the ML estimates based on models 1 and 2, respectively.

Model 1 is closer to the true fy, i.e., it is the better-fitting model if A = Ay — Ay <O,

and model 2 is the better-fitting model if A > 0. The sample version of A with ML estimates
91 , 92 is

n
D: ZD,‘/?’Z,
i=1

where D; =log [ fg ) (v,:02)/ fg ) (v,:01) |. Vuong (1989) has shown that asymptotically

vVnD/s~N(0,1),

where s2=(n—1)"'Y" (D;—D)’. Hence, its 95% confidence interval (CD) is
D+1.96 x 0.

7

5.2. M; goodness-of-fit statistic
Since the M statistic has been developed for multivariate ordinal data (Maydeu-Olivares &

Joe

, 2006), we propose to first transform the continuous and count variables to ordinal

and then calculate the M, statistic at the ML estimate before transformation.

Continuous variables can be transformed to ordinal with categories that are

meaningful both practically and scientifically. If this is not the case, we propose an
unsupervised strategy of transforming a continuous into an ordinal variable:

1.
2.

Set the number of ordinal categories K ;.

Transform Y; into a standard uniform random variable U; using its empirical

distribution function.

. Set the ordinal cutpoints on the uniform scale by generating a regular sequence from
1 to K; — 1 and then dividing by K ;.

. Divide the range of U; into intervals with the ordinal cutpoints as breaks.

. Transform U into an ordinal variable Y ; according to the interval in which its values

fall.

Count variables that contain very high or very low counts can be treated as ordinal

where the first or the last category contains all the low or high counts, respectively, and
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their other values remain as they are. We further propose an unsupervised strategy for
categorizing a count into an ordinal variable:
1. Set the number of ordinal categories K ;.
2. Divide the range of Y’; into intervals with a regular sequence of length K; + 1 from
min(Y;) to max(Y) as breaks.
3. Transform Y'; into an ordinal variable according to the interval in which its values fall.

After applying the transformations as above for each continuous or count variable, we
have d ordinal variables Y, ..., Y, (both the original and the transformed ones) where the
Jth (1 <j <d) variable consists of K; > 2 categories labelled 0,1, ...,K; — 1. Consider the
set of univariate and bivariate residuals that do not include category 0. This is a residual
vector of dimension

s= i([(]‘—l)-F Y (K —1)(K;—1).

J=1 1<j,<j,<d

For a factor copula model with parameter vector 0 of dimension ¢, let
70,(0) = (7,(0)", 7, (O)T)T be the column vector of the model-based marginal probabilities
with 71, (0) the vector of univariate marginal probabilities, and 712 (0) the vector of bivariate
marginal probabilities. Also, let p, = (plT , pg )T be the vector of the observed sample
proportions, with p, the vector of univariate marginal proportions, and p, the vector of
the bivariate marginal proportions.

With a sample size 7, the limited information statistic M, is given by

My =M (6) = n(p, — 1)) C2(0)(p, —m2(0)), ©)

with
. . A\ 1 .
C2(0) ="~ ;' Ax(A12; ) Al = A 1AV 2 AV,

where A, =0m,(0)/00" is an s x g matrix with the derivatives of all the univariate

and bivariate marginal probabilities with respect to the model parameters, Agc)is

T
an sx(s—gqg) orthogonal complement to A, such that [Agc)] A, =0, and

E, = diag(m,(0)) — 7,(8)7,(0)” is the s X s covariance matrix of all the univariate and
bivariate marginal sample proportions, excluding category 0. Due to equality in (7), C; is
invariant to the choice of orthogonal complement. The limited information statistic M,
has a null asymptotic distribution that is y* with s —g degrees of freedom when the
estimate 0 is \/n-consistent. For details on the computation of E, and A, for factor copula
models we refer the interested reader to Nikoloulopoulos and Joe (2015).

6. Applications

In this section we illustrate the proposed methodology by reanalysing three mixed
response data sets.

Initially, we use the diagnostic method in Joe (2014, pp. 245-246) to show that each
data set (or, more precisely, the correlation matrix of the observed variables for each data
set) has a factor structure based on linear factor analysis. The correlation matrix Ropgerved
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has been obtained based on the sample correlations from the bivariate pairs of the
observed variables. These are the linear (when both variables are continuous), polychoric
(when both variables are discrete), and polyserial (when one variable is continuous and
the other is discrete) sample correlations among the observed variables. The resulting
Robserved 15 generally positive definite if the sample size is not small enough; if not, one has
to convert it to positive definite. We calculate various measures of discrepancy between
Robserved and Ryoder (the resulting correlation matrix of linear factor analysis), such as the
maximum absolute correlation difference D; = max|Rmodel — Robserved|, the average
absolute correlation difference D; = avg|Rpmodel — Robserved|, and the correlation matrix
discrepancy measure D3 = log(det(Rmodet)) — log(det(Ropserved) ) + tr(R} o Robserved) — d.

After confirming that a factor model with a parsimonious correlation structure is
reasonable, we calculate the semi-correlations for each pair of observed variables to check
if there is tail asymmetry. This will be useful information for choosing potential parametric
bivariate copulas other than the BVN copulas that lead to the standard factor model. Note
that when the variables are negatively associated we calculate the sample semi-
correlations in the lower-upper and upper-lower quadrant.

Having discussed why more flexible dependencies are needed in cases of mixed data
and how those dependencies in the data can be captured by suitable bivariate copulas, we
proceed with factor copula models and construct a plausible factor copula model, to
capture any type of reflection asymmetric dependence, by using the proposed algorithm
in Section 4. For a baseline comparison, we first fit the factor copula models with the
comprehensive bivariate parametric copula families that allow for reflection symmetric
dependence; these are the BVN, Frank, and ¢, copulas. For ¢, copulas, we summarize the
choice of integer v with the largest log-likelihood. For the standard two-factor model, to
obtain a unique solution we must impose sufficient constraints. One parameter for the
second factor can be set to zero and the likelihood can be maximized with respect to the
other 2d — 1 parameters. We report the varimax transform (Kaiser, 1958) of the loadings
(areparametrization of the 2d parameters), converted to factor copula parameters via the
relations

B

—_—, ®
(1-p2)""

0;=P;, 8=

where 3, and f ;, are the loadings at the first and second factor, respectively (Krupskii &
Joe, 2013; Nikoloulopoulos & Joe, 2015).

If the number of parameters is not the same between the models, we use the AIC as a
rough diagnostic measure of goodness of fit between the models, otherwise we use the
likelihood at the ML estimates. We further compute Vuong'’s tests with model 1 as the
factor copula model with BVN copulas (i.e., the standard factor model) to reveal if any
other factor copula model provides better fit than the standard factor model. To make it
easier to compare strengths of dependence, we convert the estimated parameters to
Kendall’s tsin (—1, 1) via the relations in Joe (2014, Chapter 4); SEs are also converted via
the delta method. For the model that provides the best fit, we provide the estimates and
SEs that are obtained by maximizing the joint likelihood in equation (5) in one step over 0.
Although the two-stage estimation approach in Section 3 is a convenient way to quickly
compare candidate factor copula models, the full likelihood is applied for the best-fitting
factor copula model. The overall fit of the factor copula models is evaluated using the A,
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statistic. Note that the M, statistic in the case with 2d —1 copulas (one set to
independence for the second factor) is computed with A, having one less column .

6.1. Political-economic data set

Quinn (2004) considered measuring the (latent) political-economic risk of 62 countries
for the year 1987. The political-economic risk is defined as the country’s risk in
manipulating economic rules for its own and its constituents’ advantage (see, for example,
North & Weingast, 1989). Quinn (2004) used five mixed variables, namely, the black-
market premium in each country (continuous, used as a proxy for illegal economic
activity), productivity as measured by real gross domestic product per worker at 1985
international prices (continuous), the independence of the national judiciary (binary; 1 if
the judiciary is judged to be independent and O otherwise), and two ordinal variables
measuring the lack of expropriation risk and lack of corruption. The data set and a
complete description thereof can be found in Quinn (2004) or in the R package
MCMCpack (Martin, Quinn, & Park, 2011). Note that since the black-market premium is
negatively associated with the remaining variables (from the context), we reorient it,
leading to positive dependence among all the observed variables.

Table 2 shows that the sample correlation matrix of the mixed responses has a one-
factor structure based on linear factor analysis (large D3 is due to the small sample size as
demonstrated using simulated data in Section 7). The sample semi-correlations in Table 2
show that there is more probability in the upper tail or lower tail compared with a
discretized MVN, suggesting that a factor model with bivariate parametric copulas with
upper or lower tail dependence might provide a better fit. Table 3 gives the estimated
parameters, their SEs on Kendall’s 7 scale, joint log-likelihoods, the 95% CIs of Vuong'’s

Table 2. The sample correlation p,, lower semi-correlation p,, and upper semi-correlation py, for
each pair of variables, along with the measures of discrepancy between the sample and the resulting
correlation matrix of linear factor analysis with one and two factors for the political-economic risk
data

Pairs of variables PN Py Py
BM GDP .53 —-.04 .57
BM Iy 61 - -
BM XPR .67 .88 .63
BM CRP .62 .16 .55
GDP U 78 - -
GDP XPR .55 11 .75
GDP CRP 77 24 .63
] XPR 91 - -
] CRP 87 - -
XPR CRP .76 71 71
No. of factors D, D, Ds
1 0.16 0.04 0.91
2 0.06 0.01 0.22

Note. BM, black-market premium; CRP, lack of corruption, GDP, gross domestic product; IJ,
independent judiciary; XPR, lack of expropriation risk.
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Table 3. Estimated parameters, their standard errors (SE) on Kendall’s 7 scale, joint log-likelihoods,
the 95% ClIs of Vuong’s statistics, and the M statistics for the one-factor copula models for the
political-economic risk data

BVN* ts Frank Selected model
One-factor T SE T SE T SE Copulas T SE
BM 050 0.06 0.1 0.07 0.49 0.06 Joe 0.51 0.05
GDP 0.57 0.05 0.57 0.06 0.58 0.06 Joe 0.58 0.05
I 0.80 0.09 0.81 0.09 0.75 0.09 Reflected Joe 0.80 0.07
XPR 0.66 0.06 0.68 0.07 0.66 0.06 Joe 0.69 0.06
CRP 0.71 0.06 0.70 0.06 0.72 0.06 Gumbel 0.74 0.06
l -165.15 -166.25 —164.89 —-151.98
Vuong 95% CI (=0.051,0.015)  (—0.077,0.085)  (0.073,0.352)
M 179.2 187.4 177.6 129.2
df 134 134 134 134
p-value <.01 <.01 <.01 .60

Notes. BM, black-market premium; GDP, gross domestic product; IJ, independent judiciary; XPR,
lack of expropriation risk; CRP, lack of corruption.
*The resulting model is the same as the standard factor model.

tests, and the M, statistics for the one-factor copula models. Table 3 also indicates the
parametric copula family chosen for each pair using the proposed heuristic algorithm.
Copulas with asymmetric dependence are selected for all the copulas that link the latent
variable to each of the observed variables. Hence, it is revealed that there are features in
the data such as tail dependence and asymmetry which cannot be captured by copulas
with reflection symmetric dependence such as BVN, Frank, and #, copulas.

In all the fitted models the estimated Kendall’s ts are similar. Kendall’s T only accounts
for the dependence dominated by the middle of the data, and it is expected to be similar
among different families of copulas. However, the tail dependence and tail order vary, as
explained in Section 2.1, and they are properties to consider when choosing among
different families of copulas (Nikoloulopoulos & Karlis, 2008).

The table shows that the selected model using the proposed algorithm provides the
best fit and there is a substantial improvement over the standard factor model as indicated
by the Vuong and M, statistics. To compute the M, statistics we transformed the
continuous variables to ordinal with five categories using the unsupervised strategy in
Section 5.2; similar inference was drawn when we transformed them to ordinal with 3, 4,
or 6 categories. The factor copula parameter of 0.51 on negative black market premium
indicates a negative association between the illegal economic activity and the latent
variable. All the other estimated factor copula parameters indicate a positive association
between each of the other observed variables (independent judiciary, productivity, lack of
expropriation, and lack of corruption) with the latent variable. Hence, we can interpret
the latent variable to be political-economic certainty.

6.2. General Social Survey
Hoff (2007) analysed seven demographic variables for 464 male respondents to the 1994
General Social Survey. Of these seven, two were continuous (income and age of the
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respondents), three were ordinal with five categories (highest degree of the survey
respondent, income and highest degree of respondent’s parents), and two were count
variables (number of children of the survey respondent and respondent’s parents). The
data are available in Hoff (2007, supplementary materials).

Table 4 shows that the sample correlation matrix of the mixed responses has a two- or
even three-factor structure based on linear factor analysis. The direction of the tail
asymmetry based on sample semi-correlations in Table 4 is not consistent, and this shows
the usefulness of the proposed model selection technique. Table 5 gives the estimated
parameters, their SEs on Kendall’s 7 scale, the joint log-likelihoods, the 95% Cls of Vuong’s
tests, and the M, statistics for the one-factor and two-factor copula models. The best fit for
the one-factor model is based on the bivariate copulas selected by the proposed algorithm,
where there is improvement over the factor copula model with BVN copulas according to
Vuong’s statistic. However, assessing the overall goodness of fit via the M, statistic, it is
revealed that one latent variable is not adequate to explain the dependencies among the
mixed responses. To apply the M, statistic, age and income were transformed to ordinal
with four (18-24, 25-44, 45-64, and 65+) and five (0-10, 11-19, 20-29, 30-40, and 41+)

Table 4. The sample correlation py, lower semi-correlation pj,, and upper semi-correlation py, for
each pair of variables, along with the measures of discrepancy between the sample and the resulting
correlation matrix of linear factor analysis with 1, 2, and 3 factors for the General Social Survey data
set

Pairs of variables PN Pn e
Income Age .29 48 23
Income Degree .52 24 33
Income Pincome 14 .02 .28
Income Pdegree .24 .04 .08
Income Child .22 .23 .01
Income Pchild —.09 .06 .00
Age Degree .06 22 —.04
Age Pincome —.11 —.02 A2
Age Pdegree —.14 —.42 44
Age Child .58 .36 .26
Age Pchild 12 .18 .07
Degree Pincome 21 17 —.05
Degree Pdegree .46 .46 41
Degree Child —.11 —.10 —.09
Degree Pchild —.25 —.14 —.30
Pincome Pdegree 44 44 34
Pincome Child —.16 —.15 11
Pincome Pchild —.23 13 —.30
Pdegree Child —.21 .08 .10
Pdegree Pchild —.34 .19 —-.32
Child Pchild .20 —.11 —.06
No. of factors D, D, D;

1 0.55 0.09 0.82
2 0.15 0.03 0.13
3 0.02 0.00 0.00
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Table 5. Estimated parameters, their standard errors (SE) on Kendall’s 7 scale, joint log-likelihoods,
the 95% ClIs of Vuong’s statistics, and the M statistics for the one- and two-factor copula models for
the General Social Survey data set

BVN® ty Frank Selected model
One-factor T SE 7 SE T SE Copulas 71 SE
Income 0.20 0.04 0.20 0.04 0.20 0.04 Joe 0.29 0.04
Age —0.14 0.04 -—-0.14 0.04 —0.14 0.04 2rJoe —0.14 0.03
Degree 040 0.04 0.39 0.04 0.38  0.04 t3 0.45 0.04
Pincome 0.33 0.03 0.34 0.04 0.35 0.04 3 0.33 0.05
Pdegree 0.62 0.05 0.65 0.05 0.68 0.06 rGumbel 0.56  0.05
Child —0.20 0.04 —-0.19 0.04 —-0.19 0.04 2rJoe —0.14 0.03
Pchild —0.32 0.03 -—-0.31 0.04 —0.32 0.04 2rGumbel —-0.27 0.03
l —3,425.39 —3,420.56 —3,433.83 -3,397.79
Vuong 95% CI (—0.005, —0.025)  (—0.037,0.001) (0.022,0.097)
M, 743.74 715.45 738.76 660.47
df 348 348 348 348
p-value <.001 <.001 <.001 <.001
BVN* to Frank Selected model
Two-factor T T T SE Copulas T SE
First factor
Income 0.36 0.35 0.13 0.04 rGumbel  0.34 0.03
Age —0.05 —0.06 0.50 0.05 tJoe 0.49 0.03
Degree 0.55 0.53 —-0.12 0.04 BVN 0.18 0.04
Pincome 0.27 0.28 —-0.21 0.04 1rJoe —0.13 0.04
Pdegree 0.48 0.50 —0.31 0.05 1tJoe —-0.13 0.04
Child —0.13 —0.14 0.52 0.05 Joe 0.44 0.04
Pchild —0.28 —0.28 0.23 0.04 Gumbel 0.11 0.03
Second factor
Income 0.38 0.41 0.50 0.06 Gumbel 0.40 0.04
Age 0.54 0.55 0.21 0.04 2rjoe —-0.14 0.03
Degree 0.14 0.17 0.57 0.07 rJoe 0.65 0.06
Pincome —0.09 —0.08 0.23 0.04 Gumbel 0.30 0.04
Pdegree —0.16 —0.14 0.44  0.05 ts 0.49 0.04
Child 0.53 0.53 0.08 0.04 BVN —0.24 0.04
Pchild 0.13 0.10 —0.24 0.04 2rGumbel —0.26 0.03
l —3,286.80 —3,278.88 —3,300.07 —3,235.86
Vuong 95% CI (—0.004, —0.038)  (—0.058,0.001) (0.061,0.159)
M, 471.47 461.70 492.37 370.61
df 342 342 341 341
p-value <.001 <.001 <.001 0.13

Note. “The resulting model is the same as the standard factor model. pdemographic: demographic
variable of respondent’s parents. rCopula: reflected copula; 1rCopula: 1-reflected copula; 2rCopula:
2-reflected copula.
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categories, respectively, and the numbers of children of the survey respondent and
respondent’s parents were treated as ordinal where the fourth (more than 3 children) and
eighth (more than 7 children) category, respectively, contained all the high counts.

The two-factor copula models with BVN, #,, and Frank copulas provide some
improvement over the one-factor copula models, but according to the M, statistic they
still have a poor fit. Note that the factor copula model with #9 copulas was not identifiable
(large SEs) in line with Nikoloulopoulos and Joe (2015), hence one parameter for the
second factor was set to zero and the likelihood was maximized with respect to the
remaining parameters. We report the varimax transform (Kaiser, 1958) of the loadings,
converted to factor copula parameters via the relations in (8).

The selected two-factor copula model using the algorithm in Section 4 shows
improvement over the standard factor model according to Vuong’s statistic and better fit
according to the M statistic; it changes a p-value less than .001 to one greater than .10. For
the two-factor model based on the proposed algorithm for model selection, note that,
without the need for a varimax rotation, the unique loading parameters (s converted to
normal copula parameters éj and & ; and then to loadings using the relations in (8)) show
that one factor is loaded only on the demographic variables of the respondent’s parents.

6.3. Swiss Consumption Survey

Irincheeva et al. (2012b) considered measuring the latent variable ‘financial wealth of the
household’ in its different realizations by analysing seven household variables of
n=9,960 respondents to the Swiss Consumption Survey. Out of these seven, three were
continuous (food, clothing and leisure expenses), three were binary (dishwasher, car, and
motorcycle), and one was a count variable (the number of bicycles in of the household’s
possession).

With simple descriptive statistics such as scatter plots of the original data, Irincheeva
et al. (2012b), have shown that these mixed responses have reflection asymmetric
dependence, and fitted their latent variable approach with one and two latent variables. In
Figure 2 we depict the bivariate normal scores plots for the continuous data along with
their correlations and semi-correlations. With a bivariate normal scores plot one can check
for deviations from the elliptical shape that would be expected with the BVN copula, and
hence assess if tail asymmetry and tail dependence exist on the data. For all the pairs the
upper semi-correlation is larger, and interestingly, contrasting the bivariate normal scores
plots in Figure 2 with the contour plots in Figure 1, it is apparent that for the continuous
variables the linking copulas might be the BB10 copulas.

Table 6 shows that the sample correlation matrix of the mixed responses has a two-
factor structure based on linear factor analysis. The sample semi-correlations in Table 6
show that there is more probability in the upper tail and lower tail among the continuous
variables and between each of the continuous variables with the count variable,
respectively, suggesting that a factor model with bivariate parametric copulas with
asymmetric tail dependence might provide a better fit. Table 7 gives the estimated
parameters, their SEs on Kendall’s tau scale, the joint log-likelihoods, the 95% ClIs of
Vuong’s tests, and the M, statistics for the one-factor and two-factor copula models. The
best-fitting one- and two-factor models result when we use BB10 copulas with asymmetric
quadrant tail independence to link the latent variable to each of the continuous observed
variables, and copulas with lower tail dependence to link the latent variables to the
discrete observed variables. Once again the one-factor copula model is not adequate to
explain the dependence among the mixed responses based on the M, statistic (Table 7,
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Figure 2. Bivariate normal scores plots, along with correlations and semi-correlations for the
continuous data from the Swiss Consumption Survey.

one factor). To apply the M, statistic, we transformed the continuous variables to ordinal
with three categories using the unsupervised strategy in Section 5, and the count variable
bicycle was treated as ordinal where the sixth category contained all the high counts (five
bicycles or more).

While it is revealed that the selected two-factor copula model is the best model (lowest
AIC) and there is substantial improvement over the standard two-factor model, it is not
apparent from the M, statistic that the response patterns are satisfactorily explained by
even two latent variables. This is not surprising since one should expect discrepancies
between the postulated parametric model and the population probabilities, when the
sample size is sufficiently large (Maydeu-Olivares & Joe, 2014). In Table 8 we list the
maximum deviations of observed and expected counts for each bivariate margin, that
is, Djj,=nmaxy , [P, ;0 —Tj i, (8)|. From the table, it is revealed, that there is
no misfit. The maximum discrepancy occurs between the continuous variables food and
leisure. For this bivariate margin, the discrepancy of 509/9,960 maximum occurs in the
BVN factor copula model, while this drops to 133/9,960 in the selected two-factor copula
model.
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Table 6. The sample correlation py, lower semi-correlation py,, and upper semi-correlation py, for
each pair of variables, along with the measures of discrepancy between the sample and the resulting
correlation matrix of linear factor analysis with 1, 2, and 3 factors for the Swiss Consumption Survey
data set

Pairs of variables Py Py e
Food Clothes .65 21 .76
Food Leisure .60 .18 .76
Food Dishwasher 31 - -
Food Car .38 - -
Food Motorcycle A1 - -
Food Bicycles 21 22 .02
Clothes Leisure 52 .02 .63
Clothes Dishwasher .23 - -
Clothes Car 25 - -
Clothes Motorcycle .07 - -
Clothes Bicycles .18 15 .02
Leisure Dishwasher 24 - -
Leisure Car .18 - -
Leisure Motorcycle .01 - -
Leisure Bicycles .08 .04 .08
Dishwasher Car 43 - -
Dishwasher Motorcycle .03 - -
Dishwasher Bicycles 24 - -
Car Motorcycle .18 - -
Car Bicycles .26 - -
Motorcycle Bicycles 21 - -
No. of factors D, D, D;
1 0.27 0.06 0.26
0.12 0.02 0.06
3 0.03 0.01 0.01

For the selected two-factor model based on the proposed algorithm, note that, without
the need for a varimax rotation, the unique loadings show that one factor is loaded only on
the discrete variables (dishwasher, car, motorcycle, and bicycles), while both factors are
loaded on the continuous variables (food, clothes, and leisure). This shows that the one
latent variable which is only associated with the continuous variables measures expenses,
while the other which is associated with all the mixed variables measures possession.

7. Simulations

An extensive simulation study was conducted to (a) examine the performance of the
diagnostics to show that the correlation matrix of the simulated variables has a factor
structure, (b) check the small-sample efficiency of the sample versions of py;, pj(,, P> (©
gauge the small-sample efficiency of the proposed estimation method and investigate the
misspecification of the bivariate pair copulas, (d) examine the reliability of using the
heuristic algorithm to select the correct bivariate linking copulas, and (e) study the small-
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Table 7. Estimated parameters, their standard errors (SE) on Kendall’s 7 scale, joint log-likelihoods,
the 95% ClIs of Vuong’s statistics, and the M statistics for the one- and two-factor copula models for
the Swiss Consumption Survey data set

BVN?* ts Frank Selected model
One-factor T SE 1 SE 1 SE Copulas T SE
Food 0.69 0.01 0.73 0.01 0.74 0.01 Reflected BB1I0 0.79 0.00
Clothes 0.53 0.01 0.53 0.01 0.53 0.01 BBI1O 0.38 0.00
Leisure 0.47 0.01 0.50 0.01 0.50 0.01 BBI10 0.39 0.00
Dishwasher 0.24 0.01 0.25 0.01 0.23 0.01 Reflected Joe 0.28 0.01
Car 0.27 0.01 0.30 0.01 0.28 0.01 Reflected Joe 0.23 0.01
Motorcycle 0.07 0.01 0.06 0.01 0.08 0.01 Reflected Joe 0.13 0.01
Bicycles 0.15 0.01 0.15 0.01 0.16 0.01 Reflected Joe 0.17 0.01
AIC 55,004.24  54,221.36 55,105.88 48,932.32
Vuong 95% CI (0.032,0.040) (—0.015,0.005) (0.286,0.324)
M, 2,775.73 2,734.05 2,808.53 1,626.54
daf 71 71 71 68
p-value <.001 <.001 <.001 <.001
BVN* 15 Frank Selected model
Two-factor T T SE 1 SE Copulas T SE
First factor
Food 0.61 0.34 0.03 0.48 0.01 BBI10 0.38 0.00
Clothes 0.51 0.32 0.03 0.42 0.01 BBI10 0.36 0.01
Leisure 0.49 0.35 0.02 0.42 0.01 BBI10 0.38 0.01
Dishwasher 0.14 —0.07 0.03 0.08 0.01 reflected Joe 0.19 0.02
Car 0.12 —-0.13 0.03 0.07 0.01 reflected Joe 0.10 0.01
Motorcycle 0.01 —-0.10 0.02 —0.08 0.01 Frank 0.02 0.01
Bicycles 0.07 —-0.10 0.02 -0.05 0.01 Frank 0.04 0.01
Second factor
Food 0.36 0.66 0.01 0.66 0.01 BBI10 0.53 0.01
Clothes 0.18 0.46 0.02 0.40 0.01 BVN 0.28 0.01
Leisure 0.07 0.41 0.02 0.36 0.01 BBI10O 0.30 0.01
Dishwasher 0.33 0.37 0.01 0.26 0.01 BVN 0.42 0.01
Car 0.48 0.46 0.02 0.36 0.01 reflected Joe 0.35 0.01
Motorcycle 0.19 0.15 0.01 0.21 0.02 reflected Joe 0.17 0.01
Bicycles 0.27 0.27 0.01 0.31 0.01 reflected Gumbel 0.27 0.01
AIC 54,245.91 53,482.23 53,514.75 46,233.00
Vuong 95% CI (0.032,0.045) (0.028,0.040) (0.386,0.419)
M, 1,920.27  1,886.66 1,945.07 450.32
daf 65 64 64 59
p-value <.001 <.001 <.001 <.001

Note. *The resulting model is the same as the standard factor model.

sample performance of the M, statistic after transforming the continuous and count
variables to ordinal.

We randomly generated samples of size 7 = {100,300, 500} from each of the selected
one- and two-factor copula models in the three application examples in Section 6. We set
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Table 8. Maximum deviations D ;, of observed and expected counts for each bivariate margin
(j1.,) for the one- and two-factor copula models for the Swiss Consumption Survey data set

One-factor model Two-factor model
D; BVN ts Frank Selected BVN t; Frank Selected
D, 347 317 303 167 349 311 270 40
D3 511 468 456 183 509 460 428 133
D, 4 158 177 163 70 159 185 161 56
D5 231 189 223 119 233 181 230 60
D6 87 117 88 60 87 130 72 12
D, 5 78 92 79 88 78 110 89 81
D3 442 418 431 69 433 403 393 54
D, 4 59 80 84 145 38 56 64 86
D;s 96 107 107 201 60 47 93 36
D¢ 18 3 18 27 19 15 29 39
D~ 51 76 60 83 49 91 52 61
Ds 4 182 146 141 196 253 216 168 83
D; s 82 105 106 191 59 13 83 61
D;¢ 59 58 69 71 13 23 27 45
Ds - 62 54 64 103 65 67 69 59
Dys 289 276 286 223 66 74 207 2
Dy 9 5 11 29 133 138 100 96
Dy~ 82 81 81 88 28 20 46 54
Ds ¢ 111 123 111 77 15 22 19 20
Ds - 101 96 95 68 33 25 40 64
D 7 70 74 70 61 80 96 87 52

the type of the variables, the univariate margins and the bivariate linking copulas, along
with their univariate and dependence parameters to mimic the real data. Binary variables
do not have tail asymmetries, hence parametric copulas are less distinguishable. Therefore
instead of binary, we simulated from ordinal variables with three equally weighted
categories.

Table 9 contains the simulated means and standard deviations (§Ds) of the discrepancy
measures Dy, D, and D3. The resulting summaries show that all the discrepancy measures
correctly recognize both that the correlation structure has a factor structure and the
number of factors. Among the discrepancy measures, D, performs well even for a small
sample size (n = 100), while this is not the case for D; and D; which require larger sample
sizes to successfully determine the number of adequate factors.

To check the small-sample efficiency of the sample versions of py, py, and py we
generated 10% random samples of size 7 ={100,300,500} from all the aforementioned
bivariate copulas that join the distributions of two continuous variables, two ordinal
variables, one continuous and one ordinal variable, one continuous and one count
variable, one ordinal and one count, and two count variables with small (t = .3), moderate
(t =.5) and strong dependence (t =.7). Representative results are shown in Table 10 for
the Gumbel copula. Note that the count variable was treated as ordinal with five
categories, where the fifth category contained all the counts greater than 3. The resulting
biases, root mean square errors (RMSEs), and $Ds, scaled by 7, show the estimation of the
correlations and semi-correlations is highly efficient. Note in passing that because only
part of the data is used in computing sample semi-correlations, their variability is larger
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Table 9. Small sample of size n = {100,300,500} simulations (1 04 replications) from the selected
factor copula models in Section 6 to assess the measures of discrepancy Dy, D,, and D3 between the
observed and the resulting correlation matrix of linear factor analysis for 1, 2, and 3 factors, with
resulting means and standard deviations (SD)

Dl DZ D3

n No. of factors Mean SD Mean SD Mean SD

Political-economic data set — one-factor model

100 1 0.061 0.027 0.016 0.006 0.101 0.071
2 0.022 0.016 0.004 0.003 0.014 0.023
300 1 0.038 0.017 0.010 0.004 0.036 0.023
2 0.011 0.008 0.002 0.002 0.004 0.005
500 1 0.033 0.014 0.009 0.003 0.024 0.015
2 0.009 0.006 0.002 0.001 0.002 0.003
General Social Survey — one-factor model
100 1 0.178 0.048 0.048 0.010 0.192 0.074
2 0.119 0.037 0.025 0.006 0.077 0.039
3 0.066 0.030 0.010 0.004 0.021 0.016
300 1 0.104 0.028 0.028 0.006 0.062 0.023
2 0.068 0.021 0.015 0.004 0.024 0.012
3 0.036 0.017 0.006 0.002 0.006 0.005
500 1 0.081 0.022 0.022 0.004 0.038 0.014
2 0.053 0.016 0.012 0.003 0.014 0.007
3 0.028 0.013 0.005 0.002 0.004 0.003
Swiss Consumption Survey — one-factor model
100 1 0.223 0.059 0.059 0.011 0.291 0.101
2 0.144 0.046 0.029 0.007 0.106 0.053
3 0.077 0.035 0.011 0.004 0.028 0.022
300 1 0.162 0.044 0.045 0.007 0.156 0.044
2 0.091 0.030 0.018 0.005 0.036 0.019
3 0.044 0.021 0.007 0.003 0.009 0.007
500 1 0.150 0.039 0.041 0.006 0.130 0.032
2 0.071 0.024 0.014 0.004 0.022 0.011
3 0.034 0.016 0.005 0.002 0.005 0.004
General Social Survey — two-factor model
100 1 0.360 0.066 0.102 0.018 0.691 0.183
2 0.117 0.042 0.027 0.007 0.118 0.059
3 0.059 0.028 0.010 0.004 0.028 0.023
300 1 0.332 0.045 0.101 0.012 0.573 0.103
2 0.066 0.023 0.017 0.004 0.042 0.021
3 0.033 0.015 0.006 0.003 0.009 0.008
500 1 0.326 0.037 0.101 0.010 0.552 0.078
2 0.052 0.017 0.014 0.004 0.027 0.014
3 0.026 0.012 0.005 0.002 0.006 0.005
Swiss Consumption Survey — two-factor model
100 1 0.249 0.070 0.060 0.013 0.343 0.129
2 0.130 0.047 0.026 0.007 0.111 0.056
3 0.065 0.031 0.010 0.004 0.028 0.023
300 1 0.200 0.047 0.048 0.009 0.198 0.061
2 0.075 0.028 0.017 0.004 0.040 0.020

Continued
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Table 9. (Continued)

D, D, D;
n No. of factors Mean SD Mean SD Mean SD
3 0.036 0.017 0.006 0.003 0.009 0.007
500 1 0.191 0.038 0.046 0.007 0.171 0.045
2 0.059 0.021 0.014 0.004 0.026 0.013
3 0.027 0.013 0.005 0.002 0.006 0.005

than the correlations. However, if there is a consistent direction to the tail asymmetry

based on semi-correlations, this is useful information for choosing potential bivariate

parametric copulas.

Table 11 contains the resulting biases, RMSEs, and $Ds, scaled by #, for the estimates
obtained using the estimation approach in Section 3. The results show that the proposed
estimation approach is highly efficient according to the simulated biases, SDs, and RMSEs.
We further investigated the misspecification of the bivariate pair copulas by deriving the
same statistics but from the one-factor model with BVN pair copulas @.e., the standard
one-factor model). Once again, the simulated data are based on the selected one-factor
copula models in Section 6. Table 12 contains the resulting biases, RMSEs, and SDs, scaled
by n. The results show that the Kendall’s tau estimates are not robust to pair-copula
misspecification if the true (simulated) factor copula model has different dependence in
the middle of the data (e.g., when the BB10 copulas that can provide a non-convex shape
of dependence; see Figure 1) are used to specify the true factor copula model (Table 12,
Swiss Consumption Survey). As we have already mentioned, the Kendall’s T only accounts
for dependence dominated by the middle of the data, and it is expected to be similar
among parametric families of copulas that provide a convex shape of dependence
(Table 12, political-economic data set and General Social Survey).

Table 13 contains four common nominal levels of the M, statistic under the factor
copula models for mixed data. We transformed the continuous and count variables to
ordinal with K = {3,4,5} and K = {3,4} categories, respectively, using the unsupervised
strategies proposed in Section 5.2. We also transformed the count variables to ordinal
with K =5 categories by treating them as ordinal, where the fifth category contained all
the counts greater than 3. As the observed levels are close to nominal levels, it is
demonstrated that the M, statistic remains reliable for mixed data and that the information
loss under transformation to ordinal is minimal.

Table 14 presents the number of times the true bivariate parametric copulas were
chosen over 100 simulation runs. If the true copula has distinct dependence properties
with medium to strong dependence, then the algorithm performs extremely well as the
sample size increases. Low selection rates occur if the true copulas have low dependence
or similar tail dependence properties, since it is then difficult to distinguish among
parametric families of copulas (Nikoloulopoulos & Karlis, 2008). For example,

e in the results from the two-factor model for the General Social Survey, the true copula
for the first continuous variable (first factor) is the reflected Gumbel with T = .34 and is
only selected a very small number of times. The algorithm instead selected with a high
probability the reflected Joe (results not shown here due to space constraints), because
both reflected Joe and Gumbel copulas provide similar dependence properties, i.e.,
lower tail dependence.
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Table 13. Small sample of size n={100,300,500} distributions for M, 1o0# replications).
Empirical rejection levels at a = {.20,.10,.05,.01}, degrees of freedom (df), and mean under the
factor copula models. Continuous and count variables are transformed to ordinal with K = {3,4,5}
and K ={3,4} categories, respectively, using the general strategies proposed in Section 5.2.
Count variables are also transformed to ordinal with K =5 categories by treating them as ordinal,
where the fifth category contained all the counts greater than 3

n=100 n =300 n =500

K=3 K=4 K=5 K=3 K=4 K=5 K=3 K=4 K=5

Political-economic data set — one-factor model
daf 92 121 152 92 121 152 92 121 152
Mean 89.3 118.3 148.4 91.0 119.7 152.6 91.0 119.6 152.3
a=.20 .183 .192 197 .196 194 .195 .196 .189 .190
a=.10 121 125 134 122 121 119 114 .109 .109
a=.05 .083 .089 .098 .076 .077 077 .072 .070 .067
a=.01 .044 .046 .055 .036 .034 .037 .027 .030 .026

General Social Survey — one-factor model

df 161 239 329 161 239 329 161 239 329
Mean 161.5 240.0 3330 160.7 239.4 329.7 161.3 240.2 329.6
a=.20 213 220 .240 .202 216 .203 211 228 212
a=.10 110 121 122 .106 118 .102 .118 127 .108
a=.05 .058 .070 .061 .054 .067 .051 .065 073 056
a=.01 .013 .018 014 .014 .019 .012 .016 .023 011
Swiss Consumption Survey — one-factor model
daf 74 128 194 74 128 194 74 128 194
Mean 75.4 130.1 197.8  74.6 128.5 195.1 74.5 128.0 194.4
a=.20 229 239 254 214 .209 221 210 .202 207
a=.10 21 135 147 111 .104 113 .105 .099 .103
a=.05 .067 076 .086 .056 .055 .060 .051 .053 .053
a=.01 .016 .024 .030 011 .013 .013 .012 011 012

General Social Survey — two-factor model Swiss Consumption Survey — two-factor model

n =500 n=500

K=3 K=4 K=5 K=3 K=4 K=5
daf 154 232 322 65 119 185
Mean 154.8 234.0 323.3 65.6 119.7 185.5
a=.20 .217 234 214 217 215 217
a=.10 .113 131 116 114 111 113
a=.05 .065 .075 .059 .060 .057 .060
a=.01 .018 .022 018 .013 .013 017

e in the results from the two-factor model for the Swiss Consumption Survey, the
variables with Frank copulas have the lowest selection rates. This is due to the fact that
their true Kendall’s T parameters are close to 0 (independence).
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Table 14. Frequencies of the true bivariate copula identified using the model selection algorithm
from 100 simulation runs.

Political-economic data set — one-factor model

Continuous Ordinal
n 1rJoe Joe rJoe Joe Gumbel
100 88 81 45 82 34
300 88 93 54 83 60
500 91 100 66 100 79
General Social Survey — one-factor model
Continuous Ordinal Count
n Joe 2rJoe ts ts rGumbel 2rJoe 2rGumbel
100 68 63 27 19 27 56 28
300 89 79 41 43 49 65 55
500 91 85 61 65 74 73 68
Swiss Consumption Survey — one-factor model
Continuous Ordinal Count
n rBB10 BB10 BB10 rJoe rJoe tJoe rJoe
100 27 94 91 61 60 41 56
300 50 929 98 64 71 63 68
500 70 98 98 68 74 71 72
General Social Survey — two-factor model
Continuous Ordinal Count

1st factor rGumbel rJoe BVN 1tJoe 1rJoe rJoe Gumbel
n

100 22 40 10 19 19 50 6

300 26 52 11 42 36 79 16

500 19 67 13 52 53 83 39
2nd factor Gumbel 2rJoe rJoe Gumbel ts BVN 2rGumbel
n

100 13 28 28 7 14 21 17

300 26 39 56 30 45 28 47

500 32 67 65 53 59 33 70

Continued
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Table 14 (Continued)

Swiss Consumption Survey — two-factor model

Continuous Ordinal Count
1st factor BB10 BB10 BB10 rJoe rJoe Frank Frank
n

100 57 77 55 31 28 23 34

300 81 94 82 51 40 19 21

500 88 94 87 49 50 21 16
2nd factor BB10 BVN BB10 BVN rJoe rJoe rGumbel
n

100 5 14 28 10 29 31 10

300 27 29 43 22 49 40 16

500 39 39 60 31 55 63 31

Note: rCopula: reflected copula; 1rCopula: 1-reflected copula; 2rCopula: 2-reflected copula.

8. Discussion

We have extended the factor copula model proposed in Krupskii and Joe (2013) and
Nikoloulopoulos and Joe (2015) to the case of mixed continuous and discrete responses.
It is the most general factor model as (@) it has the standard factor model with an additive
latent structure as a special case when the BVN copulas are used, (b) it can have a latent
structure that is not additive if other than BVN copulas are called, (¢) the parameters of the
univariate distributions are separated from the copula (dependence) parameters which
are interpretable as dependence of an observed variable with a latent variable, or
conditional dependence of an observed variable with a latent variable given preceding
latent variables. Other nonlinear (e.g., Rizopoulos & Moustaki, 2008), semi-parametric
(e.g., Gruhl, Erosheva, & Crane, 2013), or nonparametric models (e.g., Kelava, Kohler,
Krzyzak, & Schaffland, 2017) with latent variables have either an additive latent structure
or allow polynomial and interaction terms to be added in the linear predictor, hence are
not as general. Another mixed variable model in the literature, called the factor copula
model (Murray, Dunson, Carin, & Lucas, 2013), is restricted to the MVN copula like the
model proposed by Gruhl et al. (2013), hence it has an additive latent structure.

We have shown that the factor copula models provide a substantial improvement over
the standard factor model on the basis of the log-likelihood principle, Vuong’s and M,
statistics. Hence, superior statistical inference for the loading parameters of interest can
be achieved. This improvement relies on the fact that the latent variable distribution is
expressed via factor copulas instead of the MVN distribution. The latter is restricted to
linear and reflection symmetric dependence. Rizopoulos and Moustaki (2008) stressed
that the inadequacy of normally distributed latent variables can be caused by the nonlinear
dependence on the latent variables. The factor copula can provide flexible reflection
asymmetric tail and nonlinear dependence as it is a truncated canonical vine copula
(Brechmann etal., 2012) rooted at the latent variables. Joe, Li, and Nikoloulopoulos (2010)
show that in order for a vine copula to have (tail) dependence for all bivariate margins, it is
only necessary for the bivariate copulas at level 1 to have (tail) dependence and it is not
necessary for the conditional bivariate copulas at levels 2,...,d—1 to have tail
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dependence. The one-factor copula has bivariate copulas with tail dependence at the first
level and independence copulas at all the remaining levels of the vine (truncated after the
first level). The two-factor copula has bivariate copulas with tail dependence at the first
and second level and independence copulas at all the remaining levels (truncated after the
second level). Hence, the tail dependence among the latent variables and each of the
observed variables is inherited by the tail dependence among the observed variables.
Even in cases where the effect of misspecifying the bivariate linking copula choice to
build the factor copula models can be seen as minimal for the Kendall’s 7 (loading)
parameters, the tail dependence varies, as explained in Section 2.1, and is a property to
consider when choosing among different families of copulas and hence affects prediction.
Rabe-Hesketh, Pickles, and Skrondal (2003) highlighted the importance of the correct
distributional assumptions for the prediction of latent scores. The latent scores will
essentially show the effect of different model assumptions, because it is an inference that
depends on the joint distribution. The factor copula models have bivariate copulas that
link the latent variables to each of the observed variables. If these bivariate copulas have
upper or lower tail dependence, then this type of dependence is inherited by the
dependence between the factor scores and each of the observed variables. Hence, factor
scores are fairly different than those for the standard factor model if the sample size is
sufficient. Figure 3 demonstrates these differences by revisiting the political-economic

Selected factor copula model
Factor copula model with BVN

Factor analysis of Quinn (2004)

Selected factor copula model

T T T T T T 1
0 10 20 30 40 50 60

Factor copula model with BVN

Figure 3. Comparison of the political-economic risk rankings obtained via our selected model, the
standard factor model, and the mixed-data factor analysis of Quinn (2004).
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data set in Section 6.1 and comparing the political-economic risk ranking obtained via our
selected model, the factor copula model with BVN copulas (standard factor model), and
the mixed data factor analysis of Quinn (2004). It is revealed that even for a small sample
size (n = 62) there are differences. Between the factor copula model with BVN copulas
and the factor analysis model of Quinn (2004), there are small to moderate differences,
because while these models share the same latent variables distribution, the former model
does not assume the observed variables to be normally distributed, but rather uses the
empirical distribution of the continuous observed variables, that is, allows the margins to
be quite free and not restricted by the normal distribution. The differences in the lower
panel graph are solely due the misspecification of the latent variable distribution.

As stated by many researchers (e.g., Rabe-Hesketh & Skrondal, 2001, 2004), the major
difficulty for all the models with latent variables is identifiability. For example, for the
standard factor model or the more flexible model in Irincheeva et al. (2012b), one of the
loadings in the second factor has to be set to zero, because the model with 24 loadings is
not identifiable. The standard factor model arises as special case of our model if we use as
bivariate linking copulas the BVN copulas. Hence, for the two-factor copula model with
BVN copulas, one of the BVN copulas in the second factor has to be set as an
independence copula. However, using other than BVN copulas, the two-factor copula
model is near-identifiable with 2d bivariate linking copulas, as it as been demonstrated by
Krupskii and Joe (2013) and Nikoloulopoulos and Joe (2015).
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